\input texinfo @c -*-texinfo-*- @c %**start of header @setfilename libgomp.info @settitle GNU libgomp @c %**end of header @copying Copyright @copyright{} 2006, 2007, 2008 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being ``Funding Free Software'', the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the section entitled ``GNU Free Documentation License''. (a) The FSF's Front-Cover Text is: A GNU Manual (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. @end copying @ifinfo @dircategory GNU Libraries @direntry * libgomp: (libgomp). GNU OpenMP runtime library @end direntry This manual documents the GNU implementation of the OpenMP API for multi-platform shared-memory parallel programming in C/C++ and Fortran. Published by the Free Software Foundation 51 Franklin Street, Fifth Floor Boston, MA 02110-1301 USA @insertcopying @end ifinfo @setchapternewpage odd @titlepage @title The GNU OpenMP Implementation @page @vskip 0pt plus 1filll @comment For the @value{version-GCC} Version* @sp 1 Published by the Free Software Foundation @* 51 Franklin Street, Fifth Floor@* Boston, MA 02110-1301, USA@* @sp 1 @insertcopying @end titlepage @summarycontents @contents @page @node Top @top Introduction @cindex Introduction This manual documents the usage of libgomp, the GNU implementation of the @uref{http://www.openmp.org, OpenMP} Application Programming Interface (API) for multi-platform shared-memory parallel programming in C/C++ and Fortran. @comment @comment When you add a new menu item, please keep the right hand @comment aligned to the same column. Do not use tabs. This provides @comment better formatting. @comment @menu * Enabling OpenMP:: How to enable OpenMP for your applications. * Runtime Library Routines:: The OpenMP runtime application programming interface. * Environment Variables:: Influencing runtime behavior with environment variables. * The libgomp ABI:: Notes on the external ABI presented by libgomp. * Reporting Bugs:: How to report bugs in GNU OpenMP. * Copying:: GNU general public license says how you can copy and share libgomp. * GNU Free Documentation License:: How you can copy and share this manual. * Funding:: How to help assure continued work for free software. * Index:: Index of this documentation. @end menu @c --------------------------------------------------------------------- @c Enabling OpenMP @c --------------------------------------------------------------------- @node Enabling OpenMP @chapter Enabling OpenMP To activate the OpenMP extensions for C/C++ and Fortran, the compile-time flag @command{-fopenmp} must be specified. This enables the OpenMP directive @code{#pragma omp} in C/C++ and @code{!$omp} directives in free form, @code{c$omp}, @code{*$omp} and @code{!$omp} directives in fixed form, @code{!$} conditional compilation sentinels in free form and @code{c$}, @code{*$} and @code{!$} sentinels in fixed form, for Fortran. The flag also arranges for automatic linking of the OpenMP runtime library (@ref{Runtime Library Routines}). A complete description of all OpenMP directives accepted may be found in the @uref{http://www.openmp.org, OpenMP Application Program Interface} manual, version 3.0. @c --------------------------------------------------------------------- @c Runtime Library Routines @c --------------------------------------------------------------------- @node Runtime Library Routines @chapter Runtime Library Routines The runtime routines described here are defined by section 3 of the OpenMP specifications in version 3.0. The routines are structured in following three parts: Control threads, processors and the parallel environment. @menu * omp_get_active_level:: Number of active parallel regions * omp_get_ancestor_thread_num:: Ancestor thread ID * omp_get_dynamic:: Dynamic teams setting * omp_get_level:: Number of parallel regions * omp_get_max_active_levels:: Maximal number of active regions * omp_get_max_threads:: Maximal number of threads of parallel region * omp_get_nested:: Nested parallel regions * omp_get_num_procs:: Number of processors online * omp_get_num_threads:: Size of the active team * omp_get_schedule:: Obtain the runtime scheduling method * omp_get_team_size:: Number of threads in a team * omp_get_thread_limit:: Maximal number of threads * omp_get_thread_num:: Current thread ID * omp_in_parallel:: Whether a parallel region is active * omp_set_dynamic:: Enable/disable dynamic teams * omp_set_max_active_levels:: Limits the number of active parallel regions * omp_set_nested:: Enable/disable nested parallel regions * omp_set_num_threads:: Set upper team size limit * omp_set_schedule:: Set the runtime scheduling method @end menu Initialize, set, test, unset and destroy simple and nested locks. @menu * omp_init_lock:: Initialize simple lock * omp_set_lock:: Wait for and set simple lock * omp_test_lock:: Test and set simple lock if available * omp_unset_lock:: Unset simple lock * omp_destroy_lock:: Destroy simple lock * omp_init_nest_lock:: Initialize nested lock * omp_set_nest_lock:: Wait for and set simple lock * omp_test_nest_lock:: Test and set nested lock if available * omp_unset_nest_lock:: Unset nested lock * omp_destroy_nest_lock:: Destroy nested lock @end menu Portable, thread-based, wall clock timer. @menu * omp_get_wtick:: Get timer precision. * omp_get_wtime:: Elapsed wall clock time. @end menu @node omp_get_active_level @section @code{omp_get_active_level} -- Number of parallel regions @table @asis @item @emph{Description}: This function returns the nesting level for the active parallel blocks, which enclose the calling call. @item @emph{C/C++} @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{int omp_get_active_level();} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{integer omp_get_active_level()} @end multitable @item @emph{See also}: @ref{omp_get_level}, @ref{omp_get_max_active_levels}, @ref{omp_set_max_active_levels} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.19. @end table @node omp_get_ancestor_thread_num @section @code{omp_get_ancestor_thread_num} -- Ancestor thread ID @table @asis @item @emph{Description}: This function returns the thread identification number for the given nesting level of the current thread. For values of @var{level} outside zero to @code{omp_get_level} -1 is returned; if @var{level} is @code{omp_get_level} the result is identical to @code{omp_get_thread_num}. @item @emph{C/C++} @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{int omp_get_ancestor_thread_num(int level);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{integer omp_ancestor_thread_num(level)} @item @tab @code{integer level} @end multitable @item @emph{See also}: @ref{omp_get_level}, @ref{omp_get_thread_num}, @ref{omp_get_team_size} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.17. @end table @node omp_get_dynamic @section @code{omp_get_dynamic} -- Dynamic teams setting @table @asis @item @emph{Description}: This function returns @code{true} if enabled, @code{false} otherwise. Here, @code{true} and @code{false} represent their language-specific counterparts. The dynamic team setting may be initialized at startup by the @code{OMP_DYNAMIC} environment variable or at runtime using @code{omp_set_dynamic}. If undefined, dynamic adjustment is disabled by default. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{int omp_get_dynamic();} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{logical function omp_get_dynamic()} @end multitable @item @emph{See also}: @ref{omp_set_dynamic}, @ref{OMP_DYNAMIC} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.8. @end table @node omp_get_level @section @code{omp_get_level} -- Obtain the current nesting level @table @asis @item @emph{Description}: This function returns the nesting level for the parallel blocks, which enclose the calling call. @item @emph{C/C++} @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{int omp_get level();} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{integer omp_level()} @end multitable @item @emph{See also}: @ref{omp_get_active_level} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.16. @end table @node omp_get_max_active_levels @section @code{omp_set_max_active_levels} -- Maximal number of active regions @table @asis @item @emph{Description}: This function obtains the maximally allowed number of nested, active parallel regions. @item @emph{C/C++} @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{int omp_get_max_active_levels();} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{int omp_get_max_active_levels()} @end multitable @item @emph{See also}: @ref{omp_set_max_active_levels}, @ref{omp_get_active_level} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.14. @end table @node omp_get_max_threads @section @code{omp_get_max_threads} -- Maximal number of threads of parallel region @table @asis @item @emph{Description}: Return the maximal number of threads used for the current parallel region that does not use the clause @code{num_threads}. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{int omp_get_max_threads();} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{integer function omp_get_max_threads()} @end multitable @item @emph{See also}: @ref{omp_set_num_threads}, @ref{omp_set_dynamic}, @ref{omp_get_thread_limit} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.3. @end table @node omp_get_nested @section @code{omp_get_nested} -- Nested parallel regions @table @asis @item @emph{Description}: This function returns @code{true} if nested parallel regions are enabled, @code{false} otherwise. Here, @code{true} and @code{false} represent their language-specific counterparts. Nested parallel regions may be initialized at startup by the @code{OMP_NESTED} environment variable or at runtime using @code{omp_set_nested}. If undefined, nested parallel regions are disabled by default. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{int omp_get_nested();} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{integer function omp_get_nested()} @end multitable @item @emph{See also}: @ref{omp_set_nested}, @ref{OMP_NESTED} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.10. @end table @node omp_get_num_procs @section @code{omp_get_num_procs} -- Number of processors online @table @asis @item @emph{Description}: Returns the number of processors online. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{int omp_get_num_procs();} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{integer function omp_get_num_procs()} @end multitable @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.5. @end table @node omp_get_num_threads @section @code{omp_get_num_threads} -- Size of the active team @table @asis @item @emph{Description}: The number of threads in the current team. In a sequential section of the program @code{omp_get_num_threads} returns 1. The default team size may be initialized at startup by the @code{OMP_NUM_THREADS} environment variable. At runtime, the size of the current team may be set either by the @code{NUM_THREADS} clause or by @code{omp_set_num_threads}. If none of the above were used to define a specific value and @code{OMP_DYNAMIC} is disabled, one thread per CPU online is used. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{int omp_get_num_threads();} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{integer function omp_get_num_threads()} @end multitable @item @emph{See also}: @ref{omp_get_max_threads}, @ref{omp_set_num_threads}, @ref{OMP_NUM_THREADS} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.2. @end table @node omp_get_schedule @section @code{omp_get_schedule} -- Obtain the runtime scheduling method @table @asis @item @emph{Description}: Obtain runtime the scheduling method. The @var{kind} argument will be set to the value @code{omp_sched_static}, @code{omp_sched_dynamic}, @code{opm_sched_guided} or @code{auto}. The second argument, @var{modifier}, is set to the chunk size. @item @emph{C/C++} @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{omp_schedule(omp_sched_t * kind, int *modifier);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{subroutine omp_schedule(kind, modifier)} @item @tab @code{integer(kind=omp_sched_kind) kind} @item @tab @code{integer modifier} @end multitable @item @emph{See also}: @ref{omp_set_schedule}, @ref{OMP_SCHEDULE} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.12. @end table @node omp_get_team_size @section @code{omp_get_team_size} -- Number of threads in a team @table @asis @item @emph{Description}: This function returns the number of threads in a thread team to which either the current thread or its ancestor belongs. For values of @var{level} outside zero to @code{omp_get_level} -1 is returned; if @var{level} is zero 1 is returned and for @code{omp_get_level} the result is identical to @code{omp_get_num_threads}. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{int omp_get_time_size(int level);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{integer function omp_get_team_size(level)} @item @tab @code{integer level} @end multitable @item @emph{See also}: @ref{omp_get_num_threads}, @ref{omp_get_level}, @ref{omp_get_ancestor_thread_num} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.18. @end table @node omp_get_thread_limit @section @code{omp_get_thread_limit} -- Maximal number of threads @table @asis @item @emph{Description}: Return the maximal number of threads of the program. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{int omp_get_thread_limit();} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{integer function omp_get_thread_limit()} @end multitable @item @emph{See also}: @ref{omp_get_max_threads}, @ref{OMP_THREAD_LIMIT} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.13. @end table @node omp_get_thread_num @section @code{omp_get_thread_num} -- Current thread ID @table @asis @item @emph{Description}: Unique thread identification number within the current team. In a sequential parts of the program, @code{omp_get_thread_num} always returns 0. In parallel regions the return value varies from 0 to @code{omp_get_num_threads}-1 inclusive. The return value of the master thread of a team is always 0. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{int omp_get_thread_num();} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{integer function omp_get_thread_num()} @end multitable @item @emph{See also}: @ref{omp_get_num_threads}, @ref{omp_get_ancestor_thread_num} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.4. @end table @node omp_in_parallel @section @code{omp_in_parallel} -- Whether a parallel region is active @table @asis @item @emph{Description}: This function returns @code{true} if currently running in parallel, @code{false} otherwise. Here, @code{true} and @code{false} represent their language-specific counterparts. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{int omp_in_parallel();} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{logical function omp_in_parallel()} @end multitable @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.6. @end table @node omp_set_dynamic @section @code{omp_set_dynamic} -- Enable/disable dynamic teams @table @asis @item @emph{Description}: Enable or disable the dynamic adjustment of the number of threads within a team. The function takes the language-specific equivalent of @code{true} and @code{false}, where @code{true} enables dynamic adjustment of team sizes and @code{false} disables it. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{void omp_set_dynamic(int);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{subroutine omp_set_dynamic(set)} @item @tab @code{integer, intent(in) :: set} @end multitable @item @emph{See also}: @ref{OMP_DYNAMIC}, @ref{omp_get_dynamic} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.7. @end table @node omp_set_max_active_levels @section @code{omp_set_max_active_levels} -- Limits the number of active parallel regions @table @asis @item @emph{Description}: This function limits the maximally allowed number of nested, active parallel regions. @item @emph{C/C++} @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{omp_set_max_active_levels(int max_levels);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{omp_max_active_levels(max_levels)} @item @tab @code{integer max_levels} @end multitable @item @emph{See also}: @ref{omp_get_max_active_levels}, @ref{omp_get_active_level} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.14. @end table @node omp_set_nested @section @code{omp_set_nested} -- Enable/disable nested parallel regions @table @asis @item @emph{Description}: Enable or disable nested parallel regions, i.e., whether team members are allowed to create new teams. The function takes the language-specific equivalent of @code{true} and @code{false}, where @code{true} enables dynamic adjustment of team sizes and @code{false} disables it. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{void omp_set_dynamic(int);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{subroutine omp_set_dynamic(set)} @item @tab @code{integer, intent(in) :: set} @end multitable @item @emph{See also}: @ref{OMP_NESTED}, @ref{omp_get_nested} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.9. @end table @node omp_set_num_threads @section @code{omp_set_num_threads} -- Set upper team size limit @table @asis @item @emph{Description}: Specifies the number of threads used by default in subsequent parallel sections, if those do not specify a @code{num_threads} clause. The argument of @code{omp_set_num_threads} shall be a positive integer. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{void omp_set_num_threads(int);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{subroutine omp_set_num_threads(set)} @item @tab @code{integer, intent(in) :: set} @end multitable @item @emph{See also}: @ref{OMP_NUM_THREADS}, @ref{omp_get_num_threads}, @ref{omp_get_max_threads} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.1. @end table @node omp_set_schedule @section @code{omp_set_schedule} -- Set the runtime scheduling method @table @asis @item @emph{Description}: Sets the runtime scheduling method. The @var{kind} argument can have the value @code{omp_sched_static}, @code{omp_sched_dynamic}, @code{opm_sched_guided} or @code{omp_sched_auto}. Except for @code{omp_sched_auto}, the chunk size is set to the value of @var{modifier} if positive or to the default value if zero or negative. For @code{omp_sched_auto} the @var{modifier} argument is ignored. @item @emph{C/C++} @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{int omp_schedule(omp_sched_t * kind, int *modifier);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{subroutine omp_schedule(kind, modifier)} @item @tab @code{integer(kind=omp_sched_kind) kind} @item @tab @code{integer modifier} @end multitable @item @emph{See also}: @ref{omp_get_schedule} @ref{OMP_SCHEDULE} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.2.11. @end table @node omp_init_lock @section @code{omp_init_lock} -- Initialize simple lock @table @asis @item @emph{Description}: Initialize a simple lock. After initialization, the lock is in an unlocked state. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{void omp_init_lock(omp_lock_t *lock);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{subroutine omp_init_lock(lock)} @item @tab @code{integer(omp_lock_kind), intent(out) :: lock} @end multitable @item @emph{See also}: @ref{omp_destroy_lock} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.3.1. @end table @node omp_set_lock @section @code{omp_set_lock} -- Wait for and set simple lock @table @asis @item @emph{Description}: Before setting a simple lock, the lock variable must be initialized by @code{omp_init_lock}. The calling thread is blocked until the lock is available. If the lock is already held by the current thread, a deadlock occurs. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{void omp_set_lock(omp_lock_t *lock);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{subroutine omp_set_lock(lock)} @item @tab @code{integer(omp_lock_kind), intent(out) :: lock} @end multitable @item @emph{See also}: @ref{omp_init_lock}, @ref{omp_test_lock}, @ref{omp_unset_lock} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.3.3. @end table @node omp_test_lock @section @code{omp_test_lock} -- Test and set simple lock if available @table @asis @item @emph{Description}: Before setting a simple lock, the lock variable must be initialized by @code{omp_init_lock}. Contrary to @code{omp_set_lock}, @code{omp_test_lock} does not block if the lock is not available. This function returns @code{true} upon success, @code{false} otherwise. Here, @code{true} and @code{false} represent their language-specific counterparts. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{int omp_test_lock(omp_lock_t *lock);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{subroutine omp_test_lock(lock)} @item @tab @code{logical(omp_logical_kind) :: omp_test_lock} @item @tab @code{integer(omp_lock_kind), intent(out) :: lock} @end multitable @item @emph{See also}: @ref{omp_init_lock}, @ref{omp_set_lock}, @ref{omp_set_lock} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.3.5. @end table @node omp_unset_lock @section @code{omp_unset_lock} -- Unset simple lock @table @asis @item @emph{Description}: A simple lock about to be unset must have been locked by @code{omp_set_lock} or @code{omp_test_lock} before. In addition, the lock must be held by the thread calling @code{omp_unset_lock}. Then, the lock becomes unlocked. If one ore more threads attempted to set the lock before, one of them is chosen to, again, set the lock for itself. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{void omp_unset_lock(omp_lock_t *lock);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{subroutine omp_unset_lock(lock)} @item @tab @code{integer(omp_lock_kind), intent(out) :: lock} @end multitable @item @emph{See also}: @ref{omp_set_lock}, @ref{omp_test_lock} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.3.4. @end table @node omp_destroy_lock @section @code{omp_destroy_lock} -- Destroy simple lock @table @asis @item @emph{Description}: Destroy a simple lock. In order to be destroyed, a simple lock must be in the unlocked state. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{void omp_destroy_lock(omp_lock_t *);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{subroutine omp_destroy_lock(lock)} @item @tab @code{integer(omp_lock_kind), intent(inout) :: lock} @end multitable @item @emph{See also}: @ref{omp_init_lock} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.3.2. @end table @node omp_init_nest_lock @section @code{omp_init_nest_lock} -- Initialize nested lock @table @asis @item @emph{Description}: Initialize a nested lock. After initialization, the lock is in an unlocked state and the nesting count is set to zero. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{void omp_init_nest_lock(omp_nest_lock_t *lock);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{subroutine omp_init_nest_lock(lock)} @item @tab @code{integer(omp_nest_lock_kind), intent(out) :: lock} @end multitable @item @emph{See also}: @ref{omp_destroy_nest_lock} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.3.1. @end table @node omp_set_nest_lock @section @code{omp_set_nest_lock} -- Wait for and set simple lock @table @asis @item @emph{Description}: Before setting a nested lock, the lock variable must be initialized by @code{omp_init_nest_lock}. The calling thread is blocked until the lock is available. If the lock is already held by the current thread, the nesting count for the lock in incremented. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{void omp_set_nest_lock(omp_nest_lock_t *lock);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{subroutine omp_set_nest_lock(lock)} @item @tab @code{integer(omp_nest_lock_kind), intent(out) :: lock} @end multitable @item @emph{See also}: @ref{omp_init_nest_lock}, @ref{omp_unset_nest_lock} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.3.3. @end table @node omp_test_nest_lock @section @code{omp_test_nest_lock} -- Test and set nested lock if available @table @asis @item @emph{Description}: Before setting a nested lock, the lock variable must be initialized by @code{omp_init_nest_lock}. Contrary to @code{omp_set_nest_lock}, @code{omp_test_nest_lock} does not block if the lock is not available. If the lock is already held by the current thread, the new nesting count is returned. Otherwise, the return value equals zero. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{int omp_test_nest_lock(omp_nest_lock_t *lock);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{integer function omp_test_nest_lock(lock)} @item @tab @code{integer(omp_integer_kind) :: omp_test_nest_lock} @item @tab @code{integer(omp_nest_lock_kind), intent(inout) :: lock} @end multitable @item @emph{See also}: @ref{omp_init_lock}, @ref{omp_set_lock}, @ref{omp_set_lock} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.3.5. @end table @node omp_unset_nest_lock @section @code{omp_unset_nest_lock} -- Unset nested lock @table @asis @item @emph{Description}: A nested lock about to be unset must have been locked by @code{omp_set_nested_lock} or @code{omp_test_nested_lock} before. In addition, the lock must be held by the thread calling @code{omp_unset_nested_lock}. If the nesting count drops to zero, the lock becomes unlocked. If one ore more threads attempted to set the lock before, one of them is chosen to, again, set the lock for itself. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{void omp_unset_nest_lock(omp_nest_lock_t *lock);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{subroutine omp_unset_nest_lock(lock)} @item @tab @code{integer(omp_nest_lock_kind), intent(out) :: lock} @end multitable @item @emph{See also}: @ref{omp_set_nest_lock} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.3.4. @end table @node omp_destroy_nest_lock @section @code{omp_destroy_nest_lock} -- Destroy nested lock @table @asis @item @emph{Description}: Destroy a nested lock. In order to be destroyed, a nested lock must be in the unlocked state and its nesting count must equal zero. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{void omp_destroy_nest_lock(omp_nest_lock_t *);} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{subroutine omp_destroy_nest_lock(lock)} @item @tab @code{integer(omp_nest_lock_kind), intent(inout) :: lock} @end multitable @item @emph{See also}: @ref{omp_init_lock} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.3.2. @end table @node omp_get_wtick @section @code{omp_get_wtick} -- Get timer precision @table @asis @item @emph{Description}: Gets the timer precision, i.e., the number of seconds between two successive clock ticks. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{double omp_get_wtick();} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{double precision function omp_get_wtick()} @end multitable @item @emph{See also}: @ref{omp_get_wtime} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.4.2. @end table @node omp_get_wtime @section @code{omp_get_wtime} -- Elapsed wall clock time @table @asis @item @emph{Description}: Elapsed wall clock time in seconds. The time is measured per thread, no guarantee can bee made that two distinct threads measure the same time. Time is measured from some "time in the past". On POSIX compliant systems the seconds since the Epoch (00:00:00 UTC, January 1, 1970) are returned. @item @emph{C/C++}: @multitable @columnfractions .20 .80 @item @emph{Prototype}: @tab @code{double omp_get_wtime();} @end multitable @item @emph{Fortran}: @multitable @columnfractions .20 .80 @item @emph{Interface}: @tab @code{double precision function omp_get_wtime()} @end multitable @item @emph{See also}: @ref{omp_get_wtick} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 3.4.1. @end table @c --------------------------------------------------------------------- @c Environment Variables @c --------------------------------------------------------------------- @node Environment Variables @chapter Environment Variables The variables @env{OMP_DYNAMIC}, @env{OMP_MAX_ACTIVE_LEVELS}, @env{OMP_NESTED}, @env{OMP_NUM_THREADS}, @env{OMP_SCHEDULE}, @env{OMP_STACKSIZE},@env{OMP_THREAD_LIMIT} and @env{OMP_WAIT_POLICY} are defined by section 4 of the OpenMP specifications in version 3.0, while @env{GOMP_CPU_AFFINITY} and @env{GOMP_STACKSIZE} are GNU extensions. @menu * OMP_DYNAMIC:: Dynamic adjustment of threads * OMP_MAX_ACTIVE_LEVELS:: Set the maximal number of nested parallel regions * OMP_NESTED:: Nested parallel regions * OMP_NUM_THREADS:: Specifies the number of threads to use * OMP_STACKSIZE:: Set default thread stack size * OMP_SCHEDULE:: How threads are scheduled * OMP_THREAD_LIMIT:: Set the maximal number of threads * OMP_WAIT_POLICY:: How waiting threads are handled * GOMP_CPU_AFFINITY:: Bind threads to specific CPUs * GOMP_STACKSIZE:: Set default thread stack size @end menu @node OMP_DYNAMIC @section @env{OMP_DYNAMIC} -- Dynamic adjustment of threads @cindex Environment Variable @table @asis @item @emph{Description}: Enable or disable the dynamic adjustment of the number of threads within a team. The value of this environment variable shall be @code{TRUE} or @code{FALSE}. If undefined, dynamic adjustment is disabled by default. @item @emph{See also}: @ref{omp_set_dynamic} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 4.3 @end table @node OMP_MAX_ACTIVE_LEVELS @section @env{OMP_MAX_ACTIVE_LEVELS} -- Set the maximal number of nested parallel regions @cindex Environment Variable @table @asis @item @emph{Description}: Specifies the initial value for the maximal number of nested parallel regions. The value of this variable shall be positive integer. If undefined, the number of active levels is unlimited. @item @emph{See also}: @ref{omp_set_max_active_levels} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 4.7 @end table @node OMP_NESTED @section @env{OMP_NESTED} -- Nested parallel regions @cindex Environment Variable @cindex Implementation specific setting @table @asis @item @emph{Description}: Enable or disable nested parallel regions, i.e., whether team members are allowed to create new teams. The value of this environment variable shall be @code{TRUE} or @code{FALSE}. If undefined, nested parallel regions are disabled by default. @item @emph{See also}: @ref{omp_set_nested} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 4.4 @end table @node OMP_NUM_THREADS @section @env{OMP_NUM_THREADS} -- Specifies the number of threads to use @cindex Environment Variable @cindex Implementation specific setting @table @asis @item @emph{Description}: Specifies the default number of threads to use in parallel regions. The value of this variable shall be positive integer. If undefined one thread per CPU online is used. @item @emph{See also}: @ref{omp_set_num_threads} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 4.2 @end table @node OMP_SCHEDULE @section @env{OMP_SCHEDULE} -- How threads are scheduled @cindex Environment Variable @cindex Implementation specific setting @table @asis @item @emph{Description}: Allows to specify @code{schedule type} and @code{chunk size}. The value of the variable shall have the form: @code{type[,chunk]} where @code{type} is one of @code{static}, @code{dynamic}, @code{guided} or @code{auto} The optional @code{chunk} size shall be a positive integer. If undefined, dynamic scheduling and a chunk size of 1 is used. @item @emph{See also}: @ref{omp_set_schedule} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, sections 2.5.1 and 4.1 @end table @node OMP_STACKSIZE @section @env{OMP_STACKSIZE} -- Set default thread stack size @cindex Environment Variable @table @asis @item @emph{Description}: Set the default thread stack size in kilobytes, unless the number is suffixed by @code{B}, @code{K}, @code{M} or @code{G}, in which case the size is, respectively, in bytes, kilobytes, megabytes or gigabytes. This is different from @code{pthread_attr_setstacksize} which gets the number of bytes as an argument. If the stacksize can not be set due to system constraints, an error is reported and the initial stacksize is left unchanged. If undefined, the stack size is system dependent. @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, sections 4.5 @end table @node OMP_THREAD_LIMIT @section @env{OMP_THREAD_LIMIT} -- Set the maximal number of threads @cindex Environment Variable @table @asis @item @emph{Description}: Specifies the number of threads to use for the whole program. The value of this variable shall be positive integer. If undefined, the number of threads is not limited. @item @emph{See also}: @ref{OMP_NUM_THREADS} @ref{omp_get_thread_limit} @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, section 4.8 @end table @node OMP_WAIT_POLICY @section @env{OMP_WAIT_POLICY} -- How waiting threads are handled @cindex Environment Variable @table @asis @item @emph{Description}: Specifies whether waiting threads should be active or passive. If the value is @code{PASSIVE}, waiting threads should not consume CPU power while waiting; while the value is @code{ACTIVE} specifies that they should. @item @emph{Reference}: @uref{http://www.openmp.org/, OpenMP specifications v3.0}, sections 4.6 @end table @node GOMP_CPU_AFFINITY @section @env{GOMP_CPU_AFFINITY} -- Bind threads to specific CPUs @cindex Environment Variable @table @asis @item @emph{Description}: Binds threads to specific CPUs. The variable should contain a space- or comma-separated list of CPUs. This list may contain different kind of entries: either single CPU numbers in any order, a range of CPUs (M-N) or a range with some stride (M-N:S). CPU numbers are zero based. For example, @code{GOMP_CPU_AFFINITY="0 3 1-2 4-15:2"} will bind the initial thread to CPU 0, the second to CPU 3, the third to CPU 1, the fourth to CPU 2, the fifth to CPU 4, the sixth through tenth to CPUs 6, 8, 10, 12, and 14 respectively and then start assigning back from the beginning of the list. @code{GOMP_CPU_AFFINITY=0} binds all threads to CPU 0. There is no GNU OpenMP library routine to determine whether a CPU affinity specification is in effect. As a workaround, language-specific library functions, e.g., @code{getenv} in C or @code{GET_ENVIRONMENT_VARIABLE} in Fortran, may be used to query the setting of the @code{GOMP_CPU_AFFINITY} environment variable. A defined CPU affinity on startup cannot be changed or disabled during the runtime of the application. If this environment variable is omitted, the host system will handle the assignment of threads to CPUs. @end table @node GOMP_STACKSIZE @section @env{GOMP_STACKSIZE} -- Set default thread stack size @cindex Environment Variable @cindex Implementation specific setting @table @asis @item @emph{Description}: Set the default thread stack size in kilobytes. This is different from @code{pthread_attr_setstacksize} which gets the number of bytes as an argument. If the stacksize can not be set due to system constraints, an error is reported and the initial stacksize is left unchanged. If undefined, the stack size is system dependent. @item @emph{See also}: @ref{GOMP_STACKSIZE} @item @emph{Reference}: @uref{http://gcc.gnu.org/ml/gcc-patches/2006-06/msg00493.html, GCC Patches Mailinglist}, @uref{http://gcc.gnu.org/ml/gcc-patches/2006-06/msg00496.html, GCC Patches Mailinglist} @end table @c --------------------------------------------------------------------- @c The libgomp ABI @c --------------------------------------------------------------------- @node The libgomp ABI @chapter The libgomp ABI The following sections present notes on the external ABI as presented by libgomp. Only maintainers should need them. @menu * Implementing MASTER construct:: * Implementing CRITICAL construct:: * Implementing ATOMIC construct:: * Implementing FLUSH construct:: * Implementing BARRIER construct:: * Implementing THREADPRIVATE construct:: * Implementing PRIVATE clause:: * Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses:: * Implementing REDUCTION clause:: * Implementing PARALLEL construct:: * Implementing FOR construct:: * Implementing ORDERED construct:: * Implementing SECTIONS construct:: * Implementing SINGLE construct:: @end menu @node Implementing MASTER construct @section Implementing MASTER construct @smallexample if (omp_get_thread_num () == 0) block @end smallexample Alternately, we generate two copies of the parallel subfunction and only include this in the version run by the master thread. Surely that's not worthwhile though... @node Implementing CRITICAL construct @section Implementing CRITICAL construct Without a specified name, @smallexample void GOMP_critical_start (void); void GOMP_critical_end (void); @end smallexample so that we don't get COPY relocations from libgomp to the main application. With a specified name, use omp_set_lock and omp_unset_lock with name being transformed into a variable declared like @smallexample omp_lock_t gomp_critical_user_ __attribute__((common)) @end smallexample Ideally the ABI would specify that all zero is a valid unlocked state, and so we wouldn't actually need to initialize this at startup. @node Implementing ATOMIC construct @section Implementing ATOMIC construct The target should implement the @code{__sync} builtins. Failing that we could add @smallexample void GOMP_atomic_enter (void) void GOMP_atomic_exit (void) @end smallexample which reuses the regular lock code, but with yet another lock object private to the library. @node Implementing FLUSH construct @section Implementing FLUSH construct Expands to the @code{__sync_synchronize} builtin. @node Implementing BARRIER construct @section Implementing BARRIER construct @smallexample void GOMP_barrier (void) @end smallexample @node Implementing THREADPRIVATE construct @section Implementing THREADPRIVATE construct In _most_ cases we can map this directly to @code{__thread}. Except that OMP allows constructors for C++ objects. We can either refuse to support this (how often is it used?) or we can implement something akin to .ctors. Even more ideally, this ctor feature is handled by extensions to the main pthreads library. Failing that, we can have a set of entry points to register ctor functions to be called. @node Implementing PRIVATE clause @section Implementing PRIVATE clause In association with a PARALLEL, or within the lexical extent of a PARALLEL block, the variable becomes a local variable in the parallel subfunction. In association with FOR or SECTIONS blocks, create a new automatic variable within the current function. This preserves the semantic of new variable creation. @node Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses @section Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses Seems simple enough for PARALLEL blocks. Create a private struct for communicating between parent and subfunction. In the parent, copy in values for scalar and "small" structs; copy in addresses for others TREE_ADDRESSABLE types. In the subfunction, copy the value into the local variable. Not clear at all what to do with bare FOR or SECTION blocks. The only thing I can figure is that we do something like @smallexample #pragma omp for firstprivate(x) lastprivate(y) for (int i = 0; i < n; ++i) body; @end smallexample which becomes @smallexample @{ int x = x, y; // for stuff if (i == n) y = y; @} @end smallexample where the "x=x" and "y=y" assignments actually have different uids for the two variables, i.e. not something you could write directly in C. Presumably this only makes sense if the "outer" x and y are global variables. COPYPRIVATE would work the same way, except the structure broadcast would have to happen via SINGLE machinery instead. @node Implementing REDUCTION clause @section Implementing REDUCTION clause The private struct mentioned in the previous section should have a pointer to an array of the type of the variable, indexed by the thread's @var{team_id}. The thread stores its final value into the array, and after the barrier the master thread iterates over the array to collect the values. @node Implementing PARALLEL construct @section Implementing PARALLEL construct @smallexample #pragma omp parallel @{ body; @} @end smallexample becomes @smallexample void subfunction (void *data) @{ use data; body; @} setup data; GOMP_parallel_start (subfunction, &data, num_threads); subfunction (&data); GOMP_parallel_end (); @end smallexample @smallexample void GOMP_parallel_start (void (*fn)(void *), void *data, unsigned num_threads) @end smallexample The @var{FN} argument is the subfunction to be run in parallel. The @var{DATA} argument is a pointer to a structure used to communicate data in and out of the subfunction, as discussed above with respect to FIRSTPRIVATE et al. The @var{NUM_THREADS} argument is 1 if an IF clause is present and false, or the value of the NUM_THREADS clause, if present, or 0. The function needs to create the appropriate number of threads and/or launch them from the dock. It needs to create the team structure and assign team ids. @smallexample void GOMP_parallel_end (void) @end smallexample Tears down the team and returns us to the previous @code{omp_in_parallel()} state. @node Implementing FOR construct @section Implementing FOR construct @smallexample #pragma omp parallel for for (i = lb; i <= ub; i++) body; @end smallexample becomes @smallexample void subfunction (void *data) @{ long _s0, _e0; while (GOMP_loop_static_next (&_s0, &_e0)) @{ long _e1 = _e0, i; for (i = _s0; i < _e1; i++) body; @} GOMP_loop_end_nowait (); @} GOMP_parallel_loop_static (subfunction, NULL, 0, lb, ub+1, 1, 0); subfunction (NULL); GOMP_parallel_end (); @end smallexample @smallexample #pragma omp for schedule(runtime) for (i = 0; i < n; i++) body; @end smallexample becomes @smallexample @{ long i, _s0, _e0; if (GOMP_loop_runtime_start (0, n, 1, &_s0, &_e0)) do @{ long _e1 = _e0; for (i = _s0, i < _e0; i++) body; @} while (GOMP_loop_runtime_next (&_s0, _&e0)); GOMP_loop_end (); @} @end smallexample Note that while it looks like there is trickyness to propagating a non-constant STEP, there isn't really. We're explicitly allowed to evaluate it as many times as we want, and any variables involved should automatically be handled as PRIVATE or SHARED like any other variables. So the expression should remain evaluable in the subfunction. We can also pull it into a local variable if we like, but since its supposed to remain unchanged, we can also not if we like. If we have SCHEDULE(STATIC), and no ORDERED, then we ought to be able to get away with no work-sharing context at all, since we can simply perform the arithmetic directly in each thread to divide up the iterations. Which would mean that we wouldn't need to call any of these routines. There are separate routines for handling loops with an ORDERED clause. Bookkeeping for that is non-trivial... @node Implementing ORDERED construct @section Implementing ORDERED construct @smallexample void GOMP_ordered_start (void) void GOMP_ordered_end (void) @end smallexample @node Implementing SECTIONS construct @section Implementing SECTIONS construct A block as @smallexample #pragma omp sections @{ #pragma omp section stmt1; #pragma omp section stmt2; #pragma omp section stmt3; @} @end smallexample becomes @smallexample for (i = GOMP_sections_start (3); i != 0; i = GOMP_sections_next ()) switch (i) @{ case 1: stmt1; break; case 2: stmt2; break; case 3: stmt3; break; @} GOMP_barrier (); @end smallexample @node Implementing SINGLE construct @section Implementing SINGLE construct A block like @smallexample #pragma omp single @{ body; @} @end smallexample becomes @smallexample if (GOMP_single_start ()) body; GOMP_barrier (); @end smallexample while @smallexample #pragma omp single copyprivate(x) body; @end smallexample becomes @smallexample datap = GOMP_single_copy_start (); if (datap == NULL) @{ body; data.x = x; GOMP_single_copy_end (&data); @} else x = datap->x; GOMP_barrier (); @end smallexample @c --------------------------------------------------------------------- @c @c --------------------------------------------------------------------- @node Reporting Bugs @chapter Reporting Bugs Bugs in the GNU OpenMP implementation should be reported via @uref{http://gcc.gnu.org/bugzilla/, bugzilla}. In all cases, please add "openmp" to the keywords field in the bug report. @c --------------------------------------------------------------------- @c GNU General Public License @c --------------------------------------------------------------------- @include gpl.texi @c --------------------------------------------------------------------- @c GNU Free Documentation License @c --------------------------------------------------------------------- @include fdl.texi @c --------------------------------------------------------------------- @c Funding Free Software @c --------------------------------------------------------------------- @include funding.texi @c --------------------------------------------------------------------- @c Index @c --------------------------------------------------------------------- @node Index @unnumbered Index @printindex cp @bye