// -*- C++ -*- // Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the terms // of the GNU General Public License as published by the Free Software // Foundation; either version 3, or (at your option) any later // version. // This library is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file parallel/queue.h * @brief Lock-free double-ended queue. * This file is a GNU parallel extension to the Standard C++ Library. */ // Written by Johannes Singler. #ifndef _GLIBCXX_PARALLEL_QUEUE_H #define _GLIBCXX_PARALLEL_QUEUE_H 1 #include #include #include /** @brief Decide whether to declare certain variable volatile in this file. */ #define _GLIBCXX_VOLATILE volatile namespace __gnu_parallel { /**@brief Double-ended queue of bounded size, allowing lock-free * atomic access. push_front() and pop_front() must not be called * concurrently to each other, while pop_back() can be called * concurrently at all times. * @c empty(), @c size(), and @c top() are intentionally not provided. * Calling them would not make sense in a concurrent setting. * @param T Contained element type. */ template class RestrictedBoundedConcurrentQueue { private: /** @brief Array of elements, seen as cyclic buffer. */ T* base; /** @brief Maximal number of elements contained at the same time. */ sequence_index_t max_size; /** @brief Cyclic begin and end pointers contained in one atomically changeable value. */ _GLIBCXX_VOLATILE lcas_t borders; public: /** @brief Constructor. Not to be called concurrent, of course. * @param max_size Maximal number of elements to be contained. */ RestrictedBoundedConcurrentQueue(sequence_index_t max_size) { this->max_size = max_size; base = new T[max_size]; borders = encode2(0, 0); #pragma omp flush } /** @brief Destructor. Not to be called concurrent, of course. */ ~RestrictedBoundedConcurrentQueue() { delete[] base; } /** @brief Pushes one element into the queue at the front end. * Must not be called concurrently with pop_front(). */ void push_front(const T& t) { lcas_t former_borders = borders; int former_front, former_back; decode2(former_borders, former_front, former_back); *(base + former_front % max_size) = t; #if _GLIBCXX_ASSERTIONS // Otherwise: front - back > max_size eventually. _GLIBCXX_PARALLEL_ASSERT(((former_front + 1) - former_back) <= max_size); #endif fetch_and_add(&borders, encode2(1, 0)); } /** @brief Pops one element from the queue at the front end. * Must not be called concurrently with pop_front(). */ bool pop_front(T& t) { int former_front, former_back; #pragma omp flush decode2(borders, former_front, former_back); while (former_front > former_back) { // Chance. lcas_t former_borders = encode2(former_front, former_back); lcas_t new_borders = encode2(former_front - 1, former_back); if (compare_and_swap(&borders, former_borders, new_borders)) { t = *(base + (former_front - 1) % max_size); return true; } #pragma omp flush decode2(borders, former_front, former_back); } return false; } /** @brief Pops one element from the queue at the front end. * Must not be called concurrently with pop_front(). */ bool pop_back(T& t) //queue behavior { int former_front, former_back; #pragma omp flush decode2(borders, former_front, former_back); while (former_front > former_back) { // Chance. lcas_t former_borders = encode2(former_front, former_back); lcas_t new_borders = encode2(former_front, former_back + 1); if (compare_and_swap(&borders, former_borders, new_borders)) { t = *(base + former_back % max_size); return true; } #pragma omp flush decode2(borders, former_front, former_back); } return false; } }; } //namespace __gnu_parallel #undef _GLIBCXX_VOLATILE #endif /* _GLIBCXX_PARALLEL_QUEUE_H */