#ifndef GC_CPP_H #define GC_CPP_H /**************************************************************************** Copyright (c) 1994 by Xerox Corporation. All rights reserved. THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. Permission is hereby granted to use or copy this program for any purpose, provided the above notices are retained on all copies. Permission to modify the code and to distribute modified code is granted, provided the above notices are retained, and a notice that the code was modified is included with the above copyright notice. **************************************************************************** C++ Interface to the Boehm Collector John R. Ellis and Jesse Hull This interface provides access to the Boehm collector. It provides basic facilities similar to those described in "Safe, Efficient Garbage Collection for C++", by John R. Elis and David L. Detlefs (ftp://ftp.parc.xerox.com/pub/ellis/gc). All heap-allocated objects are either "collectable" or "uncollectable". Programs must explicitly delete uncollectable objects, whereas the garbage collector will automatically delete collectable objects when it discovers them to be inaccessible. Collectable objects may freely point at uncollectable objects and vice versa. Objects allocated with the built-in "::operator new" are uncollectable. Objects derived from class "gc" are collectable. For example: class A: public gc {...}; A* a = new A; // a is collectable. Collectable instances of non-class types can be allocated using the GC (or UseGC) placement: typedef int A[ 10 ]; A* a = new (GC) A; Uncollectable instances of classes derived from "gc" can be allocated using the NoGC placement: class A: public gc {...}; A* a = new (NoGC) A; // a is uncollectable. Both uncollectable and collectable objects can be explicitly deleted with "delete", which invokes an object's destructors and frees its storage immediately. A collectable object may have a clean-up function, which will be invoked when the collector discovers the object to be inaccessible. An object derived from "gc_cleanup" or containing a member derived from "gc_cleanup" has a default clean-up function that invokes the object's destructors. Explicit clean-up functions may be specified as an additional placement argument: A* a = ::new (GC, MyCleanup) A; An object is considered "accessible" by the collector if it can be reached by a path of pointers from static variables, automatic variables of active functions, or from some object with clean-up enabled; pointers from an object to itself are ignored. Thus, if objects A and B both have clean-up functions, and A points at B, B is considered accessible. After A's clean-up is invoked and its storage released, B will then become inaccessible and will have its clean-up invoked. If A points at B and B points to A, forming a cycle, then that's considered a storage leak, and neither will be collectable. See the interface gc.h for low-level facilities for handling such cycles of objects with clean-up. The collector cannot guarantee that it will find all inaccessible objects. In practice, it finds almost all of them. Cautions: 1. Be sure the collector has been augmented with "make c++". 2. If your compiler supports the new "operator new[]" syntax, then add -DGC_OPERATOR_NEW_ARRAY to the Makefile. If your compiler doesn't support "operator new[]", beware that an array of type T, where T is derived from "gc", may or may not be allocated as a collectable object (it depends on the compiler). Use the explicit GC placement to make the array collectable. For example: class A: public gc {...}; A* a1 = new A[ 10 ]; // collectable or uncollectable? A* a2 = new (GC) A[ 10 ]; // collectable 3. The destructors of collectable arrays of objects derived from "gc_cleanup" will not be invoked properly. For example: class A: public gc_cleanup {...}; A* a = new (GC) A[ 10 ]; // destructors not invoked correctly Typically, only the destructor for the first element of the array will be invoked when the array is garbage-collected. To get all the destructors of any array executed, you must supply an explicit clean-up function: A* a = new (GC, MyCleanUp) A[ 10 ]; (Implementing clean-up of arrays correctly, portably, and in a way that preserves the correct exception semantics requires a language extension, e.g. the "gc" keyword.) 4. Compiler bugs: * Solaris 2's CC (SC3.0) doesn't implement t->~T() correctly, so the destructors of classes derived from gc_cleanup won't be invoked. You'll have to explicitly register a clean-up function with new-placement syntax. * Evidently cfront 3.0 does not allow destructors to be explicitly invoked using the ANSI-conforming syntax t->~T(). If you're using cfront 3.0, you'll have to comment out the class gc_cleanup, which uses explicit invocation. 5. GC name conflicts: Many other systems seem to use the identifier "GC" as an abbreviation for "Graphics Context". Since version 5.0, GC placement has been replaced by UseGC. GC is an alias for UseGC, unless GC_NAME_CONFLICT is defined. ****************************************************************************/ #include "gc.h" #ifndef THINK_CPLUS # define GC_cdecl #else # define GC_cdecl _cdecl #endif #if ! defined( GC_NO_OPERATOR_NEW_ARRAY ) \ && !defined(_ENABLE_ARRAYNEW) /* Digimars */ \ && (defined(__BORLANDC__) && (__BORLANDC__ < 0x450) \ || (defined(__GNUC__) && \ (__GNUC__ < 2 || __GNUC__ == 2 && __GNUC_MINOR__ < 6)) \ || (defined(__WATCOMC__) && __WATCOMC__ < 1050)) # define GC_NO_OPERATOR_NEW_ARRAY #endif #if !defined(GC_NO_OPERATOR_NEW_ARRAY) && !defined(GC_OPERATOR_NEW_ARRAY) # define GC_OPERATOR_NEW_ARRAY #endif #if ! defined ( __BORLANDC__ ) /* Confuses the Borland compiler. */ \ && ! defined ( __sgi ) # define GC_PLACEMENT_DELETE #endif enum GCPlacement {UseGC, #ifndef GC_NAME_CONFLICT GC=UseGC, #endif NoGC, PointerFreeGC}; class gc {public: inline void* operator new( size_t size ); inline void* operator new( size_t size, GCPlacement gcp ); inline void* operator new( size_t size, void *p ); /* Must be redefined here, since the other overloadings */ /* hide the global definition. */ inline void operator delete( void* obj ); # ifdef GC_PLACEMENT_DELETE inline void operator delete( void*, void* ); # endif #ifdef GC_OPERATOR_NEW_ARRAY inline void* operator new[]( size_t size ); inline void* operator new[]( size_t size, GCPlacement gcp ); inline void* operator new[]( size_t size, void *p ); inline void operator delete[]( void* obj ); # ifdef GC_PLACEMENT_DELETE inline void gc::operator delete[]( void*, void* ); # endif #endif /* GC_OPERATOR_NEW_ARRAY */ }; /* Instances of classes derived from "gc" will be allocated in the collected heap by default, unless an explicit NoGC placement is specified. */ class gc_cleanup: virtual public gc {public: inline gc_cleanup(); inline virtual ~gc_cleanup(); private: inline static void GC_cdecl cleanup( void* obj, void* clientData );}; /* Instances of classes derived from "gc_cleanup" will be allocated in the collected heap by default. When the collector discovers an inaccessible object derived from "gc_cleanup" or containing a member derived from "gc_cleanup", its destructors will be invoked. */ extern "C" {typedef void (*GCCleanUpFunc)( void* obj, void* clientData );} #ifdef _MSC_VER // Disable warning that "no matching operator delete found; memory will // not be freed if initialization throws an exception" # pragma warning(disable:4291) #endif inline void* operator new( size_t size, GCPlacement gcp, GCCleanUpFunc cleanup = 0, void* clientData = 0 ); /* Allocates a collectable or uncollected object, according to the value of "gcp". For collectable objects, if "cleanup" is non-null, then when the allocated object "obj" becomes inaccessible, the collector will invoke the function "cleanup( obj, clientData )" but will not invoke the object's destructors. It is an error to explicitly delete an object allocated with a non-null "cleanup". It is an error to specify a non-null "cleanup" with NoGC or for classes derived from "gc_cleanup" or containing members derived from "gc_cleanup". */ #ifdef _MSC_VER /** This ensures that the system default operator new[] doesn't get * undefined, which is what seems to happen on VC++ 6 for some reason * if we define a multi-argument operator new[]. * There seems to be really redirect new in this environment without * including this everywhere. */ void *operator new[]( size_t size ); void operator delete[](void* obj); void* operator new( size_t size); void operator delete(void* obj); // This new operator is used by VC++ in case of Debug builds ! void* operator new( size_t size, int ,//nBlockUse, const char * szFileName, int nLine ); #endif /* _MSC_VER */ #ifdef GC_OPERATOR_NEW_ARRAY inline void* operator new[]( size_t size, GCPlacement gcp, GCCleanUpFunc cleanup = 0, void* clientData = 0 ); /* The operator new for arrays, identical to the above. */ #endif /* GC_OPERATOR_NEW_ARRAY */ /**************************************************************************** Inline implementation ****************************************************************************/ inline void* gc::operator new( size_t size ) { return GC_MALLOC( size );} inline void* gc::operator new( size_t size, GCPlacement gcp ) { if (gcp == UseGC) return GC_MALLOC( size ); else if (gcp == PointerFreeGC) return GC_MALLOC_ATOMIC( size ); else return GC_MALLOC_UNCOLLECTABLE( size );} inline void* gc::operator new( size_t size, void *p ) { return p;} inline void gc::operator delete( void* obj ) { GC_FREE( obj );} #ifdef GC_PLACEMENT_DELETE inline void gc::operator delete( void*, void* ) {} #endif #ifdef GC_OPERATOR_NEW_ARRAY inline void* gc::operator new[]( size_t size ) { return gc::operator new( size );} inline void* gc::operator new[]( size_t size, GCPlacement gcp ) { return gc::operator new( size, gcp );} inline void* gc::operator new[]( size_t size, void *p ) { return p;} inline void gc::operator delete[]( void* obj ) { gc::operator delete( obj );} #ifdef GC_PLACEMENT_DELETE inline void gc::operator delete[]( void*, void* ) {} #endif #endif /* GC_OPERATOR_NEW_ARRAY */ inline gc_cleanup::~gc_cleanup() { GC_register_finalizer_ignore_self( GC_base(this), 0, 0, 0, 0 );} inline void gc_cleanup::cleanup( void* obj, void* displ ) { ((gc_cleanup*) ((char*) obj + (ptrdiff_t) displ))->~gc_cleanup();} inline gc_cleanup::gc_cleanup() { GC_finalization_proc oldProc; void* oldData; void* base = GC_base( (void *) this ); if (0 != base) { // Don't call the debug version, since this is a real base address. GC_register_finalizer_ignore_self( base, (GC_finalization_proc)cleanup, (void*) ((char*) this - (char*) base), &oldProc, &oldData ); if (0 != oldProc) { GC_register_finalizer_ignore_self( base, oldProc, oldData, 0, 0 );}}} inline void* operator new( size_t size, GCPlacement gcp, GCCleanUpFunc cleanup, void* clientData ) { void* obj; if (gcp == UseGC) { obj = GC_MALLOC( size ); if (cleanup != 0) GC_REGISTER_FINALIZER_IGNORE_SELF( obj, cleanup, clientData, 0, 0 );} else if (gcp == PointerFreeGC) { obj = GC_MALLOC_ATOMIC( size );} else { obj = GC_MALLOC_UNCOLLECTABLE( size );}; return obj;} #ifdef GC_OPERATOR_NEW_ARRAY inline void* operator new[]( size_t size, GCPlacement gcp, GCCleanUpFunc cleanup, void* clientData ) { return ::operator new( size, gcp, cleanup, clientData );} #endif /* GC_OPERATOR_NEW_ARRAY */ #endif /* GC_CPP_H */