From 1bc5aee63eb72b341f506ad058502cd0361f0d10 Mon Sep 17 00:00:00 2001 From: Ben Cheng Date: Tue, 25 Mar 2014 22:37:19 -0700 Subject: Initial checkin of GCC 4.9.0 from trunk (r208799). Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba --- gcc-4.9/gcc/tree-cfg.c | 8587 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 8587 insertions(+) create mode 100644 gcc-4.9/gcc/tree-cfg.c (limited to 'gcc-4.9/gcc/tree-cfg.c') diff --git a/gcc-4.9/gcc/tree-cfg.c b/gcc-4.9/gcc/tree-cfg.c new file mode 100644 index 000000000..56b6c3595 --- /dev/null +++ b/gcc-4.9/gcc/tree-cfg.c @@ -0,0 +1,8587 @@ +/* Control flow functions for trees. + Copyright (C) 2001-2014 Free Software Foundation, Inc. + Contributed by Diego Novillo + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "hash-table.h" +#include "tm.h" +#include "tree.h" +#include "trans-mem.h" +#include "stor-layout.h" +#include "print-tree.h" +#include "tm_p.h" +#include "basic-block.h" +#include "flags.h" +#include "function.h" +#include "gimple-pretty-print.h" +#include "pointer-set.h" +#include "tree-ssa-alias.h" +#include "internal-fn.h" +#include "gimple-fold.h" +#include "tree-eh.h" +#include "gimple-expr.h" +#include "is-a.h" +#include "gimple.h" +#include "gimple-iterator.h" +#include "gimplify-me.h" +#include "gimple-walk.h" +#include "gimple-ssa.h" +#include "cgraph.h" +#include "tree-cfg.h" +#include "tree-phinodes.h" +#include "ssa-iterators.h" +#include "stringpool.h" +#include "tree-ssanames.h" +#include "tree-ssa-loop-manip.h" +#include "tree-ssa-loop-niter.h" +#include "tree-into-ssa.h" +#include "expr.h" +#include "tree-dfa.h" +#include "tree-ssa.h" +#include "tree-dump.h" +#include "tree-pass.h" +#include "diagnostic-core.h" +#include "except.h" +#include "cfgloop.h" +#include "tree-ssa-propagate.h" +#include "value-prof.h" +#include "tree-inline.h" +#include "target.h" +#include "tree-ssa-live.h" +#include "omp-low.h" +#include "tree-cfgcleanup.h" + +/* This file contains functions for building the Control Flow Graph (CFG) + for a function tree. */ + +/* Local declarations. */ + +/* Initial capacity for the basic block array. */ +static const int initial_cfg_capacity = 20; + +/* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs + which use a particular edge. The CASE_LABEL_EXPRs are chained together + via their CASE_CHAIN field, which we clear after we're done with the + hash table to prevent problems with duplication of GIMPLE_SWITCHes. + + Access to this list of CASE_LABEL_EXPRs allows us to efficiently + update the case vector in response to edge redirections. + + Right now this table is set up and torn down at key points in the + compilation process. It would be nice if we could make the table + more persistent. The key is getting notification of changes to + the CFG (particularly edge removal, creation and redirection). */ + +static struct pointer_map_t *edge_to_cases; + +/* If we record edge_to_cases, this bitmap will hold indexes + of basic blocks that end in a GIMPLE_SWITCH which we touched + due to edge manipulations. */ + +static bitmap touched_switch_bbs; + +/* CFG statistics. */ +struct cfg_stats_d +{ + long num_merged_labels; +}; + +static struct cfg_stats_d cfg_stats; + +/* Hash table to store last discriminator assigned for each locus. */ +struct locus_discrim_map +{ + location_t locus; + int discriminator; +}; + +/* Hashtable helpers. */ + +struct locus_discrim_hasher : typed_free_remove +{ + typedef locus_discrim_map value_type; + typedef locus_discrim_map compare_type; + static inline hashval_t hash (const value_type *); + static inline bool equal (const value_type *, const compare_type *); +}; + +/* Trivial hash function for a location_t. ITEM is a pointer to + a hash table entry that maps a location_t to a discriminator. */ + +inline hashval_t +locus_discrim_hasher::hash (const value_type *item) +{ + return LOCATION_LINE (item->locus); +} + +/* Equality function for the locus-to-discriminator map. A and B + point to the two hash table entries to compare. */ + +inline bool +locus_discrim_hasher::equal (const value_type *a, const compare_type *b) +{ + return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus); +} + +static hash_table discriminator_per_locus; + +/* Basic blocks and flowgraphs. */ +static void make_blocks (gimple_seq); + +/* Edges. */ +static void make_edges (void); +static void assign_discriminators (void); +static void make_cond_expr_edges (basic_block); +static void make_gimple_switch_edges (basic_block); +static bool make_goto_expr_edges (basic_block); +static void make_gimple_asm_edges (basic_block); +static edge gimple_redirect_edge_and_branch (edge, basic_block); +static edge gimple_try_redirect_by_replacing_jump (edge, basic_block); + +/* Various helpers. */ +static inline bool stmt_starts_bb_p (gimple, gimple); +static int gimple_verify_flow_info (void); +static void gimple_make_forwarder_block (edge); +static gimple first_non_label_stmt (basic_block); +static bool verify_gimple_transaction (gimple); + +/* Flowgraph optimization and cleanup. */ +static void gimple_merge_blocks (basic_block, basic_block); +static bool gimple_can_merge_blocks_p (basic_block, basic_block); +static void remove_bb (basic_block); +static edge find_taken_edge_computed_goto (basic_block, tree); +static edge find_taken_edge_cond_expr (basic_block, tree); +static edge find_taken_edge_switch_expr (basic_block, tree); +static tree find_case_label_for_value (gimple, tree); + +void +init_empty_tree_cfg_for_function (struct function *fn) +{ + /* Initialize the basic block array. */ + init_flow (fn); + profile_status_for_fn (fn) = PROFILE_ABSENT; + n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS; + last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS; + vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity); + vec_safe_grow_cleared (basic_block_info_for_fn (fn), + initial_cfg_capacity); + + /* Build a mapping of labels to their associated blocks. */ + vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity); + vec_safe_grow_cleared (label_to_block_map_for_fn (fn), + initial_cfg_capacity); + + SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn)); + SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn)); + + ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb + = EXIT_BLOCK_PTR_FOR_FN (fn); + EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb + = ENTRY_BLOCK_PTR_FOR_FN (fn); +} + +void +init_empty_tree_cfg (void) +{ + init_empty_tree_cfg_for_function (cfun); +} + +/*--------------------------------------------------------------------------- + Create basic blocks +---------------------------------------------------------------------------*/ + +/* Entry point to the CFG builder for trees. SEQ is the sequence of + statements to be added to the flowgraph. */ + +static void +build_gimple_cfg (gimple_seq seq) +{ + /* Register specific gimple functions. */ + gimple_register_cfg_hooks (); + + memset ((void *) &cfg_stats, 0, sizeof (cfg_stats)); + + init_empty_tree_cfg (); + + make_blocks (seq); + + /* Make sure there is always at least one block, even if it's empty. */ + if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS) + create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun)); + + /* Adjust the size of the array. */ + if (basic_block_info_for_fn (cfun)->length () + < (size_t) n_basic_blocks_for_fn (cfun)) + vec_safe_grow_cleared (basic_block_info_for_fn (cfun), + n_basic_blocks_for_fn (cfun)); + + /* To speed up statement iterator walks, we first purge dead labels. */ + cleanup_dead_labels (); + + /* Group case nodes to reduce the number of edges. + We do this after cleaning up dead labels because otherwise we miss + a lot of obvious case merging opportunities. */ + group_case_labels (); + + /* Create the edges of the flowgraph. */ + discriminator_per_locus.create (13); + make_edges (); + assign_discriminators (); + cleanup_dead_labels (); + discriminator_per_locus.dispose (); +} + + +/* Search for ANNOTATE call with annot_expr_ivdep_kind; if found, remove + it and set loop->safelen to INT_MAX. We assume that the annotation + comes immediately before the condition. */ + +static void +replace_loop_annotate () +{ + struct loop *loop; + basic_block bb; + gimple_stmt_iterator gsi; + gimple stmt; + + FOR_EACH_LOOP (loop, 0) + { + gsi = gsi_last_bb (loop->header); + stmt = gsi_stmt (gsi); + if (stmt && gimple_code (stmt) == GIMPLE_COND) + { + gsi_prev_nondebug (&gsi); + if (gsi_end_p (gsi)) + continue; + stmt = gsi_stmt (gsi); + if (gimple_code (stmt) != GIMPLE_CALL) + continue; + if (!gimple_call_internal_p (stmt) + || gimple_call_internal_fn (stmt) != IFN_ANNOTATE) + continue; + if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)) + != annot_expr_ivdep_kind) + continue; + stmt = gimple_build_assign (gimple_call_lhs (stmt), + gimple_call_arg (stmt, 0)); + gsi_replace (&gsi, stmt, true); + loop->safelen = INT_MAX; + } + } + + /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */ + FOR_EACH_BB_FN (bb, cfun) + { + gsi = gsi_last_bb (bb); + stmt = gsi_stmt (gsi); + if (stmt && gimple_code (stmt) == GIMPLE_COND) + gsi_prev_nondebug (&gsi); + if (gsi_end_p (gsi)) + continue; + stmt = gsi_stmt (gsi); + if (gimple_code (stmt) != GIMPLE_CALL) + continue; + if (!gimple_call_internal_p (stmt) + || gimple_call_internal_fn (stmt) != IFN_ANNOTATE) + continue; + if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)) + != annot_expr_ivdep_kind) + continue; + warning_at (gimple_location (stmt), 0, "ignoring % " + "annotation"); + stmt = gimple_build_assign (gimple_call_lhs (stmt), + gimple_call_arg (stmt, 0)); + gsi_replace (&gsi, stmt, true); + } +} + + +static unsigned int +execute_build_cfg (void) +{ + gimple_seq body = gimple_body (current_function_decl); + + build_gimple_cfg (body); + gimple_set_body (current_function_decl, NULL); + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Scope blocks:\n"); + dump_scope_blocks (dump_file, dump_flags); + } + cleanup_tree_cfg (); + loop_optimizer_init (AVOID_CFG_MODIFICATIONS); + replace_loop_annotate (); + return 0; +} + +namespace { + +const pass_data pass_data_build_cfg = +{ + GIMPLE_PASS, /* type */ + "cfg", /* name */ + OPTGROUP_NONE, /* optinfo_flags */ + false, /* has_gate */ + true, /* has_execute */ + TV_TREE_CFG, /* tv_id */ + PROP_gimple_leh, /* properties_required */ + ( PROP_cfg | PROP_loops ), /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_verify_stmts, /* todo_flags_finish */ +}; + +class pass_build_cfg : public gimple_opt_pass +{ +public: + pass_build_cfg (gcc::context *ctxt) + : gimple_opt_pass (pass_data_build_cfg, ctxt) + {} + + /* opt_pass methods: */ + unsigned int execute () { return execute_build_cfg (); } + +}; // class pass_build_cfg + +} // anon namespace + +gimple_opt_pass * +make_pass_build_cfg (gcc::context *ctxt) +{ + return new pass_build_cfg (ctxt); +} + + +/* Return true if T is a computed goto. */ + +bool +computed_goto_p (gimple t) +{ + return (gimple_code (t) == GIMPLE_GOTO + && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL); +} + +/* Returns true for edge E where e->src ends with a GIMPLE_COND and + the other edge points to a bb with just __builtin_unreachable (). + I.e. return true for C->M edge in: + : + ... + if (something) + goto ; + else + goto ; + : + __builtin_unreachable (); + : */ + +bool +assert_unreachable_fallthru_edge_p (edge e) +{ + basic_block pred_bb = e->src; + gimple last = last_stmt (pred_bb); + if (last && gimple_code (last) == GIMPLE_COND) + { + basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest; + if (other_bb == e->dest) + other_bb = EDGE_SUCC (pred_bb, 1)->dest; + if (EDGE_COUNT (other_bb->succs) == 0) + { + gimple_stmt_iterator gsi = gsi_after_labels (other_bb); + gimple stmt; + + if (gsi_end_p (gsi)) + return false; + stmt = gsi_stmt (gsi); + while (is_gimple_debug (stmt) || gimple_clobber_p (stmt)) + { + gsi_next (&gsi); + if (gsi_end_p (gsi)) + return false; + stmt = gsi_stmt (gsi); + } + return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE); + } + } + return false; +} + + +/* Build a flowgraph for the sequence of stmts SEQ. */ + +static void +make_blocks (gimple_seq seq) +{ + gimple_stmt_iterator i = gsi_start (seq); + gimple stmt = NULL; + bool start_new_block = true; + bool first_stmt_of_seq = true; + basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun); + + while (!gsi_end_p (i)) + { + gimple prev_stmt; + + prev_stmt = stmt; + stmt = gsi_stmt (i); + + /* If the statement starts a new basic block or if we have determined + in a previous pass that we need to create a new block for STMT, do + so now. */ + if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt)) + { + if (!first_stmt_of_seq) + gsi_split_seq_before (&i, &seq); + bb = create_basic_block (seq, NULL, bb); + start_new_block = false; + } + + /* Now add STMT to BB and create the subgraphs for special statement + codes. */ + gimple_set_bb (stmt, bb); + + /* If STMT is a basic block terminator, set START_NEW_BLOCK for the + next iteration. */ + if (stmt_ends_bb_p (stmt)) + { + /* If the stmt can make abnormal goto use a new temporary + for the assignment to the LHS. This makes sure the old value + of the LHS is available on the abnormal edge. Otherwise + we will end up with overlapping life-ranges for abnormal + SSA names. */ + if (gimple_has_lhs (stmt) + && stmt_can_make_abnormal_goto (stmt) + && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt)))) + { + tree lhs = gimple_get_lhs (stmt); + tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL); + gimple s = gimple_build_assign (lhs, tmp); + gimple_set_location (s, gimple_location (stmt)); + gimple_set_block (s, gimple_block (stmt)); + gimple_set_lhs (stmt, tmp); + if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE + || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE) + DECL_GIMPLE_REG_P (tmp) = 1; + gsi_insert_after (&i, s, GSI_SAME_STMT); + } + start_new_block = true; + } + + gsi_next (&i); + first_stmt_of_seq = false; + } +} + + +/* Create and return a new empty basic block after bb AFTER. */ + +static basic_block +create_bb (void *h, void *e, basic_block after) +{ + basic_block bb; + + gcc_assert (!e); + + /* Create and initialize a new basic block. Since alloc_block uses + GC allocation that clears memory to allocate a basic block, we do + not have to clear the newly allocated basic block here. */ + bb = alloc_block (); + + bb->index = last_basic_block_for_fn (cfun); + bb->flags = BB_NEW; + set_bb_seq (bb, h ? (gimple_seq) h : NULL); + + /* Add the new block to the linked list of blocks. */ + link_block (bb, after); + + /* Grow the basic block array if needed. */ + if ((size_t) last_basic_block_for_fn (cfun) + == basic_block_info_for_fn (cfun)->length ()) + { + size_t new_size = + (last_basic_block_for_fn (cfun) + + (last_basic_block_for_fn (cfun) + 3) / 4); + vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size); + } + + /* Add the newly created block to the array. */ + SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb); + + n_basic_blocks_for_fn (cfun)++; + last_basic_block_for_fn (cfun)++; + + return bb; +} + + +/*--------------------------------------------------------------------------- + Edge creation +---------------------------------------------------------------------------*/ + +/* Fold COND_EXPR_COND of each COND_EXPR. */ + +void +fold_cond_expr_cond (void) +{ + basic_block bb; + + FOR_EACH_BB_FN (bb, cfun) + { + gimple stmt = last_stmt (bb); + + if (stmt && gimple_code (stmt) == GIMPLE_COND) + { + location_t loc = gimple_location (stmt); + tree cond; + bool zerop, onep; + + fold_defer_overflow_warnings (); + cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node, + gimple_cond_lhs (stmt), gimple_cond_rhs (stmt)); + if (cond) + { + zerop = integer_zerop (cond); + onep = integer_onep (cond); + } + else + zerop = onep = false; + + fold_undefer_overflow_warnings (zerop || onep, + stmt, + WARN_STRICT_OVERFLOW_CONDITIONAL); + if (zerop) + gimple_cond_make_false (stmt); + else if (onep) + gimple_cond_make_true (stmt); + } + } +} + +/* If basic block BB has an abnormal edge to a basic block + containing IFN_ABNORMAL_DISPATCHER internal call, return + that the dispatcher's basic block, otherwise return NULL. */ + +basic_block +get_abnormal_succ_dispatcher (basic_block bb) +{ + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, bb->succs) + if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL) + { + gimple_stmt_iterator gsi + = gsi_start_nondebug_after_labels_bb (e->dest); + gimple g = gsi_stmt (gsi); + if (g + && is_gimple_call (g) + && gimple_call_internal_p (g) + && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER) + return e->dest; + } + return NULL; +} + +/* Helper function for make_edges. Create a basic block with + with ABNORMAL_DISPATCHER internal call in it if needed, and + create abnormal edges from BBS to it and from it to FOR_BB + if COMPUTED_GOTO is false, otherwise factor the computed gotos. */ + +static void +handle_abnormal_edges (basic_block *dispatcher_bbs, + basic_block for_bb, int *bb_to_omp_idx, + auto_vec *bbs, bool computed_goto) +{ + basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0); + unsigned int idx = 0; + basic_block bb; + bool inner = false; + + if (bb_to_omp_idx) + { + dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index]; + if (bb_to_omp_idx[for_bb->index] != 0) + inner = true; + } + + /* If the dispatcher has been created already, then there are basic + blocks with abnormal edges to it, so just make a new edge to + for_bb. */ + if (*dispatcher == NULL) + { + /* Check if there are any basic blocks that need to have + abnormal edges to this dispatcher. If there are none, return + early. */ + if (bb_to_omp_idx == NULL) + { + if (bbs->is_empty ()) + return; + } + else + { + FOR_EACH_VEC_ELT (*bbs, idx, bb) + if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index]) + break; + if (bb == NULL) + return; + } + + /* Create the dispatcher bb. */ + *dispatcher = create_basic_block (NULL, NULL, for_bb); + if (computed_goto) + { + /* Factor computed gotos into a common computed goto site. Also + record the location of that site so that we can un-factor the + gotos after we have converted back to normal form. */ + gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher); + + /* Create the destination of the factored goto. Each original + computed goto will put its desired destination into this + variable and jump to the label we create immediately below. */ + tree var = create_tmp_var (ptr_type_node, "gotovar"); + + /* Build a label for the new block which will contain the + factored computed goto. */ + tree factored_label_decl + = create_artificial_label (UNKNOWN_LOCATION); + gimple factored_computed_goto_label + = gimple_build_label (factored_label_decl); + gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT); + + /* Build our new computed goto. */ + gimple factored_computed_goto = gimple_build_goto (var); + gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT); + + FOR_EACH_VEC_ELT (*bbs, idx, bb) + { + if (bb_to_omp_idx + && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index]) + continue; + + gsi = gsi_last_bb (bb); + gimple last = gsi_stmt (gsi); + + gcc_assert (computed_goto_p (last)); + + /* Copy the original computed goto's destination into VAR. */ + gimple assignment + = gimple_build_assign (var, gimple_goto_dest (last)); + gsi_insert_before (&gsi, assignment, GSI_SAME_STMT); + + edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU); + e->goto_locus = gimple_location (last); + gsi_remove (&gsi, true); + } + } + else + { + tree arg = inner ? boolean_true_node : boolean_false_node; + gimple g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER, + 1, arg); + gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher); + gsi_insert_after (&gsi, g, GSI_NEW_STMT); + + /* Create predecessor edges of the dispatcher. */ + FOR_EACH_VEC_ELT (*bbs, idx, bb) + { + if (bb_to_omp_idx + && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index]) + continue; + make_edge (bb, *dispatcher, EDGE_ABNORMAL); + } + } + } + + make_edge (*dispatcher, for_bb, EDGE_ABNORMAL); +} + +/* Join all the blocks in the flowgraph. */ + +static void +make_edges (void) +{ + basic_block bb; + struct omp_region *cur_region = NULL; + auto_vec ab_edge_goto; + auto_vec ab_edge_call; + int *bb_to_omp_idx = NULL; + int cur_omp_region_idx = 0; + + /* Create an edge from entry to the first block with executable + statements in it. */ + make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), + BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS), + EDGE_FALLTHRU); + + /* Traverse the basic block array placing edges. */ + FOR_EACH_BB_FN (bb, cfun) + { + gimple last = last_stmt (bb); + bool fallthru; + + if (bb_to_omp_idx) + bb_to_omp_idx[bb->index] = cur_omp_region_idx; + + if (last) + { + enum gimple_code code = gimple_code (last); + switch (code) + { + case GIMPLE_GOTO: + if (make_goto_expr_edges (bb)) + ab_edge_goto.safe_push (bb); + fallthru = false; + break; + case GIMPLE_RETURN: + make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0); + fallthru = false; + break; + case GIMPLE_COND: + make_cond_expr_edges (bb); + fallthru = false; + break; + case GIMPLE_SWITCH: + make_gimple_switch_edges (bb); + fallthru = false; + break; + case GIMPLE_RESX: + make_eh_edges (last); + fallthru = false; + break; + case GIMPLE_EH_DISPATCH: + fallthru = make_eh_dispatch_edges (last); + break; + + case GIMPLE_CALL: + /* If this function receives a nonlocal goto, then we need to + make edges from this call site to all the nonlocal goto + handlers. */ + if (stmt_can_make_abnormal_goto (last)) + ab_edge_call.safe_push (bb); + + /* If this statement has reachable exception handlers, then + create abnormal edges to them. */ + make_eh_edges (last); + + /* BUILTIN_RETURN is really a return statement. */ + if (gimple_call_builtin_p (last, BUILT_IN_RETURN)) + { + make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0); + fallthru = false; + } + /* Some calls are known not to return. */ + else + fallthru = !(gimple_call_flags (last) & ECF_NORETURN); + break; + + case GIMPLE_ASSIGN: + /* A GIMPLE_ASSIGN may throw internally and thus be considered + control-altering. */ + if (is_ctrl_altering_stmt (last)) + make_eh_edges (last); + fallthru = true; + break; + + case GIMPLE_ASM: + make_gimple_asm_edges (bb); + fallthru = true; + break; + + CASE_GIMPLE_OMP: + fallthru = make_gimple_omp_edges (bb, &cur_region, + &cur_omp_region_idx); + if (cur_region && bb_to_omp_idx == NULL) + bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun)); + break; + + case GIMPLE_TRANSACTION: + { + tree abort_label = gimple_transaction_label (last); + if (abort_label) + make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT); + fallthru = true; + } + break; + + default: + gcc_assert (!stmt_ends_bb_p (last)); + fallthru = true; + } + } + else + fallthru = true; + + if (fallthru) + make_edge (bb, bb->next_bb, EDGE_FALLTHRU); + } + + /* Computed gotos are hell to deal with, especially if there are + lots of them with a large number of destinations. So we factor + them to a common computed goto location before we build the + edge list. After we convert back to normal form, we will un-factor + the computed gotos since factoring introduces an unwanted jump. + For non-local gotos and abnormal edges from calls to calls that return + twice or forced labels, factor the abnormal edges too, by having all + abnormal edges from the calls go to a common artificial basic block + with ABNORMAL_DISPATCHER internal call and abnormal edges from that + basic block to all forced labels and calls returning twice. + We do this per-OpenMP structured block, because those regions + are guaranteed to be single entry single exit by the standard, + so it is not allowed to enter or exit such regions abnormally this way, + thus all computed gotos, non-local gotos and setjmp/longjmp calls + must not transfer control across SESE region boundaries. */ + if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ()) + { + gimple_stmt_iterator gsi; + basic_block dispatcher_bb_array[2] = { NULL, NULL }; + basic_block *dispatcher_bbs = dispatcher_bb_array; + int count = n_basic_blocks_for_fn (cfun); + + if (bb_to_omp_idx) + dispatcher_bbs = XCNEWVEC (basic_block, 2 * count); + + FOR_EACH_BB_FN (bb, cfun) + { + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple label_stmt = gsi_stmt (gsi); + tree target; + + if (gimple_code (label_stmt) != GIMPLE_LABEL) + break; + + target = gimple_label_label (label_stmt); + + /* Make an edge to every label block that has been marked as a + potential target for a computed goto or a non-local goto. */ + if (FORCED_LABEL (target)) + handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx, + &ab_edge_goto, true); + if (DECL_NONLOCAL (target)) + { + handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx, + &ab_edge_call, false); + break; + } + } + + if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi))) + gsi_next_nondebug (&gsi); + if (!gsi_end_p (gsi)) + { + /* Make an edge to every setjmp-like call. */ + gimple call_stmt = gsi_stmt (gsi); + if (is_gimple_call (call_stmt) + && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE) + || gimple_call_builtin_p (call_stmt, + BUILT_IN_SETJMP_RECEIVER))) + handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx, + &ab_edge_call, false); + } + } + + if (bb_to_omp_idx) + XDELETE (dispatcher_bbs); + } + + XDELETE (bb_to_omp_idx); + + free_omp_regions (); + + /* Fold COND_EXPR_COND of each COND_EXPR. */ + fold_cond_expr_cond (); +} + +/* Find the next available discriminator value for LOCUS. The + discriminator distinguishes among several basic blocks that + share a common locus, allowing for more accurate sample-based + profiling. */ + +static int +next_discriminator_for_locus (location_t locus) +{ + struct locus_discrim_map item; + struct locus_discrim_map **slot; + + item.locus = locus; + item.discriminator = 0; + slot = discriminator_per_locus.find_slot_with_hash ( + &item, LOCATION_LINE (locus), INSERT); + gcc_assert (slot); + if (*slot == HTAB_EMPTY_ENTRY) + { + *slot = XNEW (struct locus_discrim_map); + gcc_assert (*slot); + (*slot)->locus = locus; + (*slot)->discriminator = 0; + } + (*slot)->discriminator++; + return (*slot)->discriminator; +} + +/* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */ + +static bool +same_line_p (location_t locus1, location_t locus2) +{ + expanded_location from, to; + + if (locus1 == locus2) + return true; + + from = expand_location (locus1); + to = expand_location (locus2); + + if (from.line != to.line) + return false; + if (from.file == to.file) + return true; + return (from.file != NULL + && to.file != NULL + && filename_cmp (from.file, to.file) == 0); +} + +/* Assign discriminators to each basic block. */ + +static void +assign_discriminators (void) +{ + basic_block bb; + + FOR_EACH_BB_FN (bb, cfun) + { + edge e; + edge_iterator ei; + gimple last = last_stmt (bb); + location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION; + + if (locus == UNKNOWN_LOCATION) + continue; + + FOR_EACH_EDGE (e, ei, bb->succs) + { + gimple first = first_non_label_stmt (e->dest); + gimple last = last_stmt (e->dest); + if ((first && same_line_p (locus, gimple_location (first))) + || (last && same_line_p (locus, gimple_location (last)))) + { + if (e->dest->discriminator != 0 && bb->discriminator == 0) + bb->discriminator = next_discriminator_for_locus (locus); + else + e->dest->discriminator = next_discriminator_for_locus (locus); + } + } + } +} + +/* Create the edges for a GIMPLE_COND starting at block BB. */ + +static void +make_cond_expr_edges (basic_block bb) +{ + gimple entry = last_stmt (bb); + gimple then_stmt, else_stmt; + basic_block then_bb, else_bb; + tree then_label, else_label; + edge e; + + gcc_assert (entry); + gcc_assert (gimple_code (entry) == GIMPLE_COND); + + /* Entry basic blocks for each component. */ + then_label = gimple_cond_true_label (entry); + else_label = gimple_cond_false_label (entry); + then_bb = label_to_block (then_label); + else_bb = label_to_block (else_label); + then_stmt = first_stmt (then_bb); + else_stmt = first_stmt (else_bb); + + e = make_edge (bb, then_bb, EDGE_TRUE_VALUE); + e->goto_locus = gimple_location (then_stmt); + e = make_edge (bb, else_bb, EDGE_FALSE_VALUE); + if (e) + e->goto_locus = gimple_location (else_stmt); + + /* We do not need the labels anymore. */ + gimple_cond_set_true_label (entry, NULL_TREE); + gimple_cond_set_false_label (entry, NULL_TREE); +} + + +/* Called for each element in the hash table (P) as we delete the + edge to cases hash table. + + Clear all the TREE_CHAINs to prevent problems with copying of + SWITCH_EXPRs and structure sharing rules, then free the hash table + element. */ + +static bool +edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value, + void *data ATTRIBUTE_UNUSED) +{ + tree t, next; + + for (t = (tree) *value; t; t = next) + { + next = CASE_CHAIN (t); + CASE_CHAIN (t) = NULL; + } + + *value = NULL; + return true; +} + +/* Start recording information mapping edges to case labels. */ + +void +start_recording_case_labels (void) +{ + gcc_assert (edge_to_cases == NULL); + edge_to_cases = pointer_map_create (); + touched_switch_bbs = BITMAP_ALLOC (NULL); +} + +/* Return nonzero if we are recording information for case labels. */ + +static bool +recording_case_labels_p (void) +{ + return (edge_to_cases != NULL); +} + +/* Stop recording information mapping edges to case labels and + remove any information we have recorded. */ +void +end_recording_case_labels (void) +{ + bitmap_iterator bi; + unsigned i; + pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL); + pointer_map_destroy (edge_to_cases); + edge_to_cases = NULL; + EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi) + { + basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); + if (bb) + { + gimple stmt = last_stmt (bb); + if (stmt && gimple_code (stmt) == GIMPLE_SWITCH) + group_case_labels_stmt (stmt); + } + } + BITMAP_FREE (touched_switch_bbs); +} + +/* If we are inside a {start,end}_recording_cases block, then return + a chain of CASE_LABEL_EXPRs from T which reference E. + + Otherwise return NULL. */ + +static tree +get_cases_for_edge (edge e, gimple t) +{ + void **slot; + size_t i, n; + + /* If we are not recording cases, then we do not have CASE_LABEL_EXPR + chains available. Return NULL so the caller can detect this case. */ + if (!recording_case_labels_p ()) + return NULL; + + slot = pointer_map_contains (edge_to_cases, e); + if (slot) + return (tree) *slot; + + /* If we did not find E in the hash table, then this must be the first + time we have been queried for information about E & T. Add all the + elements from T to the hash table then perform the query again. */ + + n = gimple_switch_num_labels (t); + for (i = 0; i < n; i++) + { + tree elt = gimple_switch_label (t, i); + tree lab = CASE_LABEL (elt); + basic_block label_bb = label_to_block (lab); + edge this_edge = find_edge (e->src, label_bb); + + /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create + a new chain. */ + slot = pointer_map_insert (edge_to_cases, this_edge); + CASE_CHAIN (elt) = (tree) *slot; + *slot = elt; + } + + return (tree) *pointer_map_contains (edge_to_cases, e); +} + +/* Create the edges for a GIMPLE_SWITCH starting at block BB. */ + +static void +make_gimple_switch_edges (basic_block bb) +{ + gimple entry = last_stmt (bb); + size_t i, n; + + n = gimple_switch_num_labels (entry); + + for (i = 0; i < n; ++i) + { + tree lab = CASE_LABEL (gimple_switch_label (entry, i)); + basic_block label_bb = label_to_block (lab); + make_edge (bb, label_bb, 0); + } +} + + +/* Return the basic block holding label DEST. */ + +basic_block +label_to_block_fn (struct function *ifun, tree dest) +{ + int uid = LABEL_DECL_UID (dest); + + /* We would die hard when faced by an undefined label. Emit a label to + the very first basic block. This will hopefully make even the dataflow + and undefined variable warnings quite right. */ + if (seen_error () && uid < 0) + { + gimple_stmt_iterator gsi = + gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS)); + gimple stmt; + + stmt = gimple_build_label (dest); + gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); + uid = LABEL_DECL_UID (dest); + } + if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid) + return NULL; + return (*ifun->cfg->x_label_to_block_map)[uid]; +} + +/* Create edges for a goto statement at block BB. Returns true + if abnormal edges should be created. */ + +static bool +make_goto_expr_edges (basic_block bb) +{ + gimple_stmt_iterator last = gsi_last_bb (bb); + gimple goto_t = gsi_stmt (last); + + /* A simple GOTO creates normal edges. */ + if (simple_goto_p (goto_t)) + { + tree dest = gimple_goto_dest (goto_t); + basic_block label_bb = label_to_block (dest); + edge e = make_edge (bb, label_bb, EDGE_FALLTHRU); + e->goto_locus = gimple_location (goto_t); + gsi_remove (&last, true); + return false; + } + + /* A computed GOTO creates abnormal edges. */ + return true; +} + +/* Create edges for an asm statement with labels at block BB. */ + +static void +make_gimple_asm_edges (basic_block bb) +{ + gimple stmt = last_stmt (bb); + int i, n = gimple_asm_nlabels (stmt); + + for (i = 0; i < n; ++i) + { + tree label = TREE_VALUE (gimple_asm_label_op (stmt, i)); + basic_block label_bb = label_to_block (label); + make_edge (bb, label_bb, 0); + } +} + +/*--------------------------------------------------------------------------- + Flowgraph analysis +---------------------------------------------------------------------------*/ + +/* Cleanup useless labels in basic blocks. This is something we wish + to do early because it allows us to group case labels before creating + the edges for the CFG, and it speeds up block statement iterators in + all passes later on. + We rerun this pass after CFG is created, to get rid of the labels that + are no longer referenced. After then we do not run it any more, since + (almost) no new labels should be created. */ + +/* A map from basic block index to the leading label of that block. */ +static struct label_record +{ + /* The label. */ + tree label; + + /* True if the label is referenced from somewhere. */ + bool used; +} *label_for_bb; + +/* Given LABEL return the first label in the same basic block. */ + +static tree +main_block_label (tree label) +{ + basic_block bb = label_to_block (label); + tree main_label = label_for_bb[bb->index].label; + + /* label_to_block possibly inserted undefined label into the chain. */ + if (!main_label) + { + label_for_bb[bb->index].label = label; + main_label = label; + } + + label_for_bb[bb->index].used = true; + return main_label; +} + +/* Clean up redundant labels within the exception tree. */ + +static void +cleanup_dead_labels_eh (void) +{ + eh_landing_pad lp; + eh_region r; + tree lab; + int i; + + if (cfun->eh == NULL) + return; + + for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i) + if (lp && lp->post_landing_pad) + { + lab = main_block_label (lp->post_landing_pad); + if (lab != lp->post_landing_pad) + { + EH_LANDING_PAD_NR (lp->post_landing_pad) = 0; + EH_LANDING_PAD_NR (lab) = lp->index; + } + } + + FOR_ALL_EH_REGION (r) + switch (r->type) + { + case ERT_CLEANUP: + case ERT_MUST_NOT_THROW: + break; + + case ERT_TRY: + { + eh_catch c; + for (c = r->u.eh_try.first_catch; c ; c = c->next_catch) + { + lab = c->label; + if (lab) + c->label = main_block_label (lab); + } + } + break; + + case ERT_ALLOWED_EXCEPTIONS: + lab = r->u.allowed.label; + if (lab) + r->u.allowed.label = main_block_label (lab); + break; + } +} + + +/* Cleanup redundant labels. This is a three-step process: + 1) Find the leading label for each block. + 2) Redirect all references to labels to the leading labels. + 3) Cleanup all useless labels. */ + +void +cleanup_dead_labels (void) +{ + basic_block bb; + label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun)); + + /* Find a suitable label for each block. We use the first user-defined + label if there is one, or otherwise just the first label we see. */ + FOR_EACH_BB_FN (bb, cfun) + { + gimple_stmt_iterator i; + + for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i)) + { + tree label; + gimple stmt = gsi_stmt (i); + + if (gimple_code (stmt) != GIMPLE_LABEL) + break; + + label = gimple_label_label (stmt); + + /* If we have not yet seen a label for the current block, + remember this one and see if there are more labels. */ + if (!label_for_bb[bb->index].label) + { + label_for_bb[bb->index].label = label; + continue; + } + + /* If we did see a label for the current block already, but it + is an artificially created label, replace it if the current + label is a user defined label. */ + if (!DECL_ARTIFICIAL (label) + && DECL_ARTIFICIAL (label_for_bb[bb->index].label)) + { + label_for_bb[bb->index].label = label; + break; + } + } + } + + /* Now redirect all jumps/branches to the selected label. + First do so for each block ending in a control statement. */ + FOR_EACH_BB_FN (bb, cfun) + { + gimple stmt = last_stmt (bb); + tree label, new_label; + + if (!stmt) + continue; + + switch (gimple_code (stmt)) + { + case GIMPLE_COND: + label = gimple_cond_true_label (stmt); + if (label) + { + new_label = main_block_label (label); + if (new_label != label) + gimple_cond_set_true_label (stmt, new_label); + } + + label = gimple_cond_false_label (stmt); + if (label) + { + new_label = main_block_label (label); + if (new_label != label) + gimple_cond_set_false_label (stmt, new_label); + } + break; + + case GIMPLE_SWITCH: + { + size_t i, n = gimple_switch_num_labels (stmt); + + /* Replace all destination labels. */ + for (i = 0; i < n; ++i) + { + tree case_label = gimple_switch_label (stmt, i); + label = CASE_LABEL (case_label); + new_label = main_block_label (label); + if (new_label != label) + CASE_LABEL (case_label) = new_label; + } + break; + } + + case GIMPLE_ASM: + { + int i, n = gimple_asm_nlabels (stmt); + + for (i = 0; i < n; ++i) + { + tree cons = gimple_asm_label_op (stmt, i); + tree label = main_block_label (TREE_VALUE (cons)); + TREE_VALUE (cons) = label; + } + break; + } + + /* We have to handle gotos until they're removed, and we don't + remove them until after we've created the CFG edges. */ + case GIMPLE_GOTO: + if (!computed_goto_p (stmt)) + { + label = gimple_goto_dest (stmt); + new_label = main_block_label (label); + if (new_label != label) + gimple_goto_set_dest (stmt, new_label); + } + break; + + case GIMPLE_TRANSACTION: + { + tree label = gimple_transaction_label (stmt); + if (label) + { + tree new_label = main_block_label (label); + if (new_label != label) + gimple_transaction_set_label (stmt, new_label); + } + } + break; + + default: + break; + } + } + + /* Do the same for the exception region tree labels. */ + cleanup_dead_labels_eh (); + + /* Finally, purge dead labels. All user-defined labels and labels that + can be the target of non-local gotos and labels which have their + address taken are preserved. */ + FOR_EACH_BB_FN (bb, cfun) + { + gimple_stmt_iterator i; + tree label_for_this_bb = label_for_bb[bb->index].label; + + if (!label_for_this_bb) + continue; + + /* If the main label of the block is unused, we may still remove it. */ + if (!label_for_bb[bb->index].used) + label_for_this_bb = NULL; + + for (i = gsi_start_bb (bb); !gsi_end_p (i); ) + { + tree label; + gimple stmt = gsi_stmt (i); + + if (gimple_code (stmt) != GIMPLE_LABEL) + break; + + label = gimple_label_label (stmt); + + if (label == label_for_this_bb + || !DECL_ARTIFICIAL (label) + || DECL_NONLOCAL (label) + || FORCED_LABEL (label)) + gsi_next (&i); + else + gsi_remove (&i, true); + } + } + + free (label_for_bb); +} + +/* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine + the ones jumping to the same label. + Eg. three separate entries 1: 2: 3: become one entry 1..3: */ + +void +group_case_labels_stmt (gimple stmt) +{ + int old_size = gimple_switch_num_labels (stmt); + int i, j, new_size = old_size; + basic_block default_bb = NULL; + + default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt))); + + /* Look for possible opportunities to merge cases. */ + i = 1; + while (i < old_size) + { + tree base_case, base_high; + basic_block base_bb; + + base_case = gimple_switch_label (stmt, i); + + gcc_assert (base_case); + base_bb = label_to_block (CASE_LABEL (base_case)); + + /* Discard cases that have the same destination as the + default case. */ + if (base_bb == default_bb) + { + gimple_switch_set_label (stmt, i, NULL_TREE); + i++; + new_size--; + continue; + } + + base_high = CASE_HIGH (base_case) + ? CASE_HIGH (base_case) + : CASE_LOW (base_case); + i++; + + /* Try to merge case labels. Break out when we reach the end + of the label vector or when we cannot merge the next case + label with the current one. */ + while (i < old_size) + { + tree merge_case = gimple_switch_label (stmt, i); + basic_block merge_bb = label_to_block (CASE_LABEL (merge_case)); + double_int bhp1 = tree_to_double_int (base_high) + double_int_one; + + /* Merge the cases if they jump to the same place, + and their ranges are consecutive. */ + if (merge_bb == base_bb + && tree_to_double_int (CASE_LOW (merge_case)) == bhp1) + { + base_high = CASE_HIGH (merge_case) ? + CASE_HIGH (merge_case) : CASE_LOW (merge_case); + CASE_HIGH (base_case) = base_high; + gimple_switch_set_label (stmt, i, NULL_TREE); + new_size--; + i++; + } + else + break; + } + } + + /* Compress the case labels in the label vector, and adjust the + length of the vector. */ + for (i = 0, j = 0; i < new_size; i++) + { + while (! gimple_switch_label (stmt, j)) + j++; + gimple_switch_set_label (stmt, i, + gimple_switch_label (stmt, j++)); + } + + gcc_assert (new_size <= old_size); + gimple_switch_set_num_labels (stmt, new_size); +} + +/* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH), + and scan the sorted vector of cases. Combine the ones jumping to the + same label. */ + +void +group_case_labels (void) +{ + basic_block bb; + + FOR_EACH_BB_FN (bb, cfun) + { + gimple stmt = last_stmt (bb); + if (stmt && gimple_code (stmt) == GIMPLE_SWITCH) + group_case_labels_stmt (stmt); + } +} + +/* Checks whether we can merge block B into block A. */ + +static bool +gimple_can_merge_blocks_p (basic_block a, basic_block b) +{ + gimple stmt; + gimple_stmt_iterator gsi; + + if (!single_succ_p (a)) + return false; + + if (single_succ_edge (a)->flags & EDGE_COMPLEX) + return false; + + if (single_succ (a) != b) + return false; + + if (!single_pred_p (b)) + return false; + + if (b == EXIT_BLOCK_PTR_FOR_FN (cfun)) + return false; + + /* If A ends by a statement causing exceptions or something similar, we + cannot merge the blocks. */ + stmt = last_stmt (a); + if (stmt && stmt_ends_bb_p (stmt)) + return false; + + /* Do not allow a block with only a non-local label to be merged. */ + if (stmt + && gimple_code (stmt) == GIMPLE_LABEL + && DECL_NONLOCAL (gimple_label_label (stmt))) + return false; + + /* Examine the labels at the beginning of B. */ + for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi)) + { + tree lab; + stmt = gsi_stmt (gsi); + if (gimple_code (stmt) != GIMPLE_LABEL) + break; + lab = gimple_label_label (stmt); + + /* Do not remove user forced labels or for -O0 any user labels. */ + if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab))) + return false; + } + + /* Protect the loop latches. */ + if (current_loops && b->loop_father->latch == b) + return false; + + /* It must be possible to eliminate all phi nodes in B. If ssa form + is not up-to-date and a name-mapping is registered, we cannot eliminate + any phis. Symbols marked for renaming are never a problem though. */ + for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple phi = gsi_stmt (gsi); + /* Technically only new names matter. */ + if (name_registered_for_update_p (PHI_RESULT (phi))) + return false; + } + + /* When not optimizing, don't merge if we'd lose goto_locus. */ + if (!optimize + && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION) + { + location_t goto_locus = single_succ_edge (a)->goto_locus; + gimple_stmt_iterator prev, next; + prev = gsi_last_nondebug_bb (a); + next = gsi_after_labels (b); + if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next))) + gsi_next_nondebug (&next); + if ((gsi_end_p (prev) + || gimple_location (gsi_stmt (prev)) != goto_locus) + && (gsi_end_p (next) + || gimple_location (gsi_stmt (next)) != goto_locus)) + return false; + } + + return true; +} + +/* Replaces all uses of NAME by VAL. */ + +void +replace_uses_by (tree name, tree val) +{ + imm_use_iterator imm_iter; + use_operand_p use; + gimple stmt; + edge e; + + FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name) + { + /* Mark the block if we change the last stmt in it. */ + if (cfgcleanup_altered_bbs + && stmt_ends_bb_p (stmt)) + bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index); + + FOR_EACH_IMM_USE_ON_STMT (use, imm_iter) + { + replace_exp (use, val); + + if (gimple_code (stmt) == GIMPLE_PHI) + { + e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use)); + if (e->flags & EDGE_ABNORMAL) + { + /* This can only occur for virtual operands, since + for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name)) + would prevent replacement. */ + gcc_checking_assert (virtual_operand_p (name)); + SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1; + } + } + } + + if (gimple_code (stmt) != GIMPLE_PHI) + { + gimple_stmt_iterator gsi = gsi_for_stmt (stmt); + gimple orig_stmt = stmt; + size_t i; + + /* FIXME. It shouldn't be required to keep TREE_CONSTANT + on ADDR_EXPRs up-to-date on GIMPLE. Propagation will + only change sth from non-invariant to invariant, and only + when propagating constants. */ + if (is_gimple_min_invariant (val)) + for (i = 0; i < gimple_num_ops (stmt); i++) + { + tree op = gimple_op (stmt, i); + /* Operands may be empty here. For example, the labels + of a GIMPLE_COND are nulled out following the creation + of the corresponding CFG edges. */ + if (op && TREE_CODE (op) == ADDR_EXPR) + recompute_tree_invariant_for_addr_expr (op); + } + + if (fold_stmt (&gsi)) + stmt = gsi_stmt (gsi); + + if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt)) + gimple_purge_dead_eh_edges (gimple_bb (stmt)); + + update_stmt (stmt); + } + } + + gcc_checking_assert (has_zero_uses (name)); + + /* Also update the trees stored in loop structures. */ + if (current_loops) + { + struct loop *loop; + + FOR_EACH_LOOP (loop, 0) + { + substitute_in_loop_info (loop, name, val); + } + } +} + +/* Merge block B into block A. */ + +static void +gimple_merge_blocks (basic_block a, basic_block b) +{ + gimple_stmt_iterator last, gsi, psi; + + if (dump_file) + fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index); + + /* Remove all single-valued PHI nodes from block B of the form + V_i = PHI by propagating V_j to all the uses of V_i. */ + gsi = gsi_last_bb (a); + for (psi = gsi_start_phis (b); !gsi_end_p (psi); ) + { + gimple phi = gsi_stmt (psi); + tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0); + gimple copy; + bool may_replace_uses = (virtual_operand_p (def) + || may_propagate_copy (def, use)); + + /* In case we maintain loop closed ssa form, do not propagate arguments + of loop exit phi nodes. */ + if (current_loops + && loops_state_satisfies_p (LOOP_CLOSED_SSA) + && !virtual_operand_p (def) + && TREE_CODE (use) == SSA_NAME + && a->loop_father != b->loop_father) + may_replace_uses = false; + + if (!may_replace_uses) + { + gcc_assert (!virtual_operand_p (def)); + + /* Note that just emitting the copies is fine -- there is no problem + with ordering of phi nodes. This is because A is the single + predecessor of B, therefore results of the phi nodes cannot + appear as arguments of the phi nodes. */ + copy = gimple_build_assign (def, use); + gsi_insert_after (&gsi, copy, GSI_NEW_STMT); + remove_phi_node (&psi, false); + } + else + { + /* If we deal with a PHI for virtual operands, we can simply + propagate these without fussing with folding or updating + the stmt. */ + if (virtual_operand_p (def)) + { + imm_use_iterator iter; + use_operand_p use_p; + gimple stmt; + + FOR_EACH_IMM_USE_STMT (stmt, iter, def) + FOR_EACH_IMM_USE_ON_STMT (use_p, iter) + SET_USE (use_p, use); + + if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)) + SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1; + } + else + replace_uses_by (def, use); + + remove_phi_node (&psi, true); + } + } + + /* Ensure that B follows A. */ + move_block_after (b, a); + + gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU); + gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a))); + + /* Remove labels from B and set gimple_bb to A for other statements. */ + for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);) + { + gimple stmt = gsi_stmt (gsi); + if (gimple_code (stmt) == GIMPLE_LABEL) + { + tree label = gimple_label_label (stmt); + int lp_nr; + + gsi_remove (&gsi, false); + + /* Now that we can thread computed gotos, we might have + a situation where we have a forced label in block B + However, the label at the start of block B might still be + used in other ways (think about the runtime checking for + Fortran assigned gotos). So we can not just delete the + label. Instead we move the label to the start of block A. */ + if (FORCED_LABEL (label)) + { + gimple_stmt_iterator dest_gsi = gsi_start_bb (a); + gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT); + } + /* Other user labels keep around in a form of a debug stmt. */ + else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS) + { + gimple dbg = gimple_build_debug_bind (label, + integer_zero_node, + stmt); + gimple_debug_bind_reset_value (dbg); + gsi_insert_before (&gsi, dbg, GSI_SAME_STMT); + } + + lp_nr = EH_LANDING_PAD_NR (label); + if (lp_nr) + { + eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr); + lp->post_landing_pad = NULL; + } + } + else + { + gimple_set_bb (stmt, a); + gsi_next (&gsi); + } + } + + /* Merge the sequences. */ + last = gsi_last_bb (a); + gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT); + set_bb_seq (b, NULL); + + if (cfgcleanup_altered_bbs) + bitmap_set_bit (cfgcleanup_altered_bbs, a->index); +} + + +/* Return the one of two successors of BB that is not reachable by a + complex edge, if there is one. Else, return BB. We use + this in optimizations that use post-dominators for their heuristics, + to catch the cases in C++ where function calls are involved. */ + +basic_block +single_noncomplex_succ (basic_block bb) +{ + edge e0, e1; + if (EDGE_COUNT (bb->succs) != 2) + return bb; + + e0 = EDGE_SUCC (bb, 0); + e1 = EDGE_SUCC (bb, 1); + if (e0->flags & EDGE_COMPLEX) + return e1->dest; + if (e1->flags & EDGE_COMPLEX) + return e0->dest; + + return bb; +} + +/* T is CALL_EXPR. Set current_function_calls_* flags. */ + +void +notice_special_calls (gimple call) +{ + int flags = gimple_call_flags (call); + + if (flags & ECF_MAY_BE_ALLOCA) + cfun->calls_alloca = true; + if (flags & ECF_RETURNS_TWICE) + cfun->calls_setjmp = true; +} + + +/* Clear flags set by notice_special_calls. Used by dead code removal + to update the flags. */ + +void +clear_special_calls (void) +{ + cfun->calls_alloca = false; + cfun->calls_setjmp = false; +} + +/* Remove PHI nodes associated with basic block BB and all edges out of BB. */ + +static void +remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb) +{ + /* Since this block is no longer reachable, we can just delete all + of its PHI nodes. */ + remove_phi_nodes (bb); + + /* Remove edges to BB's successors. */ + while (EDGE_COUNT (bb->succs) > 0) + remove_edge (EDGE_SUCC (bb, 0)); +} + + +/* Remove statements of basic block BB. */ + +static void +remove_bb (basic_block bb) +{ + gimple_stmt_iterator i; + + if (dump_file) + { + fprintf (dump_file, "Removing basic block %d\n", bb->index); + if (dump_flags & TDF_DETAILS) + { + dump_bb (dump_file, bb, 0, dump_flags); + fprintf (dump_file, "\n"); + } + } + + if (current_loops) + { + struct loop *loop = bb->loop_father; + + /* If a loop gets removed, clean up the information associated + with it. */ + if (loop->latch == bb + || loop->header == bb) + free_numbers_of_iterations_estimates_loop (loop); + } + + /* Remove all the instructions in the block. */ + if (bb_seq (bb) != NULL) + { + /* Walk backwards so as to get a chance to substitute all + released DEFs into debug stmts. See + eliminate_unnecessary_stmts() in tree-ssa-dce.c for more + details. */ + for (i = gsi_last_bb (bb); !gsi_end_p (i);) + { + gimple stmt = gsi_stmt (i); + if (gimple_code (stmt) == GIMPLE_LABEL + && (FORCED_LABEL (gimple_label_label (stmt)) + || DECL_NONLOCAL (gimple_label_label (stmt)))) + { + basic_block new_bb; + gimple_stmt_iterator new_gsi; + + /* A non-reachable non-local label may still be referenced. + But it no longer needs to carry the extra semantics of + non-locality. */ + if (DECL_NONLOCAL (gimple_label_label (stmt))) + { + DECL_NONLOCAL (gimple_label_label (stmt)) = 0; + FORCED_LABEL (gimple_label_label (stmt)) = 1; + } + + new_bb = bb->prev_bb; + new_gsi = gsi_start_bb (new_bb); + gsi_remove (&i, false); + gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT); + } + else + { + /* Release SSA definitions if we are in SSA. Note that we + may be called when not in SSA. For example, + final_cleanup calls this function via + cleanup_tree_cfg. */ + if (gimple_in_ssa_p (cfun)) + release_defs (stmt); + + gsi_remove (&i, true); + } + + if (gsi_end_p (i)) + i = gsi_last_bb (bb); + else + gsi_prev (&i); + } + } + + remove_phi_nodes_and_edges_for_unreachable_block (bb); + bb->il.gimple.seq = NULL; + bb->il.gimple.phi_nodes = NULL; +} + + +/* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a + predicate VAL, return the edge that will be taken out of the block. + If VAL does not match a unique edge, NULL is returned. */ + +edge +find_taken_edge (basic_block bb, tree val) +{ + gimple stmt; + + stmt = last_stmt (bb); + + gcc_assert (stmt); + gcc_assert (is_ctrl_stmt (stmt)); + + if (val == NULL) + return NULL; + + if (!is_gimple_min_invariant (val)) + return NULL; + + if (gimple_code (stmt) == GIMPLE_COND) + return find_taken_edge_cond_expr (bb, val); + + if (gimple_code (stmt) == GIMPLE_SWITCH) + return find_taken_edge_switch_expr (bb, val); + + if (computed_goto_p (stmt)) + { + /* Only optimize if the argument is a label, if the argument is + not a label then we can not construct a proper CFG. + + It may be the case that we only need to allow the LABEL_REF to + appear inside an ADDR_EXPR, but we also allow the LABEL_REF to + appear inside a LABEL_EXPR just to be safe. */ + if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR) + && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL) + return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0)); + return NULL; + } + + gcc_unreachable (); +} + +/* Given a constant value VAL and the entry block BB to a GOTO_EXPR + statement, determine which of the outgoing edges will be taken out of the + block. Return NULL if either edge may be taken. */ + +static edge +find_taken_edge_computed_goto (basic_block bb, tree val) +{ + basic_block dest; + edge e = NULL; + + dest = label_to_block (val); + if (dest) + { + e = find_edge (bb, dest); + gcc_assert (e != NULL); + } + + return e; +} + +/* Given a constant value VAL and the entry block BB to a COND_EXPR + statement, determine which of the two edges will be taken out of the + block. Return NULL if either edge may be taken. */ + +static edge +find_taken_edge_cond_expr (basic_block bb, tree val) +{ + edge true_edge, false_edge; + + extract_true_false_edges_from_block (bb, &true_edge, &false_edge); + + gcc_assert (TREE_CODE (val) == INTEGER_CST); + return (integer_zerop (val) ? false_edge : true_edge); +} + +/* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR + statement, determine which edge will be taken out of the block. Return + NULL if any edge may be taken. */ + +static edge +find_taken_edge_switch_expr (basic_block bb, tree val) +{ + basic_block dest_bb; + edge e; + gimple switch_stmt; + tree taken_case; + + switch_stmt = last_stmt (bb); + taken_case = find_case_label_for_value (switch_stmt, val); + dest_bb = label_to_block (CASE_LABEL (taken_case)); + + e = find_edge (bb, dest_bb); + gcc_assert (e); + return e; +} + + +/* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL. + We can make optimal use here of the fact that the case labels are + sorted: We can do a binary search for a case matching VAL. */ + +static tree +find_case_label_for_value (gimple switch_stmt, tree val) +{ + size_t low, high, n = gimple_switch_num_labels (switch_stmt); + tree default_case = gimple_switch_default_label (switch_stmt); + + for (low = 0, high = n; high - low > 1; ) + { + size_t i = (high + low) / 2; + tree t = gimple_switch_label (switch_stmt, i); + int cmp; + + /* Cache the result of comparing CASE_LOW and val. */ + cmp = tree_int_cst_compare (CASE_LOW (t), val); + + if (cmp > 0) + high = i; + else + low = i; + + if (CASE_HIGH (t) == NULL) + { + /* A singe-valued case label. */ + if (cmp == 0) + return t; + } + else + { + /* A case range. We can only handle integer ranges. */ + if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0) + return t; + } + } + + return default_case; +} + + +/* Dump a basic block on stderr. */ + +void +gimple_debug_bb (basic_block bb) +{ + dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS); +} + + +/* Dump basic block with index N on stderr. */ + +basic_block +gimple_debug_bb_n (int n) +{ + gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n)); + return BASIC_BLOCK_FOR_FN (cfun, n); +} + + +/* Dump the CFG on stderr. + + FLAGS are the same used by the tree dumping functions + (see TDF_* in dumpfile.h). */ + +void +gimple_debug_cfg (int flags) +{ + gimple_dump_cfg (stderr, flags); +} + + +/* Dump the program showing basic block boundaries on the given FILE. + + FLAGS are the same used by the tree dumping functions (see TDF_* in + tree.h). */ + +void +gimple_dump_cfg (FILE *file, int flags) +{ + if (flags & TDF_DETAILS) + { + dump_function_header (file, current_function_decl, flags); + fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n", + n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun), + last_basic_block_for_fn (cfun)); + + brief_dump_cfg (file, flags | TDF_COMMENT); + fprintf (file, "\n"); + } + + if (flags & TDF_STATS) + dump_cfg_stats (file); + + dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS); +} + + +/* Dump CFG statistics on FILE. */ + +void +dump_cfg_stats (FILE *file) +{ + static long max_num_merged_labels = 0; + unsigned long size, total = 0; + long num_edges; + basic_block bb; + const char * const fmt_str = "%-30s%-13s%12s\n"; + const char * const fmt_str_1 = "%-30s%13d%11lu%c\n"; + const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n"; + const char * const fmt_str_3 = "%-43s%11lu%c\n"; + const char *funcname = current_function_name (); + + fprintf (file, "\nCFG Statistics for %s\n\n", funcname); + + fprintf (file, "---------------------------------------------------------\n"); + fprintf (file, fmt_str, "", " Number of ", "Memory"); + fprintf (file, fmt_str, "", " instances ", "used "); + fprintf (file, "---------------------------------------------------------\n"); + + size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def); + total += size; + fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun), + SCALE (size), LABEL (size)); + + num_edges = 0; + FOR_EACH_BB_FN (bb, cfun) + num_edges += EDGE_COUNT (bb->succs); + size = num_edges * sizeof (struct edge_def); + total += size; + fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size)); + + fprintf (file, "---------------------------------------------------------\n"); + fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total), + LABEL (total)); + fprintf (file, "---------------------------------------------------------\n"); + fprintf (file, "\n"); + + if (cfg_stats.num_merged_labels > max_num_merged_labels) + max_num_merged_labels = cfg_stats.num_merged_labels; + + fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n", + cfg_stats.num_merged_labels, max_num_merged_labels); + + fprintf (file, "\n"); +} + + +/* Dump CFG statistics on stderr. Keep extern so that it's always + linked in the final executable. */ + +DEBUG_FUNCTION void +debug_cfg_stats (void) +{ + dump_cfg_stats (stderr); +} + +/*--------------------------------------------------------------------------- + Miscellaneous helpers +---------------------------------------------------------------------------*/ + +/* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control + flow. Transfers of control flow associated with EH are excluded. */ + +static bool +call_can_make_abnormal_goto (gimple t) +{ + /* If the function has no non-local labels, then a call cannot make an + abnormal transfer of control. */ + if (!cfun->has_nonlocal_label + && !cfun->calls_setjmp) + return false; + + /* Likewise if the call has no side effects. */ + if (!gimple_has_side_effects (t)) + return false; + + /* Likewise if the called function is leaf. */ + if (gimple_call_flags (t) & ECF_LEAF) + return false; + + return true; +} + + +/* Return true if T can make an abnormal transfer of control flow. + Transfers of control flow associated with EH are excluded. */ + +bool +stmt_can_make_abnormal_goto (gimple t) +{ + if (computed_goto_p (t)) + return true; + if (is_gimple_call (t)) + return call_can_make_abnormal_goto (t); + return false; +} + + +/* Return true if T represents a stmt that always transfers control. */ + +bool +is_ctrl_stmt (gimple t) +{ + switch (gimple_code (t)) + { + case GIMPLE_COND: + case GIMPLE_SWITCH: + case GIMPLE_GOTO: + case GIMPLE_RETURN: + case GIMPLE_RESX: + return true; + default: + return false; + } +} + + +/* Return true if T is a statement that may alter the flow of control + (e.g., a call to a non-returning function). */ + +bool +is_ctrl_altering_stmt (gimple t) +{ + gcc_assert (t); + + switch (gimple_code (t)) + { + case GIMPLE_CALL: + { + int flags = gimple_call_flags (t); + + /* A call alters control flow if it can make an abnormal goto. */ + if (call_can_make_abnormal_goto (t)) + return true; + + /* A call also alters control flow if it does not return. */ + if (flags & ECF_NORETURN) + return true; + + /* TM ending statements have backedges out of the transaction. + Return true so we split the basic block containing them. + Note that the TM_BUILTIN test is merely an optimization. */ + if ((flags & ECF_TM_BUILTIN) + && is_tm_ending_fndecl (gimple_call_fndecl (t))) + return true; + + /* BUILT_IN_RETURN call is same as return statement. */ + if (gimple_call_builtin_p (t, BUILT_IN_RETURN)) + return true; + } + break; + + case GIMPLE_EH_DISPATCH: + /* EH_DISPATCH branches to the individual catch handlers at + this level of a try or allowed-exceptions region. It can + fallthru to the next statement as well. */ + return true; + + case GIMPLE_ASM: + if (gimple_asm_nlabels (t) > 0) + return true; + break; + + CASE_GIMPLE_OMP: + /* OpenMP directives alter control flow. */ + return true; + + case GIMPLE_TRANSACTION: + /* A transaction start alters control flow. */ + return true; + + default: + break; + } + + /* If a statement can throw, it alters control flow. */ + return stmt_can_throw_internal (t); +} + + +/* Return true if T is a simple local goto. */ + +bool +simple_goto_p (gimple t) +{ + return (gimple_code (t) == GIMPLE_GOTO + && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL); +} + + +/* Return true if STMT should start a new basic block. PREV_STMT is + the statement preceding STMT. It is used when STMT is a label or a + case label. Labels should only start a new basic block if their + previous statement wasn't a label. Otherwise, sequence of labels + would generate unnecessary basic blocks that only contain a single + label. */ + +static inline bool +stmt_starts_bb_p (gimple stmt, gimple prev_stmt) +{ + if (stmt == NULL) + return false; + + /* Labels start a new basic block only if the preceding statement + wasn't a label of the same type. This prevents the creation of + consecutive blocks that have nothing but a single label. */ + if (gimple_code (stmt) == GIMPLE_LABEL) + { + /* Nonlocal and computed GOTO targets always start a new block. */ + if (DECL_NONLOCAL (gimple_label_label (stmt)) + || FORCED_LABEL (gimple_label_label (stmt))) + return true; + + if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL) + { + if (DECL_NONLOCAL (gimple_label_label (prev_stmt))) + return true; + + cfg_stats.num_merged_labels++; + return false; + } + else + return true; + } + else if (gimple_code (stmt) == GIMPLE_CALL + && gimple_call_flags (stmt) & ECF_RETURNS_TWICE) + /* setjmp acts similar to a nonlocal GOTO target and thus should + start a new block. */ + return true; + + return false; +} + + +/* Return true if T should end a basic block. */ + +bool +stmt_ends_bb_p (gimple t) +{ + return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t); +} + +/* Remove block annotations and other data structures. */ + +void +delete_tree_cfg_annotations (void) +{ + vec_free (label_to_block_map_for_fn (cfun)); +} + + +/* Return the first statement in basic block BB. */ + +gimple +first_stmt (basic_block bb) +{ + gimple_stmt_iterator i = gsi_start_bb (bb); + gimple stmt = NULL; + + while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i)))) + { + gsi_next (&i); + stmt = NULL; + } + return stmt; +} + +/* Return the first non-label statement in basic block BB. */ + +static gimple +first_non_label_stmt (basic_block bb) +{ + gimple_stmt_iterator i = gsi_start_bb (bb); + while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL) + gsi_next (&i); + return !gsi_end_p (i) ? gsi_stmt (i) : NULL; +} + +/* Return the last statement in basic block BB. */ + +gimple +last_stmt (basic_block bb) +{ + gimple_stmt_iterator i = gsi_last_bb (bb); + gimple stmt = NULL; + + while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i)))) + { + gsi_prev (&i); + stmt = NULL; + } + return stmt; +} + +/* Return the last statement of an otherwise empty block. Return NULL + if the block is totally empty, or if it contains more than one + statement. */ + +gimple +last_and_only_stmt (basic_block bb) +{ + gimple_stmt_iterator i = gsi_last_nondebug_bb (bb); + gimple last, prev; + + if (gsi_end_p (i)) + return NULL; + + last = gsi_stmt (i); + gsi_prev_nondebug (&i); + if (gsi_end_p (i)) + return last; + + /* Empty statements should no longer appear in the instruction stream. + Everything that might have appeared before should be deleted by + remove_useless_stmts, and the optimizers should just gsi_remove + instead of smashing with build_empty_stmt. + + Thus the only thing that should appear here in a block containing + one executable statement is a label. */ + prev = gsi_stmt (i); + if (gimple_code (prev) == GIMPLE_LABEL) + return last; + else + return NULL; +} + +/* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */ + +static void +reinstall_phi_args (edge new_edge, edge old_edge) +{ + edge_var_map_vector *v; + edge_var_map *vm; + int i; + gimple_stmt_iterator phis; + + v = redirect_edge_var_map_vector (old_edge); + if (!v) + return; + + for (i = 0, phis = gsi_start_phis (new_edge->dest); + v->iterate (i, &vm) && !gsi_end_p (phis); + i++, gsi_next (&phis)) + { + gimple phi = gsi_stmt (phis); + tree result = redirect_edge_var_map_result (vm); + tree arg = redirect_edge_var_map_def (vm); + + gcc_assert (result == gimple_phi_result (phi)); + + add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm)); + } + + redirect_edge_var_map_clear (old_edge); +} + +/* Returns the basic block after which the new basic block created + by splitting edge EDGE_IN should be placed. Tries to keep the new block + near its "logical" location. This is of most help to humans looking + at debugging dumps. */ + +static basic_block +split_edge_bb_loc (edge edge_in) +{ + basic_block dest = edge_in->dest; + basic_block dest_prev = dest->prev_bb; + + if (dest_prev) + { + edge e = find_edge (dest_prev, dest); + if (e && !(e->flags & EDGE_COMPLEX)) + return edge_in->src; + } + return dest_prev; +} + +/* Split a (typically critical) edge EDGE_IN. Return the new block. + Abort on abnormal edges. */ + +static basic_block +gimple_split_edge (edge edge_in) +{ + basic_block new_bb, after_bb, dest; + edge new_edge, e; + + /* Abnormal edges cannot be split. */ + gcc_assert (!(edge_in->flags & EDGE_ABNORMAL)); + + dest = edge_in->dest; + + after_bb = split_edge_bb_loc (edge_in); + + new_bb = create_empty_bb (after_bb); + new_bb->frequency = EDGE_FREQUENCY (edge_in); + new_bb->count = edge_in->count; + new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU); + new_edge->probability = REG_BR_PROB_BASE; + new_edge->count = edge_in->count; + + e = redirect_edge_and_branch (edge_in, new_bb); + gcc_assert (e == edge_in); + reinstall_phi_args (new_edge, e); + + return new_bb; +} + + +/* Verify properties of the address expression T with base object BASE. */ + +static tree +verify_address (tree t, tree base) +{ + bool old_constant; + bool old_side_effects; + bool new_constant; + bool new_side_effects; + + old_constant = TREE_CONSTANT (t); + old_side_effects = TREE_SIDE_EFFECTS (t); + + recompute_tree_invariant_for_addr_expr (t); + new_side_effects = TREE_SIDE_EFFECTS (t); + new_constant = TREE_CONSTANT (t); + + if (old_constant != new_constant) + { + error ("constant not recomputed when ADDR_EXPR changed"); + return t; + } + if (old_side_effects != new_side_effects) + { + error ("side effects not recomputed when ADDR_EXPR changed"); + return t; + } + + if (!(TREE_CODE (base) == VAR_DECL + || TREE_CODE (base) == PARM_DECL + || TREE_CODE (base) == RESULT_DECL)) + return NULL_TREE; + + if (DECL_GIMPLE_REG_P (base)) + { + error ("DECL_GIMPLE_REG_P set on a variable with address taken"); + return base; + } + + return NULL_TREE; +} + +/* Callback for walk_tree, check that all elements with address taken are + properly noticed as such. The DATA is an int* that is 1 if TP was seen + inside a PHI node. */ + +static tree +verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) +{ + tree t = *tp, x; + + if (TYPE_P (t)) + *walk_subtrees = 0; + + /* Check operand N for being valid GIMPLE and give error MSG if not. */ +#define CHECK_OP(N, MSG) \ + do { if (!is_gimple_val (TREE_OPERAND (t, N))) \ + { error (MSG); return TREE_OPERAND (t, N); }} while (0) + + switch (TREE_CODE (t)) + { + case SSA_NAME: + if (SSA_NAME_IN_FREE_LIST (t)) + { + error ("SSA name in freelist but still referenced"); + return *tp; + } + break; + + case INDIRECT_REF: + error ("INDIRECT_REF in gimple IL"); + return t; + + case MEM_REF: + x = TREE_OPERAND (t, 0); + if (!POINTER_TYPE_P (TREE_TYPE (x)) + || !is_gimple_mem_ref_addr (x)) + { + error ("invalid first operand of MEM_REF"); + return x; + } + if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST + || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1)))) + { + error ("invalid offset operand of MEM_REF"); + return TREE_OPERAND (t, 1); + } + if (TREE_CODE (x) == ADDR_EXPR + && (x = verify_address (x, TREE_OPERAND (x, 0)))) + return x; + *walk_subtrees = 0; + break; + + case ASSERT_EXPR: + x = fold (ASSERT_EXPR_COND (t)); + if (x == boolean_false_node) + { + error ("ASSERT_EXPR with an always-false condition"); + return *tp; + } + break; + + case MODIFY_EXPR: + error ("MODIFY_EXPR not expected while having tuples"); + return *tp; + + case ADDR_EXPR: + { + tree tem; + + gcc_assert (is_gimple_address (t)); + + /* Skip any references (they will be checked when we recurse down the + tree) and ensure that any variable used as a prefix is marked + addressable. */ + for (x = TREE_OPERAND (t, 0); + handled_component_p (x); + x = TREE_OPERAND (x, 0)) + ; + + if ((tem = verify_address (t, x))) + return tem; + + if (!(TREE_CODE (x) == VAR_DECL + || TREE_CODE (x) == PARM_DECL + || TREE_CODE (x) == RESULT_DECL)) + return NULL; + + if (!TREE_ADDRESSABLE (x)) + { + error ("address taken, but ADDRESSABLE bit not set"); + return x; + } + + break; + } + + case COND_EXPR: + x = COND_EXPR_COND (t); + if (!INTEGRAL_TYPE_P (TREE_TYPE (x))) + { + error ("non-integral used in condition"); + return x; + } + if (!is_gimple_condexpr (x)) + { + error ("invalid conditional operand"); + return x; + } + break; + + case NON_LVALUE_EXPR: + case TRUTH_NOT_EXPR: + gcc_unreachable (); + + CASE_CONVERT: + case FIX_TRUNC_EXPR: + case FLOAT_EXPR: + case NEGATE_EXPR: + case ABS_EXPR: + case BIT_NOT_EXPR: + CHECK_OP (0, "invalid operand to unary operator"); + break; + + case REALPART_EXPR: + case IMAGPART_EXPR: + case BIT_FIELD_REF: + if (!is_gimple_reg_type (TREE_TYPE (t))) + { + error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR"); + return t; + } + + if (TREE_CODE (t) == BIT_FIELD_REF) + { + tree t0 = TREE_OPERAND (t, 0); + tree t1 = TREE_OPERAND (t, 1); + tree t2 = TREE_OPERAND (t, 2); + if (!tree_fits_uhwi_p (t1) + || !tree_fits_uhwi_p (t2)) + { + error ("invalid position or size operand to BIT_FIELD_REF"); + return t; + } + if (INTEGRAL_TYPE_P (TREE_TYPE (t)) + && (TYPE_PRECISION (TREE_TYPE (t)) + != tree_to_uhwi (t1))) + { + error ("integral result type precision does not match " + "field size of BIT_FIELD_REF"); + return t; + } + else if (!INTEGRAL_TYPE_P (TREE_TYPE (t)) + && TYPE_MODE (TREE_TYPE (t)) != BLKmode + && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t))) + != tree_to_uhwi (t1))) + { + error ("mode precision of non-integral result does not " + "match field size of BIT_FIELD_REF"); + return t; + } + if (!AGGREGATE_TYPE_P (TREE_TYPE (t0)) + && (tree_to_uhwi (t1) + tree_to_uhwi (t2) + > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0))))) + { + error ("position plus size exceeds size of referenced object in " + "BIT_FIELD_REF"); + return t; + } + } + t = TREE_OPERAND (t, 0); + + /* Fall-through. */ + case COMPONENT_REF: + case ARRAY_REF: + case ARRAY_RANGE_REF: + case VIEW_CONVERT_EXPR: + /* We have a nest of references. Verify that each of the operands + that determine where to reference is either a constant or a variable, + verify that the base is valid, and then show we've already checked + the subtrees. */ + while (handled_component_p (t)) + { + if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2)) + CHECK_OP (2, "invalid COMPONENT_REF offset operator"); + else if (TREE_CODE (t) == ARRAY_REF + || TREE_CODE (t) == ARRAY_RANGE_REF) + { + CHECK_OP (1, "invalid array index"); + if (TREE_OPERAND (t, 2)) + CHECK_OP (2, "invalid array lower bound"); + if (TREE_OPERAND (t, 3)) + CHECK_OP (3, "invalid array stride"); + } + else if (TREE_CODE (t) == BIT_FIELD_REF + || TREE_CODE (t) == REALPART_EXPR + || TREE_CODE (t) == IMAGPART_EXPR) + { + error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or " + "REALPART_EXPR"); + return t; + } + + t = TREE_OPERAND (t, 0); + } + + if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t)) + { + error ("invalid reference prefix"); + return t; + } + *walk_subtrees = 0; + break; + case PLUS_EXPR: + case MINUS_EXPR: + /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using + POINTER_PLUS_EXPR. */ + if (POINTER_TYPE_P (TREE_TYPE (t))) + { + error ("invalid operand to plus/minus, type is a pointer"); + return t; + } + CHECK_OP (0, "invalid operand to binary operator"); + CHECK_OP (1, "invalid operand to binary operator"); + break; + + case POINTER_PLUS_EXPR: + /* Check to make sure the first operand is a pointer or reference type. */ + if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0)))) + { + error ("invalid operand to pointer plus, first operand is not a pointer"); + return t; + } + /* Check to make sure the second operand is a ptrofftype. */ + if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1)))) + { + error ("invalid operand to pointer plus, second operand is not an " + "integer type of appropriate width"); + return t; + } + /* FALLTHROUGH */ + case LT_EXPR: + case LE_EXPR: + case GT_EXPR: + case GE_EXPR: + case EQ_EXPR: + case NE_EXPR: + case UNORDERED_EXPR: + case ORDERED_EXPR: + case UNLT_EXPR: + case UNLE_EXPR: + case UNGT_EXPR: + case UNGE_EXPR: + case UNEQ_EXPR: + case LTGT_EXPR: + case MULT_EXPR: + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case TRUNC_MOD_EXPR: + case CEIL_MOD_EXPR: + case FLOOR_MOD_EXPR: + case ROUND_MOD_EXPR: + case RDIV_EXPR: + case EXACT_DIV_EXPR: + case MIN_EXPR: + case MAX_EXPR: + case LSHIFT_EXPR: + case RSHIFT_EXPR: + case LROTATE_EXPR: + case RROTATE_EXPR: + case BIT_IOR_EXPR: + case BIT_XOR_EXPR: + case BIT_AND_EXPR: + CHECK_OP (0, "invalid operand to binary operator"); + CHECK_OP (1, "invalid operand to binary operator"); + break; + + case CONSTRUCTOR: + if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE) + *walk_subtrees = 0; + break; + + case CASE_LABEL_EXPR: + if (CASE_CHAIN (t)) + { + error ("invalid CASE_CHAIN"); + return t; + } + break; + + default: + break; + } + return NULL; + +#undef CHECK_OP +} + + +/* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference. + Returns true if there is an error, otherwise false. */ + +static bool +verify_types_in_gimple_min_lval (tree expr) +{ + tree op; + + if (is_gimple_id (expr)) + return false; + + if (TREE_CODE (expr) != TARGET_MEM_REF + && TREE_CODE (expr) != MEM_REF) + { + error ("invalid expression for min lvalue"); + return true; + } + + /* TARGET_MEM_REFs are strange beasts. */ + if (TREE_CODE (expr) == TARGET_MEM_REF) + return false; + + op = TREE_OPERAND (expr, 0); + if (!is_gimple_val (op)) + { + error ("invalid operand in indirect reference"); + debug_generic_stmt (op); + return true; + } + /* Memory references now generally can involve a value conversion. */ + + return false; +} + +/* Verify if EXPR is a valid GIMPLE reference expression. If + REQUIRE_LVALUE is true verifies it is an lvalue. Returns true + if there is an error, otherwise false. */ + +static bool +verify_types_in_gimple_reference (tree expr, bool require_lvalue) +{ + while (handled_component_p (expr)) + { + tree op = TREE_OPERAND (expr, 0); + + if (TREE_CODE (expr) == ARRAY_REF + || TREE_CODE (expr) == ARRAY_RANGE_REF) + { + if (!is_gimple_val (TREE_OPERAND (expr, 1)) + || (TREE_OPERAND (expr, 2) + && !is_gimple_val (TREE_OPERAND (expr, 2))) + || (TREE_OPERAND (expr, 3) + && !is_gimple_val (TREE_OPERAND (expr, 3)))) + { + error ("invalid operands to array reference"); + debug_generic_stmt (expr); + return true; + } + } + + /* Verify if the reference array element types are compatible. */ + if (TREE_CODE (expr) == ARRAY_REF + && !useless_type_conversion_p (TREE_TYPE (expr), + TREE_TYPE (TREE_TYPE (op)))) + { + error ("type mismatch in array reference"); + debug_generic_stmt (TREE_TYPE (expr)); + debug_generic_stmt (TREE_TYPE (TREE_TYPE (op))); + return true; + } + if (TREE_CODE (expr) == ARRAY_RANGE_REF + && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)), + TREE_TYPE (TREE_TYPE (op)))) + { + error ("type mismatch in array range reference"); + debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr))); + debug_generic_stmt (TREE_TYPE (TREE_TYPE (op))); + return true; + } + + if ((TREE_CODE (expr) == REALPART_EXPR + || TREE_CODE (expr) == IMAGPART_EXPR) + && !useless_type_conversion_p (TREE_TYPE (expr), + TREE_TYPE (TREE_TYPE (op)))) + { + error ("type mismatch in real/imagpart reference"); + debug_generic_stmt (TREE_TYPE (expr)); + debug_generic_stmt (TREE_TYPE (TREE_TYPE (op))); + return true; + } + + if (TREE_CODE (expr) == COMPONENT_REF + && !useless_type_conversion_p (TREE_TYPE (expr), + TREE_TYPE (TREE_OPERAND (expr, 1)))) + { + error ("type mismatch in component reference"); + debug_generic_stmt (TREE_TYPE (expr)); + debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1))); + return true; + } + + if (TREE_CODE (expr) == VIEW_CONVERT_EXPR) + { + /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check + that their operand is not an SSA name or an invariant when + requiring an lvalue (this usually means there is a SRA or IPA-SRA + bug). Otherwise there is nothing to verify, gross mismatches at + most invoke undefined behavior. */ + if (require_lvalue + && (TREE_CODE (op) == SSA_NAME + || is_gimple_min_invariant (op))) + { + error ("conversion of an SSA_NAME on the left hand side"); + debug_generic_stmt (expr); + return true; + } + else if (TREE_CODE (op) == SSA_NAME + && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op))) + { + error ("conversion of register to a different size"); + debug_generic_stmt (expr); + return true; + } + else if (!handled_component_p (op)) + return false; + } + + expr = op; + } + + if (TREE_CODE (expr) == MEM_REF) + { + if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0))) + { + error ("invalid address operand in MEM_REF"); + debug_generic_stmt (expr); + return true; + } + if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST + || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1)))) + { + error ("invalid offset operand in MEM_REF"); + debug_generic_stmt (expr); + return true; + } + } + else if (TREE_CODE (expr) == TARGET_MEM_REF) + { + if (!TMR_BASE (expr) + || !is_gimple_mem_ref_addr (TMR_BASE (expr))) + { + error ("invalid address operand in TARGET_MEM_REF"); + return true; + } + if (!TMR_OFFSET (expr) + || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST + || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr)))) + { + error ("invalid offset operand in TARGET_MEM_REF"); + debug_generic_stmt (expr); + return true; + } + } + + return ((require_lvalue || !is_gimple_min_invariant (expr)) + && verify_types_in_gimple_min_lval (expr)); +} + +/* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ) + list of pointer-to types that is trivially convertible to DEST. */ + +static bool +one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj) +{ + tree src; + + if (!TYPE_POINTER_TO (src_obj)) + return true; + + for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src)) + if (useless_type_conversion_p (dest, src)) + return true; + + return false; +} + +/* Return true if TYPE1 is a fixed-point type and if conversions to and + from TYPE2 can be handled by FIXED_CONVERT_EXPR. */ + +static bool +valid_fixed_convert_types_p (tree type1, tree type2) +{ + return (FIXED_POINT_TYPE_P (type1) + && (INTEGRAL_TYPE_P (type2) + || SCALAR_FLOAT_TYPE_P (type2) + || FIXED_POINT_TYPE_P (type2))); +} + +/* Verify the contents of a GIMPLE_CALL STMT. Returns true when there + is a problem, otherwise false. */ + +static bool +verify_gimple_call (gimple stmt) +{ + tree fn = gimple_call_fn (stmt); + tree fntype, fndecl; + unsigned i; + + if (gimple_call_internal_p (stmt)) + { + if (fn) + { + error ("gimple call has two targets"); + debug_generic_stmt (fn); + return true; + } + } + else + { + if (!fn) + { + error ("gimple call has no target"); + return true; + } + } + + if (fn && !is_gimple_call_addr (fn)) + { + error ("invalid function in gimple call"); + debug_generic_stmt (fn); + return true; + } + + if (fn + && (!POINTER_TYPE_P (TREE_TYPE (fn)) + || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE + && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))) + { + error ("non-function in gimple call"); + return true; + } + + fndecl = gimple_call_fndecl (stmt); + if (fndecl + && TREE_CODE (fndecl) == FUNCTION_DECL + && DECL_LOOPING_CONST_OR_PURE_P (fndecl) + && !DECL_PURE_P (fndecl) + && !TREE_READONLY (fndecl)) + { + error ("invalid pure const state for function"); + return true; + } + + if (gimple_call_lhs (stmt) + && (!is_gimple_lvalue (gimple_call_lhs (stmt)) + || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true))) + { + error ("invalid LHS in gimple call"); + return true; + } + + if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt)) + { + error ("LHS in noreturn call"); + return true; + } + + fntype = gimple_call_fntype (stmt); + if (fntype + && gimple_call_lhs (stmt) + && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)), + TREE_TYPE (fntype)) + /* ??? At least C++ misses conversions at assignments from + void * call results. + ??? Java is completely off. Especially with functions + returning java.lang.Object. + For now simply allow arbitrary pointer type conversions. */ + && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt))) + && POINTER_TYPE_P (TREE_TYPE (fntype)))) + { + error ("invalid conversion in gimple call"); + debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt))); + debug_generic_stmt (TREE_TYPE (fntype)); + return true; + } + + if (gimple_call_chain (stmt) + && !is_gimple_val (gimple_call_chain (stmt))) + { + error ("invalid static chain in gimple call"); + debug_generic_stmt (gimple_call_chain (stmt)); + return true; + } + + /* If there is a static chain argument, this should not be an indirect + call, and the decl should have DECL_STATIC_CHAIN set. */ + if (gimple_call_chain (stmt)) + { + if (!gimple_call_fndecl (stmt)) + { + error ("static chain in indirect gimple call"); + return true; + } + fn = TREE_OPERAND (fn, 0); + + if (!DECL_STATIC_CHAIN (fn)) + { + error ("static chain with function that doesn%'t use one"); + return true; + } + } + + /* ??? The C frontend passes unpromoted arguments in case it + didn't see a function declaration before the call. So for now + leave the call arguments mostly unverified. Once we gimplify + unit-at-a-time we have a chance to fix this. */ + + for (i = 0; i < gimple_call_num_args (stmt); ++i) + { + tree arg = gimple_call_arg (stmt, i); + if ((is_gimple_reg_type (TREE_TYPE (arg)) + && !is_gimple_val (arg)) + || (!is_gimple_reg_type (TREE_TYPE (arg)) + && !is_gimple_lvalue (arg))) + { + error ("invalid argument to gimple call"); + debug_generic_expr (arg); + return true; + } + } + + return false; +} + +/* Verifies the gimple comparison with the result type TYPE and + the operands OP0 and OP1. */ + +static bool +verify_gimple_comparison (tree type, tree op0, tree op1) +{ + tree op0_type = TREE_TYPE (op0); + tree op1_type = TREE_TYPE (op1); + + if (!is_gimple_val (op0) || !is_gimple_val (op1)) + { + error ("invalid operands in gimple comparison"); + return true; + } + + /* For comparisons we do not have the operations type as the + effective type the comparison is carried out in. Instead + we require that either the first operand is trivially + convertible into the second, or the other way around. + Because we special-case pointers to void we allow + comparisons of pointers with the same mode as well. */ + if (!useless_type_conversion_p (op0_type, op1_type) + && !useless_type_conversion_p (op1_type, op0_type) + && (!POINTER_TYPE_P (op0_type) + || !POINTER_TYPE_P (op1_type) + || TYPE_MODE (op0_type) != TYPE_MODE (op1_type))) + { + error ("mismatching comparison operand types"); + debug_generic_expr (op0_type); + debug_generic_expr (op1_type); + return true; + } + + /* The resulting type of a comparison may be an effective boolean type. */ + if (INTEGRAL_TYPE_P (type) + && (TREE_CODE (type) == BOOLEAN_TYPE + || TYPE_PRECISION (type) == 1)) + { + if (TREE_CODE (op0_type) == VECTOR_TYPE + || TREE_CODE (op1_type) == VECTOR_TYPE) + { + error ("vector comparison returning a boolean"); + debug_generic_expr (op0_type); + debug_generic_expr (op1_type); + return true; + } + } + /* Or an integer vector type with the same size and element count + as the comparison operand types. */ + else if (TREE_CODE (type) == VECTOR_TYPE + && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE) + { + if (TREE_CODE (op0_type) != VECTOR_TYPE + || TREE_CODE (op1_type) != VECTOR_TYPE) + { + error ("non-vector operands in vector comparison"); + debug_generic_expr (op0_type); + debug_generic_expr (op1_type); + return true; + } + + if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type) + || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type))) + != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))) + /* The result of a vector comparison is of signed + integral type. */ + || TYPE_UNSIGNED (TREE_TYPE (type))) + { + error ("invalid vector comparison resulting type"); + debug_generic_expr (type); + return true; + } + } + else + { + error ("bogus comparison result type"); + debug_generic_expr (type); + return true; + } + + return false; +} + +/* Verify a gimple assignment statement STMT with an unary rhs. + Returns true if anything is wrong. */ + +static bool +verify_gimple_assign_unary (gimple stmt) +{ + enum tree_code rhs_code = gimple_assign_rhs_code (stmt); + tree lhs = gimple_assign_lhs (stmt); + tree lhs_type = TREE_TYPE (lhs); + tree rhs1 = gimple_assign_rhs1 (stmt); + tree rhs1_type = TREE_TYPE (rhs1); + + if (!is_gimple_reg (lhs)) + { + error ("non-register as LHS of unary operation"); + return true; + } + + if (!is_gimple_val (rhs1)) + { + error ("invalid operand in unary operation"); + return true; + } + + /* First handle conversions. */ + switch (rhs_code) + { + CASE_CONVERT: + { + /* Allow conversions from pointer type to integral type only if + there is no sign or zero extension involved. + For targets were the precision of ptrofftype doesn't match that + of pointers we need to allow arbitrary conversions to ptrofftype. */ + if ((POINTER_TYPE_P (lhs_type) + && INTEGRAL_TYPE_P (rhs1_type)) + || (POINTER_TYPE_P (rhs1_type) + && INTEGRAL_TYPE_P (lhs_type) + && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type) + || ptrofftype_p (sizetype)))) + return false; + + /* Allow conversion from integral to offset type and vice versa. */ + if ((TREE_CODE (lhs_type) == OFFSET_TYPE + && INTEGRAL_TYPE_P (rhs1_type)) + || (INTEGRAL_TYPE_P (lhs_type) + && TREE_CODE (rhs1_type) == OFFSET_TYPE)) + return false; + + /* Otherwise assert we are converting between types of the + same kind. */ + if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type)) + { + error ("invalid types in nop conversion"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + + return false; + } + + case ADDR_SPACE_CONVERT_EXPR: + { + if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type) + || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type)) + == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type)))) + { + error ("invalid types in address space conversion"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + + return false; + } + + case FIXED_CONVERT_EXPR: + { + if (!valid_fixed_convert_types_p (lhs_type, rhs1_type) + && !valid_fixed_convert_types_p (rhs1_type, lhs_type)) + { + error ("invalid types in fixed-point conversion"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + + return false; + } + + case FLOAT_EXPR: + { + if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type)) + && (!VECTOR_INTEGER_TYPE_P (rhs1_type) + || !VECTOR_FLOAT_TYPE_P (lhs_type))) + { + error ("invalid types in conversion to floating point"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + + return false; + } + + case FIX_TRUNC_EXPR: + { + if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type)) + && (!VECTOR_INTEGER_TYPE_P (lhs_type) + || !VECTOR_FLOAT_TYPE_P (rhs1_type))) + { + error ("invalid types in conversion to integer"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + + return false; + } + + case VEC_UNPACK_HI_EXPR: + case VEC_UNPACK_LO_EXPR: + case REDUC_MAX_EXPR: + case REDUC_MIN_EXPR: + case REDUC_PLUS_EXPR: + case VEC_UNPACK_FLOAT_HI_EXPR: + case VEC_UNPACK_FLOAT_LO_EXPR: + /* FIXME. */ + return false; + + case NEGATE_EXPR: + case ABS_EXPR: + case BIT_NOT_EXPR: + case PAREN_EXPR: + case NON_LVALUE_EXPR: + case CONJ_EXPR: + break; + + default: + gcc_unreachable (); + } + + /* For the remaining codes assert there is no conversion involved. */ + if (!useless_type_conversion_p (lhs_type, rhs1_type)) + { + error ("non-trivial conversion in unary operation"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + + return false; +} + +/* Verify a gimple assignment statement STMT with a binary rhs. + Returns true if anything is wrong. */ + +static bool +verify_gimple_assign_binary (gimple stmt) +{ + enum tree_code rhs_code = gimple_assign_rhs_code (stmt); + tree lhs = gimple_assign_lhs (stmt); + tree lhs_type = TREE_TYPE (lhs); + tree rhs1 = gimple_assign_rhs1 (stmt); + tree rhs1_type = TREE_TYPE (rhs1); + tree rhs2 = gimple_assign_rhs2 (stmt); + tree rhs2_type = TREE_TYPE (rhs2); + + if (!is_gimple_reg (lhs)) + { + error ("non-register as LHS of binary operation"); + return true; + } + + if (!is_gimple_val (rhs1) + || !is_gimple_val (rhs2)) + { + error ("invalid operands in binary operation"); + return true; + } + + /* First handle operations that involve different types. */ + switch (rhs_code) + { + case COMPLEX_EXPR: + { + if (TREE_CODE (lhs_type) != COMPLEX_TYPE + || !(INTEGRAL_TYPE_P (rhs1_type) + || SCALAR_FLOAT_TYPE_P (rhs1_type)) + || !(INTEGRAL_TYPE_P (rhs2_type) + || SCALAR_FLOAT_TYPE_P (rhs2_type))) + { + error ("type mismatch in complex expression"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + + return false; + } + + case LSHIFT_EXPR: + case RSHIFT_EXPR: + case LROTATE_EXPR: + case RROTATE_EXPR: + { + /* Shifts and rotates are ok on integral types, fixed point + types and integer vector types. */ + if ((!INTEGRAL_TYPE_P (rhs1_type) + && !FIXED_POINT_TYPE_P (rhs1_type) + && !(TREE_CODE (rhs1_type) == VECTOR_TYPE + && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)))) + || (!INTEGRAL_TYPE_P (rhs2_type) + /* Vector shifts of vectors are also ok. */ + && !(TREE_CODE (rhs1_type) == VECTOR_TYPE + && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) + && TREE_CODE (rhs2_type) == VECTOR_TYPE + && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type)))) + || !useless_type_conversion_p (lhs_type, rhs1_type)) + { + error ("type mismatch in shift expression"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + + return false; + } + + case VEC_LSHIFT_EXPR: + case VEC_RSHIFT_EXPR: + { + if (TREE_CODE (rhs1_type) != VECTOR_TYPE + || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) + || POINTER_TYPE_P (TREE_TYPE (rhs1_type)) + || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type)) + || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))) + || (!INTEGRAL_TYPE_P (rhs2_type) + && (TREE_CODE (rhs2_type) != VECTOR_TYPE + || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type)))) + || !useless_type_conversion_p (lhs_type, rhs1_type)) + { + error ("type mismatch in vector shift expression"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + /* For shifting a vector of non-integral components we + only allow shifting by a constant multiple of the element size. */ + if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) + && (TREE_CODE (rhs2) != INTEGER_CST + || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2, + TYPE_SIZE (TREE_TYPE (rhs1_type))))) + { + error ("non-element sized vector shift of floating point vector"); + return true; + } + + return false; + } + + case WIDEN_LSHIFT_EXPR: + { + if (!INTEGRAL_TYPE_P (lhs_type) + || !INTEGRAL_TYPE_P (rhs1_type) + || TREE_CODE (rhs2) != INTEGER_CST + || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))) + { + error ("type mismatch in widening vector shift expression"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + + return false; + } + + case VEC_WIDEN_LSHIFT_HI_EXPR: + case VEC_WIDEN_LSHIFT_LO_EXPR: + { + if (TREE_CODE (rhs1_type) != VECTOR_TYPE + || TREE_CODE (lhs_type) != VECTOR_TYPE + || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) + || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)) + || TREE_CODE (rhs2) != INTEGER_CST + || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type)) + > TYPE_PRECISION (TREE_TYPE (lhs_type)))) + { + error ("type mismatch in widening vector shift expression"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + return true; + } + + return false; + } + + case PLUS_EXPR: + case MINUS_EXPR: + { + tree lhs_etype = lhs_type; + tree rhs1_etype = rhs1_type; + tree rhs2_etype = rhs2_type; + if (TREE_CODE (lhs_type) == VECTOR_TYPE) + { + if (TREE_CODE (rhs1_type) != VECTOR_TYPE + || TREE_CODE (rhs2_type) != VECTOR_TYPE) + { + error ("invalid non-vector operands to vector valued plus"); + return true; + } + lhs_etype = TREE_TYPE (lhs_type); + rhs1_etype = TREE_TYPE (rhs1_type); + rhs2_etype = TREE_TYPE (rhs2_type); + } + if (POINTER_TYPE_P (lhs_etype) + || POINTER_TYPE_P (rhs1_etype) + || POINTER_TYPE_P (rhs2_etype)) + { + error ("invalid (pointer) operands to plus/minus"); + return true; + } + + /* Continue with generic binary expression handling. */ + break; + } + + case POINTER_PLUS_EXPR: + { + if (!POINTER_TYPE_P (rhs1_type) + || !useless_type_conversion_p (lhs_type, rhs1_type) + || !ptrofftype_p (rhs2_type)) + { + error ("type mismatch in pointer plus expression"); + debug_generic_stmt (lhs_type); + debug_generic_stmt (rhs1_type); + debug_generic_stmt (rhs2_type); + return true; + } + + return false; + } + + case TRUTH_ANDIF_EXPR: + case TRUTH_ORIF_EXPR: + case TRUTH_AND_EXPR: + case TRUTH_OR_EXPR: + case TRUTH_XOR_EXPR: + + gcc_unreachable (); + + case LT_EXPR: + case LE_EXPR: + case GT_EXPR: + case GE_EXPR: + case EQ_EXPR: + case NE_EXPR: + case UNORDERED_EXPR: + case ORDERED_EXPR: + case UNLT_EXPR: + case UNLE_EXPR: + case UNGT_EXPR: + case UNGE_EXPR: + case UNEQ_EXPR: + case LTGT_EXPR: + /* Comparisons are also binary, but the result type is not + connected to the operand types. */ + return verify_gimple_comparison (lhs_type, rhs1, rhs2); + + case WIDEN_MULT_EXPR: + if (TREE_CODE (lhs_type) != INTEGER_TYPE) + return true; + return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)) + || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))); + + case WIDEN_SUM_EXPR: + case VEC_WIDEN_MULT_HI_EXPR: + case VEC_WIDEN_MULT_LO_EXPR: + case VEC_WIDEN_MULT_EVEN_EXPR: + case VEC_WIDEN_MULT_ODD_EXPR: + case VEC_PACK_TRUNC_EXPR: + case VEC_PACK_SAT_EXPR: + case VEC_PACK_FIX_TRUNC_EXPR: + /* FIXME. */ + return false; + + case MULT_EXPR: + case MULT_HIGHPART_EXPR: + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case TRUNC_MOD_EXPR: + case CEIL_MOD_EXPR: + case FLOOR_MOD_EXPR: + case ROUND_MOD_EXPR: + case RDIV_EXPR: + case EXACT_DIV_EXPR: + case MIN_EXPR: + case MAX_EXPR: + case BIT_IOR_EXPR: + case BIT_XOR_EXPR: + case BIT_AND_EXPR: + /* Continue with generic binary expression handling. */ + break; + + default: + gcc_unreachable (); + } + + if (!useless_type_conversion_p (lhs_type, rhs1_type) + || !useless_type_conversion_p (lhs_type, rhs2_type)) + { + error ("type mismatch in binary expression"); + debug_generic_stmt (lhs_type); + debug_generic_stmt (rhs1_type); + debug_generic_stmt (rhs2_type); + return true; + } + + return false; +} + +/* Verify a gimple assignment statement STMT with a ternary rhs. + Returns true if anything is wrong. */ + +static bool +verify_gimple_assign_ternary (gimple stmt) +{ + enum tree_code rhs_code = gimple_assign_rhs_code (stmt); + tree lhs = gimple_assign_lhs (stmt); + tree lhs_type = TREE_TYPE (lhs); + tree rhs1 = gimple_assign_rhs1 (stmt); + tree rhs1_type = TREE_TYPE (rhs1); + tree rhs2 = gimple_assign_rhs2 (stmt); + tree rhs2_type = TREE_TYPE (rhs2); + tree rhs3 = gimple_assign_rhs3 (stmt); + tree rhs3_type = TREE_TYPE (rhs3); + + if (!is_gimple_reg (lhs)) + { + error ("non-register as LHS of ternary operation"); + return true; + } + + if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR) + ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1)) + || !is_gimple_val (rhs2) + || !is_gimple_val (rhs3)) + { + error ("invalid operands in ternary operation"); + return true; + } + + /* First handle operations that involve different types. */ + switch (rhs_code) + { + case WIDEN_MULT_PLUS_EXPR: + case WIDEN_MULT_MINUS_EXPR: + if ((!INTEGRAL_TYPE_P (rhs1_type) + && !FIXED_POINT_TYPE_P (rhs1_type)) + || !useless_type_conversion_p (rhs1_type, rhs2_type) + || !useless_type_conversion_p (lhs_type, rhs3_type) + || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type) + || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)) + { + error ("type mismatch in widening multiply-accumulate expression"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + debug_generic_expr (rhs3_type); + return true; + } + break; + + case FMA_EXPR: + if (!useless_type_conversion_p (lhs_type, rhs1_type) + || !useless_type_conversion_p (lhs_type, rhs2_type) + || !useless_type_conversion_p (lhs_type, rhs3_type)) + { + error ("type mismatch in fused multiply-add expression"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + debug_generic_expr (rhs3_type); + return true; + } + break; + + case COND_EXPR: + case VEC_COND_EXPR: + if (!useless_type_conversion_p (lhs_type, rhs2_type) + || !useless_type_conversion_p (lhs_type, rhs3_type)) + { + error ("type mismatch in conditional expression"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs2_type); + debug_generic_expr (rhs3_type); + return true; + } + break; + + case VEC_PERM_EXPR: + if (!useless_type_conversion_p (lhs_type, rhs1_type) + || !useless_type_conversion_p (lhs_type, rhs2_type)) + { + error ("type mismatch in vector permute expression"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + debug_generic_expr (rhs3_type); + return true; + } + + if (TREE_CODE (rhs1_type) != VECTOR_TYPE + || TREE_CODE (rhs2_type) != VECTOR_TYPE + || TREE_CODE (rhs3_type) != VECTOR_TYPE) + { + error ("vector types expected in vector permute expression"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + debug_generic_expr (rhs3_type); + return true; + } + + if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type) + || TYPE_VECTOR_SUBPARTS (rhs2_type) + != TYPE_VECTOR_SUBPARTS (rhs3_type) + || TYPE_VECTOR_SUBPARTS (rhs3_type) + != TYPE_VECTOR_SUBPARTS (lhs_type)) + { + error ("vectors with different element number found " + "in vector permute expression"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + debug_generic_expr (rhs3_type); + return true; + } + + if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE + || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type))) + != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))) + { + error ("invalid mask type in vector permute expression"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + debug_generic_expr (rhs2_type); + debug_generic_expr (rhs3_type); + return true; + } + + return false; + + case DOT_PROD_EXPR: + case REALIGN_LOAD_EXPR: + /* FIXME. */ + return false; + + default: + gcc_unreachable (); + } + return false; +} + +/* Verify a gimple assignment statement STMT with a single rhs. + Returns true if anything is wrong. */ + +static bool +verify_gimple_assign_single (gimple stmt) +{ + enum tree_code rhs_code = gimple_assign_rhs_code (stmt); + tree lhs = gimple_assign_lhs (stmt); + tree lhs_type = TREE_TYPE (lhs); + tree rhs1 = gimple_assign_rhs1 (stmt); + tree rhs1_type = TREE_TYPE (rhs1); + bool res = false; + + if (!useless_type_conversion_p (lhs_type, rhs1_type)) + { + error ("non-trivial conversion at assignment"); + debug_generic_expr (lhs_type); + debug_generic_expr (rhs1_type); + return true; + } + + if (gimple_clobber_p (stmt) + && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF)) + { + error ("non-decl/MEM_REF LHS in clobber statement"); + debug_generic_expr (lhs); + return true; + } + + if (handled_component_p (lhs) + || TREE_CODE (lhs) == MEM_REF + || TREE_CODE (lhs) == TARGET_MEM_REF) + res |= verify_types_in_gimple_reference (lhs, true); + + /* Special codes we cannot handle via their class. */ + switch (rhs_code) + { + case ADDR_EXPR: + { + tree op = TREE_OPERAND (rhs1, 0); + if (!is_gimple_addressable (op)) + { + error ("invalid operand in unary expression"); + return true; + } + + /* Technically there is no longer a need for matching types, but + gimple hygiene asks for this check. In LTO we can end up + combining incompatible units and thus end up with addresses + of globals that change their type to a common one. */ + if (!in_lto_p + && !types_compatible_p (TREE_TYPE (op), + TREE_TYPE (TREE_TYPE (rhs1))) + && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1), + TREE_TYPE (op))) + { + error ("type mismatch in address expression"); + debug_generic_stmt (TREE_TYPE (rhs1)); + debug_generic_stmt (TREE_TYPE (op)); + return true; + } + + return verify_types_in_gimple_reference (op, true); + } + + /* tcc_reference */ + case INDIRECT_REF: + error ("INDIRECT_REF in gimple IL"); + return true; + + case COMPONENT_REF: + case BIT_FIELD_REF: + case ARRAY_REF: + case ARRAY_RANGE_REF: + case VIEW_CONVERT_EXPR: + case REALPART_EXPR: + case IMAGPART_EXPR: + case TARGET_MEM_REF: + case MEM_REF: + if (!is_gimple_reg (lhs) + && is_gimple_reg_type (TREE_TYPE (lhs))) + { + error ("invalid rhs for gimple memory store"); + debug_generic_stmt (lhs); + debug_generic_stmt (rhs1); + return true; + } + return res || verify_types_in_gimple_reference (rhs1, false); + + /* tcc_constant */ + case SSA_NAME: + case INTEGER_CST: + case REAL_CST: + case FIXED_CST: + case COMPLEX_CST: + case VECTOR_CST: + case STRING_CST: + return res; + + /* tcc_declaration */ + case CONST_DECL: + return res; + case VAR_DECL: + case PARM_DECL: + if (!is_gimple_reg (lhs) + && !is_gimple_reg (rhs1) + && is_gimple_reg_type (TREE_TYPE (lhs))) + { + error ("invalid rhs for gimple memory store"); + debug_generic_stmt (lhs); + debug_generic_stmt (rhs1); + return true; + } + return res; + + case CONSTRUCTOR: + if (TREE_CODE (rhs1_type) == VECTOR_TYPE) + { + unsigned int i; + tree elt_i, elt_v, elt_t = NULL_TREE; + + if (CONSTRUCTOR_NELTS (rhs1) == 0) + return res; + /* For vector CONSTRUCTORs we require that either it is empty + CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements + (then the element count must be correct to cover the whole + outer vector and index must be NULL on all elements, or it is + a CONSTRUCTOR of scalar elements, where we as an exception allow + smaller number of elements (assuming zero filling) and + consecutive indexes as compared to NULL indexes (such + CONSTRUCTORs can appear in the IL from FEs). */ + FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v) + { + if (elt_t == NULL_TREE) + { + elt_t = TREE_TYPE (elt_v); + if (TREE_CODE (elt_t) == VECTOR_TYPE) + { + tree elt_t = TREE_TYPE (elt_v); + if (!useless_type_conversion_p (TREE_TYPE (rhs1_type), + TREE_TYPE (elt_t))) + { + error ("incorrect type of vector CONSTRUCTOR" + " elements"); + debug_generic_stmt (rhs1); + return true; + } + else if (CONSTRUCTOR_NELTS (rhs1) + * TYPE_VECTOR_SUBPARTS (elt_t) + != TYPE_VECTOR_SUBPARTS (rhs1_type)) + { + error ("incorrect number of vector CONSTRUCTOR" + " elements"); + debug_generic_stmt (rhs1); + return true; + } + } + else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type), + elt_t)) + { + error ("incorrect type of vector CONSTRUCTOR elements"); + debug_generic_stmt (rhs1); + return true; + } + else if (CONSTRUCTOR_NELTS (rhs1) + > TYPE_VECTOR_SUBPARTS (rhs1_type)) + { + error ("incorrect number of vector CONSTRUCTOR elements"); + debug_generic_stmt (rhs1); + return true; + } + } + else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v))) + { + error ("incorrect type of vector CONSTRUCTOR elements"); + debug_generic_stmt (rhs1); + return true; + } + if (elt_i != NULL_TREE + && (TREE_CODE (elt_t) == VECTOR_TYPE + || TREE_CODE (elt_i) != INTEGER_CST + || compare_tree_int (elt_i, i) != 0)) + { + error ("vector CONSTRUCTOR with non-NULL element index"); + debug_generic_stmt (rhs1); + return true; + } + } + } + return res; + case OBJ_TYPE_REF: + case ASSERT_EXPR: + case WITH_SIZE_EXPR: + /* FIXME. */ + return res; + + default:; + } + + return res; +} + +/* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there + is a problem, otherwise false. */ + +static bool +verify_gimple_assign (gimple stmt) +{ + switch (gimple_assign_rhs_class (stmt)) + { + case GIMPLE_SINGLE_RHS: + return verify_gimple_assign_single (stmt); + + case GIMPLE_UNARY_RHS: + return verify_gimple_assign_unary (stmt); + + case GIMPLE_BINARY_RHS: + return verify_gimple_assign_binary (stmt); + + case GIMPLE_TERNARY_RHS: + return verify_gimple_assign_ternary (stmt); + + default: + gcc_unreachable (); + } +} + +/* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there + is a problem, otherwise false. */ + +static bool +verify_gimple_return (gimple stmt) +{ + tree op = gimple_return_retval (stmt); + tree restype = TREE_TYPE (TREE_TYPE (cfun->decl)); + + /* We cannot test for present return values as we do not fix up missing + return values from the original source. */ + if (op == NULL) + return false; + + if (!is_gimple_val (op) + && TREE_CODE (op) != RESULT_DECL) + { + error ("invalid operand in return statement"); + debug_generic_stmt (op); + return true; + } + + if ((TREE_CODE (op) == RESULT_DECL + && DECL_BY_REFERENCE (op)) + || (TREE_CODE (op) == SSA_NAME + && SSA_NAME_VAR (op) + && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL + && DECL_BY_REFERENCE (SSA_NAME_VAR (op)))) + op = TREE_TYPE (op); + + if (!useless_type_conversion_p (restype, TREE_TYPE (op))) + { + error ("invalid conversion in return statement"); + debug_generic_stmt (restype); + debug_generic_stmt (TREE_TYPE (op)); + return true; + } + + return false; +} + + +/* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there + is a problem, otherwise false. */ + +static bool +verify_gimple_goto (gimple stmt) +{ + tree dest = gimple_goto_dest (stmt); + + /* ??? We have two canonical forms of direct goto destinations, a + bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */ + if (TREE_CODE (dest) != LABEL_DECL + && (!is_gimple_val (dest) + || !POINTER_TYPE_P (TREE_TYPE (dest)))) + { + error ("goto destination is neither a label nor a pointer"); + return true; + } + + return false; +} + +/* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there + is a problem, otherwise false. */ + +static bool +verify_gimple_switch (gimple stmt) +{ + unsigned int i, n; + tree elt, prev_upper_bound = NULL_TREE; + tree index_type, elt_type = NULL_TREE; + + if (!is_gimple_val (gimple_switch_index (stmt))) + { + error ("invalid operand to switch statement"); + debug_generic_stmt (gimple_switch_index (stmt)); + return true; + } + + index_type = TREE_TYPE (gimple_switch_index (stmt)); + if (! INTEGRAL_TYPE_P (index_type)) + { + error ("non-integral type switch statement"); + debug_generic_expr (index_type); + return true; + } + + elt = gimple_switch_label (stmt, 0); + if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE) + { + error ("invalid default case label in switch statement"); + debug_generic_expr (elt); + return true; + } + + n = gimple_switch_num_labels (stmt); + for (i = 1; i < n; i++) + { + elt = gimple_switch_label (stmt, i); + + if (! CASE_LOW (elt)) + { + error ("invalid case label in switch statement"); + debug_generic_expr (elt); + return true; + } + if (CASE_HIGH (elt) + && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt))) + { + error ("invalid case range in switch statement"); + debug_generic_expr (elt); + return true; + } + + if (elt_type) + { + if (TREE_TYPE (CASE_LOW (elt)) != elt_type + || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type)) + { + error ("type mismatch for case label in switch statement"); + debug_generic_expr (elt); + return true; + } + } + else + { + elt_type = TREE_TYPE (CASE_LOW (elt)); + if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type)) + { + error ("type precision mismatch in switch statement"); + return true; + } + } + + if (prev_upper_bound) + { + if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt))) + { + error ("case labels not sorted in switch statement"); + return true; + } + } + + prev_upper_bound = CASE_HIGH (elt); + if (! prev_upper_bound) + prev_upper_bound = CASE_LOW (elt); + } + + return false; +} + +/* Verify a gimple debug statement STMT. + Returns true if anything is wrong. */ + +static bool +verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED) +{ + /* There isn't much that could be wrong in a gimple debug stmt. A + gimple debug bind stmt, for example, maps a tree, that's usually + a VAR_DECL or a PARM_DECL, but that could also be some scalarized + component or member of an aggregate type, to another tree, that + can be an arbitrary expression. These stmts expand into debug + insns, and are converted to debug notes by var-tracking.c. */ + return false; +} + +/* Verify a gimple label statement STMT. + Returns true if anything is wrong. */ + +static bool +verify_gimple_label (gimple stmt) +{ + tree decl = gimple_label_label (stmt); + int uid; + bool err = false; + + if (TREE_CODE (decl) != LABEL_DECL) + return true; + if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl) + && DECL_CONTEXT (decl) != current_function_decl) + { + error ("label's context is not the current function decl"); + err |= true; + } + + uid = LABEL_DECL_UID (decl); + if (cfun->cfg + && (uid == -1 + || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt))) + { + error ("incorrect entry in label_to_block_map"); + err |= true; + } + + uid = EH_LANDING_PAD_NR (decl); + if (uid) + { + eh_landing_pad lp = get_eh_landing_pad_from_number (uid); + if (decl != lp->post_landing_pad) + { + error ("incorrect setting of landing pad number"); + err |= true; + } + } + + return err; +} + +/* Verify the GIMPLE statement STMT. Returns true if there is an + error, otherwise false. */ + +static bool +verify_gimple_stmt (gimple stmt) +{ + switch (gimple_code (stmt)) + { + case GIMPLE_ASSIGN: + return verify_gimple_assign (stmt); + + case GIMPLE_LABEL: + return verify_gimple_label (stmt); + + case GIMPLE_CALL: + return verify_gimple_call (stmt); + + case GIMPLE_COND: + if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison) + { + error ("invalid comparison code in gimple cond"); + return true; + } + if (!(!gimple_cond_true_label (stmt) + || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL) + || !(!gimple_cond_false_label (stmt) + || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL)) + { + error ("invalid labels in gimple cond"); + return true; + } + + return verify_gimple_comparison (boolean_type_node, + gimple_cond_lhs (stmt), + gimple_cond_rhs (stmt)); + + case GIMPLE_GOTO: + return verify_gimple_goto (stmt); + + case GIMPLE_SWITCH: + return verify_gimple_switch (stmt); + + case GIMPLE_RETURN: + return verify_gimple_return (stmt); + + case GIMPLE_ASM: + return false; + + case GIMPLE_TRANSACTION: + return verify_gimple_transaction (stmt); + + /* Tuples that do not have tree operands. */ + case GIMPLE_NOP: + case GIMPLE_PREDICT: + case GIMPLE_RESX: + case GIMPLE_EH_DISPATCH: + case GIMPLE_EH_MUST_NOT_THROW: + return false; + + CASE_GIMPLE_OMP: + /* OpenMP directives are validated by the FE and never operated + on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain + non-gimple expressions when the main index variable has had + its address taken. This does not affect the loop itself + because the header of an GIMPLE_OMP_FOR is merely used to determine + how to setup the parallel iteration. */ + return false; + + case GIMPLE_DEBUG: + return verify_gimple_debug (stmt); + + default: + gcc_unreachable (); + } +} + +/* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem, + and false otherwise. */ + +static bool +verify_gimple_phi (gimple phi) +{ + bool err = false; + unsigned i; + tree phi_result = gimple_phi_result (phi); + bool virtual_p; + + if (!phi_result) + { + error ("invalid PHI result"); + return true; + } + + virtual_p = virtual_operand_p (phi_result); + if (TREE_CODE (phi_result) != SSA_NAME + || (virtual_p + && SSA_NAME_VAR (phi_result) != gimple_vop (cfun))) + { + error ("invalid PHI result"); + err = true; + } + + for (i = 0; i < gimple_phi_num_args (phi); i++) + { + tree t = gimple_phi_arg_def (phi, i); + + if (!t) + { + error ("missing PHI def"); + err |= true; + continue; + } + /* Addressable variables do have SSA_NAMEs but they + are not considered gimple values. */ + else if ((TREE_CODE (t) == SSA_NAME + && virtual_p != virtual_operand_p (t)) + || (virtual_p + && (TREE_CODE (t) != SSA_NAME + || SSA_NAME_VAR (t) != gimple_vop (cfun))) + || (!virtual_p + && !is_gimple_val (t))) + { + error ("invalid PHI argument"); + debug_generic_expr (t); + err |= true; + } +#ifdef ENABLE_TYPES_CHECKING + if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t))) + { + error ("incompatible types in PHI argument %u", i); + debug_generic_stmt (TREE_TYPE (phi_result)); + debug_generic_stmt (TREE_TYPE (t)); + err |= true; + } +#endif + } + + return err; +} + +/* Verify the GIMPLE statements inside the sequence STMTS. */ + +static bool +verify_gimple_in_seq_2 (gimple_seq stmts) +{ + gimple_stmt_iterator ittr; + bool err = false; + + for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr)) + { + gimple stmt = gsi_stmt (ittr); + + switch (gimple_code (stmt)) + { + case GIMPLE_BIND: + err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt)); + break; + + case GIMPLE_TRY: + err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt)); + err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt)); + break; + + case GIMPLE_EH_FILTER: + err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt)); + break; + + case GIMPLE_EH_ELSE: + err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt)); + err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt)); + break; + + case GIMPLE_CATCH: + err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt)); + break; + + case GIMPLE_TRANSACTION: + err |= verify_gimple_transaction (stmt); + break; + + default: + { + bool err2 = verify_gimple_stmt (stmt); + if (err2) + debug_gimple_stmt (stmt); + err |= err2; + } + } + } + + return err; +} + +/* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there + is a problem, otherwise false. */ + +static bool +verify_gimple_transaction (gimple stmt) +{ + tree lab = gimple_transaction_label (stmt); + if (lab != NULL && TREE_CODE (lab) != LABEL_DECL) + return true; + return verify_gimple_in_seq_2 (gimple_transaction_body (stmt)); +} + + +/* Verify the GIMPLE statements inside the statement list STMTS. */ + +DEBUG_FUNCTION void +verify_gimple_in_seq (gimple_seq stmts) +{ + timevar_push (TV_TREE_STMT_VERIFY); + if (verify_gimple_in_seq_2 (stmts)) + internal_error ("verify_gimple failed"); + timevar_pop (TV_TREE_STMT_VERIFY); +} + +/* Return true when the T can be shared. */ + +static bool +tree_node_can_be_shared (tree t) +{ + if (IS_TYPE_OR_DECL_P (t) + || is_gimple_min_invariant (t) + || TREE_CODE (t) == SSA_NAME + || t == error_mark_node + || TREE_CODE (t) == IDENTIFIER_NODE) + return true; + + if (TREE_CODE (t) == CASE_LABEL_EXPR) + return true; + + if (DECL_P (t)) + return true; + + return false; +} + +/* Called via walk_tree. Verify tree sharing. */ + +static tree +verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data) +{ + struct pointer_set_t *visited = (struct pointer_set_t *) data; + + if (tree_node_can_be_shared (*tp)) + { + *walk_subtrees = false; + return NULL; + } + + if (pointer_set_insert (visited, *tp)) + return *tp; + + return NULL; +} + +/* Called via walk_gimple_stmt. Verify tree sharing. */ + +static tree +verify_node_sharing (tree *tp, int *walk_subtrees, void *data) +{ + struct walk_stmt_info *wi = (struct walk_stmt_info *) data; + return verify_node_sharing_1 (tp, walk_subtrees, wi->info); +} + +static bool eh_error_found; +static int +verify_eh_throw_stmt_node (void **slot, void *data) +{ + struct throw_stmt_node *node = (struct throw_stmt_node *)*slot; + struct pointer_set_t *visited = (struct pointer_set_t *) data; + + if (!pointer_set_contains (visited, node->stmt)) + { + error ("dead STMT in EH table"); + debug_gimple_stmt (node->stmt); + eh_error_found = true; + } + return 1; +} + +/* Verify if the location LOCs block is in BLOCKS. */ + +static bool +verify_location (pointer_set_t *blocks, location_t loc) +{ + tree block = LOCATION_BLOCK (loc); + if (block != NULL_TREE + && !pointer_set_contains (blocks, block)) + { + error ("location references block not in block tree"); + return true; + } + if (block != NULL_TREE) + return verify_location (blocks, BLOCK_SOURCE_LOCATION (block)); + return false; +} + +/* Called via walk_tree. Verify that expressions have no blocks. */ + +static tree +verify_expr_no_block (tree *tp, int *walk_subtrees, void *) +{ + if (!EXPR_P (*tp)) + { + *walk_subtrees = false; + return NULL; + } + + location_t loc = EXPR_LOCATION (*tp); + if (LOCATION_BLOCK (loc) != NULL) + return *tp; + + return NULL; +} + +/* Called via walk_tree. Verify locations of expressions. */ + +static tree +verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data) +{ + struct pointer_set_t *blocks = (struct pointer_set_t *) data; + + if (TREE_CODE (*tp) == VAR_DECL + && DECL_HAS_DEBUG_EXPR_P (*tp)) + { + tree t = DECL_DEBUG_EXPR (*tp); + tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL); + if (addr) + return addr; + } + if ((TREE_CODE (*tp) == VAR_DECL + || TREE_CODE (*tp) == PARM_DECL + || TREE_CODE (*tp) == RESULT_DECL) + && DECL_HAS_VALUE_EXPR_P (*tp)) + { + tree t = DECL_VALUE_EXPR (*tp); + tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL); + if (addr) + return addr; + } + + if (!EXPR_P (*tp)) + { + *walk_subtrees = false; + return NULL; + } + + location_t loc = EXPR_LOCATION (*tp); + if (verify_location (blocks, loc)) + return *tp; + + return NULL; +} + +/* Called via walk_gimple_op. Verify locations of expressions. */ + +static tree +verify_expr_location (tree *tp, int *walk_subtrees, void *data) +{ + struct walk_stmt_info *wi = (struct walk_stmt_info *) data; + return verify_expr_location_1 (tp, walk_subtrees, wi->info); +} + +/* Insert all subblocks of BLOCK into BLOCKS and recurse. */ + +static void +collect_subblocks (pointer_set_t *blocks, tree block) +{ + tree t; + for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t)) + { + pointer_set_insert (blocks, t); + collect_subblocks (blocks, t); + } +} + +/* Verify the GIMPLE statements in the CFG of FN. */ + +DEBUG_FUNCTION void +verify_gimple_in_cfg (struct function *fn) +{ + basic_block bb; + bool err = false; + struct pointer_set_t *visited, *visited_stmts, *blocks; + + timevar_push (TV_TREE_STMT_VERIFY); + visited = pointer_set_create (); + visited_stmts = pointer_set_create (); + + /* Collect all BLOCKs referenced by the BLOCK tree of FN. */ + blocks = pointer_set_create (); + if (DECL_INITIAL (fn->decl)) + { + pointer_set_insert (blocks, DECL_INITIAL (fn->decl)); + collect_subblocks (blocks, DECL_INITIAL (fn->decl)); + } + + FOR_EACH_BB_FN (bb, fn) + { + gimple_stmt_iterator gsi; + + for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple phi = gsi_stmt (gsi); + bool err2 = false; + unsigned i; + + pointer_set_insert (visited_stmts, phi); + + if (gimple_bb (phi) != bb) + { + error ("gimple_bb (phi) is set to a wrong basic block"); + err2 = true; + } + + err2 |= verify_gimple_phi (phi); + + /* Only PHI arguments have locations. */ + if (gimple_location (phi) != UNKNOWN_LOCATION) + { + error ("PHI node with location"); + err2 = true; + } + + for (i = 0; i < gimple_phi_num_args (phi); i++) + { + tree arg = gimple_phi_arg_def (phi, i); + tree addr = walk_tree (&arg, verify_node_sharing_1, + visited, NULL); + if (addr) + { + error ("incorrect sharing of tree nodes"); + debug_generic_expr (addr); + err2 |= true; + } + location_t loc = gimple_phi_arg_location (phi, i); + if (virtual_operand_p (gimple_phi_result (phi)) + && loc != UNKNOWN_LOCATION) + { + error ("virtual PHI with argument locations"); + err2 = true; + } + addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL); + if (addr) + { + debug_generic_expr (addr); + err2 = true; + } + err2 |= verify_location (blocks, loc); + } + + if (err2) + debug_gimple_stmt (phi); + err |= err2; + } + + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple stmt = gsi_stmt (gsi); + bool err2 = false; + struct walk_stmt_info wi; + tree addr; + int lp_nr; + + pointer_set_insert (visited_stmts, stmt); + + if (gimple_bb (stmt) != bb) + { + error ("gimple_bb (stmt) is set to a wrong basic block"); + err2 = true; + } + + err2 |= verify_gimple_stmt (stmt); + err2 |= verify_location (blocks, gimple_location (stmt)); + + memset (&wi, 0, sizeof (wi)); + wi.info = (void *) visited; + addr = walk_gimple_op (stmt, verify_node_sharing, &wi); + if (addr) + { + error ("incorrect sharing of tree nodes"); + debug_generic_expr (addr); + err2 |= true; + } + + memset (&wi, 0, sizeof (wi)); + wi.info = (void *) blocks; + addr = walk_gimple_op (stmt, verify_expr_location, &wi); + if (addr) + { + debug_generic_expr (addr); + err2 |= true; + } + + /* ??? Instead of not checking these stmts at all the walker + should know its context via wi. */ + if (!is_gimple_debug (stmt) + && !is_gimple_omp (stmt)) + { + memset (&wi, 0, sizeof (wi)); + addr = walk_gimple_op (stmt, verify_expr, &wi); + if (addr) + { + debug_generic_expr (addr); + inform (gimple_location (stmt), "in statement"); + err2 |= true; + } + } + + /* If the statement is marked as part of an EH region, then it is + expected that the statement could throw. Verify that when we + have optimizations that simplify statements such that we prove + that they cannot throw, that we update other data structures + to match. */ + lp_nr = lookup_stmt_eh_lp (stmt); + if (lp_nr != 0) + { + if (!stmt_could_throw_p (stmt)) + { + error ("statement marked for throw, but doesn%'t"); + err2 |= true; + } + else if (lp_nr > 0 + && !gsi_one_before_end_p (gsi) + && stmt_can_throw_internal (stmt)) + { + error ("statement marked for throw in middle of block"); + err2 |= true; + } + } + + if (err2) + debug_gimple_stmt (stmt); + err |= err2; + } + } + + eh_error_found = false; + if (get_eh_throw_stmt_table (cfun)) + htab_traverse (get_eh_throw_stmt_table (cfun), + verify_eh_throw_stmt_node, + visited_stmts); + + if (err || eh_error_found) + internal_error ("verify_gimple failed"); + + pointer_set_destroy (visited); + pointer_set_destroy (visited_stmts); + pointer_set_destroy (blocks); + verify_histograms (); + timevar_pop (TV_TREE_STMT_VERIFY); +} + + +/* Verifies that the flow information is OK. */ + +static int +gimple_verify_flow_info (void) +{ + int err = 0; + basic_block bb; + gimple_stmt_iterator gsi; + gimple stmt; + edge e; + edge_iterator ei; + + if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq + || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes) + { + error ("ENTRY_BLOCK has IL associated with it"); + err = 1; + } + + if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq + || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes) + { + error ("EXIT_BLOCK has IL associated with it"); + err = 1; + } + + FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) + if (e->flags & EDGE_FALLTHRU) + { + error ("fallthru to exit from bb %d", e->src->index); + err = 1; + } + + FOR_EACH_BB_FN (bb, cfun) + { + bool found_ctrl_stmt = false; + + stmt = NULL; + + /* Skip labels on the start of basic block. */ + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + tree label; + gimple prev_stmt = stmt; + + stmt = gsi_stmt (gsi); + + if (gimple_code (stmt) != GIMPLE_LABEL) + break; + + label = gimple_label_label (stmt); + if (prev_stmt && DECL_NONLOCAL (label)) + { + error ("nonlocal label "); + print_generic_expr (stderr, label, 0); + fprintf (stderr, " is not first in a sequence of labels in bb %d", + bb->index); + err = 1; + } + + if (prev_stmt && EH_LANDING_PAD_NR (label) != 0) + { + error ("EH landing pad label "); + print_generic_expr (stderr, label, 0); + fprintf (stderr, " is not first in a sequence of labels in bb %d", + bb->index); + err = 1; + } + + if (label_to_block (label) != bb) + { + error ("label "); + print_generic_expr (stderr, label, 0); + fprintf (stderr, " to block does not match in bb %d", + bb->index); + err = 1; + } + + if (decl_function_context (label) != current_function_decl) + { + error ("label "); + print_generic_expr (stderr, label, 0); + fprintf (stderr, " has incorrect context in bb %d", + bb->index); + err = 1; + } + } + + /* Verify that body of basic block BB is free of control flow. */ + for (; !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple stmt = gsi_stmt (gsi); + + if (found_ctrl_stmt) + { + error ("control flow in the middle of basic block %d", + bb->index); + err = 1; + } + + if (stmt_ends_bb_p (stmt)) + found_ctrl_stmt = true; + + if (gimple_code (stmt) == GIMPLE_LABEL) + { + error ("label "); + print_generic_expr (stderr, gimple_label_label (stmt), 0); + fprintf (stderr, " in the middle of basic block %d", bb->index); + err = 1; + } + } + + gsi = gsi_last_bb (bb); + if (gsi_end_p (gsi)) + continue; + + stmt = gsi_stmt (gsi); + + if (gimple_code (stmt) == GIMPLE_LABEL) + continue; + + err |= verify_eh_edges (stmt); + + if (is_ctrl_stmt (stmt)) + { + FOR_EACH_EDGE (e, ei, bb->succs) + if (e->flags & EDGE_FALLTHRU) + { + error ("fallthru edge after a control statement in bb %d", + bb->index); + err = 1; + } + } + + if (gimple_code (stmt) != GIMPLE_COND) + { + /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set + after anything else but if statement. */ + FOR_EACH_EDGE (e, ei, bb->succs) + if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)) + { + error ("true/false edge after a non-GIMPLE_COND in bb %d", + bb->index); + err = 1; + } + } + + switch (gimple_code (stmt)) + { + case GIMPLE_COND: + { + edge true_edge; + edge false_edge; + + extract_true_false_edges_from_block (bb, &true_edge, &false_edge); + + if (!true_edge + || !false_edge + || !(true_edge->flags & EDGE_TRUE_VALUE) + || !(false_edge->flags & EDGE_FALSE_VALUE) + || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL)) + || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL)) + || EDGE_COUNT (bb->succs) >= 3) + { + error ("wrong outgoing edge flags at end of bb %d", + bb->index); + err = 1; + } + } + break; + + case GIMPLE_GOTO: + if (simple_goto_p (stmt)) + { + error ("explicit goto at end of bb %d", bb->index); + err = 1; + } + else + { + /* FIXME. We should double check that the labels in the + destination blocks have their address taken. */ + FOR_EACH_EDGE (e, ei, bb->succs) + if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE + | EDGE_FALSE_VALUE)) + || !(e->flags & EDGE_ABNORMAL)) + { + error ("wrong outgoing edge flags at end of bb %d", + bb->index); + err = 1; + } + } + break; + + case GIMPLE_CALL: + if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN)) + break; + /* ... fallthru ... */ + case GIMPLE_RETURN: + if (!single_succ_p (bb) + || (single_succ_edge (bb)->flags + & (EDGE_FALLTHRU | EDGE_ABNORMAL + | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))) + { + error ("wrong outgoing edge flags at end of bb %d", bb->index); + err = 1; + } + if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun)) + { + error ("return edge does not point to exit in bb %d", + bb->index); + err = 1; + } + break; + + case GIMPLE_SWITCH: + { + tree prev; + edge e; + size_t i, n; + + n = gimple_switch_num_labels (stmt); + + /* Mark all the destination basic blocks. */ + for (i = 0; i < n; ++i) + { + tree lab = CASE_LABEL (gimple_switch_label (stmt, i)); + basic_block label_bb = label_to_block (lab); + gcc_assert (!label_bb->aux || label_bb->aux == (void *)1); + label_bb->aux = (void *)1; + } + + /* Verify that the case labels are sorted. */ + prev = gimple_switch_label (stmt, 0); + for (i = 1; i < n; ++i) + { + tree c = gimple_switch_label (stmt, i); + if (!CASE_LOW (c)) + { + error ("found default case not at the start of " + "case vector"); + err = 1; + continue; + } + if (CASE_LOW (prev) + && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c))) + { + error ("case labels not sorted: "); + print_generic_expr (stderr, prev, 0); + fprintf (stderr," is greater than "); + print_generic_expr (stderr, c, 0); + fprintf (stderr," but comes before it.\n"); + err = 1; + } + prev = c; + } + /* VRP will remove the default case if it can prove it will + never be executed. So do not verify there always exists + a default case here. */ + + FOR_EACH_EDGE (e, ei, bb->succs) + { + if (!e->dest->aux) + { + error ("extra outgoing edge %d->%d", + bb->index, e->dest->index); + err = 1; + } + + e->dest->aux = (void *)2; + if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL + | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))) + { + error ("wrong outgoing edge flags at end of bb %d", + bb->index); + err = 1; + } + } + + /* Check that we have all of them. */ + for (i = 0; i < n; ++i) + { + tree lab = CASE_LABEL (gimple_switch_label (stmt, i)); + basic_block label_bb = label_to_block (lab); + + if (label_bb->aux != (void *)2) + { + error ("missing edge %i->%i", bb->index, label_bb->index); + err = 1; + } + } + + FOR_EACH_EDGE (e, ei, bb->succs) + e->dest->aux = (void *)0; + } + break; + + case GIMPLE_EH_DISPATCH: + err |= verify_eh_dispatch_edge (stmt); + break; + + default: + break; + } + } + + if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY) + verify_dominators (CDI_DOMINATORS); + + return err; +} + + +/* Updates phi nodes after creating a forwarder block joined + by edge FALLTHRU. */ + +static void +gimple_make_forwarder_block (edge fallthru) +{ + edge e; + edge_iterator ei; + basic_block dummy, bb; + tree var; + gimple_stmt_iterator gsi; + + dummy = fallthru->src; + bb = fallthru->dest; + + if (single_pred_p (bb)) + return; + + /* If we redirected a branch we must create new PHI nodes at the + start of BB. */ + for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple phi, new_phi; + + phi = gsi_stmt (gsi); + var = gimple_phi_result (phi); + new_phi = create_phi_node (var, bb); + gimple_phi_set_result (phi, copy_ssa_name (var, phi)); + add_phi_arg (new_phi, gimple_phi_result (phi), fallthru, + UNKNOWN_LOCATION); + } + + /* Add the arguments we have stored on edges. */ + FOR_EACH_EDGE (e, ei, bb->preds) + { + if (e == fallthru) + continue; + + flush_pending_stmts (e); + } +} + + +/* Return a non-special label in the head of basic block BLOCK. + Create one if it doesn't exist. */ + +tree +gimple_block_label (basic_block bb) +{ + gimple_stmt_iterator i, s = gsi_start_bb (bb); + bool first = true; + tree label; + gimple stmt; + + for (i = s; !gsi_end_p (i); first = false, gsi_next (&i)) + { + stmt = gsi_stmt (i); + if (gimple_code (stmt) != GIMPLE_LABEL) + break; + label = gimple_label_label (stmt); + if (!DECL_NONLOCAL (label)) + { + if (!first) + gsi_move_before (&i, &s); + return label; + } + } + + label = create_artificial_label (UNKNOWN_LOCATION); + stmt = gimple_build_label (label); + gsi_insert_before (&s, stmt, GSI_NEW_STMT); + return label; +} + + +/* Attempt to perform edge redirection by replacing a possibly complex + jump instruction by a goto or by removing the jump completely. + This can apply only if all edges now point to the same block. The + parameters and return values are equivalent to + redirect_edge_and_branch. */ + +static edge +gimple_try_redirect_by_replacing_jump (edge e, basic_block target) +{ + basic_block src = e->src; + gimple_stmt_iterator i; + gimple stmt; + + /* We can replace or remove a complex jump only when we have exactly + two edges. */ + if (EDGE_COUNT (src->succs) != 2 + /* Verify that all targets will be TARGET. Specifically, the + edge that is not E must also go to TARGET. */ + || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target) + return NULL; + + i = gsi_last_bb (src); + if (gsi_end_p (i)) + return NULL; + + stmt = gsi_stmt (i); + + if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH) + { + gsi_remove (&i, true); + e = ssa_redirect_edge (e, target); + e->flags = EDGE_FALLTHRU; + return e; + } + + return NULL; +} + + +/* Redirect E to DEST. Return NULL on failure. Otherwise, return the + edge representing the redirected branch. */ + +static edge +gimple_redirect_edge_and_branch (edge e, basic_block dest) +{ + basic_block bb = e->src; + gimple_stmt_iterator gsi; + edge ret; + gimple stmt; + + if (e->flags & EDGE_ABNORMAL) + return NULL; + + if (e->dest == dest) + return NULL; + + if (e->flags & EDGE_EH) + return redirect_eh_edge (e, dest); + + if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)) + { + ret = gimple_try_redirect_by_replacing_jump (e, dest); + if (ret) + return ret; + } + + gsi = gsi_last_bb (bb); + stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi); + + switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK) + { + case GIMPLE_COND: + /* For COND_EXPR, we only need to redirect the edge. */ + break; + + case GIMPLE_GOTO: + /* No non-abnormal edges should lead from a non-simple goto, and + simple ones should be represented implicitly. */ + gcc_unreachable (); + + case GIMPLE_SWITCH: + { + tree label = gimple_block_label (dest); + tree cases = get_cases_for_edge (e, stmt); + + /* If we have a list of cases associated with E, then use it + as it's a lot faster than walking the entire case vector. */ + if (cases) + { + edge e2 = find_edge (e->src, dest); + tree last, first; + + first = cases; + while (cases) + { + last = cases; + CASE_LABEL (cases) = label; + cases = CASE_CHAIN (cases); + } + + /* If there was already an edge in the CFG, then we need + to move all the cases associated with E to E2. */ + if (e2) + { + tree cases2 = get_cases_for_edge (e2, stmt); + + CASE_CHAIN (last) = CASE_CHAIN (cases2); + CASE_CHAIN (cases2) = first; + } + bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index); + } + else + { + size_t i, n = gimple_switch_num_labels (stmt); + + for (i = 0; i < n; i++) + { + tree elt = gimple_switch_label (stmt, i); + if (label_to_block (CASE_LABEL (elt)) == e->dest) + CASE_LABEL (elt) = label; + } + } + } + break; + + case GIMPLE_ASM: + { + int i, n = gimple_asm_nlabels (stmt); + tree label = NULL; + + for (i = 0; i < n; ++i) + { + tree cons = gimple_asm_label_op (stmt, i); + if (label_to_block (TREE_VALUE (cons)) == e->dest) + { + if (!label) + label = gimple_block_label (dest); + TREE_VALUE (cons) = label; + } + } + + /* If we didn't find any label matching the former edge in the + asm labels, we must be redirecting the fallthrough + edge. */ + gcc_assert (label || (e->flags & EDGE_FALLTHRU)); + } + break; + + case GIMPLE_RETURN: + gsi_remove (&gsi, true); + e->flags |= EDGE_FALLTHRU; + break; + + case GIMPLE_OMP_RETURN: + case GIMPLE_OMP_CONTINUE: + case GIMPLE_OMP_SECTIONS_SWITCH: + case GIMPLE_OMP_FOR: + /* The edges from OMP constructs can be simply redirected. */ + break; + + case GIMPLE_EH_DISPATCH: + if (!(e->flags & EDGE_FALLTHRU)) + redirect_eh_dispatch_edge (stmt, e, dest); + break; + + case GIMPLE_TRANSACTION: + /* The ABORT edge has a stored label associated with it, otherwise + the edges are simply redirectable. */ + if (e->flags == 0) + gimple_transaction_set_label (stmt, gimple_block_label (dest)); + break; + + default: + /* Otherwise it must be a fallthru edge, and we don't need to + do anything besides redirecting it. */ + gcc_assert (e->flags & EDGE_FALLTHRU); + break; + } + + /* Update/insert PHI nodes as necessary. */ + + /* Now update the edges in the CFG. */ + e = ssa_redirect_edge (e, dest); + + return e; +} + +/* Returns true if it is possible to remove edge E by redirecting + it to the destination of the other edge from E->src. */ + +static bool +gimple_can_remove_branch_p (const_edge e) +{ + if (e->flags & (EDGE_ABNORMAL | EDGE_EH)) + return false; + + return true; +} + +/* Simple wrapper, as we can always redirect fallthru edges. */ + +static basic_block +gimple_redirect_edge_and_branch_force (edge e, basic_block dest) +{ + e = gimple_redirect_edge_and_branch (e, dest); + gcc_assert (e); + + return NULL; +} + + +/* Splits basic block BB after statement STMT (but at least after the + labels). If STMT is NULL, BB is split just after the labels. */ + +static basic_block +gimple_split_block (basic_block bb, void *stmt) +{ + gimple_stmt_iterator gsi; + gimple_stmt_iterator gsi_tgt; + gimple act; + gimple_seq list; + basic_block new_bb; + edge e; + edge_iterator ei; + + new_bb = create_empty_bb (bb); + + /* Redirect the outgoing edges. */ + new_bb->succs = bb->succs; + bb->succs = NULL; + FOR_EACH_EDGE (e, ei, new_bb->succs) + e->src = new_bb; + + if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL) + stmt = NULL; + + /* Move everything from GSI to the new basic block. */ + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + act = gsi_stmt (gsi); + if (gimple_code (act) == GIMPLE_LABEL) + continue; + + if (!stmt) + break; + + if (stmt == act) + { + gsi_next (&gsi); + break; + } + } + + if (gsi_end_p (gsi)) + return new_bb; + + /* Split the statement list - avoid re-creating new containers as this + brings ugly quadratic memory consumption in the inliner. + (We are still quadratic since we need to update stmt BB pointers, + sadly.) */ + gsi_split_seq_before (&gsi, &list); + set_bb_seq (new_bb, list); + for (gsi_tgt = gsi_start (list); + !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt)) + gimple_set_bb (gsi_stmt (gsi_tgt), new_bb); + + return new_bb; +} + + +/* Moves basic block BB after block AFTER. */ + +static bool +gimple_move_block_after (basic_block bb, basic_block after) +{ + if (bb->prev_bb == after) + return true; + + unlink_block (bb); + link_block (bb, after); + + return true; +} + + +/* Return TRUE if block BB has no executable statements, otherwise return + FALSE. */ + +static bool +gimple_empty_block_p (basic_block bb) +{ + /* BB must have no executable statements. */ + gimple_stmt_iterator gsi = gsi_after_labels (bb); + if (phi_nodes (bb)) + return false; + if (gsi_end_p (gsi)) + return true; + if (is_gimple_debug (gsi_stmt (gsi))) + gsi_next_nondebug (&gsi); + return gsi_end_p (gsi); +} + + +/* Split a basic block if it ends with a conditional branch and if the + other part of the block is not empty. */ + +static basic_block +gimple_split_block_before_cond_jump (basic_block bb) +{ + gimple last, split_point; + gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb); + if (gsi_end_p (gsi)) + return NULL; + last = gsi_stmt (gsi); + if (gimple_code (last) != GIMPLE_COND + && gimple_code (last) != GIMPLE_SWITCH) + return NULL; + gsi_prev_nondebug (&gsi); + split_point = gsi_stmt (gsi); + return split_block (bb, split_point)->dest; +} + + +/* Return true if basic_block can be duplicated. */ + +static bool +gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED) +{ + return true; +} + +/* Create a duplicate of the basic block BB. NOTE: This does not + preserve SSA form. */ + +static basic_block +gimple_duplicate_bb (basic_block bb) +{ + basic_block new_bb; + gimple_stmt_iterator gsi, gsi_tgt; + gimple_seq phis = phi_nodes (bb); + gimple phi, stmt, copy; + + new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb); + + /* Copy the PHI nodes. We ignore PHI node arguments here because + the incoming edges have not been setup yet. */ + for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi)) + { + phi = gsi_stmt (gsi); + copy = create_phi_node (NULL_TREE, new_bb); + create_new_def_for (gimple_phi_result (phi), copy, + gimple_phi_result_ptr (copy)); + gimple_set_uid (copy, gimple_uid (phi)); + } + + gsi_tgt = gsi_start_bb (new_bb); + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + def_operand_p def_p; + ssa_op_iter op_iter; + tree lhs; + + stmt = gsi_stmt (gsi); + if (gimple_code (stmt) == GIMPLE_LABEL) + continue; + + /* Don't duplicate label debug stmts. */ + if (gimple_debug_bind_p (stmt) + && TREE_CODE (gimple_debug_bind_get_var (stmt)) + == LABEL_DECL) + continue; + + /* Create a new copy of STMT and duplicate STMT's virtual + operands. */ + copy = gimple_copy (stmt); + gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT); + + maybe_duplicate_eh_stmt (copy, stmt); + gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt); + + /* When copying around a stmt writing into a local non-user + aggregate, make sure it won't share stack slot with other + vars. */ + lhs = gimple_get_lhs (stmt); + if (lhs && TREE_CODE (lhs) != SSA_NAME) + { + tree base = get_base_address (lhs); + if (base + && (TREE_CODE (base) == VAR_DECL + || TREE_CODE (base) == RESULT_DECL) + && DECL_IGNORED_P (base) + && !TREE_STATIC (base) + && !DECL_EXTERNAL (base) + && (TREE_CODE (base) != VAR_DECL + || !DECL_HAS_VALUE_EXPR_P (base))) + DECL_NONSHAREABLE (base) = 1; + } + + /* Create new names for all the definitions created by COPY and + add replacement mappings for each new name. */ + FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS) + create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p); + } + + return new_bb; +} + +/* Adds phi node arguments for edge E_COPY after basic block duplication. */ + +static void +add_phi_args_after_copy_edge (edge e_copy) +{ + basic_block bb, bb_copy = e_copy->src, dest; + edge e; + edge_iterator ei; + gimple phi, phi_copy; + tree def; + gimple_stmt_iterator psi, psi_copy; + + if (gimple_seq_empty_p (phi_nodes (e_copy->dest))) + return; + + bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy; + + if (e_copy->dest->flags & BB_DUPLICATED) + dest = get_bb_original (e_copy->dest); + else + dest = e_copy->dest; + + e = find_edge (bb, dest); + if (!e) + { + /* During loop unrolling the target of the latch edge is copied. + In this case we are not looking for edge to dest, but to + duplicated block whose original was dest. */ + FOR_EACH_EDGE (e, ei, bb->succs) + { + if ((e->dest->flags & BB_DUPLICATED) + && get_bb_original (e->dest) == dest) + break; + } + + gcc_assert (e != NULL); + } + + for (psi = gsi_start_phis (e->dest), + psi_copy = gsi_start_phis (e_copy->dest); + !gsi_end_p (psi); + gsi_next (&psi), gsi_next (&psi_copy)) + { + phi = gsi_stmt (psi); + phi_copy = gsi_stmt (psi_copy); + def = PHI_ARG_DEF_FROM_EDGE (phi, e); + add_phi_arg (phi_copy, def, e_copy, + gimple_phi_arg_location_from_edge (phi, e)); + } +} + + +/* Basic block BB_COPY was created by code duplication. Add phi node + arguments for edges going out of BB_COPY. The blocks that were + duplicated have BB_DUPLICATED set. */ + +void +add_phi_args_after_copy_bb (basic_block bb_copy) +{ + edge e_copy; + edge_iterator ei; + + FOR_EACH_EDGE (e_copy, ei, bb_copy->succs) + { + add_phi_args_after_copy_edge (e_copy); + } +} + +/* Blocks in REGION_COPY array of length N_REGION were created by + duplication of basic blocks. Add phi node arguments for edges + going from these blocks. If E_COPY is not NULL, also add + phi node arguments for its destination.*/ + +void +add_phi_args_after_copy (basic_block *region_copy, unsigned n_region, + edge e_copy) +{ + unsigned i; + + for (i = 0; i < n_region; i++) + region_copy[i]->flags |= BB_DUPLICATED; + + for (i = 0; i < n_region; i++) + add_phi_args_after_copy_bb (region_copy[i]); + if (e_copy) + add_phi_args_after_copy_edge (e_copy); + + for (i = 0; i < n_region; i++) + region_copy[i]->flags &= ~BB_DUPLICATED; +} + +/* Duplicates a REGION (set of N_REGION basic blocks) with just a single + important exit edge EXIT. By important we mean that no SSA name defined + inside region is live over the other exit edges of the region. All entry + edges to the region must go to ENTRY->dest. The edge ENTRY is redirected + to the duplicate of the region. Dominance and loop information is + updated if UPDATE_DOMINANCE is true, but not the SSA web. If + UPDATE_DOMINANCE is false then we assume that the caller will update the + dominance information after calling this function. The new basic + blocks are stored to REGION_COPY in the same order as they had in REGION, + provided that REGION_COPY is not NULL. + The function returns false if it is unable to copy the region, + true otherwise. */ + +bool +gimple_duplicate_sese_region (edge entry, edge exit, + basic_block *region, unsigned n_region, + basic_block *region_copy, + bool update_dominance) +{ + unsigned i; + bool free_region_copy = false, copying_header = false; + struct loop *loop = entry->dest->loop_father; + edge exit_copy; + vec doms; + edge redirected; + int total_freq = 0, entry_freq = 0; + gcov_type total_count = 0, entry_count = 0; + + if (!can_copy_bbs_p (region, n_region)) + return false; + + /* Some sanity checking. Note that we do not check for all possible + missuses of the functions. I.e. if you ask to copy something weird, + it will work, but the state of structures probably will not be + correct. */ + for (i = 0; i < n_region; i++) + { + /* We do not handle subloops, i.e. all the blocks must belong to the + same loop. */ + if (region[i]->loop_father != loop) + return false; + + if (region[i] != entry->dest + && region[i] == loop->header) + return false; + } + + /* In case the function is used for loop header copying (which is the primary + use), ensure that EXIT and its copy will be new latch and entry edges. */ + if (loop->header == entry->dest) + { + copying_header = true; + + if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src)) + return false; + + for (i = 0; i < n_region; i++) + if (region[i] != exit->src + && dominated_by_p (CDI_DOMINATORS, region[i], exit->src)) + return false; + } + + initialize_original_copy_tables (); + + if (copying_header) + set_loop_copy (loop, loop_outer (loop)); + else + set_loop_copy (loop, loop); + + if (!region_copy) + { + region_copy = XNEWVEC (basic_block, n_region); + free_region_copy = true; + } + + /* Record blocks outside the region that are dominated by something + inside. */ + if (update_dominance) + { + doms.create (0); + doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region); + } + + if (entry->dest->count) + { + total_count = entry->dest->count; + entry_count = entry->count; + /* Fix up corner cases, to avoid division by zero or creation of negative + frequencies. */ + if (entry_count > total_count) + entry_count = total_count; + } + else + { + total_freq = entry->dest->frequency; + entry_freq = EDGE_FREQUENCY (entry); + /* Fix up corner cases, to avoid division by zero or creation of negative + frequencies. */ + if (total_freq == 0) + total_freq = 1; + else if (entry_freq > total_freq) + entry_freq = total_freq; + } + + copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop, + split_edge_bb_loc (entry), update_dominance); + if (total_count) + { + scale_bbs_frequencies_gcov_type (region, n_region, + total_count - entry_count, + total_count); + scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count, + total_count); + } + else + { + scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq, + total_freq); + scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq); + } + + if (copying_header) + { + loop->header = exit->dest; + loop->latch = exit->src; + } + + /* Redirect the entry and add the phi node arguments. */ + redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest)); + gcc_assert (redirected != NULL); + flush_pending_stmts (entry); + + /* Concerning updating of dominators: We must recount dominators + for entry block and its copy. Anything that is outside of the + region, but was dominated by something inside needs recounting as + well. */ + if (update_dominance) + { + set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src); + doms.safe_push (get_bb_original (entry->dest)); + iterate_fix_dominators (CDI_DOMINATORS, doms, false); + doms.release (); + } + + /* Add the other PHI node arguments. */ + add_phi_args_after_copy (region_copy, n_region, NULL); + + if (free_region_copy) + free (region_copy); + + free_original_copy_tables (); + return true; +} + +/* Checks if BB is part of the region defined by N_REGION BBS. */ +static bool +bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region) +{ + unsigned int n; + + for (n = 0; n < n_region; n++) + { + if (bb == bbs[n]) + return true; + } + return false; +} + +/* Duplicates REGION consisting of N_REGION blocks. The new blocks + are stored to REGION_COPY in the same order in that they appear + in REGION, if REGION_COPY is not NULL. ENTRY is the entry to + the region, EXIT an exit from it. The condition guarding EXIT + is moved to ENTRY. Returns true if duplication succeeds, false + otherwise. + + For example, + + some_code; + if (cond) + A; + else + B; + + is transformed to + + if (cond) + { + some_code; + A; + } + else + { + some_code; + B; + } +*/ + +bool +gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED, + basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED, + basic_block *region_copy ATTRIBUTE_UNUSED) +{ + unsigned i; + bool free_region_copy = false; + struct loop *loop = exit->dest->loop_father; + struct loop *orig_loop = entry->dest->loop_father; + basic_block switch_bb, entry_bb, nentry_bb; + vec doms; + int total_freq = 0, exit_freq = 0; + gcov_type total_count = 0, exit_count = 0; + edge exits[2], nexits[2], e; + gimple_stmt_iterator gsi; + gimple cond_stmt; + edge sorig, snew; + basic_block exit_bb; + gimple_stmt_iterator psi; + gimple phi; + tree def; + struct loop *target, *aloop, *cloop; + + gcc_assert (EDGE_COUNT (exit->src->succs) == 2); + exits[0] = exit; + exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit); + + if (!can_copy_bbs_p (region, n_region)) + return false; + + initialize_original_copy_tables (); + set_loop_copy (orig_loop, loop); + + target= loop; + for (aloop = orig_loop->inner; aloop; aloop = aloop->next) + { + if (bb_part_of_region_p (aloop->header, region, n_region)) + { + cloop = duplicate_loop (aloop, target); + duplicate_subloops (aloop, cloop); + } + } + + if (!region_copy) + { + region_copy = XNEWVEC (basic_block, n_region); + free_region_copy = true; + } + + gcc_assert (!need_ssa_update_p (cfun)); + + /* Record blocks outside the region that are dominated by something + inside. */ + doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region); + + if (exit->src->count) + { + total_count = exit->src->count; + exit_count = exit->count; + /* Fix up corner cases, to avoid division by zero or creation of negative + frequencies. */ + if (exit_count > total_count) + exit_count = total_count; + } + else + { + total_freq = exit->src->frequency; + exit_freq = EDGE_FREQUENCY (exit); + /* Fix up corner cases, to avoid division by zero or creation of negative + frequencies. */ + if (total_freq == 0) + total_freq = 1; + if (exit_freq > total_freq) + exit_freq = total_freq; + } + + copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop, + split_edge_bb_loc (exit), true); + if (total_count) + { + scale_bbs_frequencies_gcov_type (region, n_region, + total_count - exit_count, + total_count); + scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count, + total_count); + } + else + { + scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq, + total_freq); + scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq); + } + + /* Create the switch block, and put the exit condition to it. */ + entry_bb = entry->dest; + nentry_bb = get_bb_copy (entry_bb); + if (!last_stmt (entry->src) + || !stmt_ends_bb_p (last_stmt (entry->src))) + switch_bb = entry->src; + else + switch_bb = split_edge (entry); + set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb); + + gsi = gsi_last_bb (switch_bb); + cond_stmt = last_stmt (exit->src); + gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND); + cond_stmt = gimple_copy (cond_stmt); + + gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT); + + sorig = single_succ_edge (switch_bb); + sorig->flags = exits[1]->flags; + snew = make_edge (switch_bb, nentry_bb, exits[0]->flags); + + /* Register the new edge from SWITCH_BB in loop exit lists. */ + rescan_loop_exit (snew, true, false); + + /* Add the PHI node arguments. */ + add_phi_args_after_copy (region_copy, n_region, snew); + + /* Get rid of now superfluous conditions and associated edges (and phi node + arguments). */ + exit_bb = exit->dest; + + e = redirect_edge_and_branch (exits[0], exits[1]->dest); + PENDING_STMT (e) = NULL; + + /* The latch of ORIG_LOOP was copied, and so was the backedge + to the original header. We redirect this backedge to EXIT_BB. */ + for (i = 0; i < n_region; i++) + if (get_bb_original (region_copy[i]) == orig_loop->latch) + { + gcc_assert (single_succ_edge (region_copy[i])); + e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb); + PENDING_STMT (e) = NULL; + for (psi = gsi_start_phis (exit_bb); + !gsi_end_p (psi); + gsi_next (&psi)) + { + phi = gsi_stmt (psi); + def = PHI_ARG_DEF (phi, nexits[0]->dest_idx); + add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e)); + } + } + e = redirect_edge_and_branch (nexits[1], nexits[0]->dest); + PENDING_STMT (e) = NULL; + + /* Anything that is outside of the region, but was dominated by something + inside needs to update dominance info. */ + iterate_fix_dominators (CDI_DOMINATORS, doms, false); + doms.release (); + /* Update the SSA web. */ + update_ssa (TODO_update_ssa); + + if (free_region_copy) + free (region_copy); + + free_original_copy_tables (); + return true; +} + +/* Add all the blocks dominated by ENTRY to the array BBS_P. Stop + adding blocks when the dominator traversal reaches EXIT. This + function silently assumes that ENTRY strictly dominates EXIT. */ + +void +gather_blocks_in_sese_region (basic_block entry, basic_block exit, + vec *bbs_p) +{ + basic_block son; + + for (son = first_dom_son (CDI_DOMINATORS, entry); + son; + son = next_dom_son (CDI_DOMINATORS, son)) + { + bbs_p->safe_push (son); + if (son != exit) + gather_blocks_in_sese_region (son, exit, bbs_p); + } +} + +/* Replaces *TP with a duplicate (belonging to function TO_CONTEXT). + The duplicates are recorded in VARS_MAP. */ + +static void +replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map, + tree to_context) +{ + tree t = *tp, new_t; + struct function *f = DECL_STRUCT_FUNCTION (to_context); + void **loc; + + if (DECL_CONTEXT (t) == to_context) + return; + + loc = pointer_map_contains (vars_map, t); + + if (!loc) + { + loc = pointer_map_insert (vars_map, t); + + if (SSA_VAR_P (t)) + { + new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t)); + add_local_decl (f, new_t); + } + else + { + gcc_assert (TREE_CODE (t) == CONST_DECL); + new_t = copy_node (t); + } + DECL_CONTEXT (new_t) = to_context; + + *loc = new_t; + } + else + new_t = (tree) *loc; + + *tp = new_t; +} + + +/* Creates an ssa name in TO_CONTEXT equivalent to NAME. + VARS_MAP maps old ssa names and var_decls to the new ones. */ + +static tree +replace_ssa_name (tree name, struct pointer_map_t *vars_map, + tree to_context) +{ + void **loc; + tree new_name; + + gcc_assert (!virtual_operand_p (name)); + + loc = pointer_map_contains (vars_map, name); + + if (!loc) + { + tree decl = SSA_NAME_VAR (name); + if (decl) + { + replace_by_duplicate_decl (&decl, vars_map, to_context); + new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context), + decl, SSA_NAME_DEF_STMT (name)); + if (SSA_NAME_IS_DEFAULT_DEF (name)) + set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context), + decl, new_name); + } + else + new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context), + name, SSA_NAME_DEF_STMT (name)); + + loc = pointer_map_insert (vars_map, name); + *loc = new_name; + } + else + new_name = (tree) *loc; + + return new_name; +} + +struct move_stmt_d +{ + tree orig_block; + tree new_block; + tree from_context; + tree to_context; + struct pointer_map_t *vars_map; + htab_t new_label_map; + struct pointer_map_t *eh_map; + bool remap_decls_p; +}; + +/* Helper for move_block_to_fn. Set TREE_BLOCK in every expression + contained in *TP if it has been ORIG_BLOCK previously and change the + DECL_CONTEXT of every local variable referenced in *TP. */ + +static tree +move_stmt_op (tree *tp, int *walk_subtrees, void *data) +{ + struct walk_stmt_info *wi = (struct walk_stmt_info *) data; + struct move_stmt_d *p = (struct move_stmt_d *) wi->info; + tree t = *tp; + + if (EXPR_P (t)) + { + tree block = TREE_BLOCK (t); + if (block == p->orig_block + || (p->orig_block == NULL_TREE + && block != NULL_TREE)) + TREE_SET_BLOCK (t, p->new_block); +#ifdef ENABLE_CHECKING + else if (block != NULL_TREE) + { + while (block && TREE_CODE (block) == BLOCK && block != p->orig_block) + block = BLOCK_SUPERCONTEXT (block); + gcc_assert (block == p->orig_block); + } +#endif + } + else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME) + { + if (TREE_CODE (t) == SSA_NAME) + *tp = replace_ssa_name (t, p->vars_map, p->to_context); + else if (TREE_CODE (t) == LABEL_DECL) + { + if (p->new_label_map) + { + struct tree_map in, *out; + in.base.from = t; + out = (struct tree_map *) + htab_find_with_hash (p->new_label_map, &in, DECL_UID (t)); + if (out) + *tp = t = out->to; + } + + DECL_CONTEXT (t) = p->to_context; + } + else if (p->remap_decls_p) + { + /* Replace T with its duplicate. T should no longer appear in the + parent function, so this looks wasteful; however, it may appear + in referenced_vars, and more importantly, as virtual operands of + statements, and in alias lists of other variables. It would be + quite difficult to expunge it from all those places. ??? It might + suffice to do this for addressable variables. */ + if ((TREE_CODE (t) == VAR_DECL + && !is_global_var (t)) + || TREE_CODE (t) == CONST_DECL) + replace_by_duplicate_decl (tp, p->vars_map, p->to_context); + } + *walk_subtrees = 0; + } + else if (TYPE_P (t)) + *walk_subtrees = 0; + + return NULL_TREE; +} + +/* Helper for move_stmt_r. Given an EH region number for the source + function, map that to the duplicate EH regio number in the dest. */ + +static int +move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p) +{ + eh_region old_r, new_r; + void **slot; + + old_r = get_eh_region_from_number (old_nr); + slot = pointer_map_contains (p->eh_map, old_r); + new_r = (eh_region) *slot; + + return new_r->index; +} + +/* Similar, but operate on INTEGER_CSTs. */ + +static tree +move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p) +{ + int old_nr, new_nr; + + old_nr = tree_to_shwi (old_t_nr); + new_nr = move_stmt_eh_region_nr (old_nr, p); + + return build_int_cst (integer_type_node, new_nr); +} + +/* Like move_stmt_op, but for gimple statements. + + Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression + contained in the current statement in *GSI_P and change the + DECL_CONTEXT of every local variable referenced in the current + statement. */ + +static tree +move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p, + struct walk_stmt_info *wi) +{ + struct move_stmt_d *p = (struct move_stmt_d *) wi->info; + gimple stmt = gsi_stmt (*gsi_p); + tree block = gimple_block (stmt); + + if (block == p->orig_block + || (p->orig_block == NULL_TREE + && block != NULL_TREE)) + gimple_set_block (stmt, p->new_block); + + switch (gimple_code (stmt)) + { + case GIMPLE_CALL: + /* Remap the region numbers for __builtin_eh_{pointer,filter}. */ + { + tree r, fndecl = gimple_call_fndecl (stmt); + if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) + switch (DECL_FUNCTION_CODE (fndecl)) + { + case BUILT_IN_EH_COPY_VALUES: + r = gimple_call_arg (stmt, 1); + r = move_stmt_eh_region_tree_nr (r, p); + gimple_call_set_arg (stmt, 1, r); + /* FALLTHRU */ + + case BUILT_IN_EH_POINTER: + case BUILT_IN_EH_FILTER: + r = gimple_call_arg (stmt, 0); + r = move_stmt_eh_region_tree_nr (r, p); + gimple_call_set_arg (stmt, 0, r); + break; + + default: + break; + } + } + break; + + case GIMPLE_RESX: + { + int r = gimple_resx_region (stmt); + r = move_stmt_eh_region_nr (r, p); + gimple_resx_set_region (stmt, r); + } + break; + + case GIMPLE_EH_DISPATCH: + { + int r = gimple_eh_dispatch_region (stmt); + r = move_stmt_eh_region_nr (r, p); + gimple_eh_dispatch_set_region (stmt, r); + } + break; + + case GIMPLE_OMP_RETURN: + case GIMPLE_OMP_CONTINUE: + break; + default: + if (is_gimple_omp (stmt)) + { + /* Do not remap variables inside OMP directives. Variables + referenced in clauses and directive header belong to the + parent function and should not be moved into the child + function. */ + bool save_remap_decls_p = p->remap_decls_p; + p->remap_decls_p = false; + *handled_ops_p = true; + + walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r, + move_stmt_op, wi); + + p->remap_decls_p = save_remap_decls_p; + } + break; + } + + return NULL_TREE; +} + +/* Move basic block BB from function CFUN to function DEST_FN. The + block is moved out of the original linked list and placed after + block AFTER in the new list. Also, the block is removed from the + original array of blocks and placed in DEST_FN's array of blocks. + If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is + updated to reflect the moved edges. + + The local variables are remapped to new instances, VARS_MAP is used + to record the mapping. */ + +static void +move_block_to_fn (struct function *dest_cfun, basic_block bb, + basic_block after, bool update_edge_count_p, + struct move_stmt_d *d) +{ + struct control_flow_graph *cfg; + edge_iterator ei; + edge e; + gimple_stmt_iterator si; + unsigned old_len, new_len; + + /* Remove BB from dominance structures. */ + delete_from_dominance_info (CDI_DOMINATORS, bb); + + /* Move BB from its current loop to the copy in the new function. */ + if (current_loops) + { + struct loop *new_loop = (struct loop *)bb->loop_father->aux; + if (new_loop) + bb->loop_father = new_loop; + } + + /* Link BB to the new linked list. */ + move_block_after (bb, after); + + /* Update the edge count in the corresponding flowgraphs. */ + if (update_edge_count_p) + FOR_EACH_EDGE (e, ei, bb->succs) + { + cfun->cfg->x_n_edges--; + dest_cfun->cfg->x_n_edges++; + } + + /* Remove BB from the original basic block array. */ + (*cfun->cfg->x_basic_block_info)[bb->index] = NULL; + cfun->cfg->x_n_basic_blocks--; + + /* Grow DEST_CFUN's basic block array if needed. */ + cfg = dest_cfun->cfg; + cfg->x_n_basic_blocks++; + if (bb->index >= cfg->x_last_basic_block) + cfg->x_last_basic_block = bb->index + 1; + + old_len = vec_safe_length (cfg->x_basic_block_info); + if ((unsigned) cfg->x_last_basic_block >= old_len) + { + new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4; + vec_safe_grow_cleared (cfg->x_basic_block_info, new_len); + } + + (*cfg->x_basic_block_info)[bb->index] = bb; + + /* Remap the variables in phi nodes. */ + for (si = gsi_start_phis (bb); !gsi_end_p (si); ) + { + gimple phi = gsi_stmt (si); + use_operand_p use; + tree op = PHI_RESULT (phi); + ssa_op_iter oi; + unsigned i; + + if (virtual_operand_p (op)) + { + /* Remove the phi nodes for virtual operands (alias analysis will be + run for the new function, anyway). */ + remove_phi_node (&si, true); + continue; + } + + SET_PHI_RESULT (phi, + replace_ssa_name (op, d->vars_map, dest_cfun->decl)); + FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE) + { + op = USE_FROM_PTR (use); + if (TREE_CODE (op) == SSA_NAME) + SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl)); + } + + for (i = 0; i < EDGE_COUNT (bb->preds); i++) + { + location_t locus = gimple_phi_arg_location (phi, i); + tree block = LOCATION_BLOCK (locus); + + if (locus == UNKNOWN_LOCATION) + continue; + if (d->orig_block == NULL_TREE || block == d->orig_block) + { + if (d->new_block == NULL_TREE) + locus = LOCATION_LOCUS (locus); + else + locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block); + gimple_phi_arg_set_location (phi, i, locus); + } + } + + gsi_next (&si); + } + + for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) + { + gimple stmt = gsi_stmt (si); + struct walk_stmt_info wi; + + memset (&wi, 0, sizeof (wi)); + wi.info = d; + walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi); + + if (gimple_code (stmt) == GIMPLE_LABEL) + { + tree label = gimple_label_label (stmt); + int uid = LABEL_DECL_UID (label); + + gcc_assert (uid > -1); + + old_len = vec_safe_length (cfg->x_label_to_block_map); + if (old_len <= (unsigned) uid) + { + new_len = 3 * uid / 2 + 1; + vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len); + } + + (*cfg->x_label_to_block_map)[uid] = bb; + (*cfun->cfg->x_label_to_block_map)[uid] = NULL; + + gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl); + + if (uid >= dest_cfun->cfg->last_label_uid) + dest_cfun->cfg->last_label_uid = uid + 1; + } + + maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0); + remove_stmt_from_eh_lp_fn (cfun, stmt); + + gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt); + gimple_remove_stmt_histograms (cfun, stmt); + + /* We cannot leave any operands allocated from the operand caches of + the current function. */ + free_stmt_operands (cfun, stmt); + push_cfun (dest_cfun); + update_stmt (stmt); + pop_cfun (); + } + + FOR_EACH_EDGE (e, ei, bb->succs) + if (e->goto_locus != UNKNOWN_LOCATION) + { + tree block = LOCATION_BLOCK (e->goto_locus); + if (d->orig_block == NULL_TREE + || block == d->orig_block) + e->goto_locus = d->new_block ? + COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) : + LOCATION_LOCUS (e->goto_locus); + } +} + +/* Examine the statements in BB (which is in SRC_CFUN); find and return + the outermost EH region. Use REGION as the incoming base EH region. */ + +static eh_region +find_outermost_region_in_block (struct function *src_cfun, + basic_block bb, eh_region region) +{ + gimple_stmt_iterator si; + + for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) + { + gimple stmt = gsi_stmt (si); + eh_region stmt_region; + int lp_nr; + + lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt); + stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr); + if (stmt_region) + { + if (region == NULL) + region = stmt_region; + else if (stmt_region != region) + { + region = eh_region_outermost (src_cfun, stmt_region, region); + gcc_assert (region != NULL); + } + } + } + + return region; +} + +static tree +new_label_mapper (tree decl, void *data) +{ + htab_t hash = (htab_t) data; + struct tree_map *m; + void **slot; + + gcc_assert (TREE_CODE (decl) == LABEL_DECL); + + m = XNEW (struct tree_map); + m->hash = DECL_UID (decl); + m->base.from = decl; + m->to = create_artificial_label (UNKNOWN_LOCATION); + LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl); + if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid) + cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1; + + slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT); + gcc_assert (*slot == NULL); + + *slot = m; + + return m->to; +} + +/* Change DECL_CONTEXT of all BLOCK_VARS in block, including + subblocks. */ + +static void +replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map, + tree to_context) +{ + tree *tp, t; + + for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp)) + { + t = *tp; + if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL) + continue; + replace_by_duplicate_decl (&t, vars_map, to_context); + if (t != *tp) + { + if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp)) + { + SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp)); + DECL_HAS_VALUE_EXPR_P (t) = 1; + } + DECL_CHAIN (t) = DECL_CHAIN (*tp); + *tp = t; + } + } + + for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block)) + replace_block_vars_by_duplicates (block, vars_map, to_context); +} + +/* Fixup the loop arrays and numbers after moving LOOP and its subloops + from FN1 to FN2. */ + +static void +fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2, + struct loop *loop) +{ + /* Discard it from the old loop array. */ + (*get_loops (fn1))[loop->num] = NULL; + + /* Place it in the new loop array, assigning it a new number. */ + loop->num = number_of_loops (fn2); + vec_safe_push (loops_for_fn (fn2)->larray, loop); + + /* Recurse to children. */ + for (loop = loop->inner; loop; loop = loop->next) + fixup_loop_arrays_after_move (fn1, fn2, loop); +} + +/* Move a single-entry, single-exit region delimited by ENTRY_BB and + EXIT_BB to function DEST_CFUN. The whole region is replaced by a + single basic block in the original CFG and the new basic block is + returned. DEST_CFUN must not have a CFG yet. + + Note that the region need not be a pure SESE region. Blocks inside + the region may contain calls to abort/exit. The only restriction + is that ENTRY_BB should be the only entry point and it must + dominate EXIT_BB. + + Change TREE_BLOCK of all statements in ORIG_BLOCK to the new + functions outermost BLOCK, move all subblocks of ORIG_BLOCK + to the new function. + + All local variables referenced in the region are assumed to be in + the corresponding BLOCK_VARS and unexpanded variable lists + associated with DEST_CFUN. */ + +basic_block +move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb, + basic_block exit_bb, tree orig_block) +{ + vec bbs, dom_bbs; + basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb); + basic_block after, bb, *entry_pred, *exit_succ, abb; + struct function *saved_cfun = cfun; + int *entry_flag, *exit_flag; + unsigned *entry_prob, *exit_prob; + unsigned i, num_entry_edges, num_exit_edges, num_nodes; + edge e; + edge_iterator ei; + htab_t new_label_map; + struct pointer_map_t *vars_map, *eh_map; + struct loop *loop = entry_bb->loop_father; + struct loop *loop0 = get_loop (saved_cfun, 0); + struct move_stmt_d d; + + /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE + region. */ + gcc_assert (entry_bb != exit_bb + && (!exit_bb + || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb))); + + /* Collect all the blocks in the region. Manually add ENTRY_BB + because it won't be added by dfs_enumerate_from. */ + bbs.create (0); + bbs.safe_push (entry_bb); + gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs); + + /* The blocks that used to be dominated by something in BBS will now be + dominated by the new block. */ + dom_bbs = get_dominated_by_region (CDI_DOMINATORS, + bbs.address (), + bbs.length ()); + + /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember + the predecessor edges to ENTRY_BB and the successor edges to + EXIT_BB so that we can re-attach them to the new basic block that + will replace the region. */ + num_entry_edges = EDGE_COUNT (entry_bb->preds); + entry_pred = XNEWVEC (basic_block, num_entry_edges); + entry_flag = XNEWVEC (int, num_entry_edges); + entry_prob = XNEWVEC (unsigned, num_entry_edges); + i = 0; + for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;) + { + entry_prob[i] = e->probability; + entry_flag[i] = e->flags; + entry_pred[i++] = e->src; + remove_edge (e); + } + + if (exit_bb) + { + num_exit_edges = EDGE_COUNT (exit_bb->succs); + exit_succ = XNEWVEC (basic_block, num_exit_edges); + exit_flag = XNEWVEC (int, num_exit_edges); + exit_prob = XNEWVEC (unsigned, num_exit_edges); + i = 0; + for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;) + { + exit_prob[i] = e->probability; + exit_flag[i] = e->flags; + exit_succ[i++] = e->dest; + remove_edge (e); + } + } + else + { + num_exit_edges = 0; + exit_succ = NULL; + exit_flag = NULL; + exit_prob = NULL; + } + + /* Switch context to the child function to initialize DEST_FN's CFG. */ + gcc_assert (dest_cfun->cfg == NULL); + push_cfun (dest_cfun); + + init_empty_tree_cfg (); + + /* Initialize EH information for the new function. */ + eh_map = NULL; + new_label_map = NULL; + if (saved_cfun->eh) + { + eh_region region = NULL; + + FOR_EACH_VEC_ELT (bbs, i, bb) + region = find_outermost_region_in_block (saved_cfun, bb, region); + + init_eh_for_function (); + if (region != NULL) + { + new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free); + eh_map = duplicate_eh_regions (saved_cfun, region, 0, + new_label_mapper, new_label_map); + } + } + + /* Initialize an empty loop tree. */ + struct loops *loops = ggc_alloc_cleared_loops (); + init_loops_structure (dest_cfun, loops, 1); + loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES; + set_loops_for_fn (dest_cfun, loops); + + /* Move the outlined loop tree part. */ + num_nodes = bbs.length (); + FOR_EACH_VEC_ELT (bbs, i, bb) + { + if (bb->loop_father->header == bb) + { + struct loop *this_loop = bb->loop_father; + struct loop *outer = loop_outer (this_loop); + if (outer == loop + /* If the SESE region contains some bbs ending with + a noreturn call, those are considered to belong + to the outermost loop in saved_cfun, rather than + the entry_bb's loop_father. */ + || outer == loop0) + { + if (outer != loop) + num_nodes -= this_loop->num_nodes; + flow_loop_tree_node_remove (bb->loop_father); + flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop); + fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop); + } + } + else if (bb->loop_father == loop0 && loop0 != loop) + num_nodes--; + + /* Remove loop exits from the outlined region. */ + if (loops_for_fn (saved_cfun)->exits) + FOR_EACH_EDGE (e, ei, bb->succs) + { + void **slot = htab_find_slot_with_hash + (loops_for_fn (saved_cfun)->exits, e, + htab_hash_pointer (e), NO_INSERT); + if (slot) + htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot); + } + } + + + /* Adjust the number of blocks in the tree root of the outlined part. */ + get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2; + + /* Setup a mapping to be used by move_block_to_fn. */ + loop->aux = current_loops->tree_root; + loop0->aux = current_loops->tree_root; + + pop_cfun (); + + /* Move blocks from BBS into DEST_CFUN. */ + gcc_assert (bbs.length () >= 2); + after = dest_cfun->cfg->x_entry_block_ptr; + vars_map = pointer_map_create (); + + memset (&d, 0, sizeof (d)); + d.orig_block = orig_block; + d.new_block = DECL_INITIAL (dest_cfun->decl); + d.from_context = cfun->decl; + d.to_context = dest_cfun->decl; + d.vars_map = vars_map; + d.new_label_map = new_label_map; + d.eh_map = eh_map; + d.remap_decls_p = true; + + FOR_EACH_VEC_ELT (bbs, i, bb) + { + /* No need to update edge counts on the last block. It has + already been updated earlier when we detached the region from + the original CFG. */ + move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d); + after = bb; + } + + loop->aux = NULL; + loop0->aux = NULL; + /* Loop sizes are no longer correct, fix them up. */ + loop->num_nodes -= num_nodes; + for (struct loop *outer = loop_outer (loop); + outer; outer = loop_outer (outer)) + outer->num_nodes -= num_nodes; + loop0->num_nodes -= bbs.length () - num_nodes; + + if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vect_loops) + { + struct loop *aloop; + for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++) + if (aloop != NULL) + { + if (aloop->simduid) + { + replace_by_duplicate_decl (&aloop->simduid, d.vars_map, + d.to_context); + dest_cfun->has_simduid_loops = true; + } + if (aloop->force_vect) + dest_cfun->has_force_vect_loops = true; + } + } + + /* Rewire BLOCK_SUBBLOCKS of orig_block. */ + if (orig_block) + { + tree block; + gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl)) + == NULL_TREE); + BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl)) + = BLOCK_SUBBLOCKS (orig_block); + for (block = BLOCK_SUBBLOCKS (orig_block); + block; block = BLOCK_CHAIN (block)) + BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl); + BLOCK_SUBBLOCKS (orig_block) = NULL_TREE; + } + + replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl), + vars_map, dest_cfun->decl); + + if (new_label_map) + htab_delete (new_label_map); + if (eh_map) + pointer_map_destroy (eh_map); + pointer_map_destroy (vars_map); + + /* Rewire the entry and exit blocks. The successor to the entry + block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in + the child function. Similarly, the predecessor of DEST_FN's + EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We + need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the + various CFG manipulation function get to the right CFG. + + FIXME, this is silly. The CFG ought to become a parameter to + these helpers. */ + push_cfun (dest_cfun); + make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU); + if (exit_bb) + make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0); + pop_cfun (); + + /* Back in the original function, the SESE region has disappeared, + create a new basic block in its place. */ + bb = create_empty_bb (entry_pred[0]); + if (current_loops) + add_bb_to_loop (bb, loop); + for (i = 0; i < num_entry_edges; i++) + { + e = make_edge (entry_pred[i], bb, entry_flag[i]); + e->probability = entry_prob[i]; + } + + for (i = 0; i < num_exit_edges; i++) + { + e = make_edge (bb, exit_succ[i], exit_flag[i]); + e->probability = exit_prob[i]; + } + + set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry); + FOR_EACH_VEC_ELT (dom_bbs, i, abb) + set_immediate_dominator (CDI_DOMINATORS, abb, bb); + dom_bbs.release (); + + if (exit_bb) + { + free (exit_prob); + free (exit_flag); + free (exit_succ); + } + free (entry_prob); + free (entry_flag); + free (entry_pred); + bbs.release (); + + return bb; +} + + +/* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h) + */ + +void +dump_function_to_file (tree fndecl, FILE *file, int flags) +{ + tree arg, var, old_current_fndecl = current_function_decl; + struct function *dsf; + bool ignore_topmost_bind = false, any_var = false; + basic_block bb; + tree chain; + bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL + && decl_is_tm_clone (fndecl)); + struct function *fun = DECL_STRUCT_FUNCTION (fndecl); + + current_function_decl = fndecl; + fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : ""); + + arg = DECL_ARGUMENTS (fndecl); + while (arg) + { + print_generic_expr (file, TREE_TYPE (arg), dump_flags); + fprintf (file, " "); + print_generic_expr (file, arg, dump_flags); + if (flags & TDF_VERBOSE) + print_node (file, "", arg, 4); + if (DECL_CHAIN (arg)) + fprintf (file, ", "); + arg = DECL_CHAIN (arg); + } + fprintf (file, ")\n"); + + if (flags & TDF_VERBOSE) + print_node (file, "", fndecl, 2); + + dsf = DECL_STRUCT_FUNCTION (fndecl); + if (dsf && (flags & TDF_EH)) + dump_eh_tree (file, dsf); + + if (flags & TDF_RAW && !gimple_has_body_p (fndecl)) + { + dump_node (fndecl, TDF_SLIM | flags, file); + current_function_decl = old_current_fndecl; + return; + } + + /* When GIMPLE is lowered, the variables are no longer available in + BIND_EXPRs, so display them separately. */ + if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf)) + { + unsigned ix; + ignore_topmost_bind = true; + + fprintf (file, "{\n"); + if (!vec_safe_is_empty (fun->local_decls)) + FOR_EACH_LOCAL_DECL (fun, ix, var) + { + print_generic_decl (file, var, flags); + if (flags & TDF_VERBOSE) + print_node (file, "", var, 4); + fprintf (file, "\n"); + + any_var = true; + } + if (gimple_in_ssa_p (cfun)) + for (ix = 1; ix < num_ssa_names; ++ix) + { + tree name = ssa_name (ix); + if (name && !SSA_NAME_VAR (name)) + { + fprintf (file, " "); + print_generic_expr (file, TREE_TYPE (name), flags); + fprintf (file, " "); + print_generic_expr (file, name, flags); + fprintf (file, ";\n"); + + any_var = true; + } + } + } + + if (fun && fun->decl == fndecl + && fun->cfg + && basic_block_info_for_fn (fun)) + { + /* If the CFG has been built, emit a CFG-based dump. */ + if (!ignore_topmost_bind) + fprintf (file, "{\n"); + + if (any_var && n_basic_blocks_for_fn (fun)) + fprintf (file, "\n"); + + FOR_EACH_BB_FN (bb, fun) + dump_bb (file, bb, 2, flags | TDF_COMMENT); + + fprintf (file, "}\n"); + } + else if (DECL_SAVED_TREE (fndecl) == NULL) + { + /* The function is now in GIMPLE form but the CFG has not been + built yet. Emit the single sequence of GIMPLE statements + that make up its body. */ + gimple_seq body = gimple_body (fndecl); + + if (gimple_seq_first_stmt (body) + && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body) + && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND) + print_gimple_seq (file, body, 0, flags); + else + { + if (!ignore_topmost_bind) + fprintf (file, "{\n"); + + if (any_var) + fprintf (file, "\n"); + + print_gimple_seq (file, body, 2, flags); + fprintf (file, "}\n"); + } + } + else + { + int indent; + + /* Make a tree based dump. */ + chain = DECL_SAVED_TREE (fndecl); + if (chain && TREE_CODE (chain) == BIND_EXPR) + { + if (ignore_topmost_bind) + { + chain = BIND_EXPR_BODY (chain); + indent = 2; + } + else + indent = 0; + } + else + { + if (!ignore_topmost_bind) + fprintf (file, "{\n"); + indent = 2; + } + + if (any_var) + fprintf (file, "\n"); + + print_generic_stmt_indented (file, chain, flags, indent); + if (ignore_topmost_bind) + fprintf (file, "}\n"); + } + + if (flags & TDF_ENUMERATE_LOCALS) + dump_enumerated_decls (file, flags); + fprintf (file, "\n\n"); + + current_function_decl = old_current_fndecl; +} + +/* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */ + +DEBUG_FUNCTION void +debug_function (tree fn, int flags) +{ + dump_function_to_file (fn, stderr, flags); +} + + +/* Print on FILE the indexes for the predecessors of basic_block BB. */ + +static void +print_pred_bbs (FILE *file, basic_block bb) +{ + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, bb->preds) + fprintf (file, "bb_%d ", e->src->index); +} + + +/* Print on FILE the indexes for the successors of basic_block BB. */ + +static void +print_succ_bbs (FILE *file, basic_block bb) +{ + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, bb->succs) + fprintf (file, "bb_%d ", e->dest->index); +} + +/* Print to FILE the basic block BB following the VERBOSITY level. */ + +void +print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity) +{ + char *s_indent = (char *) alloca ((size_t) indent + 1); + memset ((void *) s_indent, ' ', (size_t) indent); + s_indent[indent] = '\0'; + + /* Print basic_block's header. */ + if (verbosity >= 2) + { + fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index); + print_pred_bbs (file, bb); + fprintf (file, "}, succs = {"); + print_succ_bbs (file, bb); + fprintf (file, "})\n"); + } + + /* Print basic_block's body. */ + if (verbosity >= 3) + { + fprintf (file, "%s {\n", s_indent); + dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS); + fprintf (file, "%s }\n", s_indent); + } +} + +static void print_loop_and_siblings (FILE *, struct loop *, int, int); + +/* Pretty print LOOP on FILE, indented INDENT spaces. Following + VERBOSITY level this outputs the contents of the loop, or just its + structure. */ + +static void +print_loop (FILE *file, struct loop *loop, int indent, int verbosity) +{ + char *s_indent; + basic_block bb; + + if (loop == NULL) + return; + + s_indent = (char *) alloca ((size_t) indent + 1); + memset ((void *) s_indent, ' ', (size_t) indent); + s_indent[indent] = '\0'; + + /* Print loop's header. */ + fprintf (file, "%sloop_%d (", s_indent, loop->num); + if (loop->header) + fprintf (file, "header = %d", loop->header->index); + else + { + fprintf (file, "deleted)\n"); + return; + } + if (loop->latch) + fprintf (file, ", latch = %d", loop->latch->index); + else + fprintf (file, ", multiple latches"); + fprintf (file, ", niter = "); + print_generic_expr (file, loop->nb_iterations, 0); + + if (loop->any_upper_bound) + { + fprintf (file, ", upper_bound = "); + dump_double_int (file, loop->nb_iterations_upper_bound, true); + } + + if (loop->any_estimate) + { + fprintf (file, ", estimate = "); + dump_double_int (file, loop->nb_iterations_estimate, true); + } + fprintf (file, ")\n"); + + /* Print loop's body. */ + if (verbosity >= 1) + { + fprintf (file, "%s{\n", s_indent); + FOR_EACH_BB_FN (bb, cfun) + if (bb->loop_father == loop) + print_loops_bb (file, bb, indent, verbosity); + + print_loop_and_siblings (file, loop->inner, indent + 2, verbosity); + fprintf (file, "%s}\n", s_indent); + } +} + +/* Print the LOOP and its sibling loops on FILE, indented INDENT + spaces. Following VERBOSITY level this outputs the contents of the + loop, or just its structure. */ + +static void +print_loop_and_siblings (FILE *file, struct loop *loop, int indent, + int verbosity) +{ + if (loop == NULL) + return; + + print_loop (file, loop, indent, verbosity); + print_loop_and_siblings (file, loop->next, indent, verbosity); +} + +/* Follow a CFG edge from the entry point of the program, and on entry + of a loop, pretty print the loop structure on FILE. */ + +void +print_loops (FILE *file, int verbosity) +{ + basic_block bb; + + bb = ENTRY_BLOCK_PTR_FOR_FN (cfun); + if (bb && bb->loop_father) + print_loop_and_siblings (file, bb->loop_father, 0, verbosity); +} + +/* Dump a loop. */ + +DEBUG_FUNCTION void +debug (struct loop &ref) +{ + print_loop (stderr, &ref, 0, /*verbosity*/0); +} + +DEBUG_FUNCTION void +debug (struct loop *ptr) +{ + if (ptr) + debug (*ptr); + else + fprintf (stderr, "\n"); +} + +/* Dump a loop verbosely. */ + +DEBUG_FUNCTION void +debug_verbose (struct loop &ref) +{ + print_loop (stderr, &ref, 0, /*verbosity*/3); +} + +DEBUG_FUNCTION void +debug_verbose (struct loop *ptr) +{ + if (ptr) + debug (*ptr); + else + fprintf (stderr, "\n"); +} + + +/* Debugging loops structure at tree level, at some VERBOSITY level. */ + +DEBUG_FUNCTION void +debug_loops (int verbosity) +{ + print_loops (stderr, verbosity); +} + +/* Print on stderr the code of LOOP, at some VERBOSITY level. */ + +DEBUG_FUNCTION void +debug_loop (struct loop *loop, int verbosity) +{ + print_loop (stderr, loop, 0, verbosity); +} + +/* Print on stderr the code of loop number NUM, at some VERBOSITY + level. */ + +DEBUG_FUNCTION void +debug_loop_num (unsigned num, int verbosity) +{ + debug_loop (get_loop (cfun, num), verbosity); +} + +/* Return true if BB ends with a call, possibly followed by some + instructions that must stay with the call. Return false, + otherwise. */ + +static bool +gimple_block_ends_with_call_p (basic_block bb) +{ + gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb); + return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi)); +} + + +/* Return true if BB ends with a conditional branch. Return false, + otherwise. */ + +static bool +gimple_block_ends_with_condjump_p (const_basic_block bb) +{ + gimple stmt = last_stmt (CONST_CAST_BB (bb)); + return (stmt && gimple_code (stmt) == GIMPLE_COND); +} + + +/* Return true if we need to add fake edge to exit at statement T. + Helper function for gimple_flow_call_edges_add. */ + +static bool +need_fake_edge_p (gimple t) +{ + tree fndecl = NULL_TREE; + int call_flags = 0; + + /* NORETURN and LONGJMP calls already have an edge to exit. + CONST and PURE calls do not need one. + We don't currently check for CONST and PURE here, although + it would be a good idea, because those attributes are + figured out from the RTL in mark_constant_function, and + the counter incrementation code from -fprofile-arcs + leads to different results from -fbranch-probabilities. */ + if (is_gimple_call (t)) + { + fndecl = gimple_call_fndecl (t); + call_flags = gimple_call_flags (t); + } + + if (is_gimple_call (t) + && fndecl + && DECL_BUILT_IN (fndecl) + && (call_flags & ECF_NOTHROW) + && !(call_flags & ECF_RETURNS_TWICE) + /* fork() doesn't really return twice, but the effect of + wrapping it in __gcov_fork() which calls __gcov_flush() + and clears the counters before forking has the same + effect as returning twice. Force a fake edge. */ + && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL + && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK)) + return false; + + if (is_gimple_call (t)) + { + edge_iterator ei; + edge e; + basic_block bb; + + if (!(call_flags & ECF_NORETURN)) + return true; + + bb = gimple_bb (t); + FOR_EACH_EDGE (e, ei, bb->succs) + if ((e->flags & EDGE_FAKE) == 0) + return true; + } + + if (gimple_code (t) == GIMPLE_ASM + && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t))) + return true; + + return false; +} + + +/* Add fake edges to the function exit for any non constant and non + noreturn calls (or noreturn calls with EH/abnormal edges), + volatile inline assembly in the bitmap of blocks specified by BLOCKS + or to the whole CFG if BLOCKS is zero. Return the number of blocks + that were split. + + The goal is to expose cases in which entering a basic block does + not imply that all subsequent instructions must be executed. */ + +static int +gimple_flow_call_edges_add (sbitmap blocks) +{ + int i; + int blocks_split = 0; + int last_bb = last_basic_block_for_fn (cfun); + bool check_last_block = false; + + if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS) + return 0; + + if (! blocks) + check_last_block = true; + else + check_last_block = bitmap_bit_p (blocks, + EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index); + + /* In the last basic block, before epilogue generation, there will be + a fallthru edge to EXIT. Special care is required if the last insn + of the last basic block is a call because make_edge folds duplicate + edges, which would result in the fallthru edge also being marked + fake, which would result in the fallthru edge being removed by + remove_fake_edges, which would result in an invalid CFG. + + Moreover, we can't elide the outgoing fake edge, since the block + profiler needs to take this into account in order to solve the minimal + spanning tree in the case that the call doesn't return. + + Handle this by adding a dummy instruction in a new last basic block. */ + if (check_last_block) + { + basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb; + gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb); + gimple t = NULL; + + if (!gsi_end_p (gsi)) + t = gsi_stmt (gsi); + + if (t && need_fake_edge_p (t)) + { + edge e; + + e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)); + if (e) + { + gsi_insert_on_edge (e, gimple_build_nop ()); + gsi_commit_edge_inserts (); + } + } + } + + /* Now add fake edges to the function exit for any non constant + calls since there is no way that we can determine if they will + return or not... */ + for (i = 0; i < last_bb; i++) + { + basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); + gimple_stmt_iterator gsi; + gimple stmt, last_stmt; + + if (!bb) + continue; + + if (blocks && !bitmap_bit_p (blocks, i)) + continue; + + gsi = gsi_last_nondebug_bb (bb); + if (!gsi_end_p (gsi)) + { + last_stmt = gsi_stmt (gsi); + do + { + stmt = gsi_stmt (gsi); + if (need_fake_edge_p (stmt)) + { + edge e; + + /* The handling above of the final block before the + epilogue should be enough to verify that there is + no edge to the exit block in CFG already. + Calling make_edge in such case would cause us to + mark that edge as fake and remove it later. */ +#ifdef ENABLE_CHECKING + if (stmt == last_stmt) + { + e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)); + gcc_assert (e == NULL); + } +#endif + + /* Note that the following may create a new basic block + and renumber the existing basic blocks. */ + if (stmt != last_stmt) + { + e = split_block (bb, stmt); + if (e) + blocks_split++; + } + make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE); + } + gsi_prev (&gsi); + } + while (!gsi_end_p (gsi)); + } + } + + if (blocks_split) + verify_flow_info (); + + return blocks_split; +} + +/* Removes edge E and all the blocks dominated by it, and updates dominance + information. The IL in E->src needs to be updated separately. + If dominance info is not available, only the edge E is removed.*/ + +void +remove_edge_and_dominated_blocks (edge e) +{ + vec bbs_to_remove = vNULL; + vec bbs_to_fix_dom = vNULL; + bitmap df, df_idom; + edge f; + edge_iterator ei; + bool none_removed = false; + unsigned i; + basic_block bb, dbb; + bitmap_iterator bi; + + if (!dom_info_available_p (CDI_DOMINATORS)) + { + remove_edge (e); + return; + } + + /* No updating is needed for edges to exit. */ + if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) + { + if (cfgcleanup_altered_bbs) + bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index); + remove_edge (e); + return; + } + + /* First, we find the basic blocks to remove. If E->dest has a predecessor + that is not dominated by E->dest, then this set is empty. Otherwise, + all the basic blocks dominated by E->dest are removed. + + Also, to DF_IDOM we store the immediate dominators of the blocks in + the dominance frontier of E (i.e., of the successors of the + removed blocks, if there are any, and of E->dest otherwise). */ + FOR_EACH_EDGE (f, ei, e->dest->preds) + { + if (f == e) + continue; + + if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest)) + { + none_removed = true; + break; + } + } + + df = BITMAP_ALLOC (NULL); + df_idom = BITMAP_ALLOC (NULL); + + if (none_removed) + bitmap_set_bit (df_idom, + get_immediate_dominator (CDI_DOMINATORS, e->dest)->index); + else + { + bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest); + FOR_EACH_VEC_ELT (bbs_to_remove, i, bb) + { + FOR_EACH_EDGE (f, ei, bb->succs) + { + if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) + bitmap_set_bit (df, f->dest->index); + } + } + FOR_EACH_VEC_ELT (bbs_to_remove, i, bb) + bitmap_clear_bit (df, bb->index); + + EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi) + { + bb = BASIC_BLOCK_FOR_FN (cfun, i); + bitmap_set_bit (df_idom, + get_immediate_dominator (CDI_DOMINATORS, bb)->index); + } + } + + if (cfgcleanup_altered_bbs) + { + /* Record the set of the altered basic blocks. */ + bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index); + bitmap_ior_into (cfgcleanup_altered_bbs, df); + } + + /* Remove E and the cancelled blocks. */ + if (none_removed) + remove_edge (e); + else + { + /* Walk backwards so as to get a chance to substitute all + released DEFs into debug stmts. See + eliminate_unnecessary_stmts() in tree-ssa-dce.c for more + details. */ + for (i = bbs_to_remove.length (); i-- > 0; ) + delete_basic_block (bbs_to_remove[i]); + } + + /* Update the dominance information. The immediate dominator may change only + for blocks whose immediate dominator belongs to DF_IDOM: + + Suppose that idom(X) = Y before removal of E and idom(X) != Y after the + removal. Let Z the arbitrary block such that idom(Z) = Y and + Z dominates X after the removal. Before removal, there exists a path P + from Y to X that avoids Z. Let F be the last edge on P that is + removed, and let W = F->dest. Before removal, idom(W) = Y (since Y + dominates W, and because of P, Z does not dominate W), and W belongs to + the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */ + EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi) + { + bb = BASIC_BLOCK_FOR_FN (cfun, i); + for (dbb = first_dom_son (CDI_DOMINATORS, bb); + dbb; + dbb = next_dom_son (CDI_DOMINATORS, dbb)) + bbs_to_fix_dom.safe_push (dbb); + } + + iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true); + + BITMAP_FREE (df); + BITMAP_FREE (df_idom); + bbs_to_remove.release (); + bbs_to_fix_dom.release (); +} + +/* Purge dead EH edges from basic block BB. */ + +bool +gimple_purge_dead_eh_edges (basic_block bb) +{ + bool changed = false; + edge e; + edge_iterator ei; + gimple stmt = last_stmt (bb); + + if (stmt && stmt_can_throw_internal (stmt)) + return false; + + for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) + { + if (e->flags & EDGE_EH) + { + remove_edge_and_dominated_blocks (e); + changed = true; + } + else + ei_next (&ei); + } + + return changed; +} + +/* Purge dead EH edges from basic block listed in BLOCKS. */ + +bool +gimple_purge_all_dead_eh_edges (const_bitmap blocks) +{ + bool changed = false; + unsigned i; + bitmap_iterator bi; + + EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi) + { + basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); + + /* Earlier gimple_purge_dead_eh_edges could have removed + this basic block already. */ + gcc_assert (bb || changed); + if (bb != NULL) + changed |= gimple_purge_dead_eh_edges (bb); + } + + return changed; +} + +/* Purge dead abnormal call edges from basic block BB. */ + +bool +gimple_purge_dead_abnormal_call_edges (basic_block bb) +{ + bool changed = false; + edge e; + edge_iterator ei; + gimple stmt = last_stmt (bb); + + if (!cfun->has_nonlocal_label + && !cfun->calls_setjmp) + return false; + + if (stmt && stmt_can_make_abnormal_goto (stmt)) + return false; + + for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) + { + if (e->flags & EDGE_ABNORMAL) + { + if (e->flags & EDGE_FALLTHRU) + e->flags &= ~EDGE_ABNORMAL; + else + remove_edge_and_dominated_blocks (e); + changed = true; + } + else + ei_next (&ei); + } + + return changed; +} + +/* Purge dead abnormal call edges from basic block listed in BLOCKS. */ + +bool +gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks) +{ + bool changed = false; + unsigned i; + bitmap_iterator bi; + + EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi) + { + basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); + + /* Earlier gimple_purge_dead_abnormal_call_edges could have removed + this basic block already. */ + gcc_assert (bb || changed); + if (bb != NULL) + changed |= gimple_purge_dead_abnormal_call_edges (bb); + } + + return changed; +} + +/* This function is called whenever a new edge is created or + redirected. */ + +static void +gimple_execute_on_growing_pred (edge e) +{ + basic_block bb = e->dest; + + if (!gimple_seq_empty_p (phi_nodes (bb))) + reserve_phi_args_for_new_edge (bb); +} + +/* This function is called immediately before edge E is removed from + the edge vector E->dest->preds. */ + +static void +gimple_execute_on_shrinking_pred (edge e) +{ + if (!gimple_seq_empty_p (phi_nodes (e->dest))) + remove_phi_args (e); +} + +/*--------------------------------------------------------------------------- + Helper functions for Loop versioning + ---------------------------------------------------------------------------*/ + +/* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy + of 'first'. Both of them are dominated by 'new_head' basic block. When + 'new_head' was created by 'second's incoming edge it received phi arguments + on the edge by split_edge(). Later, additional edge 'e' was created to + connect 'new_head' and 'first'. Now this routine adds phi args on this + additional edge 'e' that new_head to second edge received as part of edge + splitting. */ + +static void +gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second, + basic_block new_head, edge e) +{ + gimple phi1, phi2; + gimple_stmt_iterator psi1, psi2; + tree def; + edge e2 = find_edge (new_head, second); + + /* Because NEW_HEAD has been created by splitting SECOND's incoming + edge, we should always have an edge from NEW_HEAD to SECOND. */ + gcc_assert (e2 != NULL); + + /* Browse all 'second' basic block phi nodes and add phi args to + edge 'e' for 'first' head. PHI args are always in correct order. */ + + for (psi2 = gsi_start_phis (second), + psi1 = gsi_start_phis (first); + !gsi_end_p (psi2) && !gsi_end_p (psi1); + gsi_next (&psi2), gsi_next (&psi1)) + { + phi1 = gsi_stmt (psi1); + phi2 = gsi_stmt (psi2); + def = PHI_ARG_DEF (phi2, e2->dest_idx); + add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2)); + } +} + + +/* Adds a if else statement to COND_BB with condition COND_EXPR. + SECOND_HEAD is the destination of the THEN and FIRST_HEAD is + the destination of the ELSE part. */ + +static void +gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED, + basic_block second_head ATTRIBUTE_UNUSED, + basic_block cond_bb, void *cond_e) +{ + gimple_stmt_iterator gsi; + gimple new_cond_expr; + tree cond_expr = (tree) cond_e; + edge e0; + + /* Build new conditional expr */ + new_cond_expr = gimple_build_cond_from_tree (cond_expr, + NULL_TREE, NULL_TREE); + + /* Add new cond in cond_bb. */ + gsi = gsi_last_bb (cond_bb); + gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT); + + /* Adjust edges appropriately to connect new head with first head + as well as second head. */ + e0 = single_succ_edge (cond_bb); + e0->flags &= ~EDGE_FALLTHRU; + e0->flags |= EDGE_FALSE_VALUE; +} + + +/* Do book-keeping of basic block BB for the profile consistency checker. + If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1 + then do post-pass accounting. Store the counting in RECORD. */ +static void +gimple_account_profile_record (basic_block bb, int after_pass, + struct profile_record *record) +{ + gimple_stmt_iterator i; + for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i)) + { + record->size[after_pass] + += estimate_num_insns (gsi_stmt (i), &eni_size_weights); + if (profile_status_for_fn (cfun) == PROFILE_READ) + record->time[after_pass] + += estimate_num_insns (gsi_stmt (i), + &eni_time_weights) * bb->count; + else if (profile_status_for_fn (cfun) == PROFILE_GUESSED) + record->time[after_pass] + += estimate_num_insns (gsi_stmt (i), + &eni_time_weights) * bb->frequency; + } +} + +struct cfg_hooks gimple_cfg_hooks = { + "gimple", + gimple_verify_flow_info, + gimple_dump_bb, /* dump_bb */ + gimple_dump_bb_for_graph, /* dump_bb_for_graph */ + create_bb, /* create_basic_block */ + gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */ + gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */ + gimple_can_remove_branch_p, /* can_remove_branch_p */ + remove_bb, /* delete_basic_block */ + gimple_split_block, /* split_block */ + gimple_move_block_after, /* move_block_after */ + gimple_can_merge_blocks_p, /* can_merge_blocks_p */ + gimple_merge_blocks, /* merge_blocks */ + gimple_predict_edge, /* predict_edge */ + gimple_predicted_by_p, /* predicted_by_p */ + gimple_can_duplicate_bb_p, /* can_duplicate_block_p */ + gimple_duplicate_bb, /* duplicate_block */ + gimple_split_edge, /* split_edge */ + gimple_make_forwarder_block, /* make_forward_block */ + NULL, /* tidy_fallthru_edge */ + NULL, /* force_nonfallthru */ + gimple_block_ends_with_call_p,/* block_ends_with_call_p */ + gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */ + gimple_flow_call_edges_add, /* flow_call_edges_add */ + gimple_execute_on_growing_pred, /* execute_on_growing_pred */ + gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */ + gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */ + gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */ + gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/ + extract_true_false_edges_from_block, /* extract_cond_bb_edges */ + flush_pending_stmts, /* flush_pending_stmts */ + gimple_empty_block_p, /* block_empty_p */ + gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */ + gimple_account_profile_record, +}; + + +/* Split all critical edges. */ + +unsigned int +split_critical_edges (void) +{ + basic_block bb; + edge e; + edge_iterator ei; + + /* split_edge can redirect edges out of SWITCH_EXPRs, which can get + expensive. So we want to enable recording of edge to CASE_LABEL_EXPR + mappings around the calls to split_edge. */ + start_recording_case_labels (); + FOR_ALL_BB_FN (bb, cfun) + { + FOR_EACH_EDGE (e, ei, bb->succs) + { + if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL)) + split_edge (e); + /* PRE inserts statements to edges and expects that + since split_critical_edges was done beforehand, committing edge + insertions will not split more edges. In addition to critical + edges we must split edges that have multiple successors and + end by control flow statements, such as RESX. + Go ahead and split them too. This matches the logic in + gimple_find_edge_insert_loc. */ + else if ((!single_pred_p (e->dest) + || !gimple_seq_empty_p (phi_nodes (e->dest)) + || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) + && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) + && !(e->flags & EDGE_ABNORMAL)) + { + gimple_stmt_iterator gsi; + + gsi = gsi_last_bb (e->src); + if (!gsi_end_p (gsi) + && stmt_ends_bb_p (gsi_stmt (gsi)) + && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN + && !gimple_call_builtin_p (gsi_stmt (gsi), + BUILT_IN_RETURN))) + split_edge (e); + } + } + } + end_recording_case_labels (); + return 0; +} + +namespace { + +const pass_data pass_data_split_crit_edges = +{ + GIMPLE_PASS, /* type */ + "crited", /* name */ + OPTGROUP_NONE, /* optinfo_flags */ + false, /* has_gate */ + true, /* has_execute */ + TV_TREE_SPLIT_EDGES, /* tv_id */ + PROP_cfg, /* properties_required */ + PROP_no_crit_edges, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_verify_flow, /* todo_flags_finish */ +}; + +class pass_split_crit_edges : public gimple_opt_pass +{ +public: + pass_split_crit_edges (gcc::context *ctxt) + : gimple_opt_pass (pass_data_split_crit_edges, ctxt) + {} + + /* opt_pass methods: */ + unsigned int execute () { return split_critical_edges (); } + + opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); } +}; // class pass_split_crit_edges + +} // anon namespace + +gimple_opt_pass * +make_pass_split_crit_edges (gcc::context *ctxt) +{ + return new pass_split_crit_edges (ctxt); +} + + +/* Build a ternary operation and gimplify it. Emit code before GSI. + Return the gimple_val holding the result. */ + +tree +gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code, + tree type, tree a, tree b, tree c) +{ + tree ret; + location_t loc = gimple_location (gsi_stmt (*gsi)); + + ret = fold_build3_loc (loc, code, type, a, b, c); + STRIP_NOPS (ret); + + return force_gimple_operand_gsi (gsi, ret, true, NULL, true, + GSI_SAME_STMT); +} + +/* Build a binary operation and gimplify it. Emit code before GSI. + Return the gimple_val holding the result. */ + +tree +gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code, + tree type, tree a, tree b) +{ + tree ret; + + ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b); + STRIP_NOPS (ret); + + return force_gimple_operand_gsi (gsi, ret, true, NULL, true, + GSI_SAME_STMT); +} + +/* Build a unary operation and gimplify it. Emit code before GSI. + Return the gimple_val holding the result. */ + +tree +gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type, + tree a) +{ + tree ret; + + ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a); + STRIP_NOPS (ret); + + return force_gimple_operand_gsi (gsi, ret, true, NULL, true, + GSI_SAME_STMT); +} + + + +/* Emit return warnings. */ + +static unsigned int +execute_warn_function_return (void) +{ + source_location location; + gimple last; + edge e; + edge_iterator ei; + + if (!targetm.warn_func_return (cfun->decl)) + return 0; + + /* If we have a path to EXIT, then we do return. */ + if (TREE_THIS_VOLATILE (cfun->decl) + && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0) + { + location = UNKNOWN_LOCATION; + FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) + { + last = last_stmt (e->src); + if ((gimple_code (last) == GIMPLE_RETURN + || gimple_call_builtin_p (last, BUILT_IN_RETURN)) + && (location = gimple_location (last)) != UNKNOWN_LOCATION) + break; + } + if (location == UNKNOWN_LOCATION) + location = cfun->function_end_locus; + warning_at (location, 0, "% function does return"); + } + + /* If we see "return;" in some basic block, then we do reach the end + without returning a value. */ + else if (warn_return_type + && !TREE_NO_WARNING (cfun->decl) + && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0 + && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl)))) + { + FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) + { + gimple last = last_stmt (e->src); + if (gimple_code (last) == GIMPLE_RETURN + && gimple_return_retval (last) == NULL + && !gimple_no_warning_p (last)) + { + location = gimple_location (last); + if (location == UNKNOWN_LOCATION) + location = cfun->function_end_locus; + warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function"); + TREE_NO_WARNING (cfun->decl) = 1; + break; + } + } + } + return 0; +} + + +/* Given a basic block B which ends with a conditional and has + precisely two successors, determine which of the edges is taken if + the conditional is true and which is taken if the conditional is + false. Set TRUE_EDGE and FALSE_EDGE appropriately. */ + +void +extract_true_false_edges_from_block (basic_block b, + edge *true_edge, + edge *false_edge) +{ + edge e = EDGE_SUCC (b, 0); + + if (e->flags & EDGE_TRUE_VALUE) + { + *true_edge = e; + *false_edge = EDGE_SUCC (b, 1); + } + else + { + *false_edge = e; + *true_edge = EDGE_SUCC (b, 1); + } +} + +namespace { + +const pass_data pass_data_warn_function_return = +{ + GIMPLE_PASS, /* type */ + "*warn_function_return", /* name */ + OPTGROUP_NONE, /* optinfo_flags */ + false, /* has_gate */ + true, /* has_execute */ + TV_NONE, /* tv_id */ + PROP_cfg, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + 0, /* todo_flags_finish */ +}; + +class pass_warn_function_return : public gimple_opt_pass +{ +public: + pass_warn_function_return (gcc::context *ctxt) + : gimple_opt_pass (pass_data_warn_function_return, ctxt) + {} + + /* opt_pass methods: */ + unsigned int execute () { return execute_warn_function_return (); } + +}; // class pass_warn_function_return + +} // anon namespace + +gimple_opt_pass * +make_pass_warn_function_return (gcc::context *ctxt) +{ + return new pass_warn_function_return (ctxt); +} + +/* Walk a gimplified function and warn for functions whose return value is + ignored and attribute((warn_unused_result)) is set. This is done before + inlining, so we don't have to worry about that. */ + +static void +do_warn_unused_result (gimple_seq seq) +{ + tree fdecl, ftype; + gimple_stmt_iterator i; + + for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i)) + { + gimple g = gsi_stmt (i); + + switch (gimple_code (g)) + { + case GIMPLE_BIND: + do_warn_unused_result (gimple_bind_body (g)); + break; + case GIMPLE_TRY: + do_warn_unused_result (gimple_try_eval (g)); + do_warn_unused_result (gimple_try_cleanup (g)); + break; + case GIMPLE_CATCH: + do_warn_unused_result (gimple_catch_handler (g)); + break; + case GIMPLE_EH_FILTER: + do_warn_unused_result (gimple_eh_filter_failure (g)); + break; + + case GIMPLE_CALL: + if (gimple_call_lhs (g)) + break; + if (gimple_call_internal_p (g)) + break; + + /* This is a naked call, as opposed to a GIMPLE_CALL with an + LHS. All calls whose value is ignored should be + represented like this. Look for the attribute. */ + fdecl = gimple_call_fndecl (g); + ftype = gimple_call_fntype (g); + + if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype))) + { + location_t loc = gimple_location (g); + + if (fdecl) + warning_at (loc, OPT_Wunused_result, + "ignoring return value of %qD, " + "declared with attribute warn_unused_result", + fdecl); + else + warning_at (loc, OPT_Wunused_result, + "ignoring return value of function " + "declared with attribute warn_unused_result"); + } + break; + + default: + /* Not a container, not a call, or a call whose value is used. */ + break; + } + } +} + +static unsigned int +run_warn_unused_result (void) +{ + do_warn_unused_result (gimple_body (current_function_decl)); + return 0; +} + +static bool +gate_warn_unused_result (void) +{ + return flag_warn_unused_result; +} + +namespace { + +const pass_data pass_data_warn_unused_result = +{ + GIMPLE_PASS, /* type */ + "*warn_unused_result", /* name */ + OPTGROUP_NONE, /* optinfo_flags */ + true, /* has_gate */ + true, /* has_execute */ + TV_NONE, /* tv_id */ + PROP_gimple_any, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + 0, /* todo_flags_finish */ +}; + +class pass_warn_unused_result : public gimple_opt_pass +{ +public: + pass_warn_unused_result (gcc::context *ctxt) + : gimple_opt_pass (pass_data_warn_unused_result, ctxt) + {} + + /* opt_pass methods: */ + bool gate () { return gate_warn_unused_result (); } + unsigned int execute () { return run_warn_unused_result (); } + +}; // class pass_warn_unused_result + +} // anon namespace + +gimple_opt_pass * +make_pass_warn_unused_result (gcc::context *ctxt) +{ + return new pass_warn_unused_result (ctxt); +} + +/* IPA passes, compilation of earlier functions or inlining + might have changed some properties, such as marked functions nothrow, + pure, const or noreturn. + Remove redundant edges and basic blocks, and create new ones if necessary. + + This pass can't be executed as stand alone pass from pass manager, because + in between inlining and this fixup the verify_flow_info would fail. */ + +unsigned int +execute_fixup_cfg (void) +{ + basic_block bb; + gimple_stmt_iterator gsi; + int todo = gimple_in_ssa_p (cfun) ? TODO_verify_ssa : 0; + gcov_type count_scale; + edge e; + edge_iterator ei; + + count_scale + = GCOV_COMPUTE_SCALE (cgraph_get_node (current_function_decl)->count, + ENTRY_BLOCK_PTR_FOR_FN (cfun)->count); + + ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = + cgraph_get_node (current_function_decl)->count; + EXIT_BLOCK_PTR_FOR_FN (cfun)->count = + apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count, + count_scale); + + FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) + e->count = apply_scale (e->count, count_scale); + + FOR_EACH_BB_FN (bb, cfun) + { + bb->count = apply_scale (bb->count, count_scale); + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple stmt = gsi_stmt (gsi); + tree decl = is_gimple_call (stmt) + ? gimple_call_fndecl (stmt) + : NULL; + if (decl) + { + int flags = gimple_call_flags (stmt); + if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE)) + { + if (gimple_purge_dead_abnormal_call_edges (bb)) + todo |= TODO_cleanup_cfg; + + if (gimple_in_ssa_p (cfun)) + { + todo |= TODO_update_ssa | TODO_cleanup_cfg; + update_stmt (stmt); + } + } + + if (flags & ECF_NORETURN + && fixup_noreturn_call (stmt)) + todo |= TODO_cleanup_cfg; + } + + if (maybe_clean_eh_stmt (stmt) + && gimple_purge_dead_eh_edges (bb)) + todo |= TODO_cleanup_cfg; + } + + FOR_EACH_EDGE (e, ei, bb->succs) + e->count = apply_scale (e->count, count_scale); + + /* If we have a basic block with no successors that does not + end with a control statement or a noreturn call end it with + a call to __builtin_unreachable. This situation can occur + when inlining a noreturn call that does in fact return. */ + if (EDGE_COUNT (bb->succs) == 0) + { + gimple stmt = last_stmt (bb); + if (!stmt + || (!is_ctrl_stmt (stmt) + && (!is_gimple_call (stmt) + || (gimple_call_flags (stmt) & ECF_NORETURN) == 0))) + { + stmt = gimple_build_call + (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0); + gimple_stmt_iterator gsi = gsi_last_bb (bb); + gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); + } + } + } + if (count_scale != REG_BR_PROB_BASE) + compute_function_frequency (); + + /* We just processed all calls. */ + if (cfun->gimple_df) + vec_free (MODIFIED_NORETURN_CALLS (cfun)); + + /* Dump a textual representation of the flowgraph. */ + if (dump_file) + gimple_dump_cfg (dump_file, dump_flags); + + if (current_loops + && (todo & TODO_cleanup_cfg)) + loops_state_set (LOOPS_NEED_FIXUP); + + return todo; +} + +namespace { + +const pass_data pass_data_fixup_cfg = +{ + GIMPLE_PASS, /* type */ + "*free_cfg_annotations", /* name */ + OPTGROUP_NONE, /* optinfo_flags */ + false, /* has_gate */ + true, /* has_execute */ + TV_NONE, /* tv_id */ + PROP_cfg, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + 0, /* todo_flags_finish */ +}; + +class pass_fixup_cfg : public gimple_opt_pass +{ +public: + pass_fixup_cfg (gcc::context *ctxt) + : gimple_opt_pass (pass_data_fixup_cfg, ctxt) + {} + + /* opt_pass methods: */ + opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); } + unsigned int execute () { return execute_fixup_cfg (); } + +}; // class pass_fixup_cfg + +} // anon namespace + +gimple_opt_pass * +make_pass_fixup_cfg (gcc::context *ctxt) +{ + return new pass_fixup_cfg (ctxt); +} + +/* Garbage collection support for edge_def. */ + +extern void gt_ggc_mx (tree&); +extern void gt_ggc_mx (gimple&); +extern void gt_ggc_mx (rtx&); +extern void gt_ggc_mx (basic_block&); + +void +gt_ggc_mx (edge_def *e) +{ + tree block = LOCATION_BLOCK (e->goto_locus); + gt_ggc_mx (e->src); + gt_ggc_mx (e->dest); + if (current_ir_type () == IR_GIMPLE) + gt_ggc_mx (e->insns.g); + else + gt_ggc_mx (e->insns.r); + gt_ggc_mx (block); +} + +/* PCH support for edge_def. */ + +extern void gt_pch_nx (tree&); +extern void gt_pch_nx (gimple&); +extern void gt_pch_nx (rtx&); +extern void gt_pch_nx (basic_block&); + +void +gt_pch_nx (edge_def *e) +{ + tree block = LOCATION_BLOCK (e->goto_locus); + gt_pch_nx (e->src); + gt_pch_nx (e->dest); + if (current_ir_type () == IR_GIMPLE) + gt_pch_nx (e->insns.g); + else + gt_pch_nx (e->insns.r); + gt_pch_nx (block); +} + +void +gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie) +{ + tree block = LOCATION_BLOCK (e->goto_locus); + op (&(e->src), cookie); + op (&(e->dest), cookie); + if (current_ir_type () == IR_GIMPLE) + op (&(e->insns.g), cookie); + else + op (&(e->insns.r), cookie); + op (&(block), cookie); +} -- cgit v1.2.3