From 1bc5aee63eb72b341f506ad058502cd0361f0d10 Mon Sep 17 00:00:00 2001 From: Ben Cheng Date: Tue, 25 Mar 2014 22:37:19 -0700 Subject: Initial checkin of GCC 4.9.0 from trunk (r208799). Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba --- gcc-4.9/gcc/regrename.c | 1881 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1881 insertions(+) create mode 100644 gcc-4.9/gcc/regrename.c (limited to 'gcc-4.9/gcc/regrename.c') diff --git a/gcc-4.9/gcc/regrename.c b/gcc-4.9/gcc/regrename.c new file mode 100644 index 000000000..6517f4e38 --- /dev/null +++ b/gcc-4.9/gcc/regrename.c @@ -0,0 +1,1881 @@ +/* Register renaming for the GNU compiler. + Copyright (C) 2000-2014 Free Software Foundation, Inc. + + This file is part of GCC. + + GCC is free software; you can redistribute it and/or modify it + under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3, or (at your option) + any later version. + + GCC is distributed in the hope that it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY + or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. + + You should have received a copy of the GNU General Public License + along with GCC; see the file COPYING3. If not see + . */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "rtl-error.h" +#include "tm_p.h" +#include "insn-config.h" +#include "regs.h" +#include "addresses.h" +#include "hard-reg-set.h" +#include "basic-block.h" +#include "reload.h" +#include "output.h" +#include "function.h" +#include "recog.h" +#include "flags.h" +#include "obstack.h" +#include "tree-pass.h" +#include "df.h" +#include "target.h" +#include "emit-rtl.h" +#include "regrename.h" + +/* This file implements the RTL register renaming pass of the compiler. It is + a semi-local pass whose goal is to maximize the usage of the register file + of the processor by substituting registers for others in the solution given + by the register allocator. The algorithm is as follows: + + 1. Local def/use chains are built: within each basic block, chains are + opened and closed; if a chain isn't closed at the end of the block, + it is dropped. We pre-open chains if we have already examined a + predecessor block and found chains live at the end which match + live registers at the start of the new block. + + 2. We try to combine the local chains across basic block boundaries by + comparing chains that were open at the start or end of a block to + those in successor/predecessor blocks. + + 3. For each chain, the set of possible renaming registers is computed. + This takes into account the renaming of previously processed chains. + Optionally, a preferred class is computed for the renaming register. + + 4. The best renaming register is computed for the chain in the above set, + using a round-robin allocation. If a preferred class exists, then the + round-robin allocation is done within the class first, if possible. + The round-robin allocation of renaming registers itself is global. + + 5. If a renaming register has been found, it is substituted in the chain. + + Targets can parameterize the pass by specifying a preferred class for the + renaming register for a given (super)class of registers to be renamed. */ + +#if HOST_BITS_PER_WIDE_INT <= MAX_RECOG_OPERANDS +#error "Use a different bitmap implementation for untracked_operands." +#endif + +enum scan_actions +{ + terminate_write, + terminate_dead, + mark_all_read, + mark_read, + mark_write, + /* mark_access is for marking the destination regs in + REG_FRAME_RELATED_EXPR notes (as if they were read) so that the + note is updated properly. */ + mark_access +}; + +static const char * const scan_actions_name[] = +{ + "terminate_write", + "terminate_dead", + "mark_all_read", + "mark_read", + "mark_write", + "mark_access" +}; + +/* TICK and THIS_TICK are used to record the last time we saw each + register. */ +static int tick[FIRST_PSEUDO_REGISTER]; +static int this_tick = 0; + +static struct obstack rename_obstack; + +/* If nonnull, the code calling into the register renamer requested + information about insn operands, and we store it here. */ +vec insn_rr; + +static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions, + enum op_type); +static bool build_def_use (basic_block); + +/* The id to be given to the next opened chain. */ +static unsigned current_id; + +/* A mapping of unique id numbers to chains. */ +static vec id_to_chain; + +/* List of currently open chains. */ +static struct du_head *open_chains; + +/* Bitmap of open chains. The bits set always match the list found in + open_chains. */ +static bitmap_head open_chains_set; + +/* Record the registers being tracked in open_chains. */ +static HARD_REG_SET live_in_chains; + +/* Record the registers that are live but not tracked. The intersection + between this and live_in_chains is empty. */ +static HARD_REG_SET live_hard_regs; + +/* Set while scanning RTL if INSN_RR is nonnull, i.e. if the current analysis + is for a caller that requires operand data. Used in + record_operand_use. */ +static operand_rr_info *cur_operand; + +/* Return the chain corresponding to id number ID. Take into account that + chains may have been merged. */ +du_head_p +regrename_chain_from_id (unsigned int id) +{ + du_head_p first_chain = id_to_chain[id]; + du_head_p chain = first_chain; + while (chain->id != id) + { + id = chain->id; + chain = id_to_chain[id]; + } + first_chain->id = id; + return chain; +} + +/* Dump all def/use chains, starting at id FROM. */ + +static void +dump_def_use_chain (int from) +{ + du_head_p head; + int i; + FOR_EACH_VEC_ELT_FROM (id_to_chain, i, head, from) + { + struct du_chain *this_du = head->first; + + fprintf (dump_file, "Register %s (%d):", + reg_names[head->regno], head->nregs); + while (this_du) + { + fprintf (dump_file, " %d [%s]", INSN_UID (this_du->insn), + reg_class_names[this_du->cl]); + this_du = this_du->next_use; + } + fprintf (dump_file, "\n"); + head = head->next_chain; + } +} + +static void +free_chain_data (void) +{ + int i; + du_head_p ptr; + for (i = 0; id_to_chain.iterate (i, &ptr); i++) + bitmap_clear (&ptr->conflicts); + + id_to_chain.release (); +} + +/* Walk all chains starting with CHAINS and record that they conflict with + another chain whose id is ID. */ + +static void +mark_conflict (struct du_head *chains, unsigned id) +{ + while (chains) + { + bitmap_set_bit (&chains->conflicts, id); + chains = chains->next_chain; + } +} + +/* Examine cur_operand, and if it is nonnull, record information about the + use THIS_DU which is part of the chain HEAD. */ + +static void +record_operand_use (struct du_head *head, struct du_chain *this_du) +{ + if (cur_operand == NULL) + return; + gcc_assert (cur_operand->n_chains < MAX_REGS_PER_ADDRESS); + cur_operand->heads[cur_operand->n_chains] = head; + cur_operand->chains[cur_operand->n_chains++] = this_du; +} + +/* Create a new chain for THIS_NREGS registers starting at THIS_REGNO, + and record its occurrence in *LOC, which is being written to in INSN. + This access requires a register of class CL. */ + +static du_head_p +create_new_chain (unsigned this_regno, unsigned this_nregs, rtx *loc, + rtx insn, enum reg_class cl) +{ + struct du_head *head = XOBNEW (&rename_obstack, struct du_head); + struct du_chain *this_du; + int nregs; + + head->next_chain = open_chains; + head->regno = this_regno; + head->nregs = this_nregs; + head->need_caller_save_reg = 0; + head->cannot_rename = 0; + + id_to_chain.safe_push (head); + head->id = current_id++; + + bitmap_initialize (&head->conflicts, &bitmap_default_obstack); + bitmap_copy (&head->conflicts, &open_chains_set); + mark_conflict (open_chains, head->id); + + /* Since we're tracking this as a chain now, remove it from the + list of conflicting live hard registers and track it in + live_in_chains instead. */ + nregs = head->nregs; + while (nregs-- > 0) + { + SET_HARD_REG_BIT (live_in_chains, head->regno + nregs); + CLEAR_HARD_REG_BIT (live_hard_regs, head->regno + nregs); + } + + COPY_HARD_REG_SET (head->hard_conflicts, live_hard_regs); + bitmap_set_bit (&open_chains_set, head->id); + + open_chains = head; + + if (dump_file) + { + fprintf (dump_file, "Creating chain %s (%d)", + reg_names[head->regno], head->id); + if (insn != NULL_RTX) + fprintf (dump_file, " at insn %d", INSN_UID (insn)); + fprintf (dump_file, "\n"); + } + + if (insn == NULL_RTX) + { + head->first = head->last = NULL; + return head; + } + + this_du = XOBNEW (&rename_obstack, struct du_chain); + head->first = head->last = this_du; + + this_du->next_use = 0; + this_du->loc = loc; + this_du->insn = insn; + this_du->cl = cl; + record_operand_use (head, this_du); + return head; +} + +/* For a def-use chain HEAD, find which registers overlap its lifetime and + set the corresponding bits in *PSET. */ + +static void +merge_overlapping_regs (HARD_REG_SET *pset, struct du_head *head) +{ + bitmap_iterator bi; + unsigned i; + IOR_HARD_REG_SET (*pset, head->hard_conflicts); + EXECUTE_IF_SET_IN_BITMAP (&head->conflicts, 0, i, bi) + { + du_head_p other = regrename_chain_from_id (i); + unsigned j = other->nregs; + gcc_assert (other != head); + while (j-- > 0) + SET_HARD_REG_BIT (*pset, other->regno + j); + } +} + +/* Check if NEW_REG can be the candidate register to rename for + REG in THIS_HEAD chain. THIS_UNAVAILABLE is a set of unavailable hard + registers. */ + +static bool +check_new_reg_p (int reg ATTRIBUTE_UNUSED, int new_reg, + struct du_head *this_head, HARD_REG_SET this_unavailable) +{ + enum machine_mode mode = GET_MODE (*this_head->first->loc); + int nregs = hard_regno_nregs[new_reg][mode]; + int i; + struct du_chain *tmp; + + for (i = nregs - 1; i >= 0; --i) + if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i) + || fixed_regs[new_reg + i] + || global_regs[new_reg + i] + /* Can't use regs which aren't saved by the prologue. */ + || (! df_regs_ever_live_p (new_reg + i) + && ! call_used_regs[new_reg + i]) +#ifdef LEAF_REGISTERS + /* We can't use a non-leaf register if we're in a + leaf function. */ + || (crtl->is_leaf + && !LEAF_REGISTERS[new_reg + i]) +#endif +#ifdef HARD_REGNO_RENAME_OK + || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i) +#endif + ) + return false; + + /* See whether it accepts all modes that occur in + definition and uses. */ + for (tmp = this_head->first; tmp; tmp = tmp->next_use) + if ((! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc)) + && ! DEBUG_INSN_P (tmp->insn)) + || (this_head->need_caller_save_reg + && ! (HARD_REGNO_CALL_PART_CLOBBERED + (reg, GET_MODE (*tmp->loc))) + && (HARD_REGNO_CALL_PART_CLOBBERED + (new_reg, GET_MODE (*tmp->loc))))) + return false; + + return true; +} + +/* For the chain THIS_HEAD, compute and return the best register to + rename to. SUPER_CLASS is the superunion of register classes in + the chain. UNAVAILABLE is a set of registers that cannot be used. + OLD_REG is the register currently used for the chain. */ + +int +find_best_rename_reg (du_head_p this_head, enum reg_class super_class, + HARD_REG_SET *unavailable, int old_reg) +{ + bool has_preferred_class; + enum reg_class preferred_class; + int pass; + int best_new_reg = old_reg; + + /* Further narrow the set of registers we can use for renaming. + If the chain needs a call-saved register, mark the call-used + registers as unavailable. */ + if (this_head->need_caller_save_reg) + IOR_HARD_REG_SET (*unavailable, call_used_reg_set); + + /* Mark registers that overlap this chain's lifetime as unavailable. */ + merge_overlapping_regs (unavailable, this_head); + + /* Compute preferred rename class of super union of all the classes + in the chain. */ + preferred_class + = (enum reg_class) targetm.preferred_rename_class (super_class); + + /* If PREFERRED_CLASS is not NO_REGS, we iterate in the first pass + over registers that belong to PREFERRED_CLASS and try to find the + best register within the class. If that failed, we iterate in + the second pass over registers that don't belong to the class. + If PREFERRED_CLASS is NO_REGS, we iterate over all registers in + ascending order without any preference. */ + has_preferred_class = (preferred_class != NO_REGS); + for (pass = (has_preferred_class ? 0 : 1); pass < 2; pass++) + { + int new_reg; + for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++) + { + if (has_preferred_class + && (pass == 0) + != TEST_HARD_REG_BIT (reg_class_contents[preferred_class], + new_reg)) + continue; + + /* In the first pass, we force the renaming of registers that + don't belong to PREFERRED_CLASS to registers that do, even + though the latters were used not very long ago. */ + if (check_new_reg_p (old_reg, new_reg, this_head, + *unavailable) + && ((pass == 0 + && !TEST_HARD_REG_BIT (reg_class_contents[preferred_class], + best_new_reg)) + || tick[best_new_reg] > tick[new_reg])) + best_new_reg = new_reg; + } + if (pass == 0 && best_new_reg != old_reg) + break; + } + return best_new_reg; +} + +/* Perform register renaming on the current function. */ +static void +rename_chains (void) +{ + HARD_REG_SET unavailable; + du_head_p this_head; + int i; + + memset (tick, 0, sizeof tick); + + CLEAR_HARD_REG_SET (unavailable); + /* Don't clobber traceback for noreturn functions. */ + if (frame_pointer_needed) + { + add_to_hard_reg_set (&unavailable, Pmode, FRAME_POINTER_REGNUM); +#if !HARD_FRAME_POINTER_IS_FRAME_POINTER + add_to_hard_reg_set (&unavailable, Pmode, HARD_FRAME_POINTER_REGNUM); +#endif + } + + FOR_EACH_VEC_ELT (id_to_chain, i, this_head) + { + int best_new_reg; + int n_uses; + struct du_chain *tmp; + HARD_REG_SET this_unavailable; + int reg = this_head->regno; + enum reg_class super_class = NO_REGS; + + if (this_head->cannot_rename) + continue; + + if (fixed_regs[reg] || global_regs[reg] +#if !HARD_FRAME_POINTER_IS_FRAME_POINTER + || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM) +#else + || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM) +#endif + ) + continue; + + COPY_HARD_REG_SET (this_unavailable, unavailable); + + /* Iterate over elements in the chain in order to: + 1. Count number of uses, and narrow the set of registers we can + use for renaming. + 2. Compute the superunion of register classes in this chain. */ + n_uses = 0; + super_class = NO_REGS; + for (tmp = this_head->first; tmp; tmp = tmp->next_use) + { + if (DEBUG_INSN_P (tmp->insn)) + continue; + n_uses++; + IOR_COMPL_HARD_REG_SET (this_unavailable, + reg_class_contents[tmp->cl]); + super_class + = reg_class_superunion[(int) super_class][(int) tmp->cl]; + } + + if (n_uses < 2) + continue; + + best_new_reg = find_best_rename_reg (this_head, super_class, + &this_unavailable, reg); + + if (dump_file) + { + fprintf (dump_file, "Register %s in insn %d", + reg_names[reg], INSN_UID (this_head->first->insn)); + if (this_head->need_caller_save_reg) + fprintf (dump_file, " crosses a call"); + } + + if (best_new_reg == reg) + { + tick[reg] = ++this_tick; + if (dump_file) + fprintf (dump_file, "; no available better choice\n"); + continue; + } + + if (dump_file) + fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]); + + regrename_do_replace (this_head, best_new_reg); + tick[best_new_reg] = ++this_tick; + df_set_regs_ever_live (best_new_reg, true); + } +} + +/* A structure to record information for each hard register at the start of + a basic block. */ +struct incoming_reg_info { + /* Holds the number of registers used in the chain that gave us information + about this register. Zero means no information known yet, while a + negative value is used for something that is part of, but not the first + register in a multi-register value. */ + int nregs; + /* Set to true if we have accesses that conflict in the number of registers + used. */ + bool unusable; +}; + +/* A structure recording information about each basic block. It is saved + and restored around basic block boundaries. + A pointer to such a structure is stored in each basic block's aux field + during regrename_analyze, except for blocks we know can't be optimized + (such as entry and exit blocks). */ +struct bb_rename_info +{ + /* The basic block corresponding to this structure. */ + basic_block bb; + /* Copies of the global information. */ + bitmap_head open_chains_set; + bitmap_head incoming_open_chains_set; + struct incoming_reg_info incoming[FIRST_PSEUDO_REGISTER]; +}; + +/* Initialize a rename_info structure P for basic block BB, which starts a new + scan. */ +static void +init_rename_info (struct bb_rename_info *p, basic_block bb) +{ + int i; + df_ref *def_rec; + HARD_REG_SET start_chains_set; + + p->bb = bb; + bitmap_initialize (&p->open_chains_set, &bitmap_default_obstack); + bitmap_initialize (&p->incoming_open_chains_set, &bitmap_default_obstack); + + open_chains = NULL; + bitmap_clear (&open_chains_set); + + CLEAR_HARD_REG_SET (live_in_chains); + REG_SET_TO_HARD_REG_SET (live_hard_regs, df_get_live_in (bb)); + for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++) + { + df_ref def = *def_rec; + if (DF_REF_FLAGS (def) & DF_REF_AT_TOP) + SET_HARD_REG_BIT (live_hard_regs, DF_REF_REGNO (def)); + } + + /* Open chains based on information from (at least one) predecessor + block. This gives us a chance later on to combine chains across + basic block boundaries. Inconsistencies (in access sizes) will + be caught normally and dealt with conservatively by disabling the + chain for renaming, and there is no risk of losing optimization + opportunities by opening chains either: if we did not open the + chains, we'd have to track the live register as a hard reg, and + we'd be unable to rename it in any case. */ + CLEAR_HARD_REG_SET (start_chains_set); + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + { + struct incoming_reg_info *iri = p->incoming + i; + if (iri->nregs > 0 && !iri->unusable + && range_in_hard_reg_set_p (live_hard_regs, i, iri->nregs)) + { + SET_HARD_REG_BIT (start_chains_set, i); + remove_range_from_hard_reg_set (&live_hard_regs, i, iri->nregs); + } + } + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + { + struct incoming_reg_info *iri = p->incoming + i; + if (TEST_HARD_REG_BIT (start_chains_set, i)) + { + du_head_p chain; + if (dump_file) + fprintf (dump_file, "opening incoming chain\n"); + chain = create_new_chain (i, iri->nregs, NULL, NULL_RTX, NO_REGS); + bitmap_set_bit (&p->incoming_open_chains_set, chain->id); + } + } +} + +/* Record in RI that the block corresponding to it has an incoming + live value, described by CHAIN. */ +static void +set_incoming_from_chain (struct bb_rename_info *ri, du_head_p chain) +{ + int i; + int incoming_nregs = ri->incoming[chain->regno].nregs; + int nregs; + + /* If we've recorded the same information before, everything is fine. */ + if (incoming_nregs == chain->nregs) + { + if (dump_file) + fprintf (dump_file, "reg %d/%d already recorded\n", + chain->regno, chain->nregs); + return; + } + + /* If we have no information for any of the involved registers, update + the incoming array. */ + nregs = chain->nregs; + while (nregs-- > 0) + if (ri->incoming[chain->regno + nregs].nregs != 0 + || ri->incoming[chain->regno + nregs].unusable) + break; + if (nregs < 0) + { + nregs = chain->nregs; + ri->incoming[chain->regno].nregs = nregs; + while (nregs-- > 1) + ri->incoming[chain->regno + nregs].nregs = -nregs; + if (dump_file) + fprintf (dump_file, "recorded reg %d/%d\n", + chain->regno, chain->nregs); + return; + } + + /* There must be some kind of conflict. Prevent both the old and + new ranges from being used. */ + if (incoming_nregs < 0) + ri->incoming[chain->regno + incoming_nregs].unusable = true; + for (i = 0; i < chain->nregs; i++) + ri->incoming[chain->regno + i].unusable = true; +} + +/* Merge the two chains C1 and C2 so that all conflict information is + recorded and C1, and the id of C2 is changed to that of C1. */ +static void +merge_chains (du_head_p c1, du_head_p c2) +{ + if (c1 == c2) + return; + + if (c2->first != NULL) + { + if (c1->first == NULL) + c1->first = c2->first; + else + c1->last->next_use = c2->first; + c1->last = c2->last; + } + + c2->first = c2->last = NULL; + c2->id = c1->id; + + IOR_HARD_REG_SET (c1->hard_conflicts, c2->hard_conflicts); + bitmap_ior_into (&c1->conflicts, &c2->conflicts); + + c1->need_caller_save_reg |= c2->need_caller_save_reg; + c1->cannot_rename |= c2->cannot_rename; +} + +/* Analyze the current function and build chains for renaming. */ + +void +regrename_analyze (bitmap bb_mask) +{ + struct bb_rename_info *rename_info; + int i; + basic_block bb; + int n_bbs; + int *inverse_postorder; + + inverse_postorder = XNEWVEC (int, last_basic_block_for_fn (cfun)); + n_bbs = pre_and_rev_post_order_compute (NULL, inverse_postorder, false); + + /* Gather some information about the blocks in this function. */ + rename_info = XCNEWVEC (struct bb_rename_info, n_basic_blocks_for_fn (cfun)); + i = 0; + FOR_EACH_BB_FN (bb, cfun) + { + struct bb_rename_info *ri = rename_info + i; + ri->bb = bb; + if (bb_mask != NULL && !bitmap_bit_p (bb_mask, bb->index)) + bb->aux = NULL; + else + bb->aux = ri; + i++; + } + + current_id = 0; + id_to_chain.create (0); + bitmap_initialize (&open_chains_set, &bitmap_default_obstack); + + /* The order in which we visit blocks ensures that whenever + possible, we only process a block after at least one of its + predecessors, which provides a "seeding" effect to make the logic + in set_incoming_from_chain and init_rename_info useful. */ + + for (i = 0; i < n_bbs; i++) + { + basic_block bb1 = BASIC_BLOCK_FOR_FN (cfun, inverse_postorder[i]); + struct bb_rename_info *this_info; + bool success; + edge e; + edge_iterator ei; + int old_length = id_to_chain.length (); + + this_info = (struct bb_rename_info *) bb1->aux; + if (this_info == NULL) + continue; + + if (dump_file) + fprintf (dump_file, "\nprocessing block %d:\n", bb1->index); + + init_rename_info (this_info, bb1); + + success = build_def_use (bb1); + if (!success) + { + if (dump_file) + fprintf (dump_file, "failed\n"); + bb1->aux = NULL; + id_to_chain.truncate (old_length); + current_id = old_length; + bitmap_clear (&this_info->incoming_open_chains_set); + open_chains = NULL; + if (insn_rr.exists ()) + { + rtx insn; + FOR_BB_INSNS (bb1, insn) + { + insn_rr_info *p = &insn_rr[INSN_UID (insn)]; + p->op_info = NULL; + } + } + continue; + } + + if (dump_file) + dump_def_use_chain (old_length); + bitmap_copy (&this_info->open_chains_set, &open_chains_set); + + /* Add successor blocks to the worklist if necessary, and record + data about our own open chains at the end of this block, which + will be used to pre-open chains when processing the successors. */ + FOR_EACH_EDGE (e, ei, bb1->succs) + { + struct bb_rename_info *dest_ri; + struct du_head *chain; + + if (dump_file) + fprintf (dump_file, "successor block %d\n", e->dest->index); + + if (e->flags & (EDGE_EH | EDGE_ABNORMAL)) + continue; + dest_ri = (struct bb_rename_info *)e->dest->aux; + if (dest_ri == NULL) + continue; + for (chain = open_chains; chain; chain = chain->next_chain) + set_incoming_from_chain (dest_ri, chain); + } + } + + free (inverse_postorder); + + /* Now, combine the chains data we have gathered across basic block + boundaries. + + For every basic block, there may be chains open at the start, or at the + end. Rather than exclude them from renaming, we look for open chains + with matching registers at the other side of the CFG edge. + + For a given chain using register R, open at the start of block B, we + must find an open chain using R on the other side of every edge leading + to B, if the register is live across this edge. In the code below, + N_PREDS_USED counts the number of edges where the register is live, and + N_PREDS_JOINED counts those where we found an appropriate chain for + joining. + + We perform the analysis for both incoming and outgoing edges, but we + only need to merge once (in the second part, after verifying outgoing + edges). */ + FOR_EACH_BB_FN (bb, cfun) + { + struct bb_rename_info *bb_ri = (struct bb_rename_info *) bb->aux; + unsigned j; + bitmap_iterator bi; + + if (bb_ri == NULL) + continue; + + if (dump_file) + fprintf (dump_file, "processing bb %d in edges\n", bb->index); + + EXECUTE_IF_SET_IN_BITMAP (&bb_ri->incoming_open_chains_set, 0, j, bi) + { + edge e; + edge_iterator ei; + struct du_head *chain = regrename_chain_from_id (j); + int n_preds_used = 0, n_preds_joined = 0; + + FOR_EACH_EDGE (e, ei, bb->preds) + { + struct bb_rename_info *src_ri; + unsigned k; + bitmap_iterator bi2; + HARD_REG_SET live; + bool success = false; + + REG_SET_TO_HARD_REG_SET (live, df_get_live_out (e->src)); + if (!range_overlaps_hard_reg_set_p (live, chain->regno, + chain->nregs)) + continue; + n_preds_used++; + + if (e->flags & (EDGE_EH | EDGE_ABNORMAL)) + continue; + + src_ri = (struct bb_rename_info *)e->src->aux; + if (src_ri == NULL) + continue; + + EXECUTE_IF_SET_IN_BITMAP (&src_ri->open_chains_set, + 0, k, bi2) + { + struct du_head *outgoing_chain = regrename_chain_from_id (k); + + if (outgoing_chain->regno == chain->regno + && outgoing_chain->nregs == chain->nregs) + { + n_preds_joined++; + success = true; + break; + } + } + if (!success && dump_file) + fprintf (dump_file, "failure to match with pred block %d\n", + e->src->index); + } + if (n_preds_joined < n_preds_used) + { + if (dump_file) + fprintf (dump_file, "cannot rename chain %d\n", j); + chain->cannot_rename = 1; + } + } + } + FOR_EACH_BB_FN (bb, cfun) + { + struct bb_rename_info *bb_ri = (struct bb_rename_info *) bb->aux; + unsigned j; + bitmap_iterator bi; + + if (bb_ri == NULL) + continue; + + if (dump_file) + fprintf (dump_file, "processing bb %d out edges\n", bb->index); + + EXECUTE_IF_SET_IN_BITMAP (&bb_ri->open_chains_set, 0, j, bi) + { + edge e; + edge_iterator ei; + struct du_head *chain = regrename_chain_from_id (j); + int n_succs_used = 0, n_succs_joined = 0; + + FOR_EACH_EDGE (e, ei, bb->succs) + { + bool printed = false; + struct bb_rename_info *dest_ri; + unsigned k; + bitmap_iterator bi2; + HARD_REG_SET live; + + REG_SET_TO_HARD_REG_SET (live, df_get_live_in (e->dest)); + if (!range_overlaps_hard_reg_set_p (live, chain->regno, + chain->nregs)) + continue; + + n_succs_used++; + + dest_ri = (struct bb_rename_info *)e->dest->aux; + if (dest_ri == NULL) + continue; + + EXECUTE_IF_SET_IN_BITMAP (&dest_ri->incoming_open_chains_set, + 0, k, bi2) + { + struct du_head *incoming_chain = regrename_chain_from_id (k); + + if (incoming_chain->regno == chain->regno + && incoming_chain->nregs == chain->nregs) + { + if (dump_file) + { + if (!printed) + fprintf (dump_file, + "merging blocks for edge %d -> %d\n", + e->src->index, e->dest->index); + printed = true; + fprintf (dump_file, + " merging chains %d (->%d) and %d (->%d) [%s]\n", + k, incoming_chain->id, j, chain->id, + reg_names[incoming_chain->regno]); + } + + merge_chains (chain, incoming_chain); + n_succs_joined++; + break; + } + } + } + if (n_succs_joined < n_succs_used) + { + if (dump_file) + fprintf (dump_file, "cannot rename chain %d\n", + j); + chain->cannot_rename = 1; + } + } + } + + free (rename_info); + + FOR_EACH_BB_FN (bb, cfun) + bb->aux = NULL; +} + +void +regrename_do_replace (struct du_head *head, int reg) +{ + struct du_chain *chain; + unsigned int base_regno = head->regno; + enum machine_mode mode; + + for (chain = head->first; chain; chain = chain->next_use) + { + unsigned int regno = ORIGINAL_REGNO (*chain->loc); + struct reg_attrs *attr = REG_ATTRS (*chain->loc); + int reg_ptr = REG_POINTER (*chain->loc); + + if (DEBUG_INSN_P (chain->insn) && REGNO (*chain->loc) != base_regno) + INSN_VAR_LOCATION_LOC (chain->insn) = gen_rtx_UNKNOWN_VAR_LOC (); + else + { + *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg); + if (regno >= FIRST_PSEUDO_REGISTER) + ORIGINAL_REGNO (*chain->loc) = regno; + REG_ATTRS (*chain->loc) = attr; + REG_POINTER (*chain->loc) = reg_ptr; + } + + df_insn_rescan (chain->insn); + } + + mode = GET_MODE (*head->first->loc); + head->regno = reg; + head->nregs = hard_regno_nregs[reg][mode]; +} + + +/* True if we found a register with a size mismatch, which means that we + can't track its lifetime accurately. If so, we abort the current block + without renaming. */ +static bool fail_current_block; + +/* Return true if OP is a reg for which all bits are set in PSET, false + if all bits are clear. + In other cases, set fail_current_block and return false. */ + +static bool +verify_reg_in_set (rtx op, HARD_REG_SET *pset) +{ + unsigned regno, nregs; + bool all_live, all_dead; + if (!REG_P (op)) + return false; + + regno = REGNO (op); + nregs = hard_regno_nregs[regno][GET_MODE (op)]; + all_live = all_dead = true; + while (nregs-- > 0) + if (TEST_HARD_REG_BIT (*pset, regno + nregs)) + all_dead = false; + else + all_live = false; + if (!all_dead && !all_live) + { + fail_current_block = true; + return false; + } + return all_live; +} + +/* Return true if OP is a reg that is being tracked already in some form. + May set fail_current_block if it sees an unhandled case of overlap. */ + +static bool +verify_reg_tracked (rtx op) +{ + return (verify_reg_in_set (op, &live_hard_regs) + || verify_reg_in_set (op, &live_in_chains)); +} + +/* Called through note_stores. DATA points to a rtx_code, either SET or + CLOBBER, which tells us which kind of rtx to look at. If we have a + match, record the set register in live_hard_regs and in the hard_conflicts + bitmap of open chains. */ + +static void +note_sets_clobbers (rtx x, const_rtx set, void *data) +{ + enum rtx_code code = *(enum rtx_code *)data; + struct du_head *chain; + + if (GET_CODE (x) == SUBREG) + x = SUBREG_REG (x); + if (!REG_P (x) || GET_CODE (set) != code) + return; + /* There must not be pseudos at this point. */ + gcc_assert (HARD_REGISTER_P (x)); + add_to_hard_reg_set (&live_hard_regs, GET_MODE (x), REGNO (x)); + for (chain = open_chains; chain; chain = chain->next_chain) + add_to_hard_reg_set (&chain->hard_conflicts, GET_MODE (x), REGNO (x)); +} + +static void +scan_rtx_reg (rtx insn, rtx *loc, enum reg_class cl, enum scan_actions action, + enum op_type type) +{ + struct du_head **p; + rtx x = *loc; + enum machine_mode mode = GET_MODE (x); + unsigned this_regno = REGNO (x); + int this_nregs = hard_regno_nregs[this_regno][mode]; + + if (action == mark_write) + { + if (type == OP_OUT) + create_new_chain (this_regno, this_nregs, loc, insn, cl); + return; + } + + if ((type == OP_OUT) != (action == terminate_write || action == mark_access)) + return; + + for (p = &open_chains; *p;) + { + struct du_head *head = *p; + struct du_head *next = head->next_chain; + int exact_match = (head->regno == this_regno + && head->nregs == this_nregs); + int superset = (this_regno <= head->regno + && this_regno + this_nregs >= head->regno + head->nregs); + int subset = (this_regno >= head->regno + && this_regno + this_nregs <= head->regno + head->nregs); + + if (!bitmap_bit_p (&open_chains_set, head->id) + || head->regno + head->nregs <= this_regno + || this_regno + this_nregs <= head->regno) + { + p = &head->next_chain; + continue; + } + + if (action == mark_read || action == mark_access) + { + /* ??? Class NO_REGS can happen if the md file makes use of + EXTRA_CONSTRAINTS to match registers. Which is arguably + wrong, but there we are. */ + + if (cl == NO_REGS || (!exact_match && !DEBUG_INSN_P (insn))) + { + if (dump_file) + fprintf (dump_file, + "Cannot rename chain %s (%d) at insn %d (%s)\n", + reg_names[head->regno], head->id, INSN_UID (insn), + scan_actions_name[(int) action]); + head->cannot_rename = 1; + if (superset) + { + unsigned nregs = this_nregs; + head->regno = this_regno; + head->nregs = this_nregs; + while (nregs-- > 0) + SET_HARD_REG_BIT (live_in_chains, head->regno + nregs); + if (dump_file) + fprintf (dump_file, + "Widening register in chain %s (%d) at insn %d\n", + reg_names[head->regno], head->id, INSN_UID (insn)); + } + else if (!subset) + { + fail_current_block = true; + if (dump_file) + fprintf (dump_file, + "Failing basic block due to unhandled overlap\n"); + } + } + else + { + struct du_chain *this_du; + this_du = XOBNEW (&rename_obstack, struct du_chain); + this_du->next_use = 0; + this_du->loc = loc; + this_du->insn = insn; + this_du->cl = cl; + if (head->first == NULL) + head->first = this_du; + else + head->last->next_use = this_du; + record_operand_use (head, this_du); + head->last = this_du; + } + /* Avoid adding the same location in a DEBUG_INSN multiple times, + which could happen with non-exact overlap. */ + if (DEBUG_INSN_P (insn)) + return; + /* Otherwise, find any other chains that do not match exactly; + ensure they all get marked unrenamable. */ + p = &head->next_chain; + continue; + } + + /* Whether the terminated chain can be used for renaming + depends on the action and this being an exact match. + In either case, we remove this element from open_chains. */ + + if ((action == terminate_dead || action == terminate_write) + && (superset || subset)) + { + unsigned nregs; + + if (subset && !superset) + head->cannot_rename = 1; + bitmap_clear_bit (&open_chains_set, head->id); + + nregs = head->nregs; + while (nregs-- > 0) + { + CLEAR_HARD_REG_BIT (live_in_chains, head->regno + nregs); + if (subset && !superset + && (head->regno + nregs < this_regno + || head->regno + nregs >= this_regno + this_nregs)) + SET_HARD_REG_BIT (live_hard_regs, head->regno + nregs); + } + + *p = next; + if (dump_file) + fprintf (dump_file, + "Closing chain %s (%d) at insn %d (%s%s)\n", + reg_names[head->regno], head->id, INSN_UID (insn), + scan_actions_name[(int) action], + superset ? ", superset" : subset ? ", subset" : ""); + } + else if (action == terminate_dead || action == terminate_write) + { + /* In this case, tracking liveness gets too hard. Fail the + entire basic block. */ + if (dump_file) + fprintf (dump_file, + "Failing basic block due to unhandled overlap\n"); + fail_current_block = true; + return; + } + else + { + head->cannot_rename = 1; + if (dump_file) + fprintf (dump_file, + "Cannot rename chain %s (%d) at insn %d (%s)\n", + reg_names[head->regno], head->id, INSN_UID (insn), + scan_actions_name[(int) action]); + p = &head->next_chain; + } + } +} + +/* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or + BASE_REG_CLASS depending on how the register is being considered. */ + +static void +scan_rtx_address (rtx insn, rtx *loc, enum reg_class cl, + enum scan_actions action, enum machine_mode mode, + addr_space_t as) +{ + rtx x = *loc; + RTX_CODE code = GET_CODE (x); + const char *fmt; + int i, j; + + if (action == mark_write || action == mark_access) + return; + + switch (code) + { + case PLUS: + { + rtx orig_op0 = XEXP (x, 0); + rtx orig_op1 = XEXP (x, 1); + RTX_CODE code0 = GET_CODE (orig_op0); + RTX_CODE code1 = GET_CODE (orig_op1); + rtx op0 = orig_op0; + rtx op1 = orig_op1; + rtx *locI = NULL; + rtx *locB = NULL; + enum rtx_code index_code = SCRATCH; + + if (GET_CODE (op0) == SUBREG) + { + op0 = SUBREG_REG (op0); + code0 = GET_CODE (op0); + } + + if (GET_CODE (op1) == SUBREG) + { + op1 = SUBREG_REG (op1); + code1 = GET_CODE (op1); + } + + if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE + || code0 == ZERO_EXTEND || code1 == MEM) + { + locI = &XEXP (x, 0); + locB = &XEXP (x, 1); + index_code = GET_CODE (*locI); + } + else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE + || code1 == ZERO_EXTEND || code0 == MEM) + { + locI = &XEXP (x, 1); + locB = &XEXP (x, 0); + index_code = GET_CODE (*locI); + } + else if (code0 == CONST_INT || code0 == CONST + || code0 == SYMBOL_REF || code0 == LABEL_REF) + { + locB = &XEXP (x, 1); + index_code = GET_CODE (XEXP (x, 0)); + } + else if (code1 == CONST_INT || code1 == CONST + || code1 == SYMBOL_REF || code1 == LABEL_REF) + { + locB = &XEXP (x, 0); + index_code = GET_CODE (XEXP (x, 1)); + } + else if (code0 == REG && code1 == REG) + { + int index_op; + unsigned regno0 = REGNO (op0), regno1 = REGNO (op1); + + if (REGNO_OK_FOR_INDEX_P (regno1) + && regno_ok_for_base_p (regno0, mode, as, PLUS, REG)) + index_op = 1; + else if (REGNO_OK_FOR_INDEX_P (regno0) + && regno_ok_for_base_p (regno1, mode, as, PLUS, REG)) + index_op = 0; + else if (regno_ok_for_base_p (regno0, mode, as, PLUS, REG) + || REGNO_OK_FOR_INDEX_P (regno1)) + index_op = 1; + else if (regno_ok_for_base_p (regno1, mode, as, PLUS, REG)) + index_op = 0; + else + index_op = 1; + + locI = &XEXP (x, index_op); + locB = &XEXP (x, !index_op); + index_code = GET_CODE (*locI); + } + else if (code0 == REG) + { + locI = &XEXP (x, 0); + locB = &XEXP (x, 1); + index_code = GET_CODE (*locI); + } + else if (code1 == REG) + { + locI = &XEXP (x, 1); + locB = &XEXP (x, 0); + index_code = GET_CODE (*locI); + } + + if (locI) + scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode, as); + if (locB) + scan_rtx_address (insn, locB, + base_reg_class (mode, as, PLUS, index_code), + action, mode, as); + + return; + } + + case POST_INC: + case POST_DEC: + case POST_MODIFY: + case PRE_INC: + case PRE_DEC: + case PRE_MODIFY: +#ifndef AUTO_INC_DEC + /* If the target doesn't claim to handle autoinc, this must be + something special, like a stack push. Kill this chain. */ + action = mark_all_read; +#endif + break; + + case MEM: + scan_rtx_address (insn, &XEXP (x, 0), + base_reg_class (GET_MODE (x), MEM_ADDR_SPACE (x), + MEM, SCRATCH), + action, GET_MODE (x), MEM_ADDR_SPACE (x)); + return; + + case REG: + scan_rtx_reg (insn, loc, cl, action, OP_IN); + return; + + default: + break; + } + + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + scan_rtx_address (insn, &XEXP (x, i), cl, action, mode, as); + else if (fmt[i] == 'E') + for (j = XVECLEN (x, i) - 1; j >= 0; j--) + scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode, as); + } +} + +static void +scan_rtx (rtx insn, rtx *loc, enum reg_class cl, enum scan_actions action, + enum op_type type) +{ + const char *fmt; + rtx x = *loc; + enum rtx_code code = GET_CODE (x); + int i, j; + + code = GET_CODE (x); + switch (code) + { + case CONST: + CASE_CONST_ANY: + case SYMBOL_REF: + case LABEL_REF: + case CC0: + case PC: + return; + + case REG: + scan_rtx_reg (insn, loc, cl, action, type); + return; + + case MEM: + scan_rtx_address (insn, &XEXP (x, 0), + base_reg_class (GET_MODE (x), MEM_ADDR_SPACE (x), + MEM, SCRATCH), + action, GET_MODE (x), MEM_ADDR_SPACE (x)); + return; + + case SET: + scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN); + scan_rtx (insn, &SET_DEST (x), cl, action, + (GET_CODE (PATTERN (insn)) == COND_EXEC + && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT); + return; + + case STRICT_LOW_PART: + scan_rtx (insn, &XEXP (x, 0), cl, action, + verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT); + return; + + case ZERO_EXTRACT: + case SIGN_EXTRACT: + scan_rtx (insn, &XEXP (x, 0), cl, action, + (type == OP_IN ? OP_IN : + verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT)); + scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN); + scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN); + return; + + case POST_INC: + case PRE_INC: + case POST_DEC: + case PRE_DEC: + case POST_MODIFY: + case PRE_MODIFY: + /* Should only happen inside MEM. */ + gcc_unreachable (); + + case CLOBBER: + scan_rtx (insn, &SET_DEST (x), cl, action, + (GET_CODE (PATTERN (insn)) == COND_EXEC + && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT); + return; + + case EXPR_LIST: + scan_rtx (insn, &XEXP (x, 0), cl, action, type); + if (XEXP (x, 1)) + scan_rtx (insn, &XEXP (x, 1), cl, action, type); + return; + + default: + break; + } + + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + scan_rtx (insn, &XEXP (x, i), cl, action, type); + else if (fmt[i] == 'E') + for (j = XVECLEN (x, i) - 1; j >= 0; j--) + scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type); + } +} + +/* Hide operands of the current insn (of which there are N_OPS) by + substituting cc0 for them. + Previous values are stored in the OLD_OPERANDS and OLD_DUPS. + For every bit set in DO_NOT_HIDE, we leave the operand alone. + If INOUT_AND_EC_ONLY is set, we only do this for OP_INOUT type operands + and earlyclobbers. */ + +static void +hide_operands (int n_ops, rtx *old_operands, rtx *old_dups, + unsigned HOST_WIDE_INT do_not_hide, bool inout_and_ec_only) +{ + int i; + int alt = which_alternative; + for (i = 0; i < n_ops; i++) + { + old_operands[i] = recog_data.operand[i]; + /* Don't squash match_operator or match_parallel here, since + we don't know that all of the contained registers are + reachable by proper operands. */ + if (recog_data.constraints[i][0] == '\0') + continue; + if (do_not_hide & (1 << i)) + continue; + if (!inout_and_ec_only || recog_data.operand_type[i] == OP_INOUT + || recog_op_alt[i][alt].earlyclobber) + *recog_data.operand_loc[i] = cc0_rtx; + } + for (i = 0; i < recog_data.n_dups; i++) + { + int opn = recog_data.dup_num[i]; + old_dups[i] = *recog_data.dup_loc[i]; + if (do_not_hide & (1 << opn)) + continue; + if (!inout_and_ec_only || recog_data.operand_type[opn] == OP_INOUT + || recog_op_alt[opn][alt].earlyclobber) + *recog_data.dup_loc[i] = cc0_rtx; + } +} + +/* Undo the substitution performed by hide_operands. INSN is the insn we + are processing; the arguments are the same as in hide_operands. */ + +static void +restore_operands (rtx insn, int n_ops, rtx *old_operands, rtx *old_dups) +{ + int i; + for (i = 0; i < recog_data.n_dups; i++) + *recog_data.dup_loc[i] = old_dups[i]; + for (i = 0; i < n_ops; i++) + *recog_data.operand_loc[i] = old_operands[i]; + if (recog_data.n_dups) + df_insn_rescan (insn); +} + +/* For each output operand of INSN, call scan_rtx to create a new + open chain. Do this only for normal or earlyclobber outputs, + depending on EARLYCLOBBER. If INSN_INFO is nonnull, use it to + record information about the operands in the insn. */ + +static void +record_out_operands (rtx insn, bool earlyclobber, insn_rr_info *insn_info) +{ + int n_ops = recog_data.n_operands; + int alt = which_alternative; + + int i; + + for (i = 0; i < n_ops + recog_data.n_dups; i++) + { + int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops]; + rtx *loc = (i < n_ops + ? recog_data.operand_loc[opn] + : recog_data.dup_loc[i - n_ops]); + rtx op = *loc; + enum reg_class cl = recog_op_alt[opn][alt].cl; + + struct du_head *prev_open; + + if (recog_data.operand_type[opn] != OP_OUT + || recog_op_alt[opn][alt].earlyclobber != earlyclobber) + continue; + + if (insn_info) + cur_operand = insn_info->op_info + i; + + prev_open = open_chains; + scan_rtx (insn, loc, cl, mark_write, OP_OUT); + + /* ??? Many targets have output constraints on the SET_DEST + of a call insn, which is stupid, since these are certainly + ABI defined hard registers. For these, and for asm operands + that originally referenced hard registers, we must record that + the chain cannot be renamed. */ + if (CALL_P (insn) + || (asm_noperands (PATTERN (insn)) > 0 + && REG_P (op) + && REGNO (op) == ORIGINAL_REGNO (op))) + { + if (prev_open != open_chains) + open_chains->cannot_rename = 1; + } + } + cur_operand = NULL; +} + +/* Build def/use chain. */ + +static bool +build_def_use (basic_block bb) +{ + rtx insn; + unsigned HOST_WIDE_INT untracked_operands; + + fail_current_block = false; + + for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn)) + { + if (NONDEBUG_INSN_P (insn)) + { + int n_ops; + rtx note; + rtx old_operands[MAX_RECOG_OPERANDS]; + rtx old_dups[MAX_DUP_OPERANDS]; + int i; + int alt; + int predicated; + enum rtx_code set_code = SET; + enum rtx_code clobber_code = CLOBBER; + insn_rr_info *insn_info = NULL; + + /* Process the insn, determining its effect on the def-use + chains and live hard registers. We perform the following + steps with the register references in the insn, simulating + its effect: + (1) Deal with earlyclobber operands and CLOBBERs of non-operands + by creating chains and marking hard regs live. + (2) Any read outside an operand causes any chain it overlaps + with to be marked unrenamable. + (3) Any read inside an operand is added if there's already + an open chain for it. + (4) For any REG_DEAD note we find, close open chains that + overlap it. + (5) For any non-earlyclobber write we find, close open chains + that overlap it. + (6) For any non-earlyclobber write we find in an operand, make + a new chain or mark the hard register as live. + (7) For any REG_UNUSED, close any chains we just opened. + + We cannot deal with situations where we track a reg in one mode + and see a reference in another mode; these will cause the chain + to be marked unrenamable or even cause us to abort the entire + basic block. */ + + extract_insn (insn); + if (! constrain_operands (1)) + fatal_insn_not_found (insn); + preprocess_constraints (); + alt = which_alternative; + n_ops = recog_data.n_operands; + untracked_operands = 0; + + if (insn_rr.exists ()) + { + insn_info = &insn_rr[INSN_UID (insn)]; + insn_info->op_info = XOBNEWVEC (&rename_obstack, operand_rr_info, + recog_data.n_operands); + memset (insn_info->op_info, 0, + sizeof (operand_rr_info) * recog_data.n_operands); + } + + /* Simplify the code below by rewriting things to reflect + matching constraints. Also promote OP_OUT to OP_INOUT in + predicated instructions, but only for register operands + that are already tracked, so that we can create a chain + when the first SET makes a register live. */ + + predicated = GET_CODE (PATTERN (insn)) == COND_EXEC; + for (i = 0; i < n_ops; ++i) + { + rtx op = recog_data.operand[i]; + int matches = recog_op_alt[i][alt].matches; + if (matches >= 0) + recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl; + if (matches >= 0 || recog_op_alt[i][alt].matched >= 0 + || (predicated && recog_data.operand_type[i] == OP_OUT)) + { + recog_data.operand_type[i] = OP_INOUT; + /* A special case to deal with instruction patterns that + have matching operands with different modes. If we're + not already tracking such a reg, we won't start here, + and we must instead make sure to make the operand visible + to the machinery that tracks hard registers. */ + if (matches >= 0 + && (GET_MODE_SIZE (recog_data.operand_mode[i]) + != GET_MODE_SIZE (recog_data.operand_mode[matches])) + && !verify_reg_in_set (op, &live_in_chains)) + { + untracked_operands |= 1 << i; + untracked_operands |= 1 << matches; + } + } + /* If there's an in-out operand with a register that is not + being tracked at all yet, open a chain. */ + if (recog_data.operand_type[i] == OP_INOUT + && !(untracked_operands & (1 << i)) + && REG_P (op) + && !verify_reg_tracked (op)) + { + enum machine_mode mode = GET_MODE (op); + unsigned this_regno = REGNO (op); + unsigned this_nregs = hard_regno_nregs[this_regno][mode]; + create_new_chain (this_regno, this_nregs, NULL, NULL_RTX, + NO_REGS); + } + } + + if (fail_current_block) + break; + + /* Step 1a: Mark hard registers that are clobbered in this insn, + outside an operand, as live. */ + hide_operands (n_ops, old_operands, old_dups, untracked_operands, + false); + note_stores (PATTERN (insn), note_sets_clobbers, &clobber_code); + restore_operands (insn, n_ops, old_operands, old_dups); + + /* Step 1b: Begin new chains for earlyclobbered writes inside + operands. */ + record_out_operands (insn, true, insn_info); + + /* Step 2: Mark chains for which we have reads outside operands + as unrenamable. + We do this by munging all operands into CC0, and closing + everything remaining. */ + + hide_operands (n_ops, old_operands, old_dups, untracked_operands, + false); + scan_rtx (insn, &PATTERN (insn), NO_REGS, mark_all_read, OP_IN); + restore_operands (insn, n_ops, old_operands, old_dups); + + /* Step 2B: Can't rename function call argument registers. */ + if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn)) + scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn), + NO_REGS, mark_all_read, OP_IN); + + /* Step 2C: Can't rename asm operands that were originally + hard registers. */ + if (asm_noperands (PATTERN (insn)) > 0) + for (i = 0; i < n_ops; i++) + { + rtx *loc = recog_data.operand_loc[i]; + rtx op = *loc; + + if (REG_P (op) + && REGNO (op) == ORIGINAL_REGNO (op) + && (recog_data.operand_type[i] == OP_IN + || recog_data.operand_type[i] == OP_INOUT)) + scan_rtx (insn, loc, NO_REGS, mark_all_read, OP_IN); + } + + /* Step 3: Append to chains for reads inside operands. */ + for (i = 0; i < n_ops + recog_data.n_dups; i++) + { + int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops]; + rtx *loc = (i < n_ops + ? recog_data.operand_loc[opn] + : recog_data.dup_loc[i - n_ops]); + enum reg_class cl = recog_op_alt[opn][alt].cl; + enum op_type type = recog_data.operand_type[opn]; + + /* Don't scan match_operand here, since we've no reg class + information to pass down. Any operands that we could + substitute in will be represented elsewhere. */ + if (recog_data.constraints[opn][0] == '\0' + || untracked_operands & (1 << opn)) + continue; + + if (insn_info) + cur_operand = i == opn ? insn_info->op_info + i : NULL; + if (recog_op_alt[opn][alt].is_address) + scan_rtx_address (insn, loc, cl, mark_read, + VOIDmode, ADDR_SPACE_GENERIC); + else + scan_rtx (insn, loc, cl, mark_read, type); + } + cur_operand = NULL; + + /* Step 3B: Record updates for regs in REG_INC notes, and + source regs in REG_FRAME_RELATED_EXPR notes. */ + for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) + if (REG_NOTE_KIND (note) == REG_INC + || REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR) + scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read, + OP_INOUT); + + /* Step 4: Close chains for registers that die here, unless + the register is mentioned in a REG_UNUSED note. In that + case we keep the chain open until step #7 below to ensure + it conflicts with other output operands of this insn. + See PR 52573. Arguably the insn should not have both + notes; it has proven difficult to fix that without + other undesirable side effects. */ + for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) + if (REG_NOTE_KIND (note) == REG_DEAD + && !find_regno_note (insn, REG_UNUSED, REGNO (XEXP (note, 0)))) + { + remove_from_hard_reg_set (&live_hard_regs, + GET_MODE (XEXP (note, 0)), + REGNO (XEXP (note, 0))); + scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead, + OP_IN); + } + + /* Step 4B: If this is a call, any chain live at this point + requires a caller-saved reg. */ + if (CALL_P (insn)) + { + struct du_head *p; + for (p = open_chains; p; p = p->next_chain) + p->need_caller_save_reg = 1; + } + + /* Step 5: Close open chains that overlap writes. Similar to + step 2, we hide in-out operands, since we do not want to + close these chains. We also hide earlyclobber operands, + since we've opened chains for them in step 1, and earlier + chains they would overlap with must have been closed at + the previous insn at the latest, as such operands cannot + possibly overlap with any input operands. */ + + hide_operands (n_ops, old_operands, old_dups, untracked_operands, + true); + scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN); + restore_operands (insn, n_ops, old_operands, old_dups); + + /* Step 6a: Mark hard registers that are set in this insn, + outside an operand, as live. */ + hide_operands (n_ops, old_operands, old_dups, untracked_operands, + false); + note_stores (PATTERN (insn), note_sets_clobbers, &set_code); + restore_operands (insn, n_ops, old_operands, old_dups); + + /* Step 6b: Begin new chains for writes inside operands. */ + record_out_operands (insn, false, insn_info); + + /* Step 6c: Record destination regs in REG_FRAME_RELATED_EXPR + notes for update. */ + for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) + if (REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR) + scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_access, + OP_INOUT); + + /* Step 7: Close chains for registers that were never + really used here. */ + for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) + if (REG_NOTE_KIND (note) == REG_UNUSED) + { + remove_from_hard_reg_set (&live_hard_regs, + GET_MODE (XEXP (note, 0)), + REGNO (XEXP (note, 0))); + scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead, + OP_IN); + } + } + else if (DEBUG_INSN_P (insn) + && !VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (insn))) + { + scan_rtx (insn, &INSN_VAR_LOCATION_LOC (insn), + ALL_REGS, mark_read, OP_IN); + } + if (insn == BB_END (bb)) + break; + } + + if (fail_current_block) + return false; + + return true; +} + +/* Initialize the register renamer. If INSN_INFO is true, ensure that + insn_rr is nonnull. */ +void +regrename_init (bool insn_info) +{ + gcc_obstack_init (&rename_obstack); + insn_rr.create (0); + if (insn_info) + insn_rr.safe_grow_cleared (get_max_uid ()); +} + +/* Free all global data used by the register renamer. */ +void +regrename_finish (void) +{ + insn_rr.release (); + free_chain_data (); + obstack_free (&rename_obstack, NULL); +} + +/* Perform register renaming on the current function. */ + +static unsigned int +regrename_optimize (void) +{ + df_set_flags (DF_LR_RUN_DCE); + df_note_add_problem (); + df_analyze (); + df_set_flags (DF_DEFER_INSN_RESCAN); + + regrename_init (false); + + regrename_analyze (NULL); + + rename_chains (); + + regrename_finish (); + + return 0; +} + +static bool +gate_handle_regrename (void) +{ + return (optimize > 0 && (flag_rename_registers)); +} + +namespace { + +const pass_data pass_data_regrename = +{ + RTL_PASS, /* type */ + "rnreg", /* name */ + OPTGROUP_NONE, /* optinfo_flags */ + true, /* has_gate */ + true, /* has_execute */ + TV_RENAME_REGISTERS, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */ +}; + +class pass_regrename : public rtl_opt_pass +{ +public: + pass_regrename (gcc::context *ctxt) + : rtl_opt_pass (pass_data_regrename, ctxt) + {} + + /* opt_pass methods: */ + bool gate () { return gate_handle_regrename (); } + unsigned int execute () { return regrename_optimize (); } + +}; // class pass_regrename + +} // anon namespace + +rtl_opt_pass * +make_pass_regrename (gcc::context *ctxt) +{ + return new pass_regrename (ctxt); +} -- cgit v1.2.3