/* MD reader for GCC. Copyright (C) 1987, 1988, 1991, 1994, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "bconfig.h" #include "system.h" #include "coretypes.h" #include "hashtab.h" #include "errors.h" #include "read-md.h" /* Associates PTR (which can be a string, etc.) with the file location specified by FILENAME and LINENO. */ struct ptr_loc { const void *ptr; const char *filename; int lineno; }; /* A singly-linked list of filenames. */ struct file_name_list { struct file_name_list *next; const char *fname; }; /* Obstack used for allocating MD strings. */ struct obstack string_obstack; /* A table of ptr_locs, hashed on the PTR field. */ static htab_t ptr_locs; /* An obstack for the above. Plain xmalloc is a bit heavyweight for a small structure like ptr_loc. */ static struct obstack ptr_loc_obstack; /* A hash table of triples (A, B, C), where each of A, B and C is a condition and A is equivalent to "B && C". This is used to keep track of the source of conditions that are made up of separate MD strings (such as the split condition of a define_insn_and_split). */ static htab_t joined_conditions; /* An obstack for allocating joined_conditions entries. */ static struct obstack joined_conditions_obstack; /* The file we are reading. */ FILE *read_md_file; /* The filename of READ_MD_FILE. */ const char *read_md_filename; /* The current line number in READ_MD_FILE. */ int read_md_lineno; /* The name of the toplevel file that indirectly included READ_MD_FILE. */ const char *in_fname; /* The directory part of IN_FNAME. NULL if IN_FNAME is a bare filename. */ static char *base_dir; /* The first directory to search. */ static struct file_name_list *first_dir_md_include; /* A pointer to the null terminator of the md include chain. */ static struct file_name_list **last_dir_md_include_ptr = &first_dir_md_include; /* This callback will be invoked whenever an md include directive is processed. To be used for creation of the dependency file. */ void (*include_callback) (const char *); /* The current maximum length of directory names in the search path for include files. (Altered as we get more of them.) */ static size_t max_include_len; /* A table of md_constant structures, hashed by name. Null if no constant expansion should occur. */ static htab_t md_constants; /* A table of enum_type structures, hashed by name. */ static htab_t enum_types; static void handle_file (directive_handler_t); /* Given an object that starts with a char * name field, return a hash code for its name. */ hashval_t leading_string_hash (const void *def) { return htab_hash_string (*(const char *const *) def); } /* Given two objects that start with char * name fields, return true if they have the same name. */ int leading_string_eq_p (const void *def1, const void *def2) { return strcmp (*(const char *const *) def1, *(const char *const *) def2) == 0; } /* Return a hash value for the pointer pointed to by DEF. */ static hashval_t leading_ptr_hash (const void *def) { return htab_hash_pointer (*(const void *const *) def); } /* Return true if DEF1 and DEF2 are pointers to the same pointer. */ static int leading_ptr_eq_p (const void *def1, const void *def2) { return *(const void *const *) def1 == *(const void *const *) def2; } /* Associate PTR with the file position given by FILENAME and LINENO. */ static void set_md_ptr_loc (const void *ptr, const char *filename, int lineno) { struct ptr_loc *loc; loc = (struct ptr_loc *) obstack_alloc (&ptr_loc_obstack, sizeof (struct ptr_loc)); loc->ptr = ptr; loc->filename = filename; loc->lineno = lineno; *htab_find_slot (ptr_locs, loc, INSERT) = loc; } /* Return the position associated with pointer PTR. Return null if no position was set. */ static const struct ptr_loc * get_md_ptr_loc (const void *ptr) { return (const struct ptr_loc *) htab_find (ptr_locs, &ptr); } /* Associate NEW_PTR with the same file position as OLD_PTR. */ void copy_md_ptr_loc (const void *new_ptr, const void *old_ptr) { const struct ptr_loc *loc = get_md_ptr_loc (old_ptr); if (loc != 0) set_md_ptr_loc (new_ptr, loc->filename, loc->lineno); } /* If PTR is associated with a known file position, print a #line directive for it. */ void print_md_ptr_loc (const void *ptr) { const struct ptr_loc *loc = get_md_ptr_loc (ptr); if (loc != 0) printf ("#line %d \"%s\"\n", loc->lineno, loc->filename); } /* Return a condition that satisfies both COND1 and COND2. Either string may be null or empty. */ const char * join_c_conditions (const char *cond1, const char *cond2) { char *result; const void **entry; if (cond1 == 0 || cond1[0] == 0) return cond2; if (cond2 == 0 || cond2[0] == 0) return cond1; if (strcmp (cond1, cond2) == 0) return cond1; result = concat ("(", cond1, ") && (", cond2, ")", NULL); obstack_ptr_grow (&joined_conditions_obstack, result); obstack_ptr_grow (&joined_conditions_obstack, cond1); obstack_ptr_grow (&joined_conditions_obstack, cond2); entry = XOBFINISH (&joined_conditions_obstack, const void **); *htab_find_slot (joined_conditions, entry, INSERT) = entry; return result; } /* Print condition COND, wrapped in brackets. If COND was created by join_c_conditions, recursively invoke this function for the original conditions and join the result with "&&". Otherwise print a #line directive for COND if its original file position is known. */ void print_c_condition (const char *cond) { const char **halves = (const char **) htab_find (joined_conditions, &cond); if (halves != 0) { printf ("("); print_c_condition (halves[1]); printf (" && "); print_c_condition (halves[2]); printf (")"); } else { putc ('\n', stdout); print_md_ptr_loc (cond); printf ("(%s)", cond); } } /* A vfprintf-like function for reporting an error against line LINENO of the current MD file. */ static void ATTRIBUTE_PRINTF(2,0) message_with_line_1 (int lineno, const char *msg, va_list ap) { fprintf (stderr, "%s:%d: ", read_md_filename, lineno); vfprintf (stderr, msg, ap); fputc ('\n', stderr); } /* A printf-like function for reporting an error against line LINENO in the current MD file. */ void message_with_line (int lineno, const char *msg, ...) { va_list ap; va_start (ap, msg); message_with_line_1 (lineno, msg, ap); va_end (ap); } /* Like message_with_line, but treat the condition as an error. */ void error_with_line (int lineno, const char *msg, ...) { va_list ap; va_start (ap, msg); message_with_line_1 (lineno, msg, ap); va_end (ap); have_error = 1; } /* A printf-like function for reporting an error against the current position in the MD file. */ void fatal_with_file_and_line (const char *msg, ...) { char context[64]; size_t i; int c; va_list ap; va_start (ap, msg); fprintf (stderr, "%s:%d: ", read_md_filename, read_md_lineno); vfprintf (stderr, msg, ap); putc ('\n', stderr); /* Gather some following context. */ for (i = 0; i < sizeof (context)-1; ++i) { c = read_char (); if (c == EOF) break; if (c == '\r' || c == '\n') { unread_char (c); break; } context[i] = c; } context[i] = '\0'; fprintf (stderr, "%s:%d: following context is `%s'\n", read_md_filename, read_md_lineno, context); va_end (ap); exit (1); } /* Report that we found character ACTUAL when we expected to find character EXPECTED. */ void fatal_expected_char (int expected, int actual) { if (actual == EOF) fatal_with_file_and_line ("expected character `%c', found EOF", expected); else fatal_with_file_and_line ("expected character `%c', found `%c'", expected, actual); } /* Read chars from the MD file until a non-whitespace char and return that. Comments, both Lisp style and C style, are treated as whitespace. */ int read_skip_spaces (void) { int c; while (1) { c = read_char (); switch (c) { case ' ': case '\t': case '\f': case '\r': case '\n': break; case ';': do c = read_char (); while (c != '\n' && c != EOF); break; case '/': { int prevc; c = read_char (); if (c != '*') { unread_char (c); fatal_with_file_and_line ("stray '/' in file"); } prevc = 0; while ((c = read_char ()) && c != EOF) { if (prevc == '*' && c == '/') break; prevc = c; } } break; default: return c; } } } /* Read an rtx code name into NAME. It is terminated by any of the punctuation chars of rtx printed syntax. */ void read_name (struct md_name *name) { int c; size_t i; c = read_skip_spaces (); i = 0; while (1) { if (c == ' ' || c == '\n' || c == '\t' || c == '\f' || c == '\r' || c == EOF) break; if (c == ':' || c == ')' || c == ']' || c == '"' || c == '/' || c == '(' || c == '[') { unread_char (c); break; } if (i == sizeof (name->buffer) - 1) fatal_with_file_and_line ("name too long"); name->buffer[i++] = c; c = read_char (); } if (i == 0) fatal_with_file_and_line ("missing name or number"); name->buffer[i] = 0; name->string = name->buffer; if (md_constants) { /* Do constant expansion. */ struct md_constant *def; do { struct md_constant tmp_def; tmp_def.name = name->string; def = (struct md_constant *) htab_find (md_constants, &tmp_def); if (def) name->string = def->value; } while (def); } } /* Subroutine of the string readers. Handles backslash escapes. Caller has read the backslash, but not placed it into the obstack. */ static void read_escape (void) { int c = read_char (); switch (c) { /* Backslash-newline is replaced by nothing, as in C. */ case '\n': return; /* \" \' \\ are replaced by the second character. */ case '\\': case '"': case '\'': break; /* Standard C string escapes: \a \b \f \n \r \t \v \[0-7] \x all are passed through to the output string unmolested. In normal use these wind up in a string constant processed by the C compiler, which will translate them appropriately. We do not bother checking that \[0-7] are followed by up to two octal digits, or that \x is followed by N hex digits. \? \u \U are left out because they are not in traditional C. */ case 'a': case 'b': case 'f': case 'n': case 'r': case 't': case 'v': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case 'x': obstack_1grow (&string_obstack, '\\'); break; /* \; makes stuff for a C string constant containing newline and tab. */ case ';': obstack_grow (&string_obstack, "\\n\\t", 4); return; /* pass anything else through, but issue a warning. */ default: fprintf (stderr, "%s:%d: warning: unrecognized escape \\%c\n", read_md_filename, read_md_lineno, c); obstack_1grow (&string_obstack, '\\'); break; } obstack_1grow (&string_obstack, c); } /* Read a double-quoted string onto the obstack. Caller has scanned the leading quote. */ char * read_quoted_string (void) { int c; while (1) { c = read_char (); /* Read the string */ if (c == '\\') { read_escape (); continue; } else if (c == '"' || c == EOF) break; obstack_1grow (&string_obstack, c); } obstack_1grow (&string_obstack, 0); return XOBFINISH (&string_obstack, char *); } /* Read a braced string (a la Tcl) onto the string obstack. Caller has scanned the leading brace. Note that unlike quoted strings, the outermost braces _are_ included in the string constant. */ static char * read_braced_string (void) { int c; int brace_depth = 1; /* caller-processed */ unsigned long starting_read_md_lineno = read_md_lineno; obstack_1grow (&string_obstack, '{'); while (brace_depth) { c = read_char (); /* Read the string */ if (c == '{') brace_depth++; else if (c == '}') brace_depth--; else if (c == '\\') { read_escape (); continue; } else if (c == EOF) fatal_with_file_and_line ("missing closing } for opening brace on line %lu", starting_read_md_lineno); obstack_1grow (&string_obstack, c); } obstack_1grow (&string_obstack, 0); return XOBFINISH (&string_obstack, char *); } /* Read some kind of string constant. This is the high-level routine used by read_rtx. It handles surrounding parentheses, leading star, and dispatch to the appropriate string constant reader. */ char * read_string (int star_if_braced) { char *stringbuf; int saw_paren = 0; int c, old_lineno; c = read_skip_spaces (); if (c == '(') { saw_paren = 1; c = read_skip_spaces (); } old_lineno = read_md_lineno; if (c == '"') stringbuf = read_quoted_string (); else if (c == '{') { if (star_if_braced) obstack_1grow (&string_obstack, '*'); stringbuf = read_braced_string (); } else fatal_with_file_and_line ("expected `\"' or `{', found `%c'", c); if (saw_paren) { c = read_skip_spaces (); if (c != ')') fatal_expected_char (')', c); } set_md_ptr_loc (stringbuf, read_md_filename, old_lineno); return stringbuf; } /* Skip the rest of a construct that started at line LINENO and that is currently nested by DEPTH levels of parentheses. */ void read_skip_construct (int depth, int lineno) { struct md_name name; int c; do { c = read_skip_spaces (); if (c == EOF) { error_with_line (lineno, "unterminated construct"); exit (1); } switch (c) { case '(': depth++; break; case ')': depth--; break; case ':': case '[': case ']': case '/': break; case '\"': case '{': unread_char (c); read_string (false); break; default: unread_char (c); read_name (&name); break; } } while (depth > 0); unread_char (c); } /* Given a string, return the number of comma-separated elements in it. Return 0 for the null string. */ int n_comma_elts (const char *s) { int n; if (*s == '\0') return 0; for (n = 1; *s; s++) if (*s == ',') n++; return n; } /* Given a pointer to a (char *), return a pointer to the beginning of the next comma-separated element in the string. Advance the pointer given to the end of that element. Return NULL if at end of string. Caller is responsible for copying the string if necessary. White space between a comma and an element is ignored. */ const char * scan_comma_elt (const char **pstr) { const char *start; const char *p = *pstr; if (*p == ',') p++; while (ISSPACE(*p)) p++; if (*p == '\0') return NULL; start = p; while (*p != ',' && *p != '\0') p++; *pstr = p; return start; } /* Convert STRING to uppercase. */ void upcase_string (char *string) { int i; for (i = 0; string[i]; i++) string[i] = TOUPPER (string[i]); } /* Add a NAME = VALUE definition to md_constants-style hash table DEFS, where both NAME and VALUE are malloc()ed strings. PARENT_ENUM is the enum to which NAME belongs, or null if NAME is a stand-alone constant. */ static struct md_constant * add_constant (htab_t defs, char *name, char *value, struct enum_type *parent_enum) { struct md_constant *def, tmp_def; void **entry_ptr; tmp_def.name = name; entry_ptr = htab_find_slot (defs, &tmp_def, INSERT); if (*entry_ptr) { def = (struct md_constant *) *entry_ptr; if (strcmp (def->value, value) != 0) fatal_with_file_and_line ("redefinition of `%s', was `%s', now `%s'", def->name, def->value, value); else if (parent_enum || def->parent_enum) fatal_with_file_and_line ("redefinition of `%s'", def->name); free (name); free (value); } else { def = XNEW (struct md_constant); def->name = name; def->value = value; def->parent_enum = parent_enum; *entry_ptr = def; } return def; } /* Process a define_constants directive, starting with the optional space after the "define_constants". */ static void handle_constants (void) { int c; htab_t defs; c = read_skip_spaces (); if (c != '[') fatal_expected_char ('[', c); /* Disable constant expansion during definition processing. */ defs = md_constants; md_constants = 0; while ( (c = read_skip_spaces ()) != ']') { struct md_name name, value; if (c != '(') fatal_expected_char ('(', c); read_name (&name); read_name (&value); add_constant (defs, xstrdup (name.string), xstrdup (value.string), 0); c = read_skip_spaces (); if (c != ')') fatal_expected_char (')', c); } md_constants = defs; } /* For every constant definition, call CALLBACK with two arguments: a pointer a pointer to the constant definition and INFO. Stop when CALLBACK returns zero. */ void traverse_md_constants (htab_trav callback, void *info) { htab_traverse (md_constants, callback, info); } /* Return a malloc()ed decimal string that represents number NUMBER. */ static char * decimal_string (int number) { /* A safe overestimate. +1 for sign, +1 for null terminator. */ char buffer[sizeof (int) * CHAR_BIT + 1 + 1]; sprintf (buffer, "%d", number); return xstrdup (buffer); } /* Process a define_enum or define_c_enum directive, starting with the optional space after the "define_enum". LINENO is the line number on which the directive started and MD_P is true if the directive is a define_enum rather than a define_c_enum. */ static void handle_enum (int lineno, bool md_p) { char *enum_name, *value_name; struct md_name name; struct enum_type *def; struct enum_value *ev; void **slot; int c; enum_name = read_string (false); slot = htab_find_slot (enum_types, &enum_name, INSERT); if (*slot) { def = (struct enum_type *) *slot; if (def->md_p != md_p) error_with_line (lineno, "redefining `%s' as a different type of enum", enum_name); } else { def = XNEW (struct enum_type); def->name = enum_name; def->md_p = md_p; def->values = 0; def->tail_ptr = &def->values; def->num_values = 0; *slot = def; } c = read_skip_spaces (); if (c != '[') fatal_expected_char ('[', c); while ((c = read_skip_spaces ()) != ']') { if (c == EOF) { error_with_line (lineno, "unterminated construct"); exit (1); } unread_char (c); read_name (&name); ev = XNEW (struct enum_value); ev->next = 0; if (md_p) { value_name = concat (def->name, "_", name.string, NULL); upcase_string (value_name); ev->name = xstrdup (name.string); } else { value_name = xstrdup (name.string); ev->name = value_name; } ev->def = add_constant (md_constants, value_name, decimal_string (def->num_values), def); *def->tail_ptr = ev; def->tail_ptr = &ev->next; def->num_values++; } } /* Try to find the definition of the given enum. Return null on failure. */ struct enum_type * lookup_enum_type (const char *name) { return (struct enum_type *) htab_find (enum_types, &name); } /* For every enum definition, call CALLBACK with two arguments: a pointer to the constant definition and INFO. Stop when CALLBACK returns zero. */ void traverse_enum_types (htab_trav callback, void *info) { htab_traverse (enum_types, callback, info); } /* Process an "include" directive, starting with the optional space after the "include". Read in the file and use HANDLE_DIRECTIVE to process each unknown directive. LINENO is the line number on which the "include" occured. */ static void handle_include (int lineno, directive_handler_t handle_directive) { const char *filename; const char *old_filename; int old_lineno; char *pathname; FILE *input_file, *old_file; filename = read_string (false); input_file = NULL; /* If the specified file name is absolute, skip the include stack. */ if (!IS_ABSOLUTE_PATH (filename)) { struct file_name_list *stackp; /* Search the directory path, trying to open the file. */ for (stackp = first_dir_md_include; stackp; stackp = stackp->next) { static const char sep[2] = { DIR_SEPARATOR, '\0' }; pathname = concat (stackp->fname, sep, filename, NULL); input_file = fopen (pathname, "r"); if (input_file != NULL) break; free (pathname); } } /* If we haven't managed to open the file yet, try combining the filename with BASE_DIR. */ if (input_file == NULL) { if (base_dir) pathname = concat (base_dir, filename, NULL); else pathname = xstrdup (filename); input_file = fopen (pathname, "r"); } if (input_file == NULL) { free (pathname); error_with_line (lineno, "include file `%s' not found", filename); return; } /* Save the old cursor. Note that the LINENO argument to this function is the beginning of the include statement, while read_md_lineno has already been advanced. */ old_file = read_md_file; old_filename = read_md_filename; old_lineno = read_md_lineno; if (include_callback) include_callback (pathname); read_md_file = input_file; read_md_filename = pathname; handle_file (handle_directive); /* Restore the old cursor. */ read_md_file = old_file; read_md_filename = old_filename; read_md_lineno = old_lineno; /* Do not free the pathname. It is attached to the various rtx queue elements. */ } /* Process the current file, assuming that read_md_file and read_md_filename are valid. Use HANDLE_DIRECTIVE to handle unknown directives. */ static void handle_file (directive_handler_t handle_directive) { struct md_name directive; int c, lineno; read_md_lineno = 1; while ((c = read_skip_spaces ()) != EOF) { lineno = read_md_lineno; if (c != '(') fatal_expected_char ('(', c); read_name (&directive); if (strcmp (directive.string, "define_constants") == 0) handle_constants (); else if (strcmp (directive.string, "define_enum") == 0) handle_enum (lineno, true); else if (strcmp (directive.string, "define_c_enum") == 0) handle_enum (lineno, false); else if (strcmp (directive.string, "include") == 0) handle_include (lineno, handle_directive); else if (handle_directive) handle_directive (lineno, directive.string); else read_skip_construct (1, lineno); c = read_skip_spaces (); if (c != ')') fatal_expected_char (')', c); } fclose (read_md_file); } /* Like handle_file, but for top-level files. Set up in_fname and base_dir accordingly. */ static void handle_toplevel_file (directive_handler_t handle_directive) { const char *base; in_fname = read_md_filename; base = lbasename (in_fname); if (base == in_fname) base_dir = NULL; else base_dir = xstrndup (in_fname, base - in_fname); handle_file (handle_directive); } /* Parse a -I option with argument ARG. */ static void parse_include (const char *arg) { struct file_name_list *dirtmp; dirtmp = XNEW (struct file_name_list); dirtmp->next = 0; dirtmp->fname = arg; *last_dir_md_include_ptr = dirtmp; last_dir_md_include_ptr = &dirtmp->next; if (strlen (dirtmp->fname) > max_include_len) max_include_len = strlen (dirtmp->fname); } /* The main routine for reading .md files. Try to process all the .md files specified on the command line and return true if no error occured. ARGC and ARGV are the arguments to main. PARSE_OPT, if nonnull, is passed all unknown command-line arguments. It should return true if it recognizes the argument or false if a generic error should be reported. If HANDLE_DIRECTIVE is nonnull, the parser calls it for each unknown directive, otherwise it just skips such directives. See the comment above the directive_handler_t definition for details about the callback's interface. */ bool read_md_files (int argc, char **argv, bool (*parse_opt) (const char *), directive_handler_t handle_directive) { int i; bool no_more_options; bool already_read_stdin; int num_files; /* Initialize global data. */ obstack_init (&string_obstack); ptr_locs = htab_create (161, leading_ptr_hash, leading_ptr_eq_p, 0); obstack_init (&ptr_loc_obstack); joined_conditions = htab_create (161, leading_ptr_hash, leading_ptr_eq_p, 0); obstack_init (&joined_conditions_obstack); md_constants = htab_create (31, leading_string_hash, leading_string_eq_p, (htab_del) 0); enum_types = htab_create (31, leading_string_hash, leading_string_eq_p, (htab_del) 0); /* Unlock the stdio streams. */ unlock_std_streams (); /* First we loop over all the options. */ for (i = 1; i < argc; i++) if (argv[i][0] == '-') { /* An argument consisting of exactly one dash is a request to read stdin. This will be handled in the second loop. */ if (argv[i][1] == '\0') continue; /* An argument consisting of just two dashes causes option parsing to cease. */ if (argv[i][1] == '-' && argv[i][2] == '\0') break; if (argv[i][1] == 'I') { if (argv[i][2] != '\0') parse_include (argv[i] + 2); else if (++i < argc) parse_include (argv[i]); else fatal ("directory name missing after -I option"); continue; } /* The program may have provided a callback so it can accept its own options. */ if (parse_opt && parse_opt (argv[i])) continue; fatal ("invalid option `%s'", argv[i]); } /* Now loop over all input files. */ num_files = 0; no_more_options = false; already_read_stdin = false; for (i = 1; i < argc; i++) { if (argv[i][0] == '-') { if (argv[i][1] == '\0') { /* Read stdin. */ if (already_read_stdin) fatal ("cannot read standard input twice"); read_md_file = stdin; read_md_filename = ""; handle_toplevel_file (handle_directive); already_read_stdin = true; continue; } else if (argv[i][1] == '-' && argv[i][2] == '\0') { /* No further arguments are to be treated as options. */ no_more_options = true; continue; } else if (!no_more_options) continue; } /* If we get here we are looking at a non-option argument, i.e. a file to be processed. */ read_md_filename = argv[i]; read_md_file = fopen (read_md_filename, "r"); if (read_md_file == 0) { perror (read_md_filename); return false; } handle_toplevel_file (handle_directive); num_files++; } /* If we get to this point without having seen any files to process, read the standard input now. */ if (num_files == 0 && !already_read_stdin) { read_md_file = stdin; read_md_filename = ""; handle_toplevel_file (handle_directive); } return !have_error; }