/* Copyright (C) 2007 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "bid_internal.h" static const UINT64 mult_factor[16] = { 1ull, 10ull, 100ull, 1000ull, 10000ull, 100000ull, 1000000ull, 10000000ull, 100000000ull, 1000000000ull, 10000000000ull, 100000000000ull, 1000000000000ull, 10000000000000ull, 100000000000000ull, 1000000000000000ull }; #if DECIMAL_CALL_BY_REFERENCE void bid64_quiet_equal (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_quiet_equal (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y, exp_t; UINT64 sig_x, sig_y, sig_t; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y, lcv; // NaN (CASE1) // if either number is NAN, the comparison is unordered, // rather than equal : return 0 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN } res = 0; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equivalent. if (x == y) { res = 1; BID_RETURN (res); } // INFINITY (CASE3) if (((x & MASK_INF) == MASK_INF) && ((y & MASK_INF) == MASK_INF)) { res = (((x ^ y) & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // ONE INFINITY (CASE3') if (((x & MASK_INF) == MASK_INF) || ((y & MASK_INF) == MASK_INF)) { res = 0; BID_RETURN (res); } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } if (x_is_zero && y_is_zero) { res = 1; BID_RETURN (res); } else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) { res = 0; BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ => not equal : return 0 if ((x ^ y) & MASK_SIGN) { res = 0; BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) if (exp_x > exp_y) { // to simplify the loop below, SWAP (exp_x, exp_y, exp_t); // put the larger exp in y, SWAP (sig_x, sig_y, sig_t); // and the smaller exp in x } if (exp_y - exp_x > 15) { res = 0; // difference cannot be greater than 10^15 BID_RETURN (res); } for (lcv = 0; lcv < (exp_y - exp_x); lcv++) { // recalculate y's significand upwards sig_y = sig_y * 10; if (sig_y > 9999999999999999ull) { res = 0; BID_RETURN (res); } } res = (sig_y == sig_x); BID_RETURN (res); } #if DECIMAL_CALL_BY_REFERENCE void bid64_quiet_greater (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_quiet_greater (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y; UINT64 sig_x, sig_y; UINT128 sig_n_prime; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; // NaN (CASE1) // if either number is NAN, the comparison is unordered, rather than equal : // return 0 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN } res = 0; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equal (not Greater). if (x == y) { res = 0; BID_RETURN (res); } // INFINITY (CASE3) if ((x & MASK_INF) == MASK_INF) { // if x is neg infinity, there is no way it is greater than y, return 0 if (((x & MASK_SIGN) == MASK_SIGN)) { res = 0; BID_RETURN (res); } else { // x is pos infinity, it is greater, unless y is positive // infinity => return y!=pos_infinity res = (((y & MASK_INF) != MASK_INF) || ((y & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } else if ((y & MASK_INF) == MASK_INF) { // x is finite, so if y is positive infinity, then x is less, return 0 // if y is negative infinity, then x is greater, return 1 res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: //(+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater //(ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore ignore the // exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } // if both numbers are zero, neither is greater => return NOTGREATERTHAN if (x_is_zero && y_is_zero) { res = 0; BID_RETURN (res); } else if (x_is_zero) { // is x is zero, it is greater if Y is negative res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } else if (y_is_zero) { // is y is zero, X is greater if it is positive res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ, x is greater if y is negative if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) // if both components are either bigger or smaller, // it is clear what needs to be done if (sig_x > sig_y && exp_x > exp_y) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } if (sig_x < sig_y && exp_x < exp_y) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 greater than exp_y, no need for compensation if (exp_x - exp_y > 15) { // difference cannot be greater than 10^15 if (x & MASK_SIGN) // if both are negative res = 0; else // if both are positive res = 1; BID_RETURN (res); } // if exp_x is 15 less than exp_y, no need for compensation if (exp_y - exp_x > 15) { if (x & MASK_SIGN) // if both are negative res = 1; else // if both are positive res = 0; BID_RETURN (res); } // if |exp_x - exp_y| < 15, it comes down to the compensated significand if (exp_x > exp_y) { // to simplify the loop below, // otherwise adjust the x significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_x, mult_factor[exp_x - exp_y]); // if postitive, return whichever significand is larger (converse if neg.) if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { res = 0; BID_RETURN (res); } res = (((sig_n_prime.w[1] > 0) || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } // adjust the y significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_y, mult_factor[exp_y - exp_x]); // if postitive, return whichever significand is larger // (converse if negative) if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { res = 0; BID_RETURN (res); } res = (((sig_n_prime.w[1] == 0) && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } #if DECIMAL_CALL_BY_REFERENCE void bid64_quiet_greater_equal (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_quiet_greater_equal (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y; UINT64 sig_x, sig_y; UINT128 sig_n_prime; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; // NaN (CASE1) // if either number is NAN, the comparison is unordered : return 1 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN } res = 0; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equal. if (x == y) { res = 1; BID_RETURN (res); } // INFINITY (CASE3) if ((x & MASK_INF) == MASK_INF) { // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) } if ((x & MASK_SIGN) == MASK_SIGN) { // x is -inf, so it is less than y unless y is -inf res = (((y & MASK_INF) == MASK_INF) && (y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } else { // x is pos_inf, no way for it to be less than y res = 1; BID_RETURN (res); } } else if ((y & MASK_INF) == MASK_INF) { // x is finite, so: // if y is +inf, xy res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } if (x_is_zero && y_is_zero) { // if both numbers are zero, they are equal res = 1; BID_RETURN (res); } else if (x_is_zero) { // if x is zero, it is lessthan if Y is positive res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } else if (y_is_zero) { // if y is zero, X is less if it is negative res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ, x is less than if y is positive if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) // if both components are either bigger or smaller if (sig_x > sig_y && exp_x >= exp_y) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } if (sig_x < sig_y && exp_x <= exp_y) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 greater than exp_y, no need for compensation if (exp_x - exp_y > 15) { res = ((x & MASK_SIGN) != MASK_SIGN); // difference cannot be greater than 10^15 BID_RETURN (res); } // if exp_x is 15 less than exp_y, no need for compensation if (exp_y - exp_x > 15) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if |exp_x - exp_y| < 15, it comes down to the compensated significand if (exp_x > exp_y) { // to simplify the loop below, // otherwise adjust the x significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_x, mult_factor[exp_x - exp_y]); // return 1 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { res = 1; BID_RETURN (res); } // if postitive, return whichever significand abs is smaller // (converse if negative) res = (((sig_n_prime.w[1] == 0) && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) != MASK_SIGN)); BID_RETURN (res); } // adjust the y significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_y, mult_factor[exp_y - exp_x]); // return 0 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { res = 1; BID_RETURN (res); } // if positive, return whichever significand abs is smaller // (converse if negative) res = (((sig_n_prime.w[1] > 0) || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) != MASK_SIGN)); BID_RETURN (res); } #if DECIMAL_CALL_BY_REFERENCE void bid64_quiet_greater_unordered (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_quiet_greater_unordered (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y; UINT64 sig_x, sig_y; UINT128 sig_n_prime; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; // NaN (CASE1) // if either number is NAN, the comparison is unordered, rather than equal : // return 0 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN } res = 1; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equal (not Greater). if (x == y) { res = 0; BID_RETURN (res); } // INFINITY (CASE3) if ((x & MASK_INF) == MASK_INF) { // if x is neg infinity, there is no way it is greater than y, return 0 if (((x & MASK_SIGN) == MASK_SIGN)) { res = 0; BID_RETURN (res); } else { // x is pos infinity, it is greater, unless y is positive infinity => // return y!=pos_infinity res = (((y & MASK_INF) != MASK_INF) || ((y & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } else if ((y & MASK_INF) == MASK_INF) { // x is finite, so if y is positive infinity, then x is less, return 0 // if y is negative infinity, then x is greater, return 1 res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } // if both numbers are zero, neither is greater => return NOTGREATERTHAN if (x_is_zero && y_is_zero) { res = 0; BID_RETURN (res); } else if (x_is_zero) { // is x is zero, it is greater if Y is negative res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } else if (y_is_zero) { // is y is zero, X is greater if it is positive res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ, x is greater if y is negative if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) // if both components are either bigger or smaller if (sig_x > sig_y && exp_x >= exp_y) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } if (sig_x < sig_y && exp_x <= exp_y) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 greater than exp_y, no need for compensation if (exp_x - exp_y > 15) { // difference cannot be greater than 10^15 res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 less than exp_y, no need for compensation if (exp_y - exp_x > 15) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if |exp_x - exp_y| < 15, it comes down to the compensated significand if (exp_x > exp_y) { // to simplify the loop below, // otherwise adjust the x significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_x, mult_factor[exp_x - exp_y]); // if postitive, return whichever significand is larger // (converse if negative) if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { res = 0; BID_RETURN (res); } res = (((sig_n_prime.w[1] > 0) || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } // adjust the y significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_y, mult_factor[exp_y - exp_x]); // if postitive, return whichever significand is larger (converse if negative) if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { res = 0; BID_RETURN (res); } res = (((sig_n_prime.w[1] == 0) && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } #if DECIMAL_CALL_BY_REFERENCE void bid64_quiet_less (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_quiet_less (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y; UINT64 sig_x, sig_y; UINT128 sig_n_prime; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; // NaN (CASE1) // if either number is NAN, the comparison is unordered : return 0 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN } res = 0; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equal. if (x == y) { res = 0; BID_RETURN (res); } // INFINITY (CASE3) if ((x & MASK_INF) == MASK_INF) { // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) } if ((x & MASK_SIGN) == MASK_SIGN) { // x is -inf, so it is less than y unless y is -inf res = (((y & MASK_INF) != MASK_INF) || (y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } else { // x is pos_inf, no way for it to be less than y res = 0; BID_RETURN (res); } } else if ((y & MASK_INF) == MASK_INF) { // x is finite, so: // if y is +inf, xy res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } if (x_is_zero && y_is_zero) { // if both numbers are zero, they are equal res = 0; BID_RETURN (res); } else if (x_is_zero) { // if x is zero, it is lessthan if Y is positive res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } else if (y_is_zero) { // if y is zero, X is less if it is negative res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ, x is less than if y is positive if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) // if both components are either bigger or smaller, // it is clear what needs to be done if (sig_x > sig_y && exp_x >= exp_y) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } if (sig_x < sig_y && exp_x <= exp_y) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 greater than exp_y, no need for compensation if (exp_x - exp_y > 15) { res = ((x & MASK_SIGN) == MASK_SIGN); // difference cannot be greater than 10^15 BID_RETURN (res); } // if exp_x is 15 less than exp_y, no need for compensation if (exp_y - exp_x > 15) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if |exp_x - exp_y| < 15, it comes down to the compensated significand if (exp_x > exp_y) { // to simplify the loop below, // otherwise adjust the x significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_x, mult_factor[exp_x - exp_y]); // return 0 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { res = 0; BID_RETURN (res); } // if postitive, return whichever significand abs is smaller // (converse if negative) res = (((sig_n_prime.w[1] == 0) && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } // adjust the y significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_y, mult_factor[exp_y - exp_x]); // return 0 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { res = 0; BID_RETURN (res); } // if positive, return whichever significand abs is smaller // (converse if negative) res = (((sig_n_prime.w[1] > 0) || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } #if DECIMAL_CALL_BY_REFERENCE void bid64_quiet_less_equal (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_quiet_less_equal (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y; UINT64 sig_x, sig_y; UINT128 sig_n_prime; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; // NaN (CASE1) // if either number is NAN, the comparison is unordered, rather than equal : // return 0 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN } res = 0; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equal (LESSEQUAL). if (x == y) { res = 1; BID_RETURN (res); } // INFINITY (CASE3) if ((x & MASK_INF) == MASK_INF) { if (((x & MASK_SIGN) == MASK_SIGN)) { // if x is neg infinity, it must be lessthan or equal to y return 1 res = 1; BID_RETURN (res); } else { // x is pos infinity, it is greater, unless y is positive infinity => // return y==pos_infinity res = !(((y & MASK_INF) != MASK_INF) || ((y & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } else if ((y & MASK_INF) == MASK_INF) { // x is finite, so if y is positive infinity, then x is less, return 1 // if y is negative infinity, then x is greater, return 0 res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } if (x_is_zero && y_is_zero) { // if both numbers are zero, they are equal -> return 1 res = 1; BID_RETURN (res); } else if (x_is_zero) { // if x is zero, it is lessthan if Y is positive res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } else if (y_is_zero) { // if y is zero, X is less if it is negative res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ, x is less than if y is positive if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) // if both components are either bigger or smaller if (sig_x > sig_y && exp_x >= exp_y) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } if (sig_x < sig_y && exp_x <= exp_y) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 greater than exp_y, no need for compensation if (exp_x - exp_y > 15) { res = ((x & MASK_SIGN) == MASK_SIGN); // difference cannot be greater than 10^15 BID_RETURN (res); } // if exp_x is 15 less than exp_y, no need for compensation if (exp_y - exp_x > 15) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if |exp_x - exp_y| < 15, it comes down to the compensated significand if (exp_x > exp_y) { // to simplify the loop below, // otherwise adjust the x significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_x, mult_factor[exp_x - exp_y]); // return 1 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { res = 1; BID_RETURN (res); } // if postitive, return whichever significand abs is smaller // (converse if negative) res = (((sig_n_prime.w[1] == 0) && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } // adjust the y significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_y, mult_factor[exp_y - exp_x]); // return 1 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { res = 1; BID_RETURN (res); } // if positive, return whichever significand abs is smaller // (converse if negative) res = (((sig_n_prime.w[1] > 0) || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } #if DECIMAL_CALL_BY_REFERENCE void bid64_quiet_less_unordered (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_quiet_less_unordered (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y; UINT64 sig_x, sig_y; UINT128 sig_n_prime; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; // NaN (CASE1) // if either number is NAN, the comparison is unordered : return 0 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN } res = 1; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equal. if (x == y) { res = 0; BID_RETURN (res); } // INFINITY (CASE3) if ((x & MASK_INF) == MASK_INF) { // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) } if ((x & MASK_SIGN) == MASK_SIGN) { // x is -inf, so it is less than y unless y is -inf res = (((y & MASK_INF) != MASK_INF) || (y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } else { // x is pos_inf, no way for it to be less than y res = 0; BID_RETURN (res); } } else if ((y & MASK_INF) == MASK_INF) { // x is finite, so: // if y is +inf, xy res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } if (x_is_zero && y_is_zero) { // if both numbers are zero, they are equal res = 0; BID_RETURN (res); } else if (x_is_zero) { // if x is zero, it is lessthan if Y is positive res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } else if (y_is_zero) { // if y is zero, X is less if it is negative res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ, x is less than if y is positive if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) // if both components are either bigger or smaller if (sig_x > sig_y && exp_x >= exp_y) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } if (sig_x < sig_y && exp_x <= exp_y) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 greater than exp_y, no need for compensation if (exp_x - exp_y > 15) { res = ((x & MASK_SIGN) == MASK_SIGN); // difference cannot be greater than 10^15 BID_RETURN (res); } // if exp_x is 15 less than exp_y, no need for compensation if (exp_y - exp_x > 15) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if |exp_x - exp_y| < 15, it comes down to the compensated significand if (exp_x > exp_y) { // to simplify the loop below, // otherwise adjust the x significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_x, mult_factor[exp_x - exp_y]); // return 0 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { res = 0; BID_RETURN (res); } // if postitive, return whichever significand abs is smaller // (converse if negative) res = (((sig_n_prime.w[1] == 0) && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } // adjust the y significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_y, mult_factor[exp_y - exp_x]); // return 0 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { res = 0; BID_RETURN (res); } // if positive, return whichever significand abs is smaller // (converse if negative) res = (((sig_n_prime.w[1] > 0) || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } #if DECIMAL_CALL_BY_REFERENCE void bid64_quiet_not_equal (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_quiet_not_equal (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y, exp_t; UINT64 sig_x, sig_y, sig_t; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y, lcv; // NaN (CASE1) // if either number is NAN, the comparison is unordered, // rather than equal : return 1 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN } res = 1; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equivalent. if (x == y) { res = 0; BID_RETURN (res); } // INFINITY (CASE3) if (((x & MASK_INF) == MASK_INF) && ((y & MASK_INF) == MASK_INF)) { res = (((x ^ y) & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // ONE INFINITY (CASE3') if (((x & MASK_INF) == MASK_INF) || ((y & MASK_INF) == MASK_INF)) { res = 1; BID_RETURN (res); } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } if (x_is_zero && y_is_zero) { res = 0; BID_RETURN (res); } else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) { res = 1; BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ => not equal : return 1 if ((x ^ y) & MASK_SIGN) { res = 1; BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) if (exp_x > exp_y) { // to simplify the loop below, SWAP (exp_x, exp_y, exp_t); // put the larger exp in y, SWAP (sig_x, sig_y, sig_t); // and the smaller exp in x } if (exp_y - exp_x > 15) { res = 1; BID_RETURN (res); } // difference cannot be greater than 10^16 for (lcv = 0; lcv < (exp_y - exp_x); lcv++) { // recalculate y's significand upwards sig_y = sig_y * 10; if (sig_y > 9999999999999999ull) { res = 1; BID_RETURN (res); } } { res = sig_y != sig_x; BID_RETURN (res); } } #if DECIMAL_CALL_BY_REFERENCE void bid64_quiet_not_greater (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_quiet_not_greater (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y; UINT64 sig_x, sig_y; UINT128 sig_n_prime; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; // NaN (CASE1) // if either number is NAN, the comparison is unordered, // rather than equal : return 0 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN } res = 1; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equal (LESSEQUAL). if (x == y) { res = 1; BID_RETURN (res); } // INFINITY (CASE3) if ((x & MASK_INF) == MASK_INF) { // if x is neg infinity, it must be lessthan or equal to y return 1 if (((x & MASK_SIGN) == MASK_SIGN)) { res = 1; BID_RETURN (res); } // x is pos infinity, it is greater, unless y is positive // infinity => return y==pos_infinity else { res = !(((y & MASK_INF) != MASK_INF) || ((y & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } else if ((y & MASK_INF) == MASK_INF) { // x is finite, so if y is positive infinity, then x is less, return 1 // if y is negative infinity, then x is greater, return 0 { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign, and neither // number is greater // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } // if both numbers are zero, they are equal -> return 1 if (x_is_zero && y_is_zero) { res = 1; BID_RETURN (res); } // if x is zero, it is lessthan if Y is positive else if (x_is_zero) { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if y is zero, X is less if it is negative else if (y_is_zero) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ, x is less than if y is positive if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) // if both components are either bigger or smaller if (sig_x > sig_y && exp_x >= exp_y) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } if (sig_x < sig_y && exp_x <= exp_y) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 greater than exp_y, no need for compensation if (exp_x - exp_y > 15) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // difference cannot be greater than 10^15 // if exp_x is 15 less than exp_y, no need for compensation if (exp_y - exp_x > 15) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if |exp_x - exp_y| < 15, it comes down to the compensated significand if (exp_x > exp_y) { // to simplify the loop below, // otherwise adjust the x significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_x, mult_factor[exp_x - exp_y]); // return 1 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { res = 1; BID_RETURN (res); } // if postitive, return whichever significand abs is smaller // (converse if negative) { res = (((sig_n_prime.w[1] == 0) && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } // adjust the y significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_y, mult_factor[exp_y - exp_x]); // return 1 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { res = 1; BID_RETURN (res); } // if positive, return whichever significand abs is smaller // (converse if negative) { res = (((sig_n_prime.w[1] > 0) || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } #if DECIMAL_CALL_BY_REFERENCE void bid64_quiet_not_less (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_quiet_not_less (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y; UINT64 sig_x, sig_y; UINT128 sig_n_prime; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; // NaN (CASE1) // if either number is NAN, the comparison is unordered : return 1 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN } res = 1; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equal. if (x == y) { res = 1; BID_RETURN (res); } // INFINITY (CASE3) if ((x & MASK_INF) == MASK_INF) { // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) } if ((x & MASK_SIGN) == MASK_SIGN) // x is -inf, so it is less than y unless y is -inf { res = (((y & MASK_INF) == MASK_INF) && (y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } else // x is pos_inf, no way for it to be less than y { res = 1; BID_RETURN (res); } } else if ((y & MASK_INF) == MASK_INF) { // x is finite, so: // if y is +inf, xy { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign, and neither // number is greater // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } // if both numbers are zero, they are equal if (x_is_zero && y_is_zero) { res = 1; BID_RETURN (res); } // if x is zero, it is lessthan if Y is positive else if (x_is_zero) { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if y is zero, X is less if it is negative else if (y_is_zero) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ, x is less than if y is positive if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) // if both components are either bigger or smaller if (sig_x > sig_y && exp_x >= exp_y) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } if (sig_x < sig_y && exp_x <= exp_y) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 greater than exp_y, no need for compensation if (exp_x - exp_y > 15) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // difference cannot be greater than 10^15 // if exp_x is 15 less than exp_y, no need for compensation if (exp_y - exp_x > 15) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if |exp_x - exp_y| < 15, it comes down to the compensated significand if (exp_x > exp_y) { // to simplify the loop below, // otherwise adjust the x significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_x, mult_factor[exp_x - exp_y]); // return 0 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { res = 1; BID_RETURN (res); } // if postitive, return whichever significand abs is smaller // (converse if negative) { res = (((sig_n_prime.w[1] == 0) && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) != MASK_SIGN)); BID_RETURN (res); } } // adjust the y significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_y, mult_factor[exp_y - exp_x]); // return 0 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { res = 1; BID_RETURN (res); } // if positive, return whichever significand abs is smaller // (converse if negative) { res = (((sig_n_prime.w[1] > 0) || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) != MASK_SIGN)); BID_RETURN (res); } } #if DECIMAL_CALL_BY_REFERENCE void bid64_quiet_ordered (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_quiet_ordered (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; // NaN (CASE1) // if either number is NAN, the comparison is ordered, rather than equal : return 0 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN } res = 0; BID_RETURN (res); } else { res = 1; BID_RETURN (res); } } #if DECIMAL_CALL_BY_REFERENCE void bid64_quiet_unordered (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_quiet_unordered (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; // NaN (CASE1) // if either number is NAN, the comparison is unordered, // rather than equal : return 0 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN } res = 1; BID_RETURN (res); } else { res = 0; BID_RETURN (res); } } #if DECIMAL_CALL_BY_REFERENCE void bid64_signaling_greater (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_signaling_greater (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y; UINT64 sig_x, sig_y; UINT128 sig_n_prime; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; // NaN (CASE1) // if either number is NAN, the comparison is unordered, // rather than equal : return 0 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN res = 0; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equal (not Greater). if (x == y) { res = 0; BID_RETURN (res); } // INFINITY (CASE3) if ((x & MASK_INF) == MASK_INF) { // if x is neg infinity, there is no way it is greater than y, return 0 if (((x & MASK_SIGN) == MASK_SIGN)) { res = 0; BID_RETURN (res); } // x is pos infinity, it is greater, // unless y is positive infinity => return y!=pos_infinity else { res = (((y & MASK_INF) != MASK_INF) || ((y & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } else if ((y & MASK_INF) == MASK_INF) { // x is finite, so if y is positive infinity, then x is less, return 0 // if y is negative infinity, then x is greater, return 1 { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } // if both numbers are zero, neither is greater => return NOTGREATERTHAN if (x_is_zero && y_is_zero) { res = 0; BID_RETURN (res); } // is x is zero, it is greater if Y is negative else if (x_is_zero) { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // is y is zero, X is greater if it is positive else if (y_is_zero) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ, x is greater if y is negative if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) // if both components are either bigger or smaller if (sig_x > sig_y && exp_x >= exp_y) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } if (sig_x < sig_y && exp_x <= exp_y) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 greater than exp_y, no need for compensation if (exp_x - exp_y > 15) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // difference cannot be greater than 10^15 // if exp_x is 15 less than exp_y, no need for compensation if (exp_y - exp_x > 15) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if |exp_x - exp_y| < 15, it comes down to the compensated significand if (exp_x > exp_y) { // to simplify the loop below, // otherwise adjust the x significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_x, mult_factor[exp_x - exp_y]); // if postitive, return whichever significand is larger // (converse if negative) if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { res = 0; BID_RETURN (res); } { res = (((sig_n_prime.w[1] > 0) || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } // adjust the y significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_y, mult_factor[exp_y - exp_x]); // if postitive, return whichever significand is larger // (converse if negative) if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { res = 0; BID_RETURN (res); } { res = (((sig_n_prime.w[1] == 0) && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } #if DECIMAL_CALL_BY_REFERENCE void bid64_signaling_greater_equal (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_signaling_greater_equal (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y; UINT64 sig_x, sig_y; UINT128 sig_n_prime; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; // NaN (CASE1) // if either number is NAN, the comparison is unordered : return 1 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN res = 0; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equal. if (x == y) { res = 1; BID_RETURN (res); } // INFINITY (CASE3) if ((x & MASK_INF) == MASK_INF) { // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) } if ((x & MASK_SIGN) == MASK_SIGN) // x is -inf, so it is less than y unless y is -inf { res = (((y & MASK_INF) == MASK_INF) && (y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } else // x is pos_inf, no way for it to be less than y { res = 1; BID_RETURN (res); } } else if ((y & MASK_INF) == MASK_INF) { // x is finite, so: // if y is +inf, xy { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } // if both numbers are zero, they are equal if (x_is_zero && y_is_zero) { res = 1; BID_RETURN (res); } // if x is zero, it is lessthan if Y is positive else if (x_is_zero) { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if y is zero, X is less if it is negative else if (y_is_zero) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ, x is less than if y is positive if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) // if both components are either bigger or smaller if (sig_x > sig_y && exp_x >= exp_y) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } if (sig_x < sig_y && exp_x <= exp_y) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 greater than exp_y, no need for compensation if (exp_x - exp_y > 15) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // difference cannot be greater than 10^15 // if exp_x is 15 less than exp_y, no need for compensation if (exp_y - exp_x > 15) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if |exp_x - exp_y| < 15, it comes down to the compensated significand if (exp_x > exp_y) { // to simplify the loop below, // otherwise adjust the x significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_x, mult_factor[exp_x - exp_y]); // return 1 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { res = 1; BID_RETURN (res); } // if postitive, return whichever significand abs is smaller // (converse if negative) { res = (((sig_n_prime.w[1] == 0) && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) != MASK_SIGN)); BID_RETURN (res); } } // adjust the y significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_y, mult_factor[exp_y - exp_x]); // return 0 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { res = 1; BID_RETURN (res); } // if positive, return whichever significand abs is smaller // (converse if negative) { res = (((sig_n_prime.w[1] > 0) || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) != MASK_SIGN)); BID_RETURN (res); } } #if DECIMAL_CALL_BY_REFERENCE void bid64_signaling_greater_unordered (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_signaling_greater_unordered (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y; UINT64 sig_x, sig_y; UINT128 sig_n_prime; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; // NaN (CASE1) // if either number is NAN, the comparison is unordered, // rather than equal : return 0 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN res = 1; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equal (not Greater). if (x == y) { res = 0; BID_RETURN (res); } // INFINITY (CASE3) if ((x & MASK_INF) == MASK_INF) { // if x is neg infinity, there is no way it is greater than y, return 0 if (((x & MASK_SIGN) == MASK_SIGN)) { res = 0; BID_RETURN (res); } // x is pos infinity, it is greater, // unless y is positive infinity => return y!=pos_infinity else { res = (((y & MASK_INF) != MASK_INF) || ((y & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } else if ((y & MASK_INF) == MASK_INF) { // x is finite, so if y is positive infinity, then x is less, return 0 // if y is negative infinity, then x is greater, return 1 { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } // if both numbers are zero, neither is greater => return NOTGREATERTHAN if (x_is_zero && y_is_zero) { res = 0; BID_RETURN (res); } // is x is zero, it is greater if Y is negative else if (x_is_zero) { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // is y is zero, X is greater if it is positive else if (y_is_zero) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ, x is greater if y is negative if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) // if both components are either bigger or smaller if (sig_x > sig_y && exp_x >= exp_y) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } if (sig_x < sig_y && exp_x <= exp_y) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 greater than exp_y, no need for compensation if (exp_x - exp_y > 15) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // difference cannot be greater than 10^15 // if exp_x is 15 less than exp_y, no need for compensation if (exp_y - exp_x > 15) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if |exp_x - exp_y| < 15, it comes down to the compensated significand if (exp_x > exp_y) { // to simplify the loop below, // otherwise adjust the x significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_x, mult_factor[exp_x - exp_y]); // if postitive, return whichever significand is larger // (converse if negative) if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { res = 0; BID_RETURN (res); } { res = (((sig_n_prime.w[1] > 0) || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } // adjust the y significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_y, mult_factor[exp_y - exp_x]); // if postitive, return whichever significand is larger // (converse if negative) if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { res = 0; BID_RETURN (res); } { res = (((sig_n_prime.w[1] == 0) && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } #if DECIMAL_CALL_BY_REFERENCE void bid64_signaling_less (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_signaling_less (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y; UINT64 sig_x, sig_y; UINT128 sig_n_prime; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; // NaN (CASE1) // if either number is NAN, the comparison is unordered : return 0 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN res = 0; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equal. if (x == y) { res = 0; BID_RETURN (res); } // INFINITY (CASE3) if ((x & MASK_INF) == MASK_INF) { // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) } if ((x & MASK_SIGN) == MASK_SIGN) // x is -inf, so it is less than y unless y is -inf { res = (((y & MASK_INF) != MASK_INF) || (y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } else // x is pos_inf, no way for it to be less than y { res = 0; BID_RETURN (res); } } else if ((y & MASK_INF) == MASK_INF) { // x is finite, so: // if y is +inf, xy { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } // if both numbers are zero, they are equal if (x_is_zero && y_is_zero) { res = 0; BID_RETURN (res); } // if x is zero, it is lessthan if Y is positive else if (x_is_zero) { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if y is zero, X is less if it is negative else if (y_is_zero) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ, x is less than if y is positive if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) // if both components are either bigger or smaller if (sig_x > sig_y && exp_x >= exp_y) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } if (sig_x < sig_y && exp_x <= exp_y) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 greater than exp_y, no need for compensation if (exp_x - exp_y > 15) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // difference cannot be greater than 10^15 // if exp_x is 15 less than exp_y, no need for compensation if (exp_y - exp_x > 15) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if |exp_x - exp_y| < 15, it comes down to the compensated significand if (exp_x > exp_y) { // to simplify the loop below, // otherwise adjust the x significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_x, mult_factor[exp_x - exp_y]); // return 0 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { res = 0; BID_RETURN (res); } // if postitive, return whichever significand abs is smaller // (converse if negative) { res = (((sig_n_prime.w[1] == 0) && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } // adjust the y significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_y, mult_factor[exp_y - exp_x]); // return 0 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { res = 0; BID_RETURN (res); } // if positive, return whichever significand abs is smaller // (converse if negative) { res = (((sig_n_prime.w[1] > 0) || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } #if DECIMAL_CALL_BY_REFERENCE void bid64_signaling_less_equal (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_signaling_less_equal (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y; UINT64 sig_x, sig_y; UINT128 sig_n_prime; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; // NaN (CASE1) // if either number is NAN, the comparison is unordered, // rather than equal : return 0 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN res = 0; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equal (LESSEQUAL). if (x == y) { res = 1; BID_RETURN (res); } // INFINITY (CASE3) if ((x & MASK_INF) == MASK_INF) { // if x is neg infinity, it must be lessthan or equal to y return 1 if (((x & MASK_SIGN) == MASK_SIGN)) { res = 1; BID_RETURN (res); } // x is pos infinity, it is greater, // unless y is positive infinity => return y==pos_infinity else { res = !(((y & MASK_INF) != MASK_INF) || ((y & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } else if ((y & MASK_INF) == MASK_INF) { // x is finite, so if y is positive infinity, then x is less, return 1 // if y is negative infinity, then x is greater, return 0 { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } // if both numbers are zero, they are equal -> return 1 if (x_is_zero && y_is_zero) { res = 1; BID_RETURN (res); } // if x is zero, it is lessthan if Y is positive else if (x_is_zero) { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if y is zero, X is less if it is negative else if (y_is_zero) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ, x is less than if y is positive if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) // if both components are either bigger or smaller if (sig_x > sig_y && exp_x >= exp_y) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } if (sig_x < sig_y && exp_x <= exp_y) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 greater than exp_y, no need for compensation if (exp_x - exp_y > 15) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // difference cannot be greater than 10^15 // if exp_x is 15 less than exp_y, no need for compensation if (exp_y - exp_x > 15) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if |exp_x - exp_y| < 15, it comes down to the compensated significand if (exp_x > exp_y) { // to simplify the loop below, // otherwise adjust the x significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_x, mult_factor[exp_x - exp_y]); // return 1 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { res = 1; BID_RETURN (res); } // if postitive, return whichever significand abs is smaller // (converse if negative) { res = (((sig_n_prime.w[1] == 0) && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } // adjust the y significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_y, mult_factor[exp_y - exp_x]); // return 1 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { res = 1; BID_RETURN (res); } // if positive, return whichever significand abs is smaller // (converse if negative) { res = (((sig_n_prime.w[1] > 0) || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } #if DECIMAL_CALL_BY_REFERENCE void bid64_signaling_less_unordered (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_signaling_less_unordered (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y; UINT64 sig_x, sig_y; UINT128 sig_n_prime; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; // NaN (CASE1) // if either number is NAN, the comparison is unordered : return 0 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN res = 1; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equal. if (x == y) { res = 0; BID_RETURN (res); } // INFINITY (CASE3) if ((x & MASK_INF) == MASK_INF) { // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) } if ((x & MASK_SIGN) == MASK_SIGN) // x is -inf, so it is less than y unless y is -inf { res = (((y & MASK_INF) != MASK_INF) || (y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } else // x is pos_inf, no way for it to be less than y { res = 0; BID_RETURN (res); } } else if ((y & MASK_INF) == MASK_INF) { // x is finite, so: // if y is +inf, xy { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } // if both numbers are zero, they are equal if (x_is_zero && y_is_zero) { res = 0; BID_RETURN (res); } // if x is zero, it is lessthan if Y is positive else if (x_is_zero) { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if y is zero, X is less if it is negative else if (y_is_zero) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ, x is less than if y is positive if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) // if both components are either bigger or smaller if (sig_x > sig_y && exp_x >= exp_y) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } if (sig_x < sig_y && exp_x <= exp_y) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 greater than exp_y, no need for compensation if (exp_x - exp_y > 15) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // difference cannot be greater than 10^15 // if exp_x is 15 less than exp_y, no need for compensation if (exp_y - exp_x > 15) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if |exp_x - exp_y| < 15, it comes down to the compensated significand if (exp_x > exp_y) { // to simplify the loop below, // otherwise adjust the x significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_x, mult_factor[exp_x - exp_y]); // return 0 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { res = 0; BID_RETURN (res); } // if postitive, return whichever significand abs is smaller // (converse if negative) { res = (((sig_n_prime.w[1] == 0) && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } // adjust the y significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_y, mult_factor[exp_y - exp_x]); // return 0 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { res = 0; BID_RETURN (res); } // if positive, return whichever significand abs is smaller // (converse if negative) { res = (((sig_n_prime.w[1] > 0) || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } #if DECIMAL_CALL_BY_REFERENCE void bid64_signaling_not_greater (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_signaling_not_greater (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y; UINT64 sig_x, sig_y; UINT128 sig_n_prime; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; // NaN (CASE1) // if either number is NAN, the comparison is unordered, // rather than equal : return 0 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN res = 1; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equal (LESSEQUAL). if (x == y) { res = 1; BID_RETURN (res); } // INFINITY (CASE3) if ((x & MASK_INF) == MASK_INF) { // if x is neg infinity, it must be lessthan or equal to y return 1 if (((x & MASK_SIGN) == MASK_SIGN)) { res = 1; BID_RETURN (res); } // x is pos infinity, it is greater, // unless y is positive infinity => return y==pos_infinity else { res = !(((y & MASK_INF) != MASK_INF) || ((y & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } else if ((y & MASK_INF) == MASK_INF) { // x is finite, so if y is positive infinity, then x is less, return 1 // if y is negative infinity, then x is greater, return 0 { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } // if both numbers are zero, they are equal -> return 1 if (x_is_zero && y_is_zero) { res = 1; BID_RETURN (res); } // if x is zero, it is lessthan if Y is positive else if (x_is_zero) { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if y is zero, X is less if it is negative else if (y_is_zero) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ, x is less than if y is positive if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { res = ((y & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) // if both components are either bigger or smaller if (sig_x > sig_y && exp_x >= exp_y) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } if (sig_x < sig_y && exp_x <= exp_y) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 greater than exp_y, no need for compensation if (exp_x - exp_y > 15) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // difference cannot be greater than 10^15 // if exp_x is 15 less than exp_y, no need for compensation if (exp_y - exp_x > 15) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // if |exp_x - exp_y| < 15, it comes down to the compensated significand if (exp_x > exp_y) { // to simplify the loop below, // otherwise adjust the x significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_x, mult_factor[exp_x - exp_y]); // return 1 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { res = 1; BID_RETURN (res); } // if postitive, return whichever significand abs is smaller // (converse if negative) { res = (((sig_n_prime.w[1] == 0) && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } // adjust the y significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_y, mult_factor[exp_y - exp_x]); // return 1 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { res = 1; BID_RETURN (res); } // if positive, return whichever significand abs is smaller // (converse if negative) { res = (((sig_n_prime.w[1] > 0) || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == MASK_SIGN)); BID_RETURN (res); } } #if DECIMAL_CALL_BY_REFERENCE void bid64_signaling_not_less (int *pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { UINT64 x = *px; UINT64 y = *py; #else int bid64_signaling_not_less (UINT64 x, UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { #endif int res; int exp_x, exp_y; UINT64 sig_x, sig_y; UINT128 sig_n_prime; char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; // NaN (CASE1) // if either number is NAN, the comparison is unordered : return 1 if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN res = 1; BID_RETURN (res); } // SIMPLE (CASE2) // if all the bits are the same, these numbers are equal. if (x == y) { res = 1; BID_RETURN (res); } // INFINITY (CASE3) if ((x & MASK_INF) == MASK_INF) { // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) } if ((x & MASK_SIGN) == MASK_SIGN) // x is -inf, so it is less than y unless y is -inf { res = (((y & MASK_INF) == MASK_INF) && (y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } else // x is pos_inf, no way for it to be less than y { res = 1; BID_RETURN (res); } } else if ((y & MASK_INF) == MASK_INF) { // x is finite, so: // if y is +inf, xy { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_x > 9999999999999999ull) { non_canon_x = 1; } else { non_canon_x = 0; } } else { exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; sig_x = (x & MASK_BINARY_SIG1); non_canon_x = 0; } // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; if (sig_y > 9999999999999999ull) { non_canon_y = 1; } else { non_canon_y = 0; } } else { exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; sig_y = (y & MASK_BINARY_SIG1); non_canon_y = 0; } // ZERO (CASE4) // some properties: // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => // therefore ignore the exponent field // (Any non-canonical # is considered 0) if (non_canon_x || sig_x == 0) { x_is_zero = 1; } if (non_canon_y || sig_y == 0) { y_is_zero = 1; } // if both numbers are zero, they are equal if (x_is_zero && y_is_zero) { res = 1; BID_RETURN (res); } // if x is zero, it is lessthan if Y is positive else if (x_is_zero) { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if y is zero, X is less if it is negative else if (y_is_zero) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // OPPOSITE SIGN (CASE5) // now, if the sign bits differ, x is less than if y is positive if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { res = ((y & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // REDUNDANT REPRESENTATIONS (CASE6) // if both components are either bigger or smaller if (sig_x > sig_y && exp_x >= exp_y) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } if (sig_x < sig_y && exp_x <= exp_y) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if exp_x is 15 greater than exp_y, no need for compensation if (exp_x - exp_y > 15) { res = ((x & MASK_SIGN) != MASK_SIGN); BID_RETURN (res); } // difference cannot be greater than 10^15 // if exp_x is 15 less than exp_y, no need for compensation if (exp_y - exp_x > 15) { res = ((x & MASK_SIGN) == MASK_SIGN); BID_RETURN (res); } // if |exp_x - exp_y| < 15, it comes down to the compensated significand if (exp_x > exp_y) { // to simplify the loop below, // otherwise adjust the x significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_x, mult_factor[exp_x - exp_y]); // return 0 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { res = 1; BID_RETURN (res); } // if postitive, return whichever significand abs is smaller // (converse if negative) { res = (((sig_n_prime.w[1] == 0) && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) != MASK_SIGN)); BID_RETURN (res); } } // adjust the y significand upwards __mul_64x64_to_128MACH (sig_n_prime, sig_y, mult_factor[exp_y - exp_x]); // return 0 if values are equal if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { res = 1; BID_RETURN (res); } // if positive, return whichever significand abs is smaller // (converse if negative) { res = (((sig_n_prime.w[1] > 0) || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) != MASK_SIGN)); BID_RETURN (res); } }