/* Assembly functions for the Xtensa version of libgcc1. Copyright (C) 2001, 2002, 2003, 2005, 2006 Free Software Foundation, Inc. Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "xtensa-config.h" # Define macros for the ABS and ADDX* instructions to handle cases # where they are not included in the Xtensa processor configuration. .macro do_abs dst, src, tmp #if XCHAL_HAVE_ABS abs \dst, \src #else neg \tmp, \src movgez \tmp, \src, \src mov \dst, \tmp #endif .endm .macro do_addx2 dst, as, at, tmp #if XCHAL_HAVE_ADDX addx2 \dst, \as, \at #else slli \tmp, \as, 1 add \dst, \tmp, \at #endif .endm .macro do_addx4 dst, as, at, tmp #if XCHAL_HAVE_ADDX addx4 \dst, \as, \at #else slli \tmp, \as, 2 add \dst, \tmp, \at #endif .endm .macro do_addx8 dst, as, at, tmp #if XCHAL_HAVE_ADDX addx8 \dst, \as, \at #else slli \tmp, \as, 3 add \dst, \tmp, \at #endif .endm # Define macros for leaf function entry and return, supporting either the # standard register windowed ABI or the non-windowed call0 ABI. These # macros do not allocate any extra stack space, so they only work for # leaf functions that do not need to spill anything to the stack. .macro leaf_entry reg, size #if XCHAL_HAVE_WINDOWED && !__XTENSA_CALL0_ABI__ entry \reg, \size #else /* do nothing */ #endif .endm .macro leaf_return #if XCHAL_HAVE_WINDOWED && !__XTENSA_CALL0_ABI__ retw #else ret #endif .endm #ifdef L_mulsi3 .align 4 .global __mulsi3 .type __mulsi3,@function __mulsi3: leaf_entry sp, 16 #if XCHAL_HAVE_MUL16 or a4, a2, a3 srai a4, a4, 16 bnez a4, .LMUL16 mul16u a2, a2, a3 leaf_return .LMUL16: srai a4, a2, 16 srai a5, a3, 16 mul16u a7, a4, a3 mul16u a6, a5, a2 mul16u a4, a2, a3 add a7, a7, a6 slli a7, a7, 16 add a2, a7, a4 #elif XCHAL_HAVE_MAC16 mul.aa.hl a2, a3 mula.aa.lh a2, a3 rsr a5, ACCLO umul.aa.ll a2, a3 rsr a4, ACCLO slli a5, a5, 16 add a2, a4, a5 #else /* !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MAC16 */ # Multiply one bit at a time, but unroll the loop 4x to better # exploit the addx instructions and avoid overhead. # Peel the first iteration to save a cycle on init. # Avoid negative numbers. xor a5, a2, a3 # top bit is 1 iff one of the inputs is negative do_abs a3, a3, a6 do_abs a2, a2, a6 # Swap so the second argument is smaller. sub a7, a2, a3 mov a4, a3 movgez a4, a2, a7 # a4 = max(a2, a3) movltz a3, a2, a7 # a3 = min(a2, a3) movi a2, 0 extui a6, a3, 0, 1 movnez a2, a4, a6 do_addx2 a7, a4, a2, a7 extui a6, a3, 1, 1 movnez a2, a7, a6 do_addx4 a7, a4, a2, a7 extui a6, a3, 2, 1 movnez a2, a7, a6 do_addx8 a7, a4, a2, a7 extui a6, a3, 3, 1 movnez a2, a7, a6 bgeui a3, 16, .Lmult_main_loop neg a3, a2 movltz a2, a3, a5 leaf_return .align 4 .Lmult_main_loop: srli a3, a3, 4 slli a4, a4, 4 add a7, a4, a2 extui a6, a3, 0, 1 movnez a2, a7, a6 do_addx2 a7, a4, a2, a7 extui a6, a3, 1, 1 movnez a2, a7, a6 do_addx4 a7, a4, a2, a7 extui a6, a3, 2, 1 movnez a2, a7, a6 do_addx8 a7, a4, a2, a7 extui a6, a3, 3, 1 movnez a2, a7, a6 bgeui a3, 16, .Lmult_main_loop neg a3, a2 movltz a2, a3, a5 #endif /* !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MAC16 */ leaf_return .size __mulsi3,.-__mulsi3 #endif /* L_mulsi3 */ # Define a macro for the NSAU (unsigned normalize shift amount) # instruction, which computes the number of leading zero bits, # to handle cases where it is not included in the Xtensa processor # configuration. .macro do_nsau cnt, val, tmp, a #if XCHAL_HAVE_NSA nsau \cnt, \val #else mov \a, \val movi \cnt, 0 extui \tmp, \a, 16, 16 bnez \tmp, 0f movi \cnt, 16 slli \a, \a, 16 0: extui \tmp, \a, 24, 8 bnez \tmp, 1f addi \cnt, \cnt, 8 slli \a, \a, 8 1: movi \tmp, __nsau_data extui \a, \a, 24, 8 add \tmp, \tmp, \a l8ui \tmp, \tmp, 0 add \cnt, \cnt, \tmp #endif /* !XCHAL_HAVE_NSA */ .endm #ifdef L_nsau .section .rodata .align 4 .global __nsau_data .type __nsau_data,@object __nsau_data: #if !XCHAL_HAVE_NSA .byte 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4 .byte 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 .byte 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 .byte 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 .byte 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 .byte 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 .byte 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 .byte 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 .byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 .byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 .byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 .byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 .byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 .byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 .byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 .byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 #endif /* !XCHAL_HAVE_NSA */ .size __nsau_data,.-__nsau_data .hidden __nsau_data #endif /* L_nsau */ #ifdef L_udivsi3 .align 4 .global __udivsi3 .type __udivsi3,@function __udivsi3: leaf_entry sp, 16 bltui a3, 2, .Lle_one # check if the divisor <= 1 mov a6, a2 # keep dividend in a6 do_nsau a5, a6, a2, a7 # dividend_shift = nsau(dividend) do_nsau a4, a3, a2, a7 # divisor_shift = nsau(divisor) bgeu a5, a4, .Lspecial sub a4, a4, a5 # count = divisor_shift - dividend_shift ssl a4 sll a3, a3 # divisor <<= count movi a2, 0 # quotient = 0 # test-subtract-and-shift loop; one quotient bit on each iteration #if XCHAL_HAVE_LOOPS loopnez a4, .Lloopend #endif /* XCHAL_HAVE_LOOPS */ .Lloop: bltu a6, a3, .Lzerobit sub a6, a6, a3 addi a2, a2, 1 .Lzerobit: slli a2, a2, 1 srli a3, a3, 1 #if !XCHAL_HAVE_LOOPS addi a4, a4, -1 bnez a4, .Lloop #endif /* !XCHAL_HAVE_LOOPS */ .Lloopend: bltu a6, a3, .Lreturn addi a2, a2, 1 # increment quotient if dividend >= divisor .Lreturn: leaf_return .Lle_one: beqz a3, .Lerror # if divisor == 1, return the dividend leaf_return .Lspecial: # return dividend >= divisor bltu a6, a3, .Lreturn0 movi a2, 1 leaf_return .Lerror: # just return 0; could throw an exception .Lreturn0: movi a2, 0 leaf_return .size __udivsi3,.-__udivsi3 #endif /* L_udivsi3 */ #ifdef L_divsi3 .align 4 .global __divsi3 .type __divsi3,@function __divsi3: leaf_entry sp, 16 xor a7, a2, a3 # sign = dividend ^ divisor do_abs a6, a2, a4 # udividend = abs(dividend) do_abs a3, a3, a4 # udivisor = abs(divisor) bltui a3, 2, .Lle_one # check if udivisor <= 1 do_nsau a5, a6, a2, a8 # udividend_shift = nsau(udividend) do_nsau a4, a3, a2, a8 # udivisor_shift = nsau(udivisor) bgeu a5, a4, .Lspecial sub a4, a4, a5 # count = udivisor_shift - udividend_shift ssl a4 sll a3, a3 # udivisor <<= count movi a2, 0 # quotient = 0 # test-subtract-and-shift loop; one quotient bit on each iteration #if XCHAL_HAVE_LOOPS loopnez a4, .Lloopend #endif /* XCHAL_HAVE_LOOPS */ .Lloop: bltu a6, a3, .Lzerobit sub a6, a6, a3 addi a2, a2, 1 .Lzerobit: slli a2, a2, 1 srli a3, a3, 1 #if !XCHAL_HAVE_LOOPS addi a4, a4, -1 bnez a4, .Lloop #endif /* !XCHAL_HAVE_LOOPS */ .Lloopend: bltu a6, a3, .Lreturn addi a2, a2, 1 # increment quotient if udividend >= udivisor .Lreturn: neg a5, a2 movltz a2, a5, a7 # return (sign < 0) ? -quotient : quotient leaf_return .Lle_one: beqz a3, .Lerror neg a2, a6 # if udivisor == 1, then return... movgez a2, a6, a7 # (sign < 0) ? -udividend : udividend leaf_return .Lspecial: bltu a6, a3, .Lreturn0 # if dividend < divisor, return 0 movi a2, 1 movi a4, -1 movltz a2, a4, a7 # else return (sign < 0) ? -1 : 1 leaf_return .Lerror: # just return 0; could throw an exception .Lreturn0: movi a2, 0 leaf_return .size __divsi3,.-__divsi3 #endif /* L_divsi3 */ #ifdef L_umodsi3 .align 4 .global __umodsi3 .type __umodsi3,@function __umodsi3: leaf_entry sp, 16 bltui a3, 2, .Lle_one # check if the divisor is <= 1 do_nsau a5, a2, a6, a7 # dividend_shift = nsau(dividend) do_nsau a4, a3, a6, a7 # divisor_shift = nsau(divisor) bgeu a5, a4, .Lspecial sub a4, a4, a5 # count = divisor_shift - dividend_shift ssl a4 sll a3, a3 # divisor <<= count # test-subtract-and-shift loop #if XCHAL_HAVE_LOOPS loopnez a4, .Lloopend #endif /* XCHAL_HAVE_LOOPS */ .Lloop: bltu a2, a3, .Lzerobit sub a2, a2, a3 .Lzerobit: srli a3, a3, 1 #if !XCHAL_HAVE_LOOPS addi a4, a4, -1 bnez a4, .Lloop #endif /* !XCHAL_HAVE_LOOPS */ .Lloopend: .Lspecial: bltu a2, a3, .Lreturn sub a2, a2, a3 # subtract once more if dividend >= divisor .Lreturn: leaf_return .Lle_one: # the divisor is either 0 or 1, so just return 0. # someday we may want to throw an exception if the divisor is 0. movi a2, 0 leaf_return .size __umodsi3,.-__umodsi3 #endif /* L_umodsi3 */ #ifdef L_modsi3 .align 4 .global __modsi3 .type __modsi3,@function __modsi3: leaf_entry sp, 16 mov a7, a2 # save original (signed) dividend do_abs a2, a2, a4 # udividend = abs(dividend) do_abs a3, a3, a4 # udivisor = abs(divisor) bltui a3, 2, .Lle_one # check if udivisor <= 1 do_nsau a5, a2, a6, a8 # udividend_shift = nsau(udividend) do_nsau a4, a3, a6, a8 # udivisor_shift = nsau(udivisor) bgeu a5, a4, .Lspecial sub a4, a4, a5 # count = udivisor_shift - udividend_shift ssl a4 sll a3, a3 # udivisor <<= count # test-subtract-and-shift loop #if XCHAL_HAVE_LOOPS loopnez a4, .Lloopend #endif /* XCHAL_HAVE_LOOPS */ .Lloop: bltu a2, a3, .Lzerobit sub a2, a2, a3 .Lzerobit: srli a3, a3, 1 #if !XCHAL_HAVE_LOOPS addi a4, a4, -1 bnez a4, .Lloop #endif /* !XCHAL_HAVE_LOOPS */ .Lloopend: .Lspecial: bltu a2, a3, .Lreturn sub a2, a2, a3 # subtract once more if udividend >= udivisor .Lreturn: bgez a7, .Lpositive neg a2, a2 # if (dividend < 0), return -udividend .Lpositive: leaf_return .Lle_one: # udivisor is either 0 or 1, so just return 0. # someday we may want to throw an exception if udivisor is 0. movi a2, 0 leaf_return .size __modsi3,.-__modsi3 #endif /* L_modsi3 */ #include "ieee754-df.S" #include "ieee754-sf.S"