/* Top level of GCC compilers (cc1, cc1plus, etc.) Copyright (C) 1987-2013 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* This is the top level of cc1/c++. It parses command args, opens files, invokes the various passes in the proper order, and counts the time used by each. Error messages and low-level interface to malloc also handled here. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "line-map.h" #include "input.h" #include "tree.h" #include "rtl.h" #include "tm_p.h" #include "flags.h" #include "insn-attr.h" #include "insn-config.h" #include "insn-flags.h" #include "hard-reg-set.h" #include "recog.h" #include "output.h" #include "except.h" #include "function.h" #include "toplev.h" #include "expr.h" #include "basic-block.h" #include "intl.h" #include "ggc.h" #include "graph.h" #include "regs.h" #include "diagnostic-core.h" #include "params.h" #include "reload.h" #include "debug.h" #include "target.h" #include "langhooks.h" #include "cfgloop.h" #include "hosthooks.h" #include "cgraph.h" #include "opts.h" #include "coverage.h" #include "value-prof.h" #include "tree-inline.h" #include "tree-flow.h" #include "tree-pass.h" #include "tree-dump.h" #include "df.h" #include "predict.h" #include "lto-streamer.h" #include "plugin.h" #include "ipa-utils.h" #include "tree-pretty-print.h" /* for dump_function_header */ /* This is used for debugging. It allows the current pass to printed from anywhere in compilation. The variable current_pass is also used for statistics and plugins. */ struct opt_pass *current_pass; static void register_pass_name (struct opt_pass *, const char *); /* Call from anywhere to find out what pass this is. Useful for printing out debugging information deep inside an service routine. */ void print_current_pass (FILE *file) { if (current_pass) fprintf (file, "current pass = %s (%d)\n", current_pass->name, current_pass->static_pass_number); else fprintf (file, "no current pass.\n"); } /* Call from the debugger to get the current pass name. */ DEBUG_FUNCTION void debug_pass (void) { print_current_pass (stderr); } /* Global variables used to communicate with passes. */ bool in_gimple_form; bool first_pass_instance; /* This is called from various places for FUNCTION_DECL, VAR_DECL, and TYPE_DECL nodes. This does nothing for local (non-static) variables, unless the variable is a register variable with DECL_ASSEMBLER_NAME set. In that case, or if the variable is not an automatic, it sets up the RTL and outputs any assembler code (label definition, storage allocation and initialization). DECL is the declaration. TOP_LEVEL is nonzero if this declaration is not within a function. */ void rest_of_decl_compilation (tree decl, int top_level, int at_end) { /* We deferred calling assemble_alias so that we could collect other attributes such as visibility. Emit the alias now. */ if (!in_lto_p) { tree alias; alias = lookup_attribute ("alias", DECL_ATTRIBUTES (decl)); if (alias) { alias = TREE_VALUE (TREE_VALUE (alias)); alias = get_identifier (TREE_STRING_POINTER (alias)); /* A quirk of the initial implementation of aliases required that the user add "extern" to all of them. Which is silly, but now historical. Do note that the symbol is in fact locally defined. */ if (!lookup_attribute ("weakref", DECL_ATTRIBUTES (decl))) DECL_EXTERNAL (decl) = 0; assemble_alias (decl, alias); } } /* Can't defer this, because it needs to happen before any later function definitions are processed. */ if (DECL_ASSEMBLER_NAME_SET_P (decl) && DECL_REGISTER (decl)) make_decl_rtl (decl); /* Forward declarations for nested functions are not "external", but we need to treat them as if they were. */ if (TREE_STATIC (decl) || DECL_EXTERNAL (decl) || TREE_CODE (decl) == FUNCTION_DECL) { timevar_push (TV_VARCONST); /* Don't output anything when a tentative file-scope definition is seen. But at end of compilation, do output code for them. We do output all variables and rely on callgraph code to defer them except for forward declarations (see gcc.c-torture/compile/920624-1.c) */ if ((at_end || !DECL_DEFER_OUTPUT (decl) || DECL_INITIAL (decl)) && (TREE_CODE (decl) != VAR_DECL || !DECL_HAS_VALUE_EXPR_P (decl)) && !DECL_EXTERNAL (decl)) { /* When reading LTO unit, we also read varpool, so do not rebuild it. */ if (in_lto_p && !at_end) ; else if (TREE_CODE (decl) != FUNCTION_DECL) varpool_finalize_decl (decl); } #ifdef ASM_FINISH_DECLARE_OBJECT if (decl == last_assemble_variable_decl) { ASM_FINISH_DECLARE_OBJECT (asm_out_file, decl, top_level, at_end); } #endif timevar_pop (TV_VARCONST); } else if (TREE_CODE (decl) == TYPE_DECL /* Like in rest_of_type_compilation, avoid confusing the debug information machinery when there are errors. */ && !seen_error ()) { timevar_push (TV_SYMOUT); debug_hooks->type_decl (decl, !top_level); timevar_pop (TV_SYMOUT); } /* Let cgraph know about the existence of variables. */ if (in_lto_p && !at_end) ; else if (TREE_CODE (decl) == VAR_DECL && !DECL_EXTERNAL (decl) && TREE_STATIC (decl)) varpool_node_for_decl (decl); } /* Called after finishing a record, union or enumeral type. */ void rest_of_type_compilation (tree type, int toplev) { /* Avoid confusing the debug information machinery when there are errors. */ if (seen_error ()) return; timevar_push (TV_SYMOUT); debug_hooks->type_decl (TYPE_STUB_DECL (type), !toplev); timevar_pop (TV_SYMOUT); } void finish_optimization_passes (void) { int i; struct dump_file_info *dfi; char *name; timevar_push (TV_DUMP); if (profile_arc_flag || flag_test_coverage || flag_branch_probabilities) { dump_start (pass_profile.pass.static_pass_number, NULL); end_branch_prob (); dump_finish (pass_profile.pass.static_pass_number); } if (optimize > 0) { dump_start (pass_profile.pass.static_pass_number, NULL); print_combine_total_stats (); dump_finish (pass_profile.pass.static_pass_number); } /* Do whatever is necessary to finish printing the graphs. */ for (i = TDI_end; (dfi = get_dump_file_info (i)) != NULL; ++i) if (dump_initialized_p (i) && (dfi->pflags & TDF_GRAPH) != 0 && (name = get_dump_file_name (i)) != NULL) { finish_graph_dump_file (name); free (name); } timevar_pop (TV_DUMP); } static unsigned int execute_all_early_local_passes (void) { /* Once this pass (and its sub-passes) are complete, all functions will be in SSA form. Technically this state change is happening a tad early, since the sub-passes have not yet run, but since none of the sub-passes are IPA passes and do not create new functions, this is ok. We're setting this value for the benefit of IPA passes that follow. */ if (cgraph_state < CGRAPH_STATE_IPA_SSA) cgraph_state = CGRAPH_STATE_IPA_SSA; return 0; } /* Gate: execute, or not, all of the non-trivial optimizations. */ static bool gate_all_early_local_passes (void) { /* Don't bother doing anything if the program has errors. */ return (!seen_error () && !in_lto_p); } struct simple_ipa_opt_pass pass_early_local_passes = { { SIMPLE_IPA_PASS, "early_local_cleanups", /* name */ OPTGROUP_NONE, /* optinfo_flags */ gate_all_early_local_passes, /* gate */ execute_all_early_local_passes, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_EARLY_LOCAL, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_remove_functions /* todo_flags_finish */ } }; /* Gate: execute, or not, all of the non-trivial optimizations. */ static bool gate_all_early_optimizations (void) { return (optimize >= 1 /* Don't bother doing anything if the program has errors. */ && !seen_error ()); } static struct gimple_opt_pass pass_all_early_optimizations = { { GIMPLE_PASS, "early_optimizations", /* name */ OPTGROUP_NONE, /* optinfo_flags */ gate_all_early_optimizations, /* gate */ NULL, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_NONE, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0 /* todo_flags_finish */ } }; /* Gate: execute, or not, all of the non-trivial optimizations. */ static bool gate_all_optimizations (void) { return optimize >= 1 && !optimize_debug; } static struct gimple_opt_pass pass_all_optimizations = { { GIMPLE_PASS, "*all_optimizations", /* name */ OPTGROUP_NONE, /* optinfo_flags */ gate_all_optimizations, /* gate */ NULL, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_OPTIMIZE, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0 /* todo_flags_finish */ } }; /* Gate: execute, or not, all of the non-trivial optimizations. */ static bool gate_all_optimizations_g (void) { return optimize >= 1 && optimize_debug; } static struct gimple_opt_pass pass_all_optimizations_g = { { GIMPLE_PASS, "*all_optimizations_g", /* name */ OPTGROUP_NONE, /* optinfo_flags */ gate_all_optimizations_g, /* gate */ NULL, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_OPTIMIZE, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0 /* todo_flags_finish */ } }; static bool gate_rest_of_compilation (void) { /* Early return if there were errors. We can run afoul of our consistency checks, and there's not really much point in fixing them. */ return !(rtl_dump_and_exit || flag_syntax_only || seen_error ()); } static struct rtl_opt_pass pass_rest_of_compilation = { { RTL_PASS, "*rest_of_compilation", /* name */ OPTGROUP_NONE, /* optinfo_flags */ gate_rest_of_compilation, /* gate */ NULL, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_REST_OF_COMPILATION, /* tv_id */ PROP_rtl, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_ggc_collect /* todo_flags_finish */ } }; static bool gate_postreload (void) { return reload_completed; } static struct rtl_opt_pass pass_postreload = { { RTL_PASS, "*all-postreload", /* name */ OPTGROUP_NONE, /* optinfo_flags */ gate_postreload, /* gate */ NULL, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_POSTRELOAD, /* tv_id */ PROP_rtl, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_ggc_collect | TODO_verify_rtl_sharing /* todo_flags_finish */ } }; /* The root of the compilation pass tree, once constructed. */ struct opt_pass *all_passes, *all_small_ipa_passes, *all_lowering_passes, *all_regular_ipa_passes, *all_late_ipa_passes, *all_lto_gen_passes; /* This is used by plugins, and should also be used in register_pass. */ #define DEF_PASS_LIST(LIST) &LIST, struct opt_pass **gcc_pass_lists[] = { GCC_PASS_LISTS NULL }; #undef DEF_PASS_LIST /* A map from static pass id to optimization pass. */ struct opt_pass **passes_by_id; int passes_by_id_size; /* Set the static pass number of pass PASS to ID and record that in the mapping from static pass number to pass. */ static void set_pass_for_id (int id, struct opt_pass *pass) { pass->static_pass_number = id; if (passes_by_id_size <= id) { passes_by_id = XRESIZEVEC (struct opt_pass *, passes_by_id, id + 1); memset (passes_by_id + passes_by_id_size, 0, (id + 1 - passes_by_id_size) * sizeof (void *)); passes_by_id_size = id + 1; } passes_by_id[id] = pass; } /* Return the pass with the static pass number ID. */ struct opt_pass * get_pass_for_id (int id) { if (id >= passes_by_id_size) return NULL; return passes_by_id[id]; } /* Iterate over the pass tree allocating dump file numbers. We want to do this depth first, and independent of whether the pass is enabled or not. */ void register_one_dump_file (struct opt_pass *pass) { char *dot_name, *flag_name, *glob_name; const char *name, *full_name, *prefix; char num[10]; int flags, id; int optgroup_flags = OPTGROUP_NONE; /* See below in next_pass_1. */ num[0] = '\0'; if (pass->static_pass_number != -1) sprintf (num, "%d", ((int) pass->static_pass_number < 0 ? 1 : pass->static_pass_number)); /* The name is both used to identify the pass for the purposes of plugins, and to specify dump file name and option. The latter two might want something short which is not quite unique; for that reason, we may have a disambiguating prefix, followed by a space to mark the start of the following dump file name / option string. */ name = strchr (pass->name, ' '); name = name ? name + 1 : pass->name; dot_name = concat (".", name, num, NULL); if (pass->type == SIMPLE_IPA_PASS || pass->type == IPA_PASS) { prefix = "ipa-"; flags = TDF_IPA; optgroup_flags |= OPTGROUP_IPA; } else if (pass->type == GIMPLE_PASS) { prefix = "tree-"; flags = TDF_TREE; } else { prefix = "rtl-"; flags = TDF_RTL; } flag_name = concat (prefix, name, num, NULL); glob_name = concat (prefix, name, NULL); optgroup_flags |= pass->optinfo_flags; id = dump_register (dot_name, flag_name, glob_name, flags, optgroup_flags); set_pass_for_id (id, pass); full_name = concat (prefix, pass->name, num, NULL); register_pass_name (pass, full_name); free (CONST_CAST (char *, full_name)); } /* Recursive worker function for register_dump_files. */ static int register_dump_files_1 (struct opt_pass *pass, int properties) { do { int new_properties = (properties | pass->properties_provided) & ~pass->properties_destroyed; if (pass->name && pass->name[0] != '*') register_one_dump_file (pass); if (pass->sub) new_properties = register_dump_files_1 (pass->sub, new_properties); /* If we have a gate, combine the properties that we could have with and without the pass being examined. */ if (pass->gate) properties &= new_properties; else properties = new_properties; pass = pass->next; } while (pass); return properties; } /* Register the dump files for the pipeline starting at PASS. PROPERTIES reflects the properties that are guaranteed to be available at the beginning of the pipeline. */ static void register_dump_files (struct opt_pass *pass,int properties) { pass->properties_required |= properties; register_dump_files_1 (pass, properties); } struct pass_registry { const char* unique_name; struct opt_pass *pass; }; /* Pass registry hash function. */ static hashval_t passr_hash (const void *p) { const struct pass_registry *const s = (const struct pass_registry *const) p; return htab_hash_string (s->unique_name); } /* Hash equal function */ static int passr_eq (const void *p1, const void *p2) { const struct pass_registry *const s1 = (const struct pass_registry *const) p1; const struct pass_registry *const s2 = (const struct pass_registry *const) p2; return !strcmp (s1->unique_name, s2->unique_name); } static htab_t name_to_pass_map = NULL; /* Register PASS with NAME. */ static void register_pass_name (struct opt_pass *pass, const char *name) { struct pass_registry **slot; struct pass_registry pr; if (!name_to_pass_map) name_to_pass_map = htab_create (256, passr_hash, passr_eq, NULL); pr.unique_name = name; slot = (struct pass_registry **) htab_find_slot (name_to_pass_map, &pr, INSERT); if (!*slot) { struct pass_registry *new_pr; new_pr = XCNEW (struct pass_registry); new_pr->unique_name = xstrdup (name); new_pr->pass = pass; *slot = new_pr; } else return; /* Ignore plugin passes. */ } /* Map from pass id to canonicalized pass name. */ typedef const char *char_ptr; static vec pass_tab = vNULL; /* Callback function for traversing NAME_TO_PASS_MAP. */ static int pass_traverse (void **slot, void *data ATTRIBUTE_UNUSED) { struct pass_registry **p = (struct pass_registry **)slot; struct opt_pass *pass = (*p)->pass; gcc_assert (pass->static_pass_number > 0); gcc_assert (pass_tab.exists ()); pass_tab[pass->static_pass_number] = (*p)->unique_name; return 1; } /* The function traverses NAME_TO_PASS_MAP and creates a pass info table for dumping purpose. */ static void create_pass_tab (void) { if (!flag_dump_passes) return; pass_tab.safe_grow_cleared (passes_by_id_size + 1); htab_traverse (name_to_pass_map, pass_traverse, NULL); } static bool override_gate_status (struct opt_pass *, tree, bool); /* Dump the instantiated name for PASS. IS_ON indicates if PASS is turned on or not. */ static void dump_one_pass (struct opt_pass *pass, int pass_indent) { int indent = 3 * pass_indent; const char *pn; bool is_on, is_really_on; is_on = (pass->gate == NULL) ? true : pass->gate(); is_really_on = override_gate_status (pass, current_function_decl, is_on); if (pass->static_pass_number <= 0) pn = pass->name; else pn = pass_tab[pass->static_pass_number]; fprintf (stderr, "%*s%-40s%*s:%s%s\n", indent, " ", pn, (15 - indent < 0 ? 0 : 15 - indent), " ", is_on ? " ON" : " OFF", ((!is_on) == (!is_really_on) ? "" : (is_really_on ? " (FORCED_ON)" : " (FORCED_OFF)"))); } /* Dump pass list PASS with indentation INDENT. */ static void dump_pass_list (struct opt_pass *pass, int indent) { do { dump_one_pass (pass, indent); if (pass->sub) dump_pass_list (pass->sub, indent + 1); pass = pass->next; } while (pass); } /* Dump all optimization passes. */ void dump_passes (void) { struct cgraph_node *n, *node = NULL; create_pass_tab(); FOR_EACH_DEFINED_FUNCTION (n) if (DECL_STRUCT_FUNCTION (n->symbol.decl)) { node = n; break; } if (!node) return; push_cfun (DECL_STRUCT_FUNCTION (node->symbol.decl)); dump_pass_list (all_lowering_passes, 1); dump_pass_list (all_small_ipa_passes, 1); dump_pass_list (all_regular_ipa_passes, 1); dump_pass_list (all_lto_gen_passes, 1); dump_pass_list (all_late_ipa_passes, 1); dump_pass_list (all_passes, 1); pop_cfun (); } /* Returns the pass with NAME. */ static struct opt_pass * get_pass_by_name (const char *name) { struct pass_registry **slot, pr; pr.unique_name = name; slot = (struct pass_registry **) htab_find_slot (name_to_pass_map, &pr, NO_INSERT); if (!slot || !*slot) return NULL; return (*slot)->pass; } /* Range [start, last]. */ struct uid_range { unsigned int start; unsigned int last; const char *assem_name; struct uid_range *next; }; typedef struct uid_range *uid_range_p; static vec enabled_pass_uid_range_tab = vNULL; static vec disabled_pass_uid_range_tab = vNULL; /* Parse option string for -fdisable- and -fenable- The syntax of the options: -fenable- -fdisable- -fenable-=s1:e1,s2:e2,... -fdisable-=s1:e1,s2:e2,... */ static void enable_disable_pass (const char *arg, bool is_enable) { struct opt_pass *pass; char *range_str, *phase_name; char *argstr = xstrdup (arg); vec *tab = 0; range_str = strchr (argstr,'='); if (range_str) { *range_str = '\0'; range_str++; } phase_name = argstr; if (!*phase_name) { if (is_enable) error ("unrecognized option -fenable"); else error ("unrecognized option -fdisable"); free (argstr); return; } pass = get_pass_by_name (phase_name); if (!pass || pass->static_pass_number == -1) { if (is_enable) error ("unknown pass %s specified in -fenable", phase_name); else error ("unknown pass %s specified in -fdisable", phase_name); free (argstr); return; } if (is_enable) tab = &enabled_pass_uid_range_tab; else tab = &disabled_pass_uid_range_tab; if ((unsigned) pass->static_pass_number >= tab->length ()) tab->safe_grow_cleared (pass->static_pass_number + 1); if (!range_str) { uid_range_p slot; uid_range_p new_range = XCNEW (struct uid_range); new_range->start = 0; new_range->last = (unsigned)-1; slot = (*tab)[pass->static_pass_number]; new_range->next = slot; (*tab)[pass->static_pass_number] = new_range; if (is_enable) inform (UNKNOWN_LOCATION, "enable pass %s for functions in the range " "of [%u, %u]", phase_name, new_range->start, new_range->last); else inform (UNKNOWN_LOCATION, "disable pass %s for functions in the range " "of [%u, %u]", phase_name, new_range->start, new_range->last); } else { char *next_range = NULL; char *one_range = range_str; char *end_val = NULL; do { uid_range_p slot; uid_range_p new_range; char *invalid = NULL; long start; char *func_name = NULL; next_range = strchr (one_range, ','); if (next_range) { *next_range = '\0'; next_range++; } end_val = strchr (one_range, ':'); if (end_val) { *end_val = '\0'; end_val++; } start = strtol (one_range, &invalid, 10); if (*invalid || start < 0) { if (end_val || (one_range[0] >= '0' && one_range[0] <= '9')) { error ("Invalid range %s in option %s", one_range, is_enable ? "-fenable" : "-fdisable"); free (argstr); return; } func_name = one_range; } if (!end_val) { new_range = XCNEW (struct uid_range); if (!func_name) { new_range->start = (unsigned) start; new_range->last = (unsigned) start; } else { new_range->start = (unsigned) -1; new_range->last = (unsigned) -1; new_range->assem_name = xstrdup (func_name); } } else { long last = strtol (end_val, &invalid, 10); if (*invalid || last < start) { error ("Invalid range %s in option %s", end_val, is_enable ? "-fenable" : "-fdisable"); free (argstr); return; } new_range = XCNEW (struct uid_range); new_range->start = (unsigned) start; new_range->last = (unsigned) last; } slot = (*tab)[pass->static_pass_number]; new_range->next = slot; (*tab)[pass->static_pass_number] = new_range; if (is_enable) { if (new_range->assem_name) inform (UNKNOWN_LOCATION, "enable pass %s for function %s", phase_name, new_range->assem_name); else inform (UNKNOWN_LOCATION, "enable pass %s for functions in the range of [%u, %u]", phase_name, new_range->start, new_range->last); } else { if (new_range->assem_name) inform (UNKNOWN_LOCATION, "disable pass %s for function %s", phase_name, new_range->assem_name); else inform (UNKNOWN_LOCATION, "disable pass %s for functions in the range of [%u, %u]", phase_name, new_range->start, new_range->last); } one_range = next_range; } while (next_range); } free (argstr); } /* Enable pass specified by ARG. */ void enable_pass (const char *arg) { enable_disable_pass (arg, true); } /* Disable pass specified by ARG. */ void disable_pass (const char *arg) { enable_disable_pass (arg, false); } /* Returns true if PASS is explicitly enabled/disabled for FUNC. */ static bool is_pass_explicitly_enabled_or_disabled (struct opt_pass *pass, tree func, vec tab) { uid_range_p slot, range; int cgraph_uid; const char *aname = NULL; if (!tab.exists () || (unsigned) pass->static_pass_number >= tab.length () || pass->static_pass_number == -1) return false; slot = tab[pass->static_pass_number]; if (!slot) return false; cgraph_uid = func ? cgraph_get_node (func)->uid : 0; if (func && DECL_ASSEMBLER_NAME_SET_P (func)) aname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (func)); range = slot; while (range) { if ((unsigned) cgraph_uid >= range->start && (unsigned) cgraph_uid <= range->last) return true; if (range->assem_name && aname && !strcmp (range->assem_name, aname)) return true; range = range->next; } return false; } /* Look at the static_pass_number and duplicate the pass if it is already added to a list. */ static struct opt_pass * make_pass_instance (struct opt_pass *pass, bool track_duplicates) { /* A nonzero static_pass_number indicates that the pass is already in the list. */ if (pass->static_pass_number) { struct opt_pass *new_pass; if (pass->type == GIMPLE_PASS || pass->type == RTL_PASS || pass->type == SIMPLE_IPA_PASS) { new_pass = XNEW (struct opt_pass); memcpy (new_pass, pass, sizeof (struct opt_pass)); } else if (pass->type == IPA_PASS) { new_pass = (struct opt_pass *)XNEW (struct ipa_opt_pass_d); memcpy (new_pass, pass, sizeof (struct ipa_opt_pass_d)); } else gcc_unreachable (); new_pass->next = NULL; new_pass->todo_flags_start &= ~TODO_mark_first_instance; /* Indicate to register_dump_files that this pass has duplicates, and so it should rename the dump file. The first instance will be -1, and be number of duplicates = -static_pass_number - 1. Subsequent instances will be > 0 and just the duplicate number. */ if ((pass->name && pass->name[0] != '*') || track_duplicates) { pass->static_pass_number -= 1; new_pass->static_pass_number = -pass->static_pass_number; } return new_pass; } else { pass->todo_flags_start |= TODO_mark_first_instance; pass->static_pass_number = -1; invoke_plugin_callbacks (PLUGIN_NEW_PASS, pass); } return pass; } /* Add a pass to the pass list. Duplicate the pass if it's already in the list. */ static struct opt_pass ** next_pass_1 (struct opt_pass **list, struct opt_pass *pass) { /* Every pass should have a name so that plugins can refer to them. */ gcc_assert (pass->name != NULL); *list = make_pass_instance (pass, false); return &(*list)->next; } /* List node for an inserted pass instance. We need to keep track of all the newly-added pass instances (with 'added_pass_nodes' defined below) so that we can register their dump files after pass-positioning is finished. Registering dumping files needs to be post-processed or the static_pass_number of the opt_pass object would be modified and mess up the dump file names of future pass instances to be added. */ struct pass_list_node { struct opt_pass *pass; struct pass_list_node *next; }; static struct pass_list_node *added_pass_nodes = NULL; static struct pass_list_node *prev_added_pass_node; /* Insert the pass at the proper position. Return true if the pass is successfully added. NEW_PASS_INFO - new pass to be inserted PASS_LIST - root of the pass list to insert the new pass to */ static bool position_pass (struct register_pass_info *new_pass_info, struct opt_pass **pass_list) { struct opt_pass *pass = *pass_list, *prev_pass = NULL; bool success = false; for ( ; pass; prev_pass = pass, pass = pass->next) { /* Check if the current pass is of the same type as the new pass and matches the name and the instance number of the reference pass. */ if (pass->type == new_pass_info->pass->type && pass->name && !strcmp (pass->name, new_pass_info->reference_pass_name) && ((new_pass_info->ref_pass_instance_number == 0) || (new_pass_info->ref_pass_instance_number == pass->static_pass_number) || (new_pass_info->ref_pass_instance_number == 1 && pass->todo_flags_start & TODO_mark_first_instance))) { struct opt_pass *new_pass; struct pass_list_node *new_pass_node; new_pass = make_pass_instance (new_pass_info->pass, true); /* Insert the new pass instance based on the positioning op. */ switch (new_pass_info->pos_op) { case PASS_POS_INSERT_AFTER: new_pass->next = pass->next; pass->next = new_pass; /* Skip newly inserted pass to avoid repeated insertions in the case where the new pass and the existing one have the same name. */ pass = new_pass; break; case PASS_POS_INSERT_BEFORE: new_pass->next = pass; if (prev_pass) prev_pass->next = new_pass; else *pass_list = new_pass; break; case PASS_POS_REPLACE: new_pass->next = pass->next; if (prev_pass) prev_pass->next = new_pass; else *pass_list = new_pass; new_pass->sub = pass->sub; new_pass->tv_id = pass->tv_id; pass = new_pass; break; default: error ("invalid pass positioning operation"); return false; } /* Save the newly added pass (instance) in the added_pass_nodes list so that we can register its dump file later. Note that we cannot register the dump file now because doing so will modify the static_pass_number of the opt_pass object and therefore mess up the dump file name of future instances. */ new_pass_node = XCNEW (struct pass_list_node); new_pass_node->pass = new_pass; if (!added_pass_nodes) added_pass_nodes = new_pass_node; else prev_added_pass_node->next = new_pass_node; prev_added_pass_node = new_pass_node; success = true; } if (pass->sub && position_pass (new_pass_info, &pass->sub)) success = true; } return success; } /* Hooks a new pass into the pass lists. PASS_INFO - pass information that specifies the opt_pass object, reference pass, instance number, and how to position the pass */ void register_pass (struct register_pass_info *pass_info) { bool all_instances, success; /* The checks below could fail in buggy plugins. Existing GCC passes should never fail these checks, so we mention plugin in the messages. */ if (!pass_info->pass) fatal_error ("plugin cannot register a missing pass"); if (!pass_info->pass->name) fatal_error ("plugin cannot register an unnamed pass"); if (!pass_info->reference_pass_name) fatal_error ("plugin cannot register pass %qs without reference pass name", pass_info->pass->name); /* Try to insert the new pass to the pass lists. We need to check all five lists as the reference pass could be in one (or all) of them. */ all_instances = pass_info->ref_pass_instance_number == 0; success = position_pass (pass_info, &all_lowering_passes); if (!success || all_instances) success |= position_pass (pass_info, &all_small_ipa_passes); if (!success || all_instances) success |= position_pass (pass_info, &all_regular_ipa_passes); if (!success || all_instances) success |= position_pass (pass_info, &all_lto_gen_passes); if (!success || all_instances) success |= position_pass (pass_info, &all_late_ipa_passes); if (!success || all_instances) success |= position_pass (pass_info, &all_passes); if (!success) fatal_error ("pass %qs not found but is referenced by new pass %qs", pass_info->reference_pass_name, pass_info->pass->name); /* OK, we have successfully inserted the new pass. We need to register the dump files for the newly added pass and its duplicates (if any). Because the registration of plugin/backend passes happens after the command-line options are parsed, the options that specify single pass dumping (e.g. -fdump-tree-PASSNAME) cannot be used for new passes. Therefore we currently can only enable dumping of new passes when the 'dump-all' flags (e.g. -fdump-tree-all) are specified. While doing so, we also delete the pass_list_node objects created during pass positioning. */ while (added_pass_nodes) { struct pass_list_node *next_node = added_pass_nodes->next; enum tree_dump_index tdi; register_one_dump_file (added_pass_nodes->pass); if (added_pass_nodes->pass->type == SIMPLE_IPA_PASS || added_pass_nodes->pass->type == IPA_PASS) tdi = TDI_ipa_all; else if (added_pass_nodes->pass->type == GIMPLE_PASS) tdi = TDI_tree_all; else tdi = TDI_rtl_all; /* Check if dump-all flag is specified. */ if (get_dump_file_info (tdi)->pstate) get_dump_file_info (added_pass_nodes->pass->static_pass_number) ->pstate = get_dump_file_info (tdi)->pstate; XDELETE (added_pass_nodes); added_pass_nodes = next_node; } } /* Construct the pass tree. The sequencing of passes is driven by the cgraph routines: finalize_compilation_unit () for each node N in the cgraph cgraph_analyze_function (N) cgraph_lower_function (N) -> all_lowering_passes If we are optimizing, compile is then invoked: compile () ipa_passes () -> all_small_ipa_passes -> Analysis of all_regular_ipa_passes * possible LTO streaming at copmilation time * -> Execution of all_regular_ipa_passes * possible LTO streaming at link time * -> all_late_ipa_passes expand_all_functions () for each node N in the cgraph expand_function (N) -> Transformation of all_regular_ipa_passes -> all_passes */ void init_optimization_passes (void) { struct opt_pass **p; #define NEXT_PASS(PASS) (p = next_pass_1 (p, &((PASS).pass))) /* All passes needed to lower the function into shape optimizers can operate on. These passes are always run first on the function, but backend might produce already lowered functions that are not processed by these passes. */ p = &all_lowering_passes; NEXT_PASS (pass_warn_unused_result); NEXT_PASS (pass_diagnose_omp_blocks); NEXT_PASS (pass_diagnose_tm_blocks); NEXT_PASS (pass_mudflap_1); NEXT_PASS (pass_lower_omp); NEXT_PASS (pass_lower_cf); NEXT_PASS (pass_lower_tm); NEXT_PASS (pass_refactor_eh); NEXT_PASS (pass_lower_eh); NEXT_PASS (pass_build_cfg); NEXT_PASS (pass_warn_function_return); NEXT_PASS (pass_build_cgraph_edges); *p = NULL; /* Interprocedural optimization passes. */ p = &all_small_ipa_passes; NEXT_PASS (pass_ipa_free_lang_data); NEXT_PASS (pass_ipa_function_and_variable_visibility); NEXT_PASS (pass_early_local_passes); { struct opt_pass **p = &pass_early_local_passes.pass.sub; NEXT_PASS (pass_fixup_cfg); NEXT_PASS (pass_init_datastructures); NEXT_PASS (pass_expand_omp); NEXT_PASS (pass_build_ssa); NEXT_PASS (pass_lower_vector); NEXT_PASS (pass_early_warn_uninitialized); NEXT_PASS (pass_rebuild_cgraph_edges); NEXT_PASS (pass_inline_parameters); NEXT_PASS (pass_early_inline); NEXT_PASS (pass_all_early_optimizations); { struct opt_pass **p = &pass_all_early_optimizations.pass.sub; NEXT_PASS (pass_remove_cgraph_callee_edges); NEXT_PASS (pass_rename_ssa_copies); NEXT_PASS (pass_ccp); /* After CCP we rewrite no longer addressed locals into SSA form if possible. */ NEXT_PASS (pass_forwprop); /* pass_build_ealias is a dummy pass that ensures that we execute TODO_rebuild_alias at this point. */ NEXT_PASS (pass_build_ealias); NEXT_PASS (pass_sra_early); NEXT_PASS (pass_fre); NEXT_PASS (pass_copy_prop); NEXT_PASS (pass_merge_phi); NEXT_PASS (pass_cd_dce); NEXT_PASS (pass_early_ipa_sra); NEXT_PASS (pass_tail_recursion); NEXT_PASS (pass_convert_switch); NEXT_PASS (pass_cleanup_eh); NEXT_PASS (pass_profile); NEXT_PASS (pass_local_pure_const); /* Split functions creates parts that are not run through early optimizations again. It is thus good idea to do this late. */ NEXT_PASS (pass_split_functions); } NEXT_PASS (pass_release_ssa_names); NEXT_PASS (pass_rebuild_cgraph_edges); NEXT_PASS (pass_inline_parameters); } NEXT_PASS (pass_ipa_free_inline_summary); NEXT_PASS (pass_ipa_tree_profile); { struct opt_pass **p = &pass_ipa_tree_profile.pass.sub; NEXT_PASS (pass_feedback_split_functions); } NEXT_PASS (pass_ipa_increase_alignment); NEXT_PASS (pass_ipa_tm); NEXT_PASS (pass_ipa_lower_emutls); *p = NULL; p = &all_regular_ipa_passes; NEXT_PASS (pass_ipa_whole_program_visibility); NEXT_PASS (pass_ipa_profile); NEXT_PASS (pass_ipa_cp); NEXT_PASS (pass_ipa_cdtor_merge); NEXT_PASS (pass_ipa_inline); NEXT_PASS (pass_ipa_pure_const); NEXT_PASS (pass_ipa_reference); *p = NULL; p = &all_lto_gen_passes; NEXT_PASS (pass_ipa_lto_gimple_out); NEXT_PASS (pass_ipa_lto_finish_out); /* This must be the last LTO pass. */ *p = NULL; /* Simple IPA passes executed after the regular passes. In WHOPR mode the passes are executed after partitioning and thus see just parts of the compiled unit. */ p = &all_late_ipa_passes; NEXT_PASS (pass_ipa_pta); *p = NULL; /* These passes are run after IPA passes on every function that is being output to the assembler file. */ p = &all_passes; NEXT_PASS (pass_fixup_cfg); NEXT_PASS (pass_lower_eh_dispatch); NEXT_PASS (pass_all_optimizations); { struct opt_pass **p = &pass_all_optimizations.pass.sub; NEXT_PASS (pass_remove_cgraph_callee_edges); /* Initial scalar cleanups before alias computation. They ensure memory accesses are not indirect wherever possible. */ NEXT_PASS (pass_strip_predict_hints); NEXT_PASS (pass_rename_ssa_copies); NEXT_PASS (pass_complete_unrolli); NEXT_PASS (pass_ccp); /* After CCP we rewrite no longer addressed locals into SSA form if possible. */ NEXT_PASS (pass_forwprop); NEXT_PASS (pass_object_sizes); /* pass_build_alias is a dummy pass that ensures that we execute TODO_rebuild_alias at this point. */ NEXT_PASS (pass_build_alias); NEXT_PASS (pass_return_slot); NEXT_PASS (pass_phiprop); NEXT_PASS (pass_fre); NEXT_PASS (pass_copy_prop); NEXT_PASS (pass_merge_phi); NEXT_PASS (pass_vrp); NEXT_PASS (pass_dce); NEXT_PASS (pass_call_cdce); NEXT_PASS (pass_cselim); NEXT_PASS (pass_tree_ifcombine); NEXT_PASS (pass_phiopt); NEXT_PASS (pass_tail_recursion); NEXT_PASS (pass_ch); NEXT_PASS (pass_stdarg); NEXT_PASS (pass_lower_complex); NEXT_PASS (pass_sra); NEXT_PASS (pass_rename_ssa_copies); /* The dom pass will also resolve all __builtin_constant_p calls that are still there to 0. This has to be done after some propagations have already run, but before some more dead code is removed, and this place fits nicely. Remember this when trying to move or duplicate pass_dominator somewhere earlier. */ NEXT_PASS (pass_dominator); /* The only const/copy propagation opportunities left after DOM should be due to degenerate PHI nodes. So rather than run the full propagators, run a specialized pass which only examines PHIs to discover const/copy propagation opportunities. */ NEXT_PASS (pass_phi_only_cprop); NEXT_PASS (pass_dse); NEXT_PASS (pass_reassoc); NEXT_PASS (pass_dce); NEXT_PASS (pass_forwprop); NEXT_PASS (pass_phiopt); NEXT_PASS (pass_strlen); NEXT_PASS (pass_ccp); /* After CCP we rewrite no longer addressed locals into SSA form if possible. */ NEXT_PASS (pass_copy_prop); NEXT_PASS (pass_cse_sincos); NEXT_PASS (pass_optimize_bswap); NEXT_PASS (pass_split_crit_edges); NEXT_PASS (pass_pre); NEXT_PASS (pass_sink_code); NEXT_PASS (pass_asan); NEXT_PASS (pass_tsan); NEXT_PASS (pass_tree_loop); { struct opt_pass **p = &pass_tree_loop.pass.sub; NEXT_PASS (pass_tree_loop_init); NEXT_PASS (pass_lim); NEXT_PASS (pass_copy_prop); NEXT_PASS (pass_dce_loop); NEXT_PASS (pass_tree_unswitch); NEXT_PASS (pass_scev_cprop); NEXT_PASS (pass_record_bounds); NEXT_PASS (pass_check_data_deps); NEXT_PASS (pass_loop_distribution); NEXT_PASS (pass_copy_prop); NEXT_PASS (pass_graphite); { struct opt_pass **p = &pass_graphite.pass.sub; NEXT_PASS (pass_graphite_transforms); NEXT_PASS (pass_lim); NEXT_PASS (pass_copy_prop); NEXT_PASS (pass_dce_loop); } NEXT_PASS (pass_iv_canon); NEXT_PASS (pass_if_conversion); NEXT_PASS (pass_vectorize); { struct opt_pass **p = &pass_vectorize.pass.sub; NEXT_PASS (pass_dce_loop); } NEXT_PASS (pass_predcom); NEXT_PASS (pass_complete_unroll); NEXT_PASS (pass_slp_vectorize); NEXT_PASS (pass_parallelize_loops); NEXT_PASS (pass_loop_prefetch); NEXT_PASS (pass_iv_optimize); NEXT_PASS (pass_lim); NEXT_PASS (pass_tree_loop_done); } NEXT_PASS (pass_lower_vector_ssa); NEXT_PASS (pass_cse_reciprocals); NEXT_PASS (pass_reassoc); NEXT_PASS (pass_vrp); NEXT_PASS (pass_strength_reduction); NEXT_PASS (pass_dominator); /* The only const/copy propagation opportunities left after DOM should be due to degenerate PHI nodes. So rather than run the full propagators, run a specialized pass which only examines PHIs to discover const/copy propagation opportunities. */ NEXT_PASS (pass_phi_only_cprop); NEXT_PASS (pass_cd_dce); NEXT_PASS (pass_tracer); /* FIXME: If DCE is not run before checking for uninitialized uses, we may get false warnings (e.g., testsuite/gcc.dg/uninit-5.c). However, this also causes us to misdiagnose cases that should be real warnings (e.g., testsuite/gcc.dg/pr18501.c). To fix the false positives in uninit-5.c, we would have to account for the predicates protecting the set and the use of each variable. Using a representation like Gated Single Assignment may help. */ NEXT_PASS (pass_late_warn_uninitialized); NEXT_PASS (pass_dse); NEXT_PASS (pass_forwprop); NEXT_PASS (pass_phiopt); NEXT_PASS (pass_fold_builtins); NEXT_PASS (pass_optimize_widening_mul); NEXT_PASS (pass_tail_calls); NEXT_PASS (pass_rename_ssa_copies); NEXT_PASS (pass_uncprop); NEXT_PASS (pass_local_pure_const); } NEXT_PASS (pass_all_optimizations_g); { struct opt_pass **p = &pass_all_optimizations_g.pass.sub; NEXT_PASS (pass_remove_cgraph_callee_edges); NEXT_PASS (pass_strip_predict_hints); /* Lower remaining pieces of GIMPLE. */ NEXT_PASS (pass_lower_complex); NEXT_PASS (pass_lower_vector_ssa); /* Perform simple scalar cleanup which is constant/copy propagation. */ NEXT_PASS (pass_ccp); NEXT_PASS (pass_object_sizes); /* Fold remaining builtins. */ NEXT_PASS (pass_fold_builtins); /* Copy propagation also copy-propagates constants, this is necessary to forward object-size and builtin folding results properly. */ NEXT_PASS (pass_copy_prop); NEXT_PASS (pass_dce); NEXT_PASS (pass_asan); NEXT_PASS (pass_tsan); NEXT_PASS (pass_rename_ssa_copies); /* ??? We do want some kind of loop invariant motion, but we possibly need to adjust LIM to be more friendly towards preserving accurate debug information here. */ /* Split critical edges before late uninit warning to reduce the number of false positives from it. */ NEXT_PASS (pass_split_crit_edges); NEXT_PASS (pass_late_warn_uninitialized); NEXT_PASS (pass_uncprop); NEXT_PASS (pass_local_pure_const); } NEXT_PASS (pass_tm_init); { struct opt_pass **p = &pass_tm_init.pass.sub; NEXT_PASS (pass_tm_mark); NEXT_PASS (pass_tm_memopt); NEXT_PASS (pass_tm_edges); } NEXT_PASS (pass_lower_complex_O0); NEXT_PASS (pass_asan_O0); NEXT_PASS (pass_tsan_O0); NEXT_PASS (pass_cleanup_eh); NEXT_PASS (pass_lower_resx); NEXT_PASS (pass_nrv); NEXT_PASS (pass_mudflap_2); NEXT_PASS (pass_cleanup_cfg_post_optimizing); NEXT_PASS (pass_warn_function_noreturn); NEXT_PASS (pass_expand); NEXT_PASS (pass_rest_of_compilation); { struct opt_pass **p = &pass_rest_of_compilation.pass.sub; NEXT_PASS (pass_instantiate_virtual_regs); NEXT_PASS (pass_into_cfg_layout_mode); NEXT_PASS (pass_jump); NEXT_PASS (pass_lower_subreg); NEXT_PASS (pass_df_initialize_opt); NEXT_PASS (pass_cse); NEXT_PASS (pass_rtl_fwprop); NEXT_PASS (pass_rtl_cprop); NEXT_PASS (pass_rtl_pre); NEXT_PASS (pass_rtl_hoist); NEXT_PASS (pass_rtl_cprop); NEXT_PASS (pass_rtl_store_motion); NEXT_PASS (pass_cse_after_global_opts); NEXT_PASS (pass_rtl_ifcvt); NEXT_PASS (pass_reginfo_init); /* Perform loop optimizations. It might be better to do them a bit sooner, but we want the profile feedback to work more efficiently. */ NEXT_PASS (pass_loop2); { struct opt_pass **p = &pass_loop2.pass.sub; NEXT_PASS (pass_rtl_loop_init); NEXT_PASS (pass_rtl_move_loop_invariants); NEXT_PASS (pass_rtl_unswitch); NEXT_PASS (pass_rtl_unroll_and_peel_loops); NEXT_PASS (pass_rtl_doloop); NEXT_PASS (pass_rtl_loop_done); *p = NULL; } NEXT_PASS (pass_web); NEXT_PASS (pass_rtl_cprop); NEXT_PASS (pass_cse2); NEXT_PASS (pass_rtl_dse1); NEXT_PASS (pass_rtl_fwprop_addr); NEXT_PASS (pass_inc_dec); NEXT_PASS (pass_initialize_regs); NEXT_PASS (pass_ud_rtl_dce); NEXT_PASS (pass_combine); NEXT_PASS (pass_if_after_combine); NEXT_PASS (pass_partition_blocks); NEXT_PASS (pass_regmove); NEXT_PASS (pass_outof_cfg_layout_mode); NEXT_PASS (pass_split_all_insns); NEXT_PASS (pass_lower_subreg2); NEXT_PASS (pass_df_initialize_no_opt); NEXT_PASS (pass_stack_ptr_mod); NEXT_PASS (pass_mode_switching); NEXT_PASS (pass_match_asm_constraints); NEXT_PASS (pass_sms); NEXT_PASS (pass_sched); NEXT_PASS (pass_ira); NEXT_PASS (pass_reload); NEXT_PASS (pass_postreload); { struct opt_pass **p = &pass_postreload.pass.sub; NEXT_PASS (pass_postreload_cse); NEXT_PASS (pass_gcse2); NEXT_PASS (pass_split_after_reload); NEXT_PASS (pass_ree); NEXT_PASS (pass_compare_elim_after_reload); NEXT_PASS (pass_branch_target_load_optimize1); NEXT_PASS (pass_thread_prologue_and_epilogue); NEXT_PASS (pass_rtl_dse2); NEXT_PASS (pass_stack_adjustments); NEXT_PASS (pass_jump2); NEXT_PASS (pass_peephole2); NEXT_PASS (pass_if_after_reload); NEXT_PASS (pass_regrename); NEXT_PASS (pass_cprop_hardreg); NEXT_PASS (pass_fast_rtl_dce); NEXT_PASS (pass_reorder_blocks); NEXT_PASS (pass_branch_target_load_optimize2); NEXT_PASS (pass_leaf_regs); NEXT_PASS (pass_split_before_sched2); NEXT_PASS (pass_sched2); NEXT_PASS (pass_stack_regs); { struct opt_pass **p = &pass_stack_regs.pass.sub; NEXT_PASS (pass_split_before_regstack); NEXT_PASS (pass_stack_regs_run); } NEXT_PASS (pass_compute_alignments); NEXT_PASS (pass_duplicate_computed_gotos); NEXT_PASS (pass_variable_tracking); NEXT_PASS (pass_free_cfg); NEXT_PASS (pass_machine_reorg); NEXT_PASS (pass_cleanup_barriers); NEXT_PASS (pass_delay_slots); NEXT_PASS (pass_split_for_shorten_branches); NEXT_PASS (pass_convert_to_eh_region_ranges); NEXT_PASS (pass_shorten_branches); NEXT_PASS (pass_set_nothrow_function_flags); NEXT_PASS (pass_dwarf2_frame); NEXT_PASS (pass_final); } NEXT_PASS (pass_df_finish); } NEXT_PASS (pass_clean_state); *p = NULL; #undef NEXT_PASS /* Register the passes with the tree dump code. */ register_dump_files (all_lowering_passes, PROP_gimple_any); register_dump_files (all_small_ipa_passes, PROP_gimple_any | PROP_gimple_lcf | PROP_gimple_leh | PROP_cfg); register_dump_files (all_regular_ipa_passes, PROP_gimple_any | PROP_gimple_lcf | PROP_gimple_leh | PROP_cfg); register_dump_files (all_lto_gen_passes, PROP_gimple_any | PROP_gimple_lcf | PROP_gimple_leh | PROP_cfg); register_dump_files (all_late_ipa_passes, PROP_gimple_any | PROP_gimple_lcf | PROP_gimple_leh | PROP_cfg); register_dump_files (all_passes, PROP_gimple_any | PROP_gimple_lcf | PROP_gimple_leh | PROP_cfg); } /* If we are in IPA mode (i.e., current_function_decl is NULL), call function CALLBACK for every function in the call graph. Otherwise, call CALLBACK on the current function. */ static void do_per_function (void (*callback) (void *data), void *data) { if (current_function_decl) callback (data); else { struct cgraph_node *node; FOR_EACH_DEFINED_FUNCTION (node) if (gimple_has_body_p (node->symbol.decl) && (!node->clone_of || node->symbol.decl != node->clone_of->symbol.decl)) { push_cfun (DECL_STRUCT_FUNCTION (node->symbol.decl)); callback (data); if (!flag_wpa) { free_dominance_info (CDI_DOMINATORS); free_dominance_info (CDI_POST_DOMINATORS); } pop_cfun (); ggc_collect (); } } } /* Because inlining might remove no-longer reachable nodes, we need to keep the array visible to garbage collector to avoid reading collected out nodes. */ static int nnodes; static GTY ((length ("nnodes"))) cgraph_node_ptr *order; /* If we are in IPA mode (i.e., current_function_decl is NULL), call function CALLBACK for every function in the call graph. Otherwise, call CALLBACK on the current function. This function is global so that plugins can use it. */ void do_per_function_toporder (void (*callback) (void *data), void *data) { int i; if (current_function_decl) callback (data); else { gcc_assert (!order); order = ggc_alloc_vec_cgraph_node_ptr (cgraph_n_nodes); nnodes = ipa_reverse_postorder (order); for (i = nnodes - 1; i >= 0; i--) order[i]->process = 1; for (i = nnodes - 1; i >= 0; i--) { struct cgraph_node *node = order[i]; /* Allow possibly removed nodes to be garbage collected. */ order[i] = NULL; node->process = 0; if (cgraph_function_with_gimple_body_p (node)) { push_cfun (DECL_STRUCT_FUNCTION (node->symbol.decl)); callback (data); free_dominance_info (CDI_DOMINATORS); free_dominance_info (CDI_POST_DOMINATORS); pop_cfun (); ggc_collect (); } } } ggc_free (order); order = NULL; nnodes = 0; } /* Helper function to perform function body dump. */ static void execute_function_dump (void *data ATTRIBUTE_UNUSED) { if (dump_file && current_function_decl) { if (cfun->curr_properties & PROP_trees) dump_function_to_file (current_function_decl, dump_file, dump_flags); else print_rtl_with_bb (dump_file, get_insns (), dump_flags); /* Flush the file. If verification fails, we won't be able to close the file before aborting. */ fflush (dump_file); if ((cfun->curr_properties & PROP_cfg) && (dump_flags & TDF_GRAPH)) print_graph_cfg (dump_file_name, cfun); } } static struct profile_record *profile_record; /* Do profile consistency book-keeping for the pass with static number INDEX. If SUBPASS is zero, we run _before_ the pass, and if SUBPASS is one, then we run _after_ the pass. RUN is true if the pass really runs, or FALSE if we are only book-keeping on passes that may have selectively disabled themselves on a given function. */ static void check_profile_consistency (int index, int subpass, bool run) { if (index == -1) return; if (!profile_record) profile_record = XCNEWVEC (struct profile_record, passes_by_id_size); gcc_assert (index < passes_by_id_size && index >= 0); gcc_assert (subpass < 2); profile_record[index].run |= run; account_profile_record (&profile_record[index], subpass); } /* Output profile consistency. */ void dump_profile_report (void) { int i, j; int last_freq_in = 0, last_count_in = 0, last_freq_out = 0, last_count_out = 0; gcov_type last_time = 0, last_size = 0; double rel_time_change, rel_size_change; int last_reported = 0; if (!profile_record) return; fprintf (stderr, "\nProfile consistency report:\n\n"); fprintf (stderr, "Pass name |mismatch in |mismated out|Overall\n"); fprintf (stderr, " |freq count |freq count |size time\n"); for (i = 0; i < passes_by_id_size; i++) for (j = 0 ; j < 2; j++) if (profile_record[i].run) { if (last_time) rel_time_change = (profile_record[i].time[j] - (double)last_time) * 100 / (double)last_time; else rel_time_change = 0; if (last_size) rel_size_change = (profile_record[i].size[j] - (double)last_size) * 100 / (double)last_size; else rel_size_change = 0; if (profile_record[i].num_mismatched_freq_in[j] != last_freq_in || profile_record[i].num_mismatched_freq_out[j] != last_freq_out || profile_record[i].num_mismatched_count_in[j] != last_count_in || profile_record[i].num_mismatched_count_out[j] != last_count_out || rel_time_change || rel_size_change) { last_reported = i; fprintf (stderr, "%-20s %s", passes_by_id [i]->name, j ? "(after TODO)" : " "); if (profile_record[i].num_mismatched_freq_in[j] != last_freq_in) fprintf (stderr, "| %+5i", profile_record[i].num_mismatched_freq_in[j] - last_freq_in); else fprintf (stderr, "| "); if (profile_record[i].num_mismatched_count_in[j] != last_count_in) fprintf (stderr, " %+5i", profile_record[i].num_mismatched_count_in[j] - last_count_in); else fprintf (stderr, " "); if (profile_record[i].num_mismatched_freq_out[j] != last_freq_out) fprintf (stderr, "| %+5i", profile_record[i].num_mismatched_freq_out[j] - last_freq_out); else fprintf (stderr, "| "); if (profile_record[i].num_mismatched_count_out[j] != last_count_out) fprintf (stderr, " %+5i", profile_record[i].num_mismatched_count_out[j] - last_count_out); else fprintf (stderr, " "); /* Size/time units change across gimple and RTL. */ if (i == pass_expand.pass.static_pass_number) fprintf (stderr, "|----------"); else { if (rel_size_change) fprintf (stderr, "| %+8.4f%%", rel_size_change); else fprintf (stderr, "| "); if (rel_time_change) fprintf (stderr, " %+8.4f%%", rel_time_change); } fprintf (stderr, "\n"); last_freq_in = profile_record[i].num_mismatched_freq_in[j]; last_freq_out = profile_record[i].num_mismatched_freq_out[j]; last_count_in = profile_record[i].num_mismatched_count_in[j]; last_count_out = profile_record[i].num_mismatched_count_out[j]; } else if (j && last_reported != i) { last_reported = i; fprintf (stderr, "%-20s ------------| | |\n", passes_by_id [i]->name); } last_time = profile_record[i].time[j]; last_size = profile_record[i].size[j]; } } /* Perform all TODO actions that ought to be done on each function. */ static void execute_function_todo (void *data) { unsigned int flags = (size_t)data; flags &= ~cfun->last_verified; if (!flags) return; /* Always cleanup the CFG before trying to update SSA. */ if (flags & TODO_cleanup_cfg) { cleanup_tree_cfg (); /* When cleanup_tree_cfg merges consecutive blocks, it may perform some simplistic propagation when removing single valued PHI nodes. This propagation may, in turn, cause the SSA form to become out-of-date (see PR 22037). So, even if the parent pass had not scheduled an SSA update, we may still need to do one. */ if (!(flags & TODO_update_ssa_any) && need_ssa_update_p (cfun)) flags |= TODO_update_ssa; } if (flags & TODO_update_ssa_any) { unsigned update_flags = flags & TODO_update_ssa_any; update_ssa (update_flags); cfun->last_verified &= ~TODO_verify_ssa; } if (flag_tree_pta && (flags & TODO_rebuild_alias)) compute_may_aliases (); if (optimize && (flags & TODO_update_address_taken)) execute_update_addresses_taken (); if (flags & TODO_remove_unused_locals) remove_unused_locals (); if (flags & TODO_rebuild_frequencies) rebuild_frequencies (); if (flags & TODO_rebuild_cgraph_edges) rebuild_cgraph_edges (); /* If we've seen errors do not bother running any verifiers. */ if (seen_error ()) return; #if defined ENABLE_CHECKING if (flags & TODO_verify_ssa || (current_loops && loops_state_satisfies_p (LOOP_CLOSED_SSA))) { verify_gimple_in_cfg (cfun); verify_ssa (true); } else if (flags & TODO_verify_stmts) verify_gimple_in_cfg (cfun); if (flags & TODO_verify_flow) verify_flow_info (); if (current_loops && loops_state_satisfies_p (LOOP_CLOSED_SSA)) verify_loop_closed_ssa (false); if (flags & TODO_verify_rtl_sharing) verify_rtl_sharing (); #endif cfun->last_verified = flags & TODO_verify_all; } /* Perform all TODO actions. */ static void execute_todo (unsigned int flags) { #if defined ENABLE_CHECKING if (cfun && need_ssa_update_p (cfun)) gcc_assert (flags & TODO_update_ssa_any); #endif timevar_push (TV_TODO); /* Inform the pass whether it is the first time it is run. */ first_pass_instance = (flags & TODO_mark_first_instance) != 0; statistics_fini_pass (); do_per_function (execute_function_todo, (void *)(size_t) flags); /* Always remove functions just as before inlining: IPA passes might be interested to see bodies of extern inline functions that are not inlined to analyze side effects. The full removal is done just at the end of IPA pass queue. */ if (flags & TODO_remove_functions) { gcc_assert (!cfun); symtab_remove_unreachable_nodes (true, dump_file); } if ((flags & TODO_dump_symtab) && dump_file && !current_function_decl) { gcc_assert (!cfun); dump_symtab (dump_file); /* Flush the file. If verification fails, we won't be able to close the file before aborting. */ fflush (dump_file); } if (flags & TODO_ggc_collect) ggc_collect (); /* Now that the dumping has been done, we can get rid of the optional df problems. */ if (flags & TODO_df_finish) df_finish_pass ((flags & TODO_df_verify) != 0); timevar_pop (TV_TODO); } /* Verify invariants that should hold between passes. This is a place to put simple sanity checks. */ static void verify_interpass_invariants (void) { gcc_checking_assert (!fold_deferring_overflow_warnings_p ()); } /* Clear the last verified flag. */ static void clear_last_verified (void *data ATTRIBUTE_UNUSED) { cfun->last_verified = 0; } /* Helper function. Verify that the properties has been turn into the properties expected by the pass. */ #ifdef ENABLE_CHECKING static void verify_curr_properties (void *data) { unsigned int props = (size_t)data; gcc_assert ((cfun->curr_properties & props) == props); } #endif /* Initialize pass dump file. */ /* This is non-static so that the plugins can use it. */ bool pass_init_dump_file (struct opt_pass *pass) { /* If a dump file name is present, open it if enabled. */ if (pass->static_pass_number != -1) { timevar_push (TV_DUMP); bool initializing_dump = !dump_initialized_p (pass->static_pass_number); dump_file_name = get_dump_file_name (pass->static_pass_number); dump_start (pass->static_pass_number, &dump_flags); if (dump_file && current_function_decl) dump_function_header (dump_file, current_function_decl, dump_flags); if (initializing_dump && dump_file && (dump_flags & TDF_GRAPH) && cfun && (cfun->curr_properties & PROP_cfg)) clean_graph_dump_file (dump_file_name); timevar_pop (TV_DUMP); return initializing_dump; } else return false; } /* Flush PASS dump file. */ /* This is non-static so that plugins can use it. */ void pass_fini_dump_file (struct opt_pass *pass) { timevar_push (TV_DUMP); /* Flush and close dump file. */ if (dump_file_name) { free (CONST_CAST (char *, dump_file_name)); dump_file_name = NULL; } dump_finish (pass->static_pass_number); timevar_pop (TV_DUMP); } /* After executing the pass, apply expected changes to the function properties. */ static void update_properties_after_pass (void *data) { struct opt_pass *pass = (struct opt_pass *) data; cfun->curr_properties = (cfun->curr_properties | pass->properties_provided) & ~pass->properties_destroyed; } /* Execute summary generation for all of the passes in IPA_PASS. */ void execute_ipa_summary_passes (struct ipa_opt_pass_d *ipa_pass) { while (ipa_pass) { struct opt_pass *pass = &ipa_pass->pass; /* Execute all of the IPA_PASSes in the list. */ if (ipa_pass->pass.type == IPA_PASS && (!pass->gate || pass->gate ()) && ipa_pass->generate_summary) { pass_init_dump_file (pass); /* If a timevar is present, start it. */ if (pass->tv_id) timevar_push (pass->tv_id); ipa_pass->generate_summary (); /* Stop timevar. */ if (pass->tv_id) timevar_pop (pass->tv_id); pass_fini_dump_file (pass); } ipa_pass = (struct ipa_opt_pass_d *)ipa_pass->pass.next; } } /* Execute IPA_PASS function transform on NODE. */ static void execute_one_ipa_transform_pass (struct cgraph_node *node, struct ipa_opt_pass_d *ipa_pass) { struct opt_pass *pass = &ipa_pass->pass; unsigned int todo_after = 0; current_pass = pass; if (!ipa_pass->function_transform) return; /* Note that the folders should only create gimple expressions. This is a hack until the new folder is ready. */ in_gimple_form = (cfun && (cfun->curr_properties & PROP_trees)) != 0; pass_init_dump_file (pass); /* Run pre-pass verification. */ execute_todo (ipa_pass->function_transform_todo_flags_start); /* If a timevar is present, start it. */ if (pass->tv_id != TV_NONE) timevar_push (pass->tv_id); /* Do it! */ todo_after = ipa_pass->function_transform (node); /* Stop timevar. */ if (pass->tv_id != TV_NONE) timevar_pop (pass->tv_id); if (profile_report && cfun && (cfun->curr_properties & PROP_cfg)) check_profile_consistency (pass->static_pass_number, 0, true); /* Run post-pass cleanup and verification. */ execute_todo (todo_after); verify_interpass_invariants (); if (profile_report && cfun && (cfun->curr_properties & PROP_cfg)) check_profile_consistency (pass->static_pass_number, 1, true); do_per_function (execute_function_dump, NULL); pass_fini_dump_file (pass); current_pass = NULL; } /* For the current function, execute all ipa transforms. */ void execute_all_ipa_transforms (void) { struct cgraph_node *node; if (!cfun) return; node = cgraph_get_node (current_function_decl); if (node->ipa_transforms_to_apply.exists ()) { unsigned int i; for (i = 0; i < node->ipa_transforms_to_apply.length (); i++) execute_one_ipa_transform_pass (node, node->ipa_transforms_to_apply[i]); node->ipa_transforms_to_apply.release (); } } /* Callback for do_per_function to apply all IPA transforms. */ static void apply_ipa_transforms (void *data) { struct cgraph_node *node = cgraph_get_node (current_function_decl); if (!node->global.inlined_to && node->ipa_transforms_to_apply.exists ()) { *(bool *)data = true; execute_all_ipa_transforms(); rebuild_cgraph_edges (); } } /* Check if PASS is explicitly disabled or enabled and return the gate status. FUNC is the function to be processed, and GATE_STATUS is the gate status determined by pass manager by default. */ static bool override_gate_status (struct opt_pass *pass, tree func, bool gate_status) { bool explicitly_enabled = false; bool explicitly_disabled = false; explicitly_enabled = is_pass_explicitly_enabled_or_disabled (pass, func, enabled_pass_uid_range_tab); explicitly_disabled = is_pass_explicitly_enabled_or_disabled (pass, func, disabled_pass_uid_range_tab); gate_status = !explicitly_disabled && (gate_status || explicitly_enabled); return gate_status; } /* Execute PASS. */ bool execute_one_pass (struct opt_pass *pass) { unsigned int todo_after = 0; bool gate_status; /* IPA passes are executed on whole program, so cfun should be NULL. Other passes need function context set. */ if (pass->type == SIMPLE_IPA_PASS || pass->type == IPA_PASS) gcc_assert (!cfun && !current_function_decl); else gcc_assert (cfun && current_function_decl); current_pass = pass; /* Check whether gate check should be avoided. User controls the value of the gate through the parameter "gate_status". */ gate_status = (pass->gate == NULL) ? true : pass->gate(); gate_status = override_gate_status (pass, current_function_decl, gate_status); /* Override gate with plugin. */ invoke_plugin_callbacks (PLUGIN_OVERRIDE_GATE, &gate_status); if (!gate_status) { /* Run so passes selectively disabling themselves on a given function are not miscounted. */ if (profile_report && cfun && (cfun->curr_properties & PROP_cfg)) { check_profile_consistency (pass->static_pass_number, 0, false); check_profile_consistency (pass->static_pass_number, 1, false); } current_pass = NULL; return false; } /* Pass execution event trigger: useful to identify passes being executed. */ invoke_plugin_callbacks (PLUGIN_PASS_EXECUTION, pass); /* SIPLE IPA passes do not handle callgraphs with IPA transforms in it. Apply all trnasforms first. */ if (pass->type == SIMPLE_IPA_PASS) { bool applied = false; do_per_function (apply_ipa_transforms, (void *)&applied); if (applied) symtab_remove_unreachable_nodes (true, dump_file); /* Restore current_pass. */ current_pass = pass; } if (!quiet_flag && !cfun) fprintf (stderr, " <%s>", pass->name ? pass->name : ""); /* Note that the folders should only create gimple expressions. This is a hack until the new folder is ready. */ in_gimple_form = (cfun && (cfun->curr_properties & PROP_trees)) != 0; pass_init_dump_file (pass); /* Run pre-pass verification. */ execute_todo (pass->todo_flags_start); #ifdef ENABLE_CHECKING do_per_function (verify_curr_properties, (void *)(size_t)pass->properties_required); #endif /* If a timevar is present, start it. */ if (pass->tv_id != TV_NONE) timevar_push (pass->tv_id); /* Do it! */ if (pass->execute) { todo_after = pass->execute (); do_per_function (clear_last_verified, NULL); } /* Stop timevar. */ if (pass->tv_id != TV_NONE) timevar_pop (pass->tv_id); do_per_function (update_properties_after_pass, pass); if (profile_report && cfun && (cfun->curr_properties & PROP_cfg)) check_profile_consistency (pass->static_pass_number, 0, true); /* Run post-pass cleanup and verification. */ execute_todo (todo_after | pass->todo_flags_finish); if (profile_report && cfun && (cfun->curr_properties & PROP_cfg)) check_profile_consistency (pass->static_pass_number, 1, true); verify_interpass_invariants (); do_per_function (execute_function_dump, NULL); if (pass->type == IPA_PASS) { struct cgraph_node *node; FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node) node->ipa_transforms_to_apply.safe_push ((struct ipa_opt_pass_d *)pass); } if (!current_function_decl) cgraph_process_new_functions (); pass_fini_dump_file (pass); if (pass->type != SIMPLE_IPA_PASS && pass->type != IPA_PASS) gcc_assert (!(cfun->curr_properties & PROP_trees) || pass->type != RTL_PASS); current_pass = NULL; return true; } void execute_pass_list (struct opt_pass *pass) { do { gcc_assert (pass->type == GIMPLE_PASS || pass->type == RTL_PASS); if (execute_one_pass (pass) && pass->sub) execute_pass_list (pass->sub); pass = pass->next; } while (pass); } /* Same as execute_pass_list but assume that subpasses of IPA passes are local passes. If SET is not NULL, write out summaries of only those node in SET. */ static void ipa_write_summaries_2 (struct opt_pass *pass, struct lto_out_decl_state *state) { while (pass) { struct ipa_opt_pass_d *ipa_pass = (struct ipa_opt_pass_d *)pass; gcc_assert (!current_function_decl); gcc_assert (!cfun); gcc_assert (pass->type == SIMPLE_IPA_PASS || pass->type == IPA_PASS); if (pass->type == IPA_PASS && ipa_pass->write_summary && (!pass->gate || pass->gate ())) { /* If a timevar is present, start it. */ if (pass->tv_id) timevar_push (pass->tv_id); pass_init_dump_file (pass); ipa_pass->write_summary (); pass_fini_dump_file (pass); /* If a timevar is present, start it. */ if (pass->tv_id) timevar_pop (pass->tv_id); } if (pass->sub && pass->sub->type != GIMPLE_PASS) ipa_write_summaries_2 (pass->sub, state); pass = pass->next; } } /* Helper function of ipa_write_summaries. Creates and destroys the decl state and calls ipa_write_summaries_2 for all passes that have summaries. SET is the set of nodes to be written. */ static void ipa_write_summaries_1 (lto_symtab_encoder_t encoder) { struct lto_out_decl_state *state = lto_new_out_decl_state (); state->symtab_node_encoder = encoder; lto_push_out_decl_state (state); gcc_assert (!flag_wpa); ipa_write_summaries_2 (all_regular_ipa_passes, state); ipa_write_summaries_2 (all_lto_gen_passes, state); gcc_assert (lto_get_out_decl_state () == state); lto_pop_out_decl_state (); lto_delete_out_decl_state (state); } /* Write out summaries for all the nodes in the callgraph. */ void ipa_write_summaries (void) { lto_symtab_encoder_t encoder; int i, order_pos; struct varpool_node *vnode; struct cgraph_node **order; if (!flag_generate_lto || seen_error ()) return; encoder = lto_symtab_encoder_new (false); /* Create the callgraph set in the same order used in cgraph_expand_all_functions. This mostly facilitates debugging, since it causes the gimple file to be processed in the same order as the source code. */ order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes); order_pos = ipa_reverse_postorder (order); gcc_assert (order_pos == cgraph_n_nodes); for (i = order_pos - 1; i >= 0; i--) { struct cgraph_node *node = order[i]; if (cgraph_function_with_gimple_body_p (node)) { /* When streaming out references to statements as part of some IPA pass summary, the statements need to have uids assigned and the following does that for all the IPA passes here. Naturally, this ordering then matches the one IPA-passes get in their stmt_fixup hooks. */ push_cfun (DECL_STRUCT_FUNCTION (node->symbol.decl)); renumber_gimple_stmt_uids (); pop_cfun (); } if (node->analyzed) lto_set_symtab_encoder_in_partition (encoder, (symtab_node)node); } FOR_EACH_DEFINED_VARIABLE (vnode) if ((!vnode->alias || vnode->alias_of)) lto_set_symtab_encoder_in_partition (encoder, (symtab_node)vnode); ipa_write_summaries_1 (compute_ltrans_boundary (encoder)); free (order); } /* Same as execute_pass_list but assume that subpasses of IPA passes are local passes. If SET is not NULL, write out optimization summaries of only those node in SET. */ static void ipa_write_optimization_summaries_1 (struct opt_pass *pass, struct lto_out_decl_state *state) { while (pass) { struct ipa_opt_pass_d *ipa_pass = (struct ipa_opt_pass_d *)pass; gcc_assert (!current_function_decl); gcc_assert (!cfun); gcc_assert (pass->type == SIMPLE_IPA_PASS || pass->type == IPA_PASS); if (pass->type == IPA_PASS && ipa_pass->write_optimization_summary && (!pass->gate || pass->gate ())) { /* If a timevar is present, start it. */ if (pass->tv_id) timevar_push (pass->tv_id); pass_init_dump_file (pass); ipa_pass->write_optimization_summary (); pass_fini_dump_file (pass); /* If a timevar is present, start it. */ if (pass->tv_id) timevar_pop (pass->tv_id); } if (pass->sub && pass->sub->type != GIMPLE_PASS) ipa_write_optimization_summaries_1 (pass->sub, state); pass = pass->next; } } /* Write all the optimization summaries for the cgraph nodes in SET. If SET is NULL, write out all summaries of all nodes. */ void ipa_write_optimization_summaries (lto_symtab_encoder_t encoder) { struct lto_out_decl_state *state = lto_new_out_decl_state (); lto_symtab_encoder_iterator lsei; state->symtab_node_encoder = encoder; lto_push_out_decl_state (state); for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei); lsei_next_function_in_partition (&lsei)) { struct cgraph_node *node = lsei_cgraph_node (lsei); /* When streaming out references to statements as part of some IPA pass summary, the statements need to have uids assigned. For functions newly born at WPA stage we need to initialize the uids here. */ if (node->analyzed && gimple_has_body_p (node->symbol.decl)) { push_cfun (DECL_STRUCT_FUNCTION (node->symbol.decl)); renumber_gimple_stmt_uids (); pop_cfun (); } } gcc_assert (flag_wpa); ipa_write_optimization_summaries_1 (all_regular_ipa_passes, state); ipa_write_optimization_summaries_1 (all_lto_gen_passes, state); gcc_assert (lto_get_out_decl_state () == state); lto_pop_out_decl_state (); lto_delete_out_decl_state (state); } /* Same as execute_pass_list but assume that subpasses of IPA passes are local passes. */ static void ipa_read_summaries_1 (struct opt_pass *pass) { while (pass) { struct ipa_opt_pass_d *ipa_pass = (struct ipa_opt_pass_d *) pass; gcc_assert (!current_function_decl); gcc_assert (!cfun); gcc_assert (pass->type == SIMPLE_IPA_PASS || pass->type == IPA_PASS); if (pass->gate == NULL || pass->gate ()) { if (pass->type == IPA_PASS && ipa_pass->read_summary) { /* If a timevar is present, start it. */ if (pass->tv_id) timevar_push (pass->tv_id); pass_init_dump_file (pass); ipa_pass->read_summary (); pass_fini_dump_file (pass); /* Stop timevar. */ if (pass->tv_id) timevar_pop (pass->tv_id); } if (pass->sub && pass->sub->type != GIMPLE_PASS) ipa_read_summaries_1 (pass->sub); } pass = pass->next; } } /* Read all the summaries for all_regular_ipa_passes and all_lto_gen_passes. */ void ipa_read_summaries (void) { ipa_read_summaries_1 (all_regular_ipa_passes); ipa_read_summaries_1 (all_lto_gen_passes); } /* Same as execute_pass_list but assume that subpasses of IPA passes are local passes. */ static void ipa_read_optimization_summaries_1 (struct opt_pass *pass) { while (pass) { struct ipa_opt_pass_d *ipa_pass = (struct ipa_opt_pass_d *) pass; gcc_assert (!current_function_decl); gcc_assert (!cfun); gcc_assert (pass->type == SIMPLE_IPA_PASS || pass->type == IPA_PASS); if (pass->gate == NULL || pass->gate ()) { if (pass->type == IPA_PASS && ipa_pass->read_optimization_summary) { /* If a timevar is present, start it. */ if (pass->tv_id) timevar_push (pass->tv_id); pass_init_dump_file (pass); ipa_pass->read_optimization_summary (); pass_fini_dump_file (pass); /* Stop timevar. */ if (pass->tv_id) timevar_pop (pass->tv_id); } if (pass->sub && pass->sub->type != GIMPLE_PASS) ipa_read_optimization_summaries_1 (pass->sub); } pass = pass->next; } } /* Read all the summaries for all_regular_ipa_passes and all_lto_gen_passes. */ void ipa_read_optimization_summaries (void) { ipa_read_optimization_summaries_1 (all_regular_ipa_passes); ipa_read_optimization_summaries_1 (all_lto_gen_passes); } /* Same as execute_pass_list but assume that subpasses of IPA passes are local passes. */ void execute_ipa_pass_list (struct opt_pass *pass) { do { gcc_assert (!current_function_decl); gcc_assert (!cfun); gcc_assert (pass->type == SIMPLE_IPA_PASS || pass->type == IPA_PASS); if (execute_one_pass (pass) && pass->sub) { if (pass->sub->type == GIMPLE_PASS) { invoke_plugin_callbacks (PLUGIN_EARLY_GIMPLE_PASSES_START, NULL); do_per_function_toporder ((void (*)(void *))execute_pass_list, pass->sub); invoke_plugin_callbacks (PLUGIN_EARLY_GIMPLE_PASSES_END, NULL); } else if (pass->sub->type == SIMPLE_IPA_PASS || pass->sub->type == IPA_PASS) execute_ipa_pass_list (pass->sub); else gcc_unreachable (); } gcc_assert (!current_function_decl); cgraph_process_new_functions (); pass = pass->next; } while (pass); } /* Execute stmt fixup hooks of all passes in PASS for NODE and STMTS. */ static void execute_ipa_stmt_fixups (struct opt_pass *pass, struct cgraph_node *node, gimple *stmts) { while (pass) { /* Execute all of the IPA_PASSes in the list. */ if (pass->type == IPA_PASS && (!pass->gate || pass->gate ())) { struct ipa_opt_pass_d *ipa_pass = (struct ipa_opt_pass_d *) pass; if (ipa_pass->stmt_fixup) { pass_init_dump_file (pass); /* If a timevar is present, start it. */ if (pass->tv_id) timevar_push (pass->tv_id); ipa_pass->stmt_fixup (node, stmts); /* Stop timevar. */ if (pass->tv_id) timevar_pop (pass->tv_id); pass_fini_dump_file (pass); } if (pass->sub) execute_ipa_stmt_fixups (pass->sub, node, stmts); } pass = pass->next; } } /* Execute stmt fixup hooks of all IPA passes for NODE and STMTS. */ void execute_all_ipa_stmt_fixups (struct cgraph_node *node, gimple *stmts) { execute_ipa_stmt_fixups (all_regular_ipa_passes, node, stmts); } extern void debug_properties (unsigned int); extern void dump_properties (FILE *, unsigned int); DEBUG_FUNCTION void dump_properties (FILE *dump, unsigned int props) { fprintf (dump, "Properties:\n"); if (props & PROP_gimple_any) fprintf (dump, "PROP_gimple_any\n"); if (props & PROP_gimple_lcf) fprintf (dump, "PROP_gimple_lcf\n"); if (props & PROP_gimple_leh) fprintf (dump, "PROP_gimple_leh\n"); if (props & PROP_cfg) fprintf (dump, "PROP_cfg\n"); if (props & PROP_ssa) fprintf (dump, "PROP_ssa\n"); if (props & PROP_no_crit_edges) fprintf (dump, "PROP_no_crit_edges\n"); if (props & PROP_rtl) fprintf (dump, "PROP_rtl\n"); if (props & PROP_gimple_lomp) fprintf (dump, "PROP_gimple_lomp\n"); if (props & PROP_gimple_lcx) fprintf (dump, "PROP_gimple_lcx\n"); if (props & PROP_cfglayout) fprintf (dump, "PROP_cfglayout\n"); } DEBUG_FUNCTION void debug_properties (unsigned int props) { dump_properties (stderr, props); } /* Called by local passes to see if function is called by already processed nodes. Because we process nodes in topological order, this means that function is in recursive cycle or we introduced new direct calls. */ bool function_called_by_processed_nodes_p (void) { struct cgraph_edge *e; for (e = cgraph_get_node (current_function_decl)->callers; e; e = e->next_caller) { if (e->caller->symbol.decl == current_function_decl) continue; if (!cgraph_function_with_gimple_body_p (e->caller)) continue; if (TREE_ASM_WRITTEN (e->caller->symbol.decl)) continue; if (!e->caller->process && !e->caller->global.inlined_to) break; } if (dump_file && e) { fprintf (dump_file, "Already processed call to:\n"); dump_cgraph_node (dump_file, e->caller); } return e != NULL; } #include "gt-passes.h"