/* GNU Objective C Runtime class related functions Copyright (C) 1993, 1995, 1996, 1997, 2001, 2002, 2009, 2010 Free Software Foundation, Inc. Contributed by Kresten Krab Thorup and Dennis Glatting. Lock-free class table code designed and written from scratch by Nicola Pero, 2001. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ /* The code in this file critically affects class method invocation speed. This long preamble comment explains why, and the issues involved. One of the traditional weaknesses of the GNU Objective-C runtime is that class method invocations are slow. The reason is that when you write array = [NSArray new]; this gets basically compiled into the equivalent of array = [(objc_get_class ("NSArray")) new]; objc_get_class returns the class pointer corresponding to the string `NSArray'; and because of the lookup, the operation is more complicated and slow than a simple instance method invocation. Most high performance Objective-C code (using the GNU Objc runtime) I had the opportunity to read (or write) work around this problem by caching the class pointer: Class arrayClass = [NSArray class]; ... later on ... array = [arrayClass new]; array = [arrayClass new]; array = [arrayClass new]; In this case, you always perform a class lookup (the first one), but then all the [arrayClass new] methods run exactly as fast as an instance method invocation. It helps if you have many class method invocations to the same class. The long-term solution to this problem would be to modify the compiler to output tables of class pointers corresponding to all the class method invocations, and to add code to the runtime to update these tables - that should in the end allow class method invocations to perform precisely as fast as instance method invocations, because no class lookup would be involved. I think the Apple Objective-C runtime uses this technique. Doing this involves synchronized modifications in the runtime and in the compiler. As a first medicine to the problem, I [NP] have redesigned and rewritten the way the runtime is performing class lookup. This doesn't give as much speed as the other (definitive) approach, but at least a class method invocation now takes approximately 4.5 times an instance method invocation on my machine (it would take approx 12 times before the rewriting), which is a lot better. One of the main reason the new class lookup is so faster is because I implemented it in a way that can safely run multithreaded without using locks - a so-called `lock-free' data structure. The atomic operation is pointer assignment. The reason why in this problem lock-free data structures work so well is that you never remove classes from the table - and the difficult thing with lock-free data structures is freeing data when is removed from the structures. */ #include "objc-private/common.h" #include "objc-private/error.h" #include "objc/runtime.h" #include "objc/thr.h" #include "objc-private/module-abi-8.h" /* For CLS_ISCLASS and similar. */ #include "objc-private/runtime.h" /* the kitchen sink */ #include "objc-private/sarray.h" /* For sarray_put_at_safe. */ #include "objc-private/selector.h" /* For sarray_put_at_safe. */ #include /* For memset */ /* We use a table which maps a class name to the corresponding class pointer. The first part of this file defines this table, and functions to do basic operations on the table. The second part of the file implements some higher level Objective-C functionality for classes by using the functions provided in the first part to manage the table. */ /** ** Class Table Internals **/ /* A node holding a class */ typedef struct class_node { struct class_node *next; /* Pointer to next entry on the list. NULL indicates end of list. */ const char *name; /* The class name string */ int length; /* The class name string length */ Class pointer; /* The Class pointer */ } *class_node_ptr; /* A table containing classes is a class_node_ptr (pointing to the first entry in the table - if it is NULL, then the table is empty). */ /* We have 1024 tables. Each table contains all class names which have the same hash (which is a number between 0 and 1023). To look up a class_name, we compute its hash, and get the corresponding table. Once we have the table, we simply compare strings directly till we find the one which we want (using the length first). The number of tables is quite big on purpose (a normal big application has less than 1000 classes), so that you shouldn't normally get any collisions, and get away with a single comparison (which we can't avoid since we need to know that you have got the right thing). */ #define CLASS_TABLE_SIZE 1024 #define CLASS_TABLE_MASK 1023 static class_node_ptr class_table_array[CLASS_TABLE_SIZE]; /* The table writing mutex - we lock on writing to avoid conflicts between different writers, but we read without locks. That is possible because we assume pointer assignment to be an atomic operation. TODO: This is only true under certain circumstances, which should be clarified. */ static objc_mutex_t __class_table_lock = NULL; /* CLASS_TABLE_HASH is how we compute the hash of a class name. It is a macro - *not* a function - arguments *are* modified directly. INDEX should be a variable holding an int; HASH should be a variable holding an int; CLASS_NAME should be a variable holding a (char *) to the class_name. After the macro is executed, INDEX contains the length of the string, and HASH the computed hash of the string; CLASS_NAME is untouched. */ #define CLASS_TABLE_HASH(INDEX, HASH, CLASS_NAME) \ HASH = 0; \ for (INDEX = 0; CLASS_NAME[INDEX] != '\0'; INDEX++) \ { \ HASH = (HASH << 4) ^ (HASH >> 28) ^ CLASS_NAME[INDEX]; \ } \ \ HASH = (HASH ^ (HASH >> 10) ^ (HASH >> 20)) & CLASS_TABLE_MASK; /* Setup the table. */ static void class_table_setup (void) { /* Start - nothing in the table. */ memset (class_table_array, 0, sizeof (class_node_ptr) * CLASS_TABLE_SIZE); /* The table writing mutex. */ __class_table_lock = objc_mutex_allocate (); } /* Insert a class in the table (used when a new class is registered). */ static void class_table_insert (const char *class_name, Class class_pointer) { int hash, length; class_node_ptr new_node; /* Find out the class name's hash and length. */ CLASS_TABLE_HASH (length, hash, class_name); /* Prepare the new node holding the class. */ new_node = objc_malloc (sizeof (struct class_node)); new_node->name = class_name; new_node->length = length; new_node->pointer = class_pointer; /* Lock the table for modifications. */ objc_mutex_lock (__class_table_lock); /* Insert the new node in the table at the beginning of the table at class_table_array[hash]. */ new_node->next = class_table_array[hash]; class_table_array[hash] = new_node; objc_mutex_unlock (__class_table_lock); } /* Get a class from the table. This does not need mutex protection. Currently, this function is called each time you call a static method, this is why it must be very fast. */ static inline Class class_table_get_safe (const char *class_name) { class_node_ptr node; int length, hash; /* Compute length and hash. */ CLASS_TABLE_HASH (length, hash, class_name); node = class_table_array[hash]; if (node != NULL) { do { if (node->length == length) { /* Compare the class names. */ int i; for (i = 0; i < length; i++) { if ((node->name)[i] != class_name[i]) break; } if (i == length) { /* They are equal! */ return node->pointer; } } } while ((node = node->next) != NULL); } return Nil; } /* Enumerate over the class table. */ struct class_table_enumerator { int hash; class_node_ptr node; }; static Class class_table_next (struct class_table_enumerator **e) { struct class_table_enumerator *enumerator = *e; class_node_ptr next; if (enumerator == NULL) { *e = objc_malloc (sizeof (struct class_table_enumerator)); enumerator = *e; enumerator->hash = 0; enumerator->node = NULL; next = class_table_array[enumerator->hash]; } else next = enumerator->node->next; if (next != NULL) { enumerator->node = next; return enumerator->node->pointer; } else { enumerator->hash++; while (enumerator->hash < CLASS_TABLE_SIZE) { next = class_table_array[enumerator->hash]; if (next != NULL) { enumerator->node = next; return enumerator->node->pointer; } enumerator->hash++; } /* Ok - table finished - done. */ objc_free (enumerator); return Nil; } } #if 0 /* DEBUGGING FUNCTIONS */ /* Debugging function - print the class table. */ void class_table_print (void) { int i; for (i = 0; i < CLASS_TABLE_SIZE; i++) { class_node_ptr node; printf ("%d:\n", i); node = class_table_array[i]; while (node != NULL) { printf ("\t%s\n", node->name); node = node->next; } } } /* Debugging function - print an histogram of number of classes in function of hash key values. Useful to evaluate the hash function in real cases. */ void class_table_print_histogram (void) { int i, j; int counter = 0; for (i = 0; i < CLASS_TABLE_SIZE; i++) { class_node_ptr node; node = class_table_array[i]; while (node != NULL) { counter++; node = node->next; } if (((i + 1) % 50) == 0) { printf ("%4d:", i + 1); for (j = 0; j < counter; j++) printf ("X"); printf ("\n"); counter = 0; } } printf ("%4d:", i + 1); for (j = 0; j < counter; j++) printf ("X"); printf ("\n"); } #endif /* DEBUGGING FUNCTIONS */ /** ** Objective-C runtime functions **/ /* From now on, the only access to the class table data structure should be via the class_table_* functions. */ /* This is a hook which is called by objc_get_class and objc_lookup_class if the runtime is not able to find the class. This may e.g. try to load in the class using dynamic loading. This hook was a public, global variable in the Traditional GNU Objective-C Runtime API (objc/objc-api.h). The modern GNU Objective-C Runtime API (objc/runtime.h) provides the objc_setGetUnknownClassHandler() function instead. */ Class (*_objc_lookup_class) (const char *name) = 0; /* !T:SAFE */ /* The handler currently in use. PS: if both __obj_get_unknown_class_handler and _objc_lookup_class are defined, __objc_get_unknown_class_handler is called first. */ static objc_get_unknown_class_handler __objc_get_unknown_class_handler = NULL; objc_get_unknown_class_handler objc_setGetUnknownClassHandler (objc_get_unknown_class_handler new_handler) { objc_get_unknown_class_handler old_handler = __objc_get_unknown_class_handler; __objc_get_unknown_class_handler = new_handler; return old_handler; } /* True when class links has been resolved. */ BOOL __objc_class_links_resolved = NO; /* !T:UNUSED */ void __objc_init_class_tables (void) { /* Allocate the class hash table. */ if (__class_table_lock) return; objc_mutex_lock (__objc_runtime_mutex); class_table_setup (); objc_mutex_unlock (__objc_runtime_mutex); } /* This function adds a class to the class hash table, and assigns the class a number, unless it's already known. Return 'YES' if the class was added. Return 'NO' if the class was already known. */ BOOL __objc_add_class_to_hash (Class class) { Class existing_class; objc_mutex_lock (__objc_runtime_mutex); /* Make sure the table is there. */ assert (__class_table_lock); /* Make sure it's not a meta class. */ assert (CLS_ISCLASS (class)); /* Check to see if the class is already in the hash table. */ existing_class = class_table_get_safe (class->name); if (existing_class) { objc_mutex_unlock (__objc_runtime_mutex); return NO; } else { /* The class isn't in the hash table. Add the class and assign a class number. */ static unsigned int class_number = 1; CLS_SETNUMBER (class, class_number); CLS_SETNUMBER (class->class_pointer, class_number); ++class_number; class_table_insert (class->name, class); objc_mutex_unlock (__objc_runtime_mutex); return YES; } } Class objc_getClass (const char *name) { Class class; if (name == NULL) return Nil; class = class_table_get_safe (name); if (class) return class; if (__objc_get_unknown_class_handler) return (*__objc_get_unknown_class_handler) (name); if (_objc_lookup_class) return (*_objc_lookup_class) (name); return Nil; } Class objc_lookUpClass (const char *name) { if (name == NULL) return Nil; else return class_table_get_safe (name); } Class objc_getMetaClass (const char *name) { Class class = objc_getClass (name); if (class) return class->class_pointer; else return Nil; } Class objc_getRequiredClass (const char *name) { Class class = objc_getClass (name); if (class) return class; else _objc_abort ("objc_getRequiredClass ('%s') failed: class not found\n", name); } int objc_getClassList (Class *returnValue, int maxNumberOfClassesToReturn) { /* Iterate over all entries in the table. */ int hash, count = 0; for (hash = 0; hash < CLASS_TABLE_SIZE; hash++) { class_node_ptr node = class_table_array[hash]; while (node != NULL) { if (returnValue) { if (count < maxNumberOfClassesToReturn) returnValue[count] = node->pointer; else return count; } count++; node = node->next; } } return count; } Class objc_allocateClassPair (Class super_class, const char *class_name, size_t extraBytes) { Class new_class; Class new_meta_class; if (class_name == NULL) return Nil; if (objc_getClass (class_name)) return Nil; if (super_class) { /* If you want to build a hierarchy of classes, you need to build and register them one at a time. The risk is that you are able to cause confusion by registering a subclass before the superclass or similar. */ if (CLS_IS_IN_CONSTRUCTION (super_class)) return Nil; } /* Technically, we should create the metaclass first, then use class_createInstance() to create the class. That complication would be relevant if we had class variables, but we don't, so we just ignore it and create everything directly and assume all classes have the same size. */ new_class = objc_calloc (1, sizeof (struct objc_class) + extraBytes); new_meta_class = objc_calloc (1, sizeof (struct objc_class) + extraBytes); /* We create an unresolved class, similar to one generated by the compiler. It will be resolved later when we register it. Note how the metaclass details are not that important; when the class is resolved, the ones that matter will be fixed up. */ new_class->class_pointer = new_meta_class; new_meta_class->class_pointer = 0; if (super_class) { /* Force the name of the superclass in place of the link to the actual superclass, which will be put there when the class is resolved. */ const char *super_class_name = class_getName (super_class); new_class->super_class = (void *)super_class_name; new_meta_class->super_class = (void *)super_class_name; } else { new_class->super_class = (void *)0; new_meta_class->super_class = (void *)0; } new_class->name = objc_malloc (strlen (class_name) + 1); strcpy ((char*)new_class->name, class_name); new_meta_class->name = new_class->name; new_class->version = 0; new_meta_class->version = 0; new_class->info = _CLS_CLASS | _CLS_IN_CONSTRUCTION; new_meta_class->info = _CLS_META | _CLS_IN_CONSTRUCTION; if (super_class) new_class->instance_size = super_class->instance_size; else new_class->instance_size = 0; new_meta_class->instance_size = sizeof (struct objc_class); return new_class; } void objc_registerClassPair (Class class_) { if (class_ == Nil) return; if ((! CLS_ISCLASS (class_)) || (! CLS_IS_IN_CONSTRUCTION (class_))) return; if ((! CLS_ISMETA (class_->class_pointer)) || (! CLS_IS_IN_CONSTRUCTION (class_->class_pointer))) return; objc_mutex_lock (__objc_runtime_mutex); if (objc_getClass (class_->name)) { objc_mutex_unlock (__objc_runtime_mutex); return; } CLS_SET_NOT_IN_CONSTRUCTION (class_); CLS_SET_NOT_IN_CONSTRUCTION (class_->class_pointer); __objc_init_class (class_); /* Resolve class links immediately. No point in waiting. */ __objc_resolve_class_links (); objc_mutex_unlock (__objc_runtime_mutex); } void objc_disposeClassPair (Class class_) { if (class_ == Nil) return; if ((! CLS_ISCLASS (class_)) || (! CLS_IS_IN_CONSTRUCTION (class_))) return; if ((! CLS_ISMETA (class_->class_pointer)) || (! CLS_IS_IN_CONSTRUCTION (class_->class_pointer))) return; /* Undo any class_addIvar(). */ if (class_->ivars) { int i; for (i = 0; i < class_->ivars->ivar_count; i++) { struct objc_ivar *ivar = &(class_->ivars->ivar_list[i]); objc_free ((char *)ivar->ivar_name); objc_free ((char *)ivar->ivar_type); } objc_free (class_->ivars); } /* Undo any class_addMethod(). */ if (class_->methods) { struct objc_method_list *list = class_->methods; while (list) { int i; struct objc_method_list *next = list->method_next; for (i = 0; i < list->method_count; i++) { struct objc_method *method = &(list->method_list[i]); objc_free ((char *)method->method_name); objc_free ((char *)method->method_types); } objc_free (list); list = next; } } /* Undo any class_addProtocol(). */ if (class_->protocols) { struct objc_protocol_list *list = class_->protocols; while (list) { struct objc_protocol_list *next = list->next; objc_free (list); list = next; } } /* Undo any class_addMethod() on the meta-class. */ if (class_->class_pointer->methods) { struct objc_method_list *list = class_->class_pointer->methods; while (list) { int i; struct objc_method_list *next = list->method_next; for (i = 0; i < list->method_count; i++) { struct objc_method *method = &(list->method_list[i]); objc_free ((char *)method->method_name); objc_free ((char *)method->method_types); } objc_free (list); list = next; } } /* Undo objc_allocateClassPair(). */ objc_free ((char *)(class_->name)); objc_free (class_->class_pointer); objc_free (class_); } /* Traditional GNU Objective-C Runtime API. Important: this method is called automatically by the compiler while messaging (if using the traditional ABI), so it is worth keeping it fast; don't make it just a wrapper around objc_getClass(). */ /* Note that this is roughly equivalent to objc_getRequiredClass(). */ /* Get the class object for the class named NAME. If NAME does not identify a known class, the hook _objc_lookup_class is called. If this fails, an error message is issued and the system aborts. */ Class objc_get_class (const char *name) { Class class; class = class_table_get_safe (name); if (class) return class; if (__objc_get_unknown_class_handler) class = (*__objc_get_unknown_class_handler) (name); if ((!class) && _objc_lookup_class) class = (*_objc_lookup_class) (name); if (class) return class; _objc_abort ("objc runtime: cannot find class %s\n", name); return 0; } /* This is used by the compiler too. */ Class objc_get_meta_class (const char *name) { return objc_get_class (name)->class_pointer; } /* This is not used by GCC, but the clang compiler seems to use it when targetting the GNU runtime. That's wrong, but we have it to be compatible. */ Class objc_lookup_class (const char *name) { return objc_getClass (name); } /* This is used when the implementation of a method changes. It goes through all classes, looking for the ones that have these methods (either method_a or method_b; method_b can be NULL), and reloads the implementation for these. You should call this with the runtime mutex already locked. */ void __objc_update_classes_with_methods (struct objc_method *method_a, struct objc_method *method_b) { int hash; /* Iterate over all classes. */ for (hash = 0; hash < CLASS_TABLE_SIZE; hash++) { class_node_ptr node = class_table_array[hash]; while (node != NULL) { /* We execute this loop twice: the first time, we iterate over all methods in the class (instance methods), while the second time we iterate over all methods in the meta class (class methods). */ Class class = Nil; BOOL done = NO; while (done == NO) { struct objc_method_list * method_list; if (class == Nil) { /* The first time, we work on the class. */ class = node->pointer; } else { /* The second time, we work on the meta class. */ class = class->class_pointer; done = YES; } method_list = class->methods; while (method_list) { int i; for (i = 0; i < method_list->method_count; ++i) { struct objc_method *method = &method_list->method_list[i]; /* If the method is one of the ones we are looking for, update the implementation. */ if (method == method_a) sarray_at_put_safe (class->dtable, (sidx) method_a->method_name->sel_id, method_a->method_imp); if (method == method_b) { if (method_b != NULL) sarray_at_put_safe (class->dtable, (sidx) method_b->method_name->sel_id, method_b->method_imp); } } method_list = method_list->method_next; } } node = node->next; } } } /* Resolve super/subclass links for all classes. The only thing we can be sure of is that the class_pointer for class objects point to the right meta class objects. */ void __objc_resolve_class_links (void) { struct class_table_enumerator *es = NULL; Class object_class = objc_get_class ("Object"); Class class1; assert (object_class); objc_mutex_lock (__objc_runtime_mutex); /* Assign subclass links. */ while ((class1 = class_table_next (&es))) { /* Make sure we have what we think we have. */ assert (CLS_ISCLASS (class1)); assert (CLS_ISMETA (class1->class_pointer)); /* The class_pointer of all meta classes point to Object's meta class. */ class1->class_pointer->class_pointer = object_class->class_pointer; if (! CLS_ISRESOLV (class1)) { CLS_SETRESOLV (class1); CLS_SETRESOLV (class1->class_pointer); if (class1->super_class) { Class a_super_class = objc_get_class ((char *) class1->super_class); assert (a_super_class); DEBUG_PRINTF ("making class connections for: %s\n", class1->name); /* Assign subclass links for superclass. */ class1->sibling_class = a_super_class->subclass_list; a_super_class->subclass_list = class1; /* Assign subclass links for meta class of superclass. */ if (a_super_class->class_pointer) { class1->class_pointer->sibling_class = a_super_class->class_pointer->subclass_list; a_super_class->class_pointer->subclass_list = class1->class_pointer; } } else /* A root class, make its meta object be a subclass of Object. */ { class1->class_pointer->sibling_class = object_class->subclass_list; object_class->subclass_list = class1->class_pointer; } } } /* Assign superclass links. */ es = NULL; while ((class1 = class_table_next (&es))) { Class sub_class; for (sub_class = class1->subclass_list; sub_class; sub_class = sub_class->sibling_class) { sub_class->super_class = class1; if (CLS_ISCLASS (sub_class)) sub_class->class_pointer->super_class = class1->class_pointer; } } objc_mutex_unlock (__objc_runtime_mutex); } const char * class_getName (Class class_) { if (class_ == Nil) return "nil"; return class_->name; } BOOL class_isMetaClass (Class class_) { /* CLS_ISMETA includes the check for Nil class_. */ return CLS_ISMETA (class_); } /* Even inside libobjc it may be worth using class_getSuperclass instead of accessing class_->super_class directly because it resolves the class links if needed. If you access class_->super_class directly, make sure to deal with the situation where the class is not resolved yet! */ Class class_getSuperclass (Class class_) { if (class_ == Nil) return Nil; /* Classes that are in construction are not resolved, and still have the class name (instead of a class pointer) in the class_->super_class field. In that case we need to lookup the superclass name to return the superclass. We can not resolve the class until it is registered. */ if (CLS_IS_IN_CONSTRUCTION (class_)) { if (CLS_ISMETA (class_)) return object_getClass ((id)objc_lookUpClass ((const char *)(class_->super_class))); else return objc_lookUpClass ((const char *)(class_->super_class)); } /* If the class is not resolved yet, super_class would point to a string (the name of the super class) as opposed to the actual super class. In that case, we need to resolve the class links before we can return super_class. */ if (! CLS_ISRESOLV (class_)) __objc_resolve_class_links (); return class_->super_class; } int class_getVersion (Class class_) { if (class_ == Nil) return 0; return (int)(class_->version); } void class_setVersion (Class class_, int version) { if (class_ == Nil) return; class_->version = version; } size_t class_getInstanceSize (Class class_) { if (class_ == Nil) return 0; return class_->instance_size; }