/* * Copyright (c) 2001 by Hewlett-Packard Company. All rights reserved. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. * */ /* * This implements a full, though not well-tuned, representation of the * backwards points-to graph. This is used to test for non-GC-robust * data structures; the code is not used during normal garbage collection. * * One restriction is that we drop all back-edges from nodes with very * high in-degree, and simply add them add them to a list of such * nodes. They are then treated as permanent roots. Id this by itself * doesn't introduce a space leak, then such nodes can't contribute to * a growing space leak. */ #include "gc.h" /* For configuration information. */ #ifdef MAKE_BACK_GRAPH #define MAX_IN 10 /* Maximum in-degree we handle directly */ #include "private/dbg_mlc.h" #include #if !defined(DBG_HDRS_ALL) || (ALIGNMENT != CPP_WORDSZ/8) || !defined(UNIX_LIKE) # error Configuration doesnt support MAKE_BACK_GRAPH #endif /* We store single back pointers directly in the object's oh_bg_ptr field. */ /* If there is more than one ptr to an object, we store q | FLAG_MANY, */ /* where q is a pointer to a back_edges object. */ /* Every once in a while we use a back_edges object even for a single */ /* pointer, since we need the other fields in the back_edges structure to */ /* be present in some fraction of the objects. Otherwise we get serious */ /* performance issues. */ #define FLAG_MANY 2 typedef struct back_edges_struct { word n_edges; /* Number of edges, including those in continuation */ /* structures. */ unsigned short flags; # define RETAIN 1 /* Directly points to a reachable object; */ /* retain for next GC. */ unsigned short height_gc_no; /* If height > 0, then the GC_gc_no value when it */ /* was computed. If it was computed this cycle, then */ /* it is current. If it was computed during the */ /* last cycle, then it represents the old height, */ /* which is only saved for live objects referenced by */ /* dead ones. This may grow due to refs from newly */ /* dead objects. */ signed_word height; /* Longest path through unreachable nodes to this node */ /* that we found using depth first search. */ # define HEIGHT_UNKNOWN ((signed_word)(-2)) # define HEIGHT_IN_PROGRESS ((signed_word)(-1)) ptr_t edges[MAX_IN]; struct back_edges_struct *cont; /* Pointer to continuation structure; we use only the */ /* edges field in the continuation. */ /* also used as free list link. */ } back_edges; /* Allocate a new back edge structure. Should be more sophisticated */ /* if this were production code. */ #define MAX_BACK_EDGE_STRUCTS 100000 static back_edges *back_edge_space = 0; int GC_n_back_edge_structs = 0; /* Serves as pointer to never used */ /* back_edges space. */ static back_edges *avail_back_edges = 0; /* Pointer to free list of deallocated */ /* back_edges structures. */ static back_edges * new_back_edges(void) { if (0 == back_edge_space) { back_edge_space = (back_edges *) GET_MEM(MAX_BACK_EDGE_STRUCTS*sizeof(back_edges)); } if (0 != avail_back_edges) { back_edges * result = avail_back_edges; avail_back_edges = result -> cont; result -> cont = 0; return result; } if (GC_n_back_edge_structs >= MAX_BACK_EDGE_STRUCTS - 1) { ABORT("needed too much space for back edges: adjust " "MAX_BACK_EDGE_STRUCTS"); } return back_edge_space + (GC_n_back_edge_structs++); } /* Deallocate p and its associated continuation structures. */ static void deallocate_back_edges(back_edges *p) { back_edges *last = p; while (0 != last -> cont) last = last -> cont; last -> cont = avail_back_edges; avail_back_edges = p; } /* Table of objects that are currently on the depth-first search */ /* stack. Only objects with in-degree one are in this table. */ /* Other objects are identified using HEIGHT_IN_PROGRESS. */ /* FIXME: This data structure NEEDS IMPROVEMENT. */ #define INITIAL_IN_PROGRESS 10000 static ptr_t * in_progress_space = 0; static size_t in_progress_size = 0; static size_t n_in_progress = 0; static void push_in_progress(ptr_t p) { if (n_in_progress >= in_progress_size) if (in_progress_size == 0) { in_progress_size = INITIAL_IN_PROGRESS; in_progress_space = (ptr_t *)GET_MEM(in_progress_size * sizeof(ptr_t)); } else { ptr_t * new_in_progress_space; in_progress_size *= 2; new_in_progress_space = (ptr_t *) GET_MEM(in_progress_size * sizeof(ptr_t)); BCOPY(in_progress_space, new_in_progress_space, n_in_progress * sizeof(ptr_t)); in_progress_space = new_in_progress_space; /* FIXME: This just drops the old space. */ } if (in_progress_space == 0) ABORT("MAKE_BACK_GRAPH: Out of in-progress space: " "Huge linear data structure?"); in_progress_space[n_in_progress++] = p; } static GC_bool is_in_progress(ptr_t p) { int i; for (i = 0; i < n_in_progress; ++i) { if (in_progress_space[i] == p) return TRUE; } return FALSE; } static void pop_in_progress(ptr_t p) { --n_in_progress; GC_ASSERT(in_progress_space[n_in_progress] == p); } #define GET_OH_BG_PTR(p) \ (ptr_t)REVEAL_POINTER(((oh *)(p)) -> oh_bg_ptr) #define SET_OH_BG_PTR(p,q) (((oh *)(p)) -> oh_bg_ptr) = HIDE_POINTER(q) /* Execute s once for each predecessor q of p in the points-to graph. */ /* s should be a bracketed statement. We declare q. */ #define FOR_EACH_PRED(q, p, s) \ { \ ptr_t q = GET_OH_BG_PTR(p); \ if (!((word)q & FLAG_MANY)) { \ if (q && !((word)q & 1)) s \ /* !((word)q & 1) checks for a misnterpreted freelist link */ \ } else { \ back_edges *orig_be_ = (back_edges *)((word)q & ~FLAG_MANY); \ back_edges *be_ = orig_be_; \ int total_, local_; \ int n_edges_ = be_ -> n_edges; \ for (total_ = 0, local_ = 0; total_ < n_edges_; ++local_, ++total_) { \ if (local_ == MAX_IN) { \ be_ = be_ -> cont; \ local_ = 0; \ } \ q = be_ -> edges[local_]; s \ } \ } \ } /* Ensure that p has a back_edges structure associated with it. */ static void ensure_struct(ptr_t p) { ptr_t old_back_ptr = GET_OH_BG_PTR(p); if (!((word)old_back_ptr & FLAG_MANY)) { back_edges *be = new_back_edges(); be -> flags = 0; if (0 == old_back_ptr) { be -> n_edges = 0; } else { be -> n_edges = 1; be -> edges[0] = old_back_ptr; } be -> height = HEIGHT_UNKNOWN; be -> height_gc_no = GC_gc_no - 1; GC_ASSERT(be >= back_edge_space); SET_OH_BG_PTR(p, (word)be | FLAG_MANY); } } /* Add the (forward) edge from p to q to the backward graph. Both p */ /* q are pointers to the object base, i.e. pointers to an oh. */ static void add_edge(ptr_t p, ptr_t q) { ptr_t old_back_ptr = GET_OH_BG_PTR(q); back_edges * be, *be_cont; word i; static unsigned random_number = 13; # define GOT_LUCKY_NUMBER (((++random_number) & 0x7f) == 0) /* A not very random number we use to occasionally allocate a */ /* back_edges structure even for a single backward edge. This */ /* prevents us from repeatedly tracing back through very long */ /* chains, since we will have some place to store height and */ /* in_progress flags along the way. */ GC_ASSERT(p == GC_base(p) && q == GC_base(q)); if (!GC_HAS_DEBUG_INFO(q) || !GC_HAS_DEBUG_INFO(p)) { /* This is really a misinterpreted free list link, since we saw */ /* a pointer to a free list. Dont overwrite it! */ return; } if (0 == old_back_ptr) { SET_OH_BG_PTR(q, p); if (GOT_LUCKY_NUMBER) ensure_struct(q); return; } /* Check whether it was already in the list of predecessors. */ FOR_EACH_PRED(pred, q, { if (p == pred) return; }); ensure_struct(q); old_back_ptr = GET_OH_BG_PTR(q); be = (back_edges *)((word)old_back_ptr & ~FLAG_MANY); for (i = be -> n_edges, be_cont = be; i > MAX_IN; be_cont = be_cont -> cont, i -= MAX_IN) {} if (i == MAX_IN) { be_cont -> cont = new_back_edges(); be_cont = be_cont -> cont; i = 0; } be_cont -> edges[i] = p; be -> n_edges++; if (be -> n_edges == 100) { # if 0 if (GC_print_stats) { GC_err_printf0("The following object has in-degree >= 100:\n"); GC_print_heap_obj(q); } # endif } } typedef void (*per_object_func)(ptr_t p, word n_words, word gc_descr); static void per_object_helper(struct hblk *h, word fn) { hdr * hhdr = HDR(h); word sz = hhdr -> hb_sz; word descr = hhdr -> hb_descr; per_object_func f = (per_object_func)fn; int i = 0; do { f((ptr_t)(h -> hb_body + i), sz, descr); i += sz; } while (i + sz <= BYTES_TO_WORDS(HBLKSIZE)); } void GC_apply_to_each_object(per_object_func f) { GC_apply_to_all_blocks(per_object_helper, (word)f); } static void reset_back_edge(ptr_t p, word n_words, word gc_descr) { /* Skip any free list links, or dropped blocks */ if (GC_HAS_DEBUG_INFO(p)) { ptr_t old_back_ptr = GET_OH_BG_PTR(p); if ((word)old_back_ptr & FLAG_MANY) { back_edges *be = (back_edges *)((word)old_back_ptr & ~FLAG_MANY); if (!(be -> flags & RETAIN)) { deallocate_back_edges(be); SET_OH_BG_PTR(p, 0); } else { word *currentp; GC_ASSERT(GC_is_marked(p)); /* Back edges may point to objects that will not be retained. */ /* Delete them for now, but remember the height. */ /* Some will be added back at next GC. */ be -> n_edges = 0; if (0 != be -> cont) { deallocate_back_edges(be -> cont); be -> cont = 0; } GC_ASSERT(GC_is_marked(p)); /* We only retain things for one GC cycle at a time. */ be -> flags &= ~RETAIN; } } else /* Simple back pointer */ { /* Clear to avoid dangling pointer. */ SET_OH_BG_PTR(p, 0); } } } static void add_back_edges(ptr_t p, word n_words, word gc_descr) { word *currentp = (word *)(p + sizeof(oh)); /* For now, fix up non-length descriptors conservatively. */ if((gc_descr & GC_DS_TAGS) != GC_DS_LENGTH) { gc_descr = WORDS_TO_BYTES(n_words); } while (currentp < (word *)(p + gc_descr)) { word current = *currentp++; FIXUP_POINTER(current); if (current >= (word)GC_least_plausible_heap_addr && current <= (word)GC_greatest_plausible_heap_addr) { ptr_t target = GC_base((GC_PTR)current); if (0 != target) { add_edge(p, target); } } } } /* Rebuild the representation of the backward reachability graph. */ /* Does not examine mark bits. Can be called before GC. */ void GC_build_back_graph(void) { GC_apply_to_each_object(add_back_edges); } /* Return an approximation to the length of the longest simple path */ /* through unreachable objects to p. We refer to this as the height */ /* of p. */ static word backwards_height(ptr_t p) { word result; ptr_t back_ptr = GET_OH_BG_PTR(p); back_edges *be; if (0 == back_ptr) return 1; if (!((word)back_ptr & FLAG_MANY)) { if (is_in_progress(p)) return 0; /* DFS back edge, i.e. we followed */ /* an edge to an object already */ /* on our stack: ignore */ push_in_progress(p); result = backwards_height(back_ptr)+1; pop_in_progress(p); return result; } be = (back_edges *)((word)back_ptr & ~FLAG_MANY); if (be -> height >= 0 && be -> height_gc_no == GC_gc_no) return be -> height; /* Ignore back edges in DFS */ if (be -> height == HEIGHT_IN_PROGRESS) return 0; result = (be -> height > 0? be -> height : 1); be -> height = HEIGHT_IN_PROGRESS; FOR_EACH_PRED(q, p, { word this_height; if (GC_is_marked(q) && !(FLAG_MANY & (word)GET_OH_BG_PTR(p))) { if (GC_print_stats) GC_printf2("Found bogus pointer from 0x%lx to 0x%lx\n", q, p); /* Reachable object "points to" unreachable one. */ /* Could be caused by our lax treatment of GC descriptors. */ this_height = 1; } else { this_height = backwards_height(q); } if (this_height >= result) result = this_height + 1; }); be -> height = result; be -> height_gc_no = GC_gc_no; return result; } word GC_max_height; ptr_t GC_deepest_obj; /* Compute the maximum height of every unreachable predecessor p of a */ /* reachable object. Arrange to save the heights of all such objects p */ /* so that they can be used in calculating the height of objects in the */ /* next GC. */ /* Set GC_max_height to be the maximum height we encounter, and */ /* GC_deepest_obj to be the corresponding object. */ static void update_max_height(ptr_t p, word n_words, word gc_descr) { if (GC_is_marked(p) && GC_HAS_DEBUG_INFO(p)) { int i; word p_height = 0; ptr_t p_deepest_obj = 0; ptr_t back_ptr; back_edges *be = 0; /* If we remembered a height last time, use it as a minimum. */ /* It may have increased due to newly unreachable chains pointing */ /* to p, but it can't have decreased. */ back_ptr = GET_OH_BG_PTR(p); if (0 != back_ptr && ((word)back_ptr & FLAG_MANY)) { be = (back_edges *)((word)back_ptr & ~FLAG_MANY); if (be -> height != HEIGHT_UNKNOWN) p_height = be -> height; } FOR_EACH_PRED(q, p, { if (!GC_is_marked(q) && GC_HAS_DEBUG_INFO(q)) { word q_height; q_height = backwards_height(q); if (q_height > p_height) { p_height = q_height; p_deepest_obj = q; } } }); if (p_height > 0) { /* Remember the height for next time. */ if (be == 0) { ensure_struct(p); back_ptr = GET_OH_BG_PTR(p); be = (back_edges *)((word)back_ptr & ~FLAG_MANY); } be -> flags |= RETAIN; be -> height = p_height; be -> height_gc_no = GC_gc_no; } if (p_height > GC_max_height) { GC_max_height = p_height; GC_deepest_obj = p_deepest_obj; } } } word GC_max_max_height = 0; void GC_traverse_back_graph(void) { GC_max_height = 0; GC_apply_to_each_object(update_max_height); } void GC_print_back_graph_stats(void) { GC_printf2("Maximum backwards height of reachable objects at GC %lu is %ld\n", (unsigned long) GC_gc_no, GC_max_height); if (GC_max_height > GC_max_max_height) { GC_max_max_height = GC_max_height; GC_printf0("The following unreachable object is last in a longest chain " "of unreachable objects:\n"); GC_print_heap_obj(GC_deepest_obj); } if (GC_print_stats) { GC_printf1("Needed max total of %ld back-edge structs\n", GC_n_back_edge_structs); } GC_apply_to_each_object(reset_back_edge); GC_deepest_obj = 0; } #endif /* MAKE_BACK_GRAPH */