#include "quadmath-imp.h" #define REALPART(z) (__real__(z)) #define IMAGPART(z) (__imag__(z)) #define COMPLEX_ASSIGN(z_, r_, i_) {__real__(z_) = (r_); __imag__(z_) = (i_);} // Horrible... GCC doesn't know how to multiply or divide these // __complex128 things. We have to do it on our own. // Protect it around macros so, some day, we can switch it on #if 0 # define C128_MULT(x,y) ((x)*(y)) # define C128_DIV(x,y) ((x)/(y)) #else #define C128_MULT(x,y) mult_c128(x,y) #define C128_DIV(x,y) div_c128(x,y) static inline __complex128 mult_c128 (__complex128 x, __complex128 y) { __float128 r1 = REALPART(x), i1 = IMAGPART(x); __float128 r2 = REALPART(y), i2 = IMAGPART(y); __complex128 res; COMPLEX_ASSIGN(res, r1*r2 - i1*i2, i2*r1 + i1*r2); return res; } // Careful: the algorithm for the division sucks. A lot. static inline __complex128 div_c128 (__complex128 x, __complex128 y) { __float128 n = hypotq (REALPART (y), IMAGPART (y)); __float128 r1 = REALPART(x), i1 = IMAGPART(x); __float128 r2 = REALPART(y), i2 = IMAGPART(y); __complex128 res; COMPLEX_ASSIGN(res, r1*r2 + i1*i2, i1*r2 - i2*r1); return res / n; } #endif __float128 cabsq (__complex128 z) { return hypotq (REALPART (z), IMAGPART (z)); } __complex128 cexpq (__complex128 z) { __float128 a, b; __complex128 v; a = REALPART (z); b = IMAGPART (z); COMPLEX_ASSIGN (v, cosq (b), sinq (b)); return expq (a) * v; } __complex128 cexpiq (__float128 x) { __complex128 v; COMPLEX_ASSIGN (v, cosq (x), sinq (x)); return v; } __float128 cargq (__complex128 z) { return atan2q (IMAGPART (z), REALPART (z)); } __complex128 clogq (__complex128 z) { __complex128 v; COMPLEX_ASSIGN (v, logq (cabsq (z)), cargq (z)); return v; } __complex128 clog10q (__complex128 z) { __complex128 v; COMPLEX_ASSIGN (v, log10q (cabsq (z)), cargq (z)); return v; } __complex128 cpowq (__complex128 base, __complex128 power) { return cexpq (C128_MULT(power, clogq (base))); } __complex128 csinq (__complex128 a) { __float128 r = REALPART (a), i = IMAGPART (a); __complex128 v; COMPLEX_ASSIGN (v, sinq (r) * coshq (i), cosq (r) * sinhq (i)); return v; } __complex128 csinhq (__complex128 a) { __float128 r = REALPART (a), i = IMAGPART (a); __complex128 v; COMPLEX_ASSIGN (v, sinhq (r) * cosq (i), coshq (r) * sinq (i)); return v; } __complex128 ccosq (__complex128 a) { __float128 r = REALPART (a), i = IMAGPART (a); __complex128 v; COMPLEX_ASSIGN (v, cosq (r) * coshq (i), - (sinq (r) * sinhq (i))); return v; } __complex128 ccoshq (__complex128 a) { __float128 r = REALPART (a), i = IMAGPART (a); __complex128 v; COMPLEX_ASSIGN (v, coshq (r) * cosq (i), sinhq (r) * sinq (i)); return v; } __complex128 ctanq (__complex128 a) { __float128 rt = tanq (REALPART (a)), it = tanhq (IMAGPART (a)); __complex128 n, d; COMPLEX_ASSIGN (n, rt, it); COMPLEX_ASSIGN (d, 1, - (rt * it)); return C128_DIV(n,d); } __complex128 ctanhq (__complex128 a) { __float128 rt = tanhq (REALPART (a)), it = tanq (IMAGPART (a)); __complex128 n, d; COMPLEX_ASSIGN (n, rt, it); COMPLEX_ASSIGN (d, 1, rt * it); return C128_DIV(n,d); } /* Square root algorithm from glibc. */ __complex128 csqrtq (__complex128 z) { __float128 re = REALPART(z), im = IMAGPART(z); __complex128 v; if (im == 0) { if (re < 0) { COMPLEX_ASSIGN (v, 0, copysignq (sqrtq (-re), im)); } else { COMPLEX_ASSIGN (v, fabsq (sqrtq (re)), copysignq (0, im)); } } else if (re == 0) { __float128 r = sqrtq (0.5 * fabsq (im)); COMPLEX_ASSIGN (v, r, copysignq (r, im)); } else { __float128 d = hypotq (re, im); __float128 r, s; /* Use the identity 2 Re res Im res = Im x to avoid cancellation error in d +/- Re x. */ if (re > 0) r = sqrtq (0.5 * d + 0.5 * re), s = (0.5 * im) / r; else s = sqrtq (0.5 * d - 0.5 * re), r = fabsq ((0.5 * im) / s); COMPLEX_ASSIGN (v, r, copysignq (s, im)); } return v; }