// -*- C++ -*- // Copyright (C) 2008, 2009 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file forward_list.tcc * This is a Standard C++ Library header. */ #ifndef _FORWARD_LIST_TCC #define _FORWARD_LIST_TCC 1 _GLIBCXX_BEGIN_NAMESPACE(std) template void _Fwd_list_node_base<_Alloc>:: _M_transfer_after(_Pointer __bbegin) { _Pointer __bend = __bbegin; while (__bend && __bend->_M_next) __bend = __bend->_M_next; _M_transfer_after(__bbegin, __bend); } template void _Fwd_list_node_base<_Alloc>:: _M_transfer_after(_Pointer __bbegin, _Pointer __bend) { _Pointer __keep = __bbegin->_M_next; if (__bend) { __bbegin->_M_next = __bend->_M_next; __bend->_M_next = _M_next; } else __bbegin->_M_next = 0; _M_next = __keep; } template void _Fwd_list_node_base<_Alloc>:: _M_reverse_after() { _Pointer __tail = _M_next; if (!__tail) return; while (_Pointer __temp = __tail->_M_next) { _Pointer __keep = _M_next; _M_next = __temp; __tail->_M_next = __temp->_M_next; _M_next->_M_next = __keep; } } /** * @brief Sort the singly linked list starting after this node. * This node is assumed to be an empty head node (of type * _Fwd_list_node_base). */ template template void _Fwd_list_node<_Tp, _Alloc>:: _M_sort_after(_Comp __comp) { // If `next' is 0, return immediately. _Pointer __list = __static_pointer_cast<_Pointer>(this->_M_next); if (!__list) return; unsigned long __insize = 1; while (1) { _Pointer __p = __list; __list = 0; _Pointer __tail = 0; // Count number of merges we do in this pass. unsigned long __nmerges = 0; while (__p) { ++__nmerges; // There exists a merge to be done. // Step `insize' places along from p. _Pointer __q = __p; unsigned long __psize = 0; for (unsigned long __i = 0; __i < __insize; ++__i) { ++__psize; __q = __static_pointer_cast<_Pointer>(__q->_M_next); if (!__q) break; } // If q hasn't fallen off end, we have two lists to merge. unsigned long __qsize = __insize; // Now we have two lists; merge them. while (__psize > 0 || (__qsize > 0 && __q)) { // Decide whether next node of merge comes from p or q. _Pointer __e; if (__psize == 0) { // p is empty; e must come from q. __e = __q; __q = __static_pointer_cast<_Pointer>(__q->_M_next); --__qsize; } else if (__qsize == 0 || !__q) { // q is empty; e must come from p. __e = __p; __p = __static_pointer_cast<_Pointer>(__p->_M_next); --__psize; } else if (__comp(__p->_M_value, __q->_M_value)) { // First node of p is lower; e must come from p. __e = __p; __p = __static_pointer_cast<_Pointer>(__p->_M_next); --__psize; } else { // First node of q is lower; e must come from q. __e = __q; __q = __static_pointer_cast<_Pointer>(__q->_M_next); --__qsize; } // Add the next node to the merged list. if (__tail) __tail->_M_next = __e; else __list = __e; __tail = __e; } // Now p has stepped `insize' places along, and q has too. __p = __q; } __tail->_M_next = 0; // If we have done only one merge, we're finished. // Allow for nmerges == 0, the empty list case. if (__nmerges <= 1) { this->_M_next = __list; return; } // Otherwise repeat, merging lists twice the size. __insize *= 2; } } template _Fwd_list_base<_Tp, _Alloc>:: _Fwd_list_base(const _Fwd_list_base& __lst, const _Alloc& __a) : _M_impl(__a) { this->_M_impl._M_head._M_next = 0; typename _Node_base::_Pointer __to = &this->_M_impl._M_head; typename _Node::_Pointer __curr = __static_pointer_cast (__lst._M_impl._M_head._M_next); while (__curr) { __to->_M_next = _M_create_node(__curr->_M_value); __to = __to->_M_next; __curr = __static_pointer_cast (__curr->_M_next); } } template template typename _Fwd_list_base<_Tp, _Alloc>::_Node_base::_Pointer _Fwd_list_base<_Tp, _Alloc>:: _M_insert_after(const_iterator __pos, _Args&&... __args) { typename _Node_base::_Pointer __to = __const_pointer_cast (__pos._M_node); typename _Node::_Pointer __thing = __static_pointer_cast( _M_create_node(std::forward<_Args>(__args)...) ); __thing->_M_next = __to->_M_next; __to->_M_next = __thing; return __static_pointer_cast (__to->_M_next); } template typename _Fwd_list_base<_Tp, _Alloc>::_Node_base::_Pointer _Fwd_list_base<_Tp, _Alloc>:: _M_erase_after(typename _Node_base::_Pointer __pos) { typename _Node::_Pointer __curr = __static_pointer_cast(__pos->_M_next); if (__curr) { typename _Node_base::_Pointer __next = __curr->_M_next; __pos->_M_next = __next; _M_get_Node_allocator().destroy(__curr); _M_put_node(__curr); } return __pos; } template typename _Fwd_list_base<_Tp, _Alloc>::_Node_base::_Pointer _Fwd_list_base<_Tp, _Alloc>:: _M_erase_after(typename _Node_base::_Pointer __pos, typename _Node_base::_Pointer __last) { typename _Node::_Pointer __curr = __static_pointer_cast(__pos->_M_next); while (__curr) { typename _Node::_Pointer __temp = __curr; __curr = __static_pointer_cast (__curr->_M_next); _M_get_Node_allocator().destroy(__temp); _M_put_node(__temp); __pos->_M_next = __curr; if (__temp == __last) break; } return __pos; } // Called by the range constructor to implement [23.1.1]/9 template template void forward_list<_Tp, _Alloc>:: _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { typename _Node_base::_Pointer __to = &this->_M_impl._M_head; for (; __first != __last; ++__first) { __to->_M_next = this->_M_create_node(*__first); __to = __to->_M_next; } } // Called by forward_list(n,v,a), and the range constructor // when it turns out to be the same thing. template void forward_list<_Tp, _Alloc>:: _M_fill_initialize(size_type __n, const value_type& __value) { typename _Node_base::_Pointer __to = &this->_M_impl._M_head; for (; __n > 0; --__n) { __to->_M_next = this->_M_create_node(__value); __to = __to->_M_next; } } template forward_list<_Tp, _Alloc>& forward_list<_Tp, _Alloc>:: operator=(const forward_list& __list) { if (&__list != this) { iterator __prev1 = before_begin(); iterator __curr1 = begin(); iterator __last1 = end(); const_iterator __first2 = __list.cbegin(); const_iterator __last2 = __list.cend(); while (__curr1 != __last1 && __first2 != __last2) { *__curr1 = *__first2; ++__prev1; ++__curr1; ++__first2; } if (__first2 == __last2) erase_after(__prev1, __last1); else insert_after(__prev1, __first2, __last2); } return *this; } template void forward_list<_Tp, _Alloc>:: resize(size_type __sz, value_type __val) { iterator __k = before_begin(); size_type __len = 0; while (__k._M_next() != end() && __len < __sz) { ++__k; ++__len; } if (__len == __sz) erase_after(__k, end()); else insert_after(__k, __sz - __len, __val); } template void forward_list<_Tp, _Alloc>:: splice_after(const_iterator __pos, forward_list&& __list) { if (!__list.empty() && &__list != this) { typename _Node_base::_Pointer __tmp = __const_pointer_cast (__pos._M_node); const_iterator __before = __list.cbefore_begin(); __tmp->_M_transfer_after(__const_pointer_cast (__before._M_node)); } } template void forward_list<_Tp, _Alloc>:: splice_after(const_iterator __pos, forward_list&& __list, const_iterator __before, const_iterator __last) { typename _Node_base::_Pointer __tmp = __const_pointer_cast(__pos._M_node); __tmp->_M_transfer_after(__const_pointer_cast (__before._M_node), __const_pointer_cast (__last._M_node)); } template void forward_list<_Tp, _Alloc>:: remove(const _Tp& __val) { typename _Node::_Pointer __curr = __static_pointer_cast (&this->_M_impl._M_head); while (typename _Node::_Pointer __temp = __static_pointer_cast(__curr->_M_next)) { if (__temp->_M_value == __val) this->_M_erase_after(__curr); else __curr = __static_pointer_cast (__curr->_M_next); } } template template void forward_list<_Tp, _Alloc>:: remove_if(_Pred __pred) { typename _Node::_Pointer __curr = __static_pointer_cast (&this->_M_impl._M_head); while (typename _Node::_Pointer __temp = __static_pointer_cast(__curr->_M_next)) { if (__pred(__temp->_M_value)) this->_M_erase_after(__curr); else __curr = __static_pointer_cast (__curr->_M_next); } } template template void forward_list<_Tp, _Alloc>:: unique(_BinPred __binary_pred) { iterator __first = begin(); iterator __last = end(); if (__first == __last) return; iterator __next = __first; while (++__next != __last) { if (__binary_pred(*__first, *__next)) erase_after(__first); else __first = __next; __next = __first; } } template template void forward_list<_Tp, _Alloc>:: merge(forward_list&& __list, _Comp __comp) { typename _Node_base::_Pointer __node = &this->_M_impl._M_head; while (__node->_M_next && __list._M_impl._M_head._M_next) { if (__comp(__static_pointer_cast (__list._M_impl._M_head._M_next)->_M_value, __static_pointer_cast (__node->_M_next)->_M_value)) __node->_M_transfer_after(&__list._M_impl._M_head, __list._M_impl._M_head._M_next); __node = __node->_M_next; } if (__list._M_impl._M_head._M_next) { __node->_M_next = __list._M_impl._M_head._M_next; __list._M_impl._M_head._M_next = 0; } } template bool operator==(const forward_list<_Tp, _Alloc>& __lx, const forward_list<_Tp, _Alloc>& __ly) { // We don't have size() so we need to walk through both lists // making sure both iterators are valid. auto __ix = __lx.cbegin(); auto __iy = __ly.cbegin(); while (__ix != __lx.cend() && __iy != __ly.cend()) { if (*__ix != *__iy) return false; ++__ix; ++__iy; } if (__ix == __lx.cend() && __iy == __ly.cend()) return true; else return false; } _GLIBCXX_END_NAMESPACE // namespace std #endif /* _FORWARD_LIST_TCC */