// Debugging support implementation -*- C++ -*- // Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file debug/functions.h * This file is a GNU debug extension to the Standard C++ Library. */ #ifndef _GLIBCXX_DEBUG_FUNCTIONS_H #define _GLIBCXX_DEBUG_FUNCTIONS_H 1 #include #include // for ptrdiff_t #include // for iterator_traits, categories #include // for __is_integer namespace __gnu_debug { template class _Safe_iterator; // An arbitrary iterator pointer is not singular. inline bool __check_singular_aux(const void*) { return false; } // We may have an iterator that derives from _Safe_iterator_base but isn't // a _Safe_iterator. template inline bool __check_singular(_Iterator& __x) { return __check_singular_aux(&__x); } /** Non-NULL pointers are nonsingular. */ template inline bool __check_singular(const _Tp* __ptr) { return __ptr == 0; } /** Safe iterators know if they are singular. */ template inline bool __check_singular(const _Safe_iterator<_Iterator, _Sequence>& __x) { return __x._M_singular(); } /** Assume that some arbitrary iterator is dereferenceable, because we can't prove that it isn't. */ template inline bool __check_dereferenceable(_Iterator&) { return true; } /** Non-NULL pointers are dereferenceable. */ template inline bool __check_dereferenceable(const _Tp* __ptr) { return __ptr; } /** Safe iterators know if they are singular. */ template inline bool __check_dereferenceable(const _Safe_iterator<_Iterator, _Sequence>& __x) { return __x._M_dereferenceable(); } /** If the distance between two random access iterators is * nonnegative, assume the range is valid. */ template inline bool __valid_range_aux2(const _RandomAccessIterator& __first, const _RandomAccessIterator& __last, std::random_access_iterator_tag) { return __last - __first >= 0; } /** Can't test for a valid range with input iterators, because * iteration may be destructive. So we just assume that the range * is valid. */ template inline bool __valid_range_aux2(const _InputIterator&, const _InputIterator&, std::input_iterator_tag) { return true; } /** We say that integral types for a valid range, and defer to other * routines to realize what to do with integral types instead of * iterators. */ template inline bool __valid_range_aux(const _Integral&, const _Integral&, std::__true_type) { return true; } /** We have iterators, so figure out what kind of iterators that are * to see if we can check the range ahead of time. */ template inline bool __valid_range_aux(const _InputIterator& __first, const _InputIterator& __last, std::__false_type) { typedef typename std::iterator_traits<_InputIterator>::iterator_category _Category; return __valid_range_aux2(__first, __last, _Category()); } /** Don't know what these iterators are, or if they are even * iterators (we may get an integral type for InputIterator), so * see if they are integral and pass them on to the next phase * otherwise. */ template inline bool __valid_range(const _InputIterator& __first, const _InputIterator& __last) { typedef typename std::__is_integer<_InputIterator>::__type _Integral; return __valid_range_aux(__first, __last, _Integral()); } /** Safe iterators know how to check if they form a valid range. */ template inline bool __valid_range(const _Safe_iterator<_Iterator, _Sequence>& __first, const _Safe_iterator<_Iterator, _Sequence>& __last) { return __first._M_valid_range(__last); } /* Checks that [first, last) is a valid range, and then returns * __first. This routine is useful when we can't use a separate * assertion statement because, e.g., we are in a constructor. */ template inline _InputIterator __check_valid_range(const _InputIterator& __first, const _InputIterator& __last __attribute__((__unused__))) { _GLIBCXX_DEBUG_ASSERT(__valid_range(__first, __last)); return __first; } /** Checks that __s is non-NULL or __n == 0, and then returns __s. */ template inline const _CharT* __check_string(const _CharT* __s, const _Integer& __n __attribute__((__unused__))) { #ifdef _GLIBCXX_DEBUG_PEDANTIC _GLIBCXX_DEBUG_ASSERT(__s != 0 || __n == 0); #endif return __s; } /** Checks that __s is non-NULL and then returns __s. */ template inline const _CharT* __check_string(const _CharT* __s) { #ifdef _GLIBCXX_DEBUG_PEDANTIC _GLIBCXX_DEBUG_ASSERT(__s != 0); #endif return __s; } // Can't check if an input iterator sequence is sorted, because we // can't step through the sequence. template inline bool __check_sorted_aux(const _InputIterator&, const _InputIterator&, std::input_iterator_tag) { return true; } // Can verify if a forward iterator sequence is in fact sorted using // std::__is_sorted template inline bool __check_sorted_aux(_ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag) { if (__first == __last) return true; _ForwardIterator __next = __first; for (++__next; __next != __last; __first = __next, ++__next) if (*__next < *__first) return false; return true; } // Can't check if an input iterator sequence is sorted, because we can't step // through the sequence. template inline bool __check_sorted_aux(const _InputIterator&, const _InputIterator&, _Predicate, std::input_iterator_tag) { return true; } // Can verify if a forward iterator sequence is in fact sorted using // std::__is_sorted template inline bool __check_sorted_aux(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, std::forward_iterator_tag) { if (__first == __last) return true; _ForwardIterator __next = __first; for (++__next; __next != __last; __first = __next, ++__next) if (__pred(*__next, *__first)) return false; return true; } // Determine if a sequence is sorted. template inline bool __check_sorted(const _InputIterator& __first, const _InputIterator& __last) { typedef typename std::iterator_traits<_InputIterator>::iterator_category _Category; // Verify that the < operator for elements in the sequence is a // StrictWeakOrdering by checking that it is irreflexive. _GLIBCXX_DEBUG_ASSERT(__first == __last || !(*__first < *__first)); return __check_sorted_aux(__first, __last, _Category()); } template inline bool __check_sorted(const _InputIterator& __first, const _InputIterator& __last, _Predicate __pred) { typedef typename std::iterator_traits<_InputIterator>::iterator_category _Category; // Verify that the predicate is StrictWeakOrdering by checking that it // is irreflexive. _GLIBCXX_DEBUG_ASSERT(__first == __last || !__pred(*__first, *__first)); return __check_sorted_aux(__first, __last, __pred, _Category()); } template inline bool __check_sorted_set_aux(const _InputIterator& __first, const _InputIterator& __last, std::__true_type) { return __check_sorted(__first, __last); } template inline bool __check_sorted_set_aux(const _InputIterator&, const _InputIterator&, std::__false_type) { return true; } template inline bool __check_sorted_set_aux(const _InputIterator& __first, const _InputIterator& __last, _Predicate __pred, std::__true_type) { return __check_sorted(__first, __last, __pred); } template inline bool __check_sorted_set_aux(const _InputIterator&, const _InputIterator&, _Predicate, std::__false_type) { return true; } // ... special variant used in std::merge, std::includes, std::set_*. template inline bool __check_sorted_set(const _InputIterator1& __first, const _InputIterator1& __last, const _InputIterator2&) { typedef typename std::iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename std::iterator_traits<_InputIterator2>::value_type _ValueType2; typedef typename std::__are_same<_ValueType1, _ValueType2>::__type _SameType; return __check_sorted_set_aux(__first, __last, _SameType()); } template inline bool __check_sorted_set(const _InputIterator1& __first, const _InputIterator1& __last, const _InputIterator2&, _Predicate __pred) { typedef typename std::iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename std::iterator_traits<_InputIterator2>::value_type _ValueType2; typedef typename std::__are_same<_ValueType1, _ValueType2>::__type _SameType; return __check_sorted_set_aux(__first, __last, __pred, _SameType()); } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 270. Binary search requirements overly strict // Determine if a sequence is partitioned w.r.t. this element. template inline bool __check_partitioned_lower(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { while (__first != __last && *__first < __value) ++__first; while (__first != __last && !(*__first < __value)) ++__first; return __first == __last; } template inline bool __check_partitioned_upper(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { while (__first != __last && !(__value < *__first)) ++__first; while (__first != __last && __value < *__first) ++__first; return __first == __last; } // Determine if a sequence is partitioned w.r.t. this element. template inline bool __check_partitioned_lower(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value, _Pred __pred) { while (__first != __last && bool(__pred(*__first, __value))) ++__first; while (__first != __last && !bool(__pred(*__first, __value))) ++__first; return __first == __last; } template inline bool __check_partitioned_upper(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value, _Pred __pred) { while (__first != __last && !bool(__pred(__value, *__first))) ++__first; while (__first != __last && bool(__pred(__value, *__first))) ++__first; return __first == __last; } } // namespace __gnu_debug #endif