//===-- tsan_platform_linux.cc --------------------------------------------===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // // Linux-specific code. //===----------------------------------------------------------------------===// #ifdef __linux__ #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_procmaps.h" #include "tsan_platform.h" #include "tsan_rtl.h" #include "tsan_flags.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define __need_res_state #include extern "C" int arch_prctl(int code, __sanitizer::uptr *addr); namespace __tsan { #ifndef TSAN_GO ScopedInRtl::ScopedInRtl() : thr_(cur_thread()) { in_rtl_ = thr_->in_rtl; thr_->in_rtl++; errno_ = errno; } ScopedInRtl::~ScopedInRtl() { thr_->in_rtl--; errno = errno_; CHECK_EQ(in_rtl_, thr_->in_rtl); } #else ScopedInRtl::ScopedInRtl() { } ScopedInRtl::~ScopedInRtl() { } #endif uptr GetShadowMemoryConsumption() { return 0; } void FlushShadowMemory() { FlushUnneededShadowMemory(kLinuxShadowBeg, kLinuxShadowEnd - kLinuxShadowBeg); } #ifndef TSAN_GO static void ProtectRange(uptr beg, uptr end) { ScopedInRtl in_rtl; CHECK_LE(beg, end); if (beg == end) return; if (beg != (uptr)Mprotect(beg, end - beg)) { Printf("FATAL: ThreadSanitizer can not protect [%zx,%zx]\n", beg, end); Printf("FATAL: Make sure you are not using unlimited stack\n"); Die(); } } #endif #ifndef TSAN_GO void InitializeShadowMemory() { uptr shadow = (uptr)MmapFixedNoReserve(kLinuxShadowBeg, kLinuxShadowEnd - kLinuxShadowBeg); if (shadow != kLinuxShadowBeg) { Printf("FATAL: ThreadSanitizer can not mmap the shadow memory\n"); Printf("FATAL: Make sure to compile with -fPIE and " "to link with -pie (%p, %p).\n", shadow, kLinuxShadowBeg); Die(); } const uptr kClosedLowBeg = 0x200000; const uptr kClosedLowEnd = kLinuxShadowBeg - 1; const uptr kClosedMidBeg = kLinuxShadowEnd + 1; const uptr kClosedMidEnd = min(kLinuxAppMemBeg, kTraceMemBegin); ProtectRange(kClosedLowBeg, kClosedLowEnd); ProtectRange(kClosedMidBeg, kClosedMidEnd); DPrintf("kClosedLow %zx-%zx (%zuGB)\n", kClosedLowBeg, kClosedLowEnd, (kClosedLowEnd - kClosedLowBeg) >> 30); DPrintf("kLinuxShadow %zx-%zx (%zuGB)\n", kLinuxShadowBeg, kLinuxShadowEnd, (kLinuxShadowEnd - kLinuxShadowBeg) >> 30); DPrintf("kClosedMid %zx-%zx (%zuGB)\n", kClosedMidBeg, kClosedMidEnd, (kClosedMidEnd - kClosedMidBeg) >> 30); DPrintf("kLinuxAppMem %zx-%zx (%zuGB)\n", kLinuxAppMemBeg, kLinuxAppMemEnd, (kLinuxAppMemEnd - kLinuxAppMemBeg) >> 30); DPrintf("stack %zx\n", (uptr)&shadow); } #endif static uptr g_data_start; static uptr g_data_end; #ifndef TSAN_GO static void CheckPIE() { // Ensure that the binary is indeed compiled with -pie. MemoryMappingLayout proc_maps; uptr start, end; if (proc_maps.Next(&start, &end, /*offset*/0, /*filename*/0, /*filename_size*/0)) { if ((u64)start < kLinuxAppMemBeg) { Printf("FATAL: ThreadSanitizer can not mmap the shadow memory (" "something is mapped at 0x%zx < 0x%zx)\n", start, kLinuxAppMemBeg); Printf("FATAL: Make sure to compile with -fPIE" " and to link with -pie.\n"); Die(); } } } static void InitDataSeg() { MemoryMappingLayout proc_maps; uptr start, end, offset; char name[128]; bool prev_is_data = false; while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name))) { DPrintf("%p-%p %p %s\n", start, end, offset, name); bool is_data = offset != 0 && name[0] != 0; // BSS may get merged with [heap] in /proc/self/maps. This is not very // reliable. bool is_bss = offset == 0 && (name[0] == 0 || internal_strcmp(name, "[heap]") == 0) && prev_is_data; if (g_data_start == 0 && is_data) g_data_start = start; if (is_bss) g_data_end = end; prev_is_data = is_data; } DPrintf("guessed data_start=%p data_end=%p\n", g_data_start, g_data_end); CHECK_LT(g_data_start, g_data_end); CHECK_GE((uptr)&g_data_start, g_data_start); CHECK_LT((uptr)&g_data_start, g_data_end); } static uptr g_tls_size; #ifdef __i386__ # define INTERNAL_FUNCTION __attribute__((regparm(3), stdcall)) #else # define INTERNAL_FUNCTION #endif static int InitTlsSize() { typedef void (*get_tls_func)(size_t*, size_t*) INTERNAL_FUNCTION; get_tls_func get_tls; void *get_tls_static_info_ptr = dlsym(RTLD_NEXT, "_dl_get_tls_static_info"); CHECK_EQ(sizeof(get_tls), sizeof(get_tls_static_info_ptr)); internal_memcpy(&get_tls, &get_tls_static_info_ptr, sizeof(get_tls_static_info_ptr)); CHECK_NE(get_tls, 0); size_t tls_size = 0; size_t tls_align = 0; get_tls(&tls_size, &tls_align); return tls_size; } #endif // #ifndef TSAN_GO static rlim_t getlim(int res) { rlimit rlim; CHECK_EQ(0, getrlimit(res, &rlim)); return rlim.rlim_cur; } static void setlim(int res, rlim_t lim) { // The following magic is to prevent clang from replacing it with memset. volatile rlimit rlim; rlim.rlim_cur = lim; rlim.rlim_max = lim; setrlimit(res, (rlimit*)&rlim); } const char *InitializePlatform() { void *p = 0; if (sizeof(p) == 8) { // Disable core dumps, dumping of 16TB usually takes a bit long. setlim(RLIMIT_CORE, 0); } // Go maps shadow memory lazily and works fine with limited address space. // Unlimited stack is not a problem as well, because the executable // is not compiled with -pie. if (kCppMode) { bool reexec = false; // TSan doesn't play well with unlimited stack size (as stack // overlaps with shadow memory). If we detect unlimited stack size, // we re-exec the program with limited stack size as a best effort. if (getlim(RLIMIT_STACK) == (rlim_t)-1) { const uptr kMaxStackSize = 32 * 1024 * 1024; Report("WARNING: Program is run with unlimited stack size, which " "wouldn't work with ThreadSanitizer.\n"); Report("Re-execing with stack size limited to %zd bytes.\n", kMaxStackSize); SetStackSizeLimitInBytes(kMaxStackSize); reexec = true; } if (getlim(RLIMIT_AS) != (rlim_t)-1) { Report("WARNING: Program is run with limited virtual address space," " which wouldn't work with ThreadSanitizer.\n"); Report("Re-execing with unlimited virtual address space.\n"); setlim(RLIMIT_AS, -1); reexec = true; } if (reexec) ReExec(); } #ifndef TSAN_GO CheckPIE(); g_tls_size = (uptr)InitTlsSize(); InitDataSeg(); #endif return GetEnv(kTsanOptionsEnv); } void FinalizePlatform() { fflush(0); } uptr GetTlsSize() { #ifndef TSAN_GO return g_tls_size; #else return 0; #endif } void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, uptr *tls_addr, uptr *tls_size) { #ifndef TSAN_GO arch_prctl(ARCH_GET_FS, tls_addr); *tls_addr -= g_tls_size; *tls_size = g_tls_size; uptr stack_top, stack_bottom; GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom); *stk_addr = stack_bottom; *stk_size = stack_top - stack_bottom; if (!main) { // If stack and tls intersect, make them non-intersecting. if (*tls_addr > *stk_addr && *tls_addr < *stk_addr + *stk_size) { CHECK_GT(*tls_addr + *tls_size, *stk_addr); CHECK_LE(*tls_addr + *tls_size, *stk_addr + *stk_size); *stk_size -= *tls_size; *tls_addr = *stk_addr + *stk_size; } } #else *stk_addr = 0; *stk_size = 0; *tls_addr = 0; *tls_size = 0; #endif } bool IsGlobalVar(uptr addr) { return g_data_start && addr >= g_data_start && addr < g_data_end; } #ifndef TSAN_GO int ExtractResolvFDs(void *state, int *fds, int nfd) { int cnt = 0; __res_state *statp = (__res_state*)state; for (int i = 0; i < MAXNS && cnt < nfd; i++) { if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1) fds[cnt++] = statp->_u._ext.nssocks[i]; } return cnt; } #endif } // namespace __tsan #endif // #ifdef __linux__