// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Garbage collector. #include #include "runtime.h" #include "arch.h" #include "malloc.h" #ifdef USING_SPLIT_STACK extern void * __splitstack_find (void *, void *, size_t *, void **, void **, void **); extern void * __splitstack_find_context (void *context[10], size_t *, void **, void **, void **); #endif enum { Debug = 0, PtrSize = sizeof(void*), DebugMark = 0, // run second pass to check mark // Four bits per word (see #defines below). wordsPerBitmapWord = sizeof(void*)*8/4, bitShift = sizeof(void*)*8/4, }; // Bits in per-word bitmap. // #defines because enum might not be able to hold the values. // // Each word in the bitmap describes wordsPerBitmapWord words // of heap memory. There are 4 bitmap bits dedicated to each heap word, // so on a 64-bit system there is one bitmap word per 16 heap words. // The bits in the word are packed together by type first, then by // heap location, so each 64-bit bitmap word consists of, from top to bottom, // the 16 bitSpecial bits for the corresponding heap words, then the 16 bitMarked bits, // then the 16 bitNoPointers/bitBlockBoundary bits, then the 16 bitAllocated bits. // This layout makes it easier to iterate over the bits of a given type. // // The bitmap starts at mheap.arena_start and extends *backward* from // there. On a 64-bit system the off'th word in the arena is tracked by // the off/16+1'th word before mheap.arena_start. (On a 32-bit system, // the only difference is that the divisor is 8.) // // To pull out the bits corresponding to a given pointer p, we use: // // off = p - (uintptr*)mheap.arena_start; // word offset // b = (uintptr*)mheap.arena_start - off/wordsPerBitmapWord - 1; // shift = off % wordsPerBitmapWord // bits = *b >> shift; // /* then test bits & bitAllocated, bits & bitMarked, etc. */ // #define bitAllocated ((uintptr)1<<(bitShift*0)) #define bitNoPointers ((uintptr)1<<(bitShift*1)) /* when bitAllocated is set */ #define bitMarked ((uintptr)1<<(bitShift*2)) /* when bitAllocated is set */ #define bitSpecial ((uintptr)1<<(bitShift*3)) /* when bitAllocated is set - has finalizer or being profiled */ #define bitBlockBoundary ((uintptr)1<<(bitShift*1)) /* when bitAllocated is NOT set */ #define bitMask (bitBlockBoundary | bitAllocated | bitMarked | bitSpecial) // Holding worldsema grants an M the right to try to stop the world. // The procedure is: // // runtime_semacquire(&runtime_worldsema); // m->gcing = 1; // runtime_stoptheworld(); // // ... do stuff ... // // m->gcing = 0; // runtime_semrelease(&runtime_worldsema); // runtime_starttheworld(); // uint32 runtime_worldsema = 1; // TODO: Make these per-M. static uint64 nhandoff; static int32 gctrace; typedef struct Workbuf Workbuf; struct Workbuf { Workbuf *next; uintptr nobj; byte *obj[512-2]; }; typedef struct Finalizer Finalizer; struct Finalizer { void (*fn)(void*); void *arg; const struct __go_func_type *ft; }; typedef struct FinBlock FinBlock; struct FinBlock { FinBlock *alllink; FinBlock *next; int32 cnt; int32 cap; Finalizer fin[1]; }; static G *fing; static FinBlock *finq; // list of finalizers that are to be executed static FinBlock *finc; // cache of free blocks static FinBlock *allfin; // list of all blocks static Lock finlock; static int32 fingwait; static void runfinq(void*); static Workbuf* getempty(Workbuf*); static Workbuf* getfull(Workbuf*); static void putempty(Workbuf*); static Workbuf* handoff(Workbuf*); static struct { Lock fmu; Workbuf *full; Lock emu; Workbuf *empty; uint32 nproc; volatile uint32 nwait; volatile uint32 ndone; Note alldone; Lock markgate; Lock sweepgate; MSpan *spans; Lock; byte *chunk; uintptr nchunk; } work; // scanblock scans a block of n bytes starting at pointer b for references // to other objects, scanning any it finds recursively until there are no // unscanned objects left. Instead of using an explicit recursion, it keeps // a work list in the Workbuf* structures and loops in the main function // body. Keeping an explicit work list is easier on the stack allocator and // more efficient. static void scanblock(byte *b, int64 n) { byte *obj, *arena_start, *arena_used, *p; void **vp; uintptr size, *bitp, bits, shift, i, j, x, xbits, off, nobj, nproc; MSpan *s; PageID k; void **wp; Workbuf *wbuf; bool keepworking; if((int64)(uintptr)n != n || n < 0) { runtime_printf("scanblock %p %D\n", b, n); runtime_throw("scanblock"); } // Memory arena parameters. arena_start = runtime_mheap.arena_start; arena_used = runtime_mheap.arena_used; nproc = work.nproc; wbuf = nil; // current work buffer wp = nil; // storage for next queued pointer (write pointer) nobj = 0; // number of queued objects // Scanblock helpers pass b==nil. // The main proc needs to return to make more // calls to scanblock. But if work.nproc==1 then // might as well process blocks as soon as we // have them. keepworking = b == nil || work.nproc == 1; // Align b to a word boundary. off = (uintptr)b & (PtrSize-1); if(off != 0) { b += PtrSize - off; n -= PtrSize - off; } for(;;) { // Each iteration scans the block b of length n, queueing pointers in // the work buffer. if(Debug > 1) runtime_printf("scanblock %p %D\n", b, n); vp = (void**)b; n >>= (2+PtrSize/8); /* n /= PtrSize (4 or 8) */ for(i=0; i<(uintptr)n; i++) { obj = (byte*)vp[i]; // Words outside the arena cannot be pointers. if((byte*)obj < arena_start || (byte*)obj >= arena_used) continue; // obj may be a pointer to a live object. // Try to find the beginning of the object. // Round down to word boundary. obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); // Find bits for this word. off = (uintptr*)obj - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; // Pointing at the beginning of a block? if((bits & (bitAllocated|bitBlockBoundary)) != 0) goto found; // Pointing just past the beginning? // Scan backward a little to find a block boundary. for(j=shift; j-->0; ) { if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) { obj = (byte*)obj - (shift-j)*PtrSize; shift = j; bits = xbits>>shift; goto found; } } // Otherwise consult span table to find beginning. // (Manually inlined copy of MHeap_LookupMaybe.) k = (uintptr)obj>>PageShift; x = k; if(sizeof(void*) == 8) x -= (uintptr)arena_start>>PageShift; s = runtime_mheap.map[x]; if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse) continue; p = (byte*)((uintptr)s->start<sizeclass == 0) { obj = p; } else { if((byte*)obj >= (byte*)s->limit) continue; size = runtime_class_to_size[s->sizeclass]; int32 i = ((byte*)obj - p)/size; obj = p+i*size; } // Now that we know the object header, reload bits. off = (uintptr*)obj - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; found: // Now we have bits, bitp, and shift correct for // obj pointing at the base of the object. // Only care about allocated and not marked. if((bits & (bitAllocated|bitMarked)) != bitAllocated) continue; if(nproc == 1) *bitp |= bitMarked< 4 && work.nwait > 0 && work.full == nil) { wbuf->nobj = nobj; wbuf = handoff(wbuf); nobj = wbuf->nobj; wp = (void**)(wbuf->obj + nobj); } // If buffer is full, get a new one. if(wbuf == nil || nobj >= nelem(wbuf->obj)) { if(wbuf != nil) wbuf->nobj = nobj; wbuf = getempty(wbuf); wp = (void**)(wbuf->obj); nobj = 0; } *wp++ = obj; nobj++; continue_obj:; } // Done scanning [b, b+n). Prepare for the next iteration of // the loop by setting b and n to the parameters for the next block. // Fetch b from the work buffer. if(nobj == 0) { if(!keepworking) { putempty(wbuf); return; } // Emptied our buffer: refill. wbuf = getfull(wbuf); if(wbuf == nil) return; nobj = wbuf->nobj; wp = (void**)(wbuf->obj + wbuf->nobj); } b = *--wp; nobj--; // Ask span about size class. // (Manually inlined copy of MHeap_Lookup.) x = (uintptr)b>>PageShift; if(sizeof(void*) == 8) x -= (uintptr)arena_start>>PageShift; s = runtime_mheap.map[x]; if(s->sizeclass == 0) n = s->npages<sizeclass]; } } // debug_scanblock is the debug copy of scanblock. // it is simpler, slower, single-threaded, recursive, // and uses bitSpecial as the mark bit. static void debug_scanblock(byte *b, int64 n) { byte *obj, *p; void **vp; uintptr size, *bitp, bits, shift, i, xbits, off; MSpan *s; if(!DebugMark) runtime_throw("debug_scanblock without DebugMark"); if((int64)(uintptr)n != n || n < 0) { runtime_printf("debug_scanblock %p %D\n", b, n); runtime_throw("debug_scanblock"); } // Align b to a word boundary. off = (uintptr)b & (PtrSize-1); if(off != 0) { b += PtrSize - off; n -= PtrSize - off; } vp = (void**)b; n /= PtrSize; for(i=0; i<(uintptr)n; i++) { obj = (byte*)vp[i]; // Words outside the arena cannot be pointers. if((byte*)obj < runtime_mheap.arena_start || (byte*)obj >= runtime_mheap.arena_used) continue; // Round down to word boundary. obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); // Consult span table to find beginning. s = runtime_MHeap_LookupMaybe(&runtime_mheap, obj); if(s == nil) continue; p = (byte*)((uintptr)s->start<sizeclass == 0) { obj = p; size = (uintptr)s->npages<= (byte*)s->limit) continue; size = runtime_class_to_size[s->sizeclass]; int32 i = ((byte*)obj - p)/size; obj = p+i*size; } // Now that we know the object header, reload bits. off = (uintptr*)obj - (uintptr*)runtime_mheap.arena_start; bitp = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; // Now we have bits, bitp, and shift correct for // obj pointing at the base of the object. // If not allocated or already marked, done. if((bits & bitAllocated) == 0 || (bits & bitSpecial) != 0) // NOTE: bitSpecial not bitMarked continue; *bitp |= bitSpecial<next = work.full; work.full = b; } // Grab from empty list if possible. b = work.empty; if(b != nil) { work.empty = b->next; goto haveb; } } else { // Put b on full list. if(b != nil) { runtime_lock(&work.fmu); b->next = work.full; work.full = b; runtime_unlock(&work.fmu); } // Grab from empty list if possible. runtime_lock(&work.emu); b = work.empty; if(b != nil) work.empty = b->next; runtime_unlock(&work.emu); if(b != nil) goto haveb; } // Need to allocate. runtime_lock(&work); if(work.nchunk < sizeof *b) { work.nchunk = 1<<20; work.chunk = runtime_SysAlloc(work.nchunk); } b = (Workbuf*)work.chunk; work.chunk += sizeof *b; work.nchunk -= sizeof *b; runtime_unlock(&work); haveb: b->nobj = 0; return b; } static void putempty(Workbuf *b) { if(b == nil) return; if(work.nproc == 1) { b->next = work.empty; work.empty = b; return; } runtime_lock(&work.emu); b->next = work.empty; work.empty = b; runtime_unlock(&work.emu); } // Get a full work buffer off the work.full list, or return nil. static Workbuf* getfull(Workbuf *b) { int32 i; Workbuf *b1; if(work.nproc == 1) { // Put b on empty list. if(b != nil) { b->next = work.empty; work.empty = b; } // Grab from full list if possible. // Since work.nproc==1, no one else is // going to give us work. b = work.full; if(b != nil) work.full = b->next; return b; } putempty(b); // Grab buffer from full list if possible. for(;;) { b1 = work.full; if(b1 == nil) break; runtime_lock(&work.fmu); if(work.full != nil) { b1 = work.full; work.full = b1->next; runtime_unlock(&work.fmu); return b1; } runtime_unlock(&work.fmu); } runtime_xadd(&work.nwait, +1); for(i=0;; i++) { b1 = work.full; if(b1 != nil) { runtime_lock(&work.fmu); if(work.full != nil) { runtime_xadd(&work.nwait, -1); b1 = work.full; work.full = b1->next; runtime_unlock(&work.fmu); return b1; } runtime_unlock(&work.fmu); continue; } if(work.nwait == work.nproc) return nil; if(i < 10) runtime_procyield(20); else if(i < 20) runtime_osyield(); else runtime_usleep(100); } } static Workbuf* handoff(Workbuf *b) { int32 n; Workbuf *b1; // Make new buffer with half of b's pointers. b1 = getempty(nil); n = b->nobj/2; b->nobj -= n; b1->nobj = n; runtime_memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]); nhandoff += n; // Put b on full list - let first half of b get stolen. runtime_lock(&work.fmu); b->next = work.full; work.full = b; runtime_unlock(&work.fmu); return b1; } // Scanstack calls scanblock on each of gp's stack segments. static void scanstack(void (*scanblock)(byte*, int64), G *gp) { #ifdef USING_SPLIT_STACK M *mp; void* sp; size_t spsize; void* next_segment; void* next_sp; void* initial_sp; if(gp == runtime_g()) { // Scanning our own stack. sp = __splitstack_find(nil, nil, &spsize, &next_segment, &next_sp, &initial_sp); } else if((mp = gp->m) != nil && mp->helpgc) { // gchelper's stack is in active use and has no interesting pointers. return; } else { // Scanning another goroutine's stack. // The goroutine is usually asleep (the world is stopped). // The exception is that if the goroutine is about to enter or might // have just exited a system call, it may be executing code such // as schedlock and may have needed to start a new stack segment. // Use the stack segment and stack pointer at the time of // the system call instead, since that won't change underfoot. if(gp->gcstack != nil) { sp = gp->gcstack; spsize = gp->gcstack_size; next_segment = gp->gcnext_segment; next_sp = gp->gcnext_sp; initial_sp = gp->gcinitial_sp; } else { sp = __splitstack_find_context(&gp->stack_context[0], &spsize, &next_segment, &next_sp, &initial_sp); } } if(sp != nil) { scanblock(sp, spsize); while((sp = __splitstack_find(next_segment, next_sp, &spsize, &next_segment, &next_sp, &initial_sp)) != nil) scanblock(sp, spsize); } #else M *mp; byte* bottom; byte* top; if(gp == runtime_g()) { // Scanning our own stack. bottom = (byte*)&gp; } else if((mp = gp->m) != nil && mp->helpgc) { // gchelper's stack is in active use and has no interesting pointers. return; } else { // Scanning another goroutine's stack. // The goroutine is usually asleep (the world is stopped). bottom = (byte*)gp->gcnext_sp; if(bottom == nil) return; } top = (byte*)gp->gcinitial_sp + gp->gcstack_size; if(top > bottom) scanblock(bottom, top - bottom); else scanblock(top, bottom - top); #endif } // Markfin calls scanblock on the blocks that have finalizers: // the things pointed at cannot be freed until the finalizers have run. static void markfin(void *v) { uintptr size; size = 0; if(!runtime_mlookup(v, (byte**)&v, &size, nil) || !runtime_blockspecial(v)) runtime_throw("mark - finalizer inconsistency"); // do not mark the finalizer block itself. just mark the things it points at. scanblock(v, size); } static struct root_list* roots; void __go_register_gc_roots (struct root_list* r) { // FIXME: This needs locking if multiple goroutines can call // dlopen simultaneously. r->next = roots; roots = r; } static void debug_markfin(void *v) { uintptr size; if(!runtime_mlookup(v, (byte**)&v, &size, nil)) runtime_throw("debug_mark - finalizer inconsistency"); debug_scanblock(v, size); } // Mark static void mark(void (*scan)(byte*, int64)) { struct root_list *pl; G *gp; FinBlock *fb; // mark data+bss. for(pl = roots; pl != nil; pl = pl->next) { struct root* pr = &pl->roots[0]; while(1) { void *decl = pr->decl; if(decl == nil) break; scanblock(decl, pr->size); pr++; } } scan((byte*)&runtime_m0, sizeof runtime_m0); scan((byte*)&runtime_g0, sizeof runtime_g0); scan((byte*)&runtime_allg, sizeof runtime_allg); scan((byte*)&runtime_allm, sizeof runtime_allm); runtime_MProf_Mark(scan); runtime_time_scan(scan); runtime_trampoline_scan(scan); // mark stacks for(gp=runtime_allg; gp!=nil; gp=gp->alllink) { switch(gp->status){ default: runtime_printf("unexpected G.status %d\n", gp->status); runtime_throw("mark - bad status"); case Gdead: break; case Grunning: if(gp != runtime_g()) runtime_throw("mark - world not stopped"); scanstack(scan, gp); break; case Grunnable: case Gsyscall: case Gwaiting: scanstack(scan, gp); break; } } // mark things pointed at by objects with finalizers if(scan == debug_scanblock) runtime_walkfintab(debug_markfin, scan); else runtime_walkfintab(markfin, scan); for(fb=allfin; fb; fb=fb->alllink) scanblock((byte*)fb->fin, fb->cnt*sizeof(fb->fin[0])); // in multiproc mode, join in the queued work. scan(nil, 0); } static bool handlespecial(byte *p, uintptr size) { void (*fn)(void*); const struct __go_func_type *ft; FinBlock *block; Finalizer *f; if(!runtime_getfinalizer(p, true, &fn, &ft)) { runtime_setblockspecial(p, false); runtime_MProf_Free(p, size); return false; } runtime_lock(&finlock); if(finq == nil || finq->cnt == finq->cap) { if(finc == nil) { finc = runtime_SysAlloc(PageSize); finc->cap = (PageSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1; finc->alllink = allfin; allfin = finc; } block = finc; finc = block->next; block->next = finq; finq = block; } f = &finq->fin[finq->cnt]; finq->cnt++; f->fn = fn; f->ft = ft; f->arg = p; runtime_unlock(&finlock); return true; } // Sweep frees or collects finalizers for blocks not marked in the mark phase. // It clears the mark bits in preparation for the next GC round. static void sweep(void) { M *m; MSpan *s; int32 cl, n, npages; uintptr size; byte *p; MCache *c; byte *arena_start; int64 now; m = runtime_m(); arena_start = runtime_mheap.arena_start; now = runtime_nanotime(); for(;;) { s = work.spans; if(s == nil) break; if(!runtime_casp(&work.spans, s, s->allnext)) continue; // Stamp newly unused spans. The scavenger will use that // info to potentially give back some pages to the OS. if(s->state == MSpanFree && s->unusedsince == 0) s->unusedsince = now; if(s->state != MSpanInUse) continue; p = (byte*)(s->start << PageShift); cl = s->sizeclass; if(cl == 0) { size = s->npages< 0; n--, p += size) { uintptr off, *bitp, shift, bits; off = (uintptr*)p - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; bits = *bitp>>shift; if((bits & bitAllocated) == 0) continue; if((bits & bitMarked) != 0) { if(DebugMark) { if(!(bits & bitSpecial)) runtime_printf("found spurious mark on %p\n", p); *bitp &= ~(bitSpecial<mcache; if(s->sizeclass == 0) { // Free large span. runtime_unmarkspan(p, 1< sizeof(uintptr)) ((uintptr*)p)[1] = 1; // mark as "needs to be zeroed" c->local_by_size[s->sizeclass].nfree++; runtime_MCache_Free(c, p, s->sizeclass, size); } c->local_alloc -= size; c->local_nfree++; } } } void runtime_gchelper(void) { // Wait until main proc is ready for mark help. runtime_lock(&work.markgate); runtime_unlock(&work.markgate); scanblock(nil, 0); // Wait until main proc is ready for sweep help. runtime_lock(&work.sweepgate); runtime_unlock(&work.sweepgate); sweep(); if(runtime_xadd(&work.ndone, +1) == work.nproc-1) runtime_notewakeup(&work.alldone); } // Initialized from $GOGC. GOGC=off means no gc. // // Next gc is after we've allocated an extra amount of // memory proportional to the amount already in use. // If gcpercent=100 and we're using 4M, we'll gc again // when we get to 8M. This keeps the gc cost in linear // proportion to the allocation cost. Adjusting gcpercent // just changes the linear constant (and also the amount of // extra memory used). static int32 gcpercent = -2; static void stealcache(void) { M *m; for(m=runtime_allm; m; m=m->alllink) runtime_MCache_ReleaseAll(m->mcache); } static void cachestats(void) { M *m; MCache *c; uint32 i; uint64 stacks_inuse; uint64 stacks_sys; stacks_inuse = 0; stacks_sys = runtime_stacks_sys; for(m=runtime_allm; m; m=m->alllink) { runtime_purgecachedstats(m); // stacks_inuse += m->stackalloc->inuse; // stacks_sys += m->stackalloc->sys; c = m->mcache; for(i=0; ilocal_by_size); i++) { mstats.by_size[i].nmalloc += c->local_by_size[i].nmalloc; c->local_by_size[i].nmalloc = 0; mstats.by_size[i].nfree += c->local_by_size[i].nfree; c->local_by_size[i].nfree = 0; } } mstats.stacks_inuse = stacks_inuse; mstats.stacks_sys = stacks_sys; } void runtime_gc(int32 force) { M *m; int64 t0, t1, t2, t3; uint64 heap0, heap1, obj0, obj1; const byte *p; bool extra; // Make sure all registers are saved on stack so that // scanstack sees them. __builtin_unwind_init(); // The gc is turned off (via enablegc) until // the bootstrap has completed. // Also, malloc gets called in the guts // of a number of libraries that might be // holding locks. To avoid priority inversion // problems, don't bother trying to run gc // while holding a lock. The next mallocgc // without a lock will do the gc instead. m = runtime_m(); if(!mstats.enablegc || m->locks > 0 || runtime_panicking) return; if(gcpercent == -2) { // first time through p = runtime_getenv("GOGC"); if(p == nil || p[0] == '\0') gcpercent = 100; else if(runtime_strcmp((const char*)p, "off") == 0) gcpercent = -1; else gcpercent = runtime_atoi(p); p = runtime_getenv("GOGCTRACE"); if(p != nil) gctrace = runtime_atoi(p); } if(gcpercent < 0) return; runtime_semacquire(&runtime_worldsema); if(!force && mstats.heap_alloc < mstats.next_gc) { runtime_semrelease(&runtime_worldsema); return; } t0 = runtime_nanotime(); nhandoff = 0; m->gcing = 1; runtime_stoptheworld(); cachestats(); heap0 = mstats.heap_alloc; obj0 = mstats.nmalloc - mstats.nfree; runtime_lock(&work.markgate); runtime_lock(&work.sweepgate); extra = false; work.nproc = 1; if(runtime_gomaxprocs > 1 && runtime_ncpu > 1) { runtime_noteclear(&work.alldone); work.nproc += runtime_helpgc(&extra); } work.nwait = 0; work.ndone = 0; runtime_unlock(&work.markgate); // let the helpers in mark(scanblock); if(DebugMark) mark(debug_scanblock); t1 = runtime_nanotime(); work.spans = runtime_mheap.allspans; runtime_unlock(&work.sweepgate); // let the helpers in sweep(); if(work.nproc > 1) runtime_notesleep(&work.alldone); t2 = runtime_nanotime(); stealcache(); cachestats(); mstats.next_gc = mstats.heap_alloc+(mstats.heap_alloc-runtime_stacks_sys)*gcpercent/100; m->gcing = 0; m->locks++; // disable gc during the mallocs in newproc if(finq != nil) { // kick off or wake up goroutine to run queued finalizers if(fing == nil) fing = __go_go(runfinq, nil); else if(fingwait) { fingwait = 0; runtime_ready(fing); } } m->locks--; cachestats(); heap1 = mstats.heap_alloc; obj1 = mstats.nmalloc - mstats.nfree; t3 = runtime_nanotime(); mstats.last_gc = t3; mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t3 - t0; mstats.pause_total_ns += t3 - t0; mstats.numgc++; if(mstats.debuggc) runtime_printf("pause %D\n", t3-t0); if(gctrace) { runtime_printf("gc%d(%d): %D+%D+%D ms, %D -> %D MB %D -> %D (%D-%D) objects\n", mstats.numgc, work.nproc, (t1-t0)/1000000, (t2-t1)/1000000, (t3-t2)/1000000, heap0>>20, heap1>>20, obj0, obj1, mstats.nmalloc, mstats.nfree); } runtime_MProf_GC(); runtime_semrelease(&runtime_worldsema); // If we could have used another helper proc, start one now, // in the hope that it will be available next time. // It would have been even better to start it before the collection, // but doing so requires allocating memory, so it's tricky to // coordinate. This lazy approach works out in practice: // we don't mind if the first couple gc rounds don't have quite // the maximum number of procs. runtime_starttheworld(extra); // give the queued finalizers, if any, a chance to run if(finq != nil) runtime_gosched(); if(gctrace > 1 && !force) runtime_gc(1); } void runtime_ReadMemStats(MStats *) __asm__("runtime.ReadMemStats"); void runtime_ReadMemStats(MStats *stats) { M *m; // Have to acquire worldsema to stop the world, // because stoptheworld can only be used by // one goroutine at a time, and there might be // a pending garbage collection already calling it. runtime_semacquire(&runtime_worldsema); m = runtime_m(); m->gcing = 1; runtime_stoptheworld(); cachestats(); *stats = mstats; m->gcing = 0; runtime_semrelease(&runtime_worldsema); runtime_starttheworld(false); } static void runfinq(void* dummy __attribute__ ((unused))) { G* gp; Finalizer *f; FinBlock *fb, *next; uint32 i; gp = runtime_g(); for(;;) { // There's no need for a lock in this section // because it only conflicts with the garbage // collector, and the garbage collector only // runs when everyone else is stopped, and // runfinq only stops at the gosched() or // during the calls in the for loop. fb = finq; finq = nil; if(fb == nil) { fingwait = 1; gp->status = Gwaiting; gp->waitreason = "finalizer wait"; runtime_gosched(); continue; } for(; fb; fb=next) { next = fb->next; for(i=0; i<(uint32)fb->cnt; i++) { void *params[1]; f = &fb->fin[i]; params[0] = &f->arg; reflect_call(f->ft, (void*)f->fn, 0, 0, params, nil); f->fn = nil; f->arg = nil; } fb->cnt = 0; fb->next = finc; finc = fb; } runtime_gc(1); // trigger another gc to clean up the finalized objects, if possible } } // mark the block at v of size n as allocated. // If noptr is true, mark it as having no pointers. void runtime_markallocated(void *v, uintptr n, bool noptr) { uintptr *b, obits, bits, off, shift; if(0) runtime_printf("markallocated %p+%p\n", v, n); if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) runtime_throw("markallocated: bad pointer"); off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; for(;;) { obits = *b; bits = (obits & ~(bitMask< (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) runtime_throw("markallocated: bad pointer"); off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; for(;;) { obits = *b; bits = (obits & ~(bitMask< (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) return; // not allocated, so okay off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; bits = *b>>shift; if((bits & bitAllocated) != 0) { runtime_printf("checkfreed %p+%p: off=%p have=%p\n", v, n, off, bits & bitMask); runtime_throw("checkfreed: not freed"); } } // mark the span of memory at v as having n blocks of the given size. // if leftover is true, there is left over space at the end of the span. void runtime_markspan(void *v, uintptr size, uintptr n, bool leftover) { uintptr *b, off, shift; byte *p; if((byte*)v+size*n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) runtime_throw("markspan: bad pointer"); p = v; if(leftover) // mark a boundary just past end of last block too n++; for(; n-- > 0; p += size) { // Okay to use non-atomic ops here, because we control // the entire span, and each bitmap word has bits for only // one span, so no other goroutines are changing these // bitmap words. off = (uintptr*)p - (uintptr*)runtime_mheap.arena_start; // word offset b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; *b = (*b & ~(bitMask< (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) runtime_throw("markspan: bad pointer"); p = v; off = p - (uintptr*)runtime_mheap.arena_start; // word offset if(off % wordsPerBitmapWord != 0) runtime_throw("markspan: unaligned pointer"); b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; n /= PtrSize; if(n%wordsPerBitmapWord != 0) runtime_throw("unmarkspan: unaligned length"); // Okay to use non-atomic ops here, because we control // the entire span, and each bitmap word has bits for only // one span, so no other goroutines are changing these // bitmap words. n /= wordsPerBitmapWord; while(n-- > 0) *b-- = 0; } bool runtime_blockspecial(void *v) { uintptr *b, off, shift; if(DebugMark) return true; off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; return (*b & (bitSpecial<arena_used - h->arena_start) / wordsPerBitmapWord; n = (n+bitmapChunk-1) & ~(bitmapChunk-1); if(h->bitmap_mapped >= n) return; page_size = getpagesize(); n = (n+page_size-1) & ~(page_size-1); runtime_SysMap(h->arena_start - n, n - h->bitmap_mapped); h->bitmap_mapped = n; }