// -*- C++ -*- // Copyright (C) 2008, 2009 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file forward_list.h * This is a Standard C++ Library header. */ #ifndef _FORWARD_LIST_H #define _FORWARD_LIST_H 1 #pragma GCC system_header #ifndef __GXX_EXPERIMENTAL_CXX0X__ # include #else #include #include #include _GLIBCXX_BEGIN_NAMESPACE(std) using __gnu_cxx::__static_pointer_cast; using __gnu_cxx::__const_pointer_cast; /** * @brief A helper basic node class for %forward_list. * This is just a linked list with nothing inside it. * There are purely list shuffling utility methods here. */ template struct _Fwd_list_node_base { // The type allocated by _Alloc cannot be this type, so we rebind typedef typename _Alloc::template rebind<_Fwd_list_node_base<_Alloc> > ::other::pointer _Pointer; typedef typename _Alloc::template rebind<_Fwd_list_node_base<_Alloc> > ::other::const_pointer _Const_pointer; _Pointer _M_next; _Fwd_list_node_base() : _M_next(0) { } static void swap(_Fwd_list_node_base& __x, _Fwd_list_node_base& __y) { std::swap(__x._M_next, __y._M_next); } void _M_transfer_after(_Pointer __bbegin); void _M_transfer_after(_Pointer __bbegin, _Pointer __bend); void _M_reverse_after(); }; /** * @brief A helper node class for %forward_list. * This is just a linked list with a data value in each node. * There is a sorting utility method. */ template struct _Fwd_list_node : public _Fwd_list_node_base<_Alloc> { typedef typename _Alloc::template rebind<_Fwd_list_node<_Tp, _Alloc> > ::other::pointer _Pointer; template _Fwd_list_node(_Args&&... __args) : _Fwd_list_node_base<_Alloc>(), _M_value(std::forward<_Args>(__args)...) { } template void _M_sort_after(_Comp __comp); _Tp _M_value; }; /** * @brief A forward_list::iterator. * * All the functions are op overloads. */ template struct _Fwd_list_iterator { typedef _Fwd_list_iterator<_Tp, _Alloc> _Self; typedef _Fwd_list_node<_Tp, _Alloc> _Node; typedef _Fwd_list_node_base<_Alloc> _Node_base; typedef _Tp value_type; typedef typename _Alloc::pointer pointer; typedef typename _Alloc::reference reference; typedef typename _Alloc::difference_type difference_type; typedef std::forward_iterator_tag iterator_category; _Fwd_list_iterator() : _M_node() { } explicit _Fwd_list_iterator(typename _Node_base::_Pointer __n) : _M_node(__n) { } reference operator*() const { return __static_pointer_cast<_Node*>(_M_node)->_M_value; } pointer operator->() const { return &__static_pointer_cast<_Node*>(_M_node)->_M_value; } _Self& operator++() { _M_node = _M_node->_M_next; return *this; } _Self operator++(int) { _Self __tmp(*this); _M_node = _M_node->_M_next; return __tmp; } bool operator==(const _Self& __x) const { return _M_node == __x._M_node; } bool operator!=(const _Self& __x) const { return _M_node != __x._M_node; } _Self _M_next() const { if (_M_node) return _Fwd_list_iterator(_M_node->_M_next); else return _Fwd_list_iterator(0); } typename _Node_base::_Pointer _M_node; }; /** * @brief A forward_list::const_iterator. * * All the functions are op overloads. */ template struct _Fwd_list_const_iterator { typedef _Fwd_list_const_iterator<_Tp, _Alloc> _Self; typedef const _Fwd_list_node<_Tp, _Alloc> _Node; typedef const _Fwd_list_node_base<_Alloc> _Node_base; typedef _Fwd_list_iterator<_Tp, _Alloc> iterator; typedef _Tp value_type; typedef typename _Alloc::const_pointer pointer; typedef typename _Alloc::const_reference reference; typedef typename _Alloc::difference_type difference_type; typedef std::forward_iterator_tag iterator_category; _Fwd_list_const_iterator() : _M_node() { } explicit _Fwd_list_const_iterator(typename _Node_base::_Const_pointer __n) : _M_node(__n) { } _Fwd_list_const_iterator(const iterator& __iter) : _M_node(__iter._M_node) { } reference operator*() const { return __static_pointer_cast<_Node*>(_M_node)->_M_value; } pointer operator->() const { return &__static_pointer_cast<_Node*>(_M_node)->_M_value; } _Self& operator++() { _M_node = _M_node->_M_next; return *this; } _Self operator++(int) { _Self __tmp(*this); _M_node = _M_node->_M_next; return __tmp; } bool operator==(const _Self& __x) const { return _M_node == __x._M_node; } bool operator!=(const _Self& __x) const { return _M_node != __x._M_node; } _Self _M_next() const { if (this->_M_node) return _Fwd_list_const_iterator(_M_node->_M_next); else return _Fwd_list_const_iterator(0); } typename _Node_base::_Const_pointer _M_node; }; /** * @brief Forward list iterator equality comparison. */ template inline bool operator==(const _Fwd_list_iterator<_Tp, _Alloc>& __x, const _Fwd_list_const_iterator<_Tp, _Alloc>& __y) { return __x._M_node == __y._M_node; } /** * @brief Forward list iterator inequality comparison. */ template inline bool operator!=(const _Fwd_list_iterator<_Tp, _Alloc>& __x, const _Fwd_list_const_iterator<_Tp, _Alloc>& __y) { return __x._M_node != __y._M_node; } /** * @brief Base class for %forward_list. */ template struct _Fwd_list_base { protected: typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type; typedef typename _Alloc::template rebind<_Fwd_list_node<_Tp, _Tp_alloc_type>>::other _Node_alloc_type; struct _Fwd_list_impl : public _Node_alloc_type { _Fwd_list_node_base<_Tp_alloc_type> _M_head; _Fwd_list_impl() : _Node_alloc_type(), _M_head() { } _Fwd_list_impl(const _Node_alloc_type& __a) : _Node_alloc_type(__a), _M_head() { } }; _Fwd_list_impl _M_impl; public: typedef _Fwd_list_iterator<_Tp, _Tp_alloc_type> iterator; typedef _Fwd_list_const_iterator<_Tp, _Tp_alloc_type> const_iterator; typedef _Fwd_list_node<_Tp, _Tp_alloc_type> _Node; typedef _Fwd_list_node_base<_Tp_alloc_type> _Node_base; _Node_alloc_type& _M_get_Node_allocator() { return *static_cast<_Node_alloc_type*>(&this->_M_impl); } const _Node_alloc_type& _M_get_Node_allocator() const { return *static_cast(&this->_M_impl); } _Fwd_list_base() : _M_impl() { this->_M_impl._M_head._M_next = 0; } _Fwd_list_base(const _Alloc& __a) : _M_impl(__a) { this->_M_impl._M_head._M_next = 0; } _Fwd_list_base(const _Fwd_list_base& __lst, const _Alloc& __a); _Fwd_list_base(_Fwd_list_base&& __lst, const _Alloc& __a) : _M_impl(__a) { _Node_base::swap(this->_M_impl._M_head, __lst._M_impl._M_head); } _Fwd_list_base(_Fwd_list_base&& __lst) : _M_impl(__lst._M_get_Node_allocator()) { _Node_base::swap(this->_M_impl._M_head, __lst._M_impl._M_head); } ~_Fwd_list_base() { _M_erase_after(&_M_impl._M_head, 0); } protected: typename _Node::_Pointer _M_get_node() { return _M_get_Node_allocator().allocate(1); } template typename _Node::_Pointer _M_create_node(_Args&&... __args) { typename _Node::_Pointer __node = this->_M_get_node(); __try { _M_get_Node_allocator().construct(__node, std::forward<_Args>(__args)...); __node->_M_next = 0; } __catch(...) { this->_M_put_node(__node); __throw_exception_again; } return __node; } template typename _Node_base::_Pointer _M_insert_after(const_iterator __pos, _Args&&... __args); void _M_put_node(typename _Node::_Pointer __p) { _M_get_Node_allocator().deallocate(__p, 1); } typename _Node_base::_Pointer _M_erase_after(typename _Node_base::_Pointer __pos); typename _Node_base::_Pointer _M_erase_after(typename _Node_base::_Pointer __pos, typename _Node_base::_Pointer __last); }; /** * @brief A standard container with linear time access to elements, * and fixed time insertion/deletion at any point in the sequence. * * @ingroup sequences * * Meets the requirements of a container, a * sequence, including the * optional sequence requirements with the * %exception of @c at and @c operator[]. * * This is a @e singly @e linked %list. Traversal up the * %list requires linear time, but adding and removing elements (or * @e nodes) is done in constant time, regardless of where the * change takes place. Unlike std::vector and std::deque, * random-access iterators are not provided, so subscripting ( @c * [] ) access is not allowed. For algorithms which only need * sequential access, this lack makes no difference. * * Also unlike the other standard containers, std::forward_list provides * specialized algorithms %unique to linked lists, such as * splicing, sorting, and in-place reversal. * * A couple points on memory allocation for forward_list: * * First, we never actually allocate a Tp, we allocate * Fwd_list_node's and trust [20.1.5]/4 to DTRT. This is to ensure * that after elements from %forward_list are spliced into * %forward_list, destroying the memory of the second %list is a * valid operation, i.e., Alloc1 giveth and Alloc2 taketh away. */ template > class forward_list : private _Fwd_list_base<_Tp, _Alloc> { private: typedef _Fwd_list_base<_Tp, _Alloc> _Base; typedef typename _Base::_Node _Node; typedef typename _Base::_Node_base _Node_base; typedef typename _Base::_Tp_alloc_type _Tp_alloc_type; public: // types: typedef _Tp value_type; typedef typename _Tp_alloc_type::pointer pointer; typedef typename _Tp_alloc_type::const_pointer const_pointer; typedef typename _Tp_alloc_type::reference reference; typedef typename _Tp_alloc_type::const_reference const_reference; typedef typename _Base::iterator iterator; typedef typename _Base::const_iterator const_iterator; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef _Alloc allocator_type; // 23.2.3.1 construct/copy/destroy: /** * @brief Creates a %forward_list with no elements. * @param al An allocator object. */ explicit forward_list(const _Alloc& __al = _Alloc()) : _Base(__al) { } /** * @brief Copy constructor with allocator argument. * @param list Input list to copy. * @param al An allocator object. */ forward_list(const forward_list& __list, const _Alloc& __al) : _Base(__list, __al) { } /** * @brief Move constructor with allocator argument. * @param list Input list to move. * @param al An allocator object. */ forward_list(forward_list&& __list, const _Alloc& __al) : _Base(std::forward<_Base>(__list), __al) { } /** * @brief Creates a %forward_list with copies of the default element * type. * @param n The number of elements to initially create. * * This constructor fills the %forward_list with @a n copies of * the default value. */ explicit forward_list(size_type __n) : _Base() { _M_fill_initialize(__n, value_type()); } /** * @brief Creates a %forward_list with copies of an exemplar element. * @param n The number of elements to initially create. * @param value An element to copy. * @param al An allocator object. * * This constructor fills the %forward_list with @a n copies of @a * value. */ forward_list(size_type __n, const _Tp& __value, const _Alloc& __al = _Alloc()) : _Base(__al) { _M_fill_initialize(__n, __value); } /** * @brief Builds a %forward_list from a range. * @param first An input iterator. * @param last An input iterator. * @param al An allocator object. * * Create a %forward_list consisting of copies of the elements from * [@a first,@a last). This is linear in N (where N is * distance(@a first,@a last)). */ template forward_list(_InputIterator __first, _InputIterator __last, const _Alloc& __al = _Alloc()) : _Base(__al) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_initialize_dispatch(__first, __last, _Integral()); } /** * @brief The %forward_list copy constructor. * @param list A %forward_list of identical element and allocator * types. * * The newly-created %forward_list uses a copy of the allocation * object used by @a list. */ forward_list(const forward_list& __list) : _Base(__list.get_allocator()) { _M_initialize_dispatch(__list.begin(), __list.end(), __false_type()); } /** * @brief The %forward_list move constructor. * @param list A %forward_list of identical element and allocator * types. * * The newly-created %forward_list contains the exact contents of @a * forward_list. The contents of @a list are a valid, but unspecified * %forward_list. */ forward_list(forward_list&& __list) : _Base(std::forward<_Base>(__list)) { } /** * @brief Builds a %forward_list from an initializer_list * @param il An initializer_list of value_type. * @param al An allocator object. * * Create a %forward_list consisting of copies of the elements * in the initializer_list @a il. This is linear in il.size(). */ forward_list(std::initializer_list<_Tp> __il, const _Alloc& __al = _Alloc()) : _Base(__al) { _M_initialize_dispatch(__il.begin(), __il.end(), __false_type()); } /** * @brief The forward_list dtor. */ ~forward_list() { _M_erase_after(&this->_M_impl._M_head, 0); } /** * @brief The %forward_list assignment operator. * @param list A %forward_list of identical element and allocator * types. * * All the elements of @a list are copied, but unlike the copy * constructor, the allocator object is not copied. */ forward_list& operator=(const forward_list& __list); /** * @brief The %forward_list move assignment operator. * @param list A %forward_list of identical element and allocator * types. * * The contents of @a list are moved into this %forward_list * (without copying). @a list is a valid, but unspecified * %forward_list */ forward_list& operator=(forward_list&& __list) { if (&__list != this) { this->clear(); this->swap(__list); } return *this; } /** * @brief The %forward_list initializer list assignment operator. * @param il An initializer_list of value_type. * * Replace the contents of the %forward_list with copies of the * elements in the initializer_list @a il. This is linear in * il.size(). */ forward_list& operator=(std::initializer_list<_Tp> __il) { assign(__il); return *this; } /** * @brief Assigns a range to a %forward_list. * @param first An input iterator. * @param last An input iterator. * * This function fills a %forward_list with copies of the elements * in the range [@a first,@a last). * * Note that the assignment completely changes the %forward_list and * that the resulting %forward_list's size is the same as the number * of elements assigned. Old data may be lost. */ template void assign(_InputIterator __first, _InputIterator __last) { clear(); insert_after(cbefore_begin(), __first, __last); } /** * @brief Assigns a given value to a %forward_list. * @param n Number of elements to be assigned. * @param val Value to be assigned. * * This function fills a %forward_list with @a n copies of the given * value. Note that the assignment completely changes the * %forward_list and that the resulting %forward_list's size is the * same as the number of elements assigned. Old data may be lost. */ void assign(size_type __n, const _Tp& __val) { clear(); insert_after(cbefore_begin(), __n, __val); } /** * @brief Assigns an initializer_list to a %forward_list. * @param il An initializer_list of value_type. * * Replace the contents of the %forward_list with copies of the * elements in the initializer_list @a il. This is linear in * il.size(). */ void assign(std::initializer_list<_Tp> __il) { clear(); insert_after(cbefore_begin(), __il); } /// Get a copy of the memory allocation object. allocator_type get_allocator() const { return this->_M_get_Node_allocator(); } // 23.2.3.2 iterators: /** * Returns a read/write iterator that points before the first element * in the %forward_list. Iteration is done in ordinary element order. */ iterator before_begin() { return iterator(&this->_M_impl._M_head); } /** * Returns a read-only (constant) iterator that points before the * first element in the %forward_list. Iteration is done in ordinary * element order. */ const_iterator before_begin() const { return const_iterator(&this->_M_impl._M_head); } /** * Returns a read/write iterator that points to the first element * in the %forward_list. Iteration is done in ordinary element order. */ iterator begin() { return iterator(this->_M_impl._M_head._M_next); } /** * Returns a read-only (constant) iterator that points to the first * element in the %forward_list. Iteration is done in ordinary * element order. */ const_iterator begin() const { return const_iterator(this->_M_impl._M_head._M_next); } /** * Returns a read/write iterator that points one past the last * element in the %forward_list. Iteration is done in ordinary * element order. */ iterator end() { return iterator(0); } /** * Returns a read-only iterator that points one past the last * element in the %forward_list. Iteration is done in ordinary * element order. */ const_iterator end() const { return const_iterator(0); } /** * Returns a read-only (constant) iterator that points to the * first element in the %forward_list. Iteration is done in ordinary * element order. */ const_iterator cbegin() const { return const_iterator(this->_M_impl._M_head._M_next); } /** * Returns a read-only (constant) iterator that points before the * first element in the %forward_list. Iteration is done in ordinary * element order. */ const_iterator cbefore_begin() const { return const_iterator(&this->_M_impl._M_head); } /** * Returns a read-only (constant) iterator that points one past * the last element in the %forward_list. Iteration is done in * ordinary element order. */ const_iterator cend() const { return const_iterator(0); } /** * Returns true if the %forward_list is empty. (Thus begin() would * equal end().) */ bool empty() const { return this->_M_impl._M_head._M_next == 0; } /** * Returns the largest possible size of %forward_list. */ size_type max_size() const { return this->_M_get_Node_allocator().max_size(); } // 23.2.3.3 element access: /** * Returns a read/write reference to the data at the first * element of the %forward_list. */ reference front() { _Node* __front = __static_pointer_cast<_Node*>(this->_M_impl._M_head._M_next); return __front->_M_value; } /** * Returns a read-only (constant) reference to the data at the first * element of the %forward_list. */ const_reference front() const { _Node* __front = __static_pointer_cast<_Node*>(this->_M_impl._M_head._M_next); return __front->_M_value; } // 23.2.3.4 modiļ¬ers: /** * @brief Constructs object in %forward_list at the front of the * list. * @param args Arguments. * * This function will insert an object of type Tp constructed * with Tp(std::forward(args)...) at the front of the list * Due to the nature of a %forward_list this operation can * be done in constant time, and does not invalidate iterators * and references. */ template void emplace_front(_Args&&... __args) { this->_M_insert_after(cbefore_begin(), std::forward<_Args>(__args)...); } /** * @brief Add data to the front of the %forward_list. * @param val Data to be added. * * This is a typical stack operation. The function creates an * element at the front of the %forward_list and assigns the given * data to it. Due to the nature of a %forward_list this operation * can be done in constant time, and does not invalidate iterators * and references. */ void push_front(const _Tp& __val) { this->_M_insert_after(cbefore_begin(), __val); } /** * */ void push_front(_Tp&& __val) { this->_M_insert_after(cbefore_begin(), std::move(__val)); } /** * @brief Removes first element. * * This is a typical stack operation. It shrinks the %forward_list * by one. Due to the nature of a %forward_list this operation can * be done in constant time, and only invalidates iterators/references * to the element being removed. * * Note that no data is returned, and if the first element's data * is needed, it should be retrieved before pop_front() is * called. */ void pop_front() { this->_M_erase_after(&this->_M_impl._M_head); } /** * @brief Constructs object in %forward_list after the specified * iterator. * @param pos A const_iterator into the %forward_list. * @param args Arguments. * @return An iterator that points to the inserted data. * * This function will insert an object of type T constructed * with T(std::forward(args)...) after the specified * location. Due to the nature of a %forward_list this operation can * be done in constant time, and does not invalidate iterators * and references. */ template iterator emplace_after(const_iterator __pos, _Args&&... __args) { return iterator(this->_M_insert_after(__pos, std::forward<_Args>(__args)...)); } /** * @brief Inserts given value into %forward_list after specified * iterator. * @param pos An iterator into the %forward_list. * @param val Data to be inserted. * @return An iterator that points to the inserted data. * * This function will insert a copy of the given value after * the specified location. Due to the nature of a %forward_list this * operation can be done in constant time, and does not * invalidate iterators and references. */ iterator insert_after(const_iterator __pos, const _Tp& __val) { return iterator(this->_M_insert_after(__pos, __val)); } /** * */ iterator insert_after(const_iterator __pos, _Tp&& __val) { return iterator(this->_M_insert_after(__pos, std::move(__val))); } /** * @brief Inserts a number of copies of given data into the * %forward_list. * @param pos An iterator into the %forward_list. * @param n Number of elements to be inserted. * @param val Data to be inserted. * * This function will insert a specified number of copies of the * given data after the location specified by @a pos. * * This operation is linear in the number of elements inserted and * does not invalidate iterators and references. */ void insert_after(const_iterator __pos, size_type __n, const _Tp& __val) { forward_list __tmp(__n, __val, this->get_allocator()); this->splice_after(__pos, std::move(__tmp)); } /** * @brief Inserts a range into the %forward_list. * @param position An iterator into the %forward_list. * @param first An input iterator. * @param last An input iterator. * * This function will insert copies of the data in the range [@a * first,@a last) into the %forward_list after the location specified * by @a pos. * * This operation is linear in the number of elements inserted and * does not invalidate iterators and references. */ template void insert_after(const_iterator __pos, _InputIterator __first, _InputIterator __last) { forward_list __tmp(__first, __last, this->get_allocator()); this->splice_after(__pos, std::move(__tmp)); } /** * @brief Inserts the contents of an initializer_list into * %forward_list after the specified iterator. * @param pos An iterator into the %forward_list. * @param il An initializer_list of value_type. * * This function will insert copies of the data in the * initializer_list @a il into the %forward_list before the location * specified by @a pos. * * This operation is linear in the number of elements inserted and * does not invalidate iterators and references. */ void insert_after(const_iterator __pos, std::initializer_list<_Tp> __il) { forward_list __tmp(__il, this->get_allocator()); this->splice_after(__pos, std::move(__tmp)); } /** * @brief Removes the element pointed to by the iterator following * @c pos. * @param pos Iterator pointing to element to be erased. * @return An iterator pointing to the next element (or end()). * * This function will erase the element at the given position and * thus shorten the %forward_list by one. * * Due to the nature of a %forward_list this operation can be done * in constant time, and only invalidates iterators/references to * the element being removed. The user is also cautioned that * this function only erases the element, and that if the element * is itself a pointer, the pointed-to memory is not touched in * any way. Managing the pointer is the user's responsibility. */ iterator erase_after(const_iterator __pos) { _Node_base* __tmp = __const_pointer_cast<_Node_base*>(__pos._M_node); if (__tmp) return iterator(this->_M_erase_after(__tmp)); else return end(); } /** * @brief Remove a range of elements. * @param pos Iterator pointing before the first element to be * erased. * @param last Iterator pointing to one past the last element to be * erased. * @return An iterator pointing to the element pointed to by @a last * prior to erasing (or end()). * * This function will erase the elements in the range @a * (pos,last) and shorten the %forward_list accordingly. * * This operation is linear time in the size of the range and only * invalidates iterators/references to the element being removed. * The user is also cautioned that this function only erases the * elements, and that if the elements themselves are pointers, the * pointed-to memory is not touched in any way. Managing the pointer * is the user's responsibility. */ iterator erase_after(const_iterator __pos, iterator __last) { _Node_base* __tmp = __const_pointer_cast<_Node_base*>(__pos._M_node); return iterator(this->_M_erase_after(__tmp, &*__last._M_node)); } /** * @brief Swaps data with another %forward_list. * @param list A %forward_list of the same element and allocator * types. * * This exchanges the elements between two lists in constant * time. Note that the global std::swap() function is * specialized such that std::swap(l1,l2) will feed to this * function. */ void swap(forward_list& __list) { _Node_base::swap(this->_M_impl._M_head, __list._M_impl._M_head); } /** * @brief Resizes the %forward_list to the specified number of * elements. * @param sz Number of elements the %forward_list should contain. * * This function will %resize the %forward_list to the specified * number of elements. If the number is smaller than the * %forward_list's current size the %forward_list is truncated, * otherwise the %forward_list is extended and new elements are * populated with given data. */ void resize(size_type __sz) { resize(__sz, _Tp()); } /** * @brief Resizes the %forward_list to the specified number of * elements. * @param sz Number of elements the %forward_list should contain. * @param val Data with which new elements should be populated. * * This function will %resize the %forward_list to the specified * number of elements. If the number is smaller than the * %forward_list's current size the %forward_list is truncated, * otherwise the %forward_list is extended and new elements are * populated with given data. */ void resize(size_type __sz, value_type __val); /** * @brief Erases all the elements. * * Note that this function only erases * the elements, and that if the elements themselves are * pointers, the pointed-to memory is not touched in any way. * Managing the pointer is the user's responsibility. */ void clear() { this->_M_erase_after(&this->_M_impl._M_head, 0); } // 23.2.3.5 forward_list operations: /** * @brief Insert contents of another %forward_list. * @param pos Iterator referencing the element to insert after. * @param list Source list. * * The elements of @a list are inserted in constant time after * the element referenced by @a pos. @a list becomes an empty * list. * * Requires this != @a x. */ void splice_after(const_iterator __pos, forward_list&& __list); /** * @brief Insert element from another %forward_list. * @param pos Iterator referencing the element to insert after. * @param list Source list. * @param it Iterator referencing the element before the element * to move. * * Removes the element in list @a list referenced by @a i and * inserts it into the current list after @a pos. */ void splice_after(const_iterator __pos, forward_list&& __list, const_iterator __it) { this->splice_after(__pos, __list, __it, __it._M_next()); } /** * @brief Insert range from another %forward_list. * @param pos Iterator referencing the element to insert after. * @param list Source list. * @param before Iterator referencing before the start of range * in list. * @param last Iterator referencing the end of range in list. * * Removes elements in the range (before,last) and inserts them * after @a pos in constant time. * * Undefined if @a pos is in (before,last). */ void splice_after(const_iterator __pos, forward_list&& __list, const_iterator __before, const_iterator __last); /** * @brief Remove all elements equal to value. * @param val The value to remove. * * Removes every element in the list equal to @a value. * Remaining elements stay in list order. Note that this * function only erases the elements, and that if the elements * themselves are pointers, the pointed-to memory is not * touched in any way. Managing the pointer is the user's * responsibility. */ void remove(const _Tp& __val); /** * @brief Remove all elements satisfying a predicate. * @param pred Unary predicate function or object. * * Removes every element in the list for which the predicate * returns true. Remaining elements stay in list order. Note * that this function only erases the elements, and that if the * elements themselves are pointers, the pointed-to memory is * not touched in any way. Managing the pointer is the user's * responsibility. */ template void remove_if(_Pred __pred); /** * @brief Remove consecutive duplicate elements. * * For each consecutive set of elements with the same value, * remove all but the first one. Remaining elements stay in * list order. Note that this function only erases the * elements, and that if the elements themselves are pointers, * the pointed-to memory is not touched in any way. Managing * the pointer is the user's responsibility. */ void unique() { this->unique(std::equal_to<_Tp>()); } /** * @brief Remove consecutive elements satisfying a predicate. * @param binary_pred Binary predicate function or object. * * For each consecutive set of elements [first,last) that * satisfy predicate(first,i) where i is an iterator in * [first,last), remove all but the first one. Remaining * elements stay in list order. Note that this function only * erases the elements, and that if the elements themselves are * pointers, the pointed-to memory is not touched in any way. * Managing the pointer is the user's responsibility. */ template void unique(_BinPred __binary_pred); /** * @brief Merge sorted lists. * @param list Sorted list to merge. * * Assumes that both @a list and this list are sorted according to * operator<(). Merges elements of @a list into this list in * sorted order, leaving @a list empty when complete. Elements in * this list precede elements in @a list that are equal. */ void merge(forward_list&& __list) { this->merge(__list, std::less<_Tp>()); } /** * @brief Merge sorted lists according to comparison function. * @param list Sorted list to merge. * @param comp Comparison function defining sort order. * * Assumes that both @a list and this list are sorted according to * comp. Merges elements of @a list into this list * in sorted order, leaving @a list empty when complete. Elements * in this list precede elements in @a list that are equivalent * according to comp(). */ template void merge(forward_list&& __list, _Comp __comp); /** * @brief Sort the elements of the list. * * Sorts the elements of this list in NlogN time. Equivalent * elements remain in list order. */ void sort() { _Node* __tmp = __static_pointer_cast<_Node*>(&this->_M_impl._M_head); __tmp->_M_sort_after(std::less<_Tp>()); } /** * @brief Sort the forward_list using a comparison function. * * Sorts the elements of this list in NlogN time. Equivalent * elements remain in list order. */ template void sort(_Comp __comp) { _Node* __tmp = __static_pointer_cast<_Node*>(&this->_M_impl._M_head); __tmp->_M_sort_after(__comp); } /** * @brief Reverse the elements in list. * * Reverse the order of elements in the list in linear time. */ void reverse() { this->_M_impl._M_head._M_reverse_after(); } private: template void _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) { _M_fill_initialize(static_cast(__n), __x); } // Called by the range constructor to implement [23.1.1]/9 template void _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, __false_type); // Called by forward_list(n,v,a), and the range constructor when it // turns out to be the same thing. void _M_fill_initialize(size_type __n, const value_type& __value); }; /** * @brief Forward list equality comparison. * @param lx A %forward_list * @param ly A %forward_list of the same type as @a lx. * @return True iff the size and elements of the forward lists are equal. * * This is an equivalence relation. It is linear in the size of the * forward lists. Deques are considered equivalent if corresponding * elements compare equal. */ template bool operator==(const forward_list<_Tp, _Alloc>& __lx, const forward_list<_Tp, _Alloc>& __ly); /** * @brief Forward list ordering relation. * @param lx A %forward_list. * @param ly A %forward_list of the same type as @a lx. * @return True iff @a lx is lexicographically less than @a ly. * * This is a total ordering relation. It is linear in the size of the * forward lists. The elements must be comparable with @c <. * * See std::lexicographical_compare() for how the determination is made. */ template inline bool operator<(const forward_list<_Tp, _Alloc>& __lx, const forward_list<_Tp, _Alloc>& __ly) { return std::lexicographical_compare(__lx.cbegin(), __lx.cend(), __ly.cbegin(), __ly.cend()); } /// Based on operator== template inline bool operator!=(const forward_list<_Tp, _Alloc>& __lx, const forward_list<_Tp, _Alloc>& __ly) { return !(__lx == __ly); } /// Based on operator< template inline bool operator>(const forward_list<_Tp, _Alloc>& __lx, const forward_list<_Tp, _Alloc>& __ly) { return (__ly < __lx); } /// Based on operator< template inline bool operator>=(const forward_list<_Tp, _Alloc>& __lx, const forward_list<_Tp, _Alloc>& __ly) { return !(__lx < __ly); } /// Based on operator< template inline bool operator<=(const forward_list<_Tp, _Alloc>& __lx, const forward_list<_Tp, _Alloc>& __ly) { return !(__ly < __lx); } /// See std::forward_list::swap(). template inline void swap(forward_list<_Tp, _Alloc>& __lx, forward_list<_Tp, _Alloc>& __ly) { __lx.swap(__ly); } /// See std::forward_list::swap(). template inline void swap(forward_list<_Tp, _Alloc>&& __lx, forward_list<_Tp, _Alloc>& __ly) { __lx.swap(__ly); } /// See std::forward_list::swap(). template inline void swap(forward_list<_Tp, _Alloc>& __lx, forward_list<_Tp, _Alloc>&& __ly) { __lx.swap(__ly); } _GLIBCXX_END_NAMESPACE // namespace std #endif // __GXX_EXPERIMENTAL_CXX0X__ #endif // _FORWARD_LIST_H