// -*- C++ -*- // Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the terms // of the GNU General Public License as published by the Free Software // Foundation; either version 3, or (at your option) any later // version. // This library is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** * @file parallel/numeric * * @brief Parallel STL function calls corresponding to stl_numeric.h. * The functions defined here mainly do case switches and * call the actual parallelized versions in other files. * Inlining policy: Functions that basically only contain one function call, * are declared inline. * This file is a GNU parallel extension to the Standard C++ Library. */ // Written by Johannes Singler and Felix Putze. #ifndef _GLIBCXX_PARALLEL_NUMERIC_H #define _GLIBCXX_PARALLEL_NUMERIC_H 1 #include #include #include #include #include #include #include namespace std { namespace __parallel { // Sequential fallback. template inline T accumulate(InputIterator begin, InputIterator end, T init, __gnu_parallel::sequential_tag) { return _GLIBCXX_STD_P::accumulate(begin, end, init); } template inline T accumulate(InputIterator begin, InputIterator end, T init, BinaryOperation binary_op, __gnu_parallel::sequential_tag) { return _GLIBCXX_STD_P::accumulate(begin, end, init, binary_op); } // Sequential fallback for input iterator case. template inline T accumulate_switch(InputIterator begin, InputIterator end, T init, IteratorTag) { return accumulate(begin, end, init, __gnu_parallel::sequential_tag()); } template inline T accumulate_switch(InputIterator begin, InputIterator end, T init, BinaryOperation binary_op, IteratorTag) { return accumulate(begin, end, init, binary_op, __gnu_parallel::sequential_tag()); } // Parallel algorithm for random access iterators. template T accumulate_switch(_RandomAccessIterator begin, _RandomAccessIterator end, T init, BinaryOperation binary_op, random_access_iterator_tag, __gnu_parallel::_Parallelism parallelism_tag = __gnu_parallel::parallel_unbalanced) { if (_GLIBCXX_PARALLEL_CONDITION( static_cast<__gnu_parallel::sequence_index_t>(end - begin) >= __gnu_parallel::_Settings::get().accumulate_minimal_n && __gnu_parallel::is_parallel(parallelism_tag))) { T res = init; __gnu_parallel::accumulate_selector<_RandomAccessIterator> my_selector; __gnu_parallel:: for_each_template_random_access_ed(begin, end, __gnu_parallel::nothing(), my_selector, __gnu_parallel:: accumulate_binop_reduct (binary_op), res, res, -1); return res; } else return accumulate(begin, end, init, binary_op, __gnu_parallel::sequential_tag()); } // Public interface. template inline T accumulate(InputIterator begin, InputIterator end, T init, __gnu_parallel::_Parallelism parallelism_tag) { typedef std::iterator_traits iterator_traits; typedef typename iterator_traits::value_type value_type; typedef typename iterator_traits::iterator_category iterator_category; return accumulate_switch(begin, end, init, __gnu_parallel::plus(), iterator_category(), parallelism_tag); } template inline T accumulate(InputIterator begin, InputIterator end, T init) { typedef std::iterator_traits iterator_traits; typedef typename iterator_traits::value_type value_type; typedef typename iterator_traits::iterator_category iterator_category; return accumulate_switch(begin, end, init, __gnu_parallel::plus(), iterator_category()); } template inline T accumulate(InputIterator begin, InputIterator end, T init, BinaryOperation binary_op, __gnu_parallel::_Parallelism parallelism_tag) { typedef iterator_traits iterator_traits; typedef typename iterator_traits::iterator_category iterator_category; return accumulate_switch(begin, end, init, binary_op, iterator_category(), parallelism_tag); } template inline T accumulate(InputIterator begin, InputIterator end, T init, BinaryOperation binary_op) { typedef iterator_traits iterator_traits; typedef typename iterator_traits::iterator_category iterator_category; return accumulate_switch(begin, end, init, binary_op, iterator_category()); } // Sequential fallback. template inline T inner_product(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init, __gnu_parallel::sequential_tag) { return _GLIBCXX_STD_P::inner_product(first1, last1, first2, init); } template inline T inner_product(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init, BinaryFunction1 binary_op1, BinaryFunction2 binary_op2, __gnu_parallel::sequential_tag) { return _GLIBCXX_STD_P::inner_product(first1, last1, first2, init, binary_op1, binary_op2); } // Parallel algorithm for random access iterators. template T inner_product_switch(RandomAccessIterator1 first1, RandomAccessIterator1 last1, RandomAccessIterator2 first2, T init, BinaryFunction1 binary_op1, BinaryFunction2 binary_op2, random_access_iterator_tag, random_access_iterator_tag, __gnu_parallel::_Parallelism parallelism_tag = __gnu_parallel::parallel_unbalanced) { if (_GLIBCXX_PARALLEL_CONDITION((last1 - first1) >= __gnu_parallel::_Settings::get(). accumulate_minimal_n && __gnu_parallel:: is_parallel(parallelism_tag))) { T res = init; __gnu_parallel:: inner_product_selector my_selector(first1, first2); __gnu_parallel:: for_each_template_random_access_ed(first1, last1, binary_op2, my_selector, binary_op1, res, res, -1); return res; } else return inner_product(first1, last1, first2, init, __gnu_parallel::sequential_tag()); } // No parallelism for input iterators. template inline T inner_product_switch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init, BinaryFunction1 binary_op1, BinaryFunction2 binary_op2, IteratorTag1, IteratorTag2) { return inner_product(first1, last1, first2, init, binary_op1, binary_op2, __gnu_parallel::sequential_tag()); } template inline T inner_product(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init, BinaryFunction1 binary_op1, BinaryFunction2 binary_op2, __gnu_parallel::_Parallelism parallelism_tag) { typedef iterator_traits traits1_type; typedef typename traits1_type::iterator_category iterator1_category; typedef iterator_traits traits2_type; typedef typename traits2_type::iterator_category iterator2_category; return inner_product_switch(first1, last1, first2, init, binary_op1, binary_op2, iterator1_category(), iterator2_category(), parallelism_tag); } template inline T inner_product(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init, BinaryFunction1 binary_op1, BinaryFunction2 binary_op2) { typedef iterator_traits traits1_type; typedef typename traits1_type::iterator_category iterator1_category; typedef iterator_traits traits2_type; typedef typename traits2_type::iterator_category iterator2_category; return inner_product_switch(first1, last1, first2, init, binary_op1, binary_op2, iterator1_category(), iterator2_category()); } template inline T inner_product(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init, __gnu_parallel::_Parallelism parallelism_tag) { typedef iterator_traits traits_type1; typedef typename traits_type1::value_type value_type1; typedef iterator_traits traits_type2; typedef typename traits_type2::value_type value_type2; typedef typename __gnu_parallel::multiplies::result multiplies_result_type; return inner_product(first1, last1, first2, init, __gnu_parallel::plus(), __gnu_parallel:: multiplies(), parallelism_tag); } template inline T inner_product(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init) { typedef iterator_traits traits_type1; typedef typename traits_type1::value_type value_type1; typedef iterator_traits traits_type2; typedef typename traits_type2::value_type value_type2; typedef typename __gnu_parallel::multiplies::result multiplies_result_type; return inner_product(first1, last1, first2, init, __gnu_parallel::plus(), __gnu_parallel:: multiplies()); } // Sequential fallback. template inline OutputIterator partial_sum(InputIterator begin, InputIterator end, OutputIterator result, __gnu_parallel::sequential_tag) { return _GLIBCXX_STD_P::partial_sum(begin, end, result); } // Sequential fallback. template inline OutputIterator partial_sum(InputIterator begin, InputIterator end, OutputIterator result, BinaryOperation bin_op, __gnu_parallel::sequential_tag) { return _GLIBCXX_STD_P::partial_sum(begin, end, result, bin_op); } // Sequential fallback for input iterator case. template inline OutputIterator partial_sum_switch(InputIterator begin, InputIterator end, OutputIterator result, BinaryOperation bin_op, IteratorTag1, IteratorTag2) { return _GLIBCXX_STD_P::partial_sum(begin, end, result, bin_op); } // Parallel algorithm for random access iterators. template OutputIterator partial_sum_switch(InputIterator begin, InputIterator end, OutputIterator result, BinaryOperation bin_op, random_access_iterator_tag, random_access_iterator_tag) { if (_GLIBCXX_PARALLEL_CONDITION( static_cast<__gnu_parallel::sequence_index_t>(end - begin) >= __gnu_parallel::_Settings::get().partial_sum_minimal_n)) return __gnu_parallel::parallel_partial_sum(begin, end, result, bin_op); else return partial_sum(begin, end, result, bin_op, __gnu_parallel::sequential_tag()); } // Public interface. template inline OutputIterator partial_sum(InputIterator begin, InputIterator end, OutputIterator result) { typedef typename iterator_traits::value_type value_type; return partial_sum(begin, end, result, std::plus()); } // Public interface template inline OutputIterator partial_sum(InputIterator begin, InputIterator end, OutputIterator result, BinaryOperation binary_op) { typedef iterator_traits traitsi_type; typedef typename traitsi_type::iterator_category iteratori_category; typedef iterator_traits traitso_type; typedef typename traitso_type::iterator_category iteratoro_category; return partial_sum_switch(begin, end, result, binary_op, iteratori_category(), iteratoro_category()); } // Sequential fallback. template inline OutputIterator adjacent_difference(InputIterator begin, InputIterator end, OutputIterator result, __gnu_parallel::sequential_tag) { return _GLIBCXX_STD_P::adjacent_difference(begin, end, result); } // Sequential fallback. template inline OutputIterator adjacent_difference(InputIterator begin, InputIterator end, OutputIterator result, BinaryOperation bin_op, __gnu_parallel::sequential_tag) { return _GLIBCXX_STD_P::adjacent_difference(begin, end, result, bin_op); } // Sequential fallback for input iterator case. template inline OutputIterator adjacent_difference_switch(InputIterator begin, InputIterator end, OutputIterator result, BinaryOperation bin_op, IteratorTag1, IteratorTag2) { return adjacent_difference(begin, end, result, bin_op, __gnu_parallel::sequential_tag()); } // Parallel algorithm for random access iterators. template OutputIterator adjacent_difference_switch(InputIterator begin, InputIterator end, OutputIterator result, BinaryOperation bin_op, random_access_iterator_tag, random_access_iterator_tag, __gnu_parallel::_Parallelism parallelism_tag = __gnu_parallel::parallel_balanced) { if (_GLIBCXX_PARALLEL_CONDITION( static_cast<__gnu_parallel::sequence_index_t>(end - begin) >= __gnu_parallel::_Settings::get().adjacent_difference_minimal_n && __gnu_parallel::is_parallel(parallelism_tag))) { bool dummy = true; typedef __gnu_parallel::iterator_pair ip; *result = *begin; ip begin_pair(begin + 1, result + 1), end_pair(end, result + (end - begin)); __gnu_parallel::adjacent_difference_selector functionality; __gnu_parallel:: for_each_template_random_access_ed(begin_pair, end_pair, bin_op, functionality, __gnu_parallel::dummy_reduct(), dummy, dummy, -1); return functionality.finish_iterator; } else return adjacent_difference(begin, end, result, bin_op, __gnu_parallel::sequential_tag()); } // Public interface. template inline OutputIterator adjacent_difference(InputIterator begin, InputIterator end, OutputIterator result, __gnu_parallel::_Parallelism parallelism_tag) { typedef iterator_traits traits_type; typedef typename traits_type::value_type value_type; return adjacent_difference(begin, end, result, std::minus(), parallelism_tag); } template inline OutputIterator adjacent_difference(InputIterator begin, InputIterator end, OutputIterator result) { typedef iterator_traits traits_type; typedef typename traits_type::value_type value_type; return adjacent_difference(begin, end, result, std::minus()); } template inline OutputIterator adjacent_difference(InputIterator begin, InputIterator end, OutputIterator result, BinaryOperation binary_op, __gnu_parallel::_Parallelism parallelism_tag) { typedef iterator_traits traitsi_type; typedef typename traitsi_type::iterator_category iteratori_category; typedef iterator_traits traitso_type; typedef typename traitso_type::iterator_category iteratoro_category; return adjacent_difference_switch(begin, end, result, binary_op, iteratori_category(), iteratoro_category(), parallelism_tag); } template inline OutputIterator adjacent_difference(InputIterator begin, InputIterator end, OutputIterator result, BinaryOperation binary_op) { typedef iterator_traits traitsi_type; typedef typename traitsi_type::iterator_category iteratori_category; typedef iterator_traits traitso_type; typedef typename traitso_type::iterator_category iteratoro_category; return adjacent_difference_switch(begin, end, result, binary_op, iteratori_category(), iteratoro_category()); } } // end namespace } // end namespace #endif /* _GLIBCXX_NUMERIC_H */