/* Instruction scheduling pass. This file contains definitions used internally in the scheduler. Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_SCHED_INT_H #define GCC_SCHED_INT_H #ifdef INSN_SCHEDULING /* For state_t. */ #include "insn-attr.h" /* For regset_head. */ #include "basic-block.h" /* For reg_note. */ #include "rtl.h" #include "df.h" /* Pointer to data describing the current DFA state. */ extern state_t curr_state; /* Forward declaration. */ struct ready_list; /* Type to represent status of a dependence. */ typedef int ds_t; /* Type to represent weakness of speculative dependence. */ typedef int dw_t; extern enum reg_note ds_to_dk (ds_t); extern ds_t dk_to_ds (enum reg_note); /* Information about the dependency. */ struct _dep { /* Producer. */ rtx pro; /* Consumer. */ rtx con; /* Dependency major type. This field is superseded by STATUS below. Though, it is still in place because some targets use it. */ enum reg_note type; /* Dependency status. This field holds all dependency types and additional information for speculative dependencies. */ ds_t status; }; typedef struct _dep dep_def; typedef dep_def *dep_t; #define DEP_PRO(D) ((D)->pro) #define DEP_CON(D) ((D)->con) #define DEP_TYPE(D) ((D)->type) #define DEP_STATUS(D) ((D)->status) /* Functions to work with dep. */ extern void init_dep_1 (dep_t, rtx, rtx, enum reg_note, ds_t); extern void init_dep (dep_t, rtx, rtx, enum reg_note); extern void sd_debug_dep (dep_t); /* Definition of this struct resides below. */ struct _dep_node; typedef struct _dep_node *dep_node_t; /* A link in the dependency list. This is essentially an equivalent of a single {INSN, DEPS}_LIST rtx. */ struct _dep_link { /* Dep node with all the data. */ dep_node_t node; /* Next link in the list. For the last one it is NULL. */ struct _dep_link *next; /* Pointer to the next field of the previous link in the list. For the first link this points to the deps_list->first. With help of this field it is easy to remove and insert links to the list. */ struct _dep_link **prev_nextp; }; typedef struct _dep_link *dep_link_t; #define DEP_LINK_NODE(N) ((N)->node) #define DEP_LINK_NEXT(N) ((N)->next) #define DEP_LINK_PREV_NEXTP(N) ((N)->prev_nextp) /* Macros to work dep_link. For most usecases only part of the dependency information is need. These macros conveniently provide that piece of information. */ #define DEP_LINK_DEP(N) (DEP_NODE_DEP (DEP_LINK_NODE (N))) #define DEP_LINK_PRO(N) (DEP_PRO (DEP_LINK_DEP (N))) #define DEP_LINK_CON(N) (DEP_CON (DEP_LINK_DEP (N))) #define DEP_LINK_TYPE(N) (DEP_TYPE (DEP_LINK_DEP (N))) #define DEP_LINK_STATUS(N) (DEP_STATUS (DEP_LINK_DEP (N))) /* A list of dep_links. */ struct _deps_list { /* First element. */ dep_link_t first; /* Total number of elements in the list. */ int n_links; }; typedef struct _deps_list *deps_list_t; #define DEPS_LIST_FIRST(L) ((L)->first) #define DEPS_LIST_N_LINKS(L) ((L)->n_links) /* Suppose we have a dependence Y between insn pro1 and con1, where pro1 has additional dependents con0 and con2, and con1 is dependent on additional insns pro0 and pro1: .con0 pro0 . ^ | . | | . | | . X A . | | . | | . | V .pro1--Y-->con1 . | ^ . | | . | | . Z B . | | . | | . V | .con2 pro2 This is represented using a "dep_node" for each dependence arc, which are connected as follows (diagram is centered around Y which is fully shown; other dep_nodes shown partially): . +------------+ +--------------+ +------------+ . : dep_node X : | dep_node Y | : dep_node Z : . : : | | : : . : : | | : : . : forw : | forw | : forw : . : +--------+ : | +--------+ | : +--------+ : forw_deps : |dep_link| : | |dep_link| | : |dep_link| : +-----+ : | +----+ | : | | +----+ | | : | +----+ | : |first|----->| |next|-+------+->| |next|-+--+----->| |next|-+--->NULL +-----+ : | +----+ | : | | +----+ | | : | +----+ | : . ^ ^ : | ^ | : | | ^ | | : | | : . | | : | | | : | | | | | : | | : . | +--<----+--+ +--+---<--+--+--+ +--+--+--<---+--+ | : . | : | | | : | | | | | : | | | : . | : | +----+ | : | | +----+ | | : | +----+ | : . | : | |prev| | : | | |prev| | | : | |prev| | : . | : | |next| | : | | |next| | | : | |next| | : . | : | +----+ | : | | +----+ | | : | +----+ | : . | : | | :<-+ | | | |<-+ : | | :<-+ . | : | +----+ | : | | | +----+ | | | : | +----+ | : | . | : | |node|-+----+ | | |node|-+--+--+ : | |node|-+----+ . | : | +----+ | : | | +----+ | | : | +----+ | : . | : | | : | | | | : | | : . | : +--------+ : | +--------+ | : +--------+ : . | : : | | : : . | : SAME pro1 : | +--------+ | : SAME pro1 : . | : DIFF con0 : | |dep | | : DIFF con2 : . | : : | | | | : : . | | | +----+ | | .RTX<------------------------+--+-|pro1| | | .pro1 | | +----+ | | . | | | | . | | +----+ | | .RTX<------------------------+--+-|con1| | | .con1 | | +----+ | | . | | | | | . | | | +----+ | | . | | | |kind| | | . | | | +----+ | | . | : : | | |stat| | | : : . | : DIFF pro0 : | | +----+ | | : DIFF pro2 : . | : SAME con1 : | | | | : SAME con1 : . | : : | +--------+ | : : . | : : | | : : . | : back : | back | : back : . v : +--------+ : | +--------+ | : +--------+ : back_deps : |dep_link| : | |dep_link| | : |dep_link| : +-----+ : | +----+ | : | | +----+ | | : | +----+ | : |first|----->| |next|-+------+->| |next|-+--+----->| |next|-+--->NULL +-----+ : | +----+ | : | | +----+ | | : | +----+ | : . ^ : | ^ | : | | ^ | | : | | : . | : | | | : | | | | | : | | : . +--<----+--+ +--+---<--+--+--+ +--+--+--<---+--+ | : . : | | | : | | | | | : | | | : . : | +----+ | : | | +----+ | | : | +----+ | : . : | |prev| | : | | |prev| | | : | |prev| | : . : | |next| | : | | |next| | | : | |next| | : . : | +----+ | : | | +----+ | | : | +----+ | : . : | | :<-+ | | | |<-+ : | | :<-+ . : | +----+ | : | | | +----+ | | | : | +----+ | : | . : | |node|-+----+ | | |node|-+--+--+ : | |node|-+----+ . : | +----+ | : | | +----+ | | : | +----+ | : . : | | : | | | | : | | : . : +--------+ : | +--------+ | : +--------+ : . : : | | : : . : dep_node A : | dep_node Y | : dep_node B : . +------------+ +--------------+ +------------+ */ struct _dep_node { /* Backward link. */ struct _dep_link back; /* The dep. */ struct _dep dep; /* Forward link. */ struct _dep_link forw; }; #define DEP_NODE_BACK(N) (&(N)->back) #define DEP_NODE_DEP(N) (&(N)->dep) #define DEP_NODE_FORW(N) (&(N)->forw) /* Describe state of dependencies used during sched_analyze phase. */ struct deps { /* The *_insns and *_mems are paired lists. Each pending memory operation will have a pointer to the MEM rtx on one list and a pointer to the containing insn on the other list in the same place in the list. */ /* We can't use add_dependence like the old code did, because a single insn may have multiple memory accesses, and hence needs to be on the list once for each memory access. Add_dependence won't let you add an insn to a list more than once. */ /* An INSN_LIST containing all insns with pending read operations. */ rtx pending_read_insns; /* An EXPR_LIST containing all MEM rtx's which are pending reads. */ rtx pending_read_mems; /* An INSN_LIST containing all insns with pending write operations. */ rtx pending_write_insns; /* An EXPR_LIST containing all MEM rtx's which are pending writes. */ rtx pending_write_mems; /* We must prevent the above lists from ever growing too large since the number of dependencies produced is at least O(N*N), and execution time is at least O(4*N*N), as a function of the length of these pending lists. */ /* Indicates the length of the pending_read list. */ int pending_read_list_length; /* Indicates the length of the pending_write list. */ int pending_write_list_length; /* Length of the pending memory flush list. Large functions with no calls may build up extremely large lists. */ int pending_flush_length; /* The last insn upon which all memory references must depend. This is an insn which flushed the pending lists, creating a dependency between it and all previously pending memory references. This creates a barrier (or a checkpoint) which no memory reference is allowed to cross. This includes all non constant CALL_INSNs. When we do interprocedural alias analysis, this restriction can be relaxed. This may also be an INSN that writes memory if the pending lists grow too large. */ rtx last_pending_memory_flush; /* A list of the last function calls we have seen. We use a list to represent last function calls from multiple predecessor blocks. Used to prevent register lifetimes from expanding unnecessarily. */ rtx last_function_call; /* A list of insns which use a pseudo register that does not already cross a call. We create dependencies between each of those insn and the next call insn, to ensure that they won't cross a call after scheduling is done. */ rtx sched_before_next_call; /* Used to keep post-call pseudo/hard reg movements together with the call. */ enum { not_post_call, post_call, post_call_initial } in_post_call_group_p; /* Set to the tail insn of the outermost libcall block. When nonzero, we will mark each insn processed by sched_analyze_insn with SCHED_GROUP_P to ensure libcalls are scheduled as a unit. */ rtx libcall_block_tail_insn; /* The maximum register number for the following arrays. Before reload this is max_reg_num; after reload it is FIRST_PSEUDO_REGISTER. */ int max_reg; /* Element N is the next insn that sets (hard or pseudo) register N within the current basic block; or zero, if there is no such insn. Needed for new registers which may be introduced by splitting insns. */ struct deps_reg { rtx uses; rtx sets; rtx clobbers; int uses_length; int clobbers_length; } *reg_last; /* Element N is set for each register that has any nonzero element in reg_last[N].{uses,sets,clobbers}. */ regset_head reg_last_in_use; /* Element N is set for each register that is conditionally set. */ regset_head reg_conditional_sets; }; /* This structure holds some state of the current scheduling pass, and contains some function pointers that abstract out some of the non-generic functionality from functions such as schedule_block or schedule_insn. There is one global variable, current_sched_info, which points to the sched_info structure currently in use. */ struct sched_info { /* Add all insns that are initially ready to the ready list. Called once before scheduling a set of insns. */ void (*init_ready_list) (void); /* Called after taking an insn from the ready list. Returns nonzero if this insn can be scheduled, nonzero if we should silently discard it. */ int (*can_schedule_ready_p) (rtx); /* Return nonzero if there are more insns that should be scheduled. */ int (*schedule_more_p) (void); /* Called after an insn has all its hard dependencies resolved. Adjusts status of instruction (which is passed through second parameter) to indicate if instruction should be moved to the ready list or the queue, or if it should silently discard it (until next resolved dependence). */ ds_t (*new_ready) (rtx, ds_t); /* Compare priority of two insns. Return a positive number if the second insn is to be preferred for scheduling, and a negative one if the first is to be preferred. Zero if they are equally good. */ int (*rank) (rtx, rtx); /* Return a string that contains the insn uid and optionally anything else necessary to identify this insn in an output. It's valid to use a static buffer for this. The ALIGNED parameter should cause the string to be formatted so that multiple output lines will line up nicely. */ const char *(*print_insn) (rtx, int); /* Return nonzero if an insn should be included in priority calculations. */ int (*contributes_to_priority) (rtx, rtx); /* Called when computing dependencies for a JUMP_INSN. This function should store the set of registers that must be considered as set by the jump in the regset. */ void (*compute_jump_reg_dependencies) (rtx, regset, regset, regset); /* The boundaries of the set of insns to be scheduled. */ rtx prev_head, next_tail; /* Filled in after the schedule is finished; the first and last scheduled insns. */ rtx head, tail; /* If nonzero, enables an additional sanity check in schedule_block. */ unsigned int queue_must_finish_empty:1; /* Nonzero if we should use cselib for better alias analysis. This must be 0 if the dependency information is used after sched_analyze has completed, e.g. if we're using it to initialize state for successor blocks in region scheduling. */ unsigned int use_cselib:1; /* Maximum priority that has been assigned to an insn. */ int sched_max_insns_priority; /* Hooks to support speculative scheduling. */ /* Called to notify frontend that instruction is being added (second parameter == 0) or removed (second parameter == 1). */ void (*add_remove_insn) (rtx, int); /* Called to notify frontend that instruction is being scheduled. The first parameter - instruction to scheduled, the second parameter - last scheduled instruction. */ void (*begin_schedule_ready) (rtx, rtx); /* Called to notify frontend, that new basic block is being added. The first parameter - new basic block. The second parameter - block, after which new basic block is being added, or EXIT_BLOCK_PTR, if recovery block is being added, or NULL, if standalone block is being added. */ void (*add_block) (basic_block, basic_block); /* If the second parameter is not NULL, return nonnull value, if the basic block should be advanced. If the second parameter is NULL, return the next basic block in EBB. The first parameter is the current basic block in EBB. */ basic_block (*advance_target_bb) (basic_block, rtx); /* Called after blocks were rearranged due to movement of jump instruction. The first parameter - index of basic block, in which jump currently is. The second parameter - index of basic block, in which jump used to be. The third parameter - index of basic block, that follows the second parameter. */ void (*fix_recovery_cfg) (int, int, int); /* ??? FIXME: should use straight bitfields inside sched_info instead of this flag field. */ unsigned int flags; }; /* This structure holds description of the properties for speculative scheduling. */ struct spec_info_def { /* Holds types of allowed speculations: BEGIN_{DATA|CONTROL}, BE_IN_{DATA_CONTROL}. */ int mask; /* A dump file for additional information on speculative scheduling. */ FILE *dump; /* Minimal cumulative weakness of speculative instruction's dependencies, so that insn will be scheduled. */ dw_t weakness_cutoff; /* Flags from the enum SPEC_SCHED_FLAGS. */ int flags; }; typedef struct spec_info_def *spec_info_t; extern struct sched_info *current_sched_info; /* Indexed by INSN_UID, the collection of all data associated with a single instruction. */ struct haifa_insn_data { /* We can't place 'struct _deps_list' into h_i_d instead of deps_list_t because when h_i_d extends, addresses of the deps_list->first change without updating deps_list->first->next->prev_nextp. */ /* A list of hard backward dependencies. The insn is a consumer of all the deps mentioned here. */ deps_list_t hard_back_deps; /* A list of speculative (weak) dependencies. The insn is a consumer of all the deps mentioned here. */ deps_list_t spec_back_deps; /* A list of insns which depend on the instruction. Unlike 'back_deps', it represents forward dependencies. */ deps_list_t forw_deps; /* A list of scheduled producers of the instruction. Links are being moved from 'back_deps' to 'resolved_back_deps' while scheduling. */ deps_list_t resolved_back_deps; /* A list of scheduled consumers of the instruction. Links are being moved from 'forw_deps' to 'resolved_forw_deps' while scheduling to fasten the search in 'forw_deps'. */ deps_list_t resolved_forw_deps; /* Logical uid gives the original ordering of the insns. */ int luid; /* A priority for each insn. */ int priority; /* Number of instructions referring to this insn. */ int ref_count; /* The minimum clock tick at which the insn becomes ready. This is used to note timing constraints for the insns in the pending list. */ int tick; /* INTER_TICK is used to adjust INSN_TICKs of instructions from the subsequent blocks in a region. */ int inter_tick; /* See comment on QUEUE_INDEX macro in haifa-sched.c. */ int queue_index; short cost; /* This weight is an estimation of the insn's contribution to register pressure. */ short reg_weight; /* Some insns (e.g. call) are not allowed to move across blocks. */ unsigned int cant_move : 1; /* Set if there's DEF-USE dependence between some speculatively moved load insn and this one. */ unsigned int fed_by_spec_load : 1; unsigned int is_load_insn : 1; /* '> 0' if priority is valid, '== 0' if priority was not yet computed, '< 0' if priority in invalid and should be recomputed. */ signed char priority_status; /* Nonzero if instruction has internal dependence (e.g. add_dependence was invoked with (insn == elem)). */ unsigned int has_internal_dep : 1; /* What speculations are necessary to apply to schedule the instruction. */ ds_t todo_spec; /* What speculations were already applied. */ ds_t done_spec; /* What speculations are checked by this instruction. */ ds_t check_spec; /* Recovery block for speculation checks. */ basic_block recovery_block; /* Original pattern of the instruction. */ rtx orig_pat; }; extern struct haifa_insn_data *h_i_d; /* Accessor macros for h_i_d. There are more in haifa-sched.c and sched-rgn.c. */ #define INSN_HARD_BACK_DEPS(INSN) (h_i_d[INSN_UID (INSN)].hard_back_deps) #define INSN_SPEC_BACK_DEPS(INSN) (h_i_d[INSN_UID (INSN)].spec_back_deps) #define INSN_FORW_DEPS(INSN) (h_i_d[INSN_UID (INSN)].forw_deps) #define INSN_RESOLVED_BACK_DEPS(INSN) \ (h_i_d[INSN_UID (INSN)].resolved_back_deps) #define INSN_RESOLVED_FORW_DEPS(INSN) \ (h_i_d[INSN_UID (INSN)].resolved_forw_deps) #define INSN_LUID(INSN) (h_i_d[INSN_UID (INSN)].luid) #define CANT_MOVE(insn) (h_i_d[INSN_UID (insn)].cant_move) #define INSN_PRIORITY(INSN) (h_i_d[INSN_UID (INSN)].priority) #define INSN_PRIORITY_STATUS(INSN) (h_i_d[INSN_UID (INSN)].priority_status) #define INSN_PRIORITY_KNOWN(INSN) (INSN_PRIORITY_STATUS (INSN) > 0) #define INSN_REG_WEIGHT(INSN) (h_i_d[INSN_UID (INSN)].reg_weight) #define HAS_INTERNAL_DEP(INSN) (h_i_d[INSN_UID (INSN)].has_internal_dep) #define TODO_SPEC(INSN) (h_i_d[INSN_UID (INSN)].todo_spec) #define DONE_SPEC(INSN) (h_i_d[INSN_UID (INSN)].done_spec) #define CHECK_SPEC(INSN) (h_i_d[INSN_UID (INSN)].check_spec) #define RECOVERY_BLOCK(INSN) (h_i_d[INSN_UID (INSN)].recovery_block) #define ORIG_PAT(INSN) (h_i_d[INSN_UID (INSN)].orig_pat) /* INSN is either a simple or a branchy speculation check. */ #define IS_SPECULATION_CHECK_P(INSN) (RECOVERY_BLOCK (INSN) != NULL) /* INSN is a speculation check that will simply reexecute the speculatively scheduled instruction if the speculation fails. */ #define IS_SPECULATION_SIMPLE_CHECK_P(INSN) \ (RECOVERY_BLOCK (INSN) == EXIT_BLOCK_PTR) /* INSN is a speculation check that will branch to RECOVERY_BLOCK if the speculation fails. Insns in that block will reexecute the speculatively scheduled code and then will return immediately after INSN thus preserving semantics of the program. */ #define IS_SPECULATION_BRANCHY_CHECK_P(INSN) \ (RECOVERY_BLOCK (INSN) != NULL && RECOVERY_BLOCK (INSN) != EXIT_BLOCK_PTR) /* Dep status (aka ds_t) of the link encapsulates information, that is needed for speculative scheduling. Namely, it is 4 integers in the range [0, MAX_DEP_WEAK] and 3 bits. The integers correspond to the probability of the dependence to *not* exist, it is the probability, that overcoming of this dependence will not be followed by execution of the recovery code. Nevertheless, whatever high the probability of success is, recovery code should still be generated to preserve semantics of the program. To find a way to get/set these integers, please refer to the {get, set}_dep_weak () functions in sched-deps.c . The 3 bits in the DEP_STATUS correspond to 3 dependence types: true-, output- and anti- dependence. It is not enough for speculative scheduling to know just the major type of all the dependence between two instructions, as only true dependence can be overcome. There also is the 4-th bit in the DEP_STATUS (HARD_DEP), that is reserved for using to describe instruction's status. It is set whenever instruction has at least one dependence, that cannot be overcame. See also: check_dep_status () in sched-deps.c . */ /* We exclude sign bit. */ #define BITS_PER_DEP_STATUS (HOST_BITS_PER_INT - 1) /* First '4' stands for 3 dep type bits and HARD_DEP bit. Second '4' stands for BEGIN_{DATA, CONTROL}, BE_IN_{DATA, CONTROL} dep weakness. */ #define BITS_PER_DEP_WEAK ((BITS_PER_DEP_STATUS - 4) / 4) /* Mask of speculative weakness in dep_status. */ #define DEP_WEAK_MASK ((1 << BITS_PER_DEP_WEAK) - 1) /* This constant means that dependence is fake with 99.999...% probability. This is the maximum value, that can appear in dep_status. Note, that we don't want MAX_DEP_WEAK to be the same as DEP_WEAK_MASK for debugging reasons. Though, it can be set to DEP_WEAK_MASK, and, when done so, we'll get fast (mul for)/(div by) NO_DEP_WEAK. */ #define MAX_DEP_WEAK (DEP_WEAK_MASK - 1) /* This constant means that dependence is 99.999...% real and it is a really bad idea to overcome it (though this can be done, preserving program semantics). */ #define MIN_DEP_WEAK 1 /* This constant represents 100% probability. E.g. it is used to represent weakness of dependence, that doesn't exist. */ #define NO_DEP_WEAK (MAX_DEP_WEAK + MIN_DEP_WEAK) /* Default weakness of speculative dependence. Used when we can't say neither bad nor good about the dependence. */ #define UNCERTAIN_DEP_WEAK (MAX_DEP_WEAK - MAX_DEP_WEAK / 4) /* Offset for speculative weaknesses in dep_status. */ enum SPEC_TYPES_OFFSETS { BEGIN_DATA_BITS_OFFSET = 0, BE_IN_DATA_BITS_OFFSET = BEGIN_DATA_BITS_OFFSET + BITS_PER_DEP_WEAK, BEGIN_CONTROL_BITS_OFFSET = BE_IN_DATA_BITS_OFFSET + BITS_PER_DEP_WEAK, BE_IN_CONTROL_BITS_OFFSET = BEGIN_CONTROL_BITS_OFFSET + BITS_PER_DEP_WEAK }; /* The following defines provide numerous constants used to distinguish between different types of speculative dependencies. */ /* Dependence can be overcome with generation of new data speculative instruction. */ #define BEGIN_DATA (((ds_t) DEP_WEAK_MASK) << BEGIN_DATA_BITS_OFFSET) /* This dependence is to the instruction in the recovery block, that was formed to recover after data-speculation failure. Thus, this dependence can overcome with generating of the copy of this instruction in the recovery block. */ #define BE_IN_DATA (((ds_t) DEP_WEAK_MASK) << BE_IN_DATA_BITS_OFFSET) /* Dependence can be overcome with generation of new control speculative instruction. */ #define BEGIN_CONTROL (((ds_t) DEP_WEAK_MASK) << BEGIN_CONTROL_BITS_OFFSET) /* This dependence is to the instruction in the recovery block, that was formed to recover after control-speculation failure. Thus, this dependence can be overcome with generating of the copy of this instruction in the recovery block. */ #define BE_IN_CONTROL (((ds_t) DEP_WEAK_MASK) << BE_IN_CONTROL_BITS_OFFSET) /* A few convenient combinations. */ #define BEGIN_SPEC (BEGIN_DATA | BEGIN_CONTROL) #define DATA_SPEC (BEGIN_DATA | BE_IN_DATA) #define CONTROL_SPEC (BEGIN_CONTROL | BE_IN_CONTROL) #define SPECULATIVE (DATA_SPEC | CONTROL_SPEC) #define BE_IN_SPEC (BE_IN_DATA | BE_IN_CONTROL) /* Constants, that are helpful in iterating through dep_status. */ #define FIRST_SPEC_TYPE BEGIN_DATA #define LAST_SPEC_TYPE BE_IN_CONTROL #define SPEC_TYPE_SHIFT BITS_PER_DEP_WEAK /* Dependence on instruction can be of multiple types (e.g. true and output). This fields enhance REG_NOTE_KIND information of the dependence. */ #define DEP_TRUE (((ds_t) 1) << (BE_IN_CONTROL_BITS_OFFSET + BITS_PER_DEP_WEAK)) #define DEP_OUTPUT (DEP_TRUE << 1) #define DEP_ANTI (DEP_OUTPUT << 1) #define DEP_TYPES (DEP_TRUE | DEP_OUTPUT | DEP_ANTI) /* Instruction has non-speculative dependence. This bit represents the property of an instruction - not the one of a dependence. Therefore, it can appear only in TODO_SPEC field of an instruction. */ #define HARD_DEP (DEP_ANTI << 1) /* This represents the results of calling sched-deps.c functions, which modify dependencies. */ enum DEPS_ADJUST_RESULT { /* No dependence needed (e.g. producer == consumer). */ DEP_NODEP, /* Dependence is already present and wasn't modified. */ DEP_PRESENT, /* Existing dependence was modified to include additional information. */ DEP_CHANGED, /* New dependence has been created. */ DEP_CREATED }; /* Represents the bits that can be set in the flags field of the sched_info structure. */ enum SCHED_FLAGS { /* If set, generate links between instruction as DEPS_LIST. Otherwise, generate usual INSN_LIST links. */ USE_DEPS_LIST = 1, /* Perform data or control (or both) speculation. Results in generation of data and control speculative dependencies. Requires USE_DEPS_LIST set. */ DO_SPECULATION = USE_DEPS_LIST << 1, SCHED_RGN = DO_SPECULATION << 1, SCHED_EBB = SCHED_RGN << 1, /* Scheduler can possible create new basic blocks. Used for assertions. */ NEW_BBS = SCHED_EBB << 1 }; enum SPEC_SCHED_FLAGS { COUNT_SPEC_IN_CRITICAL_PATH = 1, PREFER_NON_DATA_SPEC = COUNT_SPEC_IN_CRITICAL_PATH << 1, PREFER_NON_CONTROL_SPEC = PREFER_NON_DATA_SPEC << 1 }; #define NOTE_NOT_BB_P(NOTE) (NOTE_P (NOTE) && (NOTE_KIND (NOTE) \ != NOTE_INSN_BASIC_BLOCK)) extern FILE *sched_dump; extern int sched_verbose; extern spec_info_t spec_info; extern bool haifa_recovery_bb_ever_added_p; /* Exception Free Loads: We define five classes of speculative loads: IFREE, IRISKY, PFREE, PRISKY, and MFREE. IFREE loads are loads that are proved to be exception-free, just by examining the load insn. Examples for such loads are loads from TOC and loads of global data. IRISKY loads are loads that are proved to be exception-risky, just by examining the load insn. Examples for such loads are volatile loads and loads from shared memory. PFREE loads are loads for which we can prove, by examining other insns, that they are exception-free. Currently, this class consists of loads for which we are able to find a "similar load", either in the target block, or, if only one split-block exists, in that split block. Load2 is similar to load1 if both have same single base register. We identify only part of the similar loads, by finding an insn upon which both load1 and load2 have a DEF-USE dependence. PRISKY loads are loads for which we can prove, by examining other insns, that they are exception-risky. Currently we have two proofs for such loads. The first proof detects loads that are probably guarded by a test on the memory address. This proof is based on the backward and forward data dependence information for the region. Let load-insn be the examined load. Load-insn is PRISKY iff ALL the following hold: - insn1 is not in the same block as load-insn - there is a DEF-USE dependence chain (insn1, ..., load-insn) - test-insn is either a compare or a branch, not in the same block as load-insn - load-insn is reachable from test-insn - there is a DEF-USE dependence chain (insn1, ..., test-insn) This proof might fail when the compare and the load are fed by an insn not in the region. To solve this, we will add to this group all loads that have no input DEF-USE dependence. The second proof detects loads that are directly or indirectly fed by a speculative load. This proof is affected by the scheduling process. We will use the flag fed_by_spec_load. Initially, all insns have this flag reset. After a speculative motion of an insn, if insn is either a load, or marked as fed_by_spec_load, we will also mark as fed_by_spec_load every insn1 for which a DEF-USE dependence (insn, insn1) exists. A load which is fed_by_spec_load is also PRISKY. MFREE (maybe-free) loads are all the remaining loads. They may be exception-free, but we cannot prove it. Now, all loads in IFREE and PFREE classes are considered exception-free, while all loads in IRISKY and PRISKY classes are considered exception-risky. As for loads in the MFREE class, these are considered either exception-free or exception-risky, depending on whether we are pessimistic or optimistic. We have to take the pessimistic approach to assure the safety of speculative scheduling, but we can take the optimistic approach by invoking the -fsched_spec_load_dangerous option. */ enum INSN_TRAP_CLASS { TRAP_FREE = 0, IFREE = 1, PFREE_CANDIDATE = 2, PRISKY_CANDIDATE = 3, IRISKY = 4, TRAP_RISKY = 5 }; #define WORST_CLASS(class1, class2) \ ((class1 > class2) ? class1 : class2) #ifndef __GNUC__ #define __inline #endif #ifndef HAIFA_INLINE #define HAIFA_INLINE __inline #endif /* Functions in sched-deps.c. */ extern bool sched_insns_conditions_mutex_p (const_rtx, const_rtx); extern void add_dependence (rtx, rtx, enum reg_note); extern void sched_analyze (struct deps *, rtx, rtx); extern bool deps_pools_are_empty_p (void); extern void sched_free_deps (rtx, rtx, bool); extern void init_deps (struct deps *); extern void free_deps (struct deps *); extern void init_deps_global (void); extern void finish_deps_global (void); extern void init_dependency_caches (int); extern void free_dependency_caches (void); extern void extend_dependency_caches (int, bool); extern dw_t get_dep_weak (ds_t, ds_t); extern ds_t set_dep_weak (ds_t, ds_t, dw_t); extern ds_t ds_merge (ds_t, ds_t); extern void debug_ds (ds_t); /* Functions in haifa-sched.c. */ extern int haifa_classify_insn (const_rtx); extern void get_ebb_head_tail (basic_block, basic_block, rtx *, rtx *); extern int no_real_insns_p (const_rtx, const_rtx); extern void rm_other_notes (rtx, rtx); extern int insn_cost (rtx); extern int dep_cost (dep_t); extern int set_priorities (rtx, rtx); extern void schedule_block (basic_block *, int); extern void sched_init (void); extern void sched_finish (void); extern int try_ready (rtx); extern void * xrecalloc (void *, size_t, size_t, size_t); extern bool sched_insn_is_legitimate_for_speculation_p (const_rtx, ds_t); extern void unlink_bb_notes (basic_block, basic_block); extern void add_block (basic_block, basic_block); extern rtx bb_note (basic_block); /* Functions in sched-rgn.c. */ extern void debug_dependencies (rtx, rtx); /* sched-deps.c interface to walk, add, search, update, resolve, delete and debug instruction dependencies. */ /* Constants defining dependences lists. */ /* No list. */ #define SD_LIST_NONE (0) /* hard_back_deps. */ #define SD_LIST_HARD_BACK (1) /* spec_back_deps. */ #define SD_LIST_SPEC_BACK (2) /* forw_deps. */ #define SD_LIST_FORW (4) /* resolved_back_deps. */ #define SD_LIST_RES_BACK (8) /* resolved_forw_deps. */ #define SD_LIST_RES_FORW (16) #define SD_LIST_BACK (SD_LIST_HARD_BACK | SD_LIST_SPEC_BACK) /* A type to hold above flags. */ typedef int sd_list_types_def; extern void sd_next_list (const_rtx, sd_list_types_def *, deps_list_t *, bool *); /* Iterator to walk through, resolve and delete dependencies. */ struct _sd_iterator { /* What lists to walk. Can be any combination of SD_LIST_* flags. */ sd_list_types_def types; /* Instruction dependencies lists of which will be walked. */ rtx insn; /* Pointer to the next field of the previous element. This is not simply a pointer to the next element to allow easy deletion from the list. When a dep is being removed from the list the iterator will automatically advance because the value in *linkp will start referring to the next element. */ dep_link_t *linkp; /* True if the current list is a resolved one. */ bool resolved_p; }; typedef struct _sd_iterator sd_iterator_def; /* ??? We can move some definitions that are used in below inline functions out of sched-int.h to sched-deps.c provided that the below functions will become global externals. These definitions include: * struct _deps_list: opaque pointer is needed at global scope. * struct _dep_link: opaque pointer is needed at scope of sd_iterator_def. * struct _dep_node: opaque pointer is needed at scope of struct _deps_link. */ /* Return initialized iterator. */ static inline sd_iterator_def sd_iterator_start (rtx insn, sd_list_types_def types) { /* Some dep_link a pointer to which will return NULL. */ static dep_link_t null_link = NULL; sd_iterator_def i; i.types = types; i.insn = insn; i.linkp = &null_link; /* Avoid 'uninitialized warning'. */ i.resolved_p = false; return i; } /* Return the current element. */ static inline bool sd_iterator_cond (sd_iterator_def *it_ptr, dep_t *dep_ptr) { dep_link_t link = *it_ptr->linkp; if (link != NULL) { *dep_ptr = DEP_LINK_DEP (link); return true; } else { sd_list_types_def types = it_ptr->types; if (types != SD_LIST_NONE) /* Switch to next list. */ { deps_list_t list; sd_next_list (it_ptr->insn, &it_ptr->types, &list, &it_ptr->resolved_p); it_ptr->linkp = &DEPS_LIST_FIRST (list); return sd_iterator_cond (it_ptr, dep_ptr); } *dep_ptr = NULL; return false; } } /* Advance iterator. */ static inline void sd_iterator_next (sd_iterator_def *it_ptr) { it_ptr->linkp = &DEP_LINK_NEXT (*it_ptr->linkp); } /* A cycle wrapper. */ #define FOR_EACH_DEP(INSN, LIST_TYPES, ITER, DEP) \ for ((ITER) = sd_iterator_start ((INSN), (LIST_TYPES)); \ sd_iterator_cond (&(ITER), &(DEP)); \ sd_iterator_next (&(ITER))) extern int sd_lists_size (const_rtx, sd_list_types_def); extern bool sd_lists_empty_p (const_rtx, sd_list_types_def); extern void sd_init_insn (rtx); extern void sd_finish_insn (rtx); extern dep_t sd_find_dep_between (rtx, rtx, bool); extern void sd_add_dep (dep_t, bool); extern enum DEPS_ADJUST_RESULT sd_add_or_update_dep (dep_t, bool); extern void sd_resolve_dep (sd_iterator_def); extern void sd_copy_back_deps (rtx, rtx, bool); extern void sd_delete_dep (sd_iterator_def); extern void sd_debug_lists (rtx, sd_list_types_def); #endif /* INSN_SCHEDULING */ #endif /* GCC_SCHED_INT_H */