/* Code for RTL transformations to satisfy insn constraints. Copyright (C) 2010-2013 Free Software Foundation, Inc. Contributed by Vladimir Makarov . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* This file contains code for 3 passes: constraint pass, inheritance/split pass, and pass for undoing failed inheritance and split. The major goal of constraint pass is to transform RTL to satisfy insn and address constraints by: o choosing insn alternatives; o generating *reload insns* (or reloads in brief) and *reload pseudos* which will get necessary hard registers later; o substituting pseudos with equivalent values and removing the instructions that initialized those pseudos. The constraint pass has biggest and most complicated code in LRA. There are a lot of important details like: o reuse of input reload pseudos to simplify reload pseudo allocations; o some heuristics to choose insn alternative to improve the inheritance; o early clobbers etc. The pass is mimicking former reload pass in alternative choosing because the reload pass is oriented to current machine description model. It might be changed if the machine description model is changed. There is special code for preventing all LRA and this pass cycling in case of bugs. On the first iteration of the pass we process every instruction and choose an alternative for each one. On subsequent iterations we try to avoid reprocessing instructions if we can be sure that the old choice is still valid. The inheritance/spilt pass is to transform code to achieve ineheritance and live range splitting. It is done on backward traversal of EBBs. The inheritance optimization goal is to reuse values in hard registers. There is analogous optimization in old reload pass. The inheritance is achieved by following transformation: reload_p1 <- p reload_p1 <- p ... new_p <- reload_p1 ... => ... reload_p2 <- p reload_p2 <- new_p where p is spilled and not changed between the insns. Reload_p1 is also called *original pseudo* and new_p is called *inheritance pseudo*. The subsequent assignment pass will try to assign the same (or another if it is not possible) hard register to new_p as to reload_p1 or reload_p2. If the assignment pass fails to assign a hard register to new_p, this file will undo the inheritance and restore the original code. This is because implementing the above sequence with a spilled new_p would make the code much worse. The inheritance is done in EBB scope. The above is just a simplified example to get an idea of the inheritance as the inheritance is also done for non-reload insns. Splitting (transformation) is also done in EBB scope on the same pass as the inheritance: r <- ... or ... <- r r <- ... or ... <- r ... s <- r (new insn -- save) ... => ... r <- s (new insn -- restore) ... <- r ... <- r The *split pseudo* s is assigned to the hard register of the original pseudo or hard register r. Splitting is done: o In EBBs with high register pressure for global pseudos (living in at least 2 BBs) and assigned to hard registers when there are more one reloads needing the hard registers; o for pseudos needing save/restore code around calls. If the split pseudo still has the same hard register as the original pseudo after the subsequent assignment pass or the original pseudo was split, the opposite transformation is done on the same pass for undoing inheritance. */ #undef REG_OK_STRICT #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "hard-reg-set.h" #include "rtl.h" #include "tm_p.h" #include "regs.h" #include "insn-config.h" #include "insn-codes.h" #include "recog.h" #include "output.h" #include "addresses.h" #include "target.h" #include "function.h" #include "expr.h" #include "basic-block.h" #include "except.h" #include "optabs.h" #include "df.h" #include "ira.h" #include "rtl-error.h" #include "lra-int.h" /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted reload insns. */ static int bb_reload_num; /* The current insn being processed and corresponding its data (basic block, the insn data, the insn static data, and the mode of each operand). */ static rtx curr_insn; static basic_block curr_bb; static lra_insn_recog_data_t curr_id; static struct lra_static_insn_data *curr_static_id; static enum machine_mode curr_operand_mode[MAX_RECOG_OPERANDS]; /* Start numbers for new registers and insns at the current constraints pass start. */ static int new_regno_start; static int new_insn_uid_start; /* If LOC is nonnull, strip any outer subreg from it. */ static inline rtx * strip_subreg (rtx *loc) { return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc; } /* Return hard regno of REGNO or if it is was not assigned to a hard register, use a hard register from its allocno class. */ static int get_try_hard_regno (int regno) { int hard_regno; enum reg_class rclass; if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER) hard_regno = lra_get_regno_hard_regno (regno); if (hard_regno >= 0) return hard_regno; rclass = lra_get_allocno_class (regno); if (rclass == NO_REGS) return -1; return ira_class_hard_regs[rclass][0]; } /* Return final hard regno (plus offset) which will be after elimination. We do this for matching constraints because the final hard regno could have a different class. */ static int get_final_hard_regno (int hard_regno, int offset) { if (hard_regno < 0) return hard_regno; hard_regno = lra_get_elimination_hard_regno (hard_regno); return hard_regno + offset; } /* Return hard regno of X after removing subreg and making elimination. If X is not a register or subreg of register, return -1. For pseudo use its assignment. */ static int get_hard_regno (rtx x) { rtx reg; int offset, hard_regno; reg = x; if (GET_CODE (x) == SUBREG) reg = SUBREG_REG (x); if (! REG_P (reg)) return -1; if ((hard_regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER) hard_regno = lra_get_regno_hard_regno (hard_regno); if (hard_regno < 0) return -1; offset = 0; if (GET_CODE (x) == SUBREG) offset += subreg_regno_offset (hard_regno, GET_MODE (reg), SUBREG_BYTE (x), GET_MODE (x)); return get_final_hard_regno (hard_regno, offset); } /* If REGNO is a hard register or has been allocated a hard register, return the class of that register. If REGNO is a reload pseudo created by the current constraints pass, return its allocno class. Return NO_REGS otherwise. */ static enum reg_class get_reg_class (int regno) { int hard_regno; if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER) hard_regno = lra_get_regno_hard_regno (regno); if (hard_regno >= 0) { hard_regno = get_final_hard_regno (hard_regno, 0); return REGNO_REG_CLASS (hard_regno); } if (regno >= new_regno_start) return lra_get_allocno_class (regno); return NO_REGS; } /* Return true if REG satisfies (or will satisfy) reg class constraint CL. Use elimination first if REG is a hard register. If REG is a reload pseudo created by this constraints pass, assume that it will be allocated a hard register from its allocno class, but allow that class to be narrowed to CL if it is currently a superset of CL. If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of REGNO (reg), or NO_REGS if no change in its class was needed. */ static bool in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class) { enum reg_class rclass, common_class; enum machine_mode reg_mode; int class_size, hard_regno, nregs, i, j; int regno = REGNO (reg); if (new_class != NULL) *new_class = NO_REGS; if (regno < FIRST_PSEUDO_REGISTER) { rtx final_reg = reg; rtx *final_loc = &final_reg; lra_eliminate_reg_if_possible (final_loc); return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc)); } reg_mode = GET_MODE (reg); rclass = get_reg_class (regno); if (regno < new_regno_start /* Do not allow the constraints for reload instructions to influence the classes of new pseudos. These reloads are typically moves that have many alternatives, and restricting reload pseudos for one alternative may lead to situations where other reload pseudos are no longer allocatable. */ || INSN_UID (curr_insn) >= new_insn_uid_start) /* When we don't know what class will be used finally for reload pseudos, we use ALL_REGS. */ return ((regno >= new_regno_start && rclass == ALL_REGS) || (rclass != NO_REGS && ira_class_subset_p[rclass][cl] && ! hard_reg_set_subset_p (reg_class_contents[cl], lra_no_alloc_regs))); else { common_class = ira_reg_class_subset[rclass][cl]; if (new_class != NULL) *new_class = common_class; if (hard_reg_set_subset_p (reg_class_contents[common_class], lra_no_alloc_regs)) return false; /* Check that there are enough allocatable regs. */ class_size = ira_class_hard_regs_num[common_class]; for (i = 0; i < class_size; i++) { hard_regno = ira_class_hard_regs[common_class][i]; nregs = hard_regno_nregs[hard_regno][reg_mode]; if (nregs == 1) return true; for (j = 0; j < nregs; j++) if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j) || ! TEST_HARD_REG_BIT (reg_class_contents[common_class], hard_regno + j)) break; if (j >= nregs) return true; } return false; } } /* Return true if REGNO satisfies a memory constraint. */ static bool in_mem_p (int regno) { return get_reg_class (regno) == NO_REGS; } /* If we have decided to substitute X with another value, return that value, otherwise return X. */ static rtx get_equiv_substitution (rtx x) { int regno; rtx res; if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER || ! ira_reg_equiv[regno].defined_p || ! ira_reg_equiv[regno].profitable_p || lra_get_regno_hard_regno (regno) >= 0) return x; if ((res = ira_reg_equiv[regno].memory) != NULL_RTX) return res; if ((res = ira_reg_equiv[regno].constant) != NULL_RTX) return res; if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX) return res; gcc_unreachable (); } /* Set up curr_operand_mode. */ static void init_curr_operand_mode (void) { int nop = curr_static_id->n_operands; for (int i = 0; i < nop; i++) { enum machine_mode mode = GET_MODE (*curr_id->operand_loc[i]); if (mode == VOIDmode) { /* The .md mode for address operands is the mode of the addressed value rather than the mode of the address itself. */ if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address) mode = Pmode; else mode = curr_static_id->operand[i].mode; } curr_operand_mode[i] = mode; } } /* The page contains code to reuse input reloads. */ /* Structure describes input reload of the current insns. */ struct input_reload { /* Reloaded value. */ rtx input; /* Reload pseudo used. */ rtx reg; }; /* The number of elements in the following array. */ static int curr_insn_input_reloads_num; /* Array containing info about input reloads. It is used to find the same input reload and reuse the reload pseudo in this case. */ static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS]; /* Initiate data concerning reuse of input reloads for the current insn. */ static void init_curr_insn_input_reloads (void) { curr_insn_input_reloads_num = 0; } /* Change class of pseudo REGNO to NEW_CLASS. Print info about it using TITLE. Output a new line if NL_P. */ static void change_class (int regno, enum reg_class new_class, const char *title, bool nl_p) { lra_assert (regno >= FIRST_PSEUDO_REGISTER); if (lra_dump_file != NULL) fprintf (lra_dump_file, "%s to class %s for r%d", title, reg_class_names[new_class], regno); setup_reg_classes (regno, new_class, NO_REGS, new_class); if (lra_dump_file != NULL && nl_p) fprintf (lra_dump_file, "\n"); } /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already created input reload pseudo (only if TYPE is not OP_OUT). The result pseudo is returned through RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we reused the already created input reload pseudo. Use TITLE to describe new registers for debug purposes. */ static bool get_reload_reg (enum op_type type, enum machine_mode mode, rtx original, enum reg_class rclass, const char *title, rtx *result_reg) { int i, regno; enum reg_class new_class; if (type == OP_OUT) { *result_reg = lra_create_new_reg_with_unique_value (mode, original, rclass, title); return true; } /* Prevent reuse value of expression with side effects, e.g. volatile memory. */ if (! side_effects_p (original)) for (i = 0; i < curr_insn_input_reloads_num; i++) if (rtx_equal_p (curr_insn_input_reloads[i].input, original) && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class)) { rtx reg = curr_insn_input_reloads[i].reg; regno = REGNO (reg); /* If input is equal to original and both are VOIDmode, GET_MODE (reg) might be still different from mode. Ensure we don't return *result_reg with wrong mode. */ if (GET_MODE (reg) != mode) { if (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (mode)) continue; reg = lowpart_subreg (mode, reg, GET_MODE (reg)); if (reg == NULL_RTX || GET_CODE (reg) != SUBREG) continue; } *result_reg = reg; if (lra_dump_file != NULL) { fprintf (lra_dump_file, " Reuse r%d for reload ", regno); dump_value_slim (lra_dump_file, original, 1); } if (new_class != lra_get_allocno_class (regno)) change_class (regno, new_class, ", change", false); if (lra_dump_file != NULL) fprintf (lra_dump_file, "\n"); return false; } *result_reg = lra_create_new_reg (mode, original, rclass, title); lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS); curr_insn_input_reloads[curr_insn_input_reloads_num].input = original; curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg; return true; } /* The page contains code to extract memory address parts. */ /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudos. */ static inline bool ok_for_index_p_nonstrict (rtx reg) { unsigned regno = REGNO (reg); return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno); } /* A version of regno_ok_for_base_p for use here, when all pseudos should count as OK. Arguments as for regno_ok_for_base_p. */ static inline bool ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode, addr_space_t as, enum rtx_code outer_code, enum rtx_code index_code) { unsigned regno = REGNO (reg); if (regno >= FIRST_PSEUDO_REGISTER) return true; return ok_for_base_p_1 (regno, mode, as, outer_code, index_code); } /* The page contains major code to choose the current insn alternative and generate reloads for it. */ /* Return the offset from REGNO of the least significant register in (reg:MODE REGNO). This function is used to tell whether two registers satisfy a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if: REGNO1 + lra_constraint_offset (REGNO1, MODE1) == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */ int lra_constraint_offset (int regno, enum machine_mode mode) { lra_assert (regno < FIRST_PSEUDO_REGISTER); if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (mode) > UNITS_PER_WORD && SCALAR_INT_MODE_P (mode)) return hard_regno_nregs[regno][mode] - 1; return 0; } /* Like rtx_equal_p except that it allows a REG and a SUBREG to match if they are the same hard reg, and has special hacks for auto-increment and auto-decrement. This is specifically intended for process_alt_operands to use in determining whether two operands match. X is the operand whose number is the lower of the two. It is supposed that X is the output operand and Y is the input operand. Y_HARD_REGNO is the final hard regno of register Y or register in subreg Y as we know it now. Otherwise, it is a negative value. */ static bool operands_match_p (rtx x, rtx y, int y_hard_regno) { int i; RTX_CODE code = GET_CODE (x); const char *fmt; if (x == y) return true; if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x)))) && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))))) { int j; i = get_hard_regno (x); if (i < 0) goto slow; if ((j = y_hard_regno) < 0) goto slow; i += lra_constraint_offset (i, GET_MODE (x)); j += lra_constraint_offset (j, GET_MODE (y)); return i == j; } /* If two operands must match, because they are really a single operand of an assembler insn, then two post-increments are invalid because the assembler insn would increment only once. On the other hand, a post-increment matches ordinary indexing if the post-increment is the output operand. */ if (code == POST_DEC || code == POST_INC || code == POST_MODIFY) return operands_match_p (XEXP (x, 0), y, y_hard_regno); /* Two pre-increments are invalid because the assembler insn would increment only once. On the other hand, a pre-increment matches ordinary indexing if the pre-increment is the input operand. */ if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC || GET_CODE (y) == PRE_MODIFY) return operands_match_p (x, XEXP (y, 0), -1); slow: if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)) && x == SUBREG_REG (y)) return true; if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x)) && SUBREG_REG (x) == y) return true; /* Now we have disposed of all the cases in which different rtx codes can match. */ if (code != GET_CODE (y)) return false; /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */ if (GET_MODE (x) != GET_MODE (y)) return false; switch (code) { CASE_CONST_UNIQUE: return false; case LABEL_REF: return XEXP (x, 0) == XEXP (y, 0); case SYMBOL_REF: return XSTR (x, 0) == XSTR (y, 0); default: break; } /* Compare the elements. If any pair of corresponding elements fail to match, return false for the whole things. */ fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { int val, j; switch (fmt[i]) { case 'w': if (XWINT (x, i) != XWINT (y, i)) return false; break; case 'i': if (XINT (x, i) != XINT (y, i)) return false; break; case 'e': val = operands_match_p (XEXP (x, i), XEXP (y, i), -1); if (val == 0) return false; break; case '0': break; case 'E': if (XVECLEN (x, i) != XVECLEN (y, i)) return false; for (j = XVECLEN (x, i) - 1; j >= 0; --j) { val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1); if (val == 0) return false; } break; /* It is believed that rtx's at this level will never contain anything but integers and other rtx's, except for within LABEL_REFs and SYMBOL_REFs. */ default: gcc_unreachable (); } } return true; } /* True if X is a constant that can be forced into the constant pool. MODE is the mode of the operand, or VOIDmode if not known. */ #define CONST_POOL_OK_P(MODE, X) \ ((MODE) != VOIDmode \ && CONSTANT_P (X) \ && GET_CODE (X) != HIGH \ && !targetm.cannot_force_const_mem (MODE, X)) /* True if C is a non-empty register class that has too few registers to be safely used as a reload target class. */ #define SMALL_REGISTER_CLASS_P(C) \ (reg_class_size [(C)] == 1 \ || (reg_class_size [(C)] >= 1 && targetm.class_likely_spilled_p (C))) /* If REG is a reload pseudo, try to make its class satisfying CL. */ static void narrow_reload_pseudo_class (rtx reg, enum reg_class cl) { enum reg_class rclass; /* Do not make more accurate class from reloads generated. They are mostly moves with a lot of constraints. Making more accurate class may results in very narrow class and impossibility of find registers for several reloads of one insn. */ if (INSN_UID (curr_insn) >= new_insn_uid_start) return; if (GET_CODE (reg) == SUBREG) reg = SUBREG_REG (reg); if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start) return; if (in_class_p (reg, cl, &rclass) && rclass != cl) change_class (REGNO (reg), rclass, " Change", true); } /* Generate reloads for matching OUT and INS (array of input operand numbers with end marker -1) with reg class GOAL_CLASS. Add input and output reloads correspondingly to the lists *BEFORE and *AFTER. OUT might be negative. In this case we generate input reloads for matched input operands INS. */ static void match_reload (signed char out, signed char *ins, enum reg_class goal_class, rtx *before, rtx *after) { int i, in; rtx new_in_reg, new_out_reg, reg, clobber; enum machine_mode inmode, outmode; rtx in_rtx = *curr_id->operand_loc[ins[0]]; rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out]; inmode = curr_operand_mode[ins[0]]; outmode = out < 0 ? inmode : curr_operand_mode[out]; push_to_sequence (*before); if (inmode != outmode) { if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode)) { reg = new_in_reg = lra_create_new_reg_with_unique_value (inmode, in_rtx, goal_class, ""); if (SCALAR_INT_MODE_P (inmode)) new_out_reg = gen_lowpart_SUBREG (outmode, reg); else new_out_reg = gen_rtx_SUBREG (outmode, reg, 0); /* If the input reg is dying here, we can use the same hard register for REG and IN_RTX. We do it only for original pseudos as reload pseudos can die although original pseudos still live where reload pseudos dies. */ if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))) lra_reg_info[REGNO (reg)].val = lra_reg_info[REGNO (in_rtx)].val; } else { reg = new_out_reg = lra_create_new_reg_with_unique_value (outmode, out_rtx, goal_class, ""); if (SCALAR_INT_MODE_P (outmode)) new_in_reg = gen_lowpart_SUBREG (inmode, reg); else new_in_reg = gen_rtx_SUBREG (inmode, reg, 0); /* NEW_IN_REG is non-paradoxical subreg. We don't want NEW_OUT_REG living above. We add clobber clause for this. This is just a temporary clobber. We can remove it at the end of LRA work. */ clobber = emit_clobber (new_out_reg); LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1; if (GET_CODE (in_rtx) == SUBREG) { rtx subreg_reg = SUBREG_REG (in_rtx); /* If SUBREG_REG is dying here and sub-registers IN_RTX and NEW_IN_REG are similar, we can use the same hard register for REG and SUBREG_REG. */ if (REG_P (subreg_reg) && (int) REGNO (subreg_reg) < lra_new_regno_start && GET_MODE (subreg_reg) == outmode && SUBREG_BYTE (in_rtx) == SUBREG_BYTE (new_in_reg) && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg))) lra_reg_info[REGNO (reg)].val = lra_reg_info[REGNO (subreg_reg)].val; } } } else { /* Pseudos have values -- see comments for lra_reg_info. Different pseudos with the same value do not conflict even if they live in the same place. When we create a pseudo we assign value of original pseudo (if any) from which we created the new pseudo. If we create the pseudo from the input pseudo, the new pseudo will no conflict with the input pseudo which is wrong when the input pseudo lives after the insn and as the new pseudo value is changed by the insn output. Therefore we create the new pseudo from the output. We cannot reuse the current output register because we might have a situation like "a <- a op b", where the constraints force the second input operand ("b") to match the output operand ("a"). "b" must then be copied into a new register so that it doesn't clobber the current value of "a". */ new_in_reg = new_out_reg = lra_create_new_reg_with_unique_value (outmode, out_rtx, goal_class, ""); } /* In operand can be got from transformations before processing insn constraints. One example of such transformations is subreg reloading (see function simplify_operand_subreg). The new pseudos created by the transformations might have inaccurate class (ALL_REGS) and we should make their classes more accurate. */ narrow_reload_pseudo_class (in_rtx, goal_class); lra_emit_move (copy_rtx (new_in_reg), in_rtx); *before = get_insns (); end_sequence (); for (i = 0; (in = ins[i]) >= 0; i++) { lra_assert (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in])); *curr_id->operand_loc[in] = new_in_reg; } lra_update_dups (curr_id, ins); if (out < 0) return; /* See a comment for the input operand above. */ narrow_reload_pseudo_class (out_rtx, goal_class); if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX) { start_sequence (); lra_emit_move (out_rtx, copy_rtx (new_out_reg)); emit_insn (*after); *after = get_insns (); end_sequence (); } *curr_id->operand_loc[out] = new_out_reg; lra_update_dup (curr_id, out); } /* Return register class which is union of all reg classes in insn constraint alternative string starting with P. */ static enum reg_class reg_class_from_constraints (const char *p) { int c, len; enum reg_class op_class = NO_REGS; do switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c) { case '#': case ',': return op_class; case 'p': op_class = (reg_class_subunion [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC, ADDRESS, SCRATCH)]); break; case 'g': case 'r': op_class = reg_class_subunion[op_class][GENERAL_REGS]; break; default: if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS) { #ifdef EXTRA_CONSTRAINT_STR if (EXTRA_ADDRESS_CONSTRAINT (c, p)) op_class = (reg_class_subunion [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC, ADDRESS, SCRATCH)]); #endif break; } op_class = reg_class_subunion[op_class][REG_CLASS_FROM_CONSTRAINT (c, p)]; break; } while ((p += len), c); return op_class; } /* If OP is a register, return the class of the register as per get_reg_class, otherwise return NO_REGS. */ static inline enum reg_class get_op_class (rtx op) { return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS; } /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo otherwise. If modes of MEM_PSEUDO and VAL are different, use SUBREG for VAL to make them equal. */ static rtx emit_spill_move (bool to_p, rtx mem_pseudo, rtx val) { if (GET_MODE (mem_pseudo) != GET_MODE (val)) val = gen_rtx_SUBREG (GET_MODE (mem_pseudo), GET_CODE (val) == SUBREG ? SUBREG_REG (val) : val, 0); return (to_p ? gen_move_insn (mem_pseudo, val) : gen_move_insn (val, mem_pseudo)); } /* Process a special case insn (register move), return true if we don't need to process it anymore. Return that RTL was changed through CHANGE_P and macro SECONDARY_MEMORY_NEEDED says to use secondary memory through SEC_MEM_P. */ static bool check_and_process_move (bool *change_p, bool *sec_mem_p) { int sregno, dregno; rtx set, dest, src, dreg, sreg, old_sreg, new_reg, before, scratch_reg; enum reg_class dclass, sclass, secondary_class; enum machine_mode sreg_mode; secondary_reload_info sri; *sec_mem_p = *change_p = false; if ((set = single_set (curr_insn)) == NULL) return false; dreg = dest = SET_DEST (set); sreg = src = SET_SRC (set); /* Quick check on the right move insn which does not need reloads. */ if ((dclass = get_op_class (dest)) != NO_REGS && (sclass = get_op_class (src)) != NO_REGS /* The backend guarantees that register moves of cost 2 never need reloads. */ && targetm.register_move_cost (GET_MODE (src), dclass, sclass) == 2) return true; if (GET_CODE (dest) == SUBREG) dreg = SUBREG_REG (dest); if (GET_CODE (src) == SUBREG) sreg = SUBREG_REG (src); if (! REG_P (dreg) || ! REG_P (sreg)) return false; sclass = dclass = NO_REGS; dreg = get_equiv_substitution (dreg); if (REG_P (dreg)) dclass = get_reg_class (REGNO (dreg)); if (dclass == ALL_REGS) /* ALL_REGS is used for new pseudos created by transformations like reload of SUBREG_REG (see function simplify_operand_subreg). We don't know their class yet. We should figure out the class from processing the insn constraints not in this fast path function. Even if ALL_REGS were a right class for the pseudo, secondary_... hooks usually are not define for ALL_REGS. */ return false; sreg_mode = GET_MODE (sreg); old_sreg = sreg; sreg = get_equiv_substitution (sreg); if (REG_P (sreg)) sclass = get_reg_class (REGNO (sreg)); if (sclass == ALL_REGS) /* See comments above. */ return false; #ifdef SECONDARY_MEMORY_NEEDED if (dclass != NO_REGS && sclass != NO_REGS && SECONDARY_MEMORY_NEEDED (sclass, dclass, GET_MODE (src))) { *sec_mem_p = true; return false; } #endif sri.prev_sri = NULL; sri.icode = CODE_FOR_nothing; sri.extra_cost = 0; secondary_class = NO_REGS; /* Set up hard register for a reload pseudo for hook secondary_reload because some targets just ignore unassigned pseudos in the hook. */ if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0) { dregno = REGNO (dreg); reg_renumber[dregno] = ira_class_hard_regs[dclass][0]; } else dregno = -1; if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0) { sregno = REGNO (sreg); reg_renumber[sregno] = ira_class_hard_regs[sclass][0]; } else sregno = -1; if (sclass != NO_REGS) secondary_class = (enum reg_class) targetm.secondary_reload (false, dest, (reg_class_t) sclass, GET_MODE (src), &sri); if (sclass == NO_REGS || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing) && dclass != NO_REGS)) { enum reg_class old_sclass = secondary_class; secondary_reload_info old_sri = sri; sri.prev_sri = NULL; sri.icode = CODE_FOR_nothing; sri.extra_cost = 0; secondary_class = (enum reg_class) targetm.secondary_reload (true, sreg, (reg_class_t) dclass, sreg_mode, &sri); /* Check the target hook consistency. */ lra_assert ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing) || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing) || (secondary_class == old_sclass && sri.icode == old_sri.icode)); } if (sregno >= 0) reg_renumber [sregno] = -1; if (dregno >= 0) reg_renumber [dregno] = -1; if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing) return false; *change_p = true; new_reg = NULL_RTX; if (secondary_class != NO_REGS) new_reg = lra_create_new_reg_with_unique_value (sreg_mode, NULL_RTX, secondary_class, "secondary"); start_sequence (); if (old_sreg != sreg) sreg = copy_rtx (sreg); if (sri.icode == CODE_FOR_nothing) lra_emit_move (new_reg, sreg); else { enum reg_class scratch_class; scratch_class = (reg_class_from_constraints (insn_data[sri.icode].operand[2].constraint)); scratch_reg = (lra_create_new_reg_with_unique_value (insn_data[sri.icode].operand[2].mode, NULL_RTX, scratch_class, "scratch")); emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest, sreg, scratch_reg)); } before = get_insns (); end_sequence (); lra_process_new_insns (curr_insn, before, NULL_RTX, "Inserting the move"); if (new_reg != NULL_RTX) { if (GET_CODE (src) == SUBREG) SUBREG_REG (src) = new_reg; else SET_SRC (set) = new_reg; } else { if (lra_dump_file != NULL) { fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn)); dump_insn_slim (lra_dump_file, curr_insn); } lra_set_insn_deleted (curr_insn); return true; } return false; } /* The following data describe the result of process_alt_operands. The data are used in curr_insn_transform to generate reloads. */ /* The chosen reg classes which should be used for the corresponding operands. */ static enum reg_class goal_alt[MAX_RECOG_OPERANDS]; /* True if the operand should be the same as another operand and that other operand does not need a reload. */ static bool goal_alt_match_win[MAX_RECOG_OPERANDS]; /* True if the operand does not need a reload. */ static bool goal_alt_win[MAX_RECOG_OPERANDS]; /* True if the operand can be offsetable memory. */ static bool goal_alt_offmemok[MAX_RECOG_OPERANDS]; /* The number of an operand to which given operand can be matched to. */ static int goal_alt_matches[MAX_RECOG_OPERANDS]; /* The number of elements in the following array. */ static int goal_alt_dont_inherit_ops_num; /* Numbers of operands whose reload pseudos should not be inherited. */ static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS]; /* True if the insn commutative operands should be swapped. */ static bool goal_alt_swapped; /* The chosen insn alternative. */ static int goal_alt_number; /* The following five variables are used to choose the best insn alternative. They reflect final characteristics of the best alternative. */ /* Number of necessary reloads and overall cost reflecting the previous value and other unpleasantness of the best alternative. */ static int best_losers, best_overall; /* Overall number hard registers used for reloads. For example, on some targets we need 2 general registers to reload DFmode and only one floating point register. */ static int best_reload_nregs; /* Overall number reflecting distances of previous reloading the same value. The distances are counted from the current BB start. It is used to improve inheritance chances. */ static int best_reload_sum; /* True if the current insn should have no correspondingly input or output reloads. */ static bool no_input_reloads_p, no_output_reloads_p; /* True if we swapped the commutative operands in the current insn. */ static int curr_swapped; /* Arrange for address element *LOC to be a register of class CL. Add any input reloads to list BEFORE. AFTER is nonnull if *LOC is an automodified value; handle that case by adding the required output reloads to list AFTER. Return true if the RTL was changed. */ static bool process_addr_reg (rtx *loc, rtx *before, rtx *after, enum reg_class cl) { int regno; enum reg_class rclass, new_class; rtx reg; rtx new_reg; enum machine_mode mode; bool before_p = false; loc = strip_subreg (loc); reg = *loc; mode = GET_MODE (reg); if (! REG_P (reg)) { /* Always reload memory in an address even if the target supports such addresses. */ new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address"); before_p = true; } else { regno = REGNO (reg); rclass = get_reg_class (regno); if ((*loc = get_equiv_substitution (reg)) != reg) { if (lra_dump_file != NULL) { fprintf (lra_dump_file, "Changing pseudo %d in address of insn %u on equiv ", REGNO (reg), INSN_UID (curr_insn)); dump_value_slim (lra_dump_file, *loc, 1); fprintf (lra_dump_file, "\n"); } *loc = copy_rtx (*loc); } if (*loc != reg || ! in_class_p (reg, cl, &new_class)) { reg = *loc; if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT, mode, reg, cl, "address", &new_reg)) before_p = true; } else if (new_class != NO_REGS && rclass != new_class) { change_class (regno, new_class, " Change", true); return false; } else return false; } if (before_p) { push_to_sequence (*before); lra_emit_move (new_reg, reg); *before = get_insns (); end_sequence (); } *loc = new_reg; if (after != NULL) { start_sequence (); lra_emit_move (reg, new_reg); emit_insn (*after); *after = get_insns (); end_sequence (); } return true; } /* Make reloads for subreg in operand NOP with internal subreg mode REG_MODE, add new reloads for further processing. Return true if any reload was generated. */ static bool simplify_operand_subreg (int nop, enum machine_mode reg_mode) { int hard_regno; rtx before, after; enum machine_mode mode; rtx reg, new_reg; rtx operand = *curr_id->operand_loc[nop]; enum reg_class regclass; enum op_type type; before = after = NULL_RTX; if (GET_CODE (operand) != SUBREG) return false; mode = GET_MODE (operand); reg = SUBREG_REG (operand); type = curr_static_id->operand[nop].type; /* If we change address for paradoxical subreg of memory, the address might violate the necessary alignment or the access might be slow. So take this into consideration. We should not worry about access beyond allocated memory for paradoxical memory subregs as we don't substitute such equiv memory (see processing equivalences in function lra_constraints) and because for spilled pseudos we allocate stack memory enough for the biggest corresponding paradoxical subreg. */ if ((MEM_P (reg) && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (reg)) || MEM_ALIGN (reg) >= GET_MODE_ALIGNMENT (mode))) || (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)) { alter_subreg (curr_id->operand_loc[nop], false); return true; } /* Put constant into memory when we have mixed modes. It generates a better code in most cases as it does not need a secondary reload memory. It also prevents LRA looping when LRA is using secondary reload memory again and again. */ if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg) && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode)) { SUBREG_REG (operand) = force_const_mem (reg_mode, reg); alter_subreg (curr_id->operand_loc[nop], false); return true; } /* Force a reload of the SUBREG_REG if this is a constant or PLUS or if there may be a problem accessing OPERAND in the outer mode. */ if ((REG_P (reg) && REGNO (reg) >= FIRST_PSEUDO_REGISTER && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0 /* Don't reload paradoxical subregs because we could be looping having repeatedly final regno out of hard regs range. */ && (hard_regno_nregs[hard_regno][GET_MODE (reg)] >= hard_regno_nregs[hard_regno][mode]) && simplify_subreg_regno (hard_regno, GET_MODE (reg), SUBREG_BYTE (operand), mode) < 0) || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg)) { enum op_type type = curr_static_id->operand[nop].type; /* The class will be defined later in curr_insn_transform. */ enum reg_class rclass = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS); if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg, rclass, "subreg reg", &new_reg)) { bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (new_reg)); if (type != OP_OUT || GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)) { push_to_sequence (before); lra_emit_move (new_reg, reg); before = get_insns (); end_sequence (); } if (type != OP_IN) { start_sequence (); lra_emit_move (reg, new_reg); emit_insn (after); after = get_insns (); end_sequence (); } } SUBREG_REG (operand) = new_reg; lra_process_new_insns (curr_insn, before, after, "Inserting subreg reload"); return true; } /* Force a reload for a paradoxical subreg. For paradoxical subreg, IRA allocates hardreg to the inner pseudo reg according to its mode instead of the outermode, so the size of the hardreg may not be enough to contain the outermode operand, in that case we may need to insert reload for the reg. For the following two types of paradoxical subreg, we need to insert reload: 1. If the op_type is OP_IN, and the hardreg could not be paired with other hardreg to contain the outermode operand (checked by in_hard_reg_set_p), we need to insert the reload. 2. If the op_type is OP_OUT or OP_INOUT. */ else if (REG_P (reg) && REGNO (reg) >= FIRST_PSEUDO_REGISTER && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0 && (hard_regno_nregs[hard_regno][GET_MODE (reg)] < hard_regno_nregs[hard_regno][mode]) && (regclass = lra_get_allocno_class (REGNO (reg))) && (type != OP_IN || !in_hard_reg_set_p (reg_class_contents[regclass], mode, hard_regno))) { /* The class will be defined later in curr_insn_transform. */ enum reg_class rclass = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS); rtx subreg; new_reg = lra_create_new_reg_with_unique_value (mode, reg, rclass, "paradoxical subreg"); PUT_MODE (new_reg, mode); subreg = simplify_gen_subreg (GET_MODE (reg), new_reg, mode, 0); if (type != OP_OUT) { push_to_sequence (before); lra_emit_move (subreg, reg); before = get_insns (); end_sequence (); } if (type != OP_IN) { start_sequence (); lra_emit_move (reg, subreg); emit_insn (after); after = get_insns (); end_sequence (); } SUBREG_REG (operand) = new_reg; lra_process_new_insns (curr_insn, before, after, "Inserting paradoxical subreg reload"); return true; } return false; } /* Return TRUE if X refers for a hard register from SET. */ static bool uses_hard_regs_p (rtx x, HARD_REG_SET set) { int i, j, x_hard_regno; enum machine_mode mode; const char *fmt; enum rtx_code code; if (x == NULL_RTX) return false; code = GET_CODE (x); mode = GET_MODE (x); if (code == SUBREG) { x = SUBREG_REG (x); code = GET_CODE (x); if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode)) mode = GET_MODE (x); } if (REG_P (x)) { x_hard_regno = get_hard_regno (x); return (x_hard_regno >= 0 && overlaps_hard_reg_set_p (set, mode, x_hard_regno)); } if (MEM_P (x)) { struct address_info ad; decompose_mem_address (&ad, x); if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set)) return true; if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set)) return true; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if (uses_hard_regs_p (XEXP (x, i), set)) return true; } else if (fmt[i] == 'E') { for (j = XVECLEN (x, i) - 1; j >= 0; j--) if (uses_hard_regs_p (XVECEXP (x, i, j), set)) return true; } } return false; } /* Return true if OP is a spilled pseudo. */ static inline bool spilled_pseudo_p (rtx op) { return (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op))); } /* Return true if X is a general constant. */ static inline bool general_constant_p (rtx x) { return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x)); } /* Major function to choose the current insn alternative and what operands should be reloaded and how. If ONLY_ALTERNATIVE is not negative we should consider only this alternative. Return false if we can not choose the alternative or find how to reload the operands. */ static bool process_alt_operands (int only_alternative) { bool ok_p = false; int nop, overall, nalt; int n_alternatives = curr_static_id->n_alternatives; int n_operands = curr_static_id->n_operands; /* LOSERS counts the operands that don't fit this alternative and would require loading. */ int losers; /* REJECT is a count of how undesirable this alternative says it is if any reloading is required. If the alternative matches exactly then REJECT is ignored, but otherwise it gets this much counted against it in addition to the reloading needed. */ int reject; /* The number of elements in the following array. */ int early_clobbered_regs_num; /* Numbers of operands which are early clobber registers. */ int early_clobbered_nops[MAX_RECOG_OPERANDS]; enum reg_class curr_alt[MAX_RECOG_OPERANDS]; HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS]; bool curr_alt_match_win[MAX_RECOG_OPERANDS]; bool curr_alt_win[MAX_RECOG_OPERANDS]; bool curr_alt_offmemok[MAX_RECOG_OPERANDS]; int curr_alt_matches[MAX_RECOG_OPERANDS]; /* The number of elements in the following array. */ int curr_alt_dont_inherit_ops_num; /* Numbers of operands whose reload pseudos should not be inherited. */ int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS]; rtx op; /* The register when the operand is a subreg of register, otherwise the operand itself. */ rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS]; /* The register if the operand is a register or subreg of register, otherwise NULL. */ rtx operand_reg[MAX_RECOG_OPERANDS]; int hard_regno[MAX_RECOG_OPERANDS]; enum machine_mode biggest_mode[MAX_RECOG_OPERANDS]; int reload_nregs, reload_sum; bool costly_p; enum reg_class cl; /* Calculate some data common for all alternatives to speed up the function. */ for (nop = 0; nop < n_operands; nop++) { op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop]; /* The real hard regno of the operand after the allocation. */ hard_regno[nop] = get_hard_regno (op); operand_reg[nop] = op; biggest_mode[nop] = GET_MODE (operand_reg[nop]); if (GET_CODE (operand_reg[nop]) == SUBREG) { operand_reg[nop] = SUBREG_REG (operand_reg[nop]); if (GET_MODE_SIZE (biggest_mode[nop]) < GET_MODE_SIZE (GET_MODE (operand_reg[nop]))) biggest_mode[nop] = GET_MODE (operand_reg[nop]); } if (REG_P (operand_reg[nop])) no_subreg_reg_operand[nop] = operand_reg[nop]; else operand_reg[nop] = NULL_RTX; } /* The constraints are made of several alternatives. Each operand's constraint looks like foo,bar,... with commas separating the alternatives. The first alternatives for all operands go together, the second alternatives go together, etc. First loop over alternatives. */ for (nalt = 0; nalt < n_alternatives; nalt++) { /* Loop over operands for one constraint alternative. */ #if HAVE_ATTR_enabled if (curr_id->alternative_enabled_p != NULL && ! curr_id->alternative_enabled_p[nalt]) continue; #endif if (only_alternative >= 0 && nalt != only_alternative) continue; overall = losers = reject = reload_nregs = reload_sum = 0; for (nop = 0; nop < n_operands; nop++) reject += (curr_static_id ->operand_alternative[nalt * n_operands + nop].reject); early_clobbered_regs_num = 0; for (nop = 0; nop < n_operands; nop++) { const char *p; char *end; int len, c, m, i, opalt_num, this_alternative_matches; bool win, did_match, offmemok, early_clobber_p; /* false => this operand can be reloaded somehow for this alternative. */ bool badop; /* true => this operand can be reloaded if the alternative allows regs. */ bool winreg; /* True if a constant forced into memory would be OK for this operand. */ bool constmemok; enum reg_class this_alternative, this_costly_alternative; HARD_REG_SET this_alternative_set, this_costly_alternative_set; bool this_alternative_match_win, this_alternative_win; bool this_alternative_offmemok; enum machine_mode mode; opalt_num = nalt * n_operands + nop; if (curr_static_id->operand_alternative[opalt_num].anything_ok) { /* Fast track for no constraints at all. */ curr_alt[nop] = NO_REGS; CLEAR_HARD_REG_SET (curr_alt_set[nop]); curr_alt_win[nop] = true; curr_alt_match_win[nop] = false; curr_alt_offmemok[nop] = false; curr_alt_matches[nop] = -1; continue; } op = no_subreg_reg_operand[nop]; mode = curr_operand_mode[nop]; win = did_match = winreg = offmemok = constmemok = false; badop = true; early_clobber_p = false; p = curr_static_id->operand_alternative[opalt_num].constraint; this_costly_alternative = this_alternative = NO_REGS; /* We update set of possible hard regs besides its class because reg class might be inaccurate. For example, union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM is translated in HI_REGS because classes are merged by pairs and there is no accurate intermediate class. */ CLEAR_HARD_REG_SET (this_alternative_set); CLEAR_HARD_REG_SET (this_costly_alternative_set); this_alternative_win = false; this_alternative_match_win = false; this_alternative_offmemok = false; this_alternative_matches = -1; /* An empty constraint should be excluded by the fast track. */ lra_assert (*p != 0 && *p != ','); /* Scan this alternative's specs for this operand; set WIN if the operand fits any letter in this alternative. Otherwise, clear BADOP if this operand could fit some letter after reloads, or set WINREG if this operand could fit after reloads provided the constraint allows some registers. */ costly_p = false; do { switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c) { case '\0': len = 0; break; case ',': c = '\0'; break; case '=': case '+': case '?': case '*': case '!': case ' ': case '\t': break; case '%': /* We only support one commutative marker, the first one. We already set commutative above. */ break; case '&': early_clobber_p = true; break; case '#': /* Ignore rest of this alternative. */ c = '\0'; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { int m_hregno; bool match_p; m = strtoul (p, &end, 10); p = end; len = 0; lra_assert (nop > m); this_alternative_matches = m; m_hregno = get_hard_regno (*curr_id->operand_loc[m]); /* We are supposed to match a previous operand. If we do, we win if that one did. If we do not, count both of the operands as losers. (This is too conservative, since most of the time only a single reload insn will be needed to make the two operands win. As a result, this alternative may be rejected when it is actually desirable.) */ match_p = false; if (operands_match_p (*curr_id->operand_loc[nop], *curr_id->operand_loc[m], m_hregno)) { /* We should reject matching of an early clobber operand if the matching operand is not dying in the insn. */ if (! curr_static_id->operand[m].early_clobber || operand_reg[nop] == NULL_RTX || (find_regno_note (curr_insn, REG_DEAD, REGNO (op)) || REGNO (op) == REGNO (operand_reg[m]))) match_p = true; } if (match_p) { /* If we are matching a non-offsettable address where an offsettable address was expected, then we must reject this combination, because we can't reload it. */ if (curr_alt_offmemok[m] && MEM_P (*curr_id->operand_loc[m]) && curr_alt[m] == NO_REGS && ! curr_alt_win[m]) continue; } else { /* Operands don't match. Both operands must allow a reload register, otherwise we cannot make them match. */ if (curr_alt[m] == NO_REGS) break; /* Retroactively mark the operand we had to match as a loser, if it wasn't already and it wasn't matched to a register constraint (e.g it might be matched by memory). */ if (curr_alt_win[m] && (operand_reg[m] == NULL_RTX || hard_regno[m] < 0)) { losers++; reload_nregs += (ira_reg_class_max_nregs[curr_alt[m]] [GET_MODE (*curr_id->operand_loc[m])]); } /* We prefer no matching alternatives because it gives more freedom in RA. */ if (operand_reg[nop] == NULL_RTX || (find_regno_note (curr_insn, REG_DEAD, REGNO (operand_reg[nop])) == NULL_RTX)) reject += 2; } /* If we have to reload this operand and some previous operand also had to match the same thing as this operand, we don't know how to do that. */ if (!match_p || !curr_alt_win[m]) { for (i = 0; i < nop; i++) if (curr_alt_matches[i] == m) break; if (i < nop) break; } else did_match = true; /* This can be fixed with reloads if the operand we are supposed to match can be fixed with reloads. */ badop = false; this_alternative = curr_alt[m]; COPY_HARD_REG_SET (this_alternative_set, curr_alt_set[m]); winreg = this_alternative != NO_REGS; break; } case 'p': cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC, ADDRESS, SCRATCH); this_alternative = reg_class_subunion[this_alternative][cl]; IOR_HARD_REG_SET (this_alternative_set, reg_class_contents[cl]); if (costly_p) { this_costly_alternative = reg_class_subunion[this_costly_alternative][cl]; IOR_HARD_REG_SET (this_costly_alternative_set, reg_class_contents[cl]); } win = true; badop = false; break; case TARGET_MEM_CONSTRAINT: if (MEM_P (op) || spilled_pseudo_p (op)) win = true; /* We can put constant or pseudo value into memory to satisfy the constraint. */ if (CONST_POOL_OK_P (mode, op) || REG_P (op)) badop = false; constmemok = true; break; case '<': if (MEM_P (op) && (GET_CODE (XEXP (op, 0)) == PRE_DEC || GET_CODE (XEXP (op, 0)) == POST_DEC)) win = true; break; case '>': if (MEM_P (op) && (GET_CODE (XEXP (op, 0)) == PRE_INC || GET_CODE (XEXP (op, 0)) == POST_INC)) win = true; break; /* Memory op whose address is not offsettable. */ case 'V': if (MEM_P (op) && ! offsettable_nonstrict_memref_p (op)) win = true; break; /* Memory operand whose address is offsettable. */ case 'o': if ((MEM_P (op) && offsettable_nonstrict_memref_p (op)) || spilled_pseudo_p (op)) win = true; /* We can put constant or pseudo value into memory or make memory address offsetable to satisfy the constraint. */ if (CONST_POOL_OK_P (mode, op) || MEM_P (op) || REG_P (op)) badop = false; constmemok = true; offmemok = true; break; case 'E': case 'F': if (GET_CODE (op) == CONST_DOUBLE || (GET_CODE (op) == CONST_VECTOR && (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT))) win = true; break; case 'G': case 'H': if (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p)) win = true; break; case 's': if (CONST_INT_P (op) || (GET_CODE (op) == CONST_DOUBLE && mode == VOIDmode)) break; case 'i': if (general_constant_p (op)) win = true; break; case 'n': if (CONST_INT_P (op) || (GET_CODE (op) == CONST_DOUBLE && mode == VOIDmode)) win = true; break; case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': if (CONST_INT_P (op) && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p)) win = true; break; case 'X': /* This constraint should be excluded by the fast track. */ gcc_unreachable (); break; case 'g': if (MEM_P (op) || general_constant_p (op) || spilled_pseudo_p (op)) win = true; /* Drop through into 'r' case. */ case 'r': this_alternative = reg_class_subunion[this_alternative][GENERAL_REGS]; IOR_HARD_REG_SET (this_alternative_set, reg_class_contents[GENERAL_REGS]); if (costly_p) { this_costly_alternative = (reg_class_subunion [this_costly_alternative][GENERAL_REGS]); IOR_HARD_REG_SET (this_costly_alternative_set, reg_class_contents[GENERAL_REGS]); } goto reg; default: if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS) { #ifdef EXTRA_CONSTRAINT_STR if (EXTRA_MEMORY_CONSTRAINT (c, p)) { if (EXTRA_CONSTRAINT_STR (op, c, p)) win = true; else if (spilled_pseudo_p (op)) win = true; /* If we didn't already win, we can reload constants via force_const_mem or put the pseudo value into memory, or make other memory by reloading the address like for 'o'. */ if (CONST_POOL_OK_P (mode, op) || MEM_P (op) || REG_P (op)) badop = false; constmemok = true; offmemok = true; break; } if (EXTRA_ADDRESS_CONSTRAINT (c, p)) { if (EXTRA_CONSTRAINT_STR (op, c, p)) win = true; /* If we didn't already win, we can reload the address into a base register. */ cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC, ADDRESS, SCRATCH); this_alternative = reg_class_subunion[this_alternative][cl]; IOR_HARD_REG_SET (this_alternative_set, reg_class_contents[cl]); if (costly_p) { this_costly_alternative = (reg_class_subunion [this_costly_alternative][cl]); IOR_HARD_REG_SET (this_costly_alternative_set, reg_class_contents[cl]); } badop = false; break; } if (EXTRA_CONSTRAINT_STR (op, c, p)) win = true; #endif break; } cl = REG_CLASS_FROM_CONSTRAINT (c, p); this_alternative = reg_class_subunion[this_alternative][cl]; IOR_HARD_REG_SET (this_alternative_set, reg_class_contents[cl]); if (costly_p) { this_costly_alternative = reg_class_subunion[this_costly_alternative][cl]; IOR_HARD_REG_SET (this_costly_alternative_set, reg_class_contents[cl]); } reg: if (mode == BLKmode) break; winreg = true; if (REG_P (op)) { if (hard_regno[nop] >= 0 && in_hard_reg_set_p (this_alternative_set, mode, hard_regno[nop])) win = true; else if (hard_regno[nop] < 0 && in_class_p (op, this_alternative, NULL)) win = true; } break; } if (c != ' ' && c != '\t') costly_p = c == '*'; } while ((p += len), c); /* Record which operands fit this alternative. */ if (win) { this_alternative_win = true; if (operand_reg[nop] != NULL_RTX) { if (hard_regno[nop] >= 0) { if (in_hard_reg_set_p (this_costly_alternative_set, mode, hard_regno[nop])) reject++; } else { /* Prefer won reg to spilled pseudo under other equal conditions. */ reject++; if (in_class_p (operand_reg[nop], this_costly_alternative, NULL)) reject++; } /* We simulate the behaviour of old reload here. Although scratches need hard registers and it might result in spilling other pseudos, no reload insns are generated for the scratches. So it might cost something but probably less than old reload pass believes. */ if (lra_former_scratch_p (REGNO (operand_reg[nop]))) reject += LRA_LOSER_COST_FACTOR; } } else if (did_match) this_alternative_match_win = true; else { int const_to_mem = 0; bool no_regs_p; /* If this alternative asks for a specific reg class, see if there is at least one allocatable register in that class. */ no_regs_p = (this_alternative == NO_REGS || (hard_reg_set_subset_p (reg_class_contents[this_alternative], lra_no_alloc_regs))); /* For asms, verify that the class for this alternative is possible for the mode that is specified. */ if (!no_regs_p && REG_P (op) && INSN_CODE (curr_insn) < 0) { int i; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (HARD_REGNO_MODE_OK (i, mode) && in_hard_reg_set_p (reg_class_contents[this_alternative], mode, i)) break; if (i == FIRST_PSEUDO_REGISTER) winreg = false; } /* If this operand accepts a register, and if the register class has at least one allocatable register, then this operand can be reloaded. */ if (winreg && !no_regs_p) badop = false; if (badop) goto fail; this_alternative_offmemok = offmemok; if (this_costly_alternative != NO_REGS) reject++; /* If the operand is dying, has a matching constraint, and satisfies constraints of the matched operand which failed to satisfy the own constraints, we do not need to generate a reload insn for this operand. */ if (!(this_alternative_matches >= 0 && !curr_alt_win[this_alternative_matches] && REG_P (op) && find_regno_note (curr_insn, REG_DEAD, REGNO (op)) && (hard_regno[nop] >= 0 ? in_hard_reg_set_p (this_alternative_set, mode, hard_regno[nop]) : in_class_p (op, this_alternative, NULL)))) { /* Strict_low_part requires to reload the register not the sub-register. In this case we should check that a final reload hard reg can hold the value mode. */ if (curr_static_id->operand[nop].strict_low && REG_P (op) && hard_regno[nop] < 0 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG && ira_class_hard_regs_num[this_alternative] > 0 && ! HARD_REGNO_MODE_OK (ira_class_hard_regs [this_alternative][0], GET_MODE (op))) goto fail; losers++; } if (operand_reg[nop] != NULL_RTX /* Output operands and matched input operands are not inherited. The following conditions do not exactly describe the previous statement but they are pretty close. */ && curr_static_id->operand[nop].type != OP_OUT && (this_alternative_matches < 0 || curr_static_id->operand[nop].type != OP_IN)) { int last_reload = (lra_reg_info[ORIGINAL_REGNO (operand_reg[nop])] .last_reload); if (last_reload > bb_reload_num) reload_sum += last_reload - bb_reload_num; } /* If this is a constant that is reloaded into the desired class by copying it to memory first, count that as another reload. This is consistent with other code and is required to avoid choosing another alternative when the constant is moved into memory. Note that the test here is precisely the same as in the code below that calls force_const_mem. */ if (CONST_POOL_OK_P (mode, op) && ((targetm.preferred_reload_class (op, this_alternative) == NO_REGS) || no_input_reloads_p)) { const_to_mem = 1; if (! no_regs_p) losers++; } /* Alternative loses if it requires a type of reload not permitted for this insn. We can always reload objects with a REG_UNUSED note. */ if ((curr_static_id->operand[nop].type != OP_IN && no_output_reloads_p && ! find_reg_note (curr_insn, REG_UNUSED, op)) || (curr_static_id->operand[nop].type != OP_OUT && no_input_reloads_p && ! const_to_mem)) goto fail; /* Check strong discouragement of reload of non-constant into class THIS_ALTERNATIVE. */ if (! CONSTANT_P (op) && ! no_regs_p && (targetm.preferred_reload_class (op, this_alternative) == NO_REGS || (curr_static_id->operand[nop].type == OP_OUT && (targetm.preferred_output_reload_class (op, this_alternative) == NO_REGS)))) reject += LRA_MAX_REJECT; if (MEM_P (op) && offmemok) { /* If we know offset and this non-offsetable memory, something wrong with this memory and it is better to try other memory possibilities. */ if (MEM_OFFSET_KNOWN_P (op)) reject += LRA_MAX_REJECT; } else if (! (const_to_mem && constmemok)) { /* We prefer to reload pseudos over reloading other things, since such reloads may be able to be eliminated later. So bump REJECT in other cases. Don't do this in the case where we are forcing a constant into memory and it will then win since we don't want to have a different alternative match then. */ if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)) reject += 2; if (! no_regs_p) reload_nregs += ira_reg_class_max_nregs[this_alternative][mode]; if (SMALL_REGISTER_CLASS_P (this_alternative)) reject += LRA_LOSER_COST_FACTOR / 2; } /* We are trying to spill pseudo into memory. It is usually more costly than moving to a hard register although it might takes the same number of reloads. */ if (no_regs_p && REG_P (op)) reject += 2; #ifdef SECONDARY_MEMORY_NEEDED /* If reload requires moving value through secondary memory, it will need one more insn at least. */ if (this_alternative != NO_REGS && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS && ((curr_static_id->operand[nop].type != OP_OUT && SECONDARY_MEMORY_NEEDED (cl, this_alternative, GET_MODE (op))) || (curr_static_id->operand[nop].type != OP_IN && SECONDARY_MEMORY_NEEDED (this_alternative, cl, GET_MODE (op))))) losers++; #endif /* Input reloads can be inherited more often than output reloads can be removed, so penalize output reloads. */ if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN) reject++; } if (early_clobber_p) reject++; /* ??? We check early clobbers after processing all operands (see loop below) and there we update the costs more. Should we update the cost (may be approximately) here because of early clobber register reloads or it is a rare or non-important thing to be worth to do it. */ overall = losers * LRA_LOSER_COST_FACTOR + reject; if ((best_losers == 0 || losers != 0) && best_overall < overall) { if (lra_dump_file != NULL) fprintf (lra_dump_file, " alt=%d,overall=%d,losers=%d -- reject\n", nalt, overall, losers); goto fail; } curr_alt[nop] = this_alternative; COPY_HARD_REG_SET (curr_alt_set[nop], this_alternative_set); curr_alt_win[nop] = this_alternative_win; curr_alt_match_win[nop] = this_alternative_match_win; curr_alt_offmemok[nop] = this_alternative_offmemok; curr_alt_matches[nop] = this_alternative_matches; if (this_alternative_matches >= 0 && !did_match && !this_alternative_win) curr_alt_win[this_alternative_matches] = false; if (early_clobber_p && operand_reg[nop] != NULL_RTX) early_clobbered_nops[early_clobbered_regs_num++] = nop; } ok_p = true; curr_alt_dont_inherit_ops_num = 0; for (nop = 0; nop < early_clobbered_regs_num; nop++) { int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j; HARD_REG_SET temp_set; i = early_clobbered_nops[nop]; if ((! curr_alt_win[i] && ! curr_alt_match_win[i]) || hard_regno[i] < 0) continue; lra_assert (operand_reg[i] != NULL_RTX); clobbered_hard_regno = hard_regno[i]; CLEAR_HARD_REG_SET (temp_set); add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno); first_conflict_j = last_conflict_j = -1; for (j = 0; j < n_operands; j++) if (j == i /* We don't want process insides of match_operator and match_parallel because otherwise we would process their operands once again generating a wrong code. */ || curr_static_id->operand[j].is_operator) continue; else if ((curr_alt_matches[j] == i && curr_alt_match_win[j]) || (curr_alt_matches[i] == j && curr_alt_match_win[i])) continue; /* If we don't reload j-th operand, check conflicts. */ else if ((curr_alt_win[j] || curr_alt_match_win[j]) && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set)) { if (first_conflict_j < 0) first_conflict_j = j; last_conflict_j = j; } if (last_conflict_j < 0) continue; /* If earlyclobber operand conflicts with another non-matching operand which is actually the same register as the earlyclobber operand, it is better to reload the another operand as an operand matching the earlyclobber operand can be also the same. */ if (first_conflict_j == last_conflict_j && operand_reg[last_conflict_j] != NULL_RTX && ! curr_alt_match_win[last_conflict_j] && REGNO (operand_reg[i]) == REGNO (operand_reg[last_conflict_j])) { curr_alt_win[last_conflict_j] = false; curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = last_conflict_j; losers++; /* Early clobber was already reflected in REJECT. */ lra_assert (reject > 0); reject--; overall += LRA_LOSER_COST_FACTOR - 1; } else { /* We need to reload early clobbered register and the matched registers. */ for (j = 0; j < n_operands; j++) if (curr_alt_matches[j] == i) { curr_alt_match_win[j] = false; losers++; overall += LRA_LOSER_COST_FACTOR; } if (! curr_alt_match_win[i]) curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i; else { /* Remember pseudos used for match reloads are never inherited. */ lra_assert (curr_alt_matches[i] >= 0); curr_alt_win[curr_alt_matches[i]] = false; } curr_alt_win[i] = curr_alt_match_win[i] = false; losers++; /* Early clobber was already reflected in REJECT. */ lra_assert (reject > 0); reject--; overall += LRA_LOSER_COST_FACTOR - 1; } } if (lra_dump_file != NULL) fprintf (lra_dump_file, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n", nalt, overall, losers, reload_nregs); /* If this alternative can be made to work by reloading, and it needs less reloading than the others checked so far, record it as the chosen goal for reloading. */ if ((best_losers != 0 && losers == 0) || (((best_losers == 0 && losers == 0) || (best_losers != 0 && losers != 0)) && (best_overall > overall || (best_overall == overall /* If the cost of the reloads is the same, prefer alternative which requires minimal number of reload regs. */ && (reload_nregs < best_reload_nregs || (reload_nregs == best_reload_nregs && (best_reload_sum < reload_sum || (best_reload_sum == reload_sum && nalt < goal_alt_number)))))))) { for (nop = 0; nop < n_operands; nop++) { goal_alt_win[nop] = curr_alt_win[nop]; goal_alt_match_win[nop] = curr_alt_match_win[nop]; goal_alt_matches[nop] = curr_alt_matches[nop]; goal_alt[nop] = curr_alt[nop]; goal_alt_offmemok[nop] = curr_alt_offmemok[nop]; } goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num; for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++) goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop]; goal_alt_swapped = curr_swapped; best_overall = overall; best_losers = losers; best_reload_nregs = reload_nregs; best_reload_sum = reload_sum; goal_alt_number = nalt; } if (losers == 0) /* Everything is satisfied. Do not process alternatives anymore. */ break; fail: ; } return ok_p; } /* Return 1 if ADDR is a valid memory address for mode MODE in address space AS, and check that each pseudo has the proper kind of hard reg. */ static int valid_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr, addr_space_t as) { #ifdef GO_IF_LEGITIMATE_ADDRESS lra_assert (ADDR_SPACE_GENERIC_P (as)); GO_IF_LEGITIMATE_ADDRESS (mode, addr, win); return 0; win: return 1; #else return targetm.addr_space.legitimate_address_p (mode, addr, 0, as); #endif } /* Return whether address AD is valid. */ static bool valid_address_p (struct address_info *ad) { /* Some ports do not check displacements for eliminable registers, so we replace them temporarily with the elimination target. */ rtx saved_base_reg = NULL_RTX; rtx saved_index_reg = NULL_RTX; rtx *base_term = strip_subreg (ad->base_term); rtx *index_term = strip_subreg (ad->index_term); if (base_term != NULL) { saved_base_reg = *base_term; lra_eliminate_reg_if_possible (base_term); if (ad->base_term2 != NULL) *ad->base_term2 = *ad->base_term; } if (index_term != NULL) { saved_index_reg = *index_term; lra_eliminate_reg_if_possible (index_term); } bool ok_p = valid_address_p (ad->mode, *ad->outer, ad->as); if (saved_base_reg != NULL_RTX) { *base_term = saved_base_reg; if (ad->base_term2 != NULL) *ad->base_term2 = *ad->base_term; } if (saved_index_reg != NULL_RTX) *index_term = saved_index_reg; return ok_p; } /* Make reload base reg + disp from address AD. Return the new pseudo. */ static rtx base_plus_disp_to_reg (struct address_info *ad) { enum reg_class cl; rtx new_reg; lra_assert (ad->base == ad->base_term && ad->disp == ad->disp_term); cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code, get_index_code (ad)); new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX, cl, "base + disp"); lra_emit_add (new_reg, *ad->base_term, *ad->disp_term); return new_reg; } /* Return true if we can add a displacement to address AD, even if that makes the address invalid. The fix-up code requires any new address to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */ static bool can_add_disp_p (struct address_info *ad) { return (!ad->autoinc_p && ad->segment == NULL && ad->base == ad->base_term && ad->disp == ad->disp_term); } /* Make equiv substitution in address AD. Return true if a substitution was made. */ static bool equiv_address_substitution (struct address_info *ad) { rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term; HOST_WIDE_INT disp, scale; bool change_p; base_term = strip_subreg (ad->base_term); if (base_term == NULL) base_reg = new_base_reg = NULL_RTX; else { base_reg = *base_term; new_base_reg = get_equiv_substitution (base_reg); } index_term = strip_subreg (ad->index_term); if (index_term == NULL) index_reg = new_index_reg = NULL_RTX; else { index_reg = *index_term; new_index_reg = get_equiv_substitution (index_reg); } if (base_reg == new_base_reg && index_reg == new_index_reg) return false; disp = 0; change_p = false; if (lra_dump_file != NULL) { fprintf (lra_dump_file, "Changing address in insn %d ", INSN_UID (curr_insn)); dump_value_slim (lra_dump_file, *ad->outer, 1); } if (base_reg != new_base_reg) { if (REG_P (new_base_reg)) { *base_term = new_base_reg; change_p = true; } else if (GET_CODE (new_base_reg) == PLUS && REG_P (XEXP (new_base_reg, 0)) && CONST_INT_P (XEXP (new_base_reg, 1)) && can_add_disp_p (ad)) { disp += INTVAL (XEXP (new_base_reg, 1)); *base_term = XEXP (new_base_reg, 0); change_p = true; } if (ad->base_term2 != NULL) *ad->base_term2 = *ad->base_term; } if (index_reg != new_index_reg) { if (REG_P (new_index_reg)) { *index_term = new_index_reg; change_p = true; } else if (GET_CODE (new_index_reg) == PLUS && REG_P (XEXP (new_index_reg, 0)) && CONST_INT_P (XEXP (new_index_reg, 1)) && can_add_disp_p (ad) && (scale = get_index_scale (ad))) { disp += INTVAL (XEXP (new_index_reg, 1)) * scale; *index_term = XEXP (new_index_reg, 0); change_p = true; } } if (disp != 0) { if (ad->disp != NULL) *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp); else { *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp); update_address (ad); } change_p = true; } if (lra_dump_file != NULL) { if (! change_p) fprintf (lra_dump_file, " -- no change\n"); else { fprintf (lra_dump_file, " on equiv "); dump_value_slim (lra_dump_file, *ad->outer, 1); fprintf (lra_dump_file, "\n"); } } return change_p; } /* Major function to make reloads for an address in operand NOP. The supported cases are: 1) an address that existed before LRA started, at which point it must have been valid. These addresses are subject to elimination and may have become invalid due to the elimination offset being out of range. 2) an address created by forcing a constant to memory (force_const_to_mem). The initial form of these addresses might not be valid, and it is this function's job to make them valid. 3) a frame address formed from a register and a (possibly zero) constant offset. As above, these addresses might not be valid and this function must make them so. Add reloads to the lists *BEFORE and *AFTER. We might need to add reloads to *AFTER because of inc/dec, {pre, post} modify in the address. Return true for any RTL change. */ static bool process_address (int nop, rtx *before, rtx *after) { struct address_info ad; rtx new_reg; rtx op = *curr_id->operand_loc[nop]; const char *constraint = curr_static_id->operand[nop].constraint; bool change_p; if (constraint[0] == 'p' || EXTRA_ADDRESS_CONSTRAINT (constraint[0], constraint)) decompose_lea_address (&ad, curr_id->operand_loc[nop]); else if (MEM_P (op)) decompose_mem_address (&ad, op); else if (GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op))) decompose_mem_address (&ad, SUBREG_REG (op)); else return false; change_p = equiv_address_substitution (&ad); if (ad.base_term != NULL && (process_addr_reg (ad.base_term, before, (ad.autoinc_p && !(REG_P (*ad.base_term) && find_regno_note (curr_insn, REG_DEAD, REGNO (*ad.base_term)) != NULL_RTX) ? after : NULL), base_reg_class (ad.mode, ad.as, ad.base_outer_code, get_index_code (&ad))))) { change_p = true; if (ad.base_term2 != NULL) *ad.base_term2 = *ad.base_term; } if (ad.index_term != NULL && process_addr_reg (ad.index_term, before, NULL, INDEX_REG_CLASS)) change_p = true; /* There are three cases where the shape of *AD.INNER may now be invalid: 1) the original address was valid, but either elimination or equiv_address_substitution applied a displacement that made it invalid. 2) the address is an invalid symbolic address created by force_const_to_mem. 3) the address is a frame address with an invalid offset. All these cases involve a displacement and a non-autoinc address, so there is no point revalidating other types. */ if (ad.disp == NULL || ad.autoinc_p || valid_address_p (&ad)) return change_p; /* Any index existed before LRA started, so we can assume that the presence and shape of the index is valid. */ push_to_sequence (*before); gcc_assert (ad.segment == NULL); gcc_assert (ad.disp == ad.disp_term); if (ad.base == NULL) { if (ad.index == NULL) { int code = -1; enum reg_class cl = base_reg_class (ad.mode, ad.as, SCRATCH, SCRATCH); rtx disp = *ad.disp; new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp"); #ifdef HAVE_lo_sum { rtx insn; rtx last = get_last_insn (); /* disp => lo_sum (new_base, disp), case (2) above. */ insn = emit_insn (gen_rtx_SET (VOIDmode, new_reg, gen_rtx_HIGH (Pmode, copy_rtx (disp)))); code = recog_memoized (insn); if (code >= 0) { *ad.disp = gen_rtx_LO_SUM (Pmode, new_reg, disp); if (! valid_address_p (ad.mode, *ad.outer, ad.as)) { *ad.disp = disp; code = -1; } } if (code < 0) delete_insns_since (last); } #endif if (code < 0) { /* disp => new_base, case (2) above. */ lra_emit_move (new_reg, disp); *ad.disp = new_reg; } } else { /* index * scale + disp => new base + index * scale, case (1) above. */ enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS, GET_CODE (*ad.index)); lra_assert (INDEX_REG_CLASS != NO_REGS); new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp"); lra_emit_move (new_reg, *ad.disp); *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg, *ad.index); } } else if (ad.index == NULL) { /* base + disp => new base, cases (1) and (3) above. */ /* Another option would be to reload the displacement into an index register. However, postreload has code to optimize address reloads that have the same base and different displacements, so reloading into an index register would not necessarily be a win. */ new_reg = base_plus_disp_to_reg (&ad); *ad.inner = new_reg; } else { /* base + scale * index + disp => new base + scale * index, case (1) above. */ new_reg = base_plus_disp_to_reg (&ad); *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg, *ad.index); } *before = get_insns (); end_sequence (); return true; } /* Emit insns to reload VALUE into a new register. VALUE is an auto-increment or auto-decrement RTX whose operand is a register or memory location; so reloading involves incrementing that location. IN is either identical to VALUE, or some cheaper place to reload value being incremented/decremented from. INC_AMOUNT is the number to increment or decrement by (always positive and ignored for POST_MODIFY/PRE_MODIFY). Return pseudo containing the result. */ static rtx emit_inc (enum reg_class new_rclass, rtx in, rtx value, int inc_amount) { /* REG or MEM to be copied and incremented. */ rtx incloc = XEXP (value, 0); /* Nonzero if increment after copying. */ int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC || GET_CODE (value) == POST_MODIFY); rtx last; rtx inc; rtx add_insn; int code; rtx real_in = in == value ? incloc : in; rtx result; bool plus_p = true; if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY) { lra_assert (GET_CODE (XEXP (value, 1)) == PLUS || GET_CODE (XEXP (value, 1)) == MINUS); lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0))); plus_p = GET_CODE (XEXP (value, 1)) == PLUS; inc = XEXP (XEXP (value, 1), 1); } else { if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC) inc_amount = -inc_amount; inc = GEN_INT (inc_amount); } if (! post && REG_P (incloc)) result = incloc; else result = lra_create_new_reg (GET_MODE (value), value, new_rclass, "INC/DEC result"); if (real_in != result) { /* First copy the location to the result register. */ lra_assert (REG_P (result)); emit_insn (gen_move_insn (result, real_in)); } /* We suppose that there are insns to add/sub with the constant increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the old reload worked with this assumption. If the assumption becomes wrong, we should use approach in function base_plus_disp_to_reg. */ if (in == value) { /* See if we can directly increment INCLOC. */ last = get_last_insn (); add_insn = emit_insn (plus_p ? gen_add2_insn (incloc, inc) : gen_sub2_insn (incloc, inc)); code = recog_memoized (add_insn); if (code >= 0) { if (! post && result != incloc) emit_insn (gen_move_insn (result, incloc)); return result; } delete_insns_since (last); } /* If couldn't do the increment directly, must increment in RESULT. The way we do this depends on whether this is pre- or post-increment. For pre-increment, copy INCLOC to the reload register, increment it there, then save back. */ if (! post) { if (real_in != result) emit_insn (gen_move_insn (result, real_in)); if (plus_p) emit_insn (gen_add2_insn (result, inc)); else emit_insn (gen_sub2_insn (result, inc)); if (result != incloc) emit_insn (gen_move_insn (incloc, result)); } else { /* Post-increment. Because this might be a jump insn or a compare, and because RESULT may not be available after the insn in an input reload, we must do the incrementing before the insn being reloaded for. We have already copied IN to RESULT. Increment the copy in RESULT, save that back, then decrement RESULT so it has the original value. */ if (plus_p) emit_insn (gen_add2_insn (result, inc)); else emit_insn (gen_sub2_insn (result, inc)); emit_insn (gen_move_insn (incloc, result)); /* Restore non-modified value for the result. We prefer this way because it does not require an additional hard register. */ if (plus_p) { if (CONST_INT_P (inc)) emit_insn (gen_add2_insn (result, GEN_INT (-INTVAL (inc)))); else emit_insn (gen_sub2_insn (result, inc)); } else emit_insn (gen_add2_insn (result, inc)); } return result; } /* Swap operands NOP and NOP + 1. */ static inline void swap_operands (int nop) { enum machine_mode mode = curr_operand_mode[nop]; curr_operand_mode[nop] = curr_operand_mode[nop + 1]; curr_operand_mode[nop + 1] = mode; rtx x = *curr_id->operand_loc[nop]; *curr_id->operand_loc[nop] = *curr_id->operand_loc[nop + 1]; *curr_id->operand_loc[nop + 1] = x; /* Swap the duplicates too. */ lra_update_dup (curr_id, nop); lra_update_dup (curr_id, nop + 1); } /* Main entry point of the constraint code: search the body of the current insn to choose the best alternative. It is mimicking insn alternative cost calculation model of former reload pass. That is because machine descriptions were written to use this model. This model can be changed in future. Make commutative operand exchange if it is chosen. Return true if some RTL changes happened during function call. */ static bool curr_insn_transform (void) { int i, j, k; int n_operands; int n_alternatives; int commutative; signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS]; signed char match_inputs[MAX_RECOG_OPERANDS + 1]; rtx before, after; bool alt_p = false; /* Flag that the insn has been changed through a transformation. */ bool change_p; bool sec_mem_p; #ifdef SECONDARY_MEMORY_NEEDED bool use_sec_mem_p; #endif int max_regno_before; int reused_alternative_num; no_input_reloads_p = no_output_reloads_p = false; goal_alt_number = -1; if (check_and_process_move (&change_p, &sec_mem_p)) return change_p; /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads; neither are insns that SET cc0. Insns that use CC0 are not allowed to have any input reloads. */ if (JUMP_P (curr_insn) || CALL_P (curr_insn)) no_output_reloads_p = true; #ifdef HAVE_cc0 if (reg_referenced_p (cc0_rtx, PATTERN (curr_insn))) no_input_reloads_p = true; if (reg_set_p (cc0_rtx, PATTERN (curr_insn))) no_output_reloads_p = true; #endif n_operands = curr_static_id->n_operands; n_alternatives = curr_static_id->n_alternatives; /* Just return "no reloads" if insn has no operands with constraints. */ if (n_operands == 0 || n_alternatives == 0) return false; max_regno_before = max_reg_num (); for (i = 0; i < n_operands; i++) { goal_alt_matched[i][0] = -1; goal_alt_matches[i] = -1; } commutative = curr_static_id->commutative; /* Now see what we need for pseudos that didn't get hard regs or got the wrong kind of hard reg. For this, we must consider all the operands together against the register constraints. */ best_losers = best_overall = INT_MAX; best_reload_sum = 0; curr_swapped = false; goal_alt_swapped = false; /* Make equivalence substitution and memory subreg elimination before address processing because an address legitimacy can depend on memory mode. */ for (i = 0; i < n_operands; i++) { rtx op = *curr_id->operand_loc[i]; rtx subst, old = op; bool op_change_p = false; if (GET_CODE (old) == SUBREG) old = SUBREG_REG (old); subst = get_equiv_substitution (old); if (subst != old) { subst = copy_rtx (subst); lra_assert (REG_P (old)); if (GET_CODE (op) == SUBREG) SUBREG_REG (op) = subst; else *curr_id->operand_loc[i] = subst; if (lra_dump_file != NULL) { fprintf (lra_dump_file, "Changing pseudo %d in operand %i of insn %u on equiv ", REGNO (old), i, INSN_UID (curr_insn)); dump_value_slim (lra_dump_file, subst, 1); fprintf (lra_dump_file, "\n"); } op_change_p = change_p = true; } if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p) { change_p = true; lra_update_dup (curr_id, i); } } /* Reload address registers and displacements. We do it before finding an alternative because of memory constraints. */ before = after = NULL_RTX; for (i = 0; i < n_operands; i++) if (! curr_static_id->operand[i].is_operator && process_address (i, &before, &after)) { change_p = true; lra_update_dup (curr_id, i); } if (change_p) /* If we've changed the instruction then any alternative that we chose previously may no longer be valid. */ lra_set_used_insn_alternative (curr_insn, -1); try_swapped: reused_alternative_num = curr_id->used_insn_alternative; if (lra_dump_file != NULL && reused_alternative_num >= 0) fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n", reused_alternative_num, INSN_UID (curr_insn)); if (process_alt_operands (reused_alternative_num)) alt_p = true; /* If insn is commutative (it's safe to exchange a certain pair of operands) then we need to try each alternative twice, the second time matching those two operands as if we had exchanged them. To do this, really exchange them in operands. If we have just tried the alternatives the second time, return operands to normal and drop through. */ if (reused_alternative_num < 0 && commutative >= 0) { curr_swapped = !curr_swapped; if (curr_swapped) { swap_operands (commutative); goto try_swapped; } else swap_operands (commutative); } if (! alt_p && ! sec_mem_p) { /* No alternative works with reloads?? */ if (INSN_CODE (curr_insn) >= 0) fatal_insn ("unable to generate reloads for:", curr_insn); error_for_asm (curr_insn, "inconsistent operand constraints in an %"); /* Avoid further trouble with this insn. */ PATTERN (curr_insn) = gen_rtx_USE (VOIDmode, const0_rtx); lra_invalidate_insn_data (curr_insn); return true; } /* If the best alternative is with operands 1 and 2 swapped, swap them. Update the operand numbers of any reloads already pushed. */ if (goal_alt_swapped) { if (lra_dump_file != NULL) fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n", INSN_UID (curr_insn)); /* Swap the duplicates too. */ swap_operands (commutative); change_p = true; } #ifdef SECONDARY_MEMORY_NEEDED /* Some target macros SECONDARY_MEMORY_NEEDED (e.g. x86) are defined too conservatively. So we use the secondary memory only if there is no any alternative without reloads. */ use_sec_mem_p = false; if (! alt_p) use_sec_mem_p = true; else if (sec_mem_p) { for (i = 0; i < n_operands; i++) if (! goal_alt_win[i] && ! goal_alt_match_win[i]) break; use_sec_mem_p = i < n_operands; } if (use_sec_mem_p) { rtx new_reg, src, dest, rld; enum machine_mode sec_mode, rld_mode; lra_assert (sec_mem_p); lra_assert (curr_static_id->operand[0].type == OP_OUT && curr_static_id->operand[1].type == OP_IN); dest = *curr_id->operand_loc[0]; src = *curr_id->operand_loc[1]; rld = (GET_MODE_SIZE (GET_MODE (dest)) <= GET_MODE_SIZE (GET_MODE (src)) ? dest : src); rld_mode = GET_MODE (rld); #ifdef SECONDARY_MEMORY_NEEDED_MODE sec_mode = SECONDARY_MEMORY_NEEDED_MODE (rld_mode); #else sec_mode = rld_mode; #endif new_reg = lra_create_new_reg (sec_mode, NULL_RTX, NO_REGS, "secondary"); /* If the mode is changed, it should be wider. */ lra_assert (GET_MODE_SIZE (sec_mode) >= GET_MODE_SIZE (rld_mode)); if (sec_mode != rld_mode) { /* If the target says specifically to use another mode for secondary memory moves we can not reuse the original insn. */ after = emit_spill_move (false, new_reg, dest); lra_process_new_insns (curr_insn, NULL_RTX, after, "Inserting the sec. move"); before = emit_spill_move (true, new_reg, src); lra_process_new_insns (curr_insn, before, NULL_RTX, "Changing on"); lra_set_insn_deleted (curr_insn); } else if (dest == rld) { *curr_id->operand_loc[0] = new_reg; after = emit_spill_move (false, new_reg, dest); lra_process_new_insns (curr_insn, NULL_RTX, after, "Inserting the sec. move"); } else { *curr_id->operand_loc[1] = new_reg; before = emit_spill_move (true, new_reg, src); lra_process_new_insns (curr_insn, before, NULL_RTX, "Inserting the sec. move"); } lra_update_insn_regno_info (curr_insn); return true; } #endif lra_assert (goal_alt_number >= 0); lra_set_used_insn_alternative (curr_insn, goal_alt_number); if (lra_dump_file != NULL) { const char *p; fprintf (lra_dump_file, " Choosing alt %d in insn %u:", goal_alt_number, INSN_UID (curr_insn)); for (i = 0; i < n_operands; i++) { p = (curr_static_id->operand_alternative [goal_alt_number * n_operands + i].constraint); if (*p == '\0') continue; fprintf (lra_dump_file, " (%d) ", i); for (; *p != '\0' && *p != ',' && *p != '#'; p++) fputc (*p, lra_dump_file); } if (INSN_CODE (curr_insn) >= 0 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL) fprintf (lra_dump_file, " {%s}", p); fprintf (lra_dump_file, "\n"); } /* Right now, for any pair of operands I and J that are required to match, with J < I, goal_alt_matches[I] is J. Add I to goal_alt_matched[J]. */ for (i = 0; i < n_operands; i++) if ((j = goal_alt_matches[i]) >= 0) { for (k = 0; goal_alt_matched[j][k] >= 0; k++) ; /* We allow matching one output operand and several input operands. */ lra_assert (k == 0 || (curr_static_id->operand[j].type == OP_OUT && curr_static_id->operand[i].type == OP_IN && (curr_static_id->operand [goal_alt_matched[j][0]].type == OP_IN))); goal_alt_matched[j][k] = i; goal_alt_matched[j][k + 1] = -1; } for (i = 0; i < n_operands; i++) goal_alt_win[i] |= goal_alt_match_win[i]; /* Any constants that aren't allowed and can't be reloaded into registers are here changed into memory references. */ for (i = 0; i < n_operands; i++) if (goal_alt_win[i]) { int regno; enum reg_class new_class; rtx reg = *curr_id->operand_loc[i]; if (GET_CODE (reg) == SUBREG) reg = SUBREG_REG (reg); if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER) { bool ok_p = in_class_p (reg, goal_alt[i], &new_class); if (new_class != NO_REGS && get_reg_class (regno) != new_class) { lra_assert (ok_p); change_class (regno, new_class, " Change", true); } } } else { const char *constraint; char c; rtx op = *curr_id->operand_loc[i]; rtx subreg = NULL_RTX; enum machine_mode mode = curr_operand_mode[i]; if (GET_CODE (op) == SUBREG) { subreg = op; op = SUBREG_REG (op); mode = GET_MODE (op); } if (CONST_POOL_OK_P (mode, op) && ((targetm.preferred_reload_class (op, (enum reg_class) goal_alt[i]) == NO_REGS) || no_input_reloads_p)) { rtx tem = force_const_mem (mode, op); change_p = true; if (subreg != NULL_RTX) tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg)); *curr_id->operand_loc[i] = tem; lra_update_dup (curr_id, i); process_address (i, &before, &after); /* If the alternative accepts constant pool refs directly there will be no reload needed at all. */ if (subreg != NULL_RTX) continue; /* Skip alternatives before the one requested. */ constraint = (curr_static_id->operand_alternative [goal_alt_number * n_operands + i].constraint); for (; (c = *constraint) && c != ',' && c != '#'; constraint += CONSTRAINT_LEN (c, constraint)) { if (c == TARGET_MEM_CONSTRAINT || c == 'o') break; #ifdef EXTRA_CONSTRAINT_STR if (EXTRA_MEMORY_CONSTRAINT (c, constraint) && EXTRA_CONSTRAINT_STR (tem, c, constraint)) break; #endif } if (c == '\0' || c == ',' || c == '#') continue; goal_alt_win[i] = true; } } for (i = 0; i < n_operands; i++) { rtx old, new_reg; rtx op = *curr_id->operand_loc[i]; if (goal_alt_win[i]) { if (goal_alt[i] == NO_REGS && REG_P (op) /* When we assign NO_REGS it means that we will not assign a hard register to the scratch pseudo by assigment pass and the scratch pseudo will be spilled. Spilled scratch pseudos are transformed back to scratches at the LRA end. */ && lra_former_scratch_operand_p (curr_insn, i)) { int regno = REGNO (op); change_class (regno, NO_REGS, " Change", true); if (lra_get_regno_hard_regno (regno) >= 0) /* We don't have to mark all insn affected by the spilled pseudo as there is only one such insn, the current one. */ reg_renumber[regno] = -1; } continue; } /* Operands that match previous ones have already been handled. */ if (goal_alt_matches[i] >= 0) continue; /* We should not have an operand with a non-offsettable address appearing where an offsettable address will do. It also may be a case when the address should be special in other words not a general one (e.g. it needs no index reg). */ if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op)) { enum reg_class rclass; rtx *loc = &XEXP (op, 0); enum rtx_code code = GET_CODE (*loc); push_to_sequence (before); rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op), MEM, SCRATCH); if (GET_RTX_CLASS (code) == RTX_AUTOINC) new_reg = emit_inc (rclass, *loc, *loc, /* This value does not matter for MODIFY. */ GET_MODE_SIZE (GET_MODE (op))); else if (get_reload_reg (OP_IN, Pmode, *loc, rclass, "offsetable address", &new_reg)) lra_emit_move (new_reg, *loc); before = get_insns (); end_sequence (); *loc = new_reg; lra_update_dup (curr_id, i); } else if (goal_alt_matched[i][0] == -1) { enum machine_mode mode; rtx reg, *loc; int hard_regno, byte; enum op_type type = curr_static_id->operand[i].type; loc = curr_id->operand_loc[i]; mode = curr_operand_mode[i]; if (GET_CODE (*loc) == SUBREG) { reg = SUBREG_REG (*loc); byte = SUBREG_BYTE (*loc); if (REG_P (reg) /* Strict_low_part requires reload the register not the sub-register. */ && (curr_static_id->operand[i].strict_low || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (reg)) && (hard_regno = get_try_hard_regno (REGNO (reg))) >= 0 && (simplify_subreg_regno (hard_regno, GET_MODE (reg), byte, mode) < 0) && (goal_alt[i] == NO_REGS || (simplify_subreg_regno (ira_class_hard_regs[goal_alt[i]][0], GET_MODE (reg), byte, mode) >= 0))))) { loc = &SUBREG_REG (*loc); mode = GET_MODE (*loc); } } old = *loc; if (get_reload_reg (type, mode, old, goal_alt[i], "", &new_reg) && type != OP_OUT) { push_to_sequence (before); lra_emit_move (new_reg, old); before = get_insns (); end_sequence (); } *loc = new_reg; if (type != OP_IN && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX) { start_sequence (); lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg); emit_insn (after); after = get_insns (); end_sequence (); *loc = new_reg; } for (j = 0; j < goal_alt_dont_inherit_ops_num; j++) if (goal_alt_dont_inherit_ops[j] == i) { lra_set_regno_unique_value (REGNO (new_reg)); break; } lra_update_dup (curr_id, i); } else if (curr_static_id->operand[i].type == OP_IN && (curr_static_id->operand[goal_alt_matched[i][0]].type == OP_OUT)) { /* generate reloads for input and matched outputs. */ match_inputs[0] = i; match_inputs[1] = -1; match_reload (goal_alt_matched[i][0], match_inputs, goal_alt[i], &before, &after); } else if (curr_static_id->operand[i].type == OP_OUT && (curr_static_id->operand[goal_alt_matched[i][0]].type == OP_IN)) /* Generate reloads for output and matched inputs. */ match_reload (i, goal_alt_matched[i], goal_alt[i], &before, &after); else if (curr_static_id->operand[i].type == OP_IN && (curr_static_id->operand[goal_alt_matched[i][0]].type == OP_IN)) { /* Generate reloads for matched inputs. */ match_inputs[0] = i; for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++) match_inputs[j + 1] = k; match_inputs[j + 1] = -1; match_reload (-1, match_inputs, goal_alt[i], &before, &after); } else /* We must generate code in any case when function process_alt_operands decides that it is possible. */ gcc_unreachable (); } if (before != NULL_RTX || after != NULL_RTX || max_regno_before != max_reg_num ()) change_p = true; if (change_p) { lra_update_operator_dups (curr_id); /* Something changes -- process the insn. */ lra_update_insn_regno_info (curr_insn); } lra_process_new_insns (curr_insn, before, after, "Inserting insn reload"); return change_p; } /* Return true if X is in LIST. */ static bool in_list_p (rtx x, rtx list) { for (; list != NULL_RTX; list = XEXP (list, 1)) if (XEXP (list, 0) == x) return true; return false; } /* Return true if X contains an allocatable hard register (if HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */ static bool contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p) { int i, j; const char *fmt; enum rtx_code code; code = GET_CODE (x); if (REG_P (x)) { int regno = REGNO (x); HARD_REG_SET alloc_regs; if (hard_reg_p) { if (regno >= FIRST_PSEUDO_REGISTER) regno = lra_get_regno_hard_regno (regno); if (regno < 0) return false; COMPL_HARD_REG_SET (alloc_regs, lra_no_alloc_regs); return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno); } else { if (regno < FIRST_PSEUDO_REGISTER) return false; if (! spilled_p) return true; return lra_get_regno_hard_regno (regno) < 0; } } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p)) return true; } else if (fmt[i] == 'E') { for (j = XVECLEN (x, i) - 1; j >= 0; j--) if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p)) return true; } } return false; } /* Process all regs in location *LOC and change them on equivalent substitution. Return true if any change was done. */ static bool loc_equivalence_change_p (rtx *loc) { rtx subst, reg, x = *loc; bool result = false; enum rtx_code code = GET_CODE (x); const char *fmt; int i, j; if (code == SUBREG) { reg = SUBREG_REG (x); if ((subst = get_equiv_substitution (reg)) != reg && GET_MODE (subst) == VOIDmode) { /* We cannot reload debug location. Simplify subreg here while we know the inner mode. */ *loc = simplify_gen_subreg (GET_MODE (x), subst, GET_MODE (reg), SUBREG_BYTE (x)); return true; } } if (code == REG && (subst = get_equiv_substitution (x)) != x) { *loc = subst; return true; } /* Scan all the operand sub-expressions. */ fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') result = loc_equivalence_change_p (&XEXP (x, i)) || result; else if (fmt[i] == 'E') for (j = XVECLEN (x, i) - 1; j >= 0; j--) result = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result; } return result; } /* Similar to loc_equivalence_change_p, but for use as simplify_replace_fn_rtx callback. */ static rtx loc_equivalence_callback (rtx loc, const_rtx, void *) { if (!REG_P (loc)) return NULL_RTX; rtx subst = get_equiv_substitution (loc); if (subst != loc) return subst; return NULL_RTX; } /* Maximum number of generated reload insns per an insn. It is for preventing this pass cycling in a bug case. */ #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS /* The current iteration number of this LRA pass. */ int lra_constraint_iter; /* The current iteration number of this LRA pass after the last spill pass. */ int lra_constraint_iter_after_spill; /* True if we substituted equiv which needs checking register allocation correctness because the equivalent value contains allocatable hard registers or when we restore multi-register pseudo. */ bool lra_risky_transformations_p; /* Return true if REGNO is referenced in more than one block. */ static bool multi_block_pseudo_p (int regno) { basic_block bb = NULL; unsigned int uid; bitmap_iterator bi; if (regno < FIRST_PSEUDO_REGISTER) return false; EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi) if (bb == NULL) bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn); else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb) return true; return false; } /* Return true if LIST contains a deleted insn. */ static bool contains_deleted_insn_p (rtx list) { for (; list != NULL_RTX; list = XEXP (list, 1)) if (NOTE_P (XEXP (list, 0)) && NOTE_KIND (XEXP (list, 0)) == NOTE_INSN_DELETED) return true; return false; } /* Return true if X contains a pseudo dying in INSN. */ static bool dead_pseudo_p (rtx x, rtx insn) { int i, j; const char *fmt; enum rtx_code code; if (REG_P (x)) return (insn != NULL_RTX && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX); code = GET_CODE (x); fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if (dead_pseudo_p (XEXP (x, i), insn)) return true; } else if (fmt[i] == 'E') { for (j = XVECLEN (x, i) - 1; j >= 0; j--) if (dead_pseudo_p (XVECEXP (x, i, j), insn)) return true; } } return false; } /* Return true if INSN contains a dying pseudo in INSN right hand side. */ static bool insn_rhs_dead_pseudo_p (rtx insn) { rtx set = single_set (insn); gcc_assert (set != NULL); return dead_pseudo_p (SET_SRC (set), insn); } /* Return true if any init insn of REGNO contains a dying pseudo in insn right hand side. */ static bool init_insn_rhs_dead_pseudo_p (int regno) { rtx insns = ira_reg_equiv[regno].init_insns; if (insns == NULL) return false; if (INSN_P (insns)) return insn_rhs_dead_pseudo_p (insns); for (; insns != NULL_RTX; insns = XEXP (insns, 1)) if (insn_rhs_dead_pseudo_p (XEXP (insns, 0))) return true; return false; } /* Entry function of LRA constraint pass. Return true if the constraint pass did change the code. */ bool lra_constraints (bool first_p) { bool changed_p; int i, hard_regno, new_insns_num; unsigned int min_len, new_min_len, uid; rtx set, x, reg, dest_reg; basic_block last_bb; bitmap_head equiv_insn_bitmap; bitmap_iterator bi; lra_constraint_iter++; if (lra_dump_file != NULL) fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n", lra_constraint_iter); lra_constraint_iter_after_spill++; if (lra_constraint_iter_after_spill > LRA_MAX_CONSTRAINT_ITERATION_NUMBER) internal_error ("Maximum number of LRA constraint passes is achieved (%d)\n", LRA_MAX_CONSTRAINT_ITERATION_NUMBER); changed_p = false; lra_risky_transformations_p = false; new_insn_uid_start = get_max_uid (); new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num (); bitmap_initialize (&equiv_insn_bitmap, ®_obstack); for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++) if (lra_reg_info[i].nrefs != 0) { ira_reg_equiv[i].profitable_p = true; reg = regno_reg_rtx[i]; if ((hard_regno = lra_get_regno_hard_regno (i)) >= 0) { int j, nregs; nregs = hard_regno_nregs[hard_regno][lra_reg_info[i].biggest_mode]; for (j = 0; j < nregs; j++) df_set_regs_ever_live (hard_regno + j, true); } else if ((x = get_equiv_substitution (reg)) != reg) { bool pseudo_p = contains_reg_p (x, false, false); rtx set, insn; /* After RTL transformation, we can not guarantee that pseudo in the substitution was not reloaded which might make equivalence invalid. For example, in reverse equiv of p0 p0 <- ... ... equiv_mem <- p0 the memory address register was reloaded before the 2nd insn. */ if ((! first_p && pseudo_p) /* We don't use DF for compilation speed sake. So it is problematic to update live info when we use an equivalence containing pseudos in more than one BB. */ || (pseudo_p && multi_block_pseudo_p (i)) /* If an init insn was deleted for some reason, cancel the equiv. We could update the equiv insns after transformations including an equiv insn deletion but it is not worthy as such cases are extremely rare. */ || contains_deleted_insn_p (ira_reg_equiv[i].init_insns) /* If it is not a reverse equivalence, we check that a pseudo in rhs of the init insn is not dying in the insn. Otherwise, the live info at the beginning of the corresponding BB might be wrong after we removed the insn. When the equiv can be a constant, the right hand side of the init insn can be a pseudo. */ || (! ((insn = ira_reg_equiv[i].init_insns) != NULL_RTX && INSN_P (insn) && (set = single_set (insn)) != NULL_RTX && REG_P (SET_DEST (set)) && (int) REGNO (SET_DEST (set)) == i) && init_insn_rhs_dead_pseudo_p (i)) /* Prevent access beyond equivalent memory for paradoxical subregs. */ || (MEM_P (x) && (GET_MODE_SIZE (lra_reg_info[i].biggest_mode) > GET_MODE_SIZE (GET_MODE (x))))) ira_reg_equiv[i].defined_p = false; if (contains_reg_p (x, false, true)) ira_reg_equiv[i].profitable_p = false; if (get_equiv_substitution (reg) != reg) bitmap_ior_into (&equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap); } } /* We should add all insns containing pseudos which should be substituted by their equivalences. */ EXECUTE_IF_SET_IN_BITMAP (&equiv_insn_bitmap, 0, uid, bi) lra_push_insn_by_uid (uid); lra_eliminate (false); min_len = lra_insn_stack_length (); new_insns_num = 0; last_bb = NULL; changed_p = false; while ((new_min_len = lra_insn_stack_length ()) != 0) { curr_insn = lra_pop_insn (); --new_min_len; curr_bb = BLOCK_FOR_INSN (curr_insn); if (curr_bb != last_bb) { last_bb = curr_bb; bb_reload_num = lra_curr_reload_num; } if (min_len > new_min_len) { min_len = new_min_len; new_insns_num = 0; } if (new_insns_num > MAX_RELOAD_INSNS_NUMBER) internal_error ("Max. number of generated reload insns per insn is achieved (%d)\n", MAX_RELOAD_INSNS_NUMBER); new_insns_num++; if (DEBUG_INSN_P (curr_insn)) { /* We need to check equivalence in debug insn and change pseudo to the equivalent value if necessary. */ curr_id = lra_get_insn_recog_data (curr_insn); if (bitmap_bit_p (&equiv_insn_bitmap, INSN_UID (curr_insn))) { rtx old = *curr_id->operand_loc[0]; *curr_id->operand_loc[0] = simplify_replace_fn_rtx (old, NULL_RTX, loc_equivalence_callback, NULL); if (old != *curr_id->operand_loc[0]) { lra_update_insn_regno_info (curr_insn); changed_p = true; } } } else if (INSN_P (curr_insn)) { if ((set = single_set (curr_insn)) != NULL_RTX) { dest_reg = SET_DEST (set); /* The equivalence pseudo could be set up as SUBREG in a case when it is a call restore insn in a mode different from the pseudo mode. */ if (GET_CODE (dest_reg) == SUBREG) dest_reg = SUBREG_REG (dest_reg); if ((REG_P (dest_reg) && (x = get_equiv_substitution (dest_reg)) != dest_reg /* Remove insns which set up a pseudo whose value can not be changed. Such insns might be not in init_insns because we don't update equiv data during insn transformations. As an example, let suppose that a pseudo got hard register and on the 1st pass was not changed to equivalent constant. We generate an additional insn setting up the pseudo because of secondary memory movement. Then the pseudo is spilled and we use the equiv constant. In this case we should remove the additional insn and this insn is not init_insns list. */ && (! MEM_P (x) || MEM_READONLY_P (x) || in_list_p (curr_insn, ira_reg_equiv [REGNO (dest_reg)].init_insns))) || (((x = get_equiv_substitution (SET_SRC (set))) != SET_SRC (set)) && in_list_p (curr_insn, ira_reg_equiv [REGNO (SET_SRC (set))].init_insns))) { /* This is equiv init insn of pseudo which did not get a hard register -- remove the insn. */ if (lra_dump_file != NULL) { fprintf (lra_dump_file, " Removing equiv init insn %i (freq=%d)\n", INSN_UID (curr_insn), BLOCK_FOR_INSN (curr_insn)->frequency); dump_insn_slim (lra_dump_file, curr_insn); } if (contains_reg_p (x, true, false)) lra_risky_transformations_p = true; lra_set_insn_deleted (curr_insn); continue; } } curr_id = lra_get_insn_recog_data (curr_insn); curr_static_id = curr_id->insn_static_data; init_curr_insn_input_reloads (); init_curr_operand_mode (); if (curr_insn_transform ()) changed_p = true; /* Check non-transformed insns too for equiv change as USE or CLOBBER don't need reloads but can contain pseudos being changed on their equivalences. */ else if (bitmap_bit_p (&equiv_insn_bitmap, INSN_UID (curr_insn)) && loc_equivalence_change_p (&PATTERN (curr_insn))) { lra_update_insn_regno_info (curr_insn); changed_p = true; } } } bitmap_clear (&equiv_insn_bitmap); /* If we used a new hard regno, changed_p should be true because the hard reg is assigned to a new pseudo. */ #ifdef ENABLE_CHECKING if (! changed_p) { for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++) if (lra_reg_info[i].nrefs != 0 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0) { int j, nregs = hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (i)]; for (j = 0; j < nregs; j++) lra_assert (df_regs_ever_live_p (hard_regno + j)); } } #endif return changed_p; } /* Initiate the LRA constraint pass. It is done once per function. */ void lra_constraints_init (void) { } /* Finalize the LRA constraint pass. It is done once per function. */ void lra_constraints_finish (void) { } /* This page contains code to do inheritance/split transformations. */ /* Number of reloads passed so far in current EBB. */ static int reloads_num; /* Number of calls passed so far in current EBB. */ static int calls_num; /* Current reload pseudo check for validity of elements in USAGE_INSNS. */ static int curr_usage_insns_check; /* Info about last usage of registers in EBB to do inheritance/split transformation. Inheritance transformation is done from a spilled pseudo and split transformations from a hard register or a pseudo assigned to a hard register. */ struct usage_insns { /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member value INSNS is valid. The insns is chain of optional debug insns and a finishing non-debug insn using the corresponding reg. */ int check; /* Value of global reloads_num at the last insn in INSNS. */ int reloads_num; /* Value of global reloads_nums at the last insn in INSNS. */ int calls_num; /* It can be true only for splitting. And it means that the restore insn should be put after insn given by the following member. */ bool after_p; /* Next insns in the current EBB which use the original reg and the original reg value is not changed between the current insn and the next insns. In order words, e.g. for inheritance, if we need to use the original reg value again in the next insns we can try to use the value in a hard register from a reload insn of the current insn. */ rtx insns; }; /* Map: regno -> corresponding pseudo usage insns. */ static struct usage_insns *usage_insns; static void setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p) { usage_insns[regno].check = curr_usage_insns_check; usage_insns[regno].insns = insn; usage_insns[regno].reloads_num = reloads_num; usage_insns[regno].calls_num = calls_num; usage_insns[regno].after_p = after_p; } /* The function is used to form list REGNO usages which consists of optional debug insns finished by a non-debug insn using REGNO. RELOADS_NUM is current number of reload insns processed so far. */ static void add_next_usage_insn (int regno, rtx insn, int reloads_num) { rtx next_usage_insns; if (usage_insns[regno].check == curr_usage_insns_check && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX && DEBUG_INSN_P (insn)) { /* Check that we did not add the debug insn yet. */ if (next_usage_insns != insn && (GET_CODE (next_usage_insns) != INSN_LIST || XEXP (next_usage_insns, 0) != insn)) usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn, next_usage_insns); } else if (NONDEBUG_INSN_P (insn)) setup_next_usage_insn (regno, insn, reloads_num, false); else usage_insns[regno].check = 0; } /* Replace all references to register OLD_REGNO in *LOC with pseudo register NEW_REG. Return true if any change was made. */ static bool substitute_pseudo (rtx *loc, int old_regno, rtx new_reg) { rtx x = *loc; bool result = false; enum rtx_code code; const char *fmt; int i, j; if (x == NULL_RTX) return false; code = GET_CODE (x); if (code == REG && (int) REGNO (x) == old_regno) { enum machine_mode mode = GET_MODE (*loc); enum machine_mode inner_mode = GET_MODE (new_reg); if (mode != inner_mode) { if (GET_MODE_SIZE (mode) >= GET_MODE_SIZE (inner_mode) || ! SCALAR_INT_MODE_P (inner_mode)) new_reg = gen_rtx_SUBREG (mode, new_reg, 0); else new_reg = gen_lowpart_SUBREG (mode, new_reg); } *loc = new_reg; return true; } /* Scan all the operand sub-expressions. */ fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if (substitute_pseudo (&XEXP (x, i), old_regno, new_reg)) result = true; } else if (fmt[i] == 'E') { for (j = XVECLEN (x, i) - 1; j >= 0; j--) if (substitute_pseudo (&XVECEXP (x, i, j), old_regno, new_reg)) result = true; } } return result; } /* Return first non-debug insn in list USAGE_INSNS. */ static rtx skip_usage_debug_insns (rtx usage_insns) { rtx insn; /* Skip debug insns. */ for (insn = usage_insns; insn != NULL_RTX && GET_CODE (insn) == INSN_LIST; insn = XEXP (insn, 1)) ; return insn; } /* Return true if we need secondary memory moves for insn in USAGE_INSNS after inserting inherited pseudo of class INHER_CL into the insn. */ static bool check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED, rtx usage_insns ATTRIBUTE_UNUSED) { #ifndef SECONDARY_MEMORY_NEEDED return false; #else rtx insn, set, dest; enum reg_class cl; if (inher_cl == ALL_REGS || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX) return false; lra_assert (INSN_P (insn)); if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set))) return false; dest = SET_DEST (set); if (! REG_P (dest)) return false; lra_assert (inher_cl != NO_REGS); cl = get_reg_class (REGNO (dest)); return (cl != NO_REGS && cl != ALL_REGS && SECONDARY_MEMORY_NEEDED (inher_cl, cl, GET_MODE (dest))); #endif } /* Registers involved in inheritance/split in the current EBB (inheritance/split pseudos and original registers). */ static bitmap_head check_only_regs; /* Do inheritance transformations for insn INSN, which defines (if DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in the EBB next uses ORIGINAL_REGNO; it has the same form as the "insns" field of usage_insns. Return true if we succeed in such transformation. The transformations look like: p <- ... i <- ... ... p <- i (new insn) ... => <- ... p ... <- ... i ... or ... i <- p (new insn) <- ... p ... <- ... i ... ... => <- ... p ... <- ... i ... where p is a spilled original pseudo and i is a new inheritance pseudo. The inheritance pseudo has the smallest class of two classes CL and class of ORIGINAL REGNO. */ static bool inherit_reload_reg (bool def_p, int original_regno, enum reg_class cl, rtx insn, rtx next_usage_insns) { enum reg_class rclass = lra_get_allocno_class (original_regno); rtx original_reg = regno_reg_rtx[original_regno]; rtx new_reg, new_insns, usage_insn; lra_assert (! usage_insns[original_regno].after_p); if (lra_dump_file != NULL) fprintf (lra_dump_file, " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n"); if (! ira_reg_classes_intersect_p[cl][rclass]) { if (lra_dump_file != NULL) { fprintf (lra_dump_file, " Rejecting inheritance for %d " "because of disjoint classes %s and %s\n", original_regno, reg_class_names[cl], reg_class_names[rclass]); fprintf (lra_dump_file, " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n"); } return false; } if ((ira_class_subset_p[cl][rclass] && cl != rclass) /* We don't use a subset of two classes because it can be NO_REGS. This transformation is still profitable in most cases even if the classes are not intersected as register move is probably cheaper than a memory load. */ || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass]) { if (lra_dump_file != NULL) fprintf (lra_dump_file, " Use smallest class of %s and %s\n", reg_class_names[cl], reg_class_names[rclass]); rclass = cl; } if (check_secondary_memory_needed_p (rclass, next_usage_insns)) { /* Reject inheritance resulting in secondary memory moves. Otherwise, there is a danger in LRA cycling. Also such transformation will be unprofitable. */ if (lra_dump_file != NULL) { rtx insn = skip_usage_debug_insns (next_usage_insns); rtx set = single_set (insn); lra_assert (set != NULL_RTX); rtx dest = SET_DEST (set); lra_assert (REG_P (dest)); fprintf (lra_dump_file, " Rejecting inheritance for insn %d(%s)<-%d(%s) " "as secondary mem is needed\n", REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))], original_regno, reg_class_names[rclass]); fprintf (lra_dump_file, " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n"); } return false; } new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg, rclass, "inheritance"); start_sequence (); if (def_p) emit_move_insn (original_reg, new_reg); else emit_move_insn (new_reg, original_reg); new_insns = get_insns (); end_sequence (); if (NEXT_INSN (new_insns) != NULL_RTX) { if (lra_dump_file != NULL) { fprintf (lra_dump_file, " Rejecting inheritance %d->%d " "as it results in 2 or more insns:\n", original_regno, REGNO (new_reg)); dump_rtl_slim (lra_dump_file, new_insns, NULL_RTX, -1, 0); fprintf (lra_dump_file, " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n"); } return false; } substitute_pseudo (&insn, original_regno, new_reg); lra_update_insn_regno_info (insn); if (! def_p) /* We now have a new usage insn for original regno. */ setup_next_usage_insn (original_regno, new_insns, reloads_num, false); if (lra_dump_file != NULL) fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n", original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index); lra_reg_info[REGNO (new_reg)].restore_regno = original_regno; bitmap_set_bit (&check_only_regs, REGNO (new_reg)); bitmap_set_bit (&check_only_regs, original_regno); bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg)); if (def_p) lra_process_new_insns (insn, NULL_RTX, new_insns, "Add original<-inheritance"); else lra_process_new_insns (insn, new_insns, NULL_RTX, "Add inheritance<-original"); while (next_usage_insns != NULL_RTX) { if (GET_CODE (next_usage_insns) != INSN_LIST) { usage_insn = next_usage_insns; lra_assert (NONDEBUG_INSN_P (usage_insn)); next_usage_insns = NULL; } else { usage_insn = XEXP (next_usage_insns, 0); lra_assert (DEBUG_INSN_P (usage_insn)); next_usage_insns = XEXP (next_usage_insns, 1); } substitute_pseudo (&usage_insn, original_regno, new_reg); lra_update_insn_regno_info (usage_insn); if (lra_dump_file != NULL) { fprintf (lra_dump_file, " Inheritance reuse change %d->%d (bb%d):\n", original_regno, REGNO (new_reg), BLOCK_FOR_INSN (usage_insn)->index); dump_insn_slim (lra_dump_file, usage_insn); } } if (lra_dump_file != NULL) fprintf (lra_dump_file, " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n"); return true; } /* Return true if we need a caller save/restore for pseudo REGNO which was assigned to a hard register. */ static inline bool need_for_call_save_p (int regno) { lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0); return (usage_insns[regno].calls_num < calls_num && (overlaps_hard_reg_set_p (call_used_reg_set, PSEUDO_REGNO_MODE (regno), reg_renumber[regno]))); } /* Global registers occuring in the current EBB. */ static bitmap_head ebb_global_regs; /* Return true if we need a split for hard register REGNO or pseudo REGNO which was assigned to a hard register. POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be used for reloads since the EBB end. It is an approximation of the used hard registers in the split range. The exact value would require expensive calculations. If we were aggressive with splitting because of the approximation, the split pseudo will save the same hard register assignment and will be removed in the undo pass. We still need the approximation because too aggressive splitting would result in too inaccurate cost calculation in the assignment pass because of too many generated moves which will be probably removed in the undo pass. */ static inline bool need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno) { int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno]; lra_assert (hard_regno >= 0); return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno) /* Don't split eliminable hard registers, otherwise we can split hard registers like hard frame pointer, which lives on BB start/end according to DF-infrastructure, when there is a pseudo assigned to the register and living in the same BB. */ && (regno >= FIRST_PSEUDO_REGISTER || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno)) && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno) /* We need at least 2 reloads to make pseudo splitting profitable. We should provide hard regno splitting in any case to solve 1st insn scheduling problem when moving hard register definition up might result in impossibility to find hard register for reload pseudo of small register class. */ && (usage_insns[regno].reloads_num + (regno < FIRST_PSEUDO_REGISTER ? 0 : 2) < reloads_num) && (regno < FIRST_PSEUDO_REGISTER /* For short living pseudos, spilling + inheritance can be considered a substitution for splitting. Therefore we do not splitting for local pseudos. It decreases also aggressiveness of splitting. The minimal number of references is chosen taking into account that for 2 references splitting has no sense as we can just spill the pseudo. */ || (regno >= FIRST_PSEUDO_REGISTER && lra_reg_info[regno].nrefs > 3 && bitmap_bit_p (&ebb_global_regs, regno)))) || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno))); } /* Return class for the split pseudo created from original pseudo with ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and results in no secondary memory movements. */ static enum reg_class choose_split_class (enum reg_class allocno_class, int hard_regno ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED) { #ifndef SECONDARY_MEMORY_NEEDED return allocno_class; #else int i; enum reg_class cl, best_cl = NO_REGS; enum reg_class hard_reg_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (hard_regno); if (! SECONDARY_MEMORY_NEEDED (allocno_class, allocno_class, mode) && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno)) return allocno_class; for (i = 0; (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES; i++) if (! SECONDARY_MEMORY_NEEDED (cl, hard_reg_class, mode) && ! SECONDARY_MEMORY_NEEDED (hard_reg_class, cl, mode) && TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno) && (best_cl == NO_REGS || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl])) best_cl = cl; return best_cl; #endif } /* Do split transformations for insn INSN, which defines or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in the EBB next uses ORIGINAL_REGNO; it has the same form as the "insns" field of usage_insns. The transformations look like: p <- ... p <- ... ... s <- p (new insn -- save) ... => ... p <- s (new insn -- restore) <- ... p ... <- ... p ... or <- ... p ... <- ... p ... ... s <- p (new insn -- save) ... => ... p <- s (new insn -- restore) <- ... p ... <- ... p ... where p is an original pseudo got a hard register or a hard register and s is a new split pseudo. The save is put before INSN if BEFORE_P is true. Return true if we succeed in such transformation. */ static bool split_reg (bool before_p, int original_regno, rtx insn, rtx next_usage_insns) { enum reg_class rclass; rtx original_reg; int hard_regno, nregs; rtx new_reg, save, restore, usage_insn; bool after_p; bool call_save_p; if (original_regno < FIRST_PSEUDO_REGISTER) { rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)]; hard_regno = original_regno; call_save_p = false; nregs = 1; } else { hard_regno = reg_renumber[original_regno]; nregs = hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (original_regno)]; rclass = lra_get_allocno_class (original_regno); original_reg = regno_reg_rtx[original_regno]; call_save_p = need_for_call_save_p (original_regno); } original_reg = regno_reg_rtx[original_regno]; lra_assert (hard_regno >= 0); if (lra_dump_file != NULL) fprintf (lra_dump_file, " ((((((((((((((((((((((((((((((((((((((((((((((((\n"); if (call_save_p) { enum machine_mode sec_mode; #ifdef SECONDARY_MEMORY_NEEDED_MODE sec_mode = SECONDARY_MEMORY_NEEDED_MODE (GET_MODE (original_reg)); #else sec_mode = GET_MODE (original_reg); #endif new_reg = lra_create_new_reg (sec_mode, NULL_RTX, NO_REGS, "save"); } else { rclass = choose_split_class (rclass, hard_regno, GET_MODE (original_reg)); if (rclass == NO_REGS) { if (lra_dump_file != NULL) { fprintf (lra_dump_file, " Rejecting split of %d(%s): " "no good reg class for %d(%s)\n", original_regno, reg_class_names[lra_get_allocno_class (original_regno)], hard_regno, reg_class_names[REGNO_REG_CLASS (hard_regno)]); fprintf (lra_dump_file, " ))))))))))))))))))))))))))))))))))))))))))))))))\n"); } return false; } new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg, rclass, "split"); reg_renumber[REGNO (new_reg)] = hard_regno; } save = emit_spill_move (true, new_reg, original_reg); if (NEXT_INSN (save) != NULL_RTX) { lra_assert (! call_save_p); if (lra_dump_file != NULL) { fprintf (lra_dump_file, " Rejecting split %d->%d resulting in > 2 %s save insns:\n", original_regno, REGNO (new_reg), call_save_p ? "call" : ""); dump_rtl_slim (lra_dump_file, save, NULL_RTX, -1, 0); fprintf (lra_dump_file, " ))))))))))))))))))))))))))))))))))))))))))))))))\n"); } return false; } restore = emit_spill_move (false, new_reg, original_reg); if (NEXT_INSN (restore) != NULL_RTX) { lra_assert (! call_save_p); if (lra_dump_file != NULL) { fprintf (lra_dump_file, " Rejecting split %d->%d " "resulting in > 2 %s restore insns:\n", original_regno, REGNO (new_reg), call_save_p ? "call" : ""); dump_rtl_slim (lra_dump_file, restore, NULL_RTX, -1, 0); fprintf (lra_dump_file, " ))))))))))))))))))))))))))))))))))))))))))))))))\n"); } return false; } after_p = usage_insns[original_regno].after_p; lra_reg_info[REGNO (new_reg)].restore_regno = original_regno; bitmap_set_bit (&check_only_regs, REGNO (new_reg)); bitmap_set_bit (&check_only_regs, original_regno); bitmap_set_bit (&lra_split_regs, REGNO (new_reg)); for (;;) { if (GET_CODE (next_usage_insns) != INSN_LIST) { usage_insn = next_usage_insns; break; } usage_insn = XEXP (next_usage_insns, 0); lra_assert (DEBUG_INSN_P (usage_insn)); next_usage_insns = XEXP (next_usage_insns, 1); substitute_pseudo (&usage_insn, original_regno, new_reg); lra_update_insn_regno_info (usage_insn); if (lra_dump_file != NULL) { fprintf (lra_dump_file, " Split reuse change %d->%d:\n", original_regno, REGNO (new_reg)); dump_insn_slim (lra_dump_file, usage_insn); } } lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn)); lra_assert (usage_insn != insn || (after_p && before_p)); lra_process_new_insns (usage_insn, after_p ? NULL_RTX : restore, after_p ? restore : NULL_RTX, call_save_p ? "Add reg<-save" : "Add reg<-split"); lra_process_new_insns (insn, before_p ? save : NULL_RTX, before_p ? NULL_RTX : save, call_save_p ? "Add save<-reg" : "Add split<-reg"); if (nregs > 1) /* If we are trying to split multi-register. We should check conflicts on the next assignment sub-pass. IRA can allocate on sub-register levels, LRA do this on pseudos level right now and this discrepancy may create allocation conflicts after splitting. */ lra_risky_transformations_p = true; if (lra_dump_file != NULL) fprintf (lra_dump_file, " ))))))))))))))))))))))))))))))))))))))))))))))))\n"); return true; } /* Recognize that we need a split transformation for insn INSN, which defines or uses REGNO in its insn biggest MODE (we use it only if REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be used for reloads since the EBB end. Put the save before INSN if BEFORE_P is true. MAX_UID is maximla uid before starting INSN processing. Return true if we succeed in such transformation. */ static bool split_if_necessary (int regno, enum machine_mode mode, HARD_REG_SET potential_reload_hard_regs, bool before_p, rtx insn, int max_uid) { bool res = false; int i, nregs = 1; rtx next_usage_insns; if (regno < FIRST_PSEUDO_REGISTER) nregs = hard_regno_nregs[regno][mode]; for (i = 0; i < nregs; i++) if (usage_insns[regno + i].check == curr_usage_insns_check && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX /* To avoid processing the register twice or more. */ && ((GET_CODE (next_usage_insns) != INSN_LIST && INSN_UID (next_usage_insns) < max_uid) || (GET_CODE (next_usage_insns) == INSN_LIST && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid))) && need_for_split_p (potential_reload_hard_regs, regno + i) && split_reg (before_p, regno + i, insn, next_usage_insns)) res = true; return res; } /* Check only registers living at the current program point in the current EBB. */ static bitmap_head live_regs; /* Update live info in EBB given by its HEAD and TAIL insns after inheritance/split transformation. The function removes dead moves too. */ static void update_ebb_live_info (rtx head, rtx tail) { unsigned int j; int regno; bool live_p; rtx prev_insn, set; bool remove_p; basic_block last_bb, prev_bb, curr_bb; bitmap_iterator bi; struct lra_insn_reg *reg; edge e; edge_iterator ei; last_bb = BLOCK_FOR_INSN (tail); prev_bb = NULL; for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn) { prev_insn = PREV_INSN (curr_insn); /* We need to process empty blocks too. They contain NOTE_INSN_BASIC_BLOCK referring for the basic block. */ if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK) continue; curr_bb = BLOCK_FOR_INSN (curr_insn); if (curr_bb != prev_bb) { if (prev_bb != NULL) { /* Update df_get_live_in (prev_bb): */ EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi) if (bitmap_bit_p (&live_regs, j)) bitmap_set_bit (df_get_live_in (prev_bb), j); else bitmap_clear_bit (df_get_live_in (prev_bb), j); } if (curr_bb != last_bb) { /* Update df_get_live_out (curr_bb): */ EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi) { live_p = bitmap_bit_p (&live_regs, j); if (! live_p) FOR_EACH_EDGE (e, ei, curr_bb->succs) if (bitmap_bit_p (df_get_live_in (e->dest), j)) { live_p = true; break; } if (live_p) bitmap_set_bit (df_get_live_out (curr_bb), j); else bitmap_clear_bit (df_get_live_out (curr_bb), j); } } prev_bb = curr_bb; bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb)); } if (! NONDEBUG_INSN_P (curr_insn)) continue; curr_id = lra_get_insn_recog_data (curr_insn); remove_p = false; if ((set = single_set (curr_insn)) != NULL_RTX && REG_P (SET_DEST (set)) && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER && bitmap_bit_p (&check_only_regs, regno) && ! bitmap_bit_p (&live_regs, regno)) remove_p = true; /* See which defined values die here. */ for (reg = curr_id->regs; reg != NULL; reg = reg->next) if (reg->type == OP_OUT && ! reg->subreg_p) bitmap_clear_bit (&live_regs, reg->regno); /* Mark each used value as live. */ for (reg = curr_id->regs; reg != NULL; reg = reg->next) if (reg->type != OP_OUT && bitmap_bit_p (&check_only_regs, reg->regno)) bitmap_set_bit (&live_regs, reg->regno); /* It is quite important to remove dead move insns because it means removing dead store. We don't need to process them for constraints. */ if (remove_p) { if (lra_dump_file != NULL) { fprintf (lra_dump_file, " Removing dead insn:\n "); dump_insn_slim (lra_dump_file, curr_insn); } lra_set_insn_deleted (curr_insn); } } } /* The structure describes info to do an inheritance for the current insn. We need to collect such info first before doing the transformations because the transformations change the insn internal representation. */ struct to_inherit { /* Original regno. */ int regno; /* Subsequent insns which can inherit original reg value. */ rtx insns; }; /* Array containing all info for doing inheritance from the current insn. */ static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS]; /* Number elements in the previous array. */ static int to_inherit_num; /* Add inheritance info REGNO and INSNS. Their meaning is described in structure to_inherit. */ static void add_to_inherit (int regno, rtx insns) { int i; for (i = 0; i < to_inherit_num; i++) if (to_inherit[i].regno == regno) return; lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS); to_inherit[to_inherit_num].regno = regno; to_inherit[to_inherit_num++].insns = insns; } /* Return the last non-debug insn in basic block BB, or the block begin note if none. */ static rtx get_last_insertion_point (basic_block bb) { rtx insn; FOR_BB_INSNS_REVERSE (bb, insn) if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn)) return insn; gcc_unreachable (); } /* Set up RES by registers living on edges FROM except the edge (FROM, TO) or by registers set up in a jump insn in BB FROM. */ static void get_live_on_other_edges (basic_block from, basic_block to, bitmap res) { rtx last; struct lra_insn_reg *reg; edge e; edge_iterator ei; lra_assert (to != NULL); bitmap_clear (res); FOR_EACH_EDGE (e, ei, from->succs) if (e->dest != to) bitmap_ior_into (res, df_get_live_in (e->dest)); last = get_last_insertion_point (from); if (! JUMP_P (last)) return; curr_id = lra_get_insn_recog_data (last); for (reg = curr_id->regs; reg != NULL; reg = reg->next) if (reg->type != OP_IN) bitmap_set_bit (res, reg->regno); } /* Used as a temporary results of some bitmap calculations. */ static bitmap_head temp_bitmap; /* Do inheritance/split transformations in EBB starting with HEAD and finishing on TAIL. We process EBB insns in the reverse order. Return true if we did any inheritance/split transformation in the EBB. We should avoid excessive splitting which results in worse code because of inaccurate cost calculations for spilling new split pseudos in such case. To achieve this we do splitting only if register pressure is high in given basic block and there are reload pseudos requiring hard registers. We could do more register pressure calculations at any given program point to avoid necessary splitting even more but it is to expensive and the current approach works well enough. */ static bool inherit_in_ebb (rtx head, rtx tail) { int i, src_regno, dst_regno, nregs; bool change_p, succ_p; rtx prev_insn, next_usage_insns, set, last_insn; enum reg_class cl; struct lra_insn_reg *reg; basic_block last_processed_bb, curr_bb = NULL; HARD_REG_SET potential_reload_hard_regs, live_hard_regs; bitmap to_process; unsigned int j; bitmap_iterator bi; bool head_p, after_p; change_p = false; curr_usage_insns_check++; reloads_num = calls_num = 0; bitmap_clear (&check_only_regs); last_processed_bb = NULL; CLEAR_HARD_REG_SET (potential_reload_hard_regs); CLEAR_HARD_REG_SET (live_hard_regs); /* We don't process new insns generated in the loop. */ for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn) { prev_insn = PREV_INSN (curr_insn); if (BLOCK_FOR_INSN (curr_insn) != NULL) curr_bb = BLOCK_FOR_INSN (curr_insn); if (last_processed_bb != curr_bb) { /* We are at the end of BB. Add qualified living pseudos for potential splitting. */ to_process = df_get_live_out (curr_bb); if (last_processed_bb != NULL) { /* We are somewhere in the middle of EBB. */ get_live_on_other_edges (curr_bb, last_processed_bb, &temp_bitmap); to_process = &temp_bitmap; } last_processed_bb = curr_bb; last_insn = get_last_insertion_point (curr_bb); after_p = (! JUMP_P (last_insn) && (! CALL_P (last_insn) || (find_reg_note (last_insn, REG_NORETURN, NULL_RTX) == NULL_RTX && ! SIBLING_CALL_P (last_insn)))); REG_SET_TO_HARD_REG_SET (live_hard_regs, df_get_live_out (curr_bb)); IOR_HARD_REG_SET (live_hard_regs, eliminable_regset); IOR_HARD_REG_SET (live_hard_regs, lra_no_alloc_regs); CLEAR_HARD_REG_SET (potential_reload_hard_regs); EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi) { if ((int) j >= lra_constraint_new_regno_start) break; if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0) { if (j < FIRST_PSEUDO_REGISTER) SET_HARD_REG_BIT (live_hard_regs, j); else add_to_hard_reg_set (&live_hard_regs, PSEUDO_REGNO_MODE (j), reg_renumber[j]); setup_next_usage_insn (j, last_insn, reloads_num, after_p); } } } src_regno = dst_regno = -1; if (NONDEBUG_INSN_P (curr_insn) && (set = single_set (curr_insn)) != NULL_RTX && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set))) { src_regno = REGNO (SET_SRC (set)); dst_regno = REGNO (SET_DEST (set)); } if (src_regno < lra_constraint_new_regno_start && src_regno >= FIRST_PSEUDO_REGISTER && reg_renumber[src_regno] < 0 && dst_regno >= lra_constraint_new_regno_start && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS) { /* 'reload_pseudo <- original_pseudo'. */ reloads_num++; succ_p = false; if (usage_insns[src_regno].check == curr_usage_insns_check && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX) succ_p = inherit_reload_reg (false, src_regno, cl, curr_insn, next_usage_insns); if (succ_p) change_p = true; else setup_next_usage_insn (src_regno, curr_insn, reloads_num, false); if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs)) IOR_HARD_REG_SET (potential_reload_hard_regs, reg_class_contents[cl]); } else if (src_regno >= lra_constraint_new_regno_start && dst_regno < lra_constraint_new_regno_start && dst_regno >= FIRST_PSEUDO_REGISTER && reg_renumber[dst_regno] < 0 && (cl = lra_get_allocno_class (src_regno)) != NO_REGS && usage_insns[dst_regno].check == curr_usage_insns_check && (next_usage_insns = usage_insns[dst_regno].insns) != NULL_RTX) { reloads_num++; /* 'original_pseudo <- reload_pseudo'. */ if (! JUMP_P (curr_insn) && inherit_reload_reg (true, dst_regno, cl, curr_insn, next_usage_insns)) change_p = true; /* Invalidate. */ usage_insns[dst_regno].check = 0; if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs)) IOR_HARD_REG_SET (potential_reload_hard_regs, reg_class_contents[cl]); } else if (INSN_P (curr_insn)) { int max_uid = get_max_uid (); curr_id = lra_get_insn_recog_data (curr_insn); to_inherit_num = 0; /* Process insn definitions. */ for (reg = curr_id->regs; reg != NULL; reg = reg->next) if (reg->type != OP_IN && (dst_regno = reg->regno) < lra_constraint_new_regno_start) { if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT && reg_renumber[dst_regno] < 0 && ! reg->subreg_p && usage_insns[dst_regno].check == curr_usage_insns_check && (next_usage_insns = usage_insns[dst_regno].insns) != NULL_RTX) { struct lra_insn_reg *r; for (r = curr_id->regs; r != NULL; r = r->next) if (r->type != OP_OUT && r->regno == dst_regno) break; /* Don't do inheritance if the pseudo is also used in the insn. */ if (r == NULL) /* We can not do inheritance right now because the current insn reg info (chain regs) can change after that. */ add_to_inherit (dst_regno, next_usage_insns); } /* We can not process one reg twice here because of usage_insns invalidation. */ if ((dst_regno < FIRST_PSEUDO_REGISTER || reg_renumber[dst_regno] >= 0) && ! reg->subreg_p && reg->type == OP_OUT) { HARD_REG_SET s; if (split_if_necessary (dst_regno, reg->biggest_mode, potential_reload_hard_regs, false, curr_insn, max_uid)) change_p = true; CLEAR_HARD_REG_SET (s); if (dst_regno < FIRST_PSEUDO_REGISTER) add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno); else add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno), reg_renumber[dst_regno]); AND_COMPL_HARD_REG_SET (live_hard_regs, s); } /* We should invalidate potential inheritance or splitting for the current insn usages to the next usage insns (see code below) as the output pseudo prevents this. */ if ((dst_regno >= FIRST_PSEUDO_REGISTER && reg_renumber[dst_regno] < 0) || (reg->type == OP_OUT && ! reg->subreg_p && (dst_regno < FIRST_PSEUDO_REGISTER || reg_renumber[dst_regno] >= 0))) { /* Invalidate. */ if (dst_regno >= FIRST_PSEUDO_REGISTER) usage_insns[dst_regno].check = 0; else { nregs = hard_regno_nregs[dst_regno][reg->biggest_mode]; for (i = 0; i < nregs; i++) usage_insns[dst_regno + i].check = 0; } } } if (! JUMP_P (curr_insn)) for (i = 0; i < to_inherit_num; i++) if (inherit_reload_reg (true, to_inherit[i].regno, ALL_REGS, curr_insn, to_inherit[i].insns)) change_p = true; if (CALL_P (curr_insn)) { rtx cheap, pat, dest, restore; int regno, hard_regno; calls_num++; if ((cheap = find_reg_note (curr_insn, REG_RETURNED, NULL_RTX)) != NULL_RTX && ((cheap = XEXP (cheap, 0)), true) && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER && (hard_regno = reg_renumber[regno]) >= 0 /* If there are pending saves/restores, the optimization is not worth. */ && usage_insns[regno].calls_num == calls_num - 1 && TEST_HARD_REG_BIT (call_used_reg_set, hard_regno)) { /* Restore the pseudo from the call result as REG_RETURNED note says that the pseudo value is in the call result and the pseudo is an argument of the call. */ pat = PATTERN (curr_insn); if (GET_CODE (pat) == PARALLEL) pat = XVECEXP (pat, 0, 0); dest = SET_DEST (pat); start_sequence (); emit_move_insn (cheap, copy_rtx (dest)); restore = get_insns (); end_sequence (); lra_process_new_insns (curr_insn, NULL, restore, "Inserting call parameter restore"); /* We don't need to save/restore of the pseudo from this call. */ usage_insns[regno].calls_num = calls_num; bitmap_set_bit (&check_only_regs, regno); } } to_inherit_num = 0; /* Process insn usages. */ for (reg = curr_id->regs; reg != NULL; reg = reg->next) if ((reg->type != OP_OUT || (reg->type == OP_OUT && reg->subreg_p)) && (src_regno = reg->regno) < lra_constraint_new_regno_start) { if (src_regno >= FIRST_PSEUDO_REGISTER && reg_renumber[src_regno] < 0 && reg->type == OP_IN) { if (usage_insns[src_regno].check == curr_usage_insns_check && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX && NONDEBUG_INSN_P (curr_insn)) add_to_inherit (src_regno, next_usage_insns); else /* Add usages. */ add_next_usage_insn (src_regno, curr_insn, reloads_num); } else if (src_regno < FIRST_PSEUDO_REGISTER || reg_renumber[src_regno] >= 0) { bool before_p; rtx use_insn = curr_insn; before_p = (JUMP_P (curr_insn) || (CALL_P (curr_insn) && reg->type == OP_IN)); if (NONDEBUG_INSN_P (curr_insn) && split_if_necessary (src_regno, reg->biggest_mode, potential_reload_hard_regs, before_p, curr_insn, max_uid)) { if (reg->subreg_p) lra_risky_transformations_p = true; change_p = true; /* Invalidate. */ usage_insns[src_regno].check = 0; if (before_p) use_insn = PREV_INSN (curr_insn); } if (NONDEBUG_INSN_P (curr_insn)) { if (src_regno < FIRST_PSEUDO_REGISTER) add_to_hard_reg_set (&live_hard_regs, reg->biggest_mode, src_regno); else add_to_hard_reg_set (&live_hard_regs, PSEUDO_REGNO_MODE (src_regno), reg_renumber[src_regno]); } add_next_usage_insn (src_regno, use_insn, reloads_num); } } for (i = 0; i < to_inherit_num; i++) { src_regno = to_inherit[i].regno; if (inherit_reload_reg (false, src_regno, ALL_REGS, curr_insn, to_inherit[i].insns)) change_p = true; else setup_next_usage_insn (src_regno, curr_insn, reloads_num, false); } } /* We reached the start of the current basic block. */ if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head) || BLOCK_FOR_INSN (prev_insn) != curr_bb) { /* We reached the beginning of the current block -- do rest of spliting in the current BB. */ to_process = df_get_live_in (curr_bb); if (BLOCK_FOR_INSN (head) != curr_bb) { /* We are somewhere in the middle of EBB. */ get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src, curr_bb, &temp_bitmap); to_process = &temp_bitmap; } head_p = true; EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi) { if ((int) j >= lra_constraint_new_regno_start) break; if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0) && usage_insns[j].check == curr_usage_insns_check && (next_usage_insns = usage_insns[j].insns) != NULL_RTX) { if (need_for_split_p (potential_reload_hard_regs, j)) { if (lra_dump_file != NULL && head_p) { fprintf (lra_dump_file, " ----------------------------------\n"); head_p = false; } if (split_reg (false, j, bb_note (curr_bb), next_usage_insns)) change_p = true; } usage_insns[j].check = 0; } } } } return change_p; } /* This value affects EBB forming. If probability of edge from EBB to a BB is not greater than the following value, we don't add the BB to EBB. */ #define EBB_PROBABILITY_CUTOFF (REG_BR_PROB_BASE / 2) /* Current number of inheritance/split iteration. */ int lra_inheritance_iter; /* Entry function for inheritance/split pass. */ void lra_inheritance (void) { int i; basic_block bb, start_bb; edge e; lra_inheritance_iter++; if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES) return; timevar_push (TV_LRA_INHERITANCE); if (lra_dump_file != NULL) fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n", lra_inheritance_iter); curr_usage_insns_check = 0; usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start); for (i = 0; i < lra_constraint_new_regno_start; i++) usage_insns[i].check = 0; bitmap_initialize (&check_only_regs, ®_obstack); bitmap_initialize (&live_regs, ®_obstack); bitmap_initialize (&temp_bitmap, ®_obstack); bitmap_initialize (&ebb_global_regs, ®_obstack); FOR_EACH_BB (bb) { start_bb = bb; if (lra_dump_file != NULL) fprintf (lra_dump_file, "EBB"); /* Form a EBB starting with BB. */ bitmap_clear (&ebb_global_regs); bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb)); for (;;) { if (lra_dump_file != NULL) fprintf (lra_dump_file, " %d", bb->index); if (bb->next_bb == EXIT_BLOCK_PTR || LABEL_P (BB_HEAD (bb->next_bb))) break; e = find_fallthru_edge (bb->succs); if (! e) break; if (e->probability <= EBB_PROBABILITY_CUTOFF) break; bb = bb->next_bb; } bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb)); if (lra_dump_file != NULL) fprintf (lra_dump_file, "\n"); if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb))) /* Remember that the EBB head and tail can change in inherit_in_ebb. */ update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb)); } bitmap_clear (&ebb_global_regs); bitmap_clear (&temp_bitmap); bitmap_clear (&live_regs); bitmap_clear (&check_only_regs); free (usage_insns); timevar_pop (TV_LRA_INHERITANCE); } /* This page contains code to undo failed inheritance/split transformations. */ /* Current number of iteration undoing inheritance/split. */ int lra_undo_inheritance_iter; /* Fix BB live info LIVE after removing pseudos created on pass doing inheritance/split which are REMOVED_PSEUDOS. */ static void fix_bb_live_info (bitmap live, bitmap removed_pseudos) { unsigned int regno; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi) if (bitmap_clear_bit (live, regno)) bitmap_set_bit (live, lra_reg_info[regno].restore_regno); } /* Return regno of the (subreg of) REG. Otherwise, return a negative number. */ static int get_regno (rtx reg) { if (GET_CODE (reg) == SUBREG) reg = SUBREG_REG (reg); if (REG_P (reg)) return REGNO (reg); return -1; } /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and return true if we did any change. The undo transformations for inheritance looks like i <- i2 p <- i => p <- i2 or removing p <- i, i <- p, and i <- i3 where p is original pseudo from which inheritance pseudo i was created, i and i3 are removed inheritance pseudos, i2 is another not removed inheritance pseudo. All split pseudos or other occurrences of removed inheritance pseudos are changed on the corresponding original pseudos. The function also schedules insns changed and created during inheritance/split pass for processing by the subsequent constraint pass. */ static bool remove_inheritance_pseudos (bitmap remove_pseudos) { basic_block bb; int regno, sregno, prev_sregno, dregno, restore_regno; rtx set, prev_set, prev_insn; bool change_p, done_p; change_p = ! bitmap_empty_p (remove_pseudos); /* We can not finish the function right away if CHANGE_P is true because we need to marks insns affected by previous inheritance/split pass for processing by the subsequent constraint pass. */ FOR_EACH_BB (bb) { fix_bb_live_info (df_get_live_in (bb), remove_pseudos); fix_bb_live_info (df_get_live_out (bb), remove_pseudos); FOR_BB_INSNS_REVERSE (bb, curr_insn) { if (! INSN_P (curr_insn)) continue; done_p = false; sregno = dregno = -1; if (change_p && NONDEBUG_INSN_P (curr_insn) && (set = single_set (curr_insn)) != NULL_RTX) { dregno = get_regno (SET_DEST (set)); sregno = get_regno (SET_SRC (set)); } if (sregno >= 0 && dregno >= 0) { if ((bitmap_bit_p (remove_pseudos, sregno) && (lra_reg_info[sregno].restore_regno == dregno || (bitmap_bit_p (remove_pseudos, dregno) && (lra_reg_info[sregno].restore_regno == lra_reg_info[dregno].restore_regno)))) || (bitmap_bit_p (remove_pseudos, dregno) && lra_reg_info[dregno].restore_regno == sregno)) /* One of the following cases: original <- removed inheritance pseudo removed inherit pseudo <- another removed inherit pseudo removed inherit pseudo <- original pseudo Or removed_split_pseudo <- original_reg original_reg <- removed_split_pseudo */ { if (lra_dump_file != NULL) { fprintf (lra_dump_file, " Removing %s:\n", bitmap_bit_p (&lra_split_regs, sregno) || bitmap_bit_p (&lra_split_regs, dregno) ? "split" : "inheritance"); dump_insn_slim (lra_dump_file, curr_insn); } lra_set_insn_deleted (curr_insn); done_p = true; } else if (bitmap_bit_p (remove_pseudos, sregno) && bitmap_bit_p (&lra_inheritance_pseudos, sregno)) { /* Search the following pattern: inherit_or_split_pseudo1 <- inherit_or_split_pseudo2 original_pseudo <- inherit_or_split_pseudo1 where the 2nd insn is the current insn and inherit_or_split_pseudo2 is not removed. If it is found, change the current insn onto: original_pseudo <- inherit_or_split_pseudo2. */ for (prev_insn = PREV_INSN (curr_insn); prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn); prev_insn = PREV_INSN (prev_insn)) ; if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb && (prev_set = single_set (prev_insn)) != NULL_RTX /* There should be no subregs in insn we are searching because only the original reg might be in subreg when we changed the mode of load/store for splitting. */ && REG_P (SET_DEST (prev_set)) && REG_P (SET_SRC (prev_set)) && (int) REGNO (SET_DEST (prev_set)) == sregno && ((prev_sregno = REGNO (SET_SRC (prev_set))) >= FIRST_PSEUDO_REGISTER) /* As we consider chain of inheritance or splitting described in above comment we should check that sregno and prev_sregno were inheritance/split pseudos created from the same original regno. */ && (lra_reg_info[sregno].restore_regno == lra_reg_info[prev_sregno].restore_regno) && ! bitmap_bit_p (remove_pseudos, prev_sregno)) { lra_assert (GET_MODE (SET_SRC (prev_set)) == GET_MODE (regno_reg_rtx[sregno])); if (GET_CODE (SET_SRC (set)) == SUBREG) SUBREG_REG (SET_SRC (set)) = SET_SRC (prev_set); else SET_SRC (set) = SET_SRC (prev_set); lra_push_insn_and_update_insn_regno_info (curr_insn); lra_set_used_insn_alternative_by_uid (INSN_UID (curr_insn), -1); done_p = true; if (lra_dump_file != NULL) { fprintf (lra_dump_file, " Change reload insn:\n"); dump_insn_slim (lra_dump_file, curr_insn); } } } } if (! done_p) { struct lra_insn_reg *reg; bool restored_regs_p = false; bool kept_regs_p = false; curr_id = lra_get_insn_recog_data (curr_insn); for (reg = curr_id->regs; reg != NULL; reg = reg->next) { regno = reg->regno; restore_regno = lra_reg_info[regno].restore_regno; if (restore_regno >= 0) { if (change_p && bitmap_bit_p (remove_pseudos, regno)) { substitute_pseudo (&curr_insn, regno, regno_reg_rtx[restore_regno]); restored_regs_p = true; } else kept_regs_p = true; } } if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p) { /* The instruction has changed since the previous constraints pass. */ lra_push_insn_and_update_insn_regno_info (curr_insn); lra_set_used_insn_alternative_by_uid (INSN_UID (curr_insn), -1); } else if (restored_regs_p) /* The instruction has been restored to the form that it had during the previous constraints pass. */ lra_update_insn_regno_info (curr_insn); if (restored_regs_p && lra_dump_file != NULL) { fprintf (lra_dump_file, " Insn after restoring regs:\n"); dump_insn_slim (lra_dump_file, curr_insn); } } } } return change_p; } /* Entry function for undoing inheritance/split transformation. Return true if we did any RTL change in this pass. */ bool lra_undo_inheritance (void) { unsigned int regno; int restore_regno, hard_regno; int n_all_inherit, n_inherit, n_all_split, n_split; bitmap_head remove_pseudos; bitmap_iterator bi; bool change_p; lra_undo_inheritance_iter++; if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES) return false; if (lra_dump_file != NULL) fprintf (lra_dump_file, "\n********** Undoing inheritance #%d: **********\n\n", lra_undo_inheritance_iter); bitmap_initialize (&remove_pseudos, ®_obstack); n_inherit = n_all_inherit = 0; EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi) if (lra_reg_info[regno].restore_regno >= 0) { n_all_inherit++; if (reg_renumber[regno] < 0) bitmap_set_bit (&remove_pseudos, regno); else n_inherit++; } if (lra_dump_file != NULL && n_all_inherit != 0) fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n", n_inherit, n_all_inherit, (double) n_inherit / n_all_inherit * 100); n_split = n_all_split = 0; EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi) if ((restore_regno = lra_reg_info[regno].restore_regno) >= 0) { n_all_split++; hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER ? reg_renumber[restore_regno] : restore_regno); if (hard_regno < 0 || reg_renumber[regno] == hard_regno) bitmap_set_bit (&remove_pseudos, regno); else { n_split++; if (lra_dump_file != NULL) fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n", regno, restore_regno); } } if (lra_dump_file != NULL && n_all_split != 0) fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n", n_split, n_all_split, (double) n_split / n_all_split * 100); change_p = remove_inheritance_pseudos (&remove_pseudos); bitmap_clear (&remove_pseudos); /* Clear restore_regnos. */ EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi) lra_reg_info[regno].restore_regno = -1; EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi) lra_reg_info[regno].restore_regno = -1; return change_p; }