/**************************************************************************** * * * GNAT COMPILER COMPONENTS * * * * T R A N S * * * * C Implementation File * * * * Copyright (C) 1992-2009, Free Software Foundation, Inc. * * * * GNAT is free software; you can redistribute it and/or modify it under * * terms of the GNU General Public License as published by the Free Soft- * * ware Foundation; either version 3, or (at your option) any later ver- * * sion. GNAT is distributed in the hope that it will be useful, but WITH- * * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * * for more details. You should have received a copy of the GNU General * * Public License distributed with GNAT; see file COPYING3. If not see * * . * * * * GNAT was originally developed by the GNAT team at New York University. * * Extensive contributions were provided by Ada Core Technologies Inc. * * * ****************************************************************************/ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "real.h" #include "flags.h" #include "toplev.h" #include "rtl.h" #include "expr.h" #include "ggc.h" #include "cgraph.h" #include "function.h" #include "except.h" #include "debug.h" #include "output.h" #include "tree-iterator.h" #include "gimple.h" #include "ada.h" #include "types.h" #include "atree.h" #include "elists.h" #include "namet.h" #include "nlists.h" #include "snames.h" #include "stringt.h" #include "uintp.h" #include "urealp.h" #include "fe.h" #include "sinfo.h" #include "einfo.h" #include "ada-tree.h" #include "gigi.h" #include "adadecode.h" #include "dwarf2.h" #include "dwarf2out.h" /* We should avoid allocating more than ALLOCA_THRESHOLD bytes via alloca, for fear of running out of stack space. If we need more, we use xmalloc instead. */ #define ALLOCA_THRESHOLD 1000 /* Let code below know whether we are targetting VMS without need of intrusive preprocessor directives. */ #ifndef TARGET_ABI_OPEN_VMS #define TARGET_ABI_OPEN_VMS 0 #endif /* For efficient float-to-int rounding, it is necessary to know whether floating-point arithmetic may use wider intermediate results. When FP_ARITH_MAY_WIDEN is not defined, be conservative and only assume floating-point arithmetic does not widen if double precision is emulated. */ #ifndef FP_ARITH_MAY_WIDEN #if defined(HAVE_extendsfdf2) #define FP_ARITH_MAY_WIDEN HAVE_extendsfdf2 #else #define FP_ARITH_MAY_WIDEN 0 #endif #endif extern char *__gnat_to_canonical_file_spec (char *); int max_gnat_nodes; int number_names; int number_files; struct Node *Nodes_Ptr; Node_Id *Next_Node_Ptr; Node_Id *Prev_Node_Ptr; struct Elist_Header *Elists_Ptr; struct Elmt_Item *Elmts_Ptr; struct String_Entry *Strings_Ptr; Char_Code *String_Chars_Ptr; struct List_Header *List_Headers_Ptr; /* Current filename without path. */ const char *ref_filename; /* If true, then gigi is being called on an analyzed but unexpanded tree, and the only purpose of the call is to properly annotate types with representation information. */ bool type_annotate_only; /* When not optimizing, we cache the 'First, 'Last and 'Length attributes of unconstrained array IN parameters to avoid emitting a great deal of redundant instructions to recompute them each time. */ struct parm_attr GTY (()) { int id; /* GTY doesn't like Entity_Id. */ int dim; tree first; tree last; tree length; }; typedef struct parm_attr *parm_attr; DEF_VEC_P(parm_attr); DEF_VEC_ALLOC_P(parm_attr,gc); struct language_function GTY(()) { VEC(parm_attr,gc) *parm_attr_cache; }; #define f_parm_attr_cache \ DECL_STRUCT_FUNCTION (current_function_decl)->language->parm_attr_cache /* A structure used to gather together information about a statement group. We use this to gather related statements, for example the "then" part of a IF. In the case where it represents a lexical scope, we may also have a BLOCK node corresponding to it and/or cleanups. */ struct stmt_group GTY((chain_next ("%h.previous"))) { struct stmt_group *previous; /* Previous code group. */ tree stmt_list; /* List of statements for this code group. */ tree block; /* BLOCK for this code group, if any. */ tree cleanups; /* Cleanups for this code group, if any. */ }; static GTY(()) struct stmt_group *current_stmt_group; /* List of unused struct stmt_group nodes. */ static GTY((deletable)) struct stmt_group *stmt_group_free_list; /* A structure used to record information on elaboration procedures we've made and need to process. ??? gnat_node should be Node_Id, but gengtype gets confused. */ struct elab_info GTY((chain_next ("%h.next"))) { struct elab_info *next; /* Pointer to next in chain. */ tree elab_proc; /* Elaboration procedure. */ int gnat_node; /* The N_Compilation_Unit. */ }; static GTY(()) struct elab_info *elab_info_list; /* Free list of TREE_LIST nodes used for stacks. */ static GTY((deletable)) tree gnu_stack_free_list; /* List of TREE_LIST nodes representing a stack of exception pointer variables. TREE_VALUE is the VAR_DECL that stores the address of the raised exception. Nonzero means we are in an exception handler. Not used in the zero-cost case. */ static GTY(()) tree gnu_except_ptr_stack; /* List of TREE_LIST nodes used to store the current elaboration procedure decl. TREE_VALUE is the decl. */ static GTY(()) tree gnu_elab_proc_stack; /* Variable that stores a list of labels to be used as a goto target instead of a return in some functions. See processing for N_Subprogram_Body. */ static GTY(()) tree gnu_return_label_stack; /* List of TREE_LIST nodes representing a stack of LOOP_STMT nodes. TREE_VALUE of each entry is the label of the corresponding LOOP_STMT. */ static GTY(()) tree gnu_loop_label_stack; /* List of TREE_LIST nodes representing labels for switch statements. TREE_VALUE of each entry is the label at the end of the switch. */ static GTY(()) tree gnu_switch_label_stack; /* List of TREE_LIST nodes containing the stacks for N_{Push,Pop}_*_Label. */ static GTY(()) tree gnu_constraint_error_label_stack; static GTY(()) tree gnu_storage_error_label_stack; static GTY(()) tree gnu_program_error_label_stack; /* Map GNAT tree codes to GCC tree codes for simple expressions. */ static enum tree_code gnu_codes[Number_Node_Kinds]; /* Current node being treated, in case abort called. */ Node_Id error_gnat_node; static void init_code_table (void); static void Compilation_Unit_to_gnu (Node_Id); static void record_code_position (Node_Id); static void insert_code_for (Node_Id); static void add_cleanup (tree, Node_Id); static tree unshare_save_expr (tree *, int *, void *); static void add_stmt_list (List_Id); static void push_exception_label_stack (tree *, Entity_Id); static tree build_stmt_group (List_Id, bool); static void push_stack (tree *, tree, tree); static void pop_stack (tree *); static enum gimplify_status gnat_gimplify_stmt (tree *); static void elaborate_all_entities (Node_Id); static void process_freeze_entity (Node_Id); static void process_inlined_subprograms (Node_Id); static void process_decls (List_Id, List_Id, Node_Id, bool, bool); static tree emit_range_check (tree, Node_Id); static tree emit_index_check (tree, tree, tree, tree); static tree emit_check (tree, tree, int); static tree build_unary_op_trapv (enum tree_code, tree, tree); static tree build_binary_op_trapv (enum tree_code, tree, tree, tree); static tree convert_with_check (Entity_Id, tree, bool, bool, bool); static bool smaller_packable_type_p (tree, tree); static bool addressable_p (tree, tree); static tree assoc_to_constructor (Entity_Id, Node_Id, tree); static tree extract_values (tree, tree); static tree pos_to_constructor (Node_Id, tree, Entity_Id); static tree maybe_implicit_deref (tree); static tree gnat_stabilize_reference (tree, bool); static tree gnat_stabilize_reference_1 (tree, bool); static void set_expr_location_from_node (tree, Node_Id); static int lvalue_required_p (Node_Id, tree, int); /* Hooks for debug info back-ends, only supported and used in a restricted set of configurations. */ static const char *extract_encoding (const char *) ATTRIBUTE_UNUSED; static const char *decode_name (const char *) ATTRIBUTE_UNUSED; /* This is the main program of the back-end. It sets up all the table structures and then generates code. */ void gigi (Node_Id gnat_root, int max_gnat_node, int number_name, struct Node *nodes_ptr, Node_Id *next_node_ptr, Node_Id *prev_node_ptr, struct Elist_Header *elists_ptr, struct Elmt_Item *elmts_ptr, struct String_Entry *strings_ptr, Char_Code *string_chars_ptr, struct List_Header *list_headers_ptr, Nat number_file, struct File_Info_Type *file_info_ptr, Entity_Id standard_boolean, Entity_Id standard_integer, Entity_Id standard_long_long_float, Entity_Id standard_exception_type, Int gigi_operating_mode) { Entity_Id gnat_literal; tree gnu_standard_long_long_float, gnu_standard_exception_type, t; struct elab_info *info; int i; max_gnat_nodes = max_gnat_node; number_names = number_name; number_files = number_file; Nodes_Ptr = nodes_ptr; Next_Node_Ptr = next_node_ptr; Prev_Node_Ptr = prev_node_ptr; Elists_Ptr = elists_ptr; Elmts_Ptr = elmts_ptr; Strings_Ptr = strings_ptr; String_Chars_Ptr = string_chars_ptr; List_Headers_Ptr = list_headers_ptr; type_annotate_only = (gigi_operating_mode == 1); for (i = 0; i < number_files; i++) { /* Use the identifier table to make a permanent copy of the filename as the name table gets reallocated after Gigi returns but before all the debugging information is output. The __gnat_to_canonical_file_spec call translates filenames from pragmas Source_Reference that contain host style syntax not understood by gdb. */ const char *filename = IDENTIFIER_POINTER (get_identifier (__gnat_to_canonical_file_spec (Get_Name_String (file_info_ptr[i].File_Name)))); /* We rely on the order isomorphism between files and line maps. */ gcc_assert ((int) line_table->used == i); /* We create the line map for a source file at once, with a fixed number of columns chosen to avoid jumping over the next power of 2. */ linemap_add (line_table, LC_ENTER, 0, filename, 1); linemap_line_start (line_table, file_info_ptr[i].Num_Source_Lines, 252); linemap_position_for_column (line_table, 252 - 1); linemap_add (line_table, LC_LEAVE, 0, NULL, 0); } /* Initialize ourselves. */ init_code_table (); init_gnat_to_gnu (); gnat_compute_largest_alignment (); init_dummy_type (); /* If we are just annotating types, give VOID_TYPE zero sizes to avoid errors. */ if (type_annotate_only) { TYPE_SIZE (void_type_node) = bitsize_zero_node; TYPE_SIZE_UNIT (void_type_node) = size_zero_node; } /* If the GNU type extensions to DWARF are available, setup the hooks. */ #if defined (DWARF2_DEBUGGING_INFO) && defined (DWARF2_GNU_TYPE_EXTENSIONS) /* We condition the name demangling and the generation of type encoding strings on -gdwarf+ and always set descriptive types on. */ if (use_gnu_debug_info_extensions) { dwarf2out_set_type_encoding_func (extract_encoding); dwarf2out_set_demangle_name_func (decode_name); } dwarf2out_set_descriptive_type_func (get_parallel_type); #endif /* Enable GNAT stack checking method if needed */ if (!Stack_Check_Probes_On_Target) set_stack_check_libfunc (gen_rtx_SYMBOL_REF (Pmode, "_gnat_stack_check")); /* Give names and make TYPE_DECLs for common types. */ create_type_decl (get_identifier (SIZE_TYPE), sizetype, NULL, false, true, Empty); create_type_decl (get_identifier ("boolean"), boolean_type_node, NULL, false, true, Empty); create_type_decl (get_identifier ("integer"), integer_type_node, NULL, false, true, Empty); create_type_decl (get_identifier ("unsigned char"), char_type_node, NULL, false, true, Empty); create_type_decl (get_identifier ("long integer"), long_integer_type_node, NULL, false, true, Empty); /* Save the type we made for boolean as the type for Standard.Boolean. */ save_gnu_tree (Base_Type (standard_boolean), TYPE_NAME (boolean_type_node), false); gnat_literal = First_Literal (Base_Type (standard_boolean)); t = UI_To_gnu (Enumeration_Rep (gnat_literal), boolean_type_node); gcc_assert (t == boolean_false_node); t = create_var_decl (get_entity_name (gnat_literal), NULL_TREE, boolean_type_node, t, true, false, false, false, NULL, gnat_literal); DECL_IGNORED_P (t) = 1; save_gnu_tree (gnat_literal, t, false); gnat_literal = Next_Literal (gnat_literal); t = UI_To_gnu (Enumeration_Rep (gnat_literal), boolean_type_node); gcc_assert (t == boolean_true_node); t = create_var_decl (get_entity_name (gnat_literal), NULL_TREE, boolean_type_node, t, true, false, false, false, NULL, gnat_literal); DECL_IGNORED_P (t) = 1; save_gnu_tree (gnat_literal, t, false); /* Save the type we made for integer as the type for Standard.Integer. Then make the rest of the standard types. Note that some of these may be subtypes. */ save_gnu_tree (Base_Type (standard_integer), TYPE_NAME (integer_type_node), false); gnu_except_ptr_stack = tree_cons (NULL_TREE, NULL_TREE, NULL_TREE); gnu_constraint_error_label_stack = tree_cons (NULL_TREE, NULL_TREE, NULL_TREE); gnu_storage_error_label_stack = tree_cons (NULL_TREE, NULL_TREE, NULL_TREE); gnu_program_error_label_stack = tree_cons (NULL_TREE, NULL_TREE, NULL_TREE); gnu_standard_long_long_float = gnat_to_gnu_entity (Base_Type (standard_long_long_float), NULL_TREE, 0); gnu_standard_exception_type = gnat_to_gnu_entity (Base_Type (standard_exception_type), NULL_TREE, 0); init_gigi_decls (gnu_standard_long_long_float, gnu_standard_exception_type); /* Process any Pragma Ident for the main unit. */ #ifdef ASM_OUTPUT_IDENT if (Present (Ident_String (Main_Unit))) ASM_OUTPUT_IDENT (asm_out_file, TREE_STRING_POINTER (gnat_to_gnu (Ident_String (Main_Unit)))); #endif /* If we are using the GCC exception mechanism, let GCC know. */ if (Exception_Mechanism == Back_End_Exceptions) gnat_init_gcc_eh (); gcc_assert (Nkind (gnat_root) == N_Compilation_Unit); /* Declare the name of the compilation unit as the first global name in order to make the middle-end fully deterministic. */ t = create_concat_name (Defining_Entity (Unit (gnat_root)), NULL); first_global_object_name = ggc_strdup (IDENTIFIER_POINTER (t)); /* Now translate the compilation unit proper. */ start_stmt_group (); Compilation_Unit_to_gnu (gnat_root); /* Finally see if we have any elaboration procedures to deal with. */ for (info = elab_info_list; info; info = info->next) { tree gnu_body = DECL_SAVED_TREE (info->elab_proc); /* Unshare SAVE_EXPRs between subprograms. These are not unshared by the gimplifier for obvious reasons, but it turns out that we need to unshare them for the global level because of SAVE_EXPRs made around checks for global objects and around allocators for global objects of variable size, in order to prevent node sharing in the underlying expression. Note that this implicitly assumes that the SAVE_EXPR nodes themselves are not shared between subprograms, which would be an upstream bug for which we would not change the outcome. */ walk_tree_without_duplicates (&gnu_body, unshare_save_expr, NULL); /* Process the function as others, but for indicating this is an elab proc, to be discarded if empty, then propagate the status up to the GNAT tree node. */ begin_subprog_body (info->elab_proc); end_subprog_body (gnu_body, true); if (empty_body_p (gimple_body (info->elab_proc))) Set_Has_No_Elaboration_Code (info->gnat_node, 1); } /* We cannot track the location of errors past this point. */ error_gnat_node = Empty; } /* Return a positive value if an lvalue is required for GNAT_NODE. GNU_TYPE is the type that will be used for GNAT_NODE in the translated GNU tree. ALIASED indicates whether the underlying object represented by GNAT_NODE is aliased in the Ada sense. The function climbs up the GNAT tree starting from the node and returns 1 upon encountering a node that effectively requires an lvalue downstream. It returns int instead of bool to facilitate usage in non purely binary logic contexts. */ static int lvalue_required_p (Node_Id gnat_node, tree gnu_type, int aliased) { Node_Id gnat_parent = Parent (gnat_node), gnat_temp; switch (Nkind (gnat_parent)) { case N_Reference: return 1; case N_Attribute_Reference: { unsigned char id = Get_Attribute_Id (Attribute_Name (gnat_parent)); return id == Attr_Address || id == Attr_Access || id == Attr_Unchecked_Access || id == Attr_Unrestricted_Access; } case N_Parameter_Association: case N_Function_Call: case N_Procedure_Call_Statement: return (must_pass_by_ref (gnu_type) || default_pass_by_ref (gnu_type)); case N_Indexed_Component: /* Only the array expression can require an lvalue. */ if (Prefix (gnat_parent) != gnat_node) return 0; /* ??? Consider that referencing an indexed component with a non-constant index forces the whole aggregate to memory. Note that N_Integer_Literal is conservative, any static expression in the RM sense could probably be accepted. */ for (gnat_temp = First (Expressions (gnat_parent)); Present (gnat_temp); gnat_temp = Next (gnat_temp)) if (Nkind (gnat_temp) != N_Integer_Literal) return 1; /* ... fall through ... */ case N_Slice: /* Only the array expression can require an lvalue. */ if (Prefix (gnat_parent) != gnat_node) return 0; aliased |= Has_Aliased_Components (Etype (gnat_node)); return lvalue_required_p (gnat_parent, gnu_type, aliased); case N_Selected_Component: aliased |= Is_Aliased (Entity (Selector_Name (gnat_parent))); return lvalue_required_p (gnat_parent, gnu_type, aliased); case N_Object_Renaming_Declaration: /* We need to make a real renaming only if the constant object is aliased or if we may use a renaming pointer; otherwise we can optimize and return the rvalue. We make an exception if the object is an identifier since in this case the rvalue can be propagated attached to the CONST_DECL. */ return (aliased != 0 /* This should match the constant case of the renaming code. */ || Is_Composite_Type (Etype (Name (gnat_parent))) || Nkind (Name (gnat_parent)) == N_Identifier); default: return 0; } gcc_unreachable (); } /* Subroutine of gnat_to_gnu to translate gnat_node, an N_Identifier, to a GCC tree, which is returned. GNU_RESULT_TYPE_P is a pointer to where we should place the result type. */ static tree Identifier_to_gnu (Node_Id gnat_node, tree *gnu_result_type_p) { Node_Id gnat_temp, gnat_temp_type; tree gnu_result, gnu_result_type; /* Whether we should require an lvalue for GNAT_NODE. Needed in specific circumstances only, so evaluated lazily. < 0 means unknown, > 0 means known true, 0 means known false. */ int require_lvalue = -1; /* If GNAT_NODE is a constant, whether we should use the initialization value instead of the constant entity, typically for scalars with an address clause when the parent doesn't require an lvalue. */ bool use_constant_initializer = false; /* If the Etype of this node does not equal the Etype of the Entity, something is wrong with the entity map, probably in generic instantiation. However, this does not apply to types. Since we sometime have strange Ekind's, just do this test for objects. Also, if the Etype of the Entity is private, the Etype of the N_Identifier is allowed to be the full type and also we consider a packed array type to be the same as the original type. Similarly, a class-wide type is equivalent to a subtype of itself. Finally, if the types are Itypes, one may be a copy of the other, which is also legal. */ gnat_temp = (Nkind (gnat_node) == N_Defining_Identifier ? gnat_node : Entity (gnat_node)); gnat_temp_type = Etype (gnat_temp); gcc_assert (Etype (gnat_node) == gnat_temp_type || (Is_Packed (gnat_temp_type) && Etype (gnat_node) == Packed_Array_Type (gnat_temp_type)) || (Is_Class_Wide_Type (Etype (gnat_node))) || (IN (Ekind (gnat_temp_type), Private_Kind) && Present (Full_View (gnat_temp_type)) && ((Etype (gnat_node) == Full_View (gnat_temp_type)) || (Is_Packed (Full_View (gnat_temp_type)) && (Etype (gnat_node) == Packed_Array_Type (Full_View (gnat_temp_type)))))) || (Is_Itype (Etype (gnat_node)) && Is_Itype (gnat_temp_type)) || !(Ekind (gnat_temp) == E_Variable || Ekind (gnat_temp) == E_Component || Ekind (gnat_temp) == E_Constant || Ekind (gnat_temp) == E_Loop_Parameter || IN (Ekind (gnat_temp), Formal_Kind))); /* If this is a reference to a deferred constant whose partial view is an unconstrained private type, the proper type is on the full view of the constant, not on the full view of the type, which may be unconstrained. This may be a reference to a type, for example in the prefix of the attribute Position, generated for dispatching code (see Make_DT in exp_disp,adb). In that case we need the type itself, not is parent, in particular if it is a derived type */ if (Is_Private_Type (gnat_temp_type) && Has_Unknown_Discriminants (gnat_temp_type) && Ekind (gnat_temp) == E_Constant && Present (Full_View (gnat_temp))) { gnat_temp = Full_View (gnat_temp); gnat_temp_type = Etype (gnat_temp); } else { /* We want to use the Actual_Subtype if it has already been elaborated, otherwise the Etype. Avoid using Actual_Subtype for packed arrays to simplify things. */ if ((Ekind (gnat_temp) == E_Constant || Ekind (gnat_temp) == E_Variable || Is_Formal (gnat_temp)) && !(Is_Array_Type (Etype (gnat_temp)) && Present (Packed_Array_Type (Etype (gnat_temp)))) && Present (Actual_Subtype (gnat_temp)) && present_gnu_tree (Actual_Subtype (gnat_temp))) gnat_temp_type = Actual_Subtype (gnat_temp); else gnat_temp_type = Etype (gnat_node); } /* Expand the type of this identifier first, in case it is an enumeral literal, which only get made when the type is expanded. There is no order-of-elaboration issue here. */ gnu_result_type = get_unpadded_type (gnat_temp_type); /* If this is a non-imported scalar constant with an address clause, retrieve the value instead of a pointer to be dereferenced unless an lvalue is required. This is generally more efficient and actually required if this is a static expression because it might be used in a context where a dereference is inappropriate, such as a case statement alternative or a record discriminant. There is no possible volatile-ness short-circuit here since Volatile constants must be imported per C.6. */ if (Ekind (gnat_temp) == E_Constant && Is_Scalar_Type (gnat_temp_type) && !Is_Imported (gnat_temp) && Present (Address_Clause (gnat_temp))) { require_lvalue = lvalue_required_p (gnat_node, gnu_result_type, Is_Aliased (gnat_temp)); use_constant_initializer = !require_lvalue; } if (use_constant_initializer) { /* If this is a deferred constant, the initializer is attached to the full view. */ if (Present (Full_View (gnat_temp))) gnat_temp = Full_View (gnat_temp); gnu_result = gnat_to_gnu (Expression (Declaration_Node (gnat_temp))); } else gnu_result = gnat_to_gnu_entity (gnat_temp, NULL_TREE, 0); /* If we are in an exception handler, force this variable into memory to ensure optimization does not remove stores that appear redundant but are actually needed in case an exception occurs. ??? Note that we need not do this if the variable is declared within the handler, only if it is referenced in the handler and declared in an enclosing block, but we have no way of testing that right now. ??? We used to essentially set the TREE_ADDRESSABLE flag on the variable here, but it can now be removed by the Tree aliasing machinery if the address of the variable is never taken. All we can do is to make the variable volatile, which might incur the generation of temporaries just to access the memory in some circumstances. This can be avoided for variables of non-constant size because they are automatically allocated to memory. There might be no way of allocating a proper temporary for them in any case. We only do this for SJLJ though. */ if (TREE_VALUE (gnu_except_ptr_stack) && TREE_CODE (gnu_result) == VAR_DECL && TREE_CODE (DECL_SIZE_UNIT (gnu_result)) == INTEGER_CST) TREE_THIS_VOLATILE (gnu_result) = TREE_SIDE_EFFECTS (gnu_result) = 1; /* Some objects (such as parameters passed by reference, globals of variable size, and renamed objects) actually represent the address of the object. In that case, we must do the dereference. Likewise, deal with parameters to foreign convention subprograms. */ if (DECL_P (gnu_result) && (DECL_BY_REF_P (gnu_result) || (TREE_CODE (gnu_result) == PARM_DECL && DECL_BY_COMPONENT_PTR_P (gnu_result)))) { bool ro = DECL_POINTS_TO_READONLY_P (gnu_result); tree renamed_obj; if (TREE_CODE (gnu_result) == PARM_DECL && DECL_BY_COMPONENT_PTR_P (gnu_result)) gnu_result = build_unary_op (INDIRECT_REF, NULL_TREE, convert (build_pointer_type (gnu_result_type), gnu_result)); /* If it's a renaming pointer and we are at the right binding level, we can reference the renamed object directly, since the renamed expression has been protected against multiple evaluations. */ else if (TREE_CODE (gnu_result) == VAR_DECL && (renamed_obj = DECL_RENAMED_OBJECT (gnu_result)) != 0 && (! DECL_RENAMING_GLOBAL_P (gnu_result) || global_bindings_p ())) gnu_result = renamed_obj; /* Return the underlying CST for a CONST_DECL like a few lines below, after dereferencing in this case. */ else if (TREE_CODE (gnu_result) == CONST_DECL) gnu_result = build_unary_op (INDIRECT_REF, NULL_TREE, DECL_INITIAL (gnu_result)); else gnu_result = build_unary_op (INDIRECT_REF, NULL_TREE, gnu_result); TREE_READONLY (gnu_result) = TREE_STATIC (gnu_result) = ro; } /* The GNAT tree has the type of a function as the type of its result. Also use the type of the result if the Etype is a subtype which is nominally unconstrained. But remove any padding from the resulting type. */ if (TREE_CODE (TREE_TYPE (gnu_result)) == FUNCTION_TYPE || Is_Constr_Subt_For_UN_Aliased (gnat_temp_type)) { gnu_result_type = TREE_TYPE (gnu_result); if (TREE_CODE (gnu_result_type) == RECORD_TYPE && TYPE_IS_PADDING_P (gnu_result_type)) gnu_result_type = TREE_TYPE (TYPE_FIELDS (gnu_result_type)); } /* If we have a constant declaration and its initializer at hand, try to return the latter to avoid the need to call fold in lots of places and the need of elaboration code if this Id is used as an initializer itself. */ if (TREE_CONSTANT (gnu_result) && DECL_P (gnu_result) && DECL_INITIAL (gnu_result)) { tree object = (TREE_CODE (gnu_result) == CONST_DECL ? DECL_CONST_CORRESPONDING_VAR (gnu_result) : gnu_result); /* If there is a corresponding variable, we only want to return the CST value if an lvalue is not required. Evaluate this now if we have not already done so. */ if (object && require_lvalue < 0) require_lvalue = lvalue_required_p (gnat_node, gnu_result_type, Is_Aliased (gnat_temp)); if (!object || !require_lvalue) gnu_result = unshare_expr (DECL_INITIAL (gnu_result)); } *gnu_result_type_p = gnu_result_type; return gnu_result; } /* Subroutine of gnat_to_gnu to process gnat_node, an N_Pragma. Return any statements we generate. */ static tree Pragma_to_gnu (Node_Id gnat_node) { Node_Id gnat_temp; tree gnu_result = alloc_stmt_list (); /* Check for (and ignore) unrecognized pragma and do nothing if we are just annotating types. */ if (type_annotate_only || !Is_Pragma_Name (Chars (Pragma_Identifier (gnat_node)))) return gnu_result; switch (Get_Pragma_Id (Chars (Pragma_Identifier (gnat_node)))) { case Pragma_Inspection_Point: /* Do nothing at top level: all such variables are already viewable. */ if (global_bindings_p ()) break; for (gnat_temp = First (Pragma_Argument_Associations (gnat_node)); Present (gnat_temp); gnat_temp = Next (gnat_temp)) { Node_Id gnat_expr = Expression (gnat_temp); tree gnu_expr = gnat_to_gnu (gnat_expr); int use_address; enum machine_mode mode; tree asm_constraint = NULL_TREE; #ifdef ASM_COMMENT_START char *comment; #endif if (TREE_CODE (gnu_expr) == UNCONSTRAINED_ARRAY_REF) gnu_expr = TREE_OPERAND (gnu_expr, 0); /* Use the value only if it fits into a normal register, otherwise use the address. */ mode = TYPE_MODE (TREE_TYPE (gnu_expr)); use_address = ((GET_MODE_CLASS (mode) != MODE_INT && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT) || GET_MODE_SIZE (mode) > UNITS_PER_WORD); if (use_address) gnu_expr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_expr); #ifdef ASM_COMMENT_START comment = concat (ASM_COMMENT_START, " inspection point: ", Get_Name_String (Chars (gnat_expr)), use_address ? " address" : "", " is in %0", NULL); asm_constraint = build_string (strlen (comment), comment); free (comment); #endif gnu_expr = build4 (ASM_EXPR, void_type_node, asm_constraint, NULL_TREE, tree_cons (build_tree_list (NULL_TREE, build_string (1, "g")), gnu_expr, NULL_TREE), NULL_TREE); ASM_VOLATILE_P (gnu_expr) = 1; set_expr_location_from_node (gnu_expr, gnat_node); append_to_statement_list (gnu_expr, &gnu_result); } break; case Pragma_Optimize: switch (Chars (Expression (First (Pragma_Argument_Associations (gnat_node))))) { case Name_Time: case Name_Space: if (!optimize) post_error ("insufficient -O value?", gnat_node); break; case Name_Off: if (optimize) post_error ("must specify -O0?", gnat_node); break; default: gcc_unreachable (); } break; case Pragma_Reviewable: if (write_symbols == NO_DEBUG) post_error ("must specify -g?", gnat_node); break; } return gnu_result; } /* Subroutine of gnat_to_gnu to translate gnat_node, an N_Attribute, to a GCC tree, which is returned. GNU_RESULT_TYPE_P is a pointer to where we should place the result type. ATTRIBUTE is the attribute ID. */ static tree Attribute_to_gnu (Node_Id gnat_node, tree *gnu_result_type_p, int attribute) { tree gnu_result = error_mark_node; tree gnu_result_type; tree gnu_expr; bool prefix_unused = false; tree gnu_prefix = gnat_to_gnu (Prefix (gnat_node)); tree gnu_type = TREE_TYPE (gnu_prefix); /* If the input is a NULL_EXPR, make a new one. */ if (TREE_CODE (gnu_prefix) == NULL_EXPR) { *gnu_result_type_p = get_unpadded_type (Etype (gnat_node)); return build1 (NULL_EXPR, *gnu_result_type_p, TREE_OPERAND (gnu_prefix, 0)); } switch (attribute) { case Attr_Pos: case Attr_Val: /* These are just conversions until since representation clauses for enumerations are handled in the front end. */ { bool checkp = Do_Range_Check (First (Expressions (gnat_node))); gnu_result = gnat_to_gnu (First (Expressions (gnat_node))); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = convert_with_check (Etype (gnat_node), gnu_result, checkp, checkp, true); } break; case Attr_Pred: case Attr_Succ: /* These just add or subject the constant 1. Representation clauses for enumerations are handled in the front-end. */ gnu_expr = gnat_to_gnu (First (Expressions (gnat_node))); gnu_result_type = get_unpadded_type (Etype (gnat_node)); if (Do_Range_Check (First (Expressions (gnat_node)))) { gnu_expr = protect_multiple_eval (gnu_expr); gnu_expr = emit_check (build_binary_op (EQ_EXPR, integer_type_node, gnu_expr, attribute == Attr_Pred ? TYPE_MIN_VALUE (gnu_result_type) : TYPE_MAX_VALUE (gnu_result_type)), gnu_expr, CE_Range_Check_Failed); } gnu_result = build_binary_op (attribute == Attr_Pred ? MINUS_EXPR : PLUS_EXPR, gnu_result_type, gnu_expr, convert (gnu_result_type, integer_one_node)); break; case Attr_Address: case Attr_Unrestricted_Access: /* Conversions don't change something's address but can cause us to miss the COMPONENT_REF case below, so strip them off. */ gnu_prefix = remove_conversions (gnu_prefix, !Must_Be_Byte_Aligned (gnat_node)); /* If we are taking 'Address of an unconstrained object, this is the pointer to the underlying array. */ if (attribute == Attr_Address) gnu_prefix = maybe_unconstrained_array (gnu_prefix); /* If we are building a static dispatch table, we have to honor TARGET_VTABLE_USES_DESCRIPTORS if we want to be compatible with the C++ ABI. We do it in the non-static case as well, see gnat_to_gnu_entity, case E_Access_Subprogram_Type. */ else if (TARGET_VTABLE_USES_DESCRIPTORS && Is_Dispatch_Table_Entity (Etype (gnat_node))) { tree gnu_field, gnu_list = NULL_TREE, t; /* Descriptors can only be built here for top-level functions. */ bool build_descriptor = (global_bindings_p () != 0); int i; gnu_result_type = get_unpadded_type (Etype (gnat_node)); /* If we're not going to build the descriptor, we have to retrieve the one which will be built by the linker (or by the compiler later if a static chain is requested). */ if (!build_descriptor) { gnu_result = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_prefix); gnu_result = fold_convert (build_pointer_type (gnu_result_type), gnu_result); gnu_result = build1 (INDIRECT_REF, gnu_result_type, gnu_result); } for (gnu_field = TYPE_FIELDS (gnu_result_type), i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; gnu_field = TREE_CHAIN (gnu_field), i++) { if (build_descriptor) { t = build2 (FDESC_EXPR, TREE_TYPE (gnu_field), gnu_prefix, build_int_cst (NULL_TREE, i)); TREE_CONSTANT (t) = 1; } else t = build3 (COMPONENT_REF, ptr_void_ftype, gnu_result, gnu_field, NULL_TREE); gnu_list = tree_cons (gnu_field, t, gnu_list); } gnu_result = gnat_build_constructor (gnu_result_type, gnu_list); break; } /* ... fall through ... */ case Attr_Access: case Attr_Unchecked_Access: case Attr_Code_Address: gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_unary_op (((attribute == Attr_Address || attribute == Attr_Unrestricted_Access) && !Must_Be_Byte_Aligned (gnat_node)) ? ATTR_ADDR_EXPR : ADDR_EXPR, gnu_result_type, gnu_prefix); /* For 'Code_Address, find an inner ADDR_EXPR and mark it so that we don't try to build a trampoline. */ if (attribute == Attr_Code_Address) { for (gnu_expr = gnu_result; CONVERT_EXPR_P (gnu_expr); gnu_expr = TREE_OPERAND (gnu_expr, 0)) TREE_CONSTANT (gnu_expr) = 1; if (TREE_CODE (gnu_expr) == ADDR_EXPR) TREE_NO_TRAMPOLINE (gnu_expr) = TREE_CONSTANT (gnu_expr) = 1; } /* For other address attributes applied to a nested function, find an inner ADDR_EXPR and annotate it so that we can issue a useful warning with -Wtrampolines. */ else if (TREE_CODE (TREE_TYPE (gnu_prefix)) == FUNCTION_TYPE) { for (gnu_expr = gnu_result; CONVERT_EXPR_P (gnu_expr); gnu_expr = TREE_OPERAND (gnu_expr, 0)) ; if (TREE_CODE (gnu_expr) == ADDR_EXPR && decl_function_context (TREE_OPERAND (gnu_expr, 0))) { set_expr_location_from_node (gnu_expr, gnat_node); /* Check that we're not violating the No_Implicit_Dynamic_Code restriction. Be conservative if we don't know anything about the trampoline strategy for the target. */ Check_Implicit_Dynamic_Code_Allowed (gnat_node); } } break; case Attr_Pool_Address: { tree gnu_obj_type; tree gnu_ptr = gnu_prefix; gnu_result_type = get_unpadded_type (Etype (gnat_node)); /* If this is an unconstrained array, we know the object must have been allocated with the template in front of the object. So compute the template address.*/ if (TYPE_FAT_POINTER_P (TREE_TYPE (gnu_ptr))) gnu_ptr = convert (build_pointer_type (TYPE_OBJECT_RECORD_TYPE (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (gnu_ptr)))), gnu_ptr); gnu_obj_type = TREE_TYPE (TREE_TYPE (gnu_ptr)); if (TREE_CODE (gnu_obj_type) == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (gnu_obj_type)) { tree gnu_char_ptr_type = build_pointer_type (char_type_node); tree gnu_pos = byte_position (TYPE_FIELDS (gnu_obj_type)); tree gnu_byte_offset = convert (sizetype, size_diffop (size_zero_node, gnu_pos)); gnu_byte_offset = fold_build1 (NEGATE_EXPR, sizetype, gnu_byte_offset); gnu_ptr = convert (gnu_char_ptr_type, gnu_ptr); gnu_ptr = build_binary_op (POINTER_PLUS_EXPR, gnu_char_ptr_type, gnu_ptr, gnu_byte_offset); } gnu_result = convert (gnu_result_type, gnu_ptr); } break; case Attr_Size: case Attr_Object_Size: case Attr_Value_Size: case Attr_Max_Size_In_Storage_Elements: gnu_expr = gnu_prefix; /* Remove NOPs and conversions between original and packable version from GNU_EXPR, and conversions from GNU_PREFIX. We use GNU_EXPR to see if a COMPONENT_REF was involved. */ while (TREE_CODE (gnu_expr) == NOP_EXPR || (TREE_CODE (gnu_expr) == VIEW_CONVERT_EXPR && TREE_CODE (TREE_TYPE (gnu_expr)) == RECORD_TYPE && TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))) == RECORD_TYPE && TYPE_NAME (TREE_TYPE (gnu_expr)) == TYPE_NAME (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))))) gnu_expr = TREE_OPERAND (gnu_expr, 0); gnu_prefix = remove_conversions (gnu_prefix, true); prefix_unused = true; gnu_type = TREE_TYPE (gnu_prefix); /* Replace an unconstrained array type with the type of the underlying array. We can't do this with a call to maybe_unconstrained_array since we may have a TYPE_DECL. For 'Max_Size_In_Storage_Elements, use the record type that will be used to allocate the object and its template. */ if (TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE) { gnu_type = TYPE_OBJECT_RECORD_TYPE (gnu_type); if (attribute != Attr_Max_Size_In_Storage_Elements) gnu_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type))); } /* If we're looking for the size of a field, return the field size. Otherwise, if the prefix is an object, or if 'Object_Size or 'Max_Size_In_Storage_Elements has been specified, the result is the GCC size of the type. Otherwise, the result is the RM_Size of the type. */ if (TREE_CODE (gnu_prefix) == COMPONENT_REF) gnu_result = DECL_SIZE (TREE_OPERAND (gnu_prefix, 1)); else if (TREE_CODE (gnu_prefix) != TYPE_DECL || attribute == Attr_Object_Size || attribute == Attr_Max_Size_In_Storage_Elements) { /* If this is a padded type, the GCC size isn't relevant to the programmer. Normally, what we want is the RM_Size, which was set from the specified size, but if it was not set, we want the size of the relevant field. Using the MAX of those two produces the right result in all case. Don't use the size of the field if it's a self-referential type, since that's never what's wanted. */ if (TREE_CODE (gnu_type) == RECORD_TYPE && TYPE_IS_PADDING_P (gnu_type) && TREE_CODE (gnu_expr) == COMPONENT_REF) { gnu_result = rm_size (gnu_type); if (!(CONTAINS_PLACEHOLDER_P (DECL_SIZE (TREE_OPERAND (gnu_expr, 1))))) gnu_result = size_binop (MAX_EXPR, gnu_result, DECL_SIZE (TREE_OPERAND (gnu_expr, 1))); } else if (Nkind (Prefix (gnat_node)) == N_Explicit_Dereference) { Node_Id gnat_deref = Prefix (gnat_node); Node_Id gnat_actual_subtype = Actual_Designated_Subtype (gnat_deref); tree gnu_ptr_type = TREE_TYPE (gnat_to_gnu (Prefix (gnat_deref))); if (TYPE_FAT_OR_THIN_POINTER_P (gnu_ptr_type) && Present (gnat_actual_subtype)) { tree gnu_actual_obj_type = gnat_to_gnu_type (gnat_actual_subtype); gnu_type = build_unc_object_type_from_ptr (gnu_ptr_type, gnu_actual_obj_type, get_identifier ("SIZE")); } gnu_result = TYPE_SIZE (gnu_type); } else gnu_result = TYPE_SIZE (gnu_type); } else gnu_result = rm_size (gnu_type); gcc_assert (gnu_result); /* Deal with a self-referential size by returning the maximum size for a type and by qualifying the size with the object for 'Size of an object. */ if (CONTAINS_PLACEHOLDER_P (gnu_result)) { if (TREE_CODE (gnu_prefix) != TYPE_DECL) gnu_result = substitute_placeholder_in_expr (gnu_result, gnu_expr); else gnu_result = max_size (gnu_result, true); } /* If the type contains a template, subtract its size. */ if (TREE_CODE (gnu_type) == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (gnu_type)) gnu_result = size_binop (MINUS_EXPR, gnu_result, DECL_SIZE (TYPE_FIELDS (gnu_type))); gnu_result_type = get_unpadded_type (Etype (gnat_node)); /* Always perform division using unsigned arithmetic as the size cannot be negative, but may be an overflowed positive value. This provides correct results for sizes up to 512 MB. ??? Size should be calculated in storage elements directly. */ if (attribute == Attr_Max_Size_In_Storage_Elements) gnu_result = convert (sizetype, fold_build2 (CEIL_DIV_EXPR, bitsizetype, gnu_result, bitsize_unit_node)); break; case Attr_Alignment: if (TREE_CODE (gnu_prefix) == COMPONENT_REF && (TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_prefix, 0))) == RECORD_TYPE) && (TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_prefix, 0))))) gnu_prefix = TREE_OPERAND (gnu_prefix, 0); gnu_type = TREE_TYPE (gnu_prefix); gnu_result_type = get_unpadded_type (Etype (gnat_node)); prefix_unused = true; gnu_result = size_int ((TREE_CODE (gnu_prefix) == COMPONENT_REF ? DECL_ALIGN (TREE_OPERAND (gnu_prefix, 1)) : TYPE_ALIGN (gnu_type)) / BITS_PER_UNIT); break; case Attr_First: case Attr_Last: case Attr_Range_Length: prefix_unused = true; if (INTEGRAL_TYPE_P (gnu_type) || TREE_CODE (gnu_type) == REAL_TYPE) { gnu_result_type = get_unpadded_type (Etype (gnat_node)); if (attribute == Attr_First) gnu_result = TYPE_MIN_VALUE (gnu_type); else if (attribute == Attr_Last) gnu_result = TYPE_MAX_VALUE (gnu_type); else gnu_result = build_binary_op (MAX_EXPR, get_base_type (gnu_result_type), build_binary_op (PLUS_EXPR, get_base_type (gnu_result_type), build_binary_op (MINUS_EXPR, get_base_type (gnu_result_type), convert (gnu_result_type, TYPE_MAX_VALUE (gnu_type)), convert (gnu_result_type, TYPE_MIN_VALUE (gnu_type))), convert (gnu_result_type, integer_one_node)), convert (gnu_result_type, integer_zero_node)); break; } /* ... fall through ... */ case Attr_Length: { int Dimension = (Present (Expressions (gnat_node)) ? UI_To_Int (Intval (First (Expressions (gnat_node)))) : 1), i; struct parm_attr *pa = NULL; Entity_Id gnat_param = Empty; /* Make sure any implicit dereference gets done. */ gnu_prefix = maybe_implicit_deref (gnu_prefix); gnu_prefix = maybe_unconstrained_array (gnu_prefix); /* We treat unconstrained array In parameters specially. */ if (Nkind (Prefix (gnat_node)) == N_Identifier && !Is_Constrained (Etype (Prefix (gnat_node))) && Ekind (Entity (Prefix (gnat_node))) == E_In_Parameter) gnat_param = Entity (Prefix (gnat_node)); gnu_type = TREE_TYPE (gnu_prefix); prefix_unused = true; gnu_result_type = get_unpadded_type (Etype (gnat_node)); if (TYPE_CONVENTION_FORTRAN_P (gnu_type)) { int ndim; tree gnu_type_temp; for (ndim = 1, gnu_type_temp = gnu_type; TREE_CODE (TREE_TYPE (gnu_type_temp)) == ARRAY_TYPE && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_type_temp)); ndim++, gnu_type_temp = TREE_TYPE (gnu_type_temp)) ; Dimension = ndim + 1 - Dimension; } for (i = 1; i < Dimension; i++) gnu_type = TREE_TYPE (gnu_type); gcc_assert (TREE_CODE (gnu_type) == ARRAY_TYPE); /* When not optimizing, look up the slot associated with the parameter and the dimension in the cache and create a new one on failure. */ if (!optimize && Present (gnat_param)) { for (i = 0; VEC_iterate (parm_attr, f_parm_attr_cache, i, pa); i++) if (pa->id == gnat_param && pa->dim == Dimension) break; if (!pa) { pa = GGC_CNEW (struct parm_attr); pa->id = gnat_param; pa->dim = Dimension; VEC_safe_push (parm_attr, gc, f_parm_attr_cache, pa); } } /* Return the cached expression or build a new one. */ if (attribute == Attr_First) { if (pa && pa->first) { gnu_result = pa->first; break; } gnu_result = TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type))); } else if (attribute == Attr_Last) { if (pa && pa->last) { gnu_result = pa->last; break; } gnu_result = TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type))); } else /* attribute == Attr_Range_Length || attribute == Attr_Length */ { if (pa && pa->length) { gnu_result = pa->length; break; } else { /* We used to compute the length as max (hb - lb + 1, 0), which could overflow for some cases of empty arrays, e.g. when lb == index_type'first. We now compute the length as (hb < lb) ? 0 : hb - lb + 1, which would only overflow in much rarer cases, for extremely large arrays we expect never to encounter in practice. In addition, the former computation required the use of potentially constraining signed arithmetic while the latter doesn't. Note that the comparison must be done in the original index base type, otherwise the conversion of either bound to gnu_compute_type may overflow. */ tree gnu_compute_type = get_base_type (gnu_result_type); tree index_type = TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type)); tree lb = convert (gnu_compute_type, TYPE_MIN_VALUE (index_type)); tree hb = convert (gnu_compute_type, TYPE_MAX_VALUE (index_type)); gnu_result = build3 (COND_EXPR, gnu_compute_type, build_binary_op (LT_EXPR, get_base_type (index_type), TYPE_MAX_VALUE (index_type), TYPE_MIN_VALUE (index_type)), convert (gnu_compute_type, integer_zero_node), build_binary_op (PLUS_EXPR, gnu_compute_type, build_binary_op (MINUS_EXPR, gnu_compute_type, hb, lb), convert (gnu_compute_type, integer_one_node))); } } /* If this has a PLACEHOLDER_EXPR, qualify it by the object we are handling. Note that these attributes could not have been used on an unconstrained array type. */ gnu_result = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_result, gnu_prefix); /* Cache the expression we have just computed. Since we want to do it at runtime, we force the use of a SAVE_EXPR and let the gimplifier create the temporary. */ if (pa) { gnu_result = build1 (SAVE_EXPR, TREE_TYPE (gnu_result), gnu_result); TREE_SIDE_EFFECTS (gnu_result) = 1; if (attribute == Attr_First) pa->first = gnu_result; else if (attribute == Attr_Last) pa->last = gnu_result; else pa->length = gnu_result; } break; } case Attr_Bit_Position: case Attr_Position: case Attr_First_Bit: case Attr_Last_Bit: case Attr_Bit: { HOST_WIDE_INT bitsize; HOST_WIDE_INT bitpos; tree gnu_offset; tree gnu_field_bitpos; tree gnu_field_offset; tree gnu_inner; enum machine_mode mode; int unsignedp, volatilep; gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_prefix = remove_conversions (gnu_prefix, true); prefix_unused = true; /* We can have 'Bit on any object, but if it isn't a COMPONENT_REF, the result is 0. Don't allow 'Bit on a bare component, though. */ if (attribute == Attr_Bit && TREE_CODE (gnu_prefix) != COMPONENT_REF && TREE_CODE (gnu_prefix) != FIELD_DECL) { gnu_result = integer_zero_node; break; } else gcc_assert (TREE_CODE (gnu_prefix) == COMPONENT_REF || (attribute == Attr_Bit_Position && TREE_CODE (gnu_prefix) == FIELD_DECL)); get_inner_reference (gnu_prefix, &bitsize, &bitpos, &gnu_offset, &mode, &unsignedp, &volatilep, false); if (TREE_CODE (gnu_prefix) == COMPONENT_REF) { gnu_field_bitpos = bit_position (TREE_OPERAND (gnu_prefix, 1)); gnu_field_offset = byte_position (TREE_OPERAND (gnu_prefix, 1)); for (gnu_inner = TREE_OPERAND (gnu_prefix, 0); TREE_CODE (gnu_inner) == COMPONENT_REF && DECL_INTERNAL_P (TREE_OPERAND (gnu_inner, 1)); gnu_inner = TREE_OPERAND (gnu_inner, 0)) { gnu_field_bitpos = size_binop (PLUS_EXPR, gnu_field_bitpos, bit_position (TREE_OPERAND (gnu_inner, 1))); gnu_field_offset = size_binop (PLUS_EXPR, gnu_field_offset, byte_position (TREE_OPERAND (gnu_inner, 1))); } } else if (TREE_CODE (gnu_prefix) == FIELD_DECL) { gnu_field_bitpos = bit_position (gnu_prefix); gnu_field_offset = byte_position (gnu_prefix); } else { gnu_field_bitpos = bitsize_zero_node; gnu_field_offset = size_zero_node; } switch (attribute) { case Attr_Position: gnu_result = gnu_field_offset; break; case Attr_First_Bit: case Attr_Bit: gnu_result = size_int (bitpos % BITS_PER_UNIT); break; case Attr_Last_Bit: gnu_result = bitsize_int (bitpos % BITS_PER_UNIT); gnu_result = size_binop (PLUS_EXPR, gnu_result, TYPE_SIZE (TREE_TYPE (gnu_prefix))); gnu_result = size_binop (MINUS_EXPR, gnu_result, bitsize_one_node); break; case Attr_Bit_Position: gnu_result = gnu_field_bitpos; break; } /* If this has a PLACEHOLDER_EXPR, qualify it by the object we are handling. */ gnu_result = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_result, gnu_prefix); break; } case Attr_Min: case Attr_Max: { tree gnu_lhs = gnat_to_gnu (First (Expressions (gnat_node))); tree gnu_rhs = gnat_to_gnu (Next (First (Expressions (gnat_node)))); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_binary_op (attribute == Attr_Min ? MIN_EXPR : MAX_EXPR, gnu_result_type, gnu_lhs, gnu_rhs); } break; case Attr_Passed_By_Reference: gnu_result = size_int (default_pass_by_ref (gnu_type) || must_pass_by_ref (gnu_type)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); break; case Attr_Component_Size: if (TREE_CODE (gnu_prefix) == COMPONENT_REF && (TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_prefix, 0))) == RECORD_TYPE) && (TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_prefix, 0))))) gnu_prefix = TREE_OPERAND (gnu_prefix, 0); gnu_prefix = maybe_implicit_deref (gnu_prefix); gnu_type = TREE_TYPE (gnu_prefix); if (TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE) gnu_type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_type)))); while (TREE_CODE (TREE_TYPE (gnu_type)) == ARRAY_TYPE && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_type))) gnu_type = TREE_TYPE (gnu_type); gcc_assert (TREE_CODE (gnu_type) == ARRAY_TYPE); /* Note this size cannot be self-referential. */ gnu_result = TYPE_SIZE (TREE_TYPE (gnu_type)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); prefix_unused = true; break; case Attr_Null_Parameter: /* This is just a zero cast to the pointer type for our prefix and dereferenced. */ gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_unary_op (INDIRECT_REF, NULL_TREE, convert (build_pointer_type (gnu_result_type), integer_zero_node)); TREE_PRIVATE (gnu_result) = 1; break; case Attr_Mechanism_Code: { int code; Entity_Id gnat_obj = Entity (Prefix (gnat_node)); prefix_unused = true; gnu_result_type = get_unpadded_type (Etype (gnat_node)); if (Present (Expressions (gnat_node))) { int i = UI_To_Int (Intval (First (Expressions (gnat_node)))); for (gnat_obj = First_Formal (gnat_obj); i > 1; i--, gnat_obj = Next_Formal (gnat_obj)) ; } code = Mechanism (gnat_obj); if (code == Default) code = ((present_gnu_tree (gnat_obj) && (DECL_BY_REF_P (get_gnu_tree (gnat_obj)) || ((TREE_CODE (get_gnu_tree (gnat_obj)) == PARM_DECL) && (DECL_BY_COMPONENT_PTR_P (get_gnu_tree (gnat_obj)))))) ? By_Reference : By_Copy); gnu_result = convert (gnu_result_type, size_int (- code)); } break; default: /* Say we have an unimplemented attribute. Then set the value to be returned to be a zero and hope that's something we can convert to the type of this attribute. */ post_error ("unimplemented attribute", gnat_node); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = integer_zero_node; break; } /* If this is an attribute where the prefix was unused, force a use of it if it has a side-effect. But don't do it if the prefix is just an entity name. However, if an access check is needed, we must do it. See second example in AARM 11.6(5.e). */ if (prefix_unused && TREE_SIDE_EFFECTS (gnu_prefix) && !Is_Entity_Name (Prefix (gnat_node))) gnu_result = fold_build2 (COMPOUND_EXPR, TREE_TYPE (gnu_result), gnu_prefix, gnu_result); *gnu_result_type_p = gnu_result_type; return gnu_result; } /* Subroutine of gnat_to_gnu to translate gnat_node, an N_Case_Statement, to a GCC tree, which is returned. */ static tree Case_Statement_to_gnu (Node_Id gnat_node) { tree gnu_result; tree gnu_expr; Node_Id gnat_when; gnu_expr = gnat_to_gnu (Expression (gnat_node)); gnu_expr = convert (get_base_type (TREE_TYPE (gnu_expr)), gnu_expr); /* The range of values in a case statement is determined by the rules in RM 5.4(7-9). In almost all cases, this range is represented by the Etype of the expression. One exception arises in the case of a simple name that is parenthesized. This still has the Etype of the name, but since it is not a name, para 7 does not apply, and we need to go to the base type. This is the only case where parenthesization affects the dynamic semantics (i.e. the range of possible values at runtime that is covered by the others alternative. Another exception is if the subtype of the expression is non-static. In that case, we also have to use the base type. */ if (Paren_Count (Expression (gnat_node)) != 0 || !Is_OK_Static_Subtype (Underlying_Type (Etype (Expression (gnat_node))))) gnu_expr = convert (get_base_type (TREE_TYPE (gnu_expr)), gnu_expr); /* We build a SWITCH_EXPR that contains the code with interspersed CASE_LABEL_EXPRs for each label. */ push_stack (&gnu_switch_label_stack, NULL_TREE, create_artificial_label ()); start_stmt_group (); for (gnat_when = First_Non_Pragma (Alternatives (gnat_node)); Present (gnat_when); gnat_when = Next_Non_Pragma (gnat_when)) { Node_Id gnat_choice; int choices_added = 0; /* First compile all the different case choices for the current WHEN alternative. */ for (gnat_choice = First (Discrete_Choices (gnat_when)); Present (gnat_choice); gnat_choice = Next (gnat_choice)) { tree gnu_low = NULL_TREE, gnu_high = NULL_TREE; switch (Nkind (gnat_choice)) { case N_Range: gnu_low = gnat_to_gnu (Low_Bound (gnat_choice)); gnu_high = gnat_to_gnu (High_Bound (gnat_choice)); break; case N_Subtype_Indication: gnu_low = gnat_to_gnu (Low_Bound (Range_Expression (Constraint (gnat_choice)))); gnu_high = gnat_to_gnu (High_Bound (Range_Expression (Constraint (gnat_choice)))); break; case N_Identifier: case N_Expanded_Name: /* This represents either a subtype range or a static value of some kind; Ekind says which. */ if (IN (Ekind (Entity (gnat_choice)), Type_Kind)) { tree gnu_type = get_unpadded_type (Entity (gnat_choice)); gnu_low = fold (TYPE_MIN_VALUE (gnu_type)); gnu_high = fold (TYPE_MAX_VALUE (gnu_type)); break; } /* ... fall through ... */ case N_Character_Literal: case N_Integer_Literal: gnu_low = gnat_to_gnu (gnat_choice); break; case N_Others_Choice: break; default: gcc_unreachable (); } /* If the case value is a subtype that raises Constraint_Error at run-time because of a wrong bound, then gnu_low or gnu_high is not translated into an INTEGER_CST. In such a case, we need to ensure that the when statement is not added in the tree, otherwise it will crash the gimplifier. */ if ((!gnu_low || TREE_CODE (gnu_low) == INTEGER_CST) && (!gnu_high || TREE_CODE (gnu_high) == INTEGER_CST)) { add_stmt_with_node (build3 (CASE_LABEL_EXPR, void_type_node, gnu_low, gnu_high, create_artificial_label ()), gnat_choice); choices_added++; } } /* Push a binding level here in case variables are declared as we want them to be local to this set of statements instead of to the block containing the Case statement. */ if (choices_added > 0) { add_stmt (build_stmt_group (Statements (gnat_when), true)); add_stmt (build1 (GOTO_EXPR, void_type_node, TREE_VALUE (gnu_switch_label_stack))); } } /* Now emit a definition of the label all the cases branched to. */ add_stmt (build1 (LABEL_EXPR, void_type_node, TREE_VALUE (gnu_switch_label_stack))); gnu_result = build3 (SWITCH_EXPR, TREE_TYPE (gnu_expr), gnu_expr, end_stmt_group (), NULL_TREE); pop_stack (&gnu_switch_label_stack); return gnu_result; } /* Subroutine of gnat_to_gnu to translate gnat_node, an N_Loop_Statement, to a GCC tree, which is returned. */ static tree Loop_Statement_to_gnu (Node_Id gnat_node) { /* ??? It would be nice to use "build" here, but there's no build5. */ tree gnu_loop_stmt = build_nt (LOOP_STMT, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE); tree gnu_loop_var = NULL_TREE; Node_Id gnat_iter_scheme = Iteration_Scheme (gnat_node); tree gnu_cond_expr = NULL_TREE; tree gnu_result; TREE_TYPE (gnu_loop_stmt) = void_type_node; TREE_SIDE_EFFECTS (gnu_loop_stmt) = 1; LOOP_STMT_LABEL (gnu_loop_stmt) = create_artificial_label (); set_expr_location_from_node (gnu_loop_stmt, gnat_node); Sloc_to_locus (Sloc (End_Label (gnat_node)), &DECL_SOURCE_LOCATION (LOOP_STMT_LABEL (gnu_loop_stmt))); /* Save the end label of this LOOP_STMT in a stack so that the corresponding N_Exit_Statement can find it. */ push_stack (&gnu_loop_label_stack, NULL_TREE, LOOP_STMT_LABEL (gnu_loop_stmt)); /* Set the condition under which the loop must keep going. For the case "LOOP .... END LOOP;" the condition is always true. */ if (No (gnat_iter_scheme)) ; /* For the case "WHILE condition LOOP ..... END LOOP;" it's immediate. */ else if (Present (Condition (gnat_iter_scheme))) LOOP_STMT_TOP_COND (gnu_loop_stmt) = gnat_to_gnu (Condition (gnat_iter_scheme)); /* Otherwise we have an iteration scheme and the condition is given by the bounds of the subtype of the iteration variable. */ else { Node_Id gnat_loop_spec = Loop_Parameter_Specification (gnat_iter_scheme); Entity_Id gnat_loop_var = Defining_Entity (gnat_loop_spec); Entity_Id gnat_type = Etype (gnat_loop_var); tree gnu_type = get_unpadded_type (gnat_type); tree gnu_low = TYPE_MIN_VALUE (gnu_type); tree gnu_high = TYPE_MAX_VALUE (gnu_type); tree gnu_first, gnu_last, gnu_limit; enum tree_code update_code, end_code; tree gnu_base_type = get_base_type (gnu_type); /* We must disable modulo reduction for the loop variable, if any, in order for the loop comparison to be effective. */ if (Reverse_Present (gnat_loop_spec)) { gnu_first = gnu_high; gnu_last = gnu_low; update_code = MINUS_NOMOD_EXPR; end_code = GE_EXPR; gnu_limit = TYPE_MIN_VALUE (gnu_base_type); } else { gnu_first = gnu_low; gnu_last = gnu_high; update_code = PLUS_NOMOD_EXPR; end_code = LE_EXPR; gnu_limit = TYPE_MAX_VALUE (gnu_base_type); } /* We know the loop variable will not overflow if GNU_LAST is a constant and is not equal to GNU_LIMIT. If it might overflow, we have to move the limit test to the end of the loop. In that case, we have to test for an empty loop outside the loop. */ if (TREE_CODE (gnu_last) != INTEGER_CST || TREE_CODE (gnu_limit) != INTEGER_CST || tree_int_cst_equal (gnu_last, gnu_limit)) { gnu_cond_expr = build3 (COND_EXPR, void_type_node, build_binary_op (LE_EXPR, integer_type_node, gnu_low, gnu_high), NULL_TREE, alloc_stmt_list ()); set_expr_location_from_node (gnu_cond_expr, gnat_loop_spec); } /* Open a new nesting level that will surround the loop to declare the loop index variable. */ start_stmt_group (); gnat_pushlevel (); /* Declare the loop index and set it to its initial value. */ gnu_loop_var = gnat_to_gnu_entity (gnat_loop_var, gnu_first, 1); if (DECL_BY_REF_P (gnu_loop_var)) gnu_loop_var = build_unary_op (INDIRECT_REF, NULL_TREE, gnu_loop_var); /* The loop variable might be a padded type, so use `convert' to get a reference to the inner variable if so. */ gnu_loop_var = convert (get_base_type (gnu_type), gnu_loop_var); /* Set either the top or bottom exit condition as appropriate depending on whether or not we know an overflow cannot occur. */ if (gnu_cond_expr) LOOP_STMT_BOT_COND (gnu_loop_stmt) = build_binary_op (NE_EXPR, integer_type_node, gnu_loop_var, gnu_last); else LOOP_STMT_TOP_COND (gnu_loop_stmt) = build_binary_op (end_code, integer_type_node, gnu_loop_var, gnu_last); LOOP_STMT_UPDATE (gnu_loop_stmt) = build_binary_op (MODIFY_EXPR, NULL_TREE, gnu_loop_var, build_binary_op (update_code, TREE_TYPE (gnu_loop_var), gnu_loop_var, convert (TREE_TYPE (gnu_loop_var), integer_one_node))); set_expr_location_from_node (LOOP_STMT_UPDATE (gnu_loop_stmt), gnat_iter_scheme); } /* If the loop was named, have the name point to this loop. In this case, the association is not a ..._DECL node, but the end label from this LOOP_STMT. */ if (Present (Identifier (gnat_node))) save_gnu_tree (Entity (Identifier (gnat_node)), LOOP_STMT_LABEL (gnu_loop_stmt), true); /* Make the loop body into its own block, so any allocated storage will be released every iteration. This is needed for stack allocation. */ LOOP_STMT_BODY (gnu_loop_stmt) = build_stmt_group (Statements (gnat_node), true); /* If we declared a variable, then we are in a statement group for that declaration. Add the LOOP_STMT to it and make that the "loop". */ if (gnu_loop_var) { add_stmt (gnu_loop_stmt); gnat_poplevel (); gnu_loop_stmt = end_stmt_group (); } /* If we have an outer COND_EXPR, that's our result and this loop is its "true" statement. Otherwise, the result is the LOOP_STMT. */ if (gnu_cond_expr) { COND_EXPR_THEN (gnu_cond_expr) = gnu_loop_stmt; gnu_result = gnu_cond_expr; recalculate_side_effects (gnu_cond_expr); } else gnu_result = gnu_loop_stmt; pop_stack (&gnu_loop_label_stack); return gnu_result; } /* Emit statements to establish __gnat_handle_vms_condition as a VMS condition handler for the current function. */ /* This is implemented by issuing a call to the appropriate VMS specific builtin. To avoid having VMS specific sections in the global gigi decls array, we maintain the decls of interest here. We can't declare them inside the function because we must mark them never to be GC'd, which we can only do at the global level. */ static GTY(()) tree vms_builtin_establish_handler_decl = NULL_TREE; static GTY(()) tree gnat_vms_condition_handler_decl = NULL_TREE; static void establish_gnat_vms_condition_handler (void) { tree establish_stmt; /* Elaborate the required decls on the first call. Check on the decl for the gnat condition handler to decide, as this is one we create so we are sure that it will be non null on subsequent calls. The builtin decl is looked up so remains null on targets where it is not implemented yet. */ if (gnat_vms_condition_handler_decl == NULL_TREE) { vms_builtin_establish_handler_decl = builtin_decl_for (get_identifier ("__builtin_establish_vms_condition_handler")); gnat_vms_condition_handler_decl = create_subprog_decl (get_identifier ("__gnat_handle_vms_condition"), NULL_TREE, build_function_type_list (integer_type_node, ptr_void_type_node, ptr_void_type_node, NULL_TREE), NULL_TREE, 0, 1, 1, 0, Empty); } /* Do nothing if the establish builtin is not available, which might happen on targets where the facility is not implemented. */ if (vms_builtin_establish_handler_decl == NULL_TREE) return; establish_stmt = build_call_1_expr (vms_builtin_establish_handler_decl, build_unary_op (ADDR_EXPR, NULL_TREE, gnat_vms_condition_handler_decl)); add_stmt (establish_stmt); } /* Subroutine of gnat_to_gnu to process gnat_node, an N_Subprogram_Body. We don't return anything. */ static void Subprogram_Body_to_gnu (Node_Id gnat_node) { /* Defining identifier of a parameter to the subprogram. */ Entity_Id gnat_param; /* The defining identifier for the subprogram body. Note that if a specification has appeared before for this body, then the identifier occurring in that specification will also be a defining identifier and all the calls to this subprogram will point to that specification. */ Entity_Id gnat_subprog_id = (Present (Corresponding_Spec (gnat_node)) ? Corresponding_Spec (gnat_node) : Defining_Entity (gnat_node)); /* The FUNCTION_DECL node corresponding to the subprogram spec. */ tree gnu_subprog_decl; /* The FUNCTION_TYPE node corresponding to the subprogram spec. */ tree gnu_subprog_type; tree gnu_cico_list; tree gnu_result; VEC(parm_attr,gc) *cache; /* If this is a generic object or if it has been eliminated, ignore it. */ if (Ekind (gnat_subprog_id) == E_Generic_Procedure || Ekind (gnat_subprog_id) == E_Generic_Function || Is_Eliminated (gnat_subprog_id)) return; /* If this subprogram acts as its own spec, define it. Otherwise, just get the already-elaborated tree node. However, if this subprogram had its elaboration deferred, we will already have made a tree node for it. So treat it as not being defined in that case. Such a subprogram cannot have an address clause or a freeze node, so this test is safe, though it does disable some otherwise-useful error checking. */ gnu_subprog_decl = gnat_to_gnu_entity (gnat_subprog_id, NULL_TREE, Acts_As_Spec (gnat_node) && !present_gnu_tree (gnat_subprog_id)); gnu_subprog_type = TREE_TYPE (gnu_subprog_decl); /* Propagate the debug mode. */ if (!Needs_Debug_Info (gnat_subprog_id)) DECL_IGNORED_P (gnu_subprog_decl) = 1; /* Set the line number in the decl to correspond to that of the body so that the line number notes are written correctly. */ Sloc_to_locus (Sloc (gnat_node), &DECL_SOURCE_LOCATION (gnu_subprog_decl)); /* Initialize the information structure for the function. */ allocate_struct_function (gnu_subprog_decl, false); DECL_STRUCT_FUNCTION (gnu_subprog_decl)->language = GGC_CNEW (struct language_function); begin_subprog_body (gnu_subprog_decl); gnu_cico_list = TYPE_CI_CO_LIST (gnu_subprog_type); /* If there are Out parameters, we need to ensure that the return statement properly copies them out. We do this by making a new block and converting any inner return into a goto to a label at the end of the block. */ push_stack (&gnu_return_label_stack, NULL_TREE, gnu_cico_list ? create_artificial_label () : NULL_TREE); /* Get a tree corresponding to the code for the subprogram. */ start_stmt_group (); gnat_pushlevel (); /* See if there are any parameters for which we don't yet have GCC entities. These must be for Out parameters for which we will be making VAR_DECL nodes here. Fill them in to TYPE_CI_CO_LIST, which must contain the empty entry as well. We can match up the entries because TYPE_CI_CO_LIST is in the order of the parameters. */ for (gnat_param = First_Formal_With_Extras (gnat_subprog_id); Present (gnat_param); gnat_param = Next_Formal_With_Extras (gnat_param)) if (!present_gnu_tree (gnat_param)) { /* Skip any entries that have been already filled in; they must correspond to In Out parameters. */ for (; gnu_cico_list && TREE_VALUE (gnu_cico_list); gnu_cico_list = TREE_CHAIN (gnu_cico_list)) ; /* Do any needed references for padded types. */ TREE_VALUE (gnu_cico_list) = convert (TREE_TYPE (TREE_PURPOSE (gnu_cico_list)), gnat_to_gnu_entity (gnat_param, NULL_TREE, 1)); } /* On VMS, establish our condition handler to possibly turn a condition into the corresponding exception if the subprogram has a foreign convention or is exported. To ensure proper execution of local finalizations on condition instances, we must turn a condition into the corresponding exception even if there is no applicable Ada handler, and need at least one condition handler per possible call chain involving GNAT code. OTOH, establishing the handler has a cost so we want to minimize the number of subprograms into which this happens. The foreign or exported condition is expected to satisfy all the constraints. */ if (TARGET_ABI_OPEN_VMS && (Has_Foreign_Convention (gnat_node) || Is_Exported (gnat_node))) establish_gnat_vms_condition_handler (); process_decls (Declarations (gnat_node), Empty, Empty, true, true); /* Generate the code of the subprogram itself. A return statement will be present and any Out parameters will be handled there. */ add_stmt (gnat_to_gnu (Handled_Statement_Sequence (gnat_node))); gnat_poplevel (); gnu_result = end_stmt_group (); /* If we populated the parameter attributes cache, we need to make sure that the cached expressions are evaluated on all possible paths. */ cache = DECL_STRUCT_FUNCTION (gnu_subprog_decl)->language->parm_attr_cache; if (cache) { struct parm_attr *pa; int i; start_stmt_group (); for (i = 0; VEC_iterate (parm_attr, cache, i, pa); i++) { if (pa->first) add_stmt_with_node (pa->first, gnat_node); if (pa->last) add_stmt_with_node (pa->last, gnat_node); if (pa->length) add_stmt_with_node (pa->length, gnat_node); } add_stmt (gnu_result); gnu_result = end_stmt_group (); } /* If we made a special return label, we need to make a block that contains the definition of that label and the copying to the return value. That block first contains the function, then the label and copy statement. */ if (TREE_VALUE (gnu_return_label_stack)) { tree gnu_retval; start_stmt_group (); gnat_pushlevel (); add_stmt (gnu_result); add_stmt (build1 (LABEL_EXPR, void_type_node, TREE_VALUE (gnu_return_label_stack))); gnu_cico_list = TYPE_CI_CO_LIST (gnu_subprog_type); if (list_length (gnu_cico_list) == 1) gnu_retval = TREE_VALUE (gnu_cico_list); else gnu_retval = gnat_build_constructor (TREE_TYPE (gnu_subprog_type), gnu_cico_list); if (DECL_P (gnu_retval) && DECL_BY_REF_P (gnu_retval)) gnu_retval = build_unary_op (INDIRECT_REF, NULL_TREE, gnu_retval); add_stmt_with_node (build_return_expr (DECL_RESULT (gnu_subprog_decl), gnu_retval), End_Label (Handled_Statement_Sequence (gnat_node))); gnat_poplevel (); gnu_result = end_stmt_group (); } pop_stack (&gnu_return_label_stack); /* Set the end location. */ Sloc_to_locus ((Present (End_Label (Handled_Statement_Sequence (gnat_node))) ? Sloc (End_Label (Handled_Statement_Sequence (gnat_node))) : Sloc (gnat_node)), &DECL_STRUCT_FUNCTION (gnu_subprog_decl)->function_end_locus); end_subprog_body (gnu_result, false); /* Disconnect the trees for parameters that we made variables for from the GNAT entities since these are unusable after we end the function. */ for (gnat_param = First_Formal_With_Extras (gnat_subprog_id); Present (gnat_param); gnat_param = Next_Formal_With_Extras (gnat_param)) if (TREE_CODE (get_gnu_tree (gnat_param)) == VAR_DECL) save_gnu_tree (gnat_param, NULL_TREE, false); if (DECL_FUNCTION_STUB (gnu_subprog_decl)) build_function_stub (gnu_subprog_decl, gnat_subprog_id); mark_out_of_scope (Defining_Unit_Name (Specification (gnat_node))); } /* Subroutine of gnat_to_gnu to translate gnat_node, either an N_Function_Call or an N_Procedure_Call_Statement, to a GCC tree, which is returned. GNU_RESULT_TYPE_P is a pointer to where we should place the result type. If GNU_TARGET is non-null, this must be a function call and the result of the call is to be placed into that object. */ static tree call_to_gnu (Node_Id gnat_node, tree *gnu_result_type_p, tree gnu_target) { tree gnu_result; /* The GCC node corresponding to the GNAT subprogram name. This can either be a FUNCTION_DECL node if we are dealing with a standard subprogram call, or an indirect reference expression (an INDIRECT_REF node) pointing to a subprogram. */ tree gnu_subprog_node = gnat_to_gnu (Name (gnat_node)); /* The FUNCTION_TYPE node giving the GCC type of the subprogram. */ tree gnu_subprog_type = TREE_TYPE (gnu_subprog_node); tree gnu_subprog_addr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_subprog_node); Entity_Id gnat_formal; Node_Id gnat_actual; tree gnu_actual_list = NULL_TREE; tree gnu_name_list = NULL_TREE; tree gnu_before_list = NULL_TREE; tree gnu_after_list = NULL_TREE; tree gnu_subprog_call; switch (Nkind (Name (gnat_node))) { case N_Identifier: case N_Operator_Symbol: case N_Expanded_Name: case N_Attribute_Reference: if (Is_Eliminated (Entity (Name (gnat_node)))) Eliminate_Error_Msg (gnat_node, Entity (Name (gnat_node))); } gcc_assert (TREE_CODE (gnu_subprog_type) == FUNCTION_TYPE); /* If we are calling a stubbed function, make this into a raise of Program_Error. Elaborate all our args first. */ if (TREE_CODE (gnu_subprog_node) == FUNCTION_DECL && DECL_STUBBED_P (gnu_subprog_node)) { for (gnat_actual = First_Actual (gnat_node); Present (gnat_actual); gnat_actual = Next_Actual (gnat_actual)) add_stmt (gnat_to_gnu (gnat_actual)); { tree call_expr = build_call_raise (PE_Stubbed_Subprogram_Called, gnat_node, N_Raise_Program_Error); if (Nkind (gnat_node) == N_Function_Call && !gnu_target) { *gnu_result_type_p = TREE_TYPE (gnu_subprog_type); return build1 (NULL_EXPR, *gnu_result_type_p, call_expr); } else return call_expr; } } /* If we are calling by supplying a pointer to a target, set up that pointer as the first argument. Use GNU_TARGET if one was passed; otherwise, make a target by building a variable of the maximum size of the type. */ if (TYPE_RETURNS_BY_TARGET_PTR_P (gnu_subprog_type)) { tree gnu_real_ret_type = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (gnu_subprog_type))); if (!gnu_target) { tree gnu_obj_type = maybe_pad_type (gnu_real_ret_type, max_size (TYPE_SIZE (gnu_real_ret_type), true), 0, Etype (Name (gnat_node)), "PAD", false, false, false); /* ??? We may be about to create a static temporary if we happen to be at the global binding level. That's a regression from what the 3.x back-end would generate in the same situation, but we don't have a mechanism in Gigi for creating automatic variables in the elaboration routines. */ gnu_target = create_var_decl (create_tmp_var_name ("LR"), NULL, gnu_obj_type, NULL, false, false, false, false, NULL, gnat_node); } gnu_actual_list = tree_cons (NULL_TREE, build_unary_op (ADDR_EXPR, NULL_TREE, unchecked_convert (gnu_real_ret_type, gnu_target, false)), NULL_TREE); } /* The only way we can be making a call via an access type is if Name is an explicit dereference. In that case, get the list of formal args from the type the access type is pointing to. Otherwise, get the formals from entity being called. */ if (Nkind (Name (gnat_node)) == N_Explicit_Dereference) gnat_formal = First_Formal_With_Extras (Etype (Name (gnat_node))); else if (Nkind (Name (gnat_node)) == N_Attribute_Reference) /* Assume here that this must be 'Elab_Body or 'Elab_Spec. */ gnat_formal = 0; else gnat_formal = First_Formal_With_Extras (Entity (Name (gnat_node))); /* Create the list of the actual parameters as GCC expects it, namely a chain of TREE_LIST nodes in which the TREE_VALUE field of each node is a parameter-expression and the TREE_PURPOSE field is null. Skip Out parameters not passed by reference and don't need to be copied in. */ for (gnat_actual = First_Actual (gnat_node); Present (gnat_actual); gnat_formal = Next_Formal_With_Extras (gnat_formal), gnat_actual = Next_Actual (gnat_actual)) { tree gnu_formal = (present_gnu_tree (gnat_formal) ? get_gnu_tree (gnat_formal) : NULL_TREE); tree gnu_formal_type = gnat_to_gnu_type (Etype (gnat_formal)); /* We must suppress conversions that can cause the creation of a temporary in the Out or In Out case because we need the real object in this case, either to pass its address if it's passed by reference or as target of the back copy done after the call if it uses the copy-in copy-out mechanism. We do it in the In case too, except for an unchecked conversion because it alone can cause the actual to be misaligned and the addressability test is applied to the real object. */ bool suppress_type_conversion = ((Nkind (gnat_actual) == N_Unchecked_Type_Conversion && Ekind (gnat_formal) != E_In_Parameter) || (Nkind (gnat_actual) == N_Type_Conversion && Is_Composite_Type (Underlying_Type (Etype (gnat_formal))))); Node_Id gnat_name = (suppress_type_conversion ? Expression (gnat_actual) : gnat_actual); tree gnu_name = gnat_to_gnu (gnat_name), gnu_name_type; tree gnu_actual; /* If it's possible we may need to use this expression twice, make sure that any side-effects are handled via SAVE_EXPRs. Likewise if we need to force side-effects before the call. ??? This is more conservative than we need since we don't need to do this for pass-by-ref with no conversion. */ if (Ekind (gnat_formal) != E_In_Parameter) gnu_name = gnat_stabilize_reference (gnu_name, true); /* If we are passing a non-addressable parameter by reference, pass the address of a copy. In the Out or In Out case, set up to copy back out after the call. */ if (gnu_formal && (DECL_BY_REF_P (gnu_formal) || (TREE_CODE (gnu_formal) == PARM_DECL && (DECL_BY_COMPONENT_PTR_P (gnu_formal) || (DECL_BY_DESCRIPTOR_P (gnu_formal))))) && (gnu_name_type = gnat_to_gnu_type (Etype (gnat_name))) && !addressable_p (gnu_name, gnu_name_type)) { tree gnu_copy = gnu_name, gnu_temp; /* If the type is by_reference, a copy is not allowed. */ if (Is_By_Reference_Type (Etype (gnat_formal))) post_error ("misaligned actual cannot be passed by reference", gnat_actual); /* For users of Starlet we issue a warning because the interface apparently assumes that by-ref parameters outlive the procedure invocation. The code still will not work as intended, but we cannot do much better since other low-level parts of the back-end would allocate temporaries at will because of the misalignment if we did not do so here. */ else if (Is_Valued_Procedure (Entity (Name (gnat_node)))) { post_error ("?possible violation of implicit assumption", gnat_actual); post_error_ne ("?made by pragma Import_Valued_Procedure on &", gnat_actual, Entity (Name (gnat_node))); post_error_ne ("?because of misalignment of &", gnat_actual, gnat_formal); } /* Remove any unpadding from the object and reset the copy. */ if (TREE_CODE (gnu_name) == COMPONENT_REF && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_name, 0))) == RECORD_TYPE) && (TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_name, 0)))))) gnu_name = gnu_copy = TREE_OPERAND (gnu_name, 0); /* Otherwise convert to the nominal type of the object if it's a record type. There are several cases in which we need to make the temporary using this type instead of the actual type of the object if they are distinct, because the expectations of the callee would otherwise not be met: - if it's a justified modular type, - if the actual type is a smaller packable version of it. */ else if (TREE_CODE (gnu_name_type) == RECORD_TYPE && (TYPE_JUSTIFIED_MODULAR_P (gnu_name_type) || smaller_packable_type_p (TREE_TYPE (gnu_name), gnu_name_type))) gnu_name = convert (gnu_name_type, gnu_name); /* Make a SAVE_EXPR to both properly account for potential side effects and handle the creation of a temporary copy. Special code in gnat_gimplify_expr ensures that the same temporary is used as the object and copied back after the call if needed. */ gnu_name = build1 (SAVE_EXPR, TREE_TYPE (gnu_name), gnu_name); TREE_SIDE_EFFECTS (gnu_name) = 1; /* Set up to move the copy back to the original. */ if (Ekind (gnat_formal) != E_In_Parameter) { gnu_temp = build_binary_op (MODIFY_EXPR, NULL_TREE, gnu_copy, gnu_name); set_expr_location_from_node (gnu_temp, gnat_node); append_to_statement_list (gnu_temp, &gnu_after_list); } } /* Start from the real object and build the actual. */ gnu_actual = gnu_name; /* If this was a procedure call, we may not have removed any padding. So do it here for the part we will use as an input, if any. */ if (Ekind (gnat_formal) != E_Out_Parameter && TREE_CODE (TREE_TYPE (gnu_actual)) == RECORD_TYPE && TYPE_IS_PADDING_P (TREE_TYPE (gnu_actual))) gnu_actual = convert (get_unpadded_type (Etype (gnat_actual)), gnu_actual); /* Do any needed conversions for the actual and make sure that it is in range of the formal's type. */ if (suppress_type_conversion) { /* Put back the conversion we suppressed above in the computation of the real object. Note that we treat a conversion between aggregate types as if it is an unchecked conversion here. */ gnu_actual = unchecked_convert (gnat_to_gnu_type (Etype (gnat_actual)), gnu_actual, (Nkind (gnat_actual) == N_Unchecked_Type_Conversion) && No_Truncation (gnat_actual)); if (Ekind (gnat_formal) != E_Out_Parameter && Do_Range_Check (gnat_actual)) gnu_actual = emit_range_check (gnu_actual, Etype (gnat_formal)); } else { if (Ekind (gnat_formal) != E_Out_Parameter && Do_Range_Check (gnat_actual)) gnu_actual = emit_range_check (gnu_actual, Etype (gnat_formal)); /* We may have suppressed a conversion to the Etype of the actual since the parent is a procedure call. So put it back here. ??? We use the reverse order compared to the case above because of an awkward interaction with the check and actually don't put back the conversion at all if a check is emitted. This is also done for the conversion to the formal's type just below. */ if (TREE_CODE (gnu_actual) != SAVE_EXPR) gnu_actual = convert (gnat_to_gnu_type (Etype (gnat_actual)), gnu_actual); } if (TREE_CODE (gnu_actual) != SAVE_EXPR) gnu_actual = convert (gnu_formal_type, gnu_actual); /* Unless this is an In parameter, we must remove any justified modular building from GNU_NAME to get an lvalue. */ if (Ekind (gnat_formal) != E_In_Parameter && TREE_CODE (gnu_name) == CONSTRUCTOR && TREE_CODE (TREE_TYPE (gnu_name)) == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (TREE_TYPE (gnu_name))) gnu_name = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_name))), gnu_name); /* If we have not saved a GCC object for the formal, it means it is an Out parameter not passed by reference and that does not need to be copied in. Otherwise, look at the PARM_DECL to see if it is passed by reference. */ if (gnu_formal && TREE_CODE (gnu_formal) == PARM_DECL && DECL_BY_REF_P (gnu_formal)) { if (Ekind (gnat_formal) != E_In_Parameter) { /* In Out or Out parameters passed by reference don't use the copy-in copy-out mechanism so the address of the real object must be passed to the function. */ gnu_actual = gnu_name; /* If we have a padded type, be sure we've removed padding. */ if (TREE_CODE (TREE_TYPE (gnu_actual)) == RECORD_TYPE && TYPE_IS_PADDING_P (TREE_TYPE (gnu_actual)) && TREE_CODE (gnu_actual) != SAVE_EXPR) gnu_actual = convert (get_unpadded_type (Etype (gnat_actual)), gnu_actual); /* If we have the constructed subtype of an aliased object with an unconstrained nominal subtype, the type of the actual includes the template, although it is formally constrained. So we need to convert it back to the real constructed subtype to retrieve the constrained part and takes its address. */ if (TREE_CODE (TREE_TYPE (gnu_actual)) == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (gnu_actual)) && TREE_CODE (gnu_actual) != SAVE_EXPR && Is_Constr_Subt_For_UN_Aliased (Etype (gnat_actual)) && Is_Array_Type (Etype (gnat_actual))) gnu_actual = convert (gnat_to_gnu_type (Etype (gnat_actual)), gnu_actual); } /* The symmetry of the paths to the type of an entity is broken here since arguments don't know that they will be passed by ref. */ gnu_formal_type = TREE_TYPE (get_gnu_tree (gnat_formal)); gnu_actual = build_unary_op (ADDR_EXPR, gnu_formal_type, gnu_actual); } else if (gnu_formal && TREE_CODE (gnu_formal) == PARM_DECL && DECL_BY_COMPONENT_PTR_P (gnu_formal)) { gnu_formal_type = TREE_TYPE (get_gnu_tree (gnat_formal)); gnu_actual = maybe_implicit_deref (gnu_actual); gnu_actual = maybe_unconstrained_array (gnu_actual); if (TREE_CODE (gnu_formal_type) == RECORD_TYPE && TYPE_IS_PADDING_P (gnu_formal_type)) { gnu_formal_type = TREE_TYPE (TYPE_FIELDS (gnu_formal_type)); gnu_actual = convert (gnu_formal_type, gnu_actual); } /* Take the address of the object and convert to the proper pointer type. We'd like to actually compute the address of the beginning of the array using an ADDR_EXPR of an ARRAY_REF, but there's a possibility that the ARRAY_REF might return a constant and we'd be getting the wrong address. Neither approach is exactly correct, but this is the most likely to work in all cases. */ gnu_actual = convert (gnu_formal_type, build_unary_op (ADDR_EXPR, NULL_TREE, gnu_actual)); } else if (gnu_formal && TREE_CODE (gnu_formal) == PARM_DECL && DECL_BY_DESCRIPTOR_P (gnu_formal)) { /* If arg is 'Null_Parameter, pass zero descriptor. */ if ((TREE_CODE (gnu_actual) == INDIRECT_REF || TREE_CODE (gnu_actual) == UNCONSTRAINED_ARRAY_REF) && TREE_PRIVATE (gnu_actual)) gnu_actual = convert (DECL_ARG_TYPE (get_gnu_tree (gnat_formal)), integer_zero_node); else gnu_actual = build_unary_op (ADDR_EXPR, NULL_TREE, fill_vms_descriptor (gnu_actual, gnat_formal, gnat_actual)); } else { tree gnu_actual_size = TYPE_SIZE (TREE_TYPE (gnu_actual)); if (Ekind (gnat_formal) != E_In_Parameter) gnu_name_list = tree_cons (NULL_TREE, gnu_name, gnu_name_list); if (!gnu_formal || TREE_CODE (gnu_formal) != PARM_DECL) continue; /* If this is 'Null_Parameter, pass a zero even though we are dereferencing it. */ else if (TREE_CODE (gnu_actual) == INDIRECT_REF && TREE_PRIVATE (gnu_actual) && host_integerp (gnu_actual_size, 1) && 0 >= compare_tree_int (gnu_actual_size, BITS_PER_WORD)) gnu_actual = unchecked_convert (DECL_ARG_TYPE (gnu_formal), convert (gnat_type_for_size (tree_low_cst (gnu_actual_size, 1), 1), integer_zero_node), false); else gnu_actual = convert (DECL_ARG_TYPE (gnu_formal), gnu_actual); } gnu_actual_list = tree_cons (NULL_TREE, gnu_actual, gnu_actual_list); } gnu_subprog_call = build_call_list (TREE_TYPE (gnu_subprog_type), gnu_subprog_addr, nreverse (gnu_actual_list)); set_expr_location_from_node (gnu_subprog_call, gnat_node); /* If we return by passing a target, the result is the target after the call. We must not emit the call directly here because this might be evaluated as part of an expression with conditions to control whether the call should be emitted or not. */ if (TYPE_RETURNS_BY_TARGET_PTR_P (gnu_subprog_type)) { /* Conceptually, what we need is a COMPOUND_EXPR with the call followed by the target object converted to the proper type. Doing so would potentially be very inefficient, however, as this expression might end up wrapped into an outer SAVE_EXPR later on, which would incur a pointless temporary copy of the whole object. What we do instead is build a COMPOUND_EXPR returning the address of the target, and then dereference. Wrapping the COMPOUND_EXPR into a SAVE_EXPR later on then only incurs a pointer copy. */ tree gnu_result_type = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (gnu_subprog_type))); /* Build and return (result_type) *[gnu_subprog_call (&gnu_target, ...), &gnu_target] */ tree gnu_target_address = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_target); set_expr_location_from_node (gnu_target_address, gnat_node); gnu_result = build2 (COMPOUND_EXPR, TREE_TYPE (gnu_target_address), gnu_subprog_call, gnu_target_address); gnu_result = unchecked_convert (gnu_result_type, build_unary_op (INDIRECT_REF, NULL_TREE, gnu_result), false); *gnu_result_type_p = gnu_result_type; return gnu_result; } /* If it is a function call, the result is the call expression unless a target is specified, in which case we copy the result into the target and return the assignment statement. */ else if (Nkind (gnat_node) == N_Function_Call) { gnu_result = gnu_subprog_call; /* If the function returns an unconstrained array or by reference, we have to de-dereference the pointer. */ if (TYPE_RETURNS_UNCONSTRAINED_P (gnu_subprog_type) || TYPE_RETURNS_BY_REF_P (gnu_subprog_type)) gnu_result = build_unary_op (INDIRECT_REF, NULL_TREE, gnu_result); if (gnu_target) gnu_result = build_binary_op (MODIFY_EXPR, NULL_TREE, gnu_target, gnu_result); else *gnu_result_type_p = get_unpadded_type (Etype (gnat_node)); return gnu_result; } /* If this is the case where the GNAT tree contains a procedure call but the Ada procedure has copy in copy out parameters, the special parameter passing mechanism must be used. */ else if (TYPE_CI_CO_LIST (gnu_subprog_type) != NULL_TREE) { /* List of FIELD_DECLs associated with the PARM_DECLs of the copy in copy out parameters. */ tree scalar_return_list = TYPE_CI_CO_LIST (gnu_subprog_type); int length = list_length (scalar_return_list); if (length > 1) { tree gnu_name; gnu_subprog_call = save_expr (gnu_subprog_call); gnu_name_list = nreverse (gnu_name_list); /* If any of the names had side-effects, ensure they are all evaluated before the call. */ for (gnu_name = gnu_name_list; gnu_name; gnu_name = TREE_CHAIN (gnu_name)) if (TREE_SIDE_EFFECTS (TREE_VALUE (gnu_name))) append_to_statement_list (TREE_VALUE (gnu_name), &gnu_before_list); } if (Nkind (Name (gnat_node)) == N_Explicit_Dereference) gnat_formal = First_Formal_With_Extras (Etype (Name (gnat_node))); else gnat_formal = First_Formal_With_Extras (Entity (Name (gnat_node))); for (gnat_actual = First_Actual (gnat_node); Present (gnat_actual); gnat_formal = Next_Formal_With_Extras (gnat_formal), gnat_actual = Next_Actual (gnat_actual)) /* If we are dealing with a copy in copy out parameter, we must retrieve its value from the record returned in the call. */ if (!(present_gnu_tree (gnat_formal) && TREE_CODE (get_gnu_tree (gnat_formal)) == PARM_DECL && (DECL_BY_REF_P (get_gnu_tree (gnat_formal)) || (TREE_CODE (get_gnu_tree (gnat_formal)) == PARM_DECL && ((DECL_BY_COMPONENT_PTR_P (get_gnu_tree (gnat_formal)) || (DECL_BY_DESCRIPTOR_P (get_gnu_tree (gnat_formal)))))))) && Ekind (gnat_formal) != E_In_Parameter) { /* Get the value to assign to this Out or In Out parameter. It is either the result of the function if there is only a single such parameter or the appropriate field from the record returned. */ tree gnu_result = length == 1 ? gnu_subprog_call : build_component_ref (gnu_subprog_call, NULL_TREE, TREE_PURPOSE (scalar_return_list), false); /* If the actual is a conversion, get the inner expression, which will be the real destination, and convert the result to the type of the actual parameter. */ tree gnu_actual = maybe_unconstrained_array (TREE_VALUE (gnu_name_list)); /* If the result is a padded type, remove the padding. */ if (TREE_CODE (TREE_TYPE (gnu_result)) == RECORD_TYPE && TYPE_IS_PADDING_P (TREE_TYPE (gnu_result))) gnu_result = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_result))), gnu_result); /* If the actual is a type conversion, the real target object is denoted by the inner Expression and we need to convert the result to the associated type. We also need to convert our gnu assignment target to this type if the corresponding GNU_NAME was constructed from the GNAT conversion node and not from the inner Expression. */ if (Nkind (gnat_actual) == N_Type_Conversion) { gnu_result = convert_with_check (Etype (Expression (gnat_actual)), gnu_result, Do_Overflow_Check (gnat_actual), Do_Range_Check (Expression (gnat_actual)), Float_Truncate (gnat_actual)); if (!Is_Composite_Type (Underlying_Type (Etype (gnat_formal)))) gnu_actual = convert (TREE_TYPE (gnu_result), gnu_actual); } /* Unchecked conversions as actuals for Out parameters are not allowed in user code because they are not variables, but do occur in front-end expansions. The associated GNU_NAME is always obtained from the inner expression in such cases. */ else if (Nkind (gnat_actual) == N_Unchecked_Type_Conversion) gnu_result = unchecked_convert (TREE_TYPE (gnu_actual), gnu_result, No_Truncation (gnat_actual)); else { if (Do_Range_Check (gnat_actual)) gnu_result = emit_range_check (gnu_result, Etype (gnat_actual)); if (!(!TREE_CONSTANT (TYPE_SIZE (TREE_TYPE (gnu_actual))) && TREE_CONSTANT (TYPE_SIZE (TREE_TYPE (gnu_result))))) gnu_result = convert (TREE_TYPE (gnu_actual), gnu_result); } gnu_result = build_binary_op (MODIFY_EXPR, NULL_TREE, gnu_actual, gnu_result); set_expr_location_from_node (gnu_result, gnat_node); append_to_statement_list (gnu_result, &gnu_before_list); scalar_return_list = TREE_CHAIN (scalar_return_list); gnu_name_list = TREE_CHAIN (gnu_name_list); } } else append_to_statement_list (gnu_subprog_call, &gnu_before_list); append_to_statement_list (gnu_after_list, &gnu_before_list); return gnu_before_list; } /* Subroutine of gnat_to_gnu to translate gnat_node, an N_Handled_Sequence_Of_Statements, to a GCC tree, which is returned. */ static tree Handled_Sequence_Of_Statements_to_gnu (Node_Id gnat_node) { tree gnu_jmpsave_decl = NULL_TREE; tree gnu_jmpbuf_decl = NULL_TREE; /* If just annotating, ignore all EH and cleanups. */ bool gcc_zcx = (!type_annotate_only && Present (Exception_Handlers (gnat_node)) && Exception_Mechanism == Back_End_Exceptions); bool setjmp_longjmp = (!type_annotate_only && Present (Exception_Handlers (gnat_node)) && Exception_Mechanism == Setjmp_Longjmp); bool at_end = !type_annotate_only && Present (At_End_Proc (gnat_node)); bool binding_for_block = (at_end || gcc_zcx || setjmp_longjmp); tree gnu_inner_block; /* The statement(s) for the block itself. */ tree gnu_result; tree gnu_expr; Node_Id gnat_temp; /* The GCC exception handling mechanism can handle both ZCX and SJLJ schemes and we have our own SJLJ mechanism. To call the GCC mechanism, we call add_cleanup, and when we leave the binding, end_stmt_group will create the TRY_FINALLY_EXPR. ??? The region level calls down there have been specifically put in place for a ZCX context and currently the order in which things are emitted (region/handlers) is different from the SJLJ case. Instead of putting other calls with different conditions at other places for the SJLJ case, it seems cleaner to reorder things for the SJLJ case and generalize the condition to make it not ZCX specific. If there are any exceptions or cleanup processing involved, we need an outer statement group (for Setjmp_Longjmp) and binding level. */ if (binding_for_block) { start_stmt_group (); gnat_pushlevel (); } /* If using setjmp_longjmp, make the variables for the setjmp buffer and save area for address of previous buffer. Do this first since we need to have the setjmp buf known for any decls in this block. */ if (setjmp_longjmp) { gnu_jmpsave_decl = create_var_decl (get_identifier ("JMPBUF_SAVE"), NULL_TREE, jmpbuf_ptr_type, build_call_0_expr (get_jmpbuf_decl), false, false, false, false, NULL, gnat_node); DECL_ARTIFICIAL (gnu_jmpsave_decl) = 1; /* The __builtin_setjmp receivers will immediately reinstall it. Now because of the unstructured form of EH used by setjmp_longjmp, there might be forward edges going to __builtin_setjmp receivers on which it is uninitialized, although they will never be actually taken. */ TREE_NO_WARNING (gnu_jmpsave_decl) = 1; gnu_jmpbuf_decl = create_var_decl (get_identifier ("JMP_BUF"), NULL_TREE, jmpbuf_type, NULL_TREE, false, false, false, false, NULL, gnat_node); DECL_ARTIFICIAL (gnu_jmpbuf_decl) = 1; set_block_jmpbuf_decl (gnu_jmpbuf_decl); /* When we exit this block, restore the saved value. */ add_cleanup (build_call_1_expr (set_jmpbuf_decl, gnu_jmpsave_decl), End_Label (gnat_node)); } /* If we are to call a function when exiting this block, add a cleanup to the binding level we made above. Note that add_cleanup is FIFO so we must register this cleanup after the EH cleanup just above. */ if (at_end) add_cleanup (build_call_0_expr (gnat_to_gnu (At_End_Proc (gnat_node))), End_Label (gnat_node)); /* Now build the tree for the declarations and statements inside this block. If this is SJLJ, set our jmp_buf as the current buffer. */ start_stmt_group (); if (setjmp_longjmp) add_stmt (build_call_1_expr (set_jmpbuf_decl, build_unary_op (ADDR_EXPR, NULL_TREE, gnu_jmpbuf_decl))); if (Present (First_Real_Statement (gnat_node))) process_decls (Statements (gnat_node), Empty, First_Real_Statement (gnat_node), true, true); /* Generate code for each statement in the block. */ for (gnat_temp = (Present (First_Real_Statement (gnat_node)) ? First_Real_Statement (gnat_node) : First (Statements (gnat_node))); Present (gnat_temp); gnat_temp = Next (gnat_temp)) add_stmt (gnat_to_gnu (gnat_temp)); gnu_inner_block = end_stmt_group (); /* Now generate code for the two exception models, if either is relevant for this block. */ if (setjmp_longjmp) { tree *gnu_else_ptr = 0; tree gnu_handler; /* Make a binding level for the exception handling declarations and code and set up gnu_except_ptr_stack for the handlers to use. */ start_stmt_group (); gnat_pushlevel (); push_stack (&gnu_except_ptr_stack, NULL_TREE, create_var_decl (get_identifier ("EXCEPT_PTR"), NULL_TREE, build_pointer_type (except_type_node), build_call_0_expr (get_excptr_decl), false, false, false, false, NULL, gnat_node)); /* Generate code for each handler. The N_Exception_Handler case does the real work and returns a COND_EXPR for each handler, which we chain together here. */ for (gnat_temp = First_Non_Pragma (Exception_Handlers (gnat_node)); Present (gnat_temp); gnat_temp = Next_Non_Pragma (gnat_temp)) { gnu_expr = gnat_to_gnu (gnat_temp); /* If this is the first one, set it as the outer one. Otherwise, point the "else" part of the previous handler to us. Then point to our "else" part. */ if (!gnu_else_ptr) add_stmt (gnu_expr); else *gnu_else_ptr = gnu_expr; gnu_else_ptr = &COND_EXPR_ELSE (gnu_expr); } /* If none of the exception handlers did anything, re-raise but do not defer abortion. */ gnu_expr = build_call_1_expr (raise_nodefer_decl, TREE_VALUE (gnu_except_ptr_stack)); set_expr_location_from_node (gnu_expr, gnat_node); if (gnu_else_ptr) *gnu_else_ptr = gnu_expr; else add_stmt (gnu_expr); /* End the binding level dedicated to the exception handlers and get the whole statement group. */ pop_stack (&gnu_except_ptr_stack); gnat_poplevel (); gnu_handler = end_stmt_group (); /* If the setjmp returns 1, we restore our incoming longjmp value and then check the handlers. */ start_stmt_group (); add_stmt_with_node (build_call_1_expr (set_jmpbuf_decl, gnu_jmpsave_decl), gnat_node); add_stmt (gnu_handler); gnu_handler = end_stmt_group (); /* This block is now "if (setjmp) ... else ". */ gnu_result = build3 (COND_EXPR, void_type_node, (build_call_1_expr (setjmp_decl, build_unary_op (ADDR_EXPR, NULL_TREE, gnu_jmpbuf_decl))), gnu_handler, gnu_inner_block); } else if (gcc_zcx) { tree gnu_handlers; /* First make a block containing the handlers. */ start_stmt_group (); for (gnat_temp = First_Non_Pragma (Exception_Handlers (gnat_node)); Present (gnat_temp); gnat_temp = Next_Non_Pragma (gnat_temp)) add_stmt (gnat_to_gnu (gnat_temp)); gnu_handlers = end_stmt_group (); /* Now make the TRY_CATCH_EXPR for the block. */ gnu_result = build2 (TRY_CATCH_EXPR, void_type_node, gnu_inner_block, gnu_handlers); } else gnu_result = gnu_inner_block; /* Now close our outer block, if we had to make one. */ if (binding_for_block) { add_stmt (gnu_result); gnat_poplevel (); gnu_result = end_stmt_group (); } return gnu_result; } /* Subroutine of gnat_to_gnu to translate gnat_node, an N_Exception_Handler, to a GCC tree, which is returned. This is the variant for Setjmp_Longjmp exception handling. */ static tree Exception_Handler_to_gnu_sjlj (Node_Id gnat_node) { /* Unless this is "Others" or the special "Non-Ada" exception for Ada, make an "if" statement to select the proper exceptions. For "Others", exclude exceptions where Handled_By_Others is nonzero unless the All_Others flag is set. For "Non-ada", accept an exception if "Lang" is 'V'. */ tree gnu_choice = integer_zero_node; tree gnu_body = build_stmt_group (Statements (gnat_node), false); Node_Id gnat_temp; for (gnat_temp = First (Exception_Choices (gnat_node)); gnat_temp; gnat_temp = Next (gnat_temp)) { tree this_choice; if (Nkind (gnat_temp) == N_Others_Choice) { if (All_Others (gnat_temp)) this_choice = integer_one_node; else this_choice = build_binary_op (EQ_EXPR, integer_type_node, convert (integer_type_node, build_component_ref (build_unary_op (INDIRECT_REF, NULL_TREE, TREE_VALUE (gnu_except_ptr_stack)), get_identifier ("not_handled_by_others"), NULL_TREE, false)), integer_zero_node); } else if (Nkind (gnat_temp) == N_Identifier || Nkind (gnat_temp) == N_Expanded_Name) { Entity_Id gnat_ex_id = Entity (gnat_temp); tree gnu_expr; /* Exception may be a renaming. Recover original exception which is the one elaborated and registered. */ if (Present (Renamed_Object (gnat_ex_id))) gnat_ex_id = Renamed_Object (gnat_ex_id); gnu_expr = gnat_to_gnu_entity (gnat_ex_id, NULL_TREE, 0); this_choice = build_binary_op (EQ_EXPR, integer_type_node, TREE_VALUE (gnu_except_ptr_stack), convert (TREE_TYPE (TREE_VALUE (gnu_except_ptr_stack)), build_unary_op (ADDR_EXPR, NULL_TREE, gnu_expr))); /* If this is the distinguished exception "Non_Ada_Error" (and we are in VMS mode), also allow a non-Ada exception (a VMS condition) t match. */ if (Is_Non_Ada_Error (Entity (gnat_temp))) { tree gnu_comp = build_component_ref (build_unary_op (INDIRECT_REF, NULL_TREE, TREE_VALUE (gnu_except_ptr_stack)), get_identifier ("lang"), NULL_TREE, false); this_choice = build_binary_op (TRUTH_ORIF_EXPR, integer_type_node, build_binary_op (EQ_EXPR, integer_type_node, gnu_comp, build_int_cst (TREE_TYPE (gnu_comp), 'V')), this_choice); } } else gcc_unreachable (); gnu_choice = build_binary_op (TRUTH_ORIF_EXPR, integer_type_node, gnu_choice, this_choice); } return build3 (COND_EXPR, void_type_node, gnu_choice, gnu_body, NULL_TREE); } /* Subroutine of gnat_to_gnu to translate gnat_node, an N_Exception_Handler, to a GCC tree, which is returned. This is the variant for ZCX. */ static tree Exception_Handler_to_gnu_zcx (Node_Id gnat_node) { tree gnu_etypes_list = NULL_TREE; tree gnu_expr; tree gnu_etype; tree gnu_current_exc_ptr; tree gnu_incoming_exc_ptr; Node_Id gnat_temp; /* We build a TREE_LIST of nodes representing what exception types this handler can catch, with special cases for others and all others cases. Each exception type is actually identified by a pointer to the exception id, or to a dummy object for "others" and "all others". Care should be taken to ensure that the control flow impact of "others" and "all others" is known to GCC. lang_eh_type_covers is doing the trick currently. */ for (gnat_temp = First (Exception_Choices (gnat_node)); gnat_temp; gnat_temp = Next (gnat_temp)) { if (Nkind (gnat_temp) == N_Others_Choice) { tree gnu_expr = All_Others (gnat_temp) ? all_others_decl : others_decl; gnu_etype = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_expr); } else if (Nkind (gnat_temp) == N_Identifier || Nkind (gnat_temp) == N_Expanded_Name) { Entity_Id gnat_ex_id = Entity (gnat_temp); /* Exception may be a renaming. Recover original exception which is the one elaborated and registered. */ if (Present (Renamed_Object (gnat_ex_id))) gnat_ex_id = Renamed_Object (gnat_ex_id); gnu_expr = gnat_to_gnu_entity (gnat_ex_id, NULL_TREE, 0); gnu_etype = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_expr); /* The Non_Ada_Error case for VMS exceptions is handled by the personality routine. */ } else gcc_unreachable (); /* The GCC interface expects NULL to be passed for catch all handlers, so it would be quite tempting to set gnu_etypes_list to NULL if gnu_etype is integer_zero_node. It would not work, however, because GCC's notion of "catch all" is stronger than our notion of "others". Until we correctly use the cleanup interface as well, doing that would prevent the "all others" handlers from being seen, because nothing can be caught beyond a catch all from GCC's point of view. */ gnu_etypes_list = tree_cons (NULL_TREE, gnu_etype, gnu_etypes_list); } start_stmt_group (); gnat_pushlevel (); /* Expand a call to the begin_handler hook at the beginning of the handler, and arrange for a call to the end_handler hook to occur on every possible exit path. The hooks expect a pointer to the low level occurrence. This is required for our stack management scheme because a raise inside the handler pushes a new occurrence on top of the stack, which means that this top does not necessarily match the occurrence this handler was dealing with. The EXC_PTR_EXPR object references the exception occurrence being propagated. Upon handler entry, this is the exception for which the handler is triggered. This might not be the case upon handler exit, however, as we might have a new occurrence propagated by the handler's body, and the end_handler hook called as a cleanup in this context. We use a local variable to retrieve the incoming value at handler entry time, and reuse it to feed the end_handler hook's argument at exit. */ gnu_current_exc_ptr = build0 (EXC_PTR_EXPR, ptr_type_node); gnu_incoming_exc_ptr = create_var_decl (get_identifier ("EXPTR"), NULL_TREE, ptr_type_node, gnu_current_exc_ptr, false, false, false, false, NULL, gnat_node); add_stmt_with_node (build_call_1_expr (begin_handler_decl, gnu_incoming_exc_ptr), gnat_node); /* ??? We don't seem to have an End_Label at hand to set the location. */ add_cleanup (build_call_1_expr (end_handler_decl, gnu_incoming_exc_ptr), Empty); add_stmt_list (Statements (gnat_node)); gnat_poplevel (); return build2 (CATCH_EXPR, void_type_node, gnu_etypes_list, end_stmt_group ()); } /* Subroutine of gnat_to_gnu to generate code for an N_Compilation unit. */ static void Compilation_Unit_to_gnu (Node_Id gnat_node) { /* Make the decl for the elaboration procedure. */ bool body_p = (Defining_Entity (Unit (gnat_node)), Nkind (Unit (gnat_node)) == N_Package_Body || Nkind (Unit (gnat_node)) == N_Subprogram_Body); Entity_Id gnat_unit_entity = Defining_Entity (Unit (gnat_node)); tree gnu_elab_proc_decl = create_subprog_decl (create_concat_name (gnat_unit_entity, body_p ? "elabb" : "elabs"), NULL_TREE, void_ftype, NULL_TREE, false, true, false, NULL, gnat_unit_entity); struct elab_info *info; push_stack (&gnu_elab_proc_stack, NULL_TREE, gnu_elab_proc_decl); DECL_ELABORATION_PROC_P (gnu_elab_proc_decl) = 1; allocate_struct_function (gnu_elab_proc_decl, false); Sloc_to_locus (Sloc (gnat_unit_entity), &cfun->function_end_locus); set_cfun (NULL); /* For a body, first process the spec if there is one. */ if (Nkind (Unit (gnat_node)) == N_Package_Body || (Nkind (Unit (gnat_node)) == N_Subprogram_Body && !Acts_As_Spec (gnat_node))) { add_stmt (gnat_to_gnu (Library_Unit (gnat_node))); finalize_from_with_types (); } process_inlined_subprograms (gnat_node); if (type_annotate_only && gnat_node == Cunit (Main_Unit)) { elaborate_all_entities (gnat_node); if (Nkind (Unit (gnat_node)) == N_Subprogram_Declaration || Nkind (Unit (gnat_node)) == N_Generic_Package_Declaration || Nkind (Unit (gnat_node)) == N_Generic_Subprogram_Declaration) return; } process_decls (Declarations (Aux_Decls_Node (gnat_node)), Empty, Empty, true, true); add_stmt (gnat_to_gnu (Unit (gnat_node))); /* Process any pragmas and actions following the unit. */ add_stmt_list (Pragmas_After (Aux_Decls_Node (gnat_node))); add_stmt_list (Actions (Aux_Decls_Node (gnat_node))); finalize_from_with_types (); /* Save away what we've made so far and record this potential elaboration procedure. */ info = (struct elab_info *) ggc_alloc (sizeof (struct elab_info)); set_current_block_context (gnu_elab_proc_decl); gnat_poplevel (); DECL_SAVED_TREE (gnu_elab_proc_decl) = end_stmt_group (); info->next = elab_info_list; info->elab_proc = gnu_elab_proc_decl; info->gnat_node = gnat_node; elab_info_list = info; /* Generate elaboration code for this unit, if necessary, and say whether we did or not. */ pop_stack (&gnu_elab_proc_stack); /* Invalidate the global renaming pointers. This is necessary because stabilization of the renamed entities may create SAVE_EXPRs which have been tied to a specific elaboration routine just above. */ invalidate_global_renaming_pointers (); } /* This function is the driver of the GNAT to GCC tree transformation process. It is the entry point of the tree transformer. GNAT_NODE is the root of some GNAT tree. Return the root of the corresponding GCC tree. If this is an expression, return the GCC equivalent of the expression. If it is a statement, return the statement. In the case when called for a statement, it may also add statements to the current statement group, in which case anything it returns is to be interpreted as occurring after anything `it already added. */ tree gnat_to_gnu (Node_Id gnat_node) { bool went_into_elab_proc = false; tree gnu_result = error_mark_node; /* Default to no value. */ tree gnu_result_type = void_type_node; tree gnu_expr; tree gnu_lhs, gnu_rhs; Node_Id gnat_temp; /* Save node number for error message and set location information. */ error_gnat_node = gnat_node; Sloc_to_locus (Sloc (gnat_node), &input_location); if (type_annotate_only && IN (Nkind (gnat_node), N_Statement_Other_Than_Procedure_Call)) return alloc_stmt_list (); /* If this node is a non-static subexpression and we are only annotating types, make this into a NULL_EXPR. */ if (type_annotate_only && IN (Nkind (gnat_node), N_Subexpr) && Nkind (gnat_node) != N_Identifier && !Compile_Time_Known_Value (gnat_node)) return build1 (NULL_EXPR, get_unpadded_type (Etype (gnat_node)), build_call_raise (CE_Range_Check_Failed, gnat_node, N_Raise_Constraint_Error)); /* If this is a Statement and we are at top level, it must be part of the elaboration procedure, so mark us as being in that procedure and push our context. If we are in the elaboration procedure, check if we are violating a No_Elaboration_Code restriction by having a statement there. */ if ((IN (Nkind (gnat_node), N_Statement_Other_Than_Procedure_Call) && Nkind (gnat_node) != N_Null_Statement) || Nkind (gnat_node) == N_Procedure_Call_Statement || Nkind (gnat_node) == N_Label || Nkind (gnat_node) == N_Implicit_Label_Declaration || Nkind (gnat_node) == N_Handled_Sequence_Of_Statements || ((Nkind (gnat_node) == N_Raise_Constraint_Error || Nkind (gnat_node) == N_Raise_Storage_Error || Nkind (gnat_node) == N_Raise_Program_Error) && (Ekind (Etype (gnat_node)) == E_Void))) { if (!current_function_decl) { current_function_decl = TREE_VALUE (gnu_elab_proc_stack); start_stmt_group (); gnat_pushlevel (); went_into_elab_proc = true; } /* Don't check for a possible No_Elaboration_Code restriction violation on N_Handled_Sequence_Of_Statements, as we want to signal an error on every nested real statement instead. This also avoids triggering spurious errors on dummy (empty) sequences created by the front-end for package bodies in some cases. */ if (current_function_decl == TREE_VALUE (gnu_elab_proc_stack) && Nkind (gnat_node) != N_Handled_Sequence_Of_Statements) Check_Elaboration_Code_Allowed (gnat_node); } switch (Nkind (gnat_node)) { /********************************/ /* Chapter 2: Lexical Elements: */ /********************************/ case N_Identifier: case N_Expanded_Name: case N_Operator_Symbol: case N_Defining_Identifier: gnu_result = Identifier_to_gnu (gnat_node, &gnu_result_type); break; case N_Integer_Literal: { tree gnu_type; /* Get the type of the result, looking inside any padding and justified modular types. Then get the value in that type. */ gnu_type = gnu_result_type = get_unpadded_type (Etype (gnat_node)); if (TREE_CODE (gnu_type) == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (gnu_type)) gnu_type = TREE_TYPE (TYPE_FIELDS (gnu_type)); gnu_result = UI_To_gnu (Intval (gnat_node), gnu_type); /* If the result overflows (meaning it doesn't fit in its base type), abort. We would like to check that the value is within the range of the subtype, but that causes problems with subtypes whose usage will raise Constraint_Error and with biased representation, so we don't. */ gcc_assert (!TREE_OVERFLOW (gnu_result)); } break; case N_Character_Literal: /* If a Entity is present, it means that this was one of the literals in a user-defined character type. In that case, just return the value in the CONST_DECL. Otherwise, use the character code. In that case, the base type should be an INTEGER_TYPE, but we won't bother checking for that. */ gnu_result_type = get_unpadded_type (Etype (gnat_node)); if (Present (Entity (gnat_node))) gnu_result = DECL_INITIAL (get_gnu_tree (Entity (gnat_node))); else gnu_result = build_int_cst_type (gnu_result_type, UI_To_CC (Char_Literal_Value (gnat_node))); break; case N_Real_Literal: /* If this is of a fixed-point type, the value we want is the value of the corresponding integer. */ if (IN (Ekind (Underlying_Type (Etype (gnat_node))), Fixed_Point_Kind)) { gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = UI_To_gnu (Corresponding_Integer_Value (gnat_node), gnu_result_type); gcc_assert (!TREE_OVERFLOW (gnu_result)); } /* We should never see a Vax_Float type literal, since the front end is supposed to transform these using appropriate conversions */ else if (Vax_Float (Underlying_Type (Etype (gnat_node)))) gcc_unreachable (); else { Ureal ur_realval = Realval (gnat_node); gnu_result_type = get_unpadded_type (Etype (gnat_node)); /* If the real value is zero, so is the result. Otherwise, convert it to a machine number if it isn't already. That forces BASE to 0 or 2 and simplifies the rest of our logic. */ if (UR_Is_Zero (ur_realval)) gnu_result = convert (gnu_result_type, integer_zero_node); else { if (!Is_Machine_Number (gnat_node)) ur_realval = Machine (Base_Type (Underlying_Type (Etype (gnat_node))), ur_realval, Round_Even, gnat_node); gnu_result = UI_To_gnu (Numerator (ur_realval), gnu_result_type); /* If we have a base of zero, divide by the denominator. Otherwise, the base must be 2 and we scale the value, which we know can fit in the mantissa of the type (hence the use of that type above). */ if (No (Rbase (ur_realval))) gnu_result = build_binary_op (RDIV_EXPR, get_base_type (gnu_result_type), gnu_result, UI_To_gnu (Denominator (ur_realval), gnu_result_type)); else { REAL_VALUE_TYPE tmp; gcc_assert (Rbase (ur_realval) == 2); real_ldexp (&tmp, &TREE_REAL_CST (gnu_result), - UI_To_Int (Denominator (ur_realval))); gnu_result = build_real (gnu_result_type, tmp); } } /* Now see if we need to negate the result. Do it this way to properly handle -0. */ if (UR_Is_Negative (Realval (gnat_node))) gnu_result = build_unary_op (NEGATE_EXPR, get_base_type (gnu_result_type), gnu_result); } break; case N_String_Literal: gnu_result_type = get_unpadded_type (Etype (gnat_node)); if (TYPE_PRECISION (TREE_TYPE (gnu_result_type)) == HOST_BITS_PER_CHAR) { String_Id gnat_string = Strval (gnat_node); int length = String_Length (gnat_string); int i; char *string; if (length >= ALLOCA_THRESHOLD) string = XNEWVEC (char, length + 1); /* in case of large strings */ else string = (char *) alloca (length + 1); /* Build the string with the characters in the literal. Note that Ada strings are 1-origin. */ for (i = 0; i < length; i++) string[i] = Get_String_Char (gnat_string, i + 1); /* Put a null at the end of the string in case it's in a context where GCC will want to treat it as a C string. */ string[i] = 0; gnu_result = build_string (length, string); /* Strings in GCC don't normally have types, but we want this to not be converted to the array type. */ TREE_TYPE (gnu_result) = gnu_result_type; if (length >= ALLOCA_THRESHOLD) /* free if heap-allocated */ free (string); } else { /* Build a list consisting of each character, then make the aggregate. */ String_Id gnat_string = Strval (gnat_node); int length = String_Length (gnat_string); int i; tree gnu_list = NULL_TREE; tree gnu_idx = TYPE_MIN_VALUE (TYPE_DOMAIN (gnu_result_type)); for (i = 0; i < length; i++) { gnu_list = tree_cons (gnu_idx, build_int_cst (TREE_TYPE (gnu_result_type), Get_String_Char (gnat_string, i + 1)), gnu_list); gnu_idx = int_const_binop (PLUS_EXPR, gnu_idx, integer_one_node, 0); } gnu_result = gnat_build_constructor (gnu_result_type, nreverse (gnu_list)); } break; case N_Pragma: gnu_result = Pragma_to_gnu (gnat_node); break; /**************************************/ /* Chapter 3: Declarations and Types: */ /**************************************/ case N_Subtype_Declaration: case N_Full_Type_Declaration: case N_Incomplete_Type_Declaration: case N_Private_Type_Declaration: case N_Private_Extension_Declaration: case N_Task_Type_Declaration: process_type (Defining_Entity (gnat_node)); gnu_result = alloc_stmt_list (); break; case N_Object_Declaration: case N_Exception_Declaration: gnat_temp = Defining_Entity (gnat_node); gnu_result = alloc_stmt_list (); /* If we are just annotating types and this object has an unconstrained or task type, don't elaborate it. */ if (type_annotate_only && (((Is_Array_Type (Etype (gnat_temp)) || Is_Record_Type (Etype (gnat_temp))) && !Is_Constrained (Etype (gnat_temp))) || Is_Concurrent_Type (Etype (gnat_temp)))) break; if (Present (Expression (gnat_node)) && !(Nkind (gnat_node) == N_Object_Declaration && No_Initialization (gnat_node)) && (!type_annotate_only || Compile_Time_Known_Value (Expression (gnat_node)))) { gnu_expr = gnat_to_gnu (Expression (gnat_node)); if (Do_Range_Check (Expression (gnat_node))) gnu_expr = emit_range_check (gnu_expr, Etype (gnat_temp)); /* If this object has its elaboration delayed, we must force evaluation of GNU_EXPR right now and save it for when the object is frozen. */ if (Present (Freeze_Node (gnat_temp))) { if ((Is_Public (gnat_temp) || global_bindings_p ()) && !TREE_CONSTANT (gnu_expr)) gnu_expr = create_var_decl (create_concat_name (gnat_temp, "init"), NULL_TREE, TREE_TYPE (gnu_expr), gnu_expr, false, Is_Public (gnat_temp), false, false, NULL, gnat_temp); else gnu_expr = maybe_variable (gnu_expr); save_gnu_tree (gnat_node, gnu_expr, true); } } else gnu_expr = NULL_TREE; if (type_annotate_only && gnu_expr && TREE_CODE (gnu_expr) == ERROR_MARK) gnu_expr = NULL_TREE; /* If this is a deferred constant with an address clause, we ignore the full view since the clause is on the partial view and we cannot have 2 different GCC trees for the object. The only bits of the full view we will use is the initializer, but it will be directly fetched. */ if (Ekind(gnat_temp) == E_Constant && Present (Address_Clause (gnat_temp)) && Present (Full_View (gnat_temp))) save_gnu_tree (Full_View (gnat_temp), error_mark_node, true); if (No (Freeze_Node (gnat_temp))) gnat_to_gnu_entity (gnat_temp, gnu_expr, 1); break; case N_Object_Renaming_Declaration: gnat_temp = Defining_Entity (gnat_node); /* Don't do anything if this renaming is handled by the front end or if we are just annotating types and this object has a composite or task type, don't elaborate it. We return the result in case it has any SAVE_EXPRs in it that need to be evaluated here. */ if (!Is_Renaming_Of_Object (gnat_temp) && ! (type_annotate_only && (Is_Array_Type (Etype (gnat_temp)) || Is_Record_Type (Etype (gnat_temp)) || Is_Concurrent_Type (Etype (gnat_temp))))) gnu_result = gnat_to_gnu_entity (gnat_temp, gnat_to_gnu (Renamed_Object (gnat_temp)), 1); else gnu_result = alloc_stmt_list (); break; case N_Implicit_Label_Declaration: gnat_to_gnu_entity (Defining_Entity (gnat_node), NULL_TREE, 1); gnu_result = alloc_stmt_list (); break; case N_Exception_Renaming_Declaration: case N_Number_Declaration: case N_Package_Renaming_Declaration: case N_Subprogram_Renaming_Declaration: /* These are fully handled in the front end. */ gnu_result = alloc_stmt_list (); break; /*************************************/ /* Chapter 4: Names and Expressions: */ /*************************************/ case N_Explicit_Dereference: gnu_result = gnat_to_gnu (Prefix (gnat_node)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_unary_op (INDIRECT_REF, NULL_TREE, gnu_result); break; case N_Indexed_Component: { tree gnu_array_object = gnat_to_gnu (Prefix (gnat_node)); tree gnu_type; int ndim; int i; Node_Id *gnat_expr_array; gnu_array_object = maybe_implicit_deref (gnu_array_object); gnu_array_object = maybe_unconstrained_array (gnu_array_object); /* If we got a padded type, remove it too. */ if (TREE_CODE (TREE_TYPE (gnu_array_object)) == RECORD_TYPE && TYPE_IS_PADDING_P (TREE_TYPE (gnu_array_object))) gnu_array_object = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_array_object))), gnu_array_object); gnu_result = gnu_array_object; /* First compute the number of dimensions of the array, then fill the expression array, the order depending on whether this is a Convention_Fortran array or not. */ for (ndim = 1, gnu_type = TREE_TYPE (gnu_array_object); TREE_CODE (TREE_TYPE (gnu_type)) == ARRAY_TYPE && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_type)); ndim++, gnu_type = TREE_TYPE (gnu_type)) ; gnat_expr_array = (Node_Id *) alloca (ndim * sizeof (Node_Id)); if (TYPE_CONVENTION_FORTRAN_P (TREE_TYPE (gnu_array_object))) for (i = ndim - 1, gnat_temp = First (Expressions (gnat_node)); i >= 0; i--, gnat_temp = Next (gnat_temp)) gnat_expr_array[i] = gnat_temp; else for (i = 0, gnat_temp = First (Expressions (gnat_node)); i < ndim; i++, gnat_temp = Next (gnat_temp)) gnat_expr_array[i] = gnat_temp; for (i = 0, gnu_type = TREE_TYPE (gnu_array_object); i < ndim; i++, gnu_type = TREE_TYPE (gnu_type)) { gcc_assert (TREE_CODE (gnu_type) == ARRAY_TYPE); gnat_temp = gnat_expr_array[i]; gnu_expr = gnat_to_gnu (gnat_temp); if (Do_Range_Check (gnat_temp)) gnu_expr = emit_index_check (gnu_array_object, gnu_expr, TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type))), TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type)))); gnu_result = build_binary_op (ARRAY_REF, NULL_TREE, gnu_result, gnu_expr); } } gnu_result_type = get_unpadded_type (Etype (gnat_node)); break; case N_Slice: { tree gnu_type; Node_Id gnat_range_node = Discrete_Range (gnat_node); gnu_result = gnat_to_gnu (Prefix (gnat_node)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); /* Do any implicit dereferences of the prefix and do any needed range check. */ gnu_result = maybe_implicit_deref (gnu_result); gnu_result = maybe_unconstrained_array (gnu_result); gnu_type = TREE_TYPE (gnu_result); if (Do_Range_Check (gnat_range_node)) { /* Get the bounds of the slice. */ tree gnu_index_type = TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_result_type)); tree gnu_min_expr = TYPE_MIN_VALUE (gnu_index_type); tree gnu_max_expr = TYPE_MAX_VALUE (gnu_index_type); /* Get the permitted bounds. */ tree gnu_base_index_type = TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type)); tree gnu_base_min_expr = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (gnu_base_index_type), gnu_result); tree gnu_base_max_expr = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (gnu_base_index_type), gnu_result); tree gnu_expr_l, gnu_expr_h, gnu_expr_type; gnu_min_expr = protect_multiple_eval (gnu_min_expr); gnu_max_expr = protect_multiple_eval (gnu_max_expr); /* Derive a good type to convert everything to. */ gnu_expr_type = get_base_type (gnu_index_type); /* Test whether the minimum slice value is too small. */ gnu_expr_l = build_binary_op (LT_EXPR, integer_type_node, convert (gnu_expr_type, gnu_min_expr), convert (gnu_expr_type, gnu_base_min_expr)); /* Test whether the maximum slice value is too large. */ gnu_expr_h = build_binary_op (GT_EXPR, integer_type_node, convert (gnu_expr_type, gnu_max_expr), convert (gnu_expr_type, gnu_base_max_expr)); /* Build a slice index check that returns the low bound, assuming the slice is not empty. */ gnu_expr = emit_check (build_binary_op (TRUTH_ORIF_EXPR, integer_type_node, gnu_expr_l, gnu_expr_h), gnu_min_expr, CE_Index_Check_Failed); /* Build a conditional expression that does the index checks and returns the low bound if the slice is not empty (max >= min), and returns the naked low bound otherwise (max < min), unless it is non-constant and the high bound is; this prevents VRP from inferring bogus ranges on the unlikely path. */ gnu_expr = fold_build3 (COND_EXPR, gnu_expr_type, build_binary_op (GE_EXPR, gnu_expr_type, convert (gnu_expr_type, gnu_max_expr), convert (gnu_expr_type, gnu_min_expr)), gnu_expr, TREE_CODE (gnu_min_expr) != INTEGER_CST && TREE_CODE (gnu_max_expr) == INTEGER_CST ? gnu_max_expr : gnu_min_expr); } else /* Simply return the naked low bound. */ gnu_expr = TYPE_MIN_VALUE (TYPE_DOMAIN (gnu_result_type)); gnu_result = build_binary_op (ARRAY_RANGE_REF, gnu_result_type, gnu_result, gnu_expr); } break; case N_Selected_Component: { tree gnu_prefix = gnat_to_gnu (Prefix (gnat_node)); Entity_Id gnat_field = Entity (Selector_Name (gnat_node)); Entity_Id gnat_pref_type = Etype (Prefix (gnat_node)); tree gnu_field; while (IN (Ekind (gnat_pref_type), Incomplete_Or_Private_Kind) || IN (Ekind (gnat_pref_type), Access_Kind)) { if (IN (Ekind (gnat_pref_type), Incomplete_Or_Private_Kind)) gnat_pref_type = Underlying_Type (gnat_pref_type); else if (IN (Ekind (gnat_pref_type), Access_Kind)) gnat_pref_type = Designated_Type (gnat_pref_type); } gnu_prefix = maybe_implicit_deref (gnu_prefix); /* For discriminant references in tagged types always substitute the corresponding discriminant as the actual selected component. */ if (Is_Tagged_Type (gnat_pref_type)) while (Present (Corresponding_Discriminant (gnat_field))) gnat_field = Corresponding_Discriminant (gnat_field); /* For discriminant references of untagged types always substitute the corresponding stored discriminant. */ else if (Present (Corresponding_Discriminant (gnat_field))) gnat_field = Original_Record_Component (gnat_field); /* Handle extracting the real or imaginary part of a complex. The real part is the first field and the imaginary the last. */ if (TREE_CODE (TREE_TYPE (gnu_prefix)) == COMPLEX_TYPE) gnu_result = build_unary_op (Present (Next_Entity (gnat_field)) ? REALPART_EXPR : IMAGPART_EXPR, NULL_TREE, gnu_prefix); else { gnu_field = gnat_to_gnu_field_decl (gnat_field); /* If there are discriminants, the prefix might be evaluated more than once, which is a problem if it has side-effects. */ if (Has_Discriminants (Is_Access_Type (Etype (Prefix (gnat_node))) ? Designated_Type (Etype (Prefix (gnat_node))) : Etype (Prefix (gnat_node)))) gnu_prefix = gnat_stabilize_reference (gnu_prefix, false); gnu_result = build_component_ref (gnu_prefix, NULL_TREE, gnu_field, (Nkind (Parent (gnat_node)) == N_Attribute_Reference)); } gcc_assert (gnu_result); gnu_result_type = get_unpadded_type (Etype (gnat_node)); } break; case N_Attribute_Reference: { /* The attribute designator (like an enumeration value). */ int attribute = Get_Attribute_Id (Attribute_Name (gnat_node)); /* The Elab_Spec and Elab_Body attributes are special in that Prefix is a unit, not an object with a GCC equivalent. Similarly for Elaborated, since that variable isn't otherwise known. */ if (attribute == Attr_Elab_Body || attribute == Attr_Elab_Spec) return (create_subprog_decl (create_concat_name (Entity (Prefix (gnat_node)), attribute == Attr_Elab_Body ? "elabb" : "elabs"), NULL_TREE, void_ftype, NULL_TREE, false, true, true, NULL, gnat_node)); gnu_result = Attribute_to_gnu (gnat_node, &gnu_result_type, attribute); } break; case N_Reference: /* Like 'Access as far as we are concerned. */ gnu_result = gnat_to_gnu (Prefix (gnat_node)); gnu_result = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_result); gnu_result_type = get_unpadded_type (Etype (gnat_node)); break; case N_Aggregate: case N_Extension_Aggregate: { tree gnu_aggr_type; /* ??? It is wrong to evaluate the type now, but there doesn't seem to be any other practical way of doing it. */ gcc_assert (!Expansion_Delayed (gnat_node)); gnu_aggr_type = gnu_result_type = get_unpadded_type (Etype (gnat_node)); if (TREE_CODE (gnu_result_type) == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (gnu_result_type)) gnu_aggr_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_result_type))); if (Null_Record_Present (gnat_node)) gnu_result = gnat_build_constructor (gnu_aggr_type, NULL_TREE); else if (TREE_CODE (gnu_aggr_type) == RECORD_TYPE || TREE_CODE (gnu_aggr_type) == UNION_TYPE) gnu_result = assoc_to_constructor (Etype (gnat_node), First (Component_Associations (gnat_node)), gnu_aggr_type); else if (TREE_CODE (gnu_aggr_type) == ARRAY_TYPE) gnu_result = pos_to_constructor (First (Expressions (gnat_node)), gnu_aggr_type, Component_Type (Etype (gnat_node))); else if (TREE_CODE (gnu_aggr_type) == COMPLEX_TYPE) gnu_result = build_binary_op (COMPLEX_EXPR, gnu_aggr_type, gnat_to_gnu (Expression (First (Component_Associations (gnat_node)))), gnat_to_gnu (Expression (Next (First (Component_Associations (gnat_node)))))); else gcc_unreachable (); gnu_result = convert (gnu_result_type, gnu_result); } break; case N_Null: if (TARGET_VTABLE_USES_DESCRIPTORS && Ekind (Etype (gnat_node)) == E_Access_Subprogram_Type && Is_Dispatch_Table_Entity (Etype (gnat_node))) gnu_result = null_fdesc_node; else gnu_result = null_pointer_node; gnu_result_type = get_unpadded_type (Etype (gnat_node)); break; case N_Type_Conversion: case N_Qualified_Expression: /* Get the operand expression. */ gnu_result = gnat_to_gnu (Expression (gnat_node)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = convert_with_check (Etype (gnat_node), gnu_result, Do_Overflow_Check (gnat_node), Do_Range_Check (Expression (gnat_node)), Nkind (gnat_node) == N_Type_Conversion && Float_Truncate (gnat_node)); break; case N_Unchecked_Type_Conversion: gnu_result = gnat_to_gnu (Expression (gnat_node)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); /* If the result is a pointer type, see if we are improperly converting to a stricter alignment. */ if (STRICT_ALIGNMENT && POINTER_TYPE_P (gnu_result_type) && IN (Ekind (Etype (gnat_node)), Access_Kind)) { unsigned int align = known_alignment (gnu_result); tree gnu_obj_type = TREE_TYPE (gnu_result_type); unsigned int oalign = TYPE_ALIGN (gnu_obj_type); if (align != 0 && align < oalign && !TYPE_ALIGN_OK (gnu_obj_type)) post_error_ne_tree_2 ("?source alignment (^) '< alignment of & (^)", gnat_node, Designated_Type (Etype (gnat_node)), size_int (align / BITS_PER_UNIT), oalign / BITS_PER_UNIT); } /* If we are converting a descriptor to a function pointer, first build the pointer. */ if (TARGET_VTABLE_USES_DESCRIPTORS && TREE_TYPE (gnu_result) == fdesc_type_node && POINTER_TYPE_P (gnu_result_type)) gnu_result = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_result); gnu_result = unchecked_convert (gnu_result_type, gnu_result, No_Truncation (gnat_node)); break; case N_In: case N_Not_In: { tree gnu_object = gnat_to_gnu (Left_Opnd (gnat_node)); Node_Id gnat_range = Right_Opnd (gnat_node); tree gnu_low; tree gnu_high; /* GNAT_RANGE is either an N_Range node or an identifier denoting a subtype. */ if (Nkind (gnat_range) == N_Range) { gnu_low = gnat_to_gnu (Low_Bound (gnat_range)); gnu_high = gnat_to_gnu (High_Bound (gnat_range)); } else if (Nkind (gnat_range) == N_Identifier || Nkind (gnat_range) == N_Expanded_Name) { tree gnu_range_type = get_unpadded_type (Entity (gnat_range)); gnu_low = TYPE_MIN_VALUE (gnu_range_type); gnu_high = TYPE_MAX_VALUE (gnu_range_type); } else gcc_unreachable (); gnu_result_type = get_unpadded_type (Etype (gnat_node)); /* If LOW and HIGH are identical, perform an equality test. Otherwise, ensure that GNU_OBJECT is only evaluated once and perform a full range test. */ if (operand_equal_p (gnu_low, gnu_high, 0)) gnu_result = build_binary_op (EQ_EXPR, gnu_result_type, gnu_object, gnu_low); else { gnu_object = protect_multiple_eval (gnu_object); gnu_result = build_binary_op (TRUTH_ANDIF_EXPR, gnu_result_type, build_binary_op (GE_EXPR, gnu_result_type, gnu_object, gnu_low), build_binary_op (LE_EXPR, gnu_result_type, gnu_object, gnu_high)); } if (Nkind (gnat_node) == N_Not_In) gnu_result = invert_truthvalue (gnu_result); } break; case N_Op_Divide: gnu_lhs = gnat_to_gnu (Left_Opnd (gnat_node)); gnu_rhs = gnat_to_gnu (Right_Opnd (gnat_node)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_binary_op (FLOAT_TYPE_P (gnu_result_type) ? RDIV_EXPR : (Rounded_Result (gnat_node) ? ROUND_DIV_EXPR : TRUNC_DIV_EXPR), gnu_result_type, gnu_lhs, gnu_rhs); break; case N_Op_Or: case N_Op_And: case N_Op_Xor: /* These can either be operations on booleans or on modular types. Fall through for boolean types since that's the way GNU_CODES is set up. */ if (IN (Ekind (Underlying_Type (Etype (gnat_node))), Modular_Integer_Kind)) { enum tree_code code = (Nkind (gnat_node) == N_Op_Or ? BIT_IOR_EXPR : Nkind (gnat_node) == N_Op_And ? BIT_AND_EXPR : BIT_XOR_EXPR); gnu_lhs = gnat_to_gnu (Left_Opnd (gnat_node)); gnu_rhs = gnat_to_gnu (Right_Opnd (gnat_node)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_binary_op (code, gnu_result_type, gnu_lhs, gnu_rhs); break; } /* ... fall through ... */ case N_Op_Eq: case N_Op_Ne: case N_Op_Lt: case N_Op_Le: case N_Op_Gt: case N_Op_Ge: case N_Op_Add: case N_Op_Subtract: case N_Op_Multiply: case N_Op_Mod: case N_Op_Rem: case N_Op_Rotate_Left: case N_Op_Rotate_Right: case N_Op_Shift_Left: case N_Op_Shift_Right: case N_Op_Shift_Right_Arithmetic: case N_And_Then: case N_Or_Else: { enum tree_code code = gnu_codes[Nkind (gnat_node)]; bool ignore_lhs_overflow = false; tree gnu_type; gnu_lhs = gnat_to_gnu (Left_Opnd (gnat_node)); gnu_rhs = gnat_to_gnu (Right_Opnd (gnat_node)); gnu_type = gnu_result_type = get_unpadded_type (Etype (gnat_node)); /* If this is a comparison operator, convert any references to an unconstrained array value into a reference to the actual array. */ if (TREE_CODE_CLASS (code) == tcc_comparison) { gnu_lhs = maybe_unconstrained_array (gnu_lhs); gnu_rhs = maybe_unconstrained_array (gnu_rhs); } /* If the result type is a private type, its full view may be a numeric subtype. The representation we need is that of its base type, given that it is the result of an arithmetic operation. */ else if (Is_Private_Type (Etype (gnat_node))) gnu_type = gnu_result_type = get_unpadded_type (Base_Type (Full_View (Etype (gnat_node)))); /* If this is a shift whose count is not guaranteed to be correct, we need to adjust the shift count. */ if (IN (Nkind (gnat_node), N_Op_Shift) && !Shift_Count_OK (gnat_node)) { tree gnu_count_type = get_base_type (TREE_TYPE (gnu_rhs)); tree gnu_max_shift = convert (gnu_count_type, TYPE_SIZE (gnu_type)); if (Nkind (gnat_node) == N_Op_Rotate_Left || Nkind (gnat_node) == N_Op_Rotate_Right) gnu_rhs = build_binary_op (TRUNC_MOD_EXPR, gnu_count_type, gnu_rhs, gnu_max_shift); else if (Nkind (gnat_node) == N_Op_Shift_Right_Arithmetic) gnu_rhs = build_binary_op (MIN_EXPR, gnu_count_type, build_binary_op (MINUS_EXPR, gnu_count_type, gnu_max_shift, convert (gnu_count_type, integer_one_node)), gnu_rhs); } /* For right shifts, the type says what kind of shift to do, so we may need to choose a different type. In this case, we have to ignore integer overflow lest it propagates all the way down and causes a CE to be explicitly raised. */ if (Nkind (gnat_node) == N_Op_Shift_Right && !TYPE_UNSIGNED (gnu_type)) { gnu_type = gnat_unsigned_type (gnu_type); ignore_lhs_overflow = true; } else if (Nkind (gnat_node) == N_Op_Shift_Right_Arithmetic && TYPE_UNSIGNED (gnu_type)) { gnu_type = gnat_signed_type (gnu_type); ignore_lhs_overflow = true; } if (gnu_type != gnu_result_type) { tree gnu_old_lhs = gnu_lhs; gnu_lhs = convert (gnu_type, gnu_lhs); if (TREE_CODE (gnu_lhs) == INTEGER_CST && ignore_lhs_overflow) TREE_OVERFLOW (gnu_lhs) = TREE_OVERFLOW (gnu_old_lhs); gnu_rhs = convert (gnu_type, gnu_rhs); } /* Instead of expanding overflow checks for addition, subtraction and multiplication itself, the front end will leave this to the back end when Backend_Overflow_Checks_On_Target is set. As the GCC back end itself does not know yet how to properly do overflow checking, do it here. The goal is to push the expansions further into the back end over time. */ if (Do_Overflow_Check (gnat_node) && Backend_Overflow_Checks_On_Target && (Nkind (gnat_node) == N_Op_Add || Nkind (gnat_node) == N_Op_Subtract || Nkind (gnat_node) == N_Op_Multiply) && !TYPE_UNSIGNED (gnu_type) && !FLOAT_TYPE_P (gnu_type)) gnu_result = build_binary_op_trapv (code, gnu_type, gnu_lhs, gnu_rhs); else gnu_result = build_binary_op (code, gnu_type, gnu_lhs, gnu_rhs); /* If this is a logical shift with the shift count not verified, we must return zero if it is too large. We cannot compensate above in this case. */ if ((Nkind (gnat_node) == N_Op_Shift_Left || Nkind (gnat_node) == N_Op_Shift_Right) && !Shift_Count_OK (gnat_node)) gnu_result = build_cond_expr (gnu_type, build_binary_op (GE_EXPR, integer_type_node, gnu_rhs, convert (TREE_TYPE (gnu_rhs), TYPE_SIZE (gnu_type))), convert (gnu_type, integer_zero_node), gnu_result); } break; case N_Conditional_Expression: { tree gnu_cond = gnat_to_gnu (First (Expressions (gnat_node))); tree gnu_true = gnat_to_gnu (Next (First (Expressions (gnat_node)))); tree gnu_false = gnat_to_gnu (Next (Next (First (Expressions (gnat_node))))); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_cond_expr (gnu_result_type, gnat_truthvalue_conversion (gnu_cond), gnu_true, gnu_false); } break; case N_Op_Plus: gnu_result = gnat_to_gnu (Right_Opnd (gnat_node)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); break; case N_Op_Not: /* This case can apply to a boolean or a modular type. Fall through for a boolean operand since GNU_CODES is set up to handle this. */ if (Is_Modular_Integer_Type (Etype (gnat_node)) || (Ekind (Etype (gnat_node)) == E_Private_Type && Is_Modular_Integer_Type (Full_View (Etype (gnat_node))))) { gnu_expr = gnat_to_gnu (Right_Opnd (gnat_node)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_unary_op (BIT_NOT_EXPR, gnu_result_type, gnu_expr); break; } /* ... fall through ... */ case N_Op_Minus: case N_Op_Abs: gnu_expr = gnat_to_gnu (Right_Opnd (gnat_node)); if (Ekind (Etype (gnat_node)) != E_Private_Type) gnu_result_type = get_unpadded_type (Etype (gnat_node)); else gnu_result_type = get_unpadded_type (Base_Type (Full_View (Etype (gnat_node)))); if (Do_Overflow_Check (gnat_node) && !TYPE_UNSIGNED (gnu_result_type) && !FLOAT_TYPE_P (gnu_result_type)) gnu_result = build_unary_op_trapv (gnu_codes[Nkind (gnat_node)], gnu_result_type, gnu_expr); else gnu_result = build_unary_op (gnu_codes[Nkind (gnat_node)], gnu_result_type, gnu_expr); break; case N_Allocator: { tree gnu_init = 0; tree gnu_type; bool ignore_init_type = false; gnat_temp = Expression (gnat_node); /* The Expression operand can either be an N_Identifier or Expanded_Name, which must represent a type, or a N_Qualified_Expression, which contains both the object type and an initial value for the object. */ if (Nkind (gnat_temp) == N_Identifier || Nkind (gnat_temp) == N_Expanded_Name) gnu_type = gnat_to_gnu_type (Entity (gnat_temp)); else if (Nkind (gnat_temp) == N_Qualified_Expression) { Entity_Id gnat_desig_type = Designated_Type (Underlying_Type (Etype (gnat_node))); ignore_init_type = Has_Constrained_Partial_View (gnat_desig_type); gnu_init = gnat_to_gnu (Expression (gnat_temp)); gnu_init = maybe_unconstrained_array (gnu_init); if (Do_Range_Check (Expression (gnat_temp))) gnu_init = emit_range_check (gnu_init, gnat_desig_type); if (Is_Elementary_Type (gnat_desig_type) || Is_Constrained (gnat_desig_type)) { gnu_type = gnat_to_gnu_type (gnat_desig_type); gnu_init = convert (gnu_type, gnu_init); } else { gnu_type = gnat_to_gnu_type (Etype (Expression (gnat_temp))); if (TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE) gnu_type = TREE_TYPE (gnu_init); gnu_init = convert (gnu_type, gnu_init); } } else gcc_unreachable (); gnu_result_type = get_unpadded_type (Etype (gnat_node)); return build_allocator (gnu_type, gnu_init, gnu_result_type, Procedure_To_Call (gnat_node), Storage_Pool (gnat_node), gnat_node, ignore_init_type); } break; /***************************/ /* Chapter 5: Statements: */ /***************************/ case N_Label: gnu_result = build1 (LABEL_EXPR, void_type_node, gnat_to_gnu (Identifier (gnat_node))); break; case N_Null_Statement: gnu_result = alloc_stmt_list (); break; case N_Assignment_Statement: /* Get the LHS and RHS of the statement and convert any reference to an unconstrained array into a reference to the underlying array. If we are not to do range checking and the RHS is an N_Function_Call, pass the LHS to the call function. */ gnu_lhs = maybe_unconstrained_array (gnat_to_gnu (Name (gnat_node))); /* If the type has a size that overflows, convert this into raise of Storage_Error: execution shouldn't have gotten here anyway. */ if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (gnu_lhs))) == INTEGER_CST && TREE_OVERFLOW (TYPE_SIZE_UNIT (TREE_TYPE (gnu_lhs)))) gnu_result = build_call_raise (SE_Object_Too_Large, gnat_node, N_Raise_Storage_Error); else if (Nkind (Expression (gnat_node)) == N_Function_Call && !Do_Range_Check (Expression (gnat_node))) gnu_result = call_to_gnu (Expression (gnat_node), &gnu_result_type, gnu_lhs); else { gnu_rhs = maybe_unconstrained_array (gnat_to_gnu (Expression (gnat_node))); /* If range check is needed, emit code to generate it. */ if (Do_Range_Check (Expression (gnat_node))) gnu_rhs = emit_range_check (gnu_rhs, Etype (Name (gnat_node))); gnu_result = build_binary_op (MODIFY_EXPR, NULL_TREE, gnu_lhs, gnu_rhs); /* If the type being assigned is an array type and the two sides are not completely disjoint, play safe and use memmove. */ if (TREE_CODE (gnu_result) == MODIFY_EXPR && Is_Array_Type (Etype (Name (gnat_node))) && !(Forwards_OK (gnat_node) && Backwards_OK (gnat_node))) { tree to, from, size, to_ptr, from_ptr, t; to = TREE_OPERAND (gnu_result, 0); from = TREE_OPERAND (gnu_result, 1); size = TYPE_SIZE_UNIT (TREE_TYPE (from)); size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, from); to_ptr = build_fold_addr_expr (to); from_ptr = build_fold_addr_expr (from); t = implicit_built_in_decls[BUILT_IN_MEMMOVE]; gnu_result = build_call_expr (t, 3, to_ptr, from_ptr, size); } } break; case N_If_Statement: { tree *gnu_else_ptr; /* Point to put next "else if" or "else". */ /* Make the outer COND_EXPR. Avoid non-determinism. */ gnu_result = build3 (COND_EXPR, void_type_node, gnat_to_gnu (Condition (gnat_node)), NULL_TREE, NULL_TREE); COND_EXPR_THEN (gnu_result) = build_stmt_group (Then_Statements (gnat_node), false); TREE_SIDE_EFFECTS (gnu_result) = 1; gnu_else_ptr = &COND_EXPR_ELSE (gnu_result); /* Now make a COND_EXPR for each of the "else if" parts. Put each into the previous "else" part and point to where to put any outer "else". Also avoid non-determinism. */ if (Present (Elsif_Parts (gnat_node))) for (gnat_temp = First (Elsif_Parts (gnat_node)); Present (gnat_temp); gnat_temp = Next (gnat_temp)) { gnu_expr = build3 (COND_EXPR, void_type_node, gnat_to_gnu (Condition (gnat_temp)), NULL_TREE, NULL_TREE); COND_EXPR_THEN (gnu_expr) = build_stmt_group (Then_Statements (gnat_temp), false); TREE_SIDE_EFFECTS (gnu_expr) = 1; set_expr_location_from_node (gnu_expr, gnat_temp); *gnu_else_ptr = gnu_expr; gnu_else_ptr = &COND_EXPR_ELSE (gnu_expr); } *gnu_else_ptr = build_stmt_group (Else_Statements (gnat_node), false); } break; case N_Case_Statement: gnu_result = Case_Statement_to_gnu (gnat_node); break; case N_Loop_Statement: gnu_result = Loop_Statement_to_gnu (gnat_node); break; case N_Block_Statement: start_stmt_group (); gnat_pushlevel (); process_decls (Declarations (gnat_node), Empty, Empty, true, true); add_stmt (gnat_to_gnu (Handled_Statement_Sequence (gnat_node))); gnat_poplevel (); gnu_result = end_stmt_group (); if (Present (Identifier (gnat_node))) mark_out_of_scope (Entity (Identifier (gnat_node))); break; case N_Exit_Statement: gnu_result = build2 (EXIT_STMT, void_type_node, (Present (Condition (gnat_node)) ? gnat_to_gnu (Condition (gnat_node)) : NULL_TREE), (Present (Name (gnat_node)) ? get_gnu_tree (Entity (Name (gnat_node))) : TREE_VALUE (gnu_loop_label_stack))); break; case N_Return_Statement: { /* The gnu function type of the subprogram currently processed. */ tree gnu_subprog_type = TREE_TYPE (current_function_decl); /* The return value from the subprogram. */ tree gnu_ret_val = NULL_TREE; /* The place to put the return value. */ tree gnu_lhs; /* If we are dealing with a "return;" from an Ada procedure with parameters passed by copy in copy out, we need to return a record containing the final values of these parameters. If the list contains only one entry, return just that entry. For a full description of the copy in copy out parameter mechanism, see the part of the gnat_to_gnu_entity routine dealing with the translation of subprograms. But if we have a return label defined, convert this into a branch to that label. */ if (TREE_VALUE (gnu_return_label_stack)) { gnu_result = build1 (GOTO_EXPR, void_type_node, TREE_VALUE (gnu_return_label_stack)); break; } else if (TYPE_CI_CO_LIST (gnu_subprog_type)) { gnu_lhs = DECL_RESULT (current_function_decl); if (list_length (TYPE_CI_CO_LIST (gnu_subprog_type)) == 1) gnu_ret_val = TREE_VALUE (TYPE_CI_CO_LIST (gnu_subprog_type)); else gnu_ret_val = gnat_build_constructor (TREE_TYPE (gnu_subprog_type), TYPE_CI_CO_LIST (gnu_subprog_type)); } /* If the Ada subprogram is a function, we just need to return the expression. If the subprogram returns an unconstrained array, we have to allocate a new version of the result and return it. If we return by reference, return a pointer. */ else if (Present (Expression (gnat_node))) { /* If the current function returns by target pointer and we are doing a call, pass that target to the call. */ if (TYPE_RETURNS_BY_TARGET_PTR_P (gnu_subprog_type) && Nkind (Expression (gnat_node)) == N_Function_Call) { gnu_lhs = build_unary_op (INDIRECT_REF, NULL_TREE, DECL_ARGUMENTS (current_function_decl)); gnu_result = call_to_gnu (Expression (gnat_node), &gnu_result_type, gnu_lhs); } else { gnu_ret_val = gnat_to_gnu (Expression (gnat_node)); if (TYPE_RETURNS_BY_TARGET_PTR_P (gnu_subprog_type)) /* The original return type was unconstrained so dereference the TARGET pointer in the actual return value's type. */ gnu_lhs = build_unary_op (INDIRECT_REF, TREE_TYPE (gnu_ret_val), DECL_ARGUMENTS (current_function_decl)); else gnu_lhs = DECL_RESULT (current_function_decl); /* Do not remove the padding from GNU_RET_VAL if the inner type is self-referential since we want to allocate the fixed size in that case. */ if (TREE_CODE (gnu_ret_val) == COMPONENT_REF && (TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_ret_val, 0))) == RECORD_TYPE) && (TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_ret_val, 0)))) && (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (TREE_TYPE (gnu_ret_val))))) gnu_ret_val = TREE_OPERAND (gnu_ret_val, 0); if (TYPE_RETURNS_BY_REF_P (gnu_subprog_type) || By_Ref (gnat_node)) gnu_ret_val = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_ret_val); else if (TYPE_RETURNS_UNCONSTRAINED_P (gnu_subprog_type)) { gnu_ret_val = maybe_unconstrained_array (gnu_ret_val); gnu_ret_val = build_allocator (TREE_TYPE (gnu_ret_val), gnu_ret_val, TREE_TYPE (gnu_subprog_type), Procedure_To_Call (gnat_node), Storage_Pool (gnat_node), gnat_node, false); } } } else /* If the Ada subprogram is a regular procedure, just return. */ gnu_lhs = NULL_TREE; if (TYPE_RETURNS_BY_TARGET_PTR_P (gnu_subprog_type)) { if (gnu_ret_val) gnu_result = build_binary_op (MODIFY_EXPR, NULL_TREE, gnu_lhs, gnu_ret_val); add_stmt_with_node (gnu_result, gnat_node); gnu_lhs = NULL_TREE; } gnu_result = build_return_expr (gnu_lhs, gnu_ret_val); } break; case N_Goto_Statement: gnu_result = build1 (GOTO_EXPR, void_type_node, gnat_to_gnu (Name (gnat_node))); break; /****************************/ /* Chapter 6: Subprograms: */ /****************************/ case N_Subprogram_Declaration: /* Unless there is a freeze node, declare the subprogram. We consider this a "definition" even though we're not generating code for the subprogram because we will be making the corresponding GCC node here. */ if (No (Freeze_Node (Defining_Entity (Specification (gnat_node))))) gnat_to_gnu_entity (Defining_Entity (Specification (gnat_node)), NULL_TREE, 1); gnu_result = alloc_stmt_list (); break; case N_Abstract_Subprogram_Declaration: /* This subprogram doesn't exist for code generation purposes, but we have to elaborate the types of any parameters and result, unless they are imported types (nothing to generate in this case). */ /* Process the parameter types first. */ for (gnat_temp = First_Formal_With_Extras (Defining_Entity (Specification (gnat_node))); Present (gnat_temp); gnat_temp = Next_Formal_With_Extras (gnat_temp)) if (Is_Itype (Etype (gnat_temp)) && !From_With_Type (Etype (gnat_temp))) gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, 0); /* Then the result type, set to Standard_Void_Type for procedures. */ { Entity_Id gnat_temp_type = Etype (Defining_Entity (Specification (gnat_node))); if (Is_Itype (gnat_temp_type) && !From_With_Type (gnat_temp_type)) gnat_to_gnu_entity (Etype (gnat_temp_type), NULL_TREE, 0); } gnu_result = alloc_stmt_list (); break; case N_Defining_Program_Unit_Name: /* For a child unit identifier go up a level to get the specification. We get this when we try to find the spec of a child unit package that is the compilation unit being compiled. */ gnu_result = gnat_to_gnu (Parent (gnat_node)); break; case N_Subprogram_Body: Subprogram_Body_to_gnu (gnat_node); gnu_result = alloc_stmt_list (); break; case N_Function_Call: case N_Procedure_Call_Statement: gnu_result = call_to_gnu (gnat_node, &gnu_result_type, NULL_TREE); break; /*************************/ /* Chapter 7: Packages: */ /*************************/ case N_Package_Declaration: gnu_result = gnat_to_gnu (Specification (gnat_node)); break; case N_Package_Specification: start_stmt_group (); process_decls (Visible_Declarations (gnat_node), Private_Declarations (gnat_node), Empty, true, true); gnu_result = end_stmt_group (); break; case N_Package_Body: /* If this is the body of a generic package - do nothing */ if (Ekind (Corresponding_Spec (gnat_node)) == E_Generic_Package) { gnu_result = alloc_stmt_list (); break; } start_stmt_group (); process_decls (Declarations (gnat_node), Empty, Empty, true, true); if (Present (Handled_Statement_Sequence (gnat_node))) add_stmt (gnat_to_gnu (Handled_Statement_Sequence (gnat_node))); gnu_result = end_stmt_group (); break; /*********************************/ /* Chapter 8: Visibility Rules: */ /*********************************/ case N_Use_Package_Clause: case N_Use_Type_Clause: /* Nothing to do here - but these may appear in list of declarations */ gnu_result = alloc_stmt_list (); break; /***********************/ /* Chapter 9: Tasks: */ /***********************/ case N_Protected_Type_Declaration: gnu_result = alloc_stmt_list (); break; case N_Single_Task_Declaration: gnat_to_gnu_entity (Defining_Entity (gnat_node), NULL_TREE, 1); gnu_result = alloc_stmt_list (); break; /***********************************************************/ /* Chapter 10: Program Structure and Compilation Issues: */ /***********************************************************/ case N_Compilation_Unit: /* This is not called for the main unit, which is handled in function gigi above. */ start_stmt_group (); gnat_pushlevel (); Compilation_Unit_to_gnu (gnat_node); gnu_result = alloc_stmt_list (); break; case N_Subprogram_Body_Stub: case N_Package_Body_Stub: case N_Protected_Body_Stub: case N_Task_Body_Stub: /* Simply process whatever unit is being inserted. */ gnu_result = gnat_to_gnu (Unit (Library_Unit (gnat_node))); break; case N_Subunit: gnu_result = gnat_to_gnu (Proper_Body (gnat_node)); break; /***************************/ /* Chapter 11: Exceptions: */ /***************************/ case N_Handled_Sequence_Of_Statements: /* If there is an At_End procedure attached to this node, and the EH mechanism is SJLJ, we must have at least a corresponding At_End handler, unless the No_Exception_Handlers restriction is set. */ gcc_assert (type_annotate_only || Exception_Mechanism != Setjmp_Longjmp || No (At_End_Proc (gnat_node)) || Present (Exception_Handlers (gnat_node)) || No_Exception_Handlers_Set ()); gnu_result = Handled_Sequence_Of_Statements_to_gnu (gnat_node); break; case N_Exception_Handler: if (Exception_Mechanism == Setjmp_Longjmp) gnu_result = Exception_Handler_to_gnu_sjlj (gnat_node); else if (Exception_Mechanism == Back_End_Exceptions) gnu_result = Exception_Handler_to_gnu_zcx (gnat_node); else gcc_unreachable (); break; case N_Push_Constraint_Error_Label: push_exception_label_stack (&gnu_constraint_error_label_stack, Exception_Label (gnat_node)); break; case N_Push_Storage_Error_Label: push_exception_label_stack (&gnu_storage_error_label_stack, Exception_Label (gnat_node)); break; case N_Push_Program_Error_Label: push_exception_label_stack (&gnu_program_error_label_stack, Exception_Label (gnat_node)); break; case N_Pop_Constraint_Error_Label: gnu_constraint_error_label_stack = TREE_CHAIN (gnu_constraint_error_label_stack); break; case N_Pop_Storage_Error_Label: gnu_storage_error_label_stack = TREE_CHAIN (gnu_storage_error_label_stack); break; case N_Pop_Program_Error_Label: gnu_program_error_label_stack = TREE_CHAIN (gnu_program_error_label_stack); break; /*******************************/ /* Chapter 12: Generic Units: */ /*******************************/ case N_Generic_Function_Renaming_Declaration: case N_Generic_Package_Renaming_Declaration: case N_Generic_Procedure_Renaming_Declaration: case N_Generic_Package_Declaration: case N_Generic_Subprogram_Declaration: case N_Package_Instantiation: case N_Procedure_Instantiation: case N_Function_Instantiation: /* These nodes can appear on a declaration list but there is nothing to to be done with them. */ gnu_result = alloc_stmt_list (); break; /***************************************************/ /* Chapter 13: Representation Clauses and */ /* Implementation-Dependent Features: */ /***************************************************/ case N_Attribute_Definition_Clause: gnu_result = alloc_stmt_list (); /* The only one we need to deal with is 'Address since, for the others, the front-end puts the information elsewhere. */ if (Get_Attribute_Id (Chars (gnat_node)) != Attr_Address) break; /* And we only deal with 'Address if the object has a Freeze node. */ gnat_temp = Entity (Name (gnat_node)); if (No (Freeze_Node (gnat_temp))) break; /* Get the value to use as the address and save it as the equivalent for the object. When it is frozen, gnat_to_gnu_entity will do the right thing. */ save_gnu_tree (gnat_temp, gnat_to_gnu (Expression (gnat_node)), true); break; case N_Enumeration_Representation_Clause: case N_Record_Representation_Clause: case N_At_Clause: /* We do nothing with these. SEM puts the information elsewhere. */ gnu_result = alloc_stmt_list (); break; case N_Code_Statement: if (!type_annotate_only) { tree gnu_template = gnat_to_gnu (Asm_Template (gnat_node)); tree gnu_inputs = NULL_TREE, gnu_outputs = NULL_TREE; tree gnu_clobbers = NULL_TREE, tail; bool allows_mem, allows_reg, fake; int ninputs, noutputs, i; const char **oconstraints; const char *constraint; char *clobber; /* First retrieve the 3 operand lists built by the front-end. */ Setup_Asm_Outputs (gnat_node); while (Present (gnat_temp = Asm_Output_Variable ())) { tree gnu_value = gnat_to_gnu (gnat_temp); tree gnu_constr = build_tree_list (NULL_TREE, gnat_to_gnu (Asm_Output_Constraint ())); gnu_outputs = tree_cons (gnu_constr, gnu_value, gnu_outputs); Next_Asm_Output (); } Setup_Asm_Inputs (gnat_node); while (Present (gnat_temp = Asm_Input_Value ())) { tree gnu_value = gnat_to_gnu (gnat_temp); tree gnu_constr = build_tree_list (NULL_TREE, gnat_to_gnu (Asm_Input_Constraint ())); gnu_inputs = tree_cons (gnu_constr, gnu_value, gnu_inputs); Next_Asm_Input (); } Clobber_Setup (gnat_node); while ((clobber = Clobber_Get_Next ())) gnu_clobbers = tree_cons (NULL_TREE, build_string (strlen (clobber) + 1, clobber), gnu_clobbers); /* Then perform some standard checking and processing on the operands. In particular, mark them addressable if needed. */ gnu_outputs = nreverse (gnu_outputs); noutputs = list_length (gnu_outputs); gnu_inputs = nreverse (gnu_inputs); ninputs = list_length (gnu_inputs); oconstraints = (const char **) alloca (noutputs * sizeof (const char *)); for (i = 0, tail = gnu_outputs; tail; ++i, tail = TREE_CHAIN (tail)) { tree output = TREE_VALUE (tail); constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail))); oconstraints[i] = constraint; if (parse_output_constraint (&constraint, i, ninputs, noutputs, &allows_mem, &allows_reg, &fake)) { /* If the operand is going to end up in memory, mark it addressable. Note that we don't test allows_mem like in the input case below; this is modelled on the C front-end. */ if (!allows_reg && !gnat_mark_addressable (output)) output = error_mark_node; } else output = error_mark_node; TREE_VALUE (tail) = output; } for (i = 0, tail = gnu_inputs; tail; ++i, tail = TREE_CHAIN (tail)) { tree input = TREE_VALUE (tail); constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail))); if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0, oconstraints, &allows_mem, &allows_reg)) { /* If the operand is going to end up in memory, mark it addressable. */ if (!allows_reg && allows_mem && !gnat_mark_addressable (input)) input = error_mark_node; } else input = error_mark_node; TREE_VALUE (tail) = input; } gnu_result = build4 (ASM_EXPR, void_type_node, gnu_template, gnu_outputs, gnu_inputs, gnu_clobbers); ASM_VOLATILE_P (gnu_result) = Is_Asm_Volatile (gnat_node); } else gnu_result = alloc_stmt_list (); break; /***************************************************/ /* Added Nodes */ /***************************************************/ case N_Freeze_Entity: start_stmt_group (); process_freeze_entity (gnat_node); process_decls (Actions (gnat_node), Empty, Empty, true, true); gnu_result = end_stmt_group (); break; case N_Itype_Reference: if (!present_gnu_tree (Itype (gnat_node))) process_type (Itype (gnat_node)); gnu_result = alloc_stmt_list (); break; case N_Free_Statement: if (!type_annotate_only) { tree gnu_ptr = gnat_to_gnu (Expression (gnat_node)); tree gnu_ptr_type = TREE_TYPE (gnu_ptr); tree gnu_obj_type; tree gnu_actual_obj_type = 0; tree gnu_obj_size; unsigned int align; unsigned int default_allocator_alignment = get_target_default_allocator_alignment () * BITS_PER_UNIT; /* If this is a thin pointer, we must dereference it to create a fat pointer, then go back below to a thin pointer. The reason for this is that we need a fat pointer someplace in order to properly compute the size. */ if (TYPE_THIN_POINTER_P (TREE_TYPE (gnu_ptr))) gnu_ptr = build_unary_op (ADDR_EXPR, NULL_TREE, build_unary_op (INDIRECT_REF, NULL_TREE, gnu_ptr)); /* If this is an unconstrained array, we know the object must have been allocated with the template in front of the object. So pass the template address, but get the total size. Do this by converting to a thin pointer. */ if (TYPE_FAT_POINTER_P (TREE_TYPE (gnu_ptr))) gnu_ptr = convert (build_pointer_type (TYPE_OBJECT_RECORD_TYPE (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (gnu_ptr)))), gnu_ptr); gnu_obj_type = TREE_TYPE (TREE_TYPE (gnu_ptr)); if (Present (Actual_Designated_Subtype (gnat_node))) { gnu_actual_obj_type = gnat_to_gnu_type (Actual_Designated_Subtype (gnat_node)); if (TYPE_FAT_OR_THIN_POINTER_P (gnu_ptr_type)) gnu_actual_obj_type = build_unc_object_type_from_ptr (gnu_ptr_type, gnu_actual_obj_type, get_identifier ("DEALLOC")); } else gnu_actual_obj_type = gnu_obj_type; gnu_obj_size = TYPE_SIZE_UNIT (gnu_actual_obj_type); align = TYPE_ALIGN (gnu_obj_type); if (TREE_CODE (gnu_obj_type) == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (gnu_obj_type)) { tree gnu_char_ptr_type = build_pointer_type (char_type_node); tree gnu_pos = byte_position (TYPE_FIELDS (gnu_obj_type)); tree gnu_byte_offset = convert (sizetype, size_diffop (size_zero_node, gnu_pos)); gnu_byte_offset = fold_build1 (NEGATE_EXPR, sizetype, gnu_byte_offset); gnu_ptr = convert (gnu_char_ptr_type, gnu_ptr); gnu_ptr = build_binary_op (POINTER_PLUS_EXPR, gnu_char_ptr_type, gnu_ptr, gnu_byte_offset); } /* If the object was allocated from the default storage pool, the alignment was greater than what the allocator provides, and this is not a fat or thin pointer, what we have in gnu_ptr here is an address dynamically adjusted to match the alignment requirement (see build_allocator). What we need to pass to free is the initial allocator's return value, which has been stored just in front of the block we have. */ if (No (Procedure_To_Call (gnat_node)) && align > default_allocator_alignment && ! TYPE_FAT_OR_THIN_POINTER_P (gnu_ptr_type)) { /* We set GNU_PTR as * (void **)((void *)GNU_PTR - (void *)sizeof(void *)) in two steps: */ /* GNU_PTR (void *) = (void *)GNU_PTR - (void *)sizeof (void *)) */ gnu_ptr = build_binary_op (POINTER_PLUS_EXPR, ptr_void_type_node, convert (ptr_void_type_node, gnu_ptr), size_int (-POINTER_SIZE/BITS_PER_UNIT)); /* GNU_PTR (void *) = *(void **)GNU_PTR */ gnu_ptr = build_unary_op (INDIRECT_REF, NULL_TREE, convert (build_pointer_type (ptr_void_type_node), gnu_ptr)); } gnu_result = build_call_alloc_dealloc (gnu_ptr, gnu_obj_size, align, Procedure_To_Call (gnat_node), Storage_Pool (gnat_node), gnat_node); } break; case N_Raise_Constraint_Error: case N_Raise_Program_Error: case N_Raise_Storage_Error: if (type_annotate_only) { gnu_result = alloc_stmt_list (); break; } gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_call_raise (UI_To_Int (Reason (gnat_node)), gnat_node, Nkind (gnat_node)); /* If the type is VOID, this is a statement, so we need to generate the code for the call. Handle a Condition, if there is one. */ if (TREE_CODE (gnu_result_type) == VOID_TYPE) { set_expr_location_from_node (gnu_result, gnat_node); if (Present (Condition (gnat_node))) gnu_result = build3 (COND_EXPR, void_type_node, gnat_to_gnu (Condition (gnat_node)), gnu_result, alloc_stmt_list ()); } else gnu_result = build1 (NULL_EXPR, gnu_result_type, gnu_result); break; case N_Validate_Unchecked_Conversion: { Entity_Id gnat_target_type = Target_Type (gnat_node); tree gnu_source_type = gnat_to_gnu_type (Source_Type (gnat_node)); tree gnu_target_type = gnat_to_gnu_type (gnat_target_type); /* No need for any warning in this case. */ if (!flag_strict_aliasing) ; /* If the result is a pointer type, see if we are either converting from a non-pointer or from a pointer to a type with a different alias set and warn if so. If the result is defined in the same unit as this unchecked conversion, we can allow this because we can know to make the pointer type behave properly. */ else if (POINTER_TYPE_P (gnu_target_type) && !In_Same_Source_Unit (gnat_target_type, gnat_node) && !No_Strict_Aliasing (Underlying_Type (gnat_target_type))) { tree gnu_source_desig_type = POINTER_TYPE_P (gnu_source_type) ? TREE_TYPE (gnu_source_type) : NULL_TREE; tree gnu_target_desig_type = TREE_TYPE (gnu_target_type); if ((TYPE_DUMMY_P (gnu_target_desig_type) || get_alias_set (gnu_target_desig_type) != 0) && (!POINTER_TYPE_P (gnu_source_type) || (TYPE_DUMMY_P (gnu_source_desig_type) != TYPE_DUMMY_P (gnu_target_desig_type)) || (TYPE_DUMMY_P (gnu_source_desig_type) && gnu_source_desig_type != gnu_target_desig_type) || !alias_sets_conflict_p (get_alias_set (gnu_source_desig_type), get_alias_set (gnu_target_desig_type)))) { post_error_ne ("?possible aliasing problem for type&", gnat_node, Target_Type (gnat_node)); post_error ("\\?use -fno-strict-aliasing switch for references", gnat_node); post_error_ne ("\\?or use `pragma No_Strict_Aliasing (&);`", gnat_node, Target_Type (gnat_node)); } } /* But if the result is a fat pointer type, we have no mechanism to do that, so we unconditionally warn in problematic cases. */ else if (TYPE_FAT_POINTER_P (gnu_target_type)) { tree gnu_source_array_type = TYPE_FAT_POINTER_P (gnu_source_type) ? TREE_TYPE (TREE_TYPE (TYPE_FIELDS (gnu_source_type))) : NULL_TREE; tree gnu_target_array_type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (gnu_target_type))); if ((TYPE_DUMMY_P (gnu_target_array_type) || get_alias_set (gnu_target_array_type) != 0) && (!TYPE_FAT_POINTER_P (gnu_source_type) || (TYPE_DUMMY_P (gnu_source_array_type) != TYPE_DUMMY_P (gnu_target_array_type)) || (TYPE_DUMMY_P (gnu_source_array_type) && gnu_source_array_type != gnu_target_array_type) || !alias_sets_conflict_p (get_alias_set (gnu_source_array_type), get_alias_set (gnu_target_array_type)))) { post_error_ne ("?possible aliasing problem for type&", gnat_node, Target_Type (gnat_node)); post_error ("\\?use -fno-strict-aliasing switch for references", gnat_node); } } } gnu_result = alloc_stmt_list (); break; case N_Raise_Statement: case N_Function_Specification: case N_Procedure_Specification: case N_Op_Concat: case N_Component_Association: case N_Task_Body: default: gcc_assert (type_annotate_only); gnu_result = alloc_stmt_list (); } /* If we pushed our level as part of processing the elaboration routine, pop it back now. */ if (went_into_elab_proc) { add_stmt (gnu_result); gnat_poplevel (); gnu_result = end_stmt_group (); current_function_decl = NULL_TREE; } /* Set the location information on the result if it is a real expression. References can be reused for multiple GNAT nodes and they would get the location information of their last use. Note that we may have no result if we tried to build a CALL_EXPR node to a procedure with no side-effects and optimization is enabled. */ if (gnu_result && EXPR_P (gnu_result) && TREE_CODE (gnu_result) != NOP_EXPR && !REFERENCE_CLASS_P (gnu_result)) set_expr_location_from_node (gnu_result, gnat_node); /* If we're supposed to return something of void_type, it means we have something we're elaborating for effect, so just return. */ if (TREE_CODE (gnu_result_type) == VOID_TYPE) return gnu_result; /* If the result is a constant that overflows, raise constraint error. */ else if (TREE_CODE (gnu_result) == INTEGER_CST && TREE_OVERFLOW (gnu_result)) { post_error ("Constraint_Error will be raised at run-time?", gnat_node); gnu_result = build1 (NULL_EXPR, gnu_result_type, build_call_raise (CE_Overflow_Check_Failed, gnat_node, N_Raise_Constraint_Error)); } /* If our result has side-effects and is of an unconstrained type, make a SAVE_EXPR so that we can be sure it will only be referenced once. Note we must do this before any conversions. */ if (TREE_SIDE_EFFECTS (gnu_result) && (TREE_CODE (gnu_result_type) == UNCONSTRAINED_ARRAY_TYPE || CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_result_type)))) gnu_result = gnat_stabilize_reference (gnu_result, false); /* Now convert the result to the result type, unless we are in one of the following cases: 1. If this is the Name of an assignment statement or a parameter of a procedure call, return the result almost unmodified since the RHS will have to be converted to our type in that case, unless the result type has a simpler size. Similarly, don't convert integral types that are the operands of an unchecked conversion since we need to ignore those conversions (for 'Valid). 2. If we have a label (which doesn't have any well-defined type), a field or an error, return the result almost unmodified. Also don't do the conversion if the result type involves a PLACEHOLDER_EXPR in its size since those are the cases where the front end may have the type wrong due to "instantiating" the unconstrained record with discriminant values. Similarly, if the two types are record types with the same name don't convert. This will be the case when we are converting from a packable version of a type to its original type and we need those conversions to be NOPs in order for assignments into these types to work properly. 3. If the type is void or if we have no result, return error_mark_node to show we have no result. 4. Finally, if the type of the result is already correct. */ if (Present (Parent (gnat_node)) && ((Nkind (Parent (gnat_node)) == N_Assignment_Statement && Name (Parent (gnat_node)) == gnat_node) || (Nkind (Parent (gnat_node)) == N_Procedure_Call_Statement && Name (Parent (gnat_node)) != gnat_node) || Nkind (Parent (gnat_node)) == N_Parameter_Association || (Nkind (Parent (gnat_node)) == N_Unchecked_Type_Conversion && !AGGREGATE_TYPE_P (gnu_result_type) && !AGGREGATE_TYPE_P (TREE_TYPE (gnu_result)))) && !(TYPE_SIZE (gnu_result_type) && TYPE_SIZE (TREE_TYPE (gnu_result)) && (AGGREGATE_TYPE_P (gnu_result_type) == AGGREGATE_TYPE_P (TREE_TYPE (gnu_result))) && ((TREE_CODE (TYPE_SIZE (gnu_result_type)) == INTEGER_CST && (TREE_CODE (TYPE_SIZE (TREE_TYPE (gnu_result))) != INTEGER_CST)) || (TREE_CODE (TYPE_SIZE (gnu_result_type)) != INTEGER_CST && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_result_type)) && (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (TREE_TYPE (gnu_result)))))) && !(TREE_CODE (gnu_result_type) == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (gnu_result_type)))) { /* Remove padding only if the inner object is of self-referential size: in that case it must be an object of unconstrained type with a default discriminant and we want to avoid copying too much data. */ if (TREE_CODE (TREE_TYPE (gnu_result)) == RECORD_TYPE && TYPE_IS_PADDING_P (TREE_TYPE (gnu_result)) && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_result)))))) gnu_result = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_result))), gnu_result); } else if (TREE_CODE (gnu_result) == LABEL_DECL || TREE_CODE (gnu_result) == FIELD_DECL || TREE_CODE (gnu_result) == ERROR_MARK || (TYPE_SIZE (gnu_result_type) && TREE_CODE (TYPE_SIZE (gnu_result_type)) != INTEGER_CST && TREE_CODE (gnu_result) != INDIRECT_REF && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_result_type))) || ((TYPE_NAME (gnu_result_type) == TYPE_NAME (TREE_TYPE (gnu_result))) && TREE_CODE (gnu_result_type) == RECORD_TYPE && TREE_CODE (TREE_TYPE (gnu_result)) == RECORD_TYPE)) { /* Remove any padding. */ if (TREE_CODE (TREE_TYPE (gnu_result)) == RECORD_TYPE && TYPE_IS_PADDING_P (TREE_TYPE (gnu_result))) gnu_result = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_result))), gnu_result); } else if (gnu_result == error_mark_node || gnu_result_type == void_type_node) gnu_result = error_mark_node; else if (gnu_result_type != TREE_TYPE (gnu_result)) gnu_result = convert (gnu_result_type, gnu_result); /* We don't need any NOP_EXPR or NON_LVALUE_EXPR on the result. */ while ((TREE_CODE (gnu_result) == NOP_EXPR || TREE_CODE (gnu_result) == NON_LVALUE_EXPR) && TREE_TYPE (TREE_OPERAND (gnu_result, 0)) == TREE_TYPE (gnu_result)) gnu_result = TREE_OPERAND (gnu_result, 0); return gnu_result; } /* Subroutine of above to push the exception label stack. GNU_STACK is a pointer to the stack to update and GNAT_LABEL, if present, is the label to push onto the stack. */ static void push_exception_label_stack (tree *gnu_stack, Entity_Id gnat_label) { tree gnu_label = (Present (gnat_label) ? gnat_to_gnu_entity (gnat_label, NULL_TREE, 0) : NULL_TREE); *gnu_stack = tree_cons (NULL_TREE, gnu_label, *gnu_stack); } /* Record the current code position in GNAT_NODE. */ static void record_code_position (Node_Id gnat_node) { tree stmt_stmt = build1 (STMT_STMT, void_type_node, NULL_TREE); add_stmt_with_node (stmt_stmt, gnat_node); save_gnu_tree (gnat_node, stmt_stmt, true); } /* Insert the code for GNAT_NODE at the position saved for that node. */ static void insert_code_for (Node_Id gnat_node) { STMT_STMT_STMT (get_gnu_tree (gnat_node)) = gnat_to_gnu (gnat_node); save_gnu_tree (gnat_node, NULL_TREE, true); } /* Start a new statement group chained to the previous group. */ void start_stmt_group (void) { struct stmt_group *group = stmt_group_free_list; /* First see if we can get one from the free list. */ if (group) stmt_group_free_list = group->previous; else group = (struct stmt_group *) ggc_alloc (sizeof (struct stmt_group)); group->previous = current_stmt_group; group->stmt_list = group->block = group->cleanups = NULL_TREE; current_stmt_group = group; } /* Add GNU_STMT to the current statement group. */ void add_stmt (tree gnu_stmt) { append_to_statement_list (gnu_stmt, ¤t_stmt_group->stmt_list); } /* Similar, but set the location of GNU_STMT to that of GNAT_NODE. */ void add_stmt_with_node (tree gnu_stmt, Node_Id gnat_node) { if (Present (gnat_node)) set_expr_location_from_node (gnu_stmt, gnat_node); add_stmt (gnu_stmt); } /* Add a declaration statement for GNU_DECL to the current statement group. Get SLOC from Entity_Id. */ void add_decl_expr (tree gnu_decl, Entity_Id gnat_entity) { tree type = TREE_TYPE (gnu_decl); tree gnu_stmt, gnu_init, t; /* If this is a variable that Gigi is to ignore, we may have been given an ERROR_MARK. So test for it. We also might have been given a reference for a renaming. So only do something for a decl. Also ignore a TYPE_DECL for an UNCONSTRAINED_ARRAY_TYPE. */ if (!DECL_P (gnu_decl) || (TREE_CODE (gnu_decl) == TYPE_DECL && TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)) return; gnu_stmt = build1 (DECL_EXPR, void_type_node, gnu_decl); /* If we are global, we don't want to actually output the DECL_EXPR for this decl since we already have evaluated the expressions in the sizes and positions as globals and doing it again would be wrong. */ if (global_bindings_p ()) { /* Mark everything as used to prevent node sharing with subprograms. Note that walk_tree knows how to deal with TYPE_DECL, but neither VAR_DECL nor CONST_DECL. This appears to be somewhat arbitrary. */ mark_visited (&gnu_stmt); if (TREE_CODE (gnu_decl) == VAR_DECL || TREE_CODE (gnu_decl) == CONST_DECL) { mark_visited (&DECL_SIZE (gnu_decl)); mark_visited (&DECL_SIZE_UNIT (gnu_decl)); mark_visited (&DECL_INITIAL (gnu_decl)); } /* In any case, we have to deal with our own TYPE_ADA_SIZE field. */ if (TREE_CODE (gnu_decl) == TYPE_DECL && (TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) && (t = TYPE_ADA_SIZE (type))) mark_visited (&t); } else add_stmt_with_node (gnu_stmt, gnat_entity); /* If this is a variable and an initializer is attached to it, it must be valid for the context. Similar to init_const in create_var_decl_1. */ if (TREE_CODE (gnu_decl) == VAR_DECL && (gnu_init = DECL_INITIAL (gnu_decl)) != NULL_TREE && (!gnat_types_compatible_p (type, TREE_TYPE (gnu_init)) || (TREE_STATIC (gnu_decl) && !initializer_constant_valid_p (gnu_init, TREE_TYPE (gnu_init))))) { /* If GNU_DECL has a padded type, convert it to the unpadded type so the assignment is done properly. */ if (TREE_CODE (type) == RECORD_TYPE && TYPE_IS_PADDING_P (type)) t = convert (TREE_TYPE (TYPE_FIELDS (type)), gnu_decl); else t = gnu_decl; gnu_stmt = build_binary_op (MODIFY_EXPR, NULL_TREE, t, gnu_init); DECL_INITIAL (gnu_decl) = NULL_TREE; if (TREE_READONLY (gnu_decl)) { TREE_READONLY (gnu_decl) = 0; DECL_READONLY_ONCE_ELAB (gnu_decl) = 1; } add_stmt_with_node (gnu_stmt, gnat_entity); } } /* Callback for walk_tree to mark the visited trees rooted at *TP. */ static tree mark_visited_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) { if (TREE_VISITED (*tp)) *walk_subtrees = 0; /* Don't mark a dummy type as visited because we want to mark its sizes and fields once it's filled in. */ else if (!TYPE_IS_DUMMY_P (*tp)) TREE_VISITED (*tp) = 1; if (TYPE_P (*tp)) TYPE_SIZES_GIMPLIFIED (*tp) = 1; return NULL_TREE; } /* Utility function to unshare expressions wrapped up in a SAVE_EXPR. */ static tree unshare_save_expr (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED) { tree t = *tp; if (TREE_CODE (t) == SAVE_EXPR) TREE_OPERAND (t, 0) = unshare_expr (TREE_OPERAND (t, 0)); return NULL_TREE; } /* Mark nodes rooted at *TP with TREE_VISITED and types as having their sized gimplified. We use this to indicate all variable sizes and positions in global types may not be shared by any subprogram. */ void mark_visited (tree *tp) { walk_tree (tp, mark_visited_r, NULL, NULL); } /* Add GNU_CLEANUP, a cleanup action, to the current code group and set its location to that of GNAT_NODE if present. */ static void add_cleanup (tree gnu_cleanup, Node_Id gnat_node) { if (Present (gnat_node)) set_expr_location_from_node (gnu_cleanup, gnat_node); append_to_statement_list (gnu_cleanup, ¤t_stmt_group->cleanups); } /* Set the BLOCK node corresponding to the current code group to GNU_BLOCK. */ void set_block_for_group (tree gnu_block) { gcc_assert (!current_stmt_group->block); current_stmt_group->block = gnu_block; } /* Return code corresponding to the current code group. It is normally a STATEMENT_LIST, but may also be a BIND_EXPR or TRY_FINALLY_EXPR if BLOCK or cleanups were set. */ tree end_stmt_group (void) { struct stmt_group *group = current_stmt_group; tree gnu_retval = group->stmt_list; /* If this is a null list, allocate a new STATEMENT_LIST. Then, if there are cleanups, make a TRY_FINALLY_EXPR. Last, if there is a BLOCK, make a BIND_EXPR. Note that we nest in that because the cleanup may reference variables in the block. */ if (gnu_retval == NULL_TREE) gnu_retval = alloc_stmt_list (); if (group->cleanups) gnu_retval = build2 (TRY_FINALLY_EXPR, void_type_node, gnu_retval, group->cleanups); if (current_stmt_group->block) gnu_retval = build3 (BIND_EXPR, void_type_node, BLOCK_VARS (group->block), gnu_retval, group->block); /* Remove this group from the stack and add it to the free list. */ current_stmt_group = group->previous; group->previous = stmt_group_free_list; stmt_group_free_list = group; return gnu_retval; } /* Add a list of statements from GNAT_LIST, a possibly-empty list of statements.*/ static void add_stmt_list (List_Id gnat_list) { Node_Id gnat_node; if (Present (gnat_list)) for (gnat_node = First (gnat_list); Present (gnat_node); gnat_node = Next (gnat_node)) add_stmt (gnat_to_gnu (gnat_node)); } /* Build a tree from GNAT_LIST, a possibly-empty list of statements. If BINDING_P is true, push and pop a binding level around the list. */ static tree build_stmt_group (List_Id gnat_list, bool binding_p) { start_stmt_group (); if (binding_p) gnat_pushlevel (); add_stmt_list (gnat_list); if (binding_p) gnat_poplevel (); return end_stmt_group (); } /* Push and pop routines for stacks. We keep a free list around so we don't waste tree nodes. */ static void push_stack (tree *gnu_stack_ptr, tree gnu_purpose, tree gnu_value) { tree gnu_node = gnu_stack_free_list; if (gnu_node) { gnu_stack_free_list = TREE_CHAIN (gnu_node); TREE_CHAIN (gnu_node) = *gnu_stack_ptr; TREE_PURPOSE (gnu_node) = gnu_purpose; TREE_VALUE (gnu_node) = gnu_value; } else gnu_node = tree_cons (gnu_purpose, gnu_value, *gnu_stack_ptr); *gnu_stack_ptr = gnu_node; } static void pop_stack (tree *gnu_stack_ptr) { tree gnu_node = *gnu_stack_ptr; *gnu_stack_ptr = TREE_CHAIN (gnu_node); TREE_CHAIN (gnu_node) = gnu_stack_free_list; gnu_stack_free_list = gnu_node; } /* Generate GIMPLE in place for the expression at *EXPR_P. */ int gnat_gimplify_expr (tree *expr_p, gimple_seq *pre_p, gimple_seq *post_p ATTRIBUTE_UNUSED) { tree expr = *expr_p; tree op; if (IS_ADA_STMT (expr)) return gnat_gimplify_stmt (expr_p); switch (TREE_CODE (expr)) { case NULL_EXPR: /* If this is for a scalar, just make a VAR_DECL for it. If for an aggregate, get a null pointer of the appropriate type and dereference it. */ if (AGGREGATE_TYPE_P (TREE_TYPE (expr))) *expr_p = build1 (INDIRECT_REF, TREE_TYPE (expr), convert (build_pointer_type (TREE_TYPE (expr)), integer_zero_node)); else { *expr_p = create_tmp_var (TREE_TYPE (expr), NULL); TREE_NO_WARNING (*expr_p) = 1; } gimplify_and_add (TREE_OPERAND (expr, 0), pre_p); return GS_OK; case UNCONSTRAINED_ARRAY_REF: /* We should only do this if we are just elaborating for side-effects, but we can't know that yet. */ *expr_p = TREE_OPERAND (*expr_p, 0); return GS_OK; case ADDR_EXPR: op = TREE_OPERAND (expr, 0); /* If we're taking the address of a constant CONSTRUCTOR, force it to be put into static memory. We know it's going to be readonly given the semantics we have and it's required to be static memory in the case when the reference is in an elaboration procedure. */ if (TREE_CODE (op) == CONSTRUCTOR && TREE_CONSTANT (op)) { tree new_var = create_tmp_var (TREE_TYPE (op), "C"); TREE_READONLY (new_var) = 1; TREE_STATIC (new_var) = 1; TREE_ADDRESSABLE (new_var) = 1; DECL_INITIAL (new_var) = op; TREE_OPERAND (expr, 0) = new_var; recompute_tree_invariant_for_addr_expr (expr); return GS_ALL_DONE; } /* If we are taking the address of a SAVE_EXPR, we are typically processing a misaligned argument to be passed by reference in a procedure call. We just mark the operand as addressable + not readonly here and let the common gimplifier code perform the temporary creation, initialization, and "instantiation" in place of the SAVE_EXPR in further operands, in particular in the copy back code inserted after the call. */ else if (TREE_CODE (op) == SAVE_EXPR) { TREE_ADDRESSABLE (op) = 1; TREE_READONLY (op) = 0; } /* We let the gimplifier process &COND_EXPR and expect it to yield the address of the selected operand when it is addressable. Besides, we also expect addressable_p to only let COND_EXPRs where both arms are addressable reach here. */ else if (TREE_CODE (op) == COND_EXPR) ; /* Otherwise, if we are taking the address of something that is neither reference, declaration, or constant, make a variable for the operand here and then take its address. If we don't do it this way, we may confuse the gimplifier because it needs to know the variable is addressable at this point. This duplicates code in internal_get_tmp_var, which is unfortunate. */ else if (TREE_CODE_CLASS (TREE_CODE (op)) != tcc_reference && TREE_CODE_CLASS (TREE_CODE (op)) != tcc_declaration && TREE_CODE_CLASS (TREE_CODE (op)) != tcc_constant) { tree new_var = create_tmp_var (TREE_TYPE (op), "A"); gimple stmt; TREE_ADDRESSABLE (new_var) = 1; stmt = gimplify_assign (new_var, op, pre_p); if (EXPR_HAS_LOCATION (op)) gimple_set_location (stmt, *EXPR_LOCUS (op)); TREE_OPERAND (expr, 0) = new_var; recompute_tree_invariant_for_addr_expr (expr); return GS_ALL_DONE; } /* ... fall through ... */ default: return GS_UNHANDLED; } } /* Generate GIMPLE in place for the statement at *STMT_P. */ static enum gimplify_status gnat_gimplify_stmt (tree *stmt_p) { tree stmt = *stmt_p; switch (TREE_CODE (stmt)) { case STMT_STMT: *stmt_p = STMT_STMT_STMT (stmt); return GS_OK; case LOOP_STMT: { tree gnu_start_label = create_artificial_label (); tree gnu_end_label = LOOP_STMT_LABEL (stmt); tree t; /* Set to emit the statements of the loop. */ *stmt_p = NULL_TREE; /* We first emit the start label and then a conditional jump to the end label if there's a top condition, then the body of the loop, then a conditional branch to the end label, then the update, if any, and finally a jump to the start label and the definition of the end label. */ append_to_statement_list (build1 (LABEL_EXPR, void_type_node, gnu_start_label), stmt_p); if (LOOP_STMT_TOP_COND (stmt)) append_to_statement_list (build3 (COND_EXPR, void_type_node, LOOP_STMT_TOP_COND (stmt), alloc_stmt_list (), build1 (GOTO_EXPR, void_type_node, gnu_end_label)), stmt_p); append_to_statement_list (LOOP_STMT_BODY (stmt), stmt_p); if (LOOP_STMT_BOT_COND (stmt)) append_to_statement_list (build3 (COND_EXPR, void_type_node, LOOP_STMT_BOT_COND (stmt), alloc_stmt_list (), build1 (GOTO_EXPR, void_type_node, gnu_end_label)), stmt_p); if (LOOP_STMT_UPDATE (stmt)) append_to_statement_list (LOOP_STMT_UPDATE (stmt), stmt_p); t = build1 (GOTO_EXPR, void_type_node, gnu_start_label); SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (gnu_end_label)); append_to_statement_list (t, stmt_p); append_to_statement_list (build1 (LABEL_EXPR, void_type_node, gnu_end_label), stmt_p); return GS_OK; } case EXIT_STMT: /* Build a statement to jump to the corresponding end label, then see if it needs to be conditional. */ *stmt_p = build1 (GOTO_EXPR, void_type_node, EXIT_STMT_LABEL (stmt)); if (EXIT_STMT_COND (stmt)) *stmt_p = build3 (COND_EXPR, void_type_node, EXIT_STMT_COND (stmt), *stmt_p, alloc_stmt_list ()); return GS_OK; default: gcc_unreachable (); } } /* Force references to each of the entities in packages withed by GNAT_NODE. Operate recursively but check that we aren't elaborating something more than once. This routine is exclusively called in type_annotate mode, to compute DDA information for types in withed units, for ASIS use. */ static void elaborate_all_entities (Node_Id gnat_node) { Entity_Id gnat_with_clause, gnat_entity; /* Process each unit only once. As we trace the context of all relevant units transitively, including generic bodies, we may encounter the same generic unit repeatedly. */ if (!present_gnu_tree (gnat_node)) save_gnu_tree (gnat_node, integer_zero_node, true); /* Save entities in all context units. A body may have an implicit_with on its own spec, if the context includes a child unit, so don't save the spec twice. */ for (gnat_with_clause = First (Context_Items (gnat_node)); Present (gnat_with_clause); gnat_with_clause = Next (gnat_with_clause)) if (Nkind (gnat_with_clause) == N_With_Clause && !present_gnu_tree (Library_Unit (gnat_with_clause)) && Library_Unit (gnat_with_clause) != Library_Unit (Cunit (Main_Unit))) { elaborate_all_entities (Library_Unit (gnat_with_clause)); if (Ekind (Entity (Name (gnat_with_clause))) == E_Package) { for (gnat_entity = First_Entity (Entity (Name (gnat_with_clause))); Present (gnat_entity); gnat_entity = Next_Entity (gnat_entity)) if (Is_Public (gnat_entity) && Convention (gnat_entity) != Convention_Intrinsic && Ekind (gnat_entity) != E_Package && Ekind (gnat_entity) != E_Package_Body && Ekind (gnat_entity) != E_Operator && !(IN (Ekind (gnat_entity), Type_Kind) && !Is_Frozen (gnat_entity)) && !((Ekind (gnat_entity) == E_Procedure || Ekind (gnat_entity) == E_Function) && Is_Intrinsic_Subprogram (gnat_entity)) && !IN (Ekind (gnat_entity), Named_Kind) && !IN (Ekind (gnat_entity), Generic_Unit_Kind)) gnat_to_gnu_entity (gnat_entity, NULL_TREE, 0); } else if (Ekind (Entity (Name (gnat_with_clause))) == E_Generic_Package) { Node_Id gnat_body = Corresponding_Body (Unit (Library_Unit (gnat_with_clause))); /* Retrieve compilation unit node of generic body. */ while (Present (gnat_body) && Nkind (gnat_body) != N_Compilation_Unit) gnat_body = Parent (gnat_body); /* If body is available, elaborate its context. */ if (Present (gnat_body)) elaborate_all_entities (gnat_body); } } if (Nkind (Unit (gnat_node)) == N_Package_Body) elaborate_all_entities (Library_Unit (gnat_node)); } /* Do the processing of N_Freeze_Entity, GNAT_NODE. */ static void process_freeze_entity (Node_Id gnat_node) { Entity_Id gnat_entity = Entity (gnat_node); tree gnu_old; tree gnu_new; tree gnu_init = (Nkind (Declaration_Node (gnat_entity)) == N_Object_Declaration && present_gnu_tree (Declaration_Node (gnat_entity))) ? get_gnu_tree (Declaration_Node (gnat_entity)) : NULL_TREE; /* If this is a package, need to generate code for the package. */ if (Ekind (gnat_entity) == E_Package) { insert_code_for (Parent (Corresponding_Body (Parent (Declaration_Node (gnat_entity))))); return; } /* Check for old definition after the above call. This Freeze_Node might be for one its Itypes. */ gnu_old = present_gnu_tree (gnat_entity) ? get_gnu_tree (gnat_entity) : 0; /* If this entity has an Address representation clause, GNU_OLD is the address, so discard it here. */ if (Present (Address_Clause (gnat_entity))) gnu_old = 0; /* Don't do anything for class-wide types they are always transformed into their root type. */ if (Ekind (gnat_entity) == E_Class_Wide_Type || (Ekind (gnat_entity) == E_Class_Wide_Subtype && Present (Equivalent_Type (gnat_entity)))) return; /* Don't do anything for subprograms that may have been elaborated before their freeze nodes. This can happen, for example because of an inner call in an instance body, or a previous compilation of a spec for inlining purposes. */ if (gnu_old && ((TREE_CODE (gnu_old) == FUNCTION_DECL && (Ekind (gnat_entity) == E_Function || Ekind (gnat_entity) == E_Procedure)) || (gnu_old && TREE_CODE (TREE_TYPE (gnu_old)) == FUNCTION_TYPE && Ekind (gnat_entity) == E_Subprogram_Type))) return; /* If we have a non-dummy type old tree, we have nothing to do, except aborting if this is the public view of a private type whose full view was not delayed, as this node was never delayed as it should have been. We let this happen for concurrent types and their Corresponding_Record_Type, however, because each might legitimately be elaborated before it's own freeze node, e.g. while processing the other. */ if (gnu_old && !(TREE_CODE (gnu_old) == TYPE_DECL && TYPE_IS_DUMMY_P (TREE_TYPE (gnu_old)))) { gcc_assert ((IN (Ekind (gnat_entity), Incomplete_Or_Private_Kind) && Present (Full_View (gnat_entity)) && No (Freeze_Node (Full_View (gnat_entity)))) || Is_Concurrent_Type (gnat_entity) || (IN (Ekind (gnat_entity), Record_Kind) && Is_Concurrent_Record_Type (gnat_entity))); return; } /* Reset the saved tree, if any, and elaborate the object or type for real. If there is a full declaration, elaborate it and copy the type to GNAT_ENTITY. Likewise if this is the record subtype corresponding to a class wide type or subtype. */ if (gnu_old) { save_gnu_tree (gnat_entity, NULL_TREE, false); if (IN (Ekind (gnat_entity), Incomplete_Or_Private_Kind) && Present (Full_View (gnat_entity)) && present_gnu_tree (Full_View (gnat_entity))) save_gnu_tree (Full_View (gnat_entity), NULL_TREE, false); if (Present (Class_Wide_Type (gnat_entity)) && Class_Wide_Type (gnat_entity) != gnat_entity) save_gnu_tree (Class_Wide_Type (gnat_entity), NULL_TREE, false); } if (IN (Ekind (gnat_entity), Incomplete_Or_Private_Kind) && Present (Full_View (gnat_entity))) { gnu_new = gnat_to_gnu_entity (Full_View (gnat_entity), NULL_TREE, 1); /* Propagate back-annotations from full view to partial view. */ if (Unknown_Alignment (gnat_entity)) Set_Alignment (gnat_entity, Alignment (Full_View (gnat_entity))); if (Unknown_Esize (gnat_entity)) Set_Esize (gnat_entity, Esize (Full_View (gnat_entity))); if (Unknown_RM_Size (gnat_entity)) Set_RM_Size (gnat_entity, RM_Size (Full_View (gnat_entity))); /* The above call may have defined this entity (the simplest example of this is when we have a private enumeral type since the bounds will have the public view. */ if (!present_gnu_tree (gnat_entity)) save_gnu_tree (gnat_entity, gnu_new, false); if (Present (Class_Wide_Type (gnat_entity)) && Class_Wide_Type (gnat_entity) != gnat_entity) save_gnu_tree (Class_Wide_Type (gnat_entity), gnu_new, false); } else gnu_new = gnat_to_gnu_entity (gnat_entity, gnu_init, 1); /* If we've made any pointers to the old version of this type, we have to update them. */ if (gnu_old) update_pointer_to (TYPE_MAIN_VARIANT (TREE_TYPE (gnu_old)), TREE_TYPE (gnu_new)); } /* Process the list of inlined subprograms of GNAT_NODE, which is an N_Compilation_Unit. */ static void process_inlined_subprograms (Node_Id gnat_node) { Entity_Id gnat_entity; Node_Id gnat_body; /* If we can inline, generate Gimple for all the inlined subprograms. Define the entity first so we set DECL_EXTERNAL. */ if (optimize > 0) for (gnat_entity = First_Inlined_Subprogram (gnat_node); Present (gnat_entity); gnat_entity = Next_Inlined_Subprogram (gnat_entity)) { gnat_body = Parent (Declaration_Node (gnat_entity)); if (Nkind (gnat_body) != N_Subprogram_Body) { /* ??? This really should always be Present. */ if (No (Corresponding_Body (gnat_body))) continue; gnat_body = Parent (Declaration_Node (Corresponding_Body (gnat_body))); } if (Present (gnat_body)) { gnat_to_gnu_entity (gnat_entity, NULL_TREE, 0); add_stmt (gnat_to_gnu (gnat_body)); } } } /* Elaborate decls in the lists GNAT_DECLS and GNAT_DECLS2, if present. We make two passes, one to elaborate anything other than bodies (but we declare a function if there was no spec). The second pass elaborates the bodies. GNAT_END_LIST gives the element in the list past the end. Normally, this is Empty, but can be First_Real_Statement for a Handled_Sequence_Of_Statements. We make a complete pass through both lists if PASS1P is true, then make the second pass over both lists if PASS2P is true. The lists usually correspond to the public and private parts of a package. */ static void process_decls (List_Id gnat_decls, List_Id gnat_decls2, Node_Id gnat_end_list, bool pass1p, bool pass2p) { List_Id gnat_decl_array[2]; Node_Id gnat_decl; int i; gnat_decl_array[0] = gnat_decls, gnat_decl_array[1] = gnat_decls2; if (pass1p) for (i = 0; i <= 1; i++) if (Present (gnat_decl_array[i])) for (gnat_decl = First (gnat_decl_array[i]); gnat_decl != gnat_end_list; gnat_decl = Next (gnat_decl)) { /* For package specs, we recurse inside the declarations, thus taking the two pass approach inside the boundary. */ if (Nkind (gnat_decl) == N_Package_Declaration && (Nkind (Specification (gnat_decl) == N_Package_Specification))) process_decls (Visible_Declarations (Specification (gnat_decl)), Private_Declarations (Specification (gnat_decl)), Empty, true, false); /* Similarly for any declarations in the actions of a freeze node. */ else if (Nkind (gnat_decl) == N_Freeze_Entity) { process_freeze_entity (gnat_decl); process_decls (Actions (gnat_decl), Empty, Empty, true, false); } /* Package bodies with freeze nodes get their elaboration deferred until the freeze node, but the code must be placed in the right place, so record the code position now. */ else if (Nkind (gnat_decl) == N_Package_Body && Present (Freeze_Node (Corresponding_Spec (gnat_decl)))) record_code_position (gnat_decl); else if (Nkind (gnat_decl) == N_Package_Body_Stub && Present (Library_Unit (gnat_decl)) && Present (Freeze_Node (Corresponding_Spec (Proper_Body (Unit (Library_Unit (gnat_decl))))))) record_code_position (Proper_Body (Unit (Library_Unit (gnat_decl)))); /* We defer most subprogram bodies to the second pass. */ else if (Nkind (gnat_decl) == N_Subprogram_Body) { if (Acts_As_Spec (gnat_decl)) { Node_Id gnat_subprog_id = Defining_Entity (gnat_decl); if (Ekind (gnat_subprog_id) != E_Generic_Procedure && Ekind (gnat_subprog_id) != E_Generic_Function) gnat_to_gnu_entity (gnat_subprog_id, NULL_TREE, 1); } } /* For bodies and stubs that act as their own specs, the entity itself must be elaborated in the first pass, because it may be used in other declarations. */ else if (Nkind (gnat_decl) == N_Subprogram_Body_Stub) { Node_Id gnat_subprog_id = Defining_Entity (Specification (gnat_decl)); if (Ekind (gnat_subprog_id) != E_Subprogram_Body && Ekind (gnat_subprog_id) != E_Generic_Procedure && Ekind (gnat_subprog_id) != E_Generic_Function) gnat_to_gnu_entity (gnat_subprog_id, NULL_TREE, 1); } /* Concurrent stubs stand for the corresponding subprogram bodies, which are deferred like other bodies. */ else if (Nkind (gnat_decl) == N_Task_Body_Stub || Nkind (gnat_decl) == N_Protected_Body_Stub) ; else add_stmt (gnat_to_gnu (gnat_decl)); } /* Here we elaborate everything we deferred above except for package bodies, which are elaborated at their freeze nodes. Note that we must also go inside things (package specs and freeze nodes) the first pass did. */ if (pass2p) for (i = 0; i <= 1; i++) if (Present (gnat_decl_array[i])) for (gnat_decl = First (gnat_decl_array[i]); gnat_decl != gnat_end_list; gnat_decl = Next (gnat_decl)) { if (Nkind (gnat_decl) == N_Subprogram_Body || Nkind (gnat_decl) == N_Subprogram_Body_Stub || Nkind (gnat_decl) == N_Task_Body_Stub || Nkind (gnat_decl) == N_Protected_Body_Stub) add_stmt (gnat_to_gnu (gnat_decl)); else if (Nkind (gnat_decl) == N_Package_Declaration && (Nkind (Specification (gnat_decl) == N_Package_Specification))) process_decls (Visible_Declarations (Specification (gnat_decl)), Private_Declarations (Specification (gnat_decl)), Empty, false, true); else if (Nkind (gnat_decl) == N_Freeze_Entity) process_decls (Actions (gnat_decl), Empty, Empty, false, true); } } /* Make a unary operation of kind CODE using build_unary_op, but guard the operation by an overflow check. CODE can be one of NEGATE_EXPR or ABS_EXPR. GNU_TYPE is the type desired for the result. Usually the operation is to be performed in that type. */ static tree build_unary_op_trapv (enum tree_code code, tree gnu_type, tree operand) { gcc_assert (code == NEGATE_EXPR || code == ABS_EXPR); operand = protect_multiple_eval (operand); return emit_check (build_binary_op (EQ_EXPR, integer_type_node, operand, TYPE_MIN_VALUE (gnu_type)), build_unary_op (code, gnu_type, operand), CE_Overflow_Check_Failed); } /* Make a binary operation of kind CODE using build_binary_op, but guard the operation by an overflow check. CODE can be one of PLUS_EXPR, MINUS_EXPR or MULT_EXPR. GNU_TYPE is the type desired for the result. Usually the operation is to be performed in that type. */ static tree build_binary_op_trapv (enum tree_code code, tree gnu_type, tree left, tree right) { tree lhs = protect_multiple_eval (left); tree rhs = protect_multiple_eval (right); tree type_max = TYPE_MAX_VALUE (gnu_type); tree type_min = TYPE_MIN_VALUE (gnu_type); tree gnu_expr; tree tmp1, tmp2; tree zero = convert (gnu_type, integer_zero_node); tree rhs_lt_zero; tree check_pos; tree check_neg; tree check; int precision = TYPE_PRECISION (gnu_type); gcc_assert (!(precision & (precision - 1))); /* ensure power of 2 */ /* Prefer a constant or known-positive rhs to simplify checks. */ if (!TREE_CONSTANT (rhs) && commutative_tree_code (code) && (TREE_CONSTANT (lhs) || (!tree_expr_nonnegative_p (rhs) && tree_expr_nonnegative_p (lhs)))) { tree tmp = lhs; lhs = rhs; rhs = tmp; } rhs_lt_zero = tree_expr_nonnegative_p (rhs) ? integer_zero_node : build_binary_op (LT_EXPR, integer_type_node, rhs, zero); /* ??? Should use more efficient check for operand_equal_p (lhs, rhs, 0) */ /* Try a few strategies that may be cheaper than the general code at the end of the function, if the rhs is not known. The strategies are: - Call library function for 64-bit multiplication (complex) - Widen, if input arguments are sufficiently small - Determine overflow using wrapped result for addition/subtraction. */ if (!TREE_CONSTANT (rhs)) { /* Even for add/subtract double size to get another base type. */ int needed_precision = precision * 2; if (code == MULT_EXPR && precision == 64) { tree int_64 = gnat_type_for_size (64, 0); return convert (gnu_type, build_call_2_expr (mulv64_decl, convert (int_64, lhs), convert (int_64, rhs))); } else if (needed_precision <= BITS_PER_WORD || (code == MULT_EXPR && needed_precision <= LONG_LONG_TYPE_SIZE)) { tree wide_type = gnat_type_for_size (needed_precision, 0); tree wide_result = build_binary_op (code, wide_type, convert (wide_type, lhs), convert (wide_type, rhs)); tree check = build_binary_op (TRUTH_ORIF_EXPR, integer_type_node, build_binary_op (LT_EXPR, integer_type_node, wide_result, convert (wide_type, type_min)), build_binary_op (GT_EXPR, integer_type_node, wide_result, convert (wide_type, type_max))); tree result = convert (gnu_type, wide_result); return emit_check (check, result, CE_Overflow_Check_Failed); } else if (code == PLUS_EXPR || code == MINUS_EXPR) { tree unsigned_type = gnat_type_for_size (precision, 1); tree wrapped_expr = convert (gnu_type, build_binary_op (code, unsigned_type, convert (unsigned_type, lhs), convert (unsigned_type, rhs))); tree result = convert (gnu_type, build_binary_op (code, gnu_type, lhs, rhs)); /* Overflow when (rhs < 0) ^ (wrapped_expr < lhs)), for addition or when (rhs < 0) ^ (wrapped_expr > lhs) for subtraction. */ tree check = build_binary_op (TRUTH_XOR_EXPR, integer_type_node, rhs_lt_zero, build_binary_op (code == PLUS_EXPR ? LT_EXPR : GT_EXPR, integer_type_node, wrapped_expr, lhs)); return emit_check (check, result, CE_Overflow_Check_Failed); } } switch (code) { case PLUS_EXPR: /* When rhs >= 0, overflow when lhs > type_max - rhs. */ check_pos = build_binary_op (GT_EXPR, integer_type_node, lhs, build_binary_op (MINUS_EXPR, gnu_type, type_max, rhs)), /* When rhs < 0, overflow when lhs < type_min - rhs. */ check_neg = build_binary_op (LT_EXPR, integer_type_node, lhs, build_binary_op (MINUS_EXPR, gnu_type, type_min, rhs)); break; case MINUS_EXPR: /* When rhs >= 0, overflow when lhs < type_min + rhs. */ check_pos = build_binary_op (LT_EXPR, integer_type_node, lhs, build_binary_op (PLUS_EXPR, gnu_type, type_min, rhs)), /* When rhs < 0, overflow when lhs > type_max + rhs. */ check_neg = build_binary_op (GT_EXPR, integer_type_node, lhs, build_binary_op (PLUS_EXPR, gnu_type, type_max, rhs)); break; case MULT_EXPR: /* The check here is designed to be efficient if the rhs is constant, but it will work for any rhs by using integer division. Four different check expressions determine wether X * C overflows, depending on C. C == 0 => false C > 0 => X > type_max / C || X < type_min / C C == -1 => X == type_min C < -1 => X > type_min / C || X < type_max / C */ tmp1 = build_binary_op (TRUNC_DIV_EXPR, gnu_type, type_max, rhs); tmp2 = build_binary_op (TRUNC_DIV_EXPR, gnu_type, type_min, rhs); check_pos = build_binary_op (TRUTH_ANDIF_EXPR, integer_type_node, build_binary_op (NE_EXPR, integer_type_node, zero, rhs), build_binary_op (TRUTH_ORIF_EXPR, integer_type_node, build_binary_op (GT_EXPR, integer_type_node, lhs, tmp1), build_binary_op (LT_EXPR, integer_type_node, lhs, tmp2))); check_neg = fold_build3 (COND_EXPR, integer_type_node, build_binary_op (EQ_EXPR, integer_type_node, rhs, build_int_cst (gnu_type, -1)), build_binary_op (EQ_EXPR, integer_type_node, lhs, type_min), build_binary_op (TRUTH_ORIF_EXPR, integer_type_node, build_binary_op (GT_EXPR, integer_type_node, lhs, tmp2), build_binary_op (LT_EXPR, integer_type_node, lhs, tmp1))); break; default: gcc_unreachable(); } gnu_expr = build_binary_op (code, gnu_type, lhs, rhs); /* If we can fold the expression to a constant, just return it. The caller will deal with overflow, no need to generate a check. */ if (TREE_CONSTANT (gnu_expr)) return gnu_expr; check = fold_build3 (COND_EXPR, integer_type_node, rhs_lt_zero, check_neg, check_pos); return emit_check (check, gnu_expr, CE_Overflow_Check_Failed); } /* Emit code for a range check. GNU_EXPR is the expression to be checked, GNAT_RANGE_TYPE the gnat type or subtype containing the bounds against which we have to check. */ static tree emit_range_check (tree gnu_expr, Entity_Id gnat_range_type) { tree gnu_range_type = get_unpadded_type (gnat_range_type); tree gnu_low = TYPE_MIN_VALUE (gnu_range_type); tree gnu_high = TYPE_MAX_VALUE (gnu_range_type); tree gnu_compare_type = get_base_type (TREE_TYPE (gnu_expr)); /* If GNU_EXPR has GNAT_RANGE_TYPE as its base type, no check is needed. This can for example happen when translating 'Val or 'Value. */ if (gnu_compare_type == gnu_range_type) return gnu_expr; /* If GNU_EXPR has an integral type that is narrower than GNU_RANGE_TYPE, we can't do anything since we might be truncating the bounds. No check is needed in this case. */ if (INTEGRAL_TYPE_P (TREE_TYPE (gnu_expr)) && (TYPE_PRECISION (gnu_compare_type) < TYPE_PRECISION (get_base_type (gnu_range_type)))) return gnu_expr; /* Checked expressions must be evaluated only once. */ gnu_expr = protect_multiple_eval (gnu_expr); /* There's no good type to use here, so we might as well use integer_type_node. Note that the form of the check is (not (expr >= lo)) or (not (expr <= hi)) the reason for this slightly convoluted form is that NaNs are not considered to be in range in the float case. */ return emit_check (build_binary_op (TRUTH_ORIF_EXPR, integer_type_node, invert_truthvalue (build_binary_op (GE_EXPR, integer_type_node, convert (gnu_compare_type, gnu_expr), convert (gnu_compare_type, gnu_low))), invert_truthvalue (build_binary_op (LE_EXPR, integer_type_node, convert (gnu_compare_type, gnu_expr), convert (gnu_compare_type, gnu_high)))), gnu_expr, CE_Range_Check_Failed); } /* Emit code for an index check. GNU_ARRAY_OBJECT is the array object which we are about to index, GNU_EXPR is the index expression to be checked, GNU_LOW and GNU_HIGH are the lower and upper bounds against which GNU_EXPR has to be checked. Note that for index checking we cannot use the emit_range_check function (although very similar code needs to be generated in both cases) since for index checking the array type against which we are checking the indices may be unconstrained and consequently we need to retrieve the actual index bounds from the array object itself (GNU_ARRAY_OBJECT). The place where we need to do that is in subprograms having unconstrained array formal parameters */ static tree emit_index_check (tree gnu_array_object, tree gnu_expr, tree gnu_low, tree gnu_high) { tree gnu_expr_check; /* Checked expressions must be evaluated only once. */ gnu_expr = protect_multiple_eval (gnu_expr); /* Must do this computation in the base type in case the expression's type is an unsigned subtypes. */ gnu_expr_check = convert (get_base_type (TREE_TYPE (gnu_expr)), gnu_expr); /* If GNU_LOW or GNU_HIGH are a PLACEHOLDER_EXPR, qualify them by the object we are handling. */ gnu_low = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_low, gnu_array_object); gnu_high = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_high, gnu_array_object); /* There's no good type to use here, so we might as well use integer_type_node. */ return emit_check (build_binary_op (TRUTH_ORIF_EXPR, integer_type_node, build_binary_op (LT_EXPR, integer_type_node, gnu_expr_check, convert (TREE_TYPE (gnu_expr_check), gnu_low)), build_binary_op (GT_EXPR, integer_type_node, gnu_expr_check, convert (TREE_TYPE (gnu_expr_check), gnu_high))), gnu_expr, CE_Index_Check_Failed); } /* GNU_COND contains the condition corresponding to an access, discriminant or range check of value GNU_EXPR. Build a COND_EXPR that returns GNU_EXPR if GNU_COND is false and raises a CONSTRAINT_ERROR if GNU_COND is true. REASON is the code that says why the exception was raised. */ static tree emit_check (tree gnu_cond, tree gnu_expr, int reason) { tree gnu_call = build_call_raise (reason, Empty, N_Raise_Constraint_Error); tree gnu_result = fold_build3 (COND_EXPR, TREE_TYPE (gnu_expr), gnu_cond, build2 (COMPOUND_EXPR, TREE_TYPE (gnu_expr), gnu_call, convert (TREE_TYPE (gnu_expr), integer_zero_node)), gnu_expr); /* GNU_RESULT has side effects if and only if GNU_EXPR has: we don't need to evaluate it just for the check. */ TREE_SIDE_EFFECTS (gnu_result) = TREE_SIDE_EFFECTS (gnu_expr); /* ??? Unfortunately, if we don't put a SAVE_EXPR around this whole thing, we will repeatedly do the test and, at compile time, we will repeatedly visit it during unsharing, which leads to an exponential explosion. */ return save_expr (gnu_result); } /* Return an expression that converts GNU_EXPR to GNAT_TYPE, doing overflow checks if OVERFLOW_P is nonzero and range checks if RANGE_P is nonzero. GNAT_TYPE is known to be an integral type. If TRUNCATE_P is nonzero, do a float to integer conversion with truncation; otherwise round. */ static tree convert_with_check (Entity_Id gnat_type, tree gnu_expr, bool overflowp, bool rangep, bool truncatep) { tree gnu_type = get_unpadded_type (gnat_type); tree gnu_in_type = TREE_TYPE (gnu_expr); tree gnu_in_basetype = get_base_type (gnu_in_type); tree gnu_base_type = get_base_type (gnu_type); tree gnu_result = gnu_expr; /* If we are not doing any checks, the output is an integral type, and the input is not a floating type, just do the conversion. This shortcut is required to avoid problems with packed array types and simplifies code in all cases anyway. */ if (!rangep && !overflowp && INTEGRAL_TYPE_P (gnu_base_type) && !FLOAT_TYPE_P (gnu_in_type)) return convert (gnu_type, gnu_expr); /* First convert the expression to its base type. This will never generate code, but makes the tests below much simpler. But don't do this if converting from an integer type to an unconstrained array type since then we need to get the bounds from the original (unpacked) type. */ if (TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE) gnu_result = convert (gnu_in_basetype, gnu_result); /* If overflow checks are requested, we need to be sure the result will fit in the output base type. But don't do this if the input is integer and the output floating-point. */ if (overflowp && !(FLOAT_TYPE_P (gnu_base_type) && INTEGRAL_TYPE_P (gnu_in_basetype))) { /* Ensure GNU_EXPR only gets evaluated once. */ tree gnu_input = protect_multiple_eval (gnu_result); tree gnu_cond = integer_zero_node; tree gnu_in_lb = TYPE_MIN_VALUE (gnu_in_basetype); tree gnu_in_ub = TYPE_MAX_VALUE (gnu_in_basetype); tree gnu_out_lb = TYPE_MIN_VALUE (gnu_base_type); tree gnu_out_ub = TYPE_MAX_VALUE (gnu_base_type); /* Convert the lower bounds to signed types, so we're sure we're comparing them properly. Likewise, convert the upper bounds to unsigned types. */ if (INTEGRAL_TYPE_P (gnu_in_basetype) && TYPE_UNSIGNED (gnu_in_basetype)) gnu_in_lb = convert (gnat_signed_type (gnu_in_basetype), gnu_in_lb); if (INTEGRAL_TYPE_P (gnu_in_basetype) && !TYPE_UNSIGNED (gnu_in_basetype)) gnu_in_ub = convert (gnat_unsigned_type (gnu_in_basetype), gnu_in_ub); if (INTEGRAL_TYPE_P (gnu_base_type) && TYPE_UNSIGNED (gnu_base_type)) gnu_out_lb = convert (gnat_signed_type (gnu_base_type), gnu_out_lb); if (INTEGRAL_TYPE_P (gnu_base_type) && !TYPE_UNSIGNED (gnu_base_type)) gnu_out_ub = convert (gnat_unsigned_type (gnu_base_type), gnu_out_ub); /* Check each bound separately and only if the result bound is tighter than the bound on the input type. Note that all the types are base types, so the bounds must be constant. Also, the comparison is done in the base type of the input, which always has the proper signedness. First check for input integer (which means output integer), output float (which means both float), or mixed, in which case we always compare. Note that we have to do the comparison which would *fail* in the case of an error since if it's an FP comparison and one of the values is a NaN or Inf, the comparison will fail. */ if (INTEGRAL_TYPE_P (gnu_in_basetype) ? tree_int_cst_lt (gnu_in_lb, gnu_out_lb) : (FLOAT_TYPE_P (gnu_base_type) ? REAL_VALUES_LESS (TREE_REAL_CST (gnu_in_lb), TREE_REAL_CST (gnu_out_lb)) : 1)) gnu_cond = invert_truthvalue (build_binary_op (GE_EXPR, integer_type_node, gnu_input, convert (gnu_in_basetype, gnu_out_lb))); if (INTEGRAL_TYPE_P (gnu_in_basetype) ? tree_int_cst_lt (gnu_out_ub, gnu_in_ub) : (FLOAT_TYPE_P (gnu_base_type) ? REAL_VALUES_LESS (TREE_REAL_CST (gnu_out_ub), TREE_REAL_CST (gnu_in_lb)) : 1)) gnu_cond = build_binary_op (TRUTH_ORIF_EXPR, integer_type_node, gnu_cond, invert_truthvalue (build_binary_op (LE_EXPR, integer_type_node, gnu_input, convert (gnu_in_basetype, gnu_out_ub)))); if (!integer_zerop (gnu_cond)) gnu_result = emit_check (gnu_cond, gnu_input, CE_Overflow_Check_Failed); } /* Now convert to the result base type. If this is a non-truncating float-to-integer conversion, round. */ if (INTEGRAL_TYPE_P (gnu_base_type) && FLOAT_TYPE_P (gnu_in_basetype) && !truncatep) { REAL_VALUE_TYPE half_minus_pred_half, pred_half; tree gnu_conv, gnu_zero, gnu_comp, gnu_saved_result, calc_type; tree gnu_pred_half, gnu_add_pred_half, gnu_subtract_pred_half; const struct real_format *fmt; /* The following calculations depend on proper rounding to even of each arithmetic operation. In order to prevent excess precision from spoiling this property, use the widest hardware floating-point type if FP_ARITH_MAY_WIDEN is true. */ calc_type = (FP_ARITH_MAY_WIDEN ? longest_float_type_node : gnu_in_basetype); /* FIXME: Should not have padding in the first place */ if (TREE_CODE (calc_type) == RECORD_TYPE && TYPE_IS_PADDING_P (calc_type)) calc_type = TREE_TYPE (TYPE_FIELDS (calc_type)); /* Compute the exact value calc_type'Pred (0.5) at compile time. */ fmt = REAL_MODE_FORMAT (TYPE_MODE (calc_type)); real_2expN (&half_minus_pred_half, -(fmt->p) - 1, TYPE_MODE (calc_type)); REAL_ARITHMETIC (pred_half, MINUS_EXPR, dconsthalf, half_minus_pred_half); gnu_pred_half = build_real (calc_type, pred_half); /* If the input is strictly negative, subtract this value and otherwise add it from the input. For 0.5, the result is exactly between 1.0 and the machine number preceding 1.0 (for calc_type). Since the last bit of 1.0 is even, this 0.5 will round to 1.0, while all other number with an absolute value less than 0.5 round to 0.0. For larger numbers exactly halfway between integers, rounding will always be correct as the true mathematical result will be closer to the higher integer compared to the lower one. So, this constant works for all floating-point numbers. The reason to use the same constant with subtract/add instead of a positive and negative constant is to allow the comparison to be scheduled in parallel with retrieval of the constant and conversion of the input to the calc_type (if necessary). */ gnu_zero = convert (gnu_in_basetype, integer_zero_node); gnu_saved_result = save_expr (gnu_result); gnu_conv = convert (calc_type, gnu_saved_result); gnu_comp = build2 (GE_EXPR, integer_type_node, gnu_saved_result, gnu_zero); gnu_add_pred_half = build2 (PLUS_EXPR, calc_type, gnu_conv, gnu_pred_half); gnu_subtract_pred_half = build2 (MINUS_EXPR, calc_type, gnu_conv, gnu_pred_half); gnu_result = build3 (COND_EXPR, calc_type, gnu_comp, gnu_add_pred_half, gnu_subtract_pred_half); } if (TREE_CODE (gnu_base_type) == INTEGER_TYPE && TYPE_HAS_ACTUAL_BOUNDS_P (gnu_base_type) && TREE_CODE (gnu_result) == UNCONSTRAINED_ARRAY_REF) gnu_result = unchecked_convert (gnu_base_type, gnu_result, false); else gnu_result = convert (gnu_base_type, gnu_result); /* Finally, do the range check if requested. Note that if the result type is a modular type, the range check is actually an overflow check. */ if (rangep || (TREE_CODE (gnu_base_type) == INTEGER_TYPE && TYPE_MODULAR_P (gnu_base_type) && overflowp)) gnu_result = emit_range_check (gnu_result, gnat_type); return convert (gnu_type, gnu_result); } /* Return true if TYPE is a smaller packable version of RECORD_TYPE. */ static bool smaller_packable_type_p (tree type, tree record_type) { tree size, rsize; /* We're not interested in variants here. */ if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (record_type)) return false; /* Like a variant, a packable version keeps the original TYPE_NAME. */ if (TYPE_NAME (type) != TYPE_NAME (record_type)) return false; size = TYPE_SIZE (type); rsize = TYPE_SIZE (record_type); if (!(TREE_CODE (size) == INTEGER_CST && TREE_CODE (rsize) == INTEGER_CST)) return false; return tree_int_cst_lt (size, rsize) != 0; } /* Return true if GNU_EXPR can be directly addressed. This is the case unless it is an expression involving computation or if it involves a reference to a bitfield or to an object not sufficiently aligned for its type. If GNU_TYPE is non-null, return true only if GNU_EXPR can be directly addressed as an object of this type. *** Notes on addressability issues in the Ada compiler *** This predicate is necessary in order to bridge the gap between Gigi and the middle-end about addressability of GENERIC trees. A tree is said to be addressable if it can be directly addressed, i.e. if its address can be taken, is a multiple of the type's alignment on strict-alignment architectures and returns the first storage unit assigned to the object represented by the tree. In the C family of languages, everything is in practice addressable at the language level, except for bit-fields. This means that these compilers will take the address of any tree that doesn't represent a bit-field reference and expect the result to be the first storage unit assigned to the object. Even in cases where this will result in unaligned accesses at run time, nothing is supposed to be done and the program is considered as erroneous instead (see PR c/18287). The implicit assumptions made in the middle-end are in keeping with the C viewpoint described above: - the address of a bit-field reference is supposed to be never taken; the compiler (generally) will stop on such a construct, - any other tree is addressable if it is formally addressable, i.e. if it is formally allowed to be the operand of ADDR_EXPR. In Ada, the viewpoint is the opposite one: nothing is addressable at the language level unless explicitly declared so. This means that the compiler will both make sure that the trees representing references to addressable ("aliased" in Ada parlance) objects are addressable and make no real attempts at ensuring that the trees representing references to non-addressable objects are addressable. In the first case, Ada is effectively equivalent to C and handing down the direct result of applying ADDR_EXPR to these trees to the middle-end works flawlessly. In the second case, Ada cannot afford to consider the program as erroneous if the address of trees that are not addressable is requested for technical reasons, unlike C; as a consequence, the Ada compiler must arrange for either making sure that this address is not requested in the middle-end or for compensating by inserting temporaries if it is requested in Gigi. The first goal can be achieved because the middle-end should not request the address of non-addressable trees on its own; the only exception is for the invocation of low-level block operations like memcpy, for which the addressability requirements are lower since the type's alignment can be disregarded. In practice, this means that Gigi must make sure that such operations cannot be applied to non-BLKmode bit-fields. The second goal is achieved by means of the addressable_p predicate and by inserting SAVE_EXPRs around trees deemed non-addressable. They will be turned during gimplification into proper temporaries whose address will be used in lieu of that of the original tree. */ static bool addressable_p (tree gnu_expr, tree gnu_type) { /* The size of the real type of the object must not be smaller than that of the expected type, otherwise an indirect access in the latter type would be larger than the object. Only records need to be considered in practice. */ if (gnu_type && TREE_CODE (gnu_type) == RECORD_TYPE && smaller_packable_type_p (TREE_TYPE (gnu_expr), gnu_type)) return false; switch (TREE_CODE (gnu_expr)) { case VAR_DECL: case PARM_DECL: case FUNCTION_DECL: case RESULT_DECL: /* All DECLs are addressable: if they are in a register, we can force them to memory. */ return true; case UNCONSTRAINED_ARRAY_REF: case INDIRECT_REF: case CONSTRUCTOR: case STRING_CST: case INTEGER_CST: case NULL_EXPR: case SAVE_EXPR: case CALL_EXPR: return true; case COND_EXPR: /* We accept &COND_EXPR as soon as both operands are addressable and expect the outcome to be the address of the selected operand. */ return (addressable_p (TREE_OPERAND (gnu_expr, 1), NULL_TREE) && addressable_p (TREE_OPERAND (gnu_expr, 2), NULL_TREE)); case COMPONENT_REF: return (((!DECL_BIT_FIELD (TREE_OPERAND (gnu_expr, 1)) /* Even with DECL_BIT_FIELD cleared, we have to ensure that the field is sufficiently aligned, in case it is subject to a pragma Component_Alignment. But we don't need to check the alignment of the containing record, as it is guaranteed to be not smaller than that of its most aligned field that is not a bit-field. */ && (!STRICT_ALIGNMENT || DECL_ALIGN (TREE_OPERAND (gnu_expr, 1)) >= TYPE_ALIGN (TREE_TYPE (gnu_expr)))) /* The field of a padding record is always addressable. */ || TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))) && addressable_p (TREE_OPERAND (gnu_expr, 0), NULL_TREE)); case ARRAY_REF: case ARRAY_RANGE_REF: case REALPART_EXPR: case IMAGPART_EXPR: case NOP_EXPR: return addressable_p (TREE_OPERAND (gnu_expr, 0), NULL_TREE); case CONVERT_EXPR: return (AGGREGATE_TYPE_P (TREE_TYPE (gnu_expr)) && addressable_p (TREE_OPERAND (gnu_expr, 0), NULL_TREE)); case VIEW_CONVERT_EXPR: { /* This is addressable if we can avoid a copy. */ tree type = TREE_TYPE (gnu_expr); tree inner_type = TREE_TYPE (TREE_OPERAND (gnu_expr, 0)); return (((TYPE_MODE (type) == TYPE_MODE (inner_type) && (!STRICT_ALIGNMENT || TYPE_ALIGN (type) <= TYPE_ALIGN (inner_type) || TYPE_ALIGN (inner_type) >= BIGGEST_ALIGNMENT)) || ((TYPE_MODE (type) == BLKmode || TYPE_MODE (inner_type) == BLKmode) && (!STRICT_ALIGNMENT || TYPE_ALIGN (type) <= TYPE_ALIGN (inner_type) || TYPE_ALIGN (inner_type) >= BIGGEST_ALIGNMENT || TYPE_ALIGN_OK (type) || TYPE_ALIGN_OK (inner_type)))) && addressable_p (TREE_OPERAND (gnu_expr, 0), NULL_TREE)); } default: return false; } } /* Do the processing for the declaration of a GNAT_ENTITY, a type. If a separate Freeze node exists, delay the bulk of the processing. Otherwise make a GCC type for GNAT_ENTITY and set up the correspondence. */ void process_type (Entity_Id gnat_entity) { tree gnu_old = present_gnu_tree (gnat_entity) ? get_gnu_tree (gnat_entity) : 0; tree gnu_new; /* If we are to delay elaboration of this type, just do any elaborations needed for expressions within the declaration and make a dummy type entry for this node and its Full_View (if any) in case something points to it. Don't do this if it has already been done (the only way that can happen is if the private completion is also delayed). */ if (Present (Freeze_Node (gnat_entity)) || (IN (Ekind (gnat_entity), Incomplete_Or_Private_Kind) && Present (Full_View (gnat_entity)) && Freeze_Node (Full_View (gnat_entity)) && !present_gnu_tree (Full_View (gnat_entity)))) { elaborate_entity (gnat_entity); if (!gnu_old) { tree gnu_decl = create_type_decl (get_entity_name (gnat_entity), make_dummy_type (gnat_entity), NULL, false, false, gnat_entity); save_gnu_tree (gnat_entity, gnu_decl, false); if (IN (Ekind (gnat_entity), Incomplete_Or_Private_Kind) && Present (Full_View (gnat_entity))) save_gnu_tree (Full_View (gnat_entity), gnu_decl, false); } return; } /* If we saved away a dummy type for this node it means that this made the type that corresponds to the full type of an incomplete type. Clear that type for now and then update the type in the pointers. */ if (gnu_old) { gcc_assert (TREE_CODE (gnu_old) == TYPE_DECL && TYPE_IS_DUMMY_P (TREE_TYPE (gnu_old))); save_gnu_tree (gnat_entity, NULL_TREE, false); } /* Now fully elaborate the type. */ gnu_new = gnat_to_gnu_entity (gnat_entity, NULL_TREE, 1); gcc_assert (TREE_CODE (gnu_new) == TYPE_DECL); /* If we have an old type and we've made pointers to this type, update those pointers. */ if (gnu_old) update_pointer_to (TYPE_MAIN_VARIANT (TREE_TYPE (gnu_old)), TREE_TYPE (gnu_new)); /* If this is a record type corresponding to a task or protected type that is a completion of an incomplete type, perform a similar update on the type. */ /* ??? Including protected types here is a guess. */ if (IN (Ekind (gnat_entity), Record_Kind) && Is_Concurrent_Record_Type (gnat_entity) && present_gnu_tree (Corresponding_Concurrent_Type (gnat_entity))) { tree gnu_task_old = get_gnu_tree (Corresponding_Concurrent_Type (gnat_entity)); save_gnu_tree (Corresponding_Concurrent_Type (gnat_entity), NULL_TREE, false); save_gnu_tree (Corresponding_Concurrent_Type (gnat_entity), gnu_new, false); update_pointer_to (TYPE_MAIN_VARIANT (TREE_TYPE (gnu_task_old)), TREE_TYPE (gnu_new)); } } /* GNAT_ENTITY is the type of the resulting constructors, GNAT_ASSOC is the front of the Component_Associations of an N_Aggregate, and GNU_TYPE is the GCC type of the corresponding record. Return a CONSTRUCTOR to build the record. */ static tree assoc_to_constructor (Entity_Id gnat_entity, Node_Id gnat_assoc, tree gnu_type) { tree gnu_list, gnu_result; /* We test for GNU_FIELD being empty in the case where a variant was the last thing since we don't take things off GNAT_ASSOC in that case. We check GNAT_ASSOC in case we have a variant, but it has no fields. */ for (gnu_list = NULL_TREE; Present (gnat_assoc); gnat_assoc = Next (gnat_assoc)) { Node_Id gnat_field = First (Choices (gnat_assoc)); tree gnu_field = gnat_to_gnu_field_decl (Entity (gnat_field)); tree gnu_expr = gnat_to_gnu (Expression (gnat_assoc)); /* The expander is supposed to put a single component selector name in every record component association */ gcc_assert (No (Next (gnat_field))); /* Ignore fields that have Corresponding_Discriminants since we'll be setting that field in the parent. */ if (Present (Corresponding_Discriminant (Entity (gnat_field))) && Is_Tagged_Type (Scope (Entity (gnat_field)))) continue; /* Also ignore discriminants of Unchecked_Unions. */ else if (Is_Unchecked_Union (gnat_entity) && Ekind (Entity (gnat_field)) == E_Discriminant) continue; /* Before assigning a value in an aggregate make sure range checks are done if required. Then convert to the type of the field. */ if (Do_Range_Check (Expression (gnat_assoc))) gnu_expr = emit_range_check (gnu_expr, Etype (gnat_field)); gnu_expr = convert (TREE_TYPE (gnu_field), gnu_expr); /* Add the field and expression to the list. */ gnu_list = tree_cons (gnu_field, gnu_expr, gnu_list); } gnu_result = extract_values (gnu_list, gnu_type); #ifdef ENABLE_CHECKING { tree gnu_field; /* Verify every entry in GNU_LIST was used. */ for (gnu_field = gnu_list; gnu_field; gnu_field = TREE_CHAIN (gnu_field)) gcc_assert (TREE_ADDRESSABLE (gnu_field)); } #endif return gnu_result; } /* Builds a possibly nested constructor for array aggregates. GNAT_EXPR is the first element of an array aggregate. It may itself be an aggregate (an array or record aggregate). GNU_ARRAY_TYPE is the gnu type corresponding to the array aggregate. GNAT_COMPONENT_TYPE is the type of the array component. It is needed for range checking. */ static tree pos_to_constructor (Node_Id gnat_expr, tree gnu_array_type, Entity_Id gnat_component_type) { tree gnu_expr_list = NULL_TREE; tree gnu_index = TYPE_MIN_VALUE (TYPE_DOMAIN (gnu_array_type)); tree gnu_expr; for ( ; Present (gnat_expr); gnat_expr = Next (gnat_expr)) { /* If the expression is itself an array aggregate then first build the innermost constructor if it is part of our array (multi-dimensional case). */ if (Nkind (gnat_expr) == N_Aggregate && TREE_CODE (TREE_TYPE (gnu_array_type)) == ARRAY_TYPE && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_array_type))) gnu_expr = pos_to_constructor (First (Expressions (gnat_expr)), TREE_TYPE (gnu_array_type), gnat_component_type); else { gnu_expr = gnat_to_gnu (gnat_expr); /* before assigning the element to the array make sure it is in range */ if (Do_Range_Check (gnat_expr)) gnu_expr = emit_range_check (gnu_expr, gnat_component_type); } gnu_expr_list = tree_cons (gnu_index, convert (TREE_TYPE (gnu_array_type), gnu_expr), gnu_expr_list); gnu_index = int_const_binop (PLUS_EXPR, gnu_index, integer_one_node, 0); } return gnat_build_constructor (gnu_array_type, nreverse (gnu_expr_list)); } /* Subroutine of assoc_to_constructor: VALUES is a list of field associations, some of which are from RECORD_TYPE. Return a CONSTRUCTOR consisting of the associations that are from RECORD_TYPE. If we see an internal record, make a recursive call to fill it in as well. */ static tree extract_values (tree values, tree record_type) { tree result = NULL_TREE; tree field, tem; for (field = TYPE_FIELDS (record_type); field; field = TREE_CHAIN (field)) { tree value = 0; /* _Parent is an internal field, but may have values in the aggregate, so check for values first. */ if ((tem = purpose_member (field, values))) { value = TREE_VALUE (tem); TREE_ADDRESSABLE (tem) = 1; } else if (DECL_INTERNAL_P (field)) { value = extract_values (values, TREE_TYPE (field)); if (TREE_CODE (value) == CONSTRUCTOR && VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (value))) value = 0; } else /* If we have a record subtype, the names will match, but not the actual FIELD_DECLs. */ for (tem = values; tem; tem = TREE_CHAIN (tem)) if (DECL_NAME (TREE_PURPOSE (tem)) == DECL_NAME (field)) { value = convert (TREE_TYPE (field), TREE_VALUE (tem)); TREE_ADDRESSABLE (tem) = 1; } if (!value) continue; result = tree_cons (field, value, result); } return gnat_build_constructor (record_type, nreverse (result)); } /* EXP is to be treated as an array or record. Handle the cases when it is an access object and perform the required dereferences. */ static tree maybe_implicit_deref (tree exp) { /* If the type is a pointer, dereference it. */ if (POINTER_TYPE_P (TREE_TYPE (exp)) || TYPE_FAT_POINTER_P (TREE_TYPE (exp))) exp = build_unary_op (INDIRECT_REF, NULL_TREE, exp); /* If we got a padded type, remove it too. */ if (TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE && TYPE_IS_PADDING_P (TREE_TYPE (exp))) exp = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (exp))), exp); return exp; } /* Protect EXP from multiple evaluation. This may make a SAVE_EXPR. */ tree protect_multiple_eval (tree exp) { tree type = TREE_TYPE (exp); /* If this has no side effects, we don't need to do anything. */ if (!TREE_SIDE_EFFECTS (exp)) return exp; /* If it is a conversion, protect what's inside the conversion. Similarly, if we're indirectly referencing something, we only actually need to protect the address since the data itself can't change in these situations. */ else if (TREE_CODE (exp) == NON_LVALUE_EXPR || CONVERT_EXPR_P (exp) || TREE_CODE (exp) == VIEW_CONVERT_EXPR || TREE_CODE (exp) == INDIRECT_REF || TREE_CODE (exp) == UNCONSTRAINED_ARRAY_REF) return build1 (TREE_CODE (exp), type, protect_multiple_eval (TREE_OPERAND (exp, 0))); /* If EXP is a fat pointer or something that can be placed into a register, just make a SAVE_EXPR. */ if (TYPE_FAT_POINTER_P (type) || TYPE_MODE (type) != BLKmode) return save_expr (exp); /* Otherwise, dereference, protect the address, and re-reference. */ else return build_unary_op (INDIRECT_REF, type, save_expr (build_unary_op (ADDR_EXPR, build_reference_type (type), exp))); } /* This is equivalent to stabilize_reference in tree.c, but we know how to handle our own nodes and we take extra arguments. FORCE says whether to force evaluation of everything. We set SUCCESS to true unless we walk through something we don't know how to stabilize. */ tree maybe_stabilize_reference (tree ref, bool force, bool *success) { tree type = TREE_TYPE (ref); enum tree_code code = TREE_CODE (ref); tree result; /* Assume we'll success unless proven otherwise. */ *success = true; switch (code) { case CONST_DECL: case VAR_DECL: case PARM_DECL: case RESULT_DECL: /* No action is needed in this case. */ return ref; case ADDR_EXPR: CASE_CONVERT: case FLOAT_EXPR: case FIX_TRUNC_EXPR: case VIEW_CONVERT_EXPR: result = build1 (code, type, maybe_stabilize_reference (TREE_OPERAND (ref, 0), force, success)); break; case INDIRECT_REF: case UNCONSTRAINED_ARRAY_REF: result = build1 (code, type, gnat_stabilize_reference_1 (TREE_OPERAND (ref, 0), force)); break; case COMPONENT_REF: result = build3 (COMPONENT_REF, type, maybe_stabilize_reference (TREE_OPERAND (ref, 0), force, success), TREE_OPERAND (ref, 1), NULL_TREE); break; case BIT_FIELD_REF: result = build3 (BIT_FIELD_REF, type, maybe_stabilize_reference (TREE_OPERAND (ref, 0), force, success), gnat_stabilize_reference_1 (TREE_OPERAND (ref, 1), force), gnat_stabilize_reference_1 (TREE_OPERAND (ref, 2), force)); break; case ARRAY_REF: case ARRAY_RANGE_REF: result = build4 (code, type, maybe_stabilize_reference (TREE_OPERAND (ref, 0), force, success), gnat_stabilize_reference_1 (TREE_OPERAND (ref, 1), force), NULL_TREE, NULL_TREE); break; case COMPOUND_EXPR: result = gnat_stabilize_reference_1 (ref, force); break; case CALL_EXPR: /* This generates better code than the scheme in protect_multiple_eval because large objects will be returned via invisible reference in most ABIs so the temporary will directly be filled by the callee. */ result = gnat_stabilize_reference_1 (ref, force); break; case CONSTRUCTOR: /* Constructors with 1 element are used extensively to formally convert objects to special wrapping types. */ if (TREE_CODE (type) == RECORD_TYPE && VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ref)) == 1) { tree index = VEC_index (constructor_elt, CONSTRUCTOR_ELTS (ref), 0)->index; tree value = VEC_index (constructor_elt, CONSTRUCTOR_ELTS (ref), 0)->value; result = build_constructor_single (type, index, gnat_stabilize_reference_1 (value, force)); } else { *success = false; return ref; } break; case ERROR_MARK: ref = error_mark_node; /* ... Fallthru to failure ... */ /* If arg isn't a kind of lvalue we recognize, make no change. Caller should recognize the error for an invalid lvalue. */ default: *success = false; return ref; } TREE_READONLY (result) = TREE_READONLY (ref); /* TREE_THIS_VOLATILE and TREE_SIDE_EFFECTS attached to the initial expression may not be sustained across some paths, such as the way via build1 for INDIRECT_REF. We re-populate those flags here for the general case, which is consistent with the GCC version of this routine. Special care should be taken regarding TREE_SIDE_EFFECTS, because some paths introduce side effects where there was none initially (e.g. calls to save_expr), and we also want to keep track of that. */ TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref); TREE_SIDE_EFFECTS (result) |= TREE_SIDE_EFFECTS (ref); return result; } /* Wrapper around maybe_stabilize_reference, for common uses without lvalue restrictions and without need to examine the success indication. */ static tree gnat_stabilize_reference (tree ref, bool force) { bool dummy; return maybe_stabilize_reference (ref, force, &dummy); } /* Similar to stabilize_reference_1 in tree.c, but supports an extra arg to force a SAVE_EXPR for everything. */ static tree gnat_stabilize_reference_1 (tree e, bool force) { enum tree_code code = TREE_CODE (e); tree type = TREE_TYPE (e); tree result; /* We cannot ignore const expressions because it might be a reference to a const array but whose index contains side-effects. But we can ignore things that are actual constant or that already have been handled by this function. */ if (TREE_CONSTANT (e) || code == SAVE_EXPR) return e; switch (TREE_CODE_CLASS (code)) { case tcc_exceptional: case tcc_type: case tcc_declaration: case tcc_comparison: case tcc_statement: case tcc_expression: case tcc_reference: case tcc_vl_exp: /* If this is a COMPONENT_REF of a fat pointer, save the entire fat pointer. This may be more efficient, but will also allow us to more easily find the match for the PLACEHOLDER_EXPR. */ if (code == COMPONENT_REF && TYPE_FAT_POINTER_P (TREE_TYPE (TREE_OPERAND (e, 0)))) result = build3 (COMPONENT_REF, type, gnat_stabilize_reference_1 (TREE_OPERAND (e, 0), force), TREE_OPERAND (e, 1), TREE_OPERAND (e, 2)); else if (TREE_SIDE_EFFECTS (e) || force) return save_expr (e); else return e; break; case tcc_constant: /* Constants need no processing. In fact, we should never reach here. */ return e; case tcc_binary: /* Recursively stabilize each operand. */ result = build2 (code, type, gnat_stabilize_reference_1 (TREE_OPERAND (e, 0), force), gnat_stabilize_reference_1 (TREE_OPERAND (e, 1), force)); break; case tcc_unary: /* Recursively stabilize each operand. */ result = build1 (code, type, gnat_stabilize_reference_1 (TREE_OPERAND (e, 0), force)); break; default: gcc_unreachable (); } TREE_READONLY (result) = TREE_READONLY (e); TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e); TREE_SIDE_EFFECTS (result) |= TREE_SIDE_EFFECTS (e); return result; } /* Convert SLOC into LOCUS. Return true if SLOC corresponds to a source code location and false if it doesn't. In the former case, set the Gigi global variable REF_FILENAME to the simple debug file name as given by sinput. */ bool Sloc_to_locus (Source_Ptr Sloc, location_t *locus) { if (Sloc == No_Location) return false; if (Sloc <= Standard_Location) { if (*locus == UNKNOWN_LOCATION) *locus = BUILTINS_LOCATION; return false; } else { Source_File_Index file = Get_Source_File_Index (Sloc); Logical_Line_Number line = Get_Logical_Line_Number (Sloc); Column_Number column = Get_Column_Number (Sloc); struct line_map *map = &line_table->maps[file - 1]; /* Translate the location according to the line-map.h formula. */ *locus = map->start_location + ((line - map->to_line) << map->column_bits) + (column & ((1 << map->column_bits) - 1)); } ref_filename = IDENTIFIER_POINTER (get_identifier (Get_Name_String (Debug_Source_Name (Get_Source_File_Index (Sloc)))));; return true; } /* Similar to set_expr_location, but start with the Sloc of GNAT_NODE and don't do anything if it doesn't correspond to a source location. */ static void set_expr_location_from_node (tree node, Node_Id gnat_node) { location_t locus; if (!Sloc_to_locus (Sloc (gnat_node), &locus)) return; SET_EXPR_LOCATION (node, locus); } /* Return a colon-separated list of encodings contained in encoded Ada name. */ static const char * extract_encoding (const char *name) { char *encoding = GGC_NEWVEC (char, strlen (name)); get_encoding (name, encoding); return encoding; } /* Extract the Ada name from an encoded name. */ static const char * decode_name (const char *name) { char *decoded = GGC_NEWVEC (char, strlen (name) * 2 + 60); __gnat_decode (name, decoded, 0); return decoded; } /* Post an error message. MSG is the error message, properly annotated. NODE is the node at which to post the error and the node to use for the "&" substitution. */ void post_error (const char *msg, Node_Id node) { String_Template temp; Fat_Pointer fp; temp.Low_Bound = 1, temp.High_Bound = strlen (msg); fp.Array = msg, fp.Bounds = &temp; if (Present (node)) Error_Msg_N (fp, node); } /* Similar, but NODE is the node at which to post the error and ENT is the node to use for the "&" substitution. */ void post_error_ne (const char *msg, Node_Id node, Entity_Id ent) { String_Template temp; Fat_Pointer fp; temp.Low_Bound = 1, temp.High_Bound = strlen (msg); fp.Array = msg, fp.Bounds = &temp; if (Present (node)) Error_Msg_NE (fp, node, ent); } /* Similar, but NODE is the node at which to post the error, ENT is the node to use for the "&" substitution, and N is the number to use for the ^. */ void post_error_ne_num (const char *msg, Node_Id node, Entity_Id ent, int n) { String_Template temp; Fat_Pointer fp; temp.Low_Bound = 1, temp.High_Bound = strlen (msg); fp.Array = msg, fp.Bounds = &temp; Error_Msg_Uint_1 = UI_From_Int (n); if (Present (node)) Error_Msg_NE (fp, node, ent); } /* Similar to post_error_ne_num, but T is a GCC tree representing the number to write. If the tree represents a constant that fits within a host integer, the text inside curly brackets in MSG will be output (presumably including a '^'). Otherwise that text will not be output and the text inside square brackets will be output instead. */ void post_error_ne_tree (const char *msg, Node_Id node, Entity_Id ent, tree t) { char *newmsg = XALLOCAVEC (char, strlen (msg) + 1); String_Template temp = {1, 0}; Fat_Pointer fp; char start_yes, end_yes, start_no, end_no; const char *p; char *q; fp.Array = newmsg, fp.Bounds = &temp; if (host_integerp (t, 1) #if HOST_BITS_PER_WIDE_INT > HOST_BITS_PER_INT && compare_tree_int (t, (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_INT - 1)) - 1)) < 0 #endif ) { Error_Msg_Uint_1 = UI_From_Int (tree_low_cst (t, 1)); start_yes = '{', end_yes = '}', start_no = '[', end_no = ']'; } else start_yes = '[', end_yes = ']', start_no = '{', end_no = '}'; for (p = msg, q = newmsg; *p; p++) { if (*p == start_yes) for (p++; *p != end_yes; p++) *q++ = *p; else if (*p == start_no) for (p++; *p != end_no; p++) ; else *q++ = *p; } *q = 0; temp.High_Bound = strlen (newmsg); if (Present (node)) Error_Msg_NE (fp, node, ent); } /* Similar to post_error_ne_tree, except that NUM is a second integer to write in the message. */ void post_error_ne_tree_2 (const char *msg, Node_Id node, Entity_Id ent, tree t, int num) { Error_Msg_Uint_2 = UI_From_Int (num); post_error_ne_tree (msg, node, ent, t); } /* Initialize the table that maps GNAT codes to GCC codes for simple binary and unary operations. */ static void init_code_table (void) { gnu_codes[N_And_Then] = TRUTH_ANDIF_EXPR; gnu_codes[N_Or_Else] = TRUTH_ORIF_EXPR; gnu_codes[N_Op_And] = TRUTH_AND_EXPR; gnu_codes[N_Op_Or] = TRUTH_OR_EXPR; gnu_codes[N_Op_Xor] = TRUTH_XOR_EXPR; gnu_codes[N_Op_Eq] = EQ_EXPR; gnu_codes[N_Op_Ne] = NE_EXPR; gnu_codes[N_Op_Lt] = LT_EXPR; gnu_codes[N_Op_Le] = LE_EXPR; gnu_codes[N_Op_Gt] = GT_EXPR; gnu_codes[N_Op_Ge] = GE_EXPR; gnu_codes[N_Op_Add] = PLUS_EXPR; gnu_codes[N_Op_Subtract] = MINUS_EXPR; gnu_codes[N_Op_Multiply] = MULT_EXPR; gnu_codes[N_Op_Mod] = FLOOR_MOD_EXPR; gnu_codes[N_Op_Rem] = TRUNC_MOD_EXPR; gnu_codes[N_Op_Minus] = NEGATE_EXPR; gnu_codes[N_Op_Abs] = ABS_EXPR; gnu_codes[N_Op_Not] = TRUTH_NOT_EXPR; gnu_codes[N_Op_Rotate_Left] = LROTATE_EXPR; gnu_codes[N_Op_Rotate_Right] = RROTATE_EXPR; gnu_codes[N_Op_Shift_Left] = LSHIFT_EXPR; gnu_codes[N_Op_Shift_Right] = RSHIFT_EXPR; gnu_codes[N_Op_Shift_Right_Arithmetic] = RSHIFT_EXPR; } /* Return a label to branch to for the exception type in KIND or NULL_TREE if none. */ tree get_exception_label (char kind) { if (kind == N_Raise_Constraint_Error) return TREE_VALUE (gnu_constraint_error_label_stack); else if (kind == N_Raise_Storage_Error) return TREE_VALUE (gnu_storage_error_label_stack); else if (kind == N_Raise_Program_Error) return TREE_VALUE (gnu_program_error_label_stack); else return NULL_TREE; } #include "gt-ada-trans.h"