// exec.go -- fork/exec syscall support. // Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Fork, exec, wait, etc. package syscall import "unsafe" func libc_fcntl(fd int, cmd int, arg int) int __asm__ ("fcntl") func libc_fork() Pid_t __asm__ ("fork") func libc_chdir(name *byte) int __asm__ ("chdir"); func libc_dup2(int, int) int __asm__ ("dup2") func libc_execve(*byte, **byte, **byte) int __asm__ ("execve") func libc_sysexit(int) __asm__ ("_exit") func libc_wait4(Pid_t, *int, int, *Rusage) Pid_t __asm__ ("wait4") // Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child. // If a dup or exec fails, write the errno int to pipe. // (Pipe is close-on-exec so if exec succeeds, it will be closed.) // In the child, this function must not acquire any locks, because // they might have been locked at the time of the fork. This means // no rescheduling, no malloc calls, and no new stack segments. func forkAndExecInChild(argv0 *byte, argv []*byte, envv []*byte, traceme bool, dir *byte, fd []int, pipe int) (pid int, err int) { // Declare all variables at top in case any // declarations require heap allocation (e.g., err1). var r1, r2, err1 uintptr; var nextfd int; var i int; darwin := OS == "darwin"; // About to call fork. // No more allocation or calls of non-assembly functions. child := libc_fork(); if child == -1 { return 0, GetErrno(); } if child != 0 { // parent; return PID return int(child), 0 } // Fork succeeded, now in child. // Enable tracing if requested. if traceme { if libc_ptrace(_PTRACE_TRACEME, 0, 0, nil) < 0 { goto childerror; } } // Chdir if dir != nil { r := libc_chdir(dir); if r < 0 { goto childerror; } } // Pass 1: look for fd[i] < i and move those up above len(fd) // so that pass 2 won't stomp on an fd it needs later. nextfd = int(len(fd)); if pipe < nextfd { r := libc_dup2(pipe, nextfd); if r == -1 { goto childerror; } libc_fcntl(nextfd, F_SETFD, FD_CLOEXEC); pipe = nextfd; nextfd++; } for i = 0; i < len(fd); i++ { if fd[i] >= 0 && fd[i] < int(i) { r := libc_dup2(fd[i], nextfd); if r == -1 { goto childerror; } libc_fcntl(nextfd, F_SETFD, FD_CLOEXEC); fd[i] = nextfd; nextfd++; if nextfd == pipe { // don't stomp on pipe nextfd++; } } } // Pass 2: dup fd[i] down onto i. for i = 0; i < len(fd); i++ { if fd[i] == -1 { libc_close(i); continue; } if fd[i] == int(i) { // dup2(i, i) won't clear close-on-exec flag on Linux, // probably not elsewhere either. r := libc_fcntl(fd[i], F_SETFD, 0); if r != 0 { goto childerror; } continue; } // The new fd is created NOT close-on-exec, // which is exactly what we want. r := libc_dup2(fd[i], i); if r == -1 { goto childerror; } } // By convention, we don't close-on-exec the fds we are // started with, so if len(fd) < 3, close 0, 1, 2 as needed. // Programs that know they inherit fds >= 3 will need // to set them close-on-exec. for i = len(fd); i < 3; i++ { libc_close(i); } // Time to exec. libc_execve(argv0, &argv[0], &envv[0]); childerror: // send error code on pipe var e uintptr = uintptr(GetErrno()); libc_write(pipe, (*byte)(unsafe.Pointer(&e)), Size_t(unsafe.Sizeof(err1))); for { libc_sysexit(253) } // Calling panic is not actually safe, // but the for loop above won't break // and this shuts up the compiler. panic("unreached"); } func forkExec(argv0 string, argv []string, envv []string, traceme bool, dir string, fd []int) (pid int, err int) { var p [2]int; var r1 int; var err1 uintptr; var wstatus WaitStatus; p[0] = -1; p[1] = -1; // Convert args to C form. argv0p := StringBytePtr(argv0); argvp := StringArrayPtr(argv); envvp := StringArrayPtr(envv); var dirp *byte; if len(dir) > 0 { dirp = StringBytePtr(dir); } // Acquire the fork lock so that no other threads // create new fds that are not yet close-on-exec // before we fork. ForkLock.Lock(); // Allocate child status pipe close on exec. if err = Pipe(p[0:]); err != 0 { goto error; } var val int; if val, err = fcntl(p[0], F_SETFD, FD_CLOEXEC); err != 0 { goto error; } if val, err = fcntl(p[1], F_SETFD, FD_CLOEXEC); err != 0 { goto error; } // Kick off child. pid, err = forkAndExecInChild(argv0p, argvp, envvp, traceme, dirp, fd, p[1]); if err != 0 { error: if p[0] >= 0 { Close(p[0]); Close(p[1]); } ForkLock.Unlock(); return 0, err } ForkLock.Unlock(); // Read child error status from pipe. Close(p[1]); n := libc_read(p[0], (*byte)(unsafe.Pointer(&err1)), Size_t(unsafe.Sizeof(err1))); err = 0; if n < 0 { err = GetErrno(); } Close(p[0]); if err != 0 || n != 0 { if int(n) == unsafe.Sizeof(err1) { err = int(err1); } if err == 0 { err = EPIPE; } // Child failed; wait for it to exit, to make sure // the zombies don't accumulate. pid1, err1 := Wait4(pid, &wstatus, 0, nil); for err1 == EINTR { pid1, err1 = Wait4(pid, &wstatus, 0, nil); } return 0, err } // Read got EOF, so pipe closed on exec, so exec succeeded. return pid, 0 } // Combination of fork and exec, careful to be thread safe. func ForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) (pid int, err int) { return forkExec(argv0, argv, envv, false, dir, fd); } // PtraceForkExec is like ForkExec, but starts the child in a traced state. func PtraceForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) (pid int, err int) { return forkExec(argv0, argv, envv, true, dir, fd); } // Ordinary exec. func Exec(argv0 string, argv []string, envv []string) (err int) { argv_arg := StringArrayPtr(argv); envv_arg := StringArrayPtr(envv); libc_execve(StringBytePtr(argv0), &argv_arg[0], &envv_arg[0]); return GetErrno(); } func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, errno int) { var status int; r := libc_wait4(Pid_t(pid), &status, options, rusage); wpid = int(r); if r < 0 { errno = GetErrno(); } if wstatus != nil { *wstatus = WaitStatus(status); } return; }