/* Copyright (C) 2007 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef _SQRT_MACROS_H_ #define _SQRT_MACROS_H_ #define FENCE __fence #if DOUBLE_EXTENDED_ON extern BINARY80 SQRT80 (BINARY80); __BID_INLINE__ UINT64 short_sqrt128 (UINT128 A10) { BINARY80 lx, ly, l64; int_float f64; // 2^64 f64.i = 0x5f800000; l64 = (BINARY80) f64.d; lx = (BINARY80) A10.w[1] * l64 + (BINARY80) A10.w[0]; ly = SQRT80 (lx); return (UINT64) ly; } __BID_INLINE__ void long_sqrt128 (UINT128 * pCS, UINT256 C256) { UINT256 C4; UINT128 CS; UINT64 X; SINT64 SE; BINARY80 l64, lm64, l128, lxL, lx, ly, lS, lSH, lSL, lE, l3, l2, l1, l0, lp, lCl; int_float fx, f64, fm64; int *ple = (int *) &lx; // 2^64 f64.i = 0x5f800000; l64 = (BINARY80) f64.d; l128 = l64 * l64; lx = l3 = (BINARY80) C256.w[3] * l64 * l128; l2 = (BINARY80) C256.w[2] * l128; lx = FENCE (lx + l2); l1 = (BINARY80) C256.w[1] * l64; lx = FENCE (lx + l1); l0 = (BINARY80) C256.w[0]; lx = FENCE (lx + l0); // sqrt(C256) lS = SQRT80 (lx); // get coefficient // 2^(-64) fm64.i = 0x1f800000; lm64 = (BINARY80) fm64.d; CS.w[1] = (UINT64) (lS * lm64); CS.w[0] = (UINT64) (lS - (BINARY80) CS.w[1] * l64); /////////////////////////////////////// // CAUTION! // little endian code only // add solution for big endian ////////////////////////////////////// lSH = lS; *((UINT64 *) & lSH) &= 0xffffffff00000000ull; // correction for C256 rounding lCl = FENCE (l3 - lx); lCl = FENCE (lCl + l2); lCl = FENCE (lCl + l1); lCl = FENCE (lCl + l0); lSL = lS - lSH; ////////////////////////////////////////// // Watch for compiler re-ordering // ///////////////////////////////////////// // C256-S^2 lxL = FENCE (lx - lSH * lSH); lp = lSH * lSL; lp += lp; lxL = FENCE (lxL - lp); lSL *= lSL; lxL = FENCE (lxL - lSL); lCl += lxL; // correction term lE = lCl / (lS + lS); // get low part of coefficient X = CS.w[0]; if (lCl >= 0) { SE = (SINT64) (lE); CS.w[0] += SE; if (CS.w[0] < X) CS.w[1]++; } else { SE = (SINT64) (-lE); CS.w[0] -= SE; if (CS.w[0] > X) CS.w[1]--; } pCS->w[0] = CS.w[0]; pCS->w[1] = CS.w[1]; } #else extern double sqrt (double); __BID_INLINE__ UINT64 short_sqrt128 (UINT128 A10) { UINT256 ARS, ARS0, AE0, AE, S; UINT64 MY, ES, CY; double lx, l64; int_double f64, ly; int ey, k; // 2^64 f64.i = 0x43f0000000000000ull; l64 = f64.d; lx = (double) A10.w[1] * l64 + (double) A10.w[0]; ly.d = 1.0 / sqrt (lx); MY = (ly.i & 0x000fffffffffffffull) | 0x0010000000000000ull; ey = 0x3ff - (ly.i >> 52); // A10*RS^2 __mul_64x128_to_192 (ARS0, MY, A10); __mul_64x192_to_256 (ARS, MY, ARS0); // shr by 2*ey+40, to get a 64-bit value k = (ey << 1) + 104 - 64; if (k >= 128) { if (k > 128) ES = (ARS.w[2] >> (k - 128)) | (ARS.w[3] << (192 - k)); else ES = ARS.w[2]; } else { if (k >= 64) { ARS.w[0] = ARS.w[1]; ARS.w[1] = ARS.w[2]; k -= 64; } if (k) { __shr_128 (ARS, ARS, k); } ES = ARS.w[0]; } ES = ((SINT64) ES) >> 1; if (((SINT64) ES) < 0) { ES = -ES; // A*RS*eps (scaled by 2^64) __mul_64x192_to_256 (AE0, ES, ARS0); AE.w[0] = AE0.w[1]; AE.w[1] = AE0.w[2]; AE.w[2] = AE0.w[3]; __add_carry_out (S.w[0], CY, ARS0.w[0], AE.w[0]); __add_carry_in_out (S.w[1], CY, ARS0.w[1], AE.w[1], CY); S.w[2] = ARS0.w[2] + AE.w[2] + CY; } else { // A*RS*eps (scaled by 2^64) __mul_64x192_to_256 (AE0, ES, ARS0); AE.w[0] = AE0.w[1]; AE.w[1] = AE0.w[2]; AE.w[2] = AE0.w[3]; __sub_borrow_out (S.w[0], CY, ARS0.w[0], AE.w[0]); __sub_borrow_in_out (S.w[1], CY, ARS0.w[1], AE.w[1], CY); S.w[2] = ARS0.w[2] - AE.w[2] - CY; } k = ey + 51; if (k >= 64) { if (k >= 128) { S.w[0] = S.w[2]; S.w[1] = 0; k -= 128; } else { S.w[0] = S.w[1]; S.w[1] = S.w[2]; } k -= 64; } if (k) { __shr_128 (S, S, k); } return (UINT64) ((S.w[0] + 1) >> 1); } __BID_INLINE__ void long_sqrt128 (UINT128 * pCS, UINT256 C256) { UINT512 ARS0, ARS; UINT256 ARS00, AE, AE2, S; UINT128 ES, ES2, ARS1; UINT64 ES32, CY, MY; double l64, l128, lx, l2, l1, l0; int_double f64, ly; int ey, k, k2; // 2^64 f64.i = 0x43f0000000000000ull; l64 = f64.d; l128 = l64 * l64; lx = (double) C256.w[3] * l64 * l128; l2 = (double) C256.w[2] * l128; lx = FENCE (lx + l2); l1 = (double) C256.w[1] * l64; lx = FENCE (lx + l1); l0 = (double) C256.w[0]; lx = FENCE (lx + l0); // sqrt(C256) ly.d = 1.0 / sqrt (lx); MY = (ly.i & 0x000fffffffffffffull) | 0x0010000000000000ull; ey = 0x3ff - (ly.i >> 52); // A10*RS^2, scaled by 2^(2*ey+104) __mul_64x256_to_320 (ARS0, MY, C256); __mul_64x320_to_384 (ARS, MY, ARS0); // shr by k=(2*ey+104)-128 // expect k is in the range (192, 256) if result in [10^33, 10^34) // apply an additional signed shift by 1 at the same time (to get eps=eps0/2) k = (ey << 1) + 104 - 128 - 192; k2 = 64 - k; ES.w[0] = (ARS.w[3] >> (k + 1)) | (ARS.w[4] << (k2 - 1)); ES.w[1] = (ARS.w[4] >> k) | (ARS.w[5] << k2); ES.w[1] = ((SINT64) ES.w[1]) >> 1; // A*RS >> 192 (for error term computation) ARS1.w[0] = ARS0.w[3]; ARS1.w[1] = ARS0.w[4]; // A*RS>>64 ARS00.w[0] = ARS0.w[1]; ARS00.w[1] = ARS0.w[2]; ARS00.w[2] = ARS0.w[3]; ARS00.w[3] = ARS0.w[4]; if (((SINT64) ES.w[1]) < 0) { ES.w[0] = -ES.w[0]; ES.w[1] = -ES.w[1]; if (ES.w[0]) ES.w[1]--; // A*RS*eps __mul_128x128_to_256 (AE, ES, ARS1); __add_carry_out (S.w[0], CY, ARS00.w[0], AE.w[0]); __add_carry_in_out (S.w[1], CY, ARS00.w[1], AE.w[1], CY); __add_carry_in_out (S.w[2], CY, ARS00.w[2], AE.w[2], CY); S.w[3] = ARS00.w[3] + AE.w[3] + CY; } else { // A*RS*eps __mul_128x128_to_256 (AE, ES, ARS1); __sub_borrow_out (S.w[0], CY, ARS00.w[0], AE.w[0]); __sub_borrow_in_out (S.w[1], CY, ARS00.w[1], AE.w[1], CY); __sub_borrow_in_out (S.w[2], CY, ARS00.w[2], AE.w[2], CY); S.w[3] = ARS00.w[3] - AE.w[3] - CY; } // 3/2*eps^2, scaled by 2^128 ES32 = ES.w[1] + (ES.w[1] >> 1); __mul_64x64_to_128 (ES2, ES32, ES.w[1]); // A*RS*3/2*eps^2 __mul_128x128_to_256 (AE2, ES2, ARS1); // result, scaled by 2^(ey+52-64) __add_carry_out (S.w[0], CY, S.w[0], AE2.w[0]); __add_carry_in_out (S.w[1], CY, S.w[1], AE2.w[1], CY); __add_carry_in_out (S.w[2], CY, S.w[2], AE2.w[2], CY); S.w[3] = S.w[3] + AE2.w[3] + CY; // k in (0, 64) k = ey + 51 - 128; k2 = 64 - k; S.w[0] = (S.w[1] >> k) | (S.w[2] << k2); S.w[1] = (S.w[2] >> k) | (S.w[3] << k2); // round to nearest S.w[0]++; if (!S.w[0]) S.w[1]++; pCS->w[0] = (S.w[1] << 63) | (S.w[0] >> 1); pCS->w[1] = S.w[1] >> 1; } #endif #endif