/* Definitions for GCC. Part of the machine description for CRIS. Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. Contributed by Axis Communications. Written by Hans-Peter Nilsson. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "insn-attr.h" #include "flags.h" #include "tree.h" #include "expr.h" #include "except.h" #include "function.h" #include "toplev.h" #include "recog.h" #include "reload.h" #include "tm_p.h" #include "debug.h" #include "output.h" #include "target.h" #include "target-def.h" #include "ggc.h" #include "optabs.h" #include "df.h" /* Usable when we have an amount to add or subtract, and want the optimal size of the insn. */ #define ADDITIVE_SIZE_MODIFIER(size) \ ((size) <= 63 ? "q" : (size) <= 255 ? "u.b" : (size) <= 65535 ? "u.w" : ".d") #define LOSE_AND_RETURN(msgid, x) \ do \ { \ cris_operand_lossage (msgid, x); \ return; \ } while (0) enum cris_retinsn_type { CRIS_RETINSN_UNKNOWN = 0, CRIS_RETINSN_RET, CRIS_RETINSN_JUMP }; /* Per-function machine data. */ struct machine_function GTY(()) { int needs_return_address_on_stack; /* This is the number of registers we save in the prologue due to stdarg. */ int stdarg_regs; enum cris_retinsn_type return_type; }; /* This little fix suppresses the 'u' or 's' when '%e' in assembly pattern. */ static char cris_output_insn_is_bound = 0; /* In code for output macros, this is how we know whether e.g. constant goes in code or in a static initializer. */ static int in_code = 0; /* Fix for reg_overlap_mentioned_p. */ static int cris_reg_overlap_mentioned_p (rtx, rtx); static void cris_print_base (rtx, FILE *); static void cris_print_index (rtx, FILE *); static void cris_output_addr_const (FILE *, rtx); static struct machine_function * cris_init_machine_status (void); static rtx cris_struct_value_rtx (tree, int); static void cris_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode, tree type, int *, int); static int cris_initial_frame_pointer_offset (void); static int saved_regs_mentioned (rtx); static void cris_operand_lossage (const char *, rtx); static int cris_reg_saved_in_regsave_area (unsigned int, bool); static void cris_asm_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree); static void cris_file_start (void); static void cris_init_libfuncs (void); static bool cris_rtx_costs (rtx, int, int, int *, bool); static int cris_address_cost (rtx, bool); static bool cris_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode, const_tree, bool); static int cris_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode, tree, bool); static tree cris_md_asm_clobbers (tree, tree, tree); static bool cris_handle_option (size_t, const char *, int); /* This is the parsed result of the "-max-stack-stackframe=" option. If it (still) is zero, then there was no such option given. */ int cris_max_stackframe = 0; /* This is the parsed result of the "-march=" option, if given. */ int cris_cpu_version = CRIS_DEFAULT_CPU_VERSION; #undef TARGET_ASM_ALIGNED_HI_OP #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t" #undef TARGET_ASM_ALIGNED_SI_OP #define TARGET_ASM_ALIGNED_SI_OP "\t.dword\t" #undef TARGET_ASM_ALIGNED_DI_OP #define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t" /* We need to define these, since the 2byte, 4byte, 8byte op:s are only available in ELF. These "normal" pseudos do not have any alignment constraints or side-effects. */ #undef TARGET_ASM_UNALIGNED_HI_OP #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP #undef TARGET_ASM_UNALIGNED_SI_OP #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP #undef TARGET_ASM_UNALIGNED_DI_OP #define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK cris_asm_output_mi_thunk #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall #undef TARGET_ASM_FILE_START #define TARGET_ASM_FILE_START cris_file_start #undef TARGET_INIT_LIBFUNCS #define TARGET_INIT_LIBFUNCS cris_init_libfuncs #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS cris_rtx_costs #undef TARGET_ADDRESS_COST #define TARGET_ADDRESS_COST cris_address_cost #undef TARGET_PROMOTE_FUNCTION_ARGS #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_const_tree_true #undef TARGET_STRUCT_VALUE_RTX #define TARGET_STRUCT_VALUE_RTX cris_struct_value_rtx #undef TARGET_SETUP_INCOMING_VARARGS #define TARGET_SETUP_INCOMING_VARARGS cris_setup_incoming_varargs #undef TARGET_PASS_BY_REFERENCE #define TARGET_PASS_BY_REFERENCE cris_pass_by_reference #undef TARGET_ARG_PARTIAL_BYTES #define TARGET_ARG_PARTIAL_BYTES cris_arg_partial_bytes #undef TARGET_MD_ASM_CLOBBERS #define TARGET_MD_ASM_CLOBBERS cris_md_asm_clobbers #undef TARGET_DEFAULT_TARGET_FLAGS #define TARGET_DEFAULT_TARGET_FLAGS (TARGET_DEFAULT | CRIS_SUBTARGET_DEFAULT) #undef TARGET_HANDLE_OPTION #define TARGET_HANDLE_OPTION cris_handle_option struct gcc_target targetm = TARGET_INITIALIZER; /* Helper for cris_load_multiple_op and cris_ret_movem_op. */ bool cris_movem_load_rest_p (rtx op, int offs) { unsigned int reg_count = XVECLEN (op, 0) - offs; rtx src_addr; int i; rtx elt; int setno; int regno_dir = 1; unsigned int regno = 0; /* Perform a quick check so we don't blow up below. FIXME: Adjust for other than (MEM reg). */ if (reg_count <= 1 || GET_CODE (XVECEXP (op, 0, offs)) != SET || !REG_P (SET_DEST (XVECEXP (op, 0, offs))) || !MEM_P (SET_SRC (XVECEXP (op, 0, offs)))) return false; /* Check a possible post-inc indicator. */ if (GET_CODE (SET_SRC (XVECEXP (op, 0, offs + 1))) == PLUS) { rtx reg = XEXP (SET_SRC (XVECEXP (op, 0, offs + 1)), 0); rtx inc = XEXP (SET_SRC (XVECEXP (op, 0, offs + 1)), 1); reg_count--; if (reg_count == 1 || !REG_P (reg) || !REG_P (SET_DEST (XVECEXP (op, 0, offs + 1))) || REGNO (reg) != REGNO (SET_DEST (XVECEXP (op, 0, offs + 1))) || !CONST_INT_P (inc) || INTVAL (inc) != (HOST_WIDE_INT) reg_count * 4) return false; i = offs + 2; } else i = offs + 1; if (!TARGET_V32) { regno_dir = -1; regno = reg_count - 1; } elt = XVECEXP (op, 0, offs); src_addr = XEXP (SET_SRC (elt), 0); if (GET_CODE (elt) != SET || !REG_P (SET_DEST (elt)) || GET_MODE (SET_DEST (elt)) != SImode || REGNO (SET_DEST (elt)) != regno || !MEM_P (SET_SRC (elt)) || GET_MODE (SET_SRC (elt)) != SImode || !memory_address_p (SImode, src_addr)) return false; for (setno = 1; i < XVECLEN (op, 0); setno++, i++) { rtx elt = XVECEXP (op, 0, i); regno += regno_dir; if (GET_CODE (elt) != SET || !REG_P (SET_DEST (elt)) || GET_MODE (SET_DEST (elt)) != SImode || REGNO (SET_DEST (elt)) != regno || !MEM_P (SET_SRC (elt)) || GET_MODE (SET_SRC (elt)) != SImode || GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS || ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr) || !CONST_INT_P (XEXP (XEXP (SET_SRC (elt), 0), 1)) || INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != setno * 4) return false; } return true; } /* Worker function for predicate for the parallel contents in a movem to-memory. */ bool cris_store_multiple_op_p (rtx op) { int reg_count = XVECLEN (op, 0); rtx dest; rtx dest_addr; rtx dest_base; int i; rtx elt; int setno; int regno_dir = 1; int regno = 0; int offset = 0; /* Perform a quick check so we don't blow up below. FIXME: Adjust for other than (MEM reg) and (MEM (PLUS reg const)). */ if (reg_count <= 1) return false; elt = XVECEXP (op, 0, 0); if (GET_CODE (elt) != SET) return false; dest = SET_DEST (elt); if (!REG_P (SET_SRC (elt)) || !MEM_P (dest)) return false; dest_addr = XEXP (dest, 0); /* Check a possible post-inc indicator. */ if (GET_CODE (SET_SRC (XVECEXP (op, 0, 1))) == PLUS) { rtx reg = XEXP (SET_SRC (XVECEXP (op, 0, 1)), 0); rtx inc = XEXP (SET_SRC (XVECEXP (op, 0, 1)), 1); reg_count--; if (reg_count == 1 || !REG_P (reg) || !REG_P (SET_DEST (XVECEXP (op, 0, 1))) || REGNO (reg) != REGNO (SET_DEST (XVECEXP (op, 0, 1))) || !CONST_INT_P (inc) /* Support increment by number of registers, and by the offset of the destination, if it has the form (MEM (PLUS reg offset)). */ || !((REG_P (dest_addr) && REGNO (dest_addr) == REGNO (reg) && INTVAL (inc) == (HOST_WIDE_INT) reg_count * 4) || (GET_CODE (dest_addr) == PLUS && REG_P (XEXP (dest_addr, 0)) && REGNO (XEXP (dest_addr, 0)) == REGNO (reg) && CONST_INT_P (XEXP (dest_addr, 1)) && INTVAL (XEXP (dest_addr, 1)) == INTVAL (inc)))) return false; i = 2; } else i = 1; if (!TARGET_V32) { regno_dir = -1; regno = reg_count - 1; } if (GET_CODE (elt) != SET || !REG_P (SET_SRC (elt)) || GET_MODE (SET_SRC (elt)) != SImode || REGNO (SET_SRC (elt)) != (unsigned int) regno || !MEM_P (SET_DEST (elt)) || GET_MODE (SET_DEST (elt)) != SImode) return false; if (REG_P (dest_addr)) { dest_base = dest_addr; offset = 0; } else if (GET_CODE (dest_addr) == PLUS && REG_P (XEXP (dest_addr, 0)) && CONST_INT_P (XEXP (dest_addr, 1))) { dest_base = XEXP (dest_addr, 0); offset = INTVAL (XEXP (dest_addr, 1)); } else return false; for (setno = 1; i < XVECLEN (op, 0); setno++, i++) { rtx elt = XVECEXP (op, 0, i); regno += regno_dir; if (GET_CODE (elt) != SET || !REG_P (SET_SRC (elt)) || GET_MODE (SET_SRC (elt)) != SImode || REGNO (SET_SRC (elt)) != (unsigned int) regno || !MEM_P (SET_DEST (elt)) || GET_MODE (SET_DEST (elt)) != SImode || GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS || ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_base) || !CONST_INT_P (XEXP (XEXP (SET_DEST (elt), 0), 1)) || INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != setno * 4 + offset) return false; } return true; } /* The CONDITIONAL_REGISTER_USAGE worker. */ void cris_conditional_register_usage (void) { /* FIXME: This isn't nice. We should be able to use that register for something else if the PIC table isn't needed. */ if (flag_pic) fixed_regs[PIC_OFFSET_TABLE_REGNUM] = call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; /* Allow use of ACR (PC in pre-V32) and tweak order. */ if (TARGET_V32) { static const int reg_alloc_order_v32[] = REG_ALLOC_ORDER_V32; unsigned int i; fixed_regs[CRIS_ACR_REGNUM] = 0; for (i = 0; i < sizeof (reg_alloc_order_v32)/sizeof (reg_alloc_order_v32[0]); i++) reg_alloc_order[i] = reg_alloc_order_v32[i]; } if (TARGET_HAS_MUL_INSNS) fixed_regs[CRIS_MOF_REGNUM] = 0; /* On early versions, we must use the 16-bit condition-code register, which has another name. */ if (cris_cpu_version < 8) reg_names[CRIS_CC0_REGNUM] = "ccr"; } /* Return crtl->uses_pic_offset_table. For use in cris.md, since some generated files do not include function.h. */ int cris_cfun_uses_pic_table (void) { return crtl->uses_pic_offset_table; } /* Given an rtx, return the text string corresponding to the CODE of X. Intended for use in the assembly language output section of a define_insn. */ const char * cris_op_str (rtx x) { cris_output_insn_is_bound = 0; switch (GET_CODE (x)) { case PLUS: return "add"; break; case MINUS: return "sub"; break; case MULT: /* This function is for retrieving a part of an instruction name for an operator, for immediate output. If that ever happens for MULT, we need to apply TARGET_MUL_BUG in the caller. Make sure we notice. */ internal_error ("MULT case in cris_op_str"); break; case DIV: return "div"; break; case AND: return "and"; break; case IOR: return "or"; break; case XOR: return "xor"; break; case NOT: return "not"; break; case ASHIFT: return "lsl"; break; case LSHIFTRT: return "lsr"; break; case ASHIFTRT: return "asr"; break; case UMIN: /* Used to control the sign/zero-extend character for the 'E' modifier. BOUND has none. */ cris_output_insn_is_bound = 1; return "bound"; break; default: return "Unknown operator"; break; } } /* Emit an error message when we're in an asm, and a fatal error for "normal" insns. Formatted output isn't easily implemented, since we use output_operand_lossage to output the actual message and handle the categorization of the error. */ static void cris_operand_lossage (const char *msgid, rtx op) { debug_rtx (op); output_operand_lossage ("%s", msgid); } /* Print an index part of an address to file. */ static void cris_print_index (rtx index, FILE *file) { /* Make the index "additive" unless we'll output a negative number, in which case the sign character is free (as in free beer). */ if (!CONST_INT_P (index) || INTVAL (index) >= 0) putc ('+', file); if (REG_P (index)) fprintf (file, "$%s.b", reg_names[REGNO (index)]); else if (CONSTANT_P (index)) cris_output_addr_const (file, index); else if (GET_CODE (index) == MULT) { fprintf (file, "$%s.", reg_names[REGNO (XEXP (index, 0))]); putc (INTVAL (XEXP (index, 1)) == 2 ? 'w' : 'd', file); } else if (GET_CODE (index) == SIGN_EXTEND && MEM_P (XEXP (index, 0))) { rtx inner = XEXP (index, 0); rtx inner_inner = XEXP (inner, 0); if (GET_CODE (inner_inner) == POST_INC) { fprintf (file, "[$%s+].", reg_names[REGNO (XEXP (inner_inner, 0))]); putc (GET_MODE (inner) == HImode ? 'w' : 'b', file); } else { fprintf (file, "[$%s].", reg_names[REGNO (inner_inner)]); putc (GET_MODE (inner) == HImode ? 'w' : 'b', file); } } else if (MEM_P (index)) { rtx inner = XEXP (index, 0); if (GET_CODE (inner) == POST_INC) fprintf (file, "[$%s+].d", reg_names[REGNO (XEXP (inner, 0))]); else fprintf (file, "[$%s].d", reg_names[REGNO (inner)]); } else cris_operand_lossage ("unexpected index-type in cris_print_index", index); } /* Print a base rtx of an address to file. */ static void cris_print_base (rtx base, FILE *file) { if (REG_P (base)) fprintf (file, "$%s", reg_names[REGNO (base)]); else if (GET_CODE (base) == POST_INC) { gcc_assert (REGNO (XEXP (base, 0)) != CRIS_ACR_REGNUM); fprintf (file, "$%s+", reg_names[REGNO (XEXP (base, 0))]); } else cris_operand_lossage ("unexpected base-type in cris_print_base", base); } /* Usable as a guard in expressions. */ int cris_fatal (char *arg) { internal_error (arg); /* We'll never get here; this is just to appease compilers. */ return 0; } /* Return nonzero if REGNO is an ordinary register that *needs* to be saved together with other registers, possibly by a MOVEM instruction, or is saved for target-independent reasons. There may be target-dependent reasons to save the register anyway; this is just a wrapper for a complicated conditional. */ static int cris_reg_saved_in_regsave_area (unsigned int regno, bool got_really_used) { return (((df_regs_ever_live_p (regno) && !call_used_regs[regno]) || (regno == PIC_OFFSET_TABLE_REGNUM && (got_really_used /* It is saved anyway, if there would be a gap. */ || (flag_pic && df_regs_ever_live_p (regno + 1) && !call_used_regs[regno + 1])))) && (regno != FRAME_POINTER_REGNUM || !frame_pointer_needed) && regno != CRIS_SRP_REGNUM) || (crtl->calls_eh_return && (regno == EH_RETURN_DATA_REGNO (0) || regno == EH_RETURN_DATA_REGNO (1) || regno == EH_RETURN_DATA_REGNO (2) || regno == EH_RETURN_DATA_REGNO (3))); } /* Return nonzero if there are regs mentioned in the insn that are not all in the call_used regs. This is part of the decision whether an insn can be put in the epilogue. */ static int saved_regs_mentioned (rtx x) { int i; const char *fmt; RTX_CODE code; /* Mainly stolen from refers_to_regno_p in rtlanal.c. */ code = GET_CODE (x); switch (code) { case REG: i = REGNO (x); return !call_used_regs[i]; case SUBREG: /* If this is a SUBREG of a hard reg, we can see exactly which registers are being modified. Otherwise, handle normally. */ i = REGNO (SUBREG_REG (x)); return !call_used_regs[i]; default: ; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if (saved_regs_mentioned (XEXP (x, i))) return 1; } else if (fmt[i] == 'E') { int j; for (j = XVECLEN (x, i) - 1; j >=0; j--) if (saved_regs_mentioned (XEXP (x, i))) return 1; } } return 0; } /* The PRINT_OPERAND worker. */ void cris_print_operand (FILE *file, rtx x, int code) { rtx operand = x; /* Size-strings corresponding to MULT expressions. */ static const char *const mults[] = { "BAD:0", ".b", ".w", "BAD:3", ".d" }; /* New code entries should just be added to the switch below. If handling is finished, just return. If handling was just a modification of the operand, the modified operand should be put in "operand", and then do a break to let default handling (zero-modifier) output the operand. */ switch (code) { case 'b': /* Print the unsigned supplied integer as if it were signed and < 0, i.e print 255 or 65535 as -1, 254, 65534 as -2, etc. */ if (!CONST_INT_P (x) || !CRIS_CONST_OK_FOR_LETTER_P (INTVAL (x), 'O')) LOSE_AND_RETURN ("invalid operand for 'b' modifier", x); fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)| (INTVAL (x) <= 255 ? ~255 : ~65535)); return; case 'x': /* Print assembler code for operator. */ fprintf (file, "%s", cris_op_str (operand)); return; case 'o': { /* A movem modifier working on a parallel; output the register name. */ int regno; if (GET_CODE (x) != PARALLEL) LOSE_AND_RETURN ("invalid operand for 'o' modifier", x); /* The second item can be (set reg (plus reg const)) to denote a postincrement. */ regno = (GET_CODE (SET_SRC (XVECEXP (x, 0, 1))) == PLUS ? XVECLEN (x, 0) - 2 : XVECLEN (x, 0) - 1); fprintf (file, "$%s", reg_names [regno]); } return; case 'O': { /* A similar movem modifier; output the memory operand. */ rtx addr; if (GET_CODE (x) != PARALLEL) LOSE_AND_RETURN ("invalid operand for 'O' modifier", x); /* The lowest mem operand is in the first item, but perhaps it needs to be output as postincremented. */ addr = MEM_P (SET_SRC (XVECEXP (x, 0, 0))) ? XEXP (SET_SRC (XVECEXP (x, 0, 0)), 0) : XEXP (SET_DEST (XVECEXP (x, 0, 0)), 0); /* The second item can be a (set reg (plus reg const)) to denote a modification. */ if (GET_CODE (SET_SRC (XVECEXP (x, 0, 1))) == PLUS) { /* It's a post-increment, if the address is a naked (reg). */ if (REG_P (addr)) addr = gen_rtx_POST_INC (SImode, addr); else { /* Otherwise, it's a side-effect; RN=RN+M. */ fprintf (file, "[$%s=$%s%s%d]", reg_names [REGNO (SET_DEST (XVECEXP (x, 0, 1)))], reg_names [REGNO (XEXP (addr, 0))], INTVAL (XEXP (addr, 1)) < 0 ? "" : "+", (int) INTVAL (XEXP (addr, 1))); return; } } output_address (addr); } return; case 'p': /* Adjust a power of two to its log2. */ if (!CONST_INT_P (x) || exact_log2 (INTVAL (x)) < 0 ) LOSE_AND_RETURN ("invalid operand for 'p' modifier", x); fprintf (file, "%d", exact_log2 (INTVAL (x))); return; case 's': /* For an integer, print 'b' or 'w' if <= 255 or <= 65535 respectively. This modifier also terminates the inhibiting effects of the 'x' modifier. */ cris_output_insn_is_bound = 0; if (GET_MODE (x) == VOIDmode && CONST_INT_P (x)) { if (INTVAL (x) >= 0) { if (INTVAL (x) <= 255) putc ('b', file); else if (INTVAL (x) <= 65535) putc ('w', file); else putc ('d', file); } else putc ('d', file); return; } /* For a non-integer, print the size of the operand. */ putc ((GET_MODE (x) == SImode || GET_MODE (x) == SFmode) ? 'd' : GET_MODE (x) == HImode ? 'w' : GET_MODE (x) == QImode ? 'b' /* If none of the above, emit an erroneous size letter. */ : 'X', file); return; case 'z': /* Const_int: print b for -127 <= x <= 255, w for -32768 <= x <= 65535, else die. */ if (!CONST_INT_P (x) || INTVAL (x) < -32768 || INTVAL (x) > 65535) LOSE_AND_RETURN ("invalid operand for 'z' modifier", x); putc (INTVAL (x) >= -128 && INTVAL (x) <= 255 ? 'b' : 'w', file); return; case 'Z': /* If this is a GOT-symbol, print the size-letter corresponding to -fpic/-fPIC. For everything else, print "d". */ putc ((flag_pic == 1 && GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == UNSPEC && XINT (XEXP (x, 0), 1) == CRIS_UNSPEC_GOTREAD) ? 'w' : 'd', file); return; case '#': /* Output a 'nop' if there's nothing for the delay slot. This method stolen from the sparc files. */ if (dbr_sequence_length () == 0) fputs ("\n\tnop", file); return; case '!': /* Output directive for alignment padded with "nop" insns. Optimizing for size, it's plain 4-byte alignment, otherwise we align the section to a cache-line (32 bytes) and skip at max 2 bytes, i.e. we skip if it's the last insn on a cache-line. The latter is faster by a small amount (for two test-programs 99.6% and 99.9%) and larger by a small amount (ditto 100.1% and 100.2%). This is supposed to be the simplest yet performance- wise least intrusive way to make sure the immediately following (supposed) muls/mulu insn isn't located at the end of a cache-line. */ if (TARGET_MUL_BUG) fputs (optimize_size ? ".p2alignw 2,0x050f\n\t" : ".p2alignw 5,0x050f,2\n\t", file); return; case ':': /* The PIC register. */ if (! flag_pic) internal_error ("invalid use of ':' modifier"); fprintf (file, "$%s", reg_names [PIC_OFFSET_TABLE_REGNUM]); return; case 'H': /* Print high (most significant) part of something. */ switch (GET_CODE (operand)) { case CONST_INT: /* If we're having 64-bit HOST_WIDE_INTs, the whole (DImode) value is kept here, and so may be other than 0 or -1. */ fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (operand_subword (operand, 1, 0, DImode))); return; case CONST_DOUBLE: /* High part of a long long constant. */ if (GET_MODE (operand) == VOIDmode) { fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_HIGH (x)); return; } else LOSE_AND_RETURN ("invalid operand for 'H' modifier", x); case REG: /* Print reg + 1. Check that there's not an attempt to print high-parts of registers like stack-pointer or higher, except for SRP (where the "high part" is MOF). */ if (REGNO (operand) > STACK_POINTER_REGNUM - 2 && (REGNO (operand) != CRIS_SRP_REGNUM || CRIS_SRP_REGNUM + 1 != CRIS_MOF_REGNUM || fixed_regs[CRIS_MOF_REGNUM] != 0)) LOSE_AND_RETURN ("bad register", operand); fprintf (file, "$%s", reg_names[REGNO (operand) + 1]); return; case MEM: /* Adjust memory address to high part. */ { rtx adj_mem = operand; int size = GET_MODE_BITSIZE (GET_MODE (operand)) / BITS_PER_UNIT; /* Adjust so we can use two SImode in DImode. Calling adj_offsettable_operand will make sure it is an offsettable address. Don't do this for a postincrement though; it should remain as it was. */ if (GET_CODE (XEXP (adj_mem, 0)) != POST_INC) adj_mem = adjust_address (adj_mem, GET_MODE (adj_mem), size / 2); output_address (XEXP (adj_mem, 0)); return; } default: LOSE_AND_RETURN ("invalid operand for 'H' modifier", x); } case 'L': /* Strip the MEM expression. */ operand = XEXP (operand, 0); break; case 'e': /* Like 'E', but ignore state set by 'x'. FIXME: Use code iterators and attributes in cris.md to avoid the need for %x and %E (and %e) and state passed between those modifiers. */ cris_output_insn_is_bound = 0; /* FALL THROUGH. */ case 'E': /* Print 's' if operand is SIGN_EXTEND or 'u' if ZERO_EXTEND unless cris_output_insn_is_bound is nonzero. */ if (GET_CODE (operand) != SIGN_EXTEND && GET_CODE (operand) != ZERO_EXTEND && !CONST_INT_P (operand)) LOSE_AND_RETURN ("invalid operand for 'e' modifier", x); if (cris_output_insn_is_bound) { cris_output_insn_is_bound = 0; return; } putc (GET_CODE (operand) == SIGN_EXTEND || (CONST_INT_P (operand) && INTVAL (operand) < 0) ? 's' : 'u', file); return; case 'm': /* Print the size letter of the inner element. We can do it by calling ourselves with the 's' modifier. */ if (GET_CODE (operand) != SIGN_EXTEND && GET_CODE (operand) != ZERO_EXTEND) LOSE_AND_RETURN ("invalid operand for 'm' modifier", x); cris_print_operand (file, XEXP (operand, 0), 's'); return; case 'M': /* Print the least significant part of operand. */ if (GET_CODE (operand) == CONST_DOUBLE) { fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x)); return; } else if (HOST_BITS_PER_WIDE_INT > 32 && CONST_INT_P (operand)) { fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (x) & ((unsigned int) 0x7fffffff * 2 + 1)); return; } /* Otherwise the least significant part equals the normal part, so handle it normally. */ break; case 'A': /* When emitting an add for the high part of a DImode constant, we want to use addq for 0 and adds.w for -1. */ if (!CONST_INT_P (operand)) LOSE_AND_RETURN ("invalid operand for 'A' modifier", x); fprintf (file, INTVAL (operand) < 0 ? "adds.w" : "addq"); return; case 'd': /* If this is a GOT symbol, force it to be emitted as :GOT and :GOTPLT regardless of -fpic (i.e. not as :GOT16, :GOTPLT16). Avoid making this too much of a special case. */ if (flag_pic == 1 && CONSTANT_P (operand)) { int flag_pic_save = flag_pic; flag_pic = 2; cris_output_addr_const (file, operand); flag_pic = flag_pic_save; return; } break; case 'D': /* When emitting an sub for the high part of a DImode constant, we want to use subq for 0 and subs.w for -1. */ if (!CONST_INT_P (operand)) LOSE_AND_RETURN ("invalid operand for 'D' modifier", x); fprintf (file, INTVAL (operand) < 0 ? "subs.w" : "subq"); return; case 'S': /* Print the operand as the index-part of an address. Easiest way out is to use cris_print_index. */ cris_print_index (operand, file); return; case 'T': /* Print the size letter for an operand to a MULT, which must be a const_int with a suitable value. */ if (!CONST_INT_P (operand) || INTVAL (operand) > 4) LOSE_AND_RETURN ("invalid operand for 'T' modifier", x); fprintf (file, "%s", mults[INTVAL (operand)]); return; case 'u': /* Print "u.w" if a GOT symbol and flag_pic == 1, else ".d". */ if (flag_pic == 1 && GET_CODE (operand) == CONST && GET_CODE (XEXP (operand, 0)) == UNSPEC && XINT (XEXP (operand, 0), 1) == CRIS_UNSPEC_GOTREAD) fprintf (file, "u.w"); else fprintf (file, ".d"); return; case 0: /* No code, print as usual. */ break; default: LOSE_AND_RETURN ("invalid operand modifier letter", x); } /* Print an operand as without a modifier letter. */ switch (GET_CODE (operand)) { case REG: if (REGNO (operand) > 15 && REGNO (operand) != CRIS_MOF_REGNUM && REGNO (operand) != CRIS_SRP_REGNUM && REGNO (operand) != CRIS_CC0_REGNUM) internal_error ("internal error: bad register: %d", REGNO (operand)); fprintf (file, "$%s", reg_names[REGNO (operand)]); return; case MEM: output_address (XEXP (operand, 0)); return; case CONST_DOUBLE: if (GET_MODE (operand) == VOIDmode) /* A long long constant. */ output_addr_const (file, operand); else { /* Only single precision is allowed as plain operands the moment. FIXME: REAL_VALUE_FROM_CONST_DOUBLE isn't documented. */ REAL_VALUE_TYPE r; long l; /* FIXME: Perhaps check overflow of the "single". */ REAL_VALUE_FROM_CONST_DOUBLE (r, operand); REAL_VALUE_TO_TARGET_SINGLE (r, l); fprintf (file, "0x%lx", l); } return; case UNSPEC: /* Fall through. */ case CONST: cris_output_addr_const (file, operand); return; case MULT: case ASHIFT: { /* For a (MULT (reg X) const_int) we output "rX.S". */ int i = CONST_INT_P (XEXP (operand, 1)) ? INTVAL (XEXP (operand, 1)) : INTVAL (XEXP (operand, 0)); rtx reg = CONST_INT_P (XEXP (operand, 1)) ? XEXP (operand, 0) : XEXP (operand, 1); if (!REG_P (reg) || (!CONST_INT_P (XEXP (operand, 0)) && !CONST_INT_P (XEXP (operand, 1)))) LOSE_AND_RETURN ("unexpected multiplicative operand", x); cris_print_base (reg, file); fprintf (file, ".%c", i == 0 || (i == 1 && GET_CODE (operand) == MULT) ? 'b' : i == 4 ? 'd' : (i == 2 && GET_CODE (operand) == MULT) || i == 1 ? 'w' : 'd'); return; } default: /* No need to handle all strange variants, let output_addr_const do it for us. */ if (CONSTANT_P (operand)) { cris_output_addr_const (file, operand); return; } LOSE_AND_RETURN ("unexpected operand", x); } } /* The PRINT_OPERAND_ADDRESS worker. */ void cris_print_operand_address (FILE *file, rtx x) { /* All these were inside MEM:s so output indirection characters. */ putc ('[', file); if (CONSTANT_ADDRESS_P (x)) cris_output_addr_const (file, x); else if (BASE_OR_AUTOINCR_P (x)) cris_print_base (x, file); else if (GET_CODE (x) == PLUS) { rtx x1, x2; x1 = XEXP (x, 0); x2 = XEXP (x, 1); if (BASE_P (x1)) { cris_print_base (x1, file); cris_print_index (x2, file); } else if (BASE_P (x2)) { cris_print_base (x2, file); cris_print_index (x1, file); } else LOSE_AND_RETURN ("unrecognized address", x); } else if (MEM_P (x)) { /* A DIP. Output more indirection characters. */ putc ('[', file); cris_print_base (XEXP (x, 0), file); putc (']', file); } else LOSE_AND_RETURN ("unrecognized address", x); putc (']', file); } /* The RETURN_ADDR_RTX worker. We mark that the return address is used, either by EH or __builtin_return_address, for use by the function prologue and epilogue. FIXME: This isn't optimal; we just use the mark in the prologue and epilogue to say that the return address is to be stored in the stack frame. We could return SRP for leaf-functions and use the initial-value machinery. */ rtx cris_return_addr_rtx (int count, rtx frameaddr ATTRIBUTE_UNUSED) { cfun->machine->needs_return_address_on_stack = 1; /* The return-address is stored just above the saved frame-pointer (if present). Apparently we can't eliminate from the frame-pointer in that direction, so use the incoming args (maybe pretended) pointer. */ return count == 0 ? gen_rtx_MEM (Pmode, plus_constant (virtual_incoming_args_rtx, -4)) : NULL_RTX; } /* Accessor used in cris.md:return because cfun->machine isn't available there. */ bool cris_return_address_on_stack (void) { return df_regs_ever_live_p (CRIS_SRP_REGNUM) || cfun->machine->needs_return_address_on_stack; } /* Accessor used in cris.md:return because cfun->machine isn't available there. */ bool cris_return_address_on_stack_for_return (void) { return cfun->machine->return_type == CRIS_RETINSN_RET ? false : cris_return_address_on_stack (); } /* This used to be the INITIAL_FRAME_POINTER_OFFSET worker; now only handles FP -> SP elimination offset. */ static int cris_initial_frame_pointer_offset (void) { int regno; /* Initial offset is 0 if we don't have a frame pointer. */ int offs = 0; bool got_really_used = false; if (crtl->uses_pic_offset_table) { push_topmost_sequence (); got_really_used = reg_used_between_p (pic_offset_table_rtx, get_insns (), NULL_RTX); pop_topmost_sequence (); } /* And 4 for each register pushed. */ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (cris_reg_saved_in_regsave_area (regno, got_really_used)) offs += 4; /* And then, last, we add the locals allocated. */ offs += get_frame_size (); /* And more; the accumulated args size. */ offs += crtl->outgoing_args_size; /* Then round it off, in case we use aligned stack. */ if (TARGET_STACK_ALIGN) offs = TARGET_ALIGN_BY_32 ? (offs + 3) & ~3 : (offs + 1) & ~1; return offs; } /* The INITIAL_ELIMINATION_OFFSET worker. Calculate the difference between imaginary registers such as frame pointer and the stack pointer. Used to eliminate the frame pointer and imaginary arg pointer. */ int cris_initial_elimination_offset (int fromreg, int toreg) { int fp_sp_offset = cris_initial_frame_pointer_offset (); /* We should be able to use regs_ever_live and related prologue information here, or alpha should not as well. */ bool return_address_on_stack = cris_return_address_on_stack (); /* Here we act as if the frame-pointer were needed. */ int ap_fp_offset = 4 + (return_address_on_stack ? 4 : 0); if (fromreg == ARG_POINTER_REGNUM && toreg == FRAME_POINTER_REGNUM) return ap_fp_offset; /* Between the frame pointer and the stack are only "normal" stack variables and saved registers. */ if (fromreg == FRAME_POINTER_REGNUM && toreg == STACK_POINTER_REGNUM) return fp_sp_offset; /* We need to balance out the frame pointer here. */ if (fromreg == ARG_POINTER_REGNUM && toreg == STACK_POINTER_REGNUM) return ap_fp_offset + fp_sp_offset - 4; gcc_unreachable (); } /* Worker function for LEGITIMIZE_RELOAD_ADDRESS. */ bool cris_reload_address_legitimized (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED, int opnum ATTRIBUTE_UNUSED, int itype, int ind_levels ATTRIBUTE_UNUSED) { enum reload_type type = itype; rtx op0, op1; rtx *op0p; rtx *op1p; if (GET_CODE (x) != PLUS) return false; if (TARGET_V32) return false; op0 = XEXP (x, 0); op0p = &XEXP (x, 0); op1 = XEXP (x, 1); op1p = &XEXP (x, 1); if (!REG_P (op1)) return false; if (GET_CODE (op0) == SIGN_EXTEND && MEM_P (XEXP (op0, 0))) { rtx op00 = XEXP (op0, 0); rtx op000 = XEXP (op00, 0); rtx *op000p = &XEXP (op00, 0); if ((GET_MODE (op00) == HImode || GET_MODE (op00) == QImode) && (REG_P (op000) || (GET_CODE (op000) == POST_INC && REG_P (XEXP (op000, 0))))) { bool something_reloaded = false; if (GET_CODE (op000) == POST_INC && REG_P (XEXP (op000, 0)) && REGNO (XEXP (op000, 0)) > CRIS_LAST_GENERAL_REGISTER) /* No, this gets too complicated and is too rare to care about trying to improve on the general code Here. As the return-value is an all-or-nothing indicator, we punt on the other register too. */ return false; if ((REG_P (op000) && REGNO (op000) > CRIS_LAST_GENERAL_REGISTER)) { /* The address of the inner mem is a pseudo or wrong reg: reload that. */ push_reload (op000, NULL_RTX, op000p, NULL, GENERAL_REGS, GET_MODE (x), VOIDmode, 0, 0, opnum, type); something_reloaded = true; } if (REGNO (op1) > CRIS_LAST_GENERAL_REGISTER) { /* Base register is a pseudo or wrong reg: reload it. */ push_reload (op1, NULL_RTX, op1p, NULL, GENERAL_REGS, GET_MODE (x), VOIDmode, 0, 0, opnum, type); something_reloaded = true; } gcc_assert (something_reloaded); return true; } } return false; } /* Worker function for REGISTER_MOVE_COST. */ int cris_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED, enum reg_class from, enum reg_class to) { if (!TARGET_V32) { /* Pretend that classes that we don't support are ALL_REGS, so we give them the highest cost. */ if (from != SPECIAL_REGS && from != MOF_REGS && from != GENERAL_REGS && from != GENNONACR_REGS) from = ALL_REGS; if (to != SPECIAL_REGS && to != MOF_REGS && to != GENERAL_REGS && to != GENNONACR_REGS) to = ALL_REGS; } /* Can't move to and from a SPECIAL_REGS register, so we have to say their move cost within that class is higher. How about 7? That's 3 for a move to a GENERAL_REGS register, 3 for the move from the GENERAL_REGS register, and 1 for the increased register pressure. Also, it's higher than the memory move cost, which is in order. We also do this for ALL_REGS, since we don't want that class to be preferred (even to memory) at all where GENERAL_REGS doesn't fit. Whenever it's about to be used, it's for SPECIAL_REGS. If we don't present a higher cost for ALL_REGS than memory, a SPECIAL_REGS may be used when a GENERAL_REGS should be used, even if there are call-saved GENERAL_REGS left to allocate. This is because the fall-back when the most preferred register class isn't available, isn't the next (or next good) wider register class, but the *most widest* register class. */ if ((reg_classes_intersect_p (from, SPECIAL_REGS) && reg_classes_intersect_p (to, SPECIAL_REGS)) || from == ALL_REGS || to == ALL_REGS) return 7; if (reg_classes_intersect_p (from, SPECIAL_REGS) || reg_classes_intersect_p (to, SPECIAL_REGS)) return 3; return 2; } /* Worker for cris_notice_update_cc; handles the "normal" cases. FIXME: this code is historical; its functionality should be refactored to look at insn attributes and moved to cris_notice_update_cc. Except, we better lose cc0 entirely. */ static void cris_normal_notice_update_cc (rtx exp, rtx insn) { /* "Normal" means, for: (set (cc0) (...)): CC is (...). (set (reg) (...)): CC is (reg) and (...) - unless (...) is 0 or reg is a special register or (v32 and (...) is -32..-1), then CC does not change. CC_NO_OVERFLOW unless (...) is reg or mem. (set (mem) (...)): CC does not change. (set (pc) (...)): CC does not change. (parallel (set (reg1) (mem (bdap/biap))) (set (reg2) (bdap/biap))): CC is (reg1) and (mem (reg2)) (parallel (set (mem (bdap/biap)) (reg1)) [or 0] (set (reg2) (bdap/biap))): CC does not change. (where reg and mem includes strict_low_parts variants thereof) For all others, assume CC is clobbered. Note that we do not have to care about setting CC_NO_OVERFLOW, since the overflow flag is set to 0 (i.e. right) for instructions where it does not have any sane sense, but where other flags have meanings. (This includes shifts; the carry is not set by them). Note that there are other parallel constructs we could match, but we don't do that yet. */ if (GET_CODE (exp) == SET) { /* FIXME: Check when this happens. It looks like we should actually do a CC_STATUS_INIT here to be safe. */ if (SET_DEST (exp) == pc_rtx) return; /* Record CC0 changes, so we do not have to output multiple test insns. */ if (SET_DEST (exp) == cc0_rtx) { CC_STATUS_INIT; cc_status.value1 = SET_SRC (exp); /* Handle flags for the special btstq on one bit. */ if (GET_CODE (SET_SRC (exp)) == ZERO_EXTRACT && XEXP (SET_SRC (exp), 1) == const1_rtx) { if (CONST_INT_P (XEXP (SET_SRC (exp), 0))) /* Using cmpq. */ cc_status.flags = CC_INVERTED; else /* A one-bit btstq. */ cc_status.flags = CC_Z_IN_NOT_N; } if (GET_CODE (SET_SRC (exp)) == COMPARE) { if (!REG_P (XEXP (SET_SRC (exp), 0)) && XEXP (SET_SRC (exp), 1) != const0_rtx) /* For some reason gcc will not canonicalize compare operations, reversing the sign by itself if operands are in wrong order. */ /* (But NOT inverted; eq is still eq.) */ cc_status.flags = CC_REVERSED; /* This seems to be overlooked by gcc. FIXME: Check again. FIXME: Is it really safe? */ cc_status.value2 = gen_rtx_MINUS (GET_MODE (SET_SRC (exp)), XEXP (SET_SRC (exp), 0), XEXP (SET_SRC (exp), 1)); } return; } else if (REG_P (SET_DEST (exp)) || (GET_CODE (SET_DEST (exp)) == STRICT_LOW_PART && REG_P (XEXP (SET_DEST (exp), 0)))) { /* A register is set; normally CC is set to show that no test insn is needed. Catch the exceptions. */ /* If not to cc0, then no "set"s in non-natural mode give ok cc0... */ if (GET_MODE_SIZE (GET_MODE (SET_DEST (exp))) > UNITS_PER_WORD || GET_MODE_CLASS (GET_MODE (SET_DEST (exp))) == MODE_FLOAT) { /* ... except add:s and sub:s in DImode. */ if (GET_MODE (SET_DEST (exp)) == DImode && (GET_CODE (SET_SRC (exp)) == PLUS || GET_CODE (SET_SRC (exp)) == MINUS)) { CC_STATUS_INIT; cc_status.value1 = SET_DEST (exp); cc_status.value2 = SET_SRC (exp); if (cris_reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) cc_status.value2 = 0; /* Add and sub may set V, which gets us unoptimizable results in "gt" and "le" condition codes. */ cc_status.flags |= CC_NO_OVERFLOW; return; } } else if (SET_SRC (exp) == const0_rtx || (REG_P (SET_SRC (exp)) && (REGNO (SET_SRC (exp)) > CRIS_LAST_GENERAL_REGISTER)) || (TARGET_V32 && GET_CODE (SET_SRC (exp)) == CONST_INT && CRIS_CONST_OK_FOR_LETTER_P (INTVAL (SET_SRC (exp)), 'I'))) { /* There's no CC0 change for this case. Just check for overlap. */ if (cc_status.value1 && modified_in_p (cc_status.value1, insn)) cc_status.value1 = 0; if (cc_status.value2 && modified_in_p (cc_status.value2, insn)) cc_status.value2 = 0; return; } else { CC_STATUS_INIT; cc_status.value1 = SET_DEST (exp); cc_status.value2 = SET_SRC (exp); if (cris_reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) cc_status.value2 = 0; /* Some operations may set V, which gets us unoptimizable results in "gt" and "le" condition codes. */ if (GET_CODE (SET_SRC (exp)) == PLUS || GET_CODE (SET_SRC (exp)) == MINUS || GET_CODE (SET_SRC (exp)) == NEG) cc_status.flags |= CC_NO_OVERFLOW; /* For V32, nothing with a register destination sets C and V usefully. */ if (TARGET_V32) cc_status.flags |= CC_NO_OVERFLOW; return; } } else if (MEM_P (SET_DEST (exp)) || (GET_CODE (SET_DEST (exp)) == STRICT_LOW_PART && MEM_P (XEXP (SET_DEST (exp), 0)))) { /* When SET to MEM, then CC is not changed (except for overlap). */ if (cc_status.value1 && modified_in_p (cc_status.value1, insn)) cc_status.value1 = 0; if (cc_status.value2 && modified_in_p (cc_status.value2, insn)) cc_status.value2 = 0; return; } } else if (GET_CODE (exp) == PARALLEL) { if (GET_CODE (XVECEXP (exp, 0, 0)) == SET && GET_CODE (XVECEXP (exp, 0, 1)) == SET && REG_P (XEXP (XVECEXP (exp, 0, 1), 0))) { if (REG_P (XEXP (XVECEXP (exp, 0, 0), 0)) && MEM_P (XEXP (XVECEXP (exp, 0, 0), 1))) { CC_STATUS_INIT; /* For "move.S [rx=ry+o],rz", say CC reflects value1=rz and value2=[rx] */ cc_status.value1 = XEXP (XVECEXP (exp, 0, 0), 0); cc_status.value2 = replace_equiv_address (XEXP (XVECEXP (exp, 0, 0), 1), XEXP (XVECEXP (exp, 0, 1), 0)); /* Huh? A side-effect cannot change the destination register. */ if (cris_reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) internal_error ("internal error: sideeffect-insn affecting main effect"); /* For V32, moves to registers don't set C and V. */ if (TARGET_V32) cc_status.flags |= CC_NO_OVERFLOW; return; } else if ((REG_P (XEXP (XVECEXP (exp, 0, 0), 1)) || XEXP (XVECEXP (exp, 0, 0), 1) == const0_rtx) && MEM_P (XEXP (XVECEXP (exp, 0, 0), 0))) { /* For "move.S rz,[rx=ry+o]" and "clear.S [rx=ry+o]", say flags are not changed, except for overlap. */ if (cc_status.value1 && modified_in_p (cc_status.value1, insn)) cc_status.value1 = 0; if (cc_status.value2 && modified_in_p (cc_status.value2, insn)) cc_status.value2 = 0; return; } } } /* If we got here, the case wasn't covered by the code above. */ CC_STATUS_INIT; } /* This function looks into the pattern to see how this insn affects condition codes. Used when to eliminate test insns before a condition-code user, such as a "scc" insn or a conditional branch. This includes checking if the entities that cc was updated by, are changed by the operation. Currently a jumble of the old peek-inside-the-insn and the newer check-cc-attribute methods. */ void cris_notice_update_cc (rtx exp, rtx insn) { enum attr_cc attrval = get_attr_cc (insn); /* Check if user specified "-mcc-init" as a bug-workaround. Remember to still set CC_REVERSED as below, since that's required by some compare insn alternatives. (FIXME: GCC should do this virtual operand swap by itself.) A test-case that may otherwise fail is gcc.c-torture/execute/20000217-1.c -O0 and -O1. */ if (TARGET_CCINIT) { CC_STATUS_INIT; if (attrval == CC_REV) cc_status.flags = CC_REVERSED; return; } /* Slowly, we're converting to using attributes to control the setting of condition-code status. */ switch (attrval) { case CC_NONE: /* Even if it is "none", a setting may clobber a previous cc-value, so check. */ if (GET_CODE (exp) == SET) { if (cc_status.value1 && modified_in_p (cc_status.value1, insn)) cc_status.value1 = 0; if (cc_status.value2 && modified_in_p (cc_status.value2, insn)) cc_status.value2 = 0; } return; case CC_CLOBBER: CC_STATUS_INIT; return; case CC_REV: case CC_NOOV32: case CC_NORMAL: cris_normal_notice_update_cc (exp, insn); /* The "test" insn doesn't clear (carry and) overflow on V32. We can change bge => bpl and blt => bmi by passing on to the cc0 user that V should not be considered; bgt and ble are taken care of by other methods (see {tst,cmp}{si,hi,qi}). */ if (attrval == CC_NOOV32 && TARGET_V32) cc_status.flags |= CC_NO_OVERFLOW; return; default: internal_error ("unknown cc_attr value"); } CC_STATUS_INIT; } /* Return != 0 if the return sequence for the current function is short, like "ret" or "jump [sp+]". Prior to reloading, we can't tell if registers must be saved, so return 0 then. */ bool cris_simple_epilogue (void) { unsigned int regno; unsigned int reglimit = STACK_POINTER_REGNUM; bool got_really_used = false; if (! reload_completed || frame_pointer_needed || get_frame_size () != 0 || crtl->args.pretend_args_size || crtl->args.size || crtl->outgoing_args_size || crtl->calls_eh_return /* If we're not supposed to emit prologue and epilogue, we must not emit return-type instructions. */ || !TARGET_PROLOGUE_EPILOGUE) return false; /* Can't return from stacked return address with v32. */ if (TARGET_V32 && cris_return_address_on_stack ()) return false; if (crtl->uses_pic_offset_table) { push_topmost_sequence (); got_really_used = reg_used_between_p (pic_offset_table_rtx, get_insns (), NULL_RTX); pop_topmost_sequence (); } /* No simple epilogue if there are saved registers. */ for (regno = 0; regno < reglimit; regno++) if (cris_reg_saved_in_regsave_area (regno, got_really_used)) return false; return true; } /* Expand a return insn (just one insn) marked as using SRP or stack slot depending on parameter ON_STACK. */ void cris_expand_return (bool on_stack) { /* FIXME: emit a parallel with a USE for SRP or the stack-slot, to tell "ret" from "jump [sp+]". Some, but not all, other parts of GCC expect just (return) to do the right thing when optimizing, so we do that until they're fixed. Currently, all return insns in a function must be the same (not really a limiting factor) so we need to check that it doesn't change half-way through. */ emit_jump_insn (gen_rtx_RETURN (VOIDmode)); CRIS_ASSERT (cfun->machine->return_type != CRIS_RETINSN_RET || !on_stack); CRIS_ASSERT (cfun->machine->return_type != CRIS_RETINSN_JUMP || on_stack); cfun->machine->return_type = on_stack ? CRIS_RETINSN_JUMP : CRIS_RETINSN_RET; } /* Compute a (partial) cost for rtx X. Return true if the complete cost has been computed, and false if subexpressions should be scanned. In either case, *TOTAL contains the cost result. */ static bool cris_rtx_costs (rtx x, int code, int outer_code, int *total, bool speed) { switch (code) { case CONST_INT: { HOST_WIDE_INT val = INTVAL (x); if (val == 0) *total = 0; else if (val < 32 && val >= -32) *total = 1; /* Eight or 16 bits are a word and cycle more expensive. */ else if (val <= 32767 && val >= -32768) *total = 2; /* A 32-bit constant (or very seldom, unsigned 16 bits) costs another word. FIXME: This isn't linear to 16 bits. */ else *total = 4; return true; } case LABEL_REF: *total = 6; return true; case CONST: case SYMBOL_REF: *total = 6; return true; case CONST_DOUBLE: if (x != CONST0_RTX (GET_MODE (x) == VOIDmode ? DImode : GET_MODE (x))) *total = 12; else /* Make 0.0 cheap, else test-insns will not be used. */ *total = 0; return true; case MULT: /* If we have one arm of an ADDI, make sure it gets the cost of one insn, i.e. zero cost for this operand, and just the cost of the PLUS, as the insn is created by combine from a PLUS and an ASHIFT, and the MULT cost below would make the combined value be larger than the separate insns. The insn validity is checked elsewhere by combine. FIXME: this case is a stop-gap for 4.3 and 4.4, this whole function should be rewritten. */ if (outer_code == PLUS && BIAP_INDEX_P (x)) { *total = 0; return true; } /* Identify values that are no powers of two. Powers of 2 are taken care of already and those values should not be changed. */ if (!CONST_INT_P (XEXP (x, 1)) || exact_log2 (INTVAL (XEXP (x, 1)) < 0)) { /* If we have a multiply insn, then the cost is between 1 and 2 "fast" instructions. */ if (TARGET_HAS_MUL_INSNS) { *total = COSTS_N_INSNS (1) + COSTS_N_INSNS (1) / 2; return true; } /* Estimate as 4 + 4 * #ofbits. */ *total = COSTS_N_INSNS (132); return true; } return false; case UDIV: case MOD: case UMOD: case DIV: if (!CONST_INT_P (XEXP (x, 1)) || exact_log2 (INTVAL (XEXP (x, 1)) < 0)) { /* Estimate this as 4 + 8 * #of bits. */ *total = COSTS_N_INSNS (260); return true; } return false; case AND: if (CONST_INT_P (XEXP (x, 1)) /* Two constants may actually happen before optimization. */ && !CONST_INT_P (XEXP (x, 0)) && !CRIS_CONST_OK_FOR_LETTER_P (INTVAL (XEXP (x, 1)), 'I')) { *total = (rtx_cost (XEXP (x, 0), outer_code, speed) + 2 + 2 * GET_MODE_NUNITS (GET_MODE (XEXP (x, 0)))); return true; } return false; case ZERO_EXTEND: case SIGN_EXTEND: *total = rtx_cost (XEXP (x, 0), outer_code, speed); return true; default: return false; } } /* The ADDRESS_COST worker. */ static int cris_address_cost (rtx x, bool speed ATTRIBUTE_UNUSED) { /* The metric to use for the cost-macros is unclear. The metric used here is (the number of cycles needed) / 2, where we consider equal a cycle for a word of code and a cycle to read memory. FIXME: Adding "+ 1" to all values would avoid returning 0, as tree-ssa-loop-ivopts.c as of r128272 "normalizes" 0 to 1, thereby giving equal costs to [rN + rM] and [rN]. Unfortunately(?) such a hack would expose other pessimizations, at least with g++.dg/tree-ssa/ivopts-1.C, adding insns to the loop there, without apparent reason. */ /* The cheapest addressing modes get 0, since nothing extra is needed. */ if (BASE_OR_AUTOINCR_P (x)) return 0; /* An indirect mem must be a DIP. This means two bytes extra for code, and 4 bytes extra for memory read, i.e. (2 + 4) / 2. */ if (MEM_P (x)) return (2 + 4) / 2; /* Assume (2 + 4) / 2 for a single constant; a dword, since it needs an extra DIP prefix and 4 bytes of constant in most cases. */ if (CONSTANT_P (x)) return (2 + 4) / 2; /* Handle BIAP and BDAP prefixes. */ if (GET_CODE (x) == PLUS) { rtx tem1 = XEXP (x, 0); rtx tem2 = XEXP (x, 1); /* Local extended canonicalization rule: the first operand must be REG, unless it's an operation (MULT). */ if (!REG_P (tem1) && GET_CODE (tem1) != MULT) tem1 = tem2, tem2 = XEXP (x, 0); /* We'll "assume" we have canonical RTX now. */ gcc_assert (REG_P (tem1) || GET_CODE (tem1) == MULT); /* A BIAP is 2 extra bytes for the prefix insn, nothing more. We recognize the typical MULT which is always in tem1 because of insn canonicalization. */ if ((GET_CODE (tem1) == MULT && BIAP_INDEX_P (tem1)) || REG_P (tem2)) return 2 / 2; /* A BDAP (quick) is 2 extra bytes. Any constant operand to the PLUS is always found in tem2. */ if (CONST_INT_P (tem2) && INTVAL (tem2) < 128 && INTVAL (tem2) >= -128) return 2 / 2; /* A BDAP -32768 .. 32767 is like BDAP quick, but with 2 extra bytes. */ if (CONST_INT_P (tem2) && CRIS_CONST_OK_FOR_LETTER_P (INTVAL (tem2), 'L')) return (2 + 2) / 2; /* A BDAP with some other constant is 2 bytes extra. */ if (CONSTANT_P (tem2)) return (2 + 2 + 2) / 2; /* BDAP with something indirect should have a higher cost than BIAP with register. FIXME: Should it cost like a MEM or more? */ return (2 + 2 + 2) / 2; } /* What else? Return a high cost. It matters only for valid addressing modes. */ return 10; } /* Check various objections to the side-effect. Used in the test-part of an anonymous insn describing an insn with a possible side-effect. Returns nonzero if the implied side-effect is ok. code : PLUS or MULT ops : An array of rtx:es. lreg, rreg, rval, The variables multop and other_op are indexes into this, or -1 if they are not applicable. lreg : The register that gets assigned in the side-effect. rreg : One register in the side-effect expression rval : The other register, or an int. multop : An integer to multiply rval with. other_op : One of the entities of the main effect, whose mode we must consider. */ int cris_side_effect_mode_ok (enum rtx_code code, rtx *ops, int lreg, int rreg, int rval, int multop, int other_op) { /* Find what value to multiply with, for rx =ry + rz * n. */ int mult = multop < 0 ? 1 : INTVAL (ops[multop]); rtx reg_rtx = ops[rreg]; rtx val_rtx = ops[rval]; /* The operands may be swapped. Canonicalize them in reg_rtx and val_rtx, where reg_rtx always is a reg (for this constraint to match). */ if (! BASE_P (reg_rtx)) reg_rtx = val_rtx, val_rtx = ops[rreg]; /* Don't forget to check that reg_rtx really is a reg. If it isn't, we have no business. */ if (! BASE_P (reg_rtx)) return 0; /* Don't do this when -mno-split. */ if (!TARGET_SIDE_EFFECT_PREFIXES) return 0; /* The mult expression may be hidden in lreg. FIXME: Add more commentary about that. */ if (GET_CODE (val_rtx) == MULT) { mult = INTVAL (XEXP (val_rtx, 1)); val_rtx = XEXP (val_rtx, 0); code = MULT; } /* First check the "other operand". */ if (other_op >= 0) { if (GET_MODE_SIZE (GET_MODE (ops[other_op])) > UNITS_PER_WORD) return 0; /* Check if the lvalue register is the same as the "other operand". If so, the result is undefined and we shouldn't do this. FIXME: Check again. */ if ((BASE_P (ops[lreg]) && BASE_P (ops[other_op]) && REGNO (ops[lreg]) == REGNO (ops[other_op])) || rtx_equal_p (ops[other_op], ops[lreg])) return 0; } /* Do not accept frame_pointer_rtx as any operand. */ if (ops[lreg] == frame_pointer_rtx || ops[rreg] == frame_pointer_rtx || ops[rval] == frame_pointer_rtx || (other_op >= 0 && ops[other_op] == frame_pointer_rtx)) return 0; if (code == PLUS && ! BASE_P (val_rtx)) { /* Do not allow rx = rx + n if a normal add or sub with same size would do. */ if (rtx_equal_p (ops[lreg], reg_rtx) && CONST_INT_P (val_rtx) && (INTVAL (val_rtx) <= 63 && INTVAL (val_rtx) >= -63)) return 0; /* Check allowed cases, like [r(+)?].[bwd] and const. */ if (CONSTANT_P (val_rtx)) return 1; if (MEM_P (val_rtx) && BASE_OR_AUTOINCR_P (XEXP (val_rtx, 0))) return 1; if (GET_CODE (val_rtx) == SIGN_EXTEND && MEM_P (XEXP (val_rtx, 0)) && BASE_OR_AUTOINCR_P (XEXP (XEXP (val_rtx, 0), 0))) return 1; /* If we got here, it's not a valid addressing mode. */ return 0; } else if (code == MULT || (code == PLUS && BASE_P (val_rtx))) { /* Do not allow rx = rx + ry.S, since it doesn't give better code. */ if (rtx_equal_p (ops[lreg], reg_rtx) || (mult == 1 && rtx_equal_p (ops[lreg], val_rtx))) return 0; /* Do not allow bad multiply-values. */ if (mult != 1 && mult != 2 && mult != 4) return 0; /* Only allow r + ... */ if (! BASE_P (reg_rtx)) return 0; /* If we got here, all seems ok. (All checks need to be done above). */ return 1; } /* If we get here, the caller got its initial tests wrong. */ internal_error ("internal error: cris_side_effect_mode_ok with bad operands"); } /* Whether next_cc0_user of insn is LE or GT or requires a real compare insn for other reasons. */ bool cris_cc0_user_requires_cmp (rtx insn) { rtx cc0_user = NULL; rtx body; rtx set; gcc_assert (insn != NULL); if (!TARGET_V32) return false; cc0_user = next_cc0_user (insn); if (cc0_user == NULL) return false; body = PATTERN (cc0_user); set = single_set (cc0_user); /* Users can be sCC and bCC. */ if (JUMP_P (cc0_user) && GET_CODE (body) == SET && SET_DEST (body) == pc_rtx && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx) { return GET_CODE (XEXP (SET_SRC (body), 0)) == GT || GET_CODE (XEXP (SET_SRC (body), 0)) == LE; } else if (set) { return GET_CODE (SET_SRC (body)) == GT || GET_CODE (SET_SRC (body)) == LE; } gcc_unreachable (); } /* The function reg_overlap_mentioned_p in CVS (still as of 2001-05-16) does not handle the case where the IN operand is strict_low_part; it does handle it for X. Test-case in Axis-20010516. This function takes care of that for THIS port. FIXME: strict_low_part is going away anyway. */ static int cris_reg_overlap_mentioned_p (rtx x, rtx in) { /* The function reg_overlap_mentioned now handles when X is strict_low_part, but not when IN is a STRICT_LOW_PART. */ if (GET_CODE (in) == STRICT_LOW_PART) in = XEXP (in, 0); return reg_overlap_mentioned_p (x, in); } /* The TARGET_ASM_NAMED_SECTION worker. We just dispatch to the functions for ELF and a.out. */ void cris_target_asm_named_section (const char *name, unsigned int flags, tree decl) { if (! TARGET_ELF) default_no_named_section (name, flags, decl); else default_elf_asm_named_section (name, flags, decl); } /* Return TRUE iff X is a CONST valid for e.g. indexing. ANY_OPERAND is 0 if X is in a CALL_P insn or movsi, 1 elsewhere. */ bool cris_valid_pic_const (rtx x, bool any_operand) { gcc_assert (flag_pic); switch (GET_CODE (x)) { case CONST_INT: case CONST_DOUBLE: return true; default: ; } if (GET_CODE (x) != CONST) return false; x = XEXP (x, 0); /* Handle (const (plus (unspec .. UNSPEC_GOTREL) (const_int ...))). */ if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == UNSPEC && (XINT (XEXP (x, 0), 1) == CRIS_UNSPEC_GOTREL || XINT (XEXP (x, 0), 1) == CRIS_UNSPEC_PCREL) && CONST_INT_P (XEXP (x, 1))) x = XEXP (x, 0); if (GET_CODE (x) == UNSPEC) switch (XINT (x, 1)) { /* A PCREL operand is only valid for call and movsi. */ case CRIS_UNSPEC_PLT_PCREL: case CRIS_UNSPEC_PCREL: return !any_operand; case CRIS_UNSPEC_PLT_GOTREL: case CRIS_UNSPEC_PLTGOTREAD: case CRIS_UNSPEC_GOTREAD: case CRIS_UNSPEC_GOTREL: return true; default: gcc_unreachable (); } return cris_pic_symbol_type_of (x) == cris_no_symbol; } /* Helper function to find the right PIC-type symbol to generate, given the original (non-PIC) representation. */ enum cris_pic_symbol_type cris_pic_symbol_type_of (rtx x) { switch (GET_CODE (x)) { case SYMBOL_REF: return SYMBOL_REF_LOCAL_P (x) ? cris_rel_symbol : cris_got_symbol; case LABEL_REF: return cris_rel_symbol; case CONST: return cris_pic_symbol_type_of (XEXP (x, 0)); case PLUS: case MINUS: { enum cris_pic_symbol_type t1 = cris_pic_symbol_type_of (XEXP (x, 0)); enum cris_pic_symbol_type t2 = cris_pic_symbol_type_of (XEXP (x, 1)); gcc_assert (t1 == cris_no_symbol || t2 == cris_no_symbol); if (t1 == cris_got_symbol || t1 == cris_got_symbol) return cris_got_symbol_needing_fixup; return t1 != cris_no_symbol ? t1 : t2; } case CONST_INT: case CONST_DOUBLE: return cris_no_symbol; case UNSPEC: /* Likely an offsettability-test attempting to add a constant to a GOTREAD symbol, which can't be handled. */ return cris_invalid_pic_symbol; default: fatal_insn ("unrecognized supposed constant", x); } gcc_unreachable (); } /* The LEGITIMATE_PIC_OPERAND_P worker. */ int cris_legitimate_pic_operand (rtx x) { /* Symbols are not valid PIC operands as-is; just constants. */ return cris_valid_pic_const (x, true); } /* The ASM_OUTPUT_CASE_END worker. */ void cris_asm_output_case_end (FILE *stream, int num, rtx table) { if (TARGET_V32) { rtx whole_jump_insn = PATTERN (PREV_INSN (PREV_INSN (table))); /* This can be a SEQUENCE, meaning the delay-slot of the jump is filled. */ rtx parallel_jump = (GET_CODE (whole_jump_insn) == SEQUENCE ? PATTERN (XVECEXP (whole_jump_insn, 0, 0)) : whole_jump_insn); asm_fprintf (stream, "\t.word %LL%d-.%s\n", CODE_LABEL_NUMBER (XEXP (XEXP (XEXP (XVECEXP (parallel_jump, 0, 0), 1), 2), 0)), (TARGET_PDEBUG ? "; default" : "")); return; } asm_fprintf (stream, "\t.word %LL%d-%LL%d%s\n", CODE_LABEL_NUMBER (XEXP (XEXP (XEXP (XVECEXP (PATTERN (PREV_INSN (PREV_INSN (table))), 0, 0), 1), 2), 0)), num, (TARGET_PDEBUG ? "; default" : "")); } /* TARGET_HANDLE_OPTION worker. We just store the values into local variables here. Checks for correct semantics are in cris_override_options. */ static bool cris_handle_option (size_t code, const char *arg ATTRIBUTE_UNUSED, int value ATTRIBUTE_UNUSED) { switch (code) { case OPT_metrax100: target_flags |= (MASK_SVINTO + MASK_ETRAX4_ADD + MASK_ALIGN_BY_32); break; case OPT_mno_etrax100: target_flags &= ~(MASK_SVINTO + MASK_ETRAX4_ADD + MASK_ALIGN_BY_32); break; case OPT_m32_bit: case OPT_m32bit: target_flags |= (MASK_STACK_ALIGN + MASK_CONST_ALIGN + MASK_DATA_ALIGN + MASK_ALIGN_BY_32); break; case OPT_m16_bit: case OPT_m16bit: target_flags |= (MASK_STACK_ALIGN + MASK_CONST_ALIGN + MASK_DATA_ALIGN); break; case OPT_m8_bit: case OPT_m8bit: target_flags &= ~(MASK_STACK_ALIGN + MASK_CONST_ALIGN + MASK_DATA_ALIGN); break; default: break; } CRIS_SUBTARGET_HANDLE_OPTION(code, arg, value); return true; } /* The OVERRIDE_OPTIONS worker. As is the norm, this also parses -mfoo=bar type parameters. */ void cris_override_options (void) { if (cris_max_stackframe_str) { cris_max_stackframe = atoi (cris_max_stackframe_str); /* Do some sanity checking. */ if (cris_max_stackframe < 0 || cris_max_stackframe > 0x20000000) internal_error ("-max-stackframe=%d is not usable, not between 0 and %d", cris_max_stackframe, 0x20000000); } /* Let "-metrax4" and "-metrax100" change the cpu version. */ if (TARGET_SVINTO && cris_cpu_version < CRIS_CPU_SVINTO) cris_cpu_version = CRIS_CPU_SVINTO; else if (TARGET_ETRAX4_ADD && cris_cpu_version < CRIS_CPU_ETRAX4) cris_cpu_version = CRIS_CPU_ETRAX4; /* Parse -march=... and its synonym, the deprecated -mcpu=... */ if (cris_cpu_str) { cris_cpu_version = (*cris_cpu_str == 'v' ? atoi (cris_cpu_str + 1) : -1); if (strcmp ("etrax4", cris_cpu_str) == 0) cris_cpu_version = 3; if (strcmp ("svinto", cris_cpu_str) == 0 || strcmp ("etrax100", cris_cpu_str) == 0) cris_cpu_version = 8; if (strcmp ("ng", cris_cpu_str) == 0 || strcmp ("etrax100lx", cris_cpu_str) == 0) cris_cpu_version = 10; if (cris_cpu_version < 0 || cris_cpu_version > 32) error ("unknown CRIS version specification in -march= or -mcpu= : %s", cris_cpu_str); /* Set the target flags. */ if (cris_cpu_version >= CRIS_CPU_ETRAX4) target_flags |= MASK_ETRAX4_ADD; /* If this is Svinto or higher, align for 32 bit accesses. */ if (cris_cpu_version >= CRIS_CPU_SVINTO) target_flags |= (MASK_SVINTO | MASK_ALIGN_BY_32 | MASK_STACK_ALIGN | MASK_CONST_ALIGN | MASK_DATA_ALIGN); /* Note that we do not add new flags when it can be completely described with a macro that uses -mcpu=X. So TARGET_HAS_MUL_INSNS is (cris_cpu_version >= CRIS_CPU_NG). */ } if (cris_tune_str) { int cris_tune = (*cris_tune_str == 'v' ? atoi (cris_tune_str + 1) : -1); if (strcmp ("etrax4", cris_tune_str) == 0) cris_tune = 3; if (strcmp ("svinto", cris_tune_str) == 0 || strcmp ("etrax100", cris_tune_str) == 0) cris_tune = 8; if (strcmp ("ng", cris_tune_str) == 0 || strcmp ("etrax100lx", cris_tune_str) == 0) cris_tune = 10; if (cris_tune < 0 || cris_tune > 32) error ("unknown CRIS cpu version specification in -mtune= : %s", cris_tune_str); if (cris_tune >= CRIS_CPU_SVINTO) /* We have currently nothing more to tune than alignment for memory accesses. */ target_flags |= (MASK_STACK_ALIGN | MASK_CONST_ALIGN | MASK_DATA_ALIGN | MASK_ALIGN_BY_32); } if (cris_cpu_version >= CRIS_CPU_V32) target_flags &= ~(MASK_SIDE_EFFECT_PREFIXES|MASK_MUL_BUG); if (flag_pic) { /* Use error rather than warning, so invalid use is easily detectable. Still change to the values we expect, to avoid further errors. */ if (! TARGET_LINUX) { error ("-fPIC and -fpic are not supported in this configuration"); flag_pic = 0; } /* Turn off function CSE. We need to have the addresses reach the call expanders to get PLT-marked, as they could otherwise be compared against zero directly or indirectly. After visiting the call expanders they will then be cse:ed, as the call expanders force_reg the addresses, effectively forcing flag_no_function_cse to 0. */ flag_no_function_cse = 1; } if (write_symbols == DWARF2_DEBUG && ! TARGET_ELF) { warning (0, "that particular -g option is invalid with -maout and -melinux"); write_symbols = DBX_DEBUG; } /* Set the per-function-data initializer. */ init_machine_status = cris_init_machine_status; } /* The TARGET_ASM_OUTPUT_MI_THUNK worker. */ static void cris_asm_output_mi_thunk (FILE *stream, tree thunkdecl ATTRIBUTE_UNUSED, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED, tree funcdecl) { if (delta > 0) fprintf (stream, "\tadd%s " HOST_WIDE_INT_PRINT_DEC ",$%s\n", ADDITIVE_SIZE_MODIFIER (delta), delta, reg_names[CRIS_FIRST_ARG_REG]); else if (delta < 0) fprintf (stream, "\tsub%s " HOST_WIDE_INT_PRINT_DEC ",$%s\n", ADDITIVE_SIZE_MODIFIER (-delta), -delta, reg_names[CRIS_FIRST_ARG_REG]); if (flag_pic) { const char *name = XSTR (XEXP (DECL_RTL (funcdecl), 0), 0); name = (* targetm.strip_name_encoding) (name); if (TARGET_V32) { fprintf (stream, "\tba "); assemble_name (stream, name); fprintf (stream, "%s\n", CRIS_PLT_PCOFFSET_SUFFIX); } else { fprintf (stream, "add.d "); assemble_name (stream, name); fprintf (stream, "%s,$pc\n", CRIS_PLT_PCOFFSET_SUFFIX); } } else { fprintf (stream, "jump "); assemble_name (stream, XSTR (XEXP (DECL_RTL (funcdecl), 0), 0)); fprintf (stream, "\n"); if (TARGET_V32) fprintf (stream, "\tnop\n"); } } /* Boilerplate emitted at start of file. NO_APP *only at file start* means faster assembly. It also means comments are not allowed. In some cases comments will be output for debugging purposes. Make sure they are allowed then. We want a .file directive only if TARGET_ELF. */ static void cris_file_start (void) { /* These expressions can vary at run time, so we cannot put them into TARGET_INITIALIZER. */ targetm.file_start_app_off = !(TARGET_PDEBUG || flag_print_asm_name); targetm.file_start_file_directive = TARGET_ELF; default_file_start (); } /* Rename the function calls for integer multiply and divide. */ static void cris_init_libfuncs (void) { set_optab_libfunc (smul_optab, SImode, "__Mul"); set_optab_libfunc (sdiv_optab, SImode, "__Div"); set_optab_libfunc (udiv_optab, SImode, "__Udiv"); set_optab_libfunc (smod_optab, SImode, "__Mod"); set_optab_libfunc (umod_optab, SImode, "__Umod"); } /* The INIT_EXPANDERS worker sets the per-function-data initializer and mark functions. */ void cris_init_expanders (void) { /* Nothing here at the moment. */ } /* Zero initialization is OK for all current fields. */ static struct machine_function * cris_init_machine_status (void) { return GGC_CNEW (struct machine_function); } /* Split a 2 word move (DI or presumably DF) into component parts. Originally a copy of gen_split_move_double in m32r.c. */ rtx cris_split_movdx (rtx *operands) { enum machine_mode mode = GET_MODE (operands[0]); rtx dest = operands[0]; rtx src = operands[1]; rtx val; /* We used to have to handle (SUBREG (MEM)) here, but that should no longer happen; after reload there are no SUBREGs any more, and we're only called after reload. */ CRIS_ASSERT (GET_CODE (dest) != SUBREG && GET_CODE (src) != SUBREG); start_sequence (); if (REG_P (dest)) { int dregno = REGNO (dest); /* Reg-to-reg copy. */ if (REG_P (src)) { int sregno = REGNO (src); int reverse = (dregno == sregno + 1); /* We normally copy the low-numbered register first. However, if the first register operand 0 is the same as the second register of operand 1, we must copy in the opposite order. */ emit_insn (gen_rtx_SET (VOIDmode, operand_subword (dest, reverse, TRUE, mode), operand_subword (src, reverse, TRUE, mode))); emit_insn (gen_rtx_SET (VOIDmode, operand_subword (dest, !reverse, TRUE, mode), operand_subword (src, !reverse, TRUE, mode))); } /* Constant-to-reg copy. */ else if (CONST_INT_P (src) || GET_CODE (src) == CONST_DOUBLE) { rtx words[2]; split_double (src, &words[0], &words[1]); emit_insn (gen_rtx_SET (VOIDmode, operand_subword (dest, 0, TRUE, mode), words[0])); emit_insn (gen_rtx_SET (VOIDmode, operand_subword (dest, 1, TRUE, mode), words[1])); } /* Mem-to-reg copy. */ else if (MEM_P (src)) { /* If the high-address word is used in the address, we must load it last. Otherwise, load it first. */ rtx addr = XEXP (src, 0); int reverse = (refers_to_regno_p (dregno, dregno + 1, addr, NULL) != 0); /* The original code implies that we can't do move.x [rN+],rM move.x [rN],rM+1 when rN is dead, because of REG_NOTES damage. That is consistent with what I've seen, so don't try it. We have two different cases here; if the addr is POST_INC, just pass it through, otherwise add constants. */ if (GET_CODE (addr) == POST_INC) { rtx mem; rtx insn; /* Whenever we emit insns with post-incremented addresses ourselves, we must add a post-inc note manually. */ mem = change_address (src, SImode, addr); insn = gen_rtx_SET (VOIDmode, operand_subword (dest, 0, TRUE, mode), mem); insn = emit_insn (insn); if (GET_CODE (XEXP (mem, 0)) == POST_INC) REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, XEXP (XEXP (mem, 0), 0), REG_NOTES (insn)); mem = copy_rtx (mem); insn = gen_rtx_SET (VOIDmode, operand_subword (dest, 1, TRUE, mode), mem); insn = emit_insn (insn); if (GET_CODE (XEXP (mem, 0)) == POST_INC) REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, XEXP (XEXP (mem, 0), 0), REG_NOTES (insn)); } else { /* Make sure we don't get any other addresses with embedded postincrements. They should be stopped in GO_IF_LEGITIMATE_ADDRESS, but we're here for your safety. */ if (side_effects_p (addr)) fatal_insn ("unexpected side-effects in address", addr); emit_insn (gen_rtx_SET (VOIDmode, operand_subword (dest, reverse, TRUE, mode), change_address (src, SImode, plus_constant (addr, reverse * UNITS_PER_WORD)))); emit_insn (gen_rtx_SET (VOIDmode, operand_subword (dest, ! reverse, TRUE, mode), change_address (src, SImode, plus_constant (addr, (! reverse) * UNITS_PER_WORD)))); } } else internal_error ("Unknown src"); } /* Reg-to-mem copy or clear mem. */ else if (MEM_P (dest) && (REG_P (src) || src == const0_rtx || src == CONST0_RTX (DFmode))) { rtx addr = XEXP (dest, 0); if (GET_CODE (addr) == POST_INC) { rtx mem; rtx insn; /* Whenever we emit insns with post-incremented addresses ourselves, we must add a post-inc note manually. */ mem = change_address (dest, SImode, addr); insn = gen_rtx_SET (VOIDmode, mem, operand_subword (src, 0, TRUE, mode)); insn = emit_insn (insn); if (GET_CODE (XEXP (mem, 0)) == POST_INC) REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, XEXP (XEXP (mem, 0), 0), REG_NOTES (insn)); mem = copy_rtx (mem); insn = gen_rtx_SET (VOIDmode, mem, operand_subword (src, 1, TRUE, mode)); insn = emit_insn (insn); if (GET_CODE (XEXP (mem, 0)) == POST_INC) REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, XEXP (XEXP (mem, 0), 0), REG_NOTES (insn)); } else { /* Make sure we don't get any other addresses with embedded postincrements. They should be stopped in GO_IF_LEGITIMATE_ADDRESS, but we're here for your safety. */ if (side_effects_p (addr)) fatal_insn ("unexpected side-effects in address", addr); emit_insn (gen_rtx_SET (VOIDmode, change_address (dest, SImode, addr), operand_subword (src, 0, TRUE, mode))); emit_insn (gen_rtx_SET (VOIDmode, change_address (dest, SImode, plus_constant (addr, UNITS_PER_WORD)), operand_subword (src, 1, TRUE, mode))); } } else internal_error ("Unknown dest"); val = get_insns (); end_sequence (); return val; } /* The expander for the prologue pattern name. */ void cris_expand_prologue (void) { int regno; int size = get_frame_size (); /* Shorten the used name for readability. */ int cfoa_size = crtl->outgoing_args_size; int last_movem_reg = -1; int framesize = 0; rtx mem, insn; int return_address_on_stack = cris_return_address_on_stack (); int got_really_used = false; int n_movem_regs = 0; int pretend = crtl->args.pretend_args_size; /* Don't do anything if no prologues or epilogues are wanted. */ if (!TARGET_PROLOGUE_EPILOGUE) return; CRIS_ASSERT (size >= 0); if (crtl->uses_pic_offset_table) { /* A reference may have been optimized out (like the abort () in fde_split in unwind-dw2-fde.c, at least 3.2.1) so check that it's still used. */ push_topmost_sequence (); got_really_used = reg_used_between_p (pic_offset_table_rtx, get_insns (), NULL_RTX); pop_topmost_sequence (); } /* Align the size to what's best for the CPU model. */ if (TARGET_STACK_ALIGN) size = TARGET_ALIGN_BY_32 ? (size + 3) & ~3 : (size + 1) & ~1; if (pretend) { /* See also cris_setup_incoming_varargs where cfun->machine->stdarg_regs is set. There are other setters of crtl->args.pretend_args_size than stdarg handling, like for an argument passed with parts in R13 and stack. We must not store R13 into the pretend-area for that case, as GCC does that itself. "Our" store would be marked as redundant and GCC will attempt to remove it, which will then be flagged as an internal error; trying to remove a frame-related insn. */ int stdarg_regs = cfun->machine->stdarg_regs; framesize += pretend; for (regno = CRIS_FIRST_ARG_REG + CRIS_MAX_ARGS_IN_REGS - 1; stdarg_regs > 0; regno--, pretend -= 4, stdarg_regs--) { insn = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (stack_pointer_rtx, -4))); /* FIXME: When dwarf2 frame output and unless asynchronous exceptions, make dwarf2 bundle together all stack adjustments like it does for registers between stack adjustments. */ RTX_FRAME_RELATED_P (insn) = 1; mem = gen_rtx_MEM (SImode, stack_pointer_rtx); set_mem_alias_set (mem, get_varargs_alias_set ()); insn = emit_move_insn (mem, gen_rtx_raw_REG (SImode, regno)); /* Note the absence of RTX_FRAME_RELATED_P on the above insn: the value isn't restored, so we don't want to tell dwarf2 that it's been stored to stack, else EH handling info would get confused. */ } /* For other setters of crtl->args.pretend_args_size, we just adjust the stack by leaving the remaining size in "pretend", handled below. */ } /* Save SRP if not a leaf function. */ if (return_address_on_stack) { insn = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (stack_pointer_rtx, -4 - pretend))); pretend = 0; RTX_FRAME_RELATED_P (insn) = 1; mem = gen_rtx_MEM (SImode, stack_pointer_rtx); set_mem_alias_set (mem, get_frame_alias_set ()); insn = emit_move_insn (mem, gen_rtx_raw_REG (SImode, CRIS_SRP_REGNUM)); RTX_FRAME_RELATED_P (insn) = 1; framesize += 4; } /* Set up the frame pointer, if needed. */ if (frame_pointer_needed) { insn = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (stack_pointer_rtx, -4 - pretend))); pretend = 0; RTX_FRAME_RELATED_P (insn) = 1; mem = gen_rtx_MEM (SImode, stack_pointer_rtx); set_mem_alias_set (mem, get_frame_alias_set ()); insn = emit_move_insn (mem, frame_pointer_rtx); RTX_FRAME_RELATED_P (insn) = 1; insn = emit_move_insn (frame_pointer_rtx, stack_pointer_rtx); RTX_FRAME_RELATED_P (insn) = 1; framesize += 4; } /* Between frame-pointer and saved registers lie the area for local variables. If we get here with "pretended" size remaining, count it into the general stack size. */ size += pretend; /* Get a contiguous sequence of registers, starting with R0, that need to be saved. */ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) { if (cris_reg_saved_in_regsave_area (regno, got_really_used)) { n_movem_regs++; /* Check if movem may be used for registers so far. */ if (regno == last_movem_reg + 1) /* Yes, update next expected register. */ last_movem_reg = regno; else { /* We cannot use movem for all registers. We have to flush any movem:ed registers we got so far. */ if (last_movem_reg != -1) { int n_saved = (n_movem_regs == 1) ? 1 : last_movem_reg + 1; /* It is a win to use a side-effect assignment for 64 <= size <= 128. But side-effect on movem was not usable for CRIS v0..3. Also only do it if side-effects insns are allowed. */ if ((last_movem_reg + 1) * 4 + size >= 64 && (last_movem_reg + 1) * 4 + size <= 128 && (cris_cpu_version >= CRIS_CPU_SVINTO || n_saved == 1) && TARGET_SIDE_EFFECT_PREFIXES) { mem = gen_rtx_MEM (SImode, plus_constant (stack_pointer_rtx, -(n_saved * 4 + size))); set_mem_alias_set (mem, get_frame_alias_set ()); insn = cris_emit_movem_store (mem, GEN_INT (n_saved), -(n_saved * 4 + size), true); } else { insn = gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (stack_pointer_rtx, -(n_saved * 4 + size))); insn = emit_insn (insn); RTX_FRAME_RELATED_P (insn) = 1; mem = gen_rtx_MEM (SImode, stack_pointer_rtx); set_mem_alias_set (mem, get_frame_alias_set ()); insn = cris_emit_movem_store (mem, GEN_INT (n_saved), 0, true); } framesize += n_saved * 4 + size; last_movem_reg = -1; size = 0; } insn = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (stack_pointer_rtx, -4 - size))); RTX_FRAME_RELATED_P (insn) = 1; mem = gen_rtx_MEM (SImode, stack_pointer_rtx); set_mem_alias_set (mem, get_frame_alias_set ()); insn = emit_move_insn (mem, gen_rtx_raw_REG (SImode, regno)); RTX_FRAME_RELATED_P (insn) = 1; framesize += 4 + size; size = 0; } } } /* Check after, if we could movem all registers. This is the normal case. */ if (last_movem_reg != -1) { int n_saved = (n_movem_regs == 1) ? 1 : last_movem_reg + 1; /* Side-effect on movem was not usable for CRIS v0..3. Also only do it if side-effects insns are allowed. */ if ((last_movem_reg + 1) * 4 + size >= 64 && (last_movem_reg + 1) * 4 + size <= 128 && (cris_cpu_version >= CRIS_CPU_SVINTO || n_saved == 1) && TARGET_SIDE_EFFECT_PREFIXES) { mem = gen_rtx_MEM (SImode, plus_constant (stack_pointer_rtx, -(n_saved * 4 + size))); set_mem_alias_set (mem, get_frame_alias_set ()); insn = cris_emit_movem_store (mem, GEN_INT (n_saved), -(n_saved * 4 + size), true); } else { insn = gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (stack_pointer_rtx, -(n_saved * 4 + size))); insn = emit_insn (insn); RTX_FRAME_RELATED_P (insn) = 1; mem = gen_rtx_MEM (SImode, stack_pointer_rtx); set_mem_alias_set (mem, get_frame_alias_set ()); insn = cris_emit_movem_store (mem, GEN_INT (n_saved), 0, true); } framesize += n_saved * 4 + size; /* We have to put outgoing argument space after regs. */ if (cfoa_size) { insn = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (stack_pointer_rtx, -cfoa_size))); RTX_FRAME_RELATED_P (insn) = 1; framesize += cfoa_size; } } else if ((size + cfoa_size) > 0) { insn = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (stack_pointer_rtx, -(cfoa_size + size)))); RTX_FRAME_RELATED_P (insn) = 1; framesize += size + cfoa_size; } /* Set up the PIC register, if it is used. */ if (got_really_used) { rtx got = gen_rtx_UNSPEC (SImode, gen_rtvec (1, const0_rtx), CRIS_UNSPEC_GOT); emit_move_insn (pic_offset_table_rtx, got); /* FIXME: This is a cover-up for flow2 messing up; it doesn't follow exceptional paths and tries to delete the GOT load as unused, if it isn't used on the non-exceptional paths. Other ports have similar or other cover-ups, or plain bugs marking the GOT register load as maybe-dead. To see this, remove the line below and try libsupc++/vec.cc or a trivial "static void y (); void x () {try {y ();} catch (...) {}}". */ emit_use (pic_offset_table_rtx); } if (cris_max_stackframe && framesize > cris_max_stackframe) warning (0, "stackframe too big: %d bytes", framesize); } /* The expander for the epilogue pattern. */ void cris_expand_epilogue (void) { int regno; int size = get_frame_size (); int last_movem_reg = -1; int argspace_offset = crtl->outgoing_args_size; int pretend = crtl->args.pretend_args_size; rtx mem; bool return_address_on_stack = cris_return_address_on_stack (); /* A reference may have been optimized out (like the abort () in fde_split in unwind-dw2-fde.c, at least 3.2.1) so check that it's still used. */ int got_really_used = false; int n_movem_regs = 0; if (!TARGET_PROLOGUE_EPILOGUE) return; if (crtl->uses_pic_offset_table) { /* A reference may have been optimized out (like the abort () in fde_split in unwind-dw2-fde.c, at least 3.2.1) so check that it's still used. */ push_topmost_sequence (); got_really_used = reg_used_between_p (pic_offset_table_rtx, get_insns (), NULL_RTX); pop_topmost_sequence (); } /* Align byte count of stack frame. */ if (TARGET_STACK_ALIGN) size = TARGET_ALIGN_BY_32 ? (size + 3) & ~3 : (size + 1) & ~1; /* Check how many saved regs we can movem. They start at r0 and must be contiguous. */ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (cris_reg_saved_in_regsave_area (regno, got_really_used)) { n_movem_regs++; if (regno == last_movem_reg + 1) last_movem_reg = regno; else break; } /* If there was only one register that really needed to be saved through movem, don't use movem. */ if (n_movem_regs == 1) last_movem_reg = -1; /* Now emit "normal" move insns for all regs higher than the movem regs. */ for (regno = FIRST_PSEUDO_REGISTER - 1; regno > last_movem_reg; regno--) if (cris_reg_saved_in_regsave_area (regno, got_really_used)) { rtx insn; if (argspace_offset) { /* There is an area for outgoing parameters located before the saved registers. We have to adjust for that. */ emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (stack_pointer_rtx, argspace_offset))); /* Make sure we only do this once. */ argspace_offset = 0; } mem = gen_rtx_MEM (SImode, gen_rtx_POST_INC (SImode, stack_pointer_rtx)); set_mem_alias_set (mem, get_frame_alias_set ()); insn = emit_move_insn (gen_rtx_raw_REG (SImode, regno), mem); /* Whenever we emit insns with post-incremented addresses ourselves, we must add a post-inc note manually. */ REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, stack_pointer_rtx, REG_NOTES (insn)); } /* If we have any movem-restore, do it now. */ if (last_movem_reg != -1) { rtx insn; if (argspace_offset) { emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (stack_pointer_rtx, argspace_offset))); argspace_offset = 0; } mem = gen_rtx_MEM (SImode, gen_rtx_POST_INC (SImode, stack_pointer_rtx)); set_mem_alias_set (mem, get_frame_alias_set ()); insn = emit_insn (cris_gen_movem_load (mem, GEN_INT (last_movem_reg + 1), 0)); /* Whenever we emit insns with post-incremented addresses ourselves, we must add a post-inc note manually. */ if (side_effects_p (PATTERN (insn))) REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, stack_pointer_rtx, REG_NOTES (insn)); } /* If we don't clobber all of the allocated stack area (we've already deallocated saved registers), GCC might want to schedule loads from the stack to *after* the stack-pointer restore, which introduces an interrupt race condition. This happened for the initial-value SRP-restore for g++.dg/eh/registers1.C (noticed by inspection of other failure for that test). It also happened for the stack slot for the return value in (one version of) linux/fs/dcache.c:__d_lookup, at least with "-O2 -fno-omit-frame-pointer". */ /* Restore frame pointer if necessary. */ if (frame_pointer_needed) { rtx insn; emit_insn (gen_cris_frame_deallocated_barrier ()); emit_move_insn (stack_pointer_rtx, frame_pointer_rtx); mem = gen_rtx_MEM (SImode, gen_rtx_POST_INC (SImode, stack_pointer_rtx)); set_mem_alias_set (mem, get_frame_alias_set ()); insn = emit_move_insn (frame_pointer_rtx, mem); /* Whenever we emit insns with post-incremented addresses ourselves, we must add a post-inc note manually. */ REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, stack_pointer_rtx, REG_NOTES (insn)); } else if ((size + argspace_offset) != 0) { emit_insn (gen_cris_frame_deallocated_barrier ()); /* If there was no frame-pointer to restore sp from, we must explicitly deallocate local variables. */ /* Handle space for outgoing parameters that hasn't been handled yet. */ size += argspace_offset; emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (stack_pointer_rtx, size))); } /* If this function has no pushed register parameters (stdargs/varargs), and if it is not a leaf function, then we have the return address on the stack. */ if (return_address_on_stack && pretend == 0) { if (TARGET_V32 || crtl->calls_eh_return) { rtx mem; rtx insn; rtx srpreg = gen_rtx_raw_REG (SImode, CRIS_SRP_REGNUM); mem = gen_rtx_MEM (SImode, gen_rtx_POST_INC (SImode, stack_pointer_rtx)); set_mem_alias_set (mem, get_frame_alias_set ()); insn = emit_move_insn (srpreg, mem); /* Whenever we emit insns with post-incremented addresses ourselves, we must add a post-inc note manually. */ REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, stack_pointer_rtx, REG_NOTES (insn)); if (crtl->calls_eh_return) emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, gen_rtx_raw_REG (SImode, CRIS_STACKADJ_REG))); cris_expand_return (false); } else cris_expand_return (true); return; } /* If we pushed some register parameters, then adjust the stack for them. */ if (pretend != 0) { /* If SRP is stored on the way, we need to restore it first. */ if (return_address_on_stack) { rtx mem; rtx srpreg = gen_rtx_raw_REG (SImode, CRIS_SRP_REGNUM); rtx insn; mem = gen_rtx_MEM (SImode, gen_rtx_POST_INC (SImode, stack_pointer_rtx)); set_mem_alias_set (mem, get_frame_alias_set ()); insn = emit_move_insn (srpreg, mem); /* Whenever we emit insns with post-incremented addresses ourselves, we must add a post-inc note manually. */ REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, stack_pointer_rtx, REG_NOTES (insn)); } emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (stack_pointer_rtx, pretend))); } /* Perform the "physical" unwinding that the EH machinery calculated. */ if (crtl->calls_eh_return) emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, gen_rtx_raw_REG (SImode, CRIS_STACKADJ_REG))); cris_expand_return (false); } /* Worker function for generating movem from mem for load_multiple. */ rtx cris_gen_movem_load (rtx src, rtx nregs_rtx, int nprefix) { int nregs = INTVAL (nregs_rtx); rtvec vec; int eltno = 1; int i; rtx srcreg = XEXP (src, 0); unsigned int regno = nregs - 1; int regno_inc = -1; if (TARGET_V32) { regno = 0; regno_inc = 1; } if (GET_CODE (srcreg) == POST_INC) srcreg = XEXP (srcreg, 0); CRIS_ASSERT (REG_P (srcreg)); /* Don't use movem for just one insn. The insns are equivalent except for the pipeline hazard (on v32); movem does not forward the loaded registers so there's a three cycles penalty for their use. */ if (nregs == 1) return gen_movsi (gen_rtx_REG (SImode, 0), src); vec = rtvec_alloc (nprefix + nregs + (GET_CODE (XEXP (src, 0)) == POST_INC)); if (GET_CODE (XEXP (src, 0)) == POST_INC) { RTVEC_ELT (vec, nprefix + 1) = gen_rtx_SET (VOIDmode, srcreg, plus_constant (srcreg, nregs * 4)); eltno++; } src = replace_equiv_address (src, srcreg); RTVEC_ELT (vec, nprefix) = gen_rtx_SET (VOIDmode, gen_rtx_REG (SImode, regno), src); regno += regno_inc; for (i = 1; i < nregs; i++, eltno++) { RTVEC_ELT (vec, nprefix + eltno) = gen_rtx_SET (VOIDmode, gen_rtx_REG (SImode, regno), adjust_address_nv (src, SImode, i * 4)); regno += regno_inc; } return gen_rtx_PARALLEL (VOIDmode, vec); } /* Worker function for generating movem to mem. If FRAME_RELATED, notes are added that the dwarf2 machinery understands. */ rtx cris_emit_movem_store (rtx dest, rtx nregs_rtx, int increment, bool frame_related) { int nregs = INTVAL (nregs_rtx); rtvec vec; int eltno = 1; int i; rtx insn; rtx destreg = XEXP (dest, 0); unsigned int regno = nregs - 1; int regno_inc = -1; if (TARGET_V32) { regno = 0; regno_inc = 1; } if (GET_CODE (destreg) == POST_INC) increment += nregs * 4; if (GET_CODE (destreg) == POST_INC || GET_CODE (destreg) == PLUS) destreg = XEXP (destreg, 0); CRIS_ASSERT (REG_P (destreg)); /* Don't use movem for just one insn. The insns are equivalent except for the pipeline hazard (on v32); movem does not forward the loaded registers so there's a three cycles penalty for use. */ if (nregs == 1) { rtx mov = gen_rtx_SET (VOIDmode, dest, gen_rtx_REG (SImode, 0)); if (increment == 0) { insn = emit_insn (mov); if (frame_related) RTX_FRAME_RELATED_P (insn) = 1; return insn; } /* If there was a request for a side-effect, create the ordinary parallel. */ vec = rtvec_alloc (2); RTVEC_ELT (vec, 0) = mov; RTVEC_ELT (vec, 1) = gen_rtx_SET (VOIDmode, destreg, plus_constant (destreg, increment)); if (frame_related) { RTX_FRAME_RELATED_P (mov) = 1; RTX_FRAME_RELATED_P (RTVEC_ELT (vec, 1)) = 1; } } else { vec = rtvec_alloc (nregs + (increment != 0 ? 1 : 0)); RTVEC_ELT (vec, 0) = gen_rtx_SET (VOIDmode, replace_equiv_address (dest, plus_constant (destreg, increment)), gen_rtx_REG (SImode, regno)); regno += regno_inc; /* The dwarf2 info wants this mark on each component in a parallel that's part of the prologue (though it's optional on the first component). */ if (frame_related) RTX_FRAME_RELATED_P (RTVEC_ELT (vec, 0)) = 1; if (increment != 0) { RTVEC_ELT (vec, 1) = gen_rtx_SET (VOIDmode, destreg, plus_constant (destreg, increment != 0 ? increment : nregs * 4)); eltno++; if (frame_related) RTX_FRAME_RELATED_P (RTVEC_ELT (vec, 1)) = 1; /* Don't call adjust_address_nv on a post-incremented address if we can help it. */ if (GET_CODE (XEXP (dest, 0)) == POST_INC) dest = replace_equiv_address (dest, destreg); } for (i = 1; i < nregs; i++, eltno++) { RTVEC_ELT (vec, eltno) = gen_rtx_SET (VOIDmode, adjust_address_nv (dest, SImode, i * 4), gen_rtx_REG (SImode, regno)); if (frame_related) RTX_FRAME_RELATED_P (RTVEC_ELT (vec, eltno)) = 1; regno += regno_inc; } } insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, vec)); /* Because dwarf2out.c handles the insns in a parallel as a sequence, we need to keep the stack adjustment separate, after the MEM-setters. Else the stack-adjustment in the second component of the parallel would be mishandled; the offsets for the SETs that follow it would be wrong. We prepare for this by adding a REG_FRAME_RELATED_EXPR with the MEM-setting parts in a SEQUENCE followed by the increment. Note that we have FRAME_RELATED_P on all the SETs, including the original stack adjustment SET in the parallel. */ if (frame_related) { if (increment != 0) { rtx seq = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (nregs + 1)); XVECEXP (seq, 0, 0) = copy_rtx (XVECEXP (PATTERN (insn), 0, 0)); for (i = 1; i < nregs; i++) XVECEXP (seq, 0, i) = copy_rtx (XVECEXP (PATTERN (insn), 0, i + 1)); XVECEXP (seq, 0, nregs) = copy_rtx (XVECEXP (PATTERN (insn), 0, 1)); REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, seq, REG_NOTES (insn)); } RTX_FRAME_RELATED_P (insn) = 1; } return insn; } /* Worker function for expanding the address for PIC function calls. */ void cris_expand_pic_call_address (rtx *opp) { rtx op = *opp; gcc_assert (MEM_P (op)); op = XEXP (op, 0); /* It might be that code can be generated that jumps to 0 (or to a specific address). Don't die on that. (There is a testcase.) */ if (CONSTANT_ADDRESS_P (op) && !CONST_INT_P (op)) { enum cris_pic_symbol_type t = cris_pic_symbol_type_of (op); CRIS_ASSERT (can_create_pseudo_p ()); /* For local symbols (non-PLT), just get the plain symbol reference into a register. For symbols that can be PLT, make them PLT. */ if (t == cris_rel_symbol) { /* For v32, we're fine as-is; just PICify the symbol. Forcing into a register caused performance regression for 3.2.1, observable in __floatdidf and elsewhere in libgcc. */ if (TARGET_V32) { rtx sym = GET_CODE (op) != CONST ? op : get_related_value (op); HOST_WIDE_INT offs = get_integer_term (op); /* We can't get calls to sym+N, N integer, can we? */ gcc_assert (offs == 0); op = gen_rtx_CONST (Pmode, gen_rtx_UNSPEC (Pmode, gen_rtvec (1, sym), CRIS_UNSPEC_PCREL)); } else op = force_reg (Pmode, op); } else if (t == cris_got_symbol) { if (TARGET_AVOID_GOTPLT) { /* Change a "jsr sym" into (allocate register rM, rO) "move.d (const (unspec [sym rPIC] CRIS_UNSPEC_PLT_GOTREL)),rM" "add.d rPIC,rM,rO", "jsr rO" for pre-v32 and "jsr (const (unspec [sym rPIC] CRIS_UNSPEC_PLT_PCREL))" for v32. */ rtx tem, rm, ro; gcc_assert (can_create_pseudo_p ()); crtl->uses_pic_offset_table = 1; tem = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op), TARGET_V32 ? CRIS_UNSPEC_PLT_PCREL : CRIS_UNSPEC_PLT_GOTREL); tem = gen_rtx_CONST (Pmode, tem); if (TARGET_V32) op = tem; else { rm = gen_reg_rtx (Pmode); emit_move_insn (rm, tem); ro = gen_reg_rtx (Pmode); if (expand_binop (Pmode, add_optab, rm, pic_offset_table_rtx, ro, 0, OPTAB_LIB_WIDEN) != ro) internal_error ("expand_binop failed in movsi got"); op = ro; } } else { /* Change a "jsr sym" into (allocate register rM, rO) "move.d (const (unspec [sym] CRIS_UNSPEC_PLTGOTREAD)),rM" "add.d rPIC,rM,rO" "jsr [rO]" with the memory access marked as not trapping and not aliasing. No "move.d [rO],rP" as that would invite to re-use of a value that should not be reused. FIXME: Need a peephole2 for cases when this is cse:d from the call, to change back to just get the PLT entry address, so we don't resolve the same symbol over and over (the memory access of the PLTGOT isn't constant). */ rtx tem, mem, rm, ro; gcc_assert (can_create_pseudo_p ()); crtl->uses_pic_offset_table = 1; tem = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op), CRIS_UNSPEC_PLTGOTREAD); rm = gen_reg_rtx (Pmode); emit_move_insn (rm, gen_rtx_CONST (Pmode, tem)); ro = gen_reg_rtx (Pmode); if (expand_binop (Pmode, add_optab, rm, pic_offset_table_rtx, ro, 0, OPTAB_LIB_WIDEN) != ro) internal_error ("expand_binop failed in movsi got"); mem = gen_rtx_MEM (Pmode, ro); /* This MEM doesn't alias anything. Whether it aliases other same symbols is unimportant. */ set_mem_alias_set (mem, new_alias_set ()); MEM_NOTRAP_P (mem) = 1; op = mem; } } else /* Can't possibly get a GOT-needing-fixup for a function-call, right? */ fatal_insn ("Unidentifiable call op", op); *opp = replace_equiv_address (*opp, op); } } /* Make sure operands are in the right order for an addsi3 insn as generated by a define_split. Nothing but REG_P as the first operand is recognized by addsi3 after reload. OPERANDS contains the operands, with the first at OPERANDS[N] and the second at OPERANDS[N+1]. */ void cris_order_for_addsi3 (rtx *operands, int n) { if (!REG_P (operands[n])) { rtx tem = operands[n]; operands[n] = operands[n + 1]; operands[n + 1] = tem; } } /* Use from within code, from e.g. PRINT_OPERAND and PRINT_OPERAND_ADDRESS. Macros used in output_addr_const need to emit different things depending on whether code operand or constant is emitted. */ static void cris_output_addr_const (FILE *file, rtx x) { in_code++; output_addr_const (file, x); in_code--; } /* Worker function for ASM_OUTPUT_SYMBOL_REF. */ void cris_asm_output_symbol_ref (FILE *file, rtx x) { gcc_assert (GET_CODE (x) == SYMBOL_REF); if (flag_pic && in_code > 0) { const char *origstr = XSTR (x, 0); const char *str; str = (* targetm.strip_name_encoding) (origstr); assemble_name (file, str); /* Sanity check. */ if (!TARGET_V32 && !crtl->uses_pic_offset_table) output_operand_lossage ("PIC register isn't set up"); } else assemble_name (file, XSTR (x, 0)); } /* Worker function for ASM_OUTPUT_LABEL_REF. */ void cris_asm_output_label_ref (FILE *file, char *buf) { if (flag_pic && in_code > 0) { assemble_name (file, buf); /* Sanity check. */ if (!TARGET_V32 && !crtl->uses_pic_offset_table) internal_error ("emitting PIC operand, but PIC register isn't set up"); } else assemble_name (file, buf); } /* Worker function for OUTPUT_ADDR_CONST_EXTRA. */ bool cris_output_addr_const_extra (FILE *file, rtx xconst) { switch (GET_CODE (xconst)) { rtx x; case UNSPEC: x = XVECEXP (xconst, 0, 0); CRIS_ASSERT (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF || GET_CODE (x) == CONST); output_addr_const (file, x); switch (XINT (xconst, 1)) { case CRIS_UNSPEC_PCREL: /* We only get this with -fpic/PIC to tell it apart from an invalid symbol. We can't tell here, but it should only be the operand of a call or movsi. */ gcc_assert (TARGET_V32 && flag_pic); break; case CRIS_UNSPEC_PLT_PCREL: gcc_assert (TARGET_V32); fprintf (file, ":PLT"); break; case CRIS_UNSPEC_PLT_GOTREL: gcc_assert (!TARGET_V32); fprintf (file, ":PLTG"); break; case CRIS_UNSPEC_GOTREL: gcc_assert (!TARGET_V32); fprintf (file, ":GOTOFF"); break; case CRIS_UNSPEC_GOTREAD: if (flag_pic == 1) fprintf (file, ":GOT16"); else fprintf (file, ":GOT"); break; case CRIS_UNSPEC_PLTGOTREAD: if (flag_pic == 1) fprintf (file, CRIS_GOTPLT_SUFFIX "16"); else fprintf (file, CRIS_GOTPLT_SUFFIX); break; default: gcc_unreachable (); } return true; default: return false; } } /* Worker function for TARGET_STRUCT_VALUE_RTX. */ static rtx cris_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED, int incoming ATTRIBUTE_UNUSED) { return gen_rtx_REG (Pmode, CRIS_STRUCT_VALUE_REGNUM); } /* Worker function for TARGET_SETUP_INCOMING_VARARGS. */ static void cris_setup_incoming_varargs (CUMULATIVE_ARGS *ca, enum machine_mode mode ATTRIBUTE_UNUSED, tree type ATTRIBUTE_UNUSED, int *pretend_arg_size, int second_time) { if (ca->regs < CRIS_MAX_ARGS_IN_REGS) { int stdarg_regs = CRIS_MAX_ARGS_IN_REGS - ca->regs; cfun->machine->stdarg_regs = stdarg_regs; *pretend_arg_size = stdarg_regs * 4; } if (TARGET_PDEBUG) fprintf (asm_out_file, "\n; VA:: ANSI: %d args before, anon @ #%d, %dtime\n", ca->regs, *pretend_arg_size, second_time); } /* Return true if TYPE must be passed by invisible reference. For cris, we pass <= 8 bytes by value, others by reference. */ static bool cris_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED, enum machine_mode mode, const_tree type, bool named ATTRIBUTE_UNUSED) { return (targetm.calls.must_pass_in_stack (mode, type) || CRIS_FUNCTION_ARG_SIZE (mode, type) > 8); } static int cris_arg_partial_bytes (CUMULATIVE_ARGS *ca, enum machine_mode mode, tree type, bool named ATTRIBUTE_UNUSED) { if (ca->regs == CRIS_MAX_ARGS_IN_REGS - 1 && !targetm.calls.must_pass_in_stack (mode, type) && CRIS_FUNCTION_ARG_SIZE (mode, type) > 4 && CRIS_FUNCTION_ARG_SIZE (mode, type) <= 8) return UNITS_PER_WORD; else return 0; } /* Worker function for TARGET_MD_ASM_CLOBBERS. */ static tree cris_md_asm_clobbers (tree outputs, tree inputs, tree in_clobbers) { HARD_REG_SET mof_set; tree clobbers; tree t; CLEAR_HARD_REG_SET (mof_set); SET_HARD_REG_BIT (mof_set, CRIS_MOF_REGNUM); /* For the time being, all asms clobber condition codes. Revisit when there's a reasonable use for inputs/outputs that mention condition codes. */ clobbers = tree_cons (NULL_TREE, build_string (strlen (reg_names[CRIS_CC0_REGNUM]), reg_names[CRIS_CC0_REGNUM]), in_clobbers); for (t = outputs; t != NULL; t = TREE_CHAIN (t)) { tree val = TREE_VALUE (t); /* The constraint letter for the singleton register class of MOF is 'h'. If it's mentioned in the constraints, the asm is MOF-aware and adding it to the clobbers would cause it to have impossible constraints. */ if (strchr (TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t))), 'h') != NULL || tree_overlaps_hard_reg_set (val, &mof_set) != NULL_TREE) return clobbers; } for (t = inputs; t != NULL; t = TREE_CHAIN (t)) { tree val = TREE_VALUE (t); if (strchr (TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t))), 'h') != NULL || tree_overlaps_hard_reg_set (val, &mof_set) != NULL_TREE) return clobbers; } return tree_cons (NULL_TREE, build_string (strlen (reg_names[CRIS_MOF_REGNUM]), reg_names[CRIS_MOF_REGNUM]), clobbers); } #if 0 /* Various small functions to replace macros. Only called from a debugger. They might collide with gcc functions or system functions, so only emit them when '#if 1' above. */ enum rtx_code Get_code (rtx); enum rtx_code Get_code (rtx x) { return GET_CODE (x); } const char *Get_mode (rtx); const char * Get_mode (rtx x) { return GET_MODE_NAME (GET_MODE (x)); } rtx Xexp (rtx, int); rtx Xexp (rtx x, int n) { return XEXP (x, n); } rtx Xvecexp (rtx, int, int); rtx Xvecexp (rtx x, int n, int m) { return XVECEXP (x, n, m); } int Get_rtx_len (rtx); int Get_rtx_len (rtx x) { return GET_RTX_LENGTH (GET_CODE (x)); } /* Use upper-case to distinguish from local variables that are sometimes called next_insn and prev_insn. */ rtx Next_insn (rtx); rtx Next_insn (rtx insn) { return NEXT_INSN (insn); } rtx Prev_insn (rtx); rtx Prev_insn (rtx insn) { return PREV_INSN (insn); } #endif #include "gt-cris.h" /* * Local variables: * eval: (c-set-style "gnu") * indent-tabs-mode: t * End: */