From 1bc5aee63eb72b341f506ad058502cd0361f0d10 Mon Sep 17 00:00:00 2001 From: Ben Cheng Date: Tue, 25 Mar 2014 22:37:19 -0700 Subject: Initial checkin of GCC 4.9.0 from trunk (r208799). Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba --- gcc-4.9/gcc/graphite-clast-to-gimple.c | 1745 ++++++++++++++++++++++++++++++++ 1 file changed, 1745 insertions(+) create mode 100644 gcc-4.9/gcc/graphite-clast-to-gimple.c (limited to 'gcc-4.9/gcc/graphite-clast-to-gimple.c') diff --git a/gcc-4.9/gcc/graphite-clast-to-gimple.c b/gcc-4.9/gcc/graphite-clast-to-gimple.c new file mode 100644 index 000000000..fc60845d8 --- /dev/null +++ b/gcc-4.9/gcc/graphite-clast-to-gimple.c @@ -0,0 +1,1745 @@ +/* Translation of CLAST (CLooG AST) to Gimple. + Copyright (C) 2009-2014 Free Software Foundation, Inc. + Contributed by Sebastian Pop . + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#include "config.h" + +#ifdef HAVE_cloog +#include +#include +#include +#include +#include +#include +#include +#include +#include +#endif + +#include "system.h" +#include "coretypes.h" +#include "diagnostic-core.h" +#include "tree.h" +#include "basic-block.h" +#include "tree-ssa-alias.h" +#include "internal-fn.h" +#include "gimple-expr.h" +#include "is-a.h" +#include "gimple.h" +#include "gimple-iterator.h" +#include "gimplify-me.h" +#include "gimple-ssa.h" +#include "tree-ssa-loop-manip.h" +#include "tree-ssa-loop.h" +#include "tree-into-ssa.h" +#include "tree-pass.h" +#include "cfgloop.h" +#include "tree-chrec.h" +#include "tree-data-ref.h" +#include "tree-scalar-evolution.h" +#include "sese.h" + +#ifdef HAVE_cloog +#include "cloog/cloog.h" +#include "graphite-poly.h" +#include "graphite-clast-to-gimple.h" +#include "graphite-htab.h" + +typedef const struct clast_expr *clast_name_p; + +#ifndef CLOOG_LANGUAGE_C +#define CLOOG_LANGUAGE_C LANGUAGE_C +#endif + + +/* Converts a GMP constant VAL to a tree and returns it. */ + +static tree +gmp_cst_to_tree (tree type, mpz_t val) +{ + tree t = type ? type : integer_type_node; + mpz_t tmp; + double_int di; + + mpz_init (tmp); + mpz_set (tmp, val); + di = mpz_get_double_int (t, tmp, true); + mpz_clear (tmp); + + return double_int_to_tree (t, di); +} + +/* Sets RES to the min of V1 and V2. */ + +static void +value_min (mpz_t res, mpz_t v1, mpz_t v2) +{ + if (mpz_cmp (v1, v2) < 0) + mpz_set (res, v1); + else + mpz_set (res, v2); +} + +/* Sets RES to the max of V1 and V2. */ + +static void +value_max (mpz_t res, mpz_t v1, mpz_t v2) +{ + if (mpz_cmp (v1, v2) < 0) + mpz_set (res, v2); + else + mpz_set (res, v1); +} + + +/* This flag is set when an error occurred during the translation of + CLAST to Gimple. */ +static bool gloog_error; + +/* Verifies properties that GRAPHITE should maintain during translation. */ + +static inline void +graphite_verify (void) +{ +#ifdef ENABLE_CHECKING + verify_loop_structure (); + verify_loop_closed_ssa (true); +#endif +} + +/* Stores the INDEX in a vector and the loop nesting LEVEL for a given + clast NAME. BOUND_ONE and BOUND_TWO represent the exact lower and + upper bounds that can be inferred from the polyhedral representation. */ + +typedef struct clast_name_index { + int index; + int level; + mpz_t bound_one, bound_two; + const char *name; + /* If free_name is set, the content of name was allocated by us and needs + to be freed. */ + char *free_name; +} *clast_name_index_p; + +/* Helper for hashing clast_name_index. */ + +struct clast_index_hasher +{ + typedef clast_name_index value_type; + typedef clast_name_index compare_type; + static inline hashval_t hash (const value_type *); + static inline bool equal (const value_type *, const compare_type *); + static inline void remove (value_type *); +}; + +/* Computes a hash function for database element E. */ + +inline hashval_t +clast_index_hasher::hash (const value_type *e) +{ + hashval_t hash = 0; + + int length = strlen (e->name); + int i; + + for (i = 0; i < length; ++i) + hash = hash | (e->name[i] << (i % 4)); + + return hash; +} + +/* Compares database elements ELT1 and ELT2. */ + +inline bool +clast_index_hasher::equal (const value_type *elt1, const compare_type *elt2) +{ + return strcmp (elt1->name, elt2->name) == 0; +} + +/* Free the memory taken by a clast_name_index struct. */ + +inline void +clast_index_hasher::remove (value_type *c) +{ + if (c->free_name) + free (c->free_name); + mpz_clear (c->bound_one); + mpz_clear (c->bound_two); + free (c); +} + +typedef hash_table clast_index_htab_type; + +/* Returns a pointer to a new element of type clast_name_index_p built + from NAME, INDEX, LEVEL, BOUND_ONE, and BOUND_TWO. */ + +static inline clast_name_index_p +new_clast_name_index (const char *name, int index, int level, + mpz_t bound_one, mpz_t bound_two) +{ + clast_name_index_p res = XNEW (struct clast_name_index); + char *new_name = XNEWVEC (char, strlen (name) + 1); + strcpy (new_name, name); + + res->name = new_name; + res->free_name = new_name; + res->level = level; + res->index = index; + mpz_init (res->bound_one); + mpz_init (res->bound_two); + mpz_set (res->bound_one, bound_one); + mpz_set (res->bound_two, bound_two); + return res; +} + +/* For a given clast NAME, returns -1 if NAME is not in the + INDEX_TABLE, otherwise returns the loop level for the induction + variable NAME, or if it is a parameter, the parameter number in the + vector of parameters. */ + +static inline int +clast_name_to_level (clast_name_p name, clast_index_htab_type index_table) +{ + struct clast_name_index tmp; + clast_name_index **slot; + + gcc_assert (name->type == clast_expr_name); + tmp.name = ((const struct clast_name *) name)->name; + tmp.free_name = NULL; + + slot = index_table.find_slot (&tmp, NO_INSERT); + + if (slot && *slot) + return ((struct clast_name_index *) *slot)->level; + + return -1; +} + +/* For a given clast NAME, returns -1 if it does not correspond to any + parameter, or otherwise, returns the index in the PARAMS or + SCATTERING_DIMENSIONS vector. */ + +static inline int +clast_name_to_index (struct clast_name *name, clast_index_htab_type index_table) +{ + struct clast_name_index tmp; + clast_name_index **slot; + + tmp.name = ((const struct clast_name *) name)->name; + tmp.free_name = NULL; + + slot = index_table.find_slot (&tmp, NO_INSERT); + + if (slot && *slot) + return (*slot)->index; + + return -1; +} + +/* For a given clast NAME, initializes the lower and upper bounds BOUND_ONE + and BOUND_TWO stored in the INDEX_TABLE. Returns true when NAME has been + found in the INDEX_TABLE, false otherwise. */ + +static inline bool +clast_name_to_lb_ub (struct clast_name *name, clast_index_htab_type index_table, + mpz_t bound_one, mpz_t bound_two) +{ + struct clast_name_index tmp; + clast_name_index **slot; + + tmp.name = name->name; + tmp.free_name = NULL; + + slot = index_table.find_slot (&tmp, NO_INSERT); + + if (slot && *slot) + { + mpz_set (bound_one, ((struct clast_name_index *) *slot)->bound_one); + mpz_set (bound_two, ((struct clast_name_index *) *slot)->bound_two); + return true; + } + + return false; +} + +/* Records in INDEX_TABLE the INDEX and LEVEL for NAME. */ + +static inline void +save_clast_name_index (clast_index_htab_type index_table, const char *name, + int index, int level, mpz_t bound_one, mpz_t bound_two) +{ + struct clast_name_index tmp; + clast_name_index **slot; + + tmp.name = name; + tmp.free_name = NULL; + slot = index_table.find_slot (&tmp, INSERT); + + if (slot) + { + free (*slot); + + *slot = new_clast_name_index (name, index, level, bound_one, bound_two); + } +} + + +/* NEWIVS_INDEX binds CLooG's scattering name to the index of the tree + induction variable in NEWIVS. + + PARAMS_INDEX binds CLooG's parameter name to the index of the tree + parameter in PARAMS. */ + +typedef struct ivs_params { + vec params, *newivs; + clast_index_htab_type newivs_index, params_index; + sese region; +} *ivs_params_p; + +/* Returns the tree variable from the name NAME that was given in + Cloog representation. */ + +static tree +clast_name_to_gcc (struct clast_name *name, ivs_params_p ip) +{ + int index; + + if (ip->params.exists () && ip->params_index.is_created ()) + { + index = clast_name_to_index (name, ip->params_index); + + if (index >= 0) + return ip->params[index]; + } + + gcc_assert (ip->newivs && ip->newivs_index.is_created ()); + index = clast_name_to_index (name, ip->newivs_index); + gcc_assert (index >= 0); + + return (*ip->newivs)[index]; +} + +/* Returns the maximal precision type for expressions TYPE1 and TYPE2. */ + +static tree +max_precision_type (tree type1, tree type2) +{ + enum machine_mode mode; + int p1, p2, precision; + tree type; + + if (POINTER_TYPE_P (type1)) + return type1; + + if (POINTER_TYPE_P (type2)) + return type2; + + if (TYPE_UNSIGNED (type1) + && TYPE_UNSIGNED (type2)) + return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2; + + p1 = TYPE_PRECISION (type1); + p2 = TYPE_PRECISION (type2); + + if (p1 > p2) + precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1; + else + precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2; + + if (precision > BITS_PER_WORD) + { + gloog_error = true; + return integer_type_node; + } + + mode = smallest_mode_for_size (precision, MODE_INT); + precision = GET_MODE_PRECISION (mode); + type = build_nonstandard_integer_type (precision, false); + + if (!type) + { + gloog_error = true; + return integer_type_node; + } + + return type; +} + +static tree +clast_to_gcc_expression (tree, struct clast_expr *, ivs_params_p); + +/* Converts a Cloog reduction expression R with reduction operation OP + to a GCC expression tree of type TYPE. */ + +static tree +clast_to_gcc_expression_red (tree type, enum tree_code op, + struct clast_reduction *r, ivs_params_p ip) +{ + int i; + tree res = clast_to_gcc_expression (type, r->elts[0], ip); + tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type; + + for (i = 1; i < r->n; i++) + { + tree t = clast_to_gcc_expression (operand_type, r->elts[i], ip); + res = fold_build2 (op, type, res, t); + } + + return res; +} + +/* Converts a Cloog AST expression E back to a GCC expression tree of + type TYPE. */ + +static tree +clast_to_gcc_expression (tree type, struct clast_expr *e, ivs_params_p ip) +{ + switch (e->type) + { + case clast_expr_name: + { + return clast_name_to_gcc ((struct clast_name *) e, ip); + } + case clast_expr_term: + { + struct clast_term *t = (struct clast_term *) e; + + if (t->var) + { + if (mpz_cmp_si (t->val, 1) == 0) + { + tree name = clast_to_gcc_expression (type, t->var, ip); + + if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type)) + name = convert_to_ptrofftype (name); + + name = fold_convert (type, name); + return name; + } + + else if (mpz_cmp_si (t->val, -1) == 0) + { + tree name = clast_to_gcc_expression (type, t->var, ip); + + if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type)) + name = convert_to_ptrofftype (name); + + name = fold_convert (type, name); + + return fold_build1 (NEGATE_EXPR, type, name); + } + else + { + tree name = clast_to_gcc_expression (type, t->var, ip); + tree cst = gmp_cst_to_tree (type, t->val); + + if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type)) + name = convert_to_ptrofftype (name); + + name = fold_convert (type, name); + + if (!POINTER_TYPE_P (type)) + return fold_build2 (MULT_EXPR, type, cst, name); + + gloog_error = true; + return cst; + } + } + else + return gmp_cst_to_tree (type, t->val); + } + + case clast_expr_red: + { + struct clast_reduction *r = (struct clast_reduction *) e; + + switch (r->type) + { + case clast_red_sum: + return clast_to_gcc_expression_red + (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR, + r, ip); + + case clast_red_min: + return clast_to_gcc_expression_red (type, MIN_EXPR, r, ip); + + case clast_red_max: + return clast_to_gcc_expression_red (type, MAX_EXPR, r, ip); + + default: + gcc_unreachable (); + } + break; + } + + case clast_expr_bin: + { + struct clast_binary *b = (struct clast_binary *) e; + struct clast_expr *lhs = (struct clast_expr *) b->LHS; + tree tl = clast_to_gcc_expression (type, lhs, ip); + tree tr = gmp_cst_to_tree (type, b->RHS); + + switch (b->type) + { + case clast_bin_fdiv: + return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr); + + case clast_bin_cdiv: + return fold_build2 (CEIL_DIV_EXPR, type, tl, tr); + + case clast_bin_div: + return fold_build2 (EXACT_DIV_EXPR, type, tl, tr); + + case clast_bin_mod: + return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr); + + default: + gcc_unreachable (); + } + } + + default: + gcc_unreachable (); + } + + return NULL_TREE; +} + +/* Return a type that could represent the values between BOUND_ONE and + BOUND_TWO. */ + +static tree +type_for_interval (mpz_t bound_one, mpz_t bound_two) +{ + bool unsigned_p; + tree type; + enum machine_mode mode; + int wider_precision; + int precision = MAX (mpz_sizeinbase (bound_one, 2), + mpz_sizeinbase (bound_two, 2)); + + if (precision > BITS_PER_WORD) + { + gloog_error = true; + return integer_type_node; + } + + if (mpz_cmp (bound_one, bound_two) <= 0) + unsigned_p = (mpz_sgn (bound_one) >= 0); + else + unsigned_p = (mpz_sgn (bound_two) >= 0); + + mode = smallest_mode_for_size (precision, MODE_INT); + wider_precision = GET_MODE_PRECISION (mode); + + /* As we want to generate signed types as much as possible, try to + fit the interval [bound_one, bound_two] in a signed type. For example, + supposing that we have the interval [0, 100], instead of + generating unsigned char, we want to generate a signed char. */ + if (unsigned_p && precision < wider_precision) + unsigned_p = false; + + type = build_nonstandard_integer_type (wider_precision, unsigned_p); + + if (!type) + { + gloog_error = true; + return integer_type_node; + } + + return type; +} + +/* Return a type that could represent the integer value VAL, or + otherwise return NULL_TREE. */ + +static tree +type_for_value (mpz_t val) +{ + return type_for_interval (val, val); +} + +static tree +type_for_clast_expr (struct clast_expr *, ivs_params_p, mpz_t, mpz_t); + +/* Return the type for the clast_term T. Initializes BOUND_ONE and + BOUND_TWO to the bounds of the term. */ + +static tree +type_for_clast_term (struct clast_term *t, ivs_params_p ip, mpz_t bound_one, + mpz_t bound_two) +{ + tree type; + gcc_assert (t->expr.type == clast_expr_term); + + if (!t->var) + { + mpz_set (bound_one, t->val); + mpz_set (bound_two, t->val); + return type_for_value (t->val); + } + + type = type_for_clast_expr (t->var, ip, bound_one, bound_two); + + mpz_mul (bound_one, bound_one, t->val); + mpz_mul (bound_two, bound_two, t->val); + + return max_precision_type (type, type_for_interval (bound_one, bound_two)); +} + +/* Return the type for the clast_reduction R. Initializes BOUND_ONE + and BOUND_TWO to the bounds of the reduction expression. */ + +static tree +type_for_clast_red (struct clast_reduction *r, ivs_params_p ip, + mpz_t bound_one, mpz_t bound_two) +{ + int i; + tree type = type_for_clast_expr (r->elts[0], ip, bound_one, bound_two); + mpz_t b1, b2, m1, m2; + + if (r->n == 1) + return type; + + mpz_init (b1); + mpz_init (b2); + mpz_init (m1); + mpz_init (m2); + + for (i = 1; i < r->n; i++) + { + tree t = type_for_clast_expr (r->elts[i], ip, b1, b2); + type = max_precision_type (type, t); + + switch (r->type) + { + case clast_red_sum: + value_min (m1, bound_one, bound_two); + value_min (m2, b1, b2); + mpz_add (bound_one, m1, m2); + + value_max (m1, bound_one, bound_two); + value_max (m2, b1, b2); + mpz_add (bound_two, m1, m2); + break; + + case clast_red_min: + value_min (bound_one, bound_one, bound_two); + value_min (bound_two, b1, b2); + break; + + case clast_red_max: + value_max (bound_one, bound_one, bound_two); + value_max (bound_two, b1, b2); + break; + + default: + gcc_unreachable (); + break; + } + } + + mpz_clear (b1); + mpz_clear (b2); + mpz_clear (m1); + mpz_clear (m2); + + /* Return a type that can represent the result of the reduction. */ + return max_precision_type (type, type_for_interval (bound_one, bound_two)); +} + +/* Return the type for the clast_binary B used in STMT. */ + +static tree +type_for_clast_bin (struct clast_binary *b, ivs_params_p ip, mpz_t bound_one, + mpz_t bound_two) +{ + mpz_t one; + tree l = type_for_clast_expr ((struct clast_expr *) b->LHS, ip, + bound_one, bound_two); + tree r = type_for_value (b->RHS); + tree type = max_precision_type (l, r); + + switch (b->type) + { + case clast_bin_fdiv: + mpz_mdiv (bound_one, bound_one, b->RHS); + mpz_mdiv (bound_two, bound_two, b->RHS); + break; + + case clast_bin_cdiv: + mpz_mdiv (bound_one, bound_one, b->RHS); + mpz_mdiv (bound_two, bound_two, b->RHS); + mpz_init (one); + mpz_add (bound_one, bound_one, one); + mpz_add (bound_two, bound_two, one); + mpz_clear (one); + break; + + case clast_bin_div: + mpz_div (bound_one, bound_one, b->RHS); + mpz_div (bound_two, bound_two, b->RHS); + break; + + case clast_bin_mod: + mpz_mod (bound_one, bound_one, b->RHS); + mpz_mod (bound_two, bound_two, b->RHS); + break; + + default: + gcc_unreachable (); + } + + /* Return a type that can represent the result of the reduction. */ + return max_precision_type (type, type_for_interval (bound_one, bound_two)); +} + +/* Return the type for the clast_name NAME. Initializes BOUND_ONE and + BOUND_TWO to the bounds of the term. */ + +static tree +type_for_clast_name (struct clast_name *name, ivs_params_p ip, mpz_t bound_one, + mpz_t bound_two) +{ + bool found = false; + + if (ip->params.exists () && ip->params_index.is_created ()) + found = clast_name_to_lb_ub (name, ip->params_index, bound_one, bound_two); + + if (!found) + { + gcc_assert (ip->newivs && ip->newivs_index.is_created ()); + found = clast_name_to_lb_ub (name, ip->newivs_index, bound_one, + bound_two); + gcc_assert (found); + } + + return TREE_TYPE (clast_name_to_gcc (name, ip)); +} + +/* Returns the type for the CLAST expression E when used in statement + STMT. */ + +static tree +type_for_clast_expr (struct clast_expr *e, ivs_params_p ip, mpz_t bound_one, + mpz_t bound_two) +{ + switch (e->type) + { + case clast_expr_term: + return type_for_clast_term ((struct clast_term *) e, ip, + bound_one, bound_two); + + case clast_expr_red: + return type_for_clast_red ((struct clast_reduction *) e, ip, + bound_one, bound_two); + + case clast_expr_bin: + return type_for_clast_bin ((struct clast_binary *) e, ip, + bound_one, bound_two); + + case clast_expr_name: + return type_for_clast_name ((struct clast_name *) e, ip, + bound_one, bound_two); + + default: + gcc_unreachable (); + } + + return NULL_TREE; +} + +/* Returns true if the clast expression E is a constant with VALUE. */ + +static bool +clast_expr_const_value_p (struct clast_expr *e, int value) +{ + struct clast_term *t; + if (e->type != clast_expr_term) + return false; + t = (struct clast_term *)e; + if (t->var) + return false; + return 0 == mpz_cmp_si (t->val, value); +} + +/* Translates a clast equation CLEQ to a tree. */ + +static tree +graphite_translate_clast_equation (struct clast_equation *cleq, + ivs_params_p ip) +{ + enum tree_code comp; + tree type, lhs, rhs, ltype, rtype; + mpz_t bound_one, bound_two; + struct clast_expr *clhs, *crhs; + + clhs = cleq->LHS; + crhs = cleq->RHS; + if (cleq->sign == 0) + comp = EQ_EXPR; + else if (cleq->sign > 0) + comp = GE_EXPR; + else + comp = LE_EXPR; + + /* Special cases to reduce range of arguments to hopefully + don't need types with larger precision than the input. */ + if (crhs->type == clast_expr_red + && comp != EQ_EXPR) + { + struct clast_reduction *r = (struct clast_reduction *) crhs; + /* X >= A+1 --> X > A and + X <= A-1 --> X < A */ + if (r->n == 2 + && r->type == clast_red_sum + && clast_expr_const_value_p (r->elts[1], comp == GE_EXPR ? 1 : -1)) + { + crhs = r->elts[0]; + comp = comp == GE_EXPR ? GT_EXPR : LT_EXPR; + } + } + + mpz_init (bound_one); + mpz_init (bound_two); + + ltype = type_for_clast_expr (clhs, ip, bound_one, bound_two); + rtype = type_for_clast_expr (crhs, ip, bound_one, bound_two); + + mpz_clear (bound_one); + mpz_clear (bound_two); + type = max_precision_type (ltype, rtype); + + lhs = clast_to_gcc_expression (type, clhs, ip); + rhs = clast_to_gcc_expression (type, crhs, ip); + + return fold_build2 (comp, boolean_type_node, lhs, rhs); +} + +/* Creates the test for the condition in STMT. */ + +static tree +graphite_create_guard_cond_expr (struct clast_guard *stmt, + ivs_params_p ip) +{ + tree cond = NULL; + int i; + + for (i = 0; i < stmt->n; i++) + { + tree eq = graphite_translate_clast_equation (&stmt->eq[i], ip); + + if (cond) + cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq); + else + cond = eq; + } + + return cond; +} + +/* Creates a new if region corresponding to Cloog's guard. */ + +static edge +graphite_create_new_guard (edge entry_edge, struct clast_guard *stmt, + ivs_params_p ip) +{ + tree cond_expr = graphite_create_guard_cond_expr (stmt, ip); + edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr); + return exit_edge; +} + +/* Compute the lower bound LOW and upper bound UP for the parameter + PARAM in scop SCOP based on the constraints in the context. */ + +static void +compute_bounds_for_param (scop_p scop, int param, mpz_t low, mpz_t up) +{ + isl_int v; + isl_aff *aff = isl_aff_zero_on_domain + (isl_local_space_from_space (isl_set_get_space (scop->context))); + + aff = isl_aff_add_coefficient_si (aff, isl_dim_param, param, 1); + + isl_int_init (v); + isl_set_min (scop->context, aff, &v); + isl_int_get_gmp (v, low); + isl_set_max (scop->context, aff, &v); + isl_int_get_gmp (v, up); + isl_int_clear (v); + isl_aff_free (aff); +} + +/* Compute the lower bound LOW and upper bound UP for the induction + variable of loop LOOP. + + FIXME: This one is not entirely correct, as min/max expressions in the + calculation can yield to incorrect results. To be completely + correct, we need to evaluate each subexpression generated by + CLooG. CLooG does not yet support this, so this is as good as + it can be. */ + +static void +compute_bounds_for_loop (struct clast_for *loop, mpz_t low, mpz_t up) +{ + isl_set *domain; + isl_aff *dimension; + isl_local_space *local_space; + isl_int isl_value; + enum isl_lp_result lp_result; + + domain = isl_set_copy (isl_set_from_cloog_domain (loop->domain)); + local_space = isl_local_space_from_space (isl_set_get_space (domain)); + dimension = isl_aff_zero_on_domain (local_space); + dimension = isl_aff_add_coefficient_si (dimension, isl_dim_in, + isl_set_dim (domain, isl_dim_set) - 1, + 1); + + isl_int_init (isl_value); + + lp_result = isl_set_min (domain, dimension, &isl_value); + assert (lp_result == isl_lp_ok); + isl_int_get_gmp (isl_value, low); + + lp_result = isl_set_max (domain, dimension, &isl_value); + assert (lp_result == isl_lp_ok); + isl_int_get_gmp (isl_value, up); + + isl_int_clear (isl_value); + isl_set_free (domain); + isl_aff_free (dimension); +} + +/* Returns the type for the induction variable for the loop translated + from STMT_FOR. */ + +static tree +type_for_clast_for (struct clast_for *stmt_for, ivs_params_p ip) +{ + mpz_t bound_one, bound_two; + tree lb_type, ub_type; + + mpz_init (bound_one); + mpz_init (bound_two); + + lb_type = type_for_clast_expr (stmt_for->LB, ip, bound_one, bound_two); + ub_type = type_for_clast_expr (stmt_for->UB, ip, bound_one, bound_two); + + mpz_clear (bound_one); + mpz_clear (bound_two); + + return max_precision_type (lb_type, ub_type); +} + +/* Creates a new LOOP corresponding to Cloog's STMT. Inserts an + induction variable for the new LOOP. New LOOP is attached to CFG + starting at ENTRY_EDGE. LOOP is inserted into the loop tree and + becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds + CLooG's scattering name to the induction variable created for the + loop of STMT. The new induction variable is inserted in the NEWIVS + vector and is of type TYPE. */ + +static struct loop * +graphite_create_new_loop (edge entry_edge, struct clast_for *stmt, + loop_p outer, tree type, tree lb, tree ub, + int level, ivs_params_p ip) +{ + mpz_t low, up; + + tree stride = gmp_cst_to_tree (type, stmt->stride); + tree ivvar = create_tmp_var (type, "graphite_IV"); + tree iv, iv_after_increment; + loop_p loop = create_empty_loop_on_edge + (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment, + outer ? outer : entry_edge->src->loop_father); + + mpz_init (low); + mpz_init (up); + compute_bounds_for_loop (stmt, low, up); + save_clast_name_index (ip->newivs_index, stmt->iterator, + (*ip->newivs).length (), level, low, up); + mpz_clear (low); + mpz_clear (up); + (*ip->newivs).safe_push (iv); + return loop; +} + +/* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the + induction variables of the loops around GBB in SESE. */ + +static void +build_iv_mapping (vec iv_map, struct clast_user_stmt *user_stmt, + ivs_params_p ip) +{ + struct clast_stmt *t; + int depth = 0; + CloogStatement *cs = user_stmt->statement; + poly_bb_p pbb = (poly_bb_p) cs->usr; + gimple_bb_p gbb = PBB_BLACK_BOX (pbb); + mpz_t bound_one, bound_two; + + mpz_init (bound_one); + mpz_init (bound_two); + + for (t = user_stmt->substitutions; t; t = t->next, depth++) + { + struct clast_expr *expr = (struct clast_expr *) + ((struct clast_assignment *)t)->RHS; + tree type = type_for_clast_expr (expr, ip, bound_one, bound_two); + tree new_name = clast_to_gcc_expression (type, expr, ip); + loop_p old_loop = gbb_loop_at_index (gbb, ip->region, depth); + + iv_map[old_loop->num] = new_name; + } + + mpz_clear (bound_one); + mpz_clear (bound_two); +} + +/* Construct bb_pbb_def with BB and PBB. */ + +static bb_pbb_def * +new_bb_pbb_def (basic_block bb, poly_bb_p pbb) +{ + bb_pbb_def *bb_pbb_p; + + bb_pbb_p = XNEW (bb_pbb_def); + bb_pbb_p->bb = bb; + bb_pbb_p->pbb = pbb; + + return bb_pbb_p; +} + +/* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */ + +static void +mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, + bb_pbb_htab_type bb_pbb_mapping) +{ + bb_pbb_def tmp; + bb_pbb_def **x; + + tmp.bb = bb; + x = bb_pbb_mapping.find_slot (&tmp, INSERT); + + if (x && !*x) + *x = new_bb_pbb_def (bb, pbb); +} + +/* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */ + +poly_bb_p +find_pbb_via_hash (bb_pbb_htab_type bb_pbb_mapping, basic_block bb) +{ + bb_pbb_def tmp; + bb_pbb_def **slot; + + tmp.bb = bb; + slot = bb_pbb_mapping.find_slot (&tmp, NO_INSERT); + + if (slot && *slot) + return ((bb_pbb_def *) *slot)->pbb; + + return NULL; +} + +/* Return the scop of the loop and initialize PBBS the set of + poly_bb_p that belong to the LOOP. BB_PBB_MAPPING is a map created + by the CLAST code generator between a generated basic_block and its + related poly_bb_p. */ + +scop_p +get_loop_body_pbbs (loop_p loop, bb_pbb_htab_type bb_pbb_mapping, + vec *pbbs) +{ + unsigned i; + basic_block *bbs = get_loop_body_in_dom_order (loop); + scop_p scop = NULL; + + for (i = 0; i < loop->num_nodes; i++) + { + poly_bb_p pbb = find_pbb_via_hash (bb_pbb_mapping, bbs[i]); + + if (pbb == NULL) + continue; + + scop = PBB_SCOP (pbb); + (*pbbs).safe_push (pbb); + } + + free (bbs); + return scop; +} + +/* Translates a clast user statement STMT to gimple. + + - NEXT_E is the edge where new generated code should be attached. + - CONTEXT_LOOP is the loop in which the generated code will be placed + - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ + +static edge +translate_clast_user (struct clast_user_stmt *stmt, edge next_e, + bb_pbb_htab_type bb_pbb_mapping, ivs_params_p ip) +{ + int i, nb_loops; + basic_block new_bb; + poly_bb_p pbb = (poly_bb_p) stmt->statement->usr; + gimple_bb_p gbb = PBB_BLACK_BOX (pbb); + vec iv_map; + + if (GBB_BB (gbb) == ENTRY_BLOCK_PTR_FOR_FN (cfun)) + return next_e; + + nb_loops = number_of_loops (cfun); + iv_map.create (nb_loops); + for (i = 0; i < nb_loops; i++) + iv_map.quick_push (NULL_TREE); + + build_iv_mapping (iv_map, stmt, ip); + next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), ip->region, + next_e, iv_map, &gloog_error); + iv_map.release (); + + new_bb = next_e->src; + mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping); + mark_virtual_operands_for_renaming (cfun); + update_ssa (TODO_update_ssa); + + return next_e; +} + +/* Creates a new if region protecting the loop to be executed, if the execution + count is zero (lb > ub). */ + +static edge +graphite_create_new_loop_guard (edge entry_edge, struct clast_for *stmt, + tree *type, tree *lb, tree *ub, + ivs_params_p ip) +{ + tree cond_expr; + edge exit_edge; + + *type = type_for_clast_for (stmt, ip); + *lb = clast_to_gcc_expression (*type, stmt->LB, ip); + *ub = clast_to_gcc_expression (*type, stmt->UB, ip); + + /* When ub is simply a constant or a parameter, use lb <= ub. */ + if (TREE_CODE (*ub) == INTEGER_CST || TREE_CODE (*ub) == SSA_NAME) + cond_expr = fold_build2 (LE_EXPR, boolean_type_node, *lb, *ub); + else + { + tree one = (POINTER_TYPE_P (*type) + ? convert_to_ptrofftype (integer_one_node) + : fold_convert (*type, integer_one_node)); + /* Adding +1 and using LT_EXPR helps with loop latches that have a + loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes + 2^k-1 due to integer overflow, and the condition lb <= ub is true, + even if we do not want this. However lb < ub + 1 is false, as + expected. */ + tree ub_one = fold_build2 (POINTER_TYPE_P (*type) ? POINTER_PLUS_EXPR + : PLUS_EXPR, *type, *ub, one); + + cond_expr = fold_build2 (LT_EXPR, boolean_type_node, *lb, ub_one); + } + + exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr); + + return exit_edge; +} + +static edge +translate_clast (loop_p, struct clast_stmt *, edge, bb_pbb_htab_type, + int, ivs_params_p); + +/* Create the loop for a clast for statement. + + - NEXT_E is the edge where new generated code should be attached. + - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ + +static edge +translate_clast_for_loop (loop_p context_loop, struct clast_for *stmt, + edge next_e, bb_pbb_htab_type bb_pbb_mapping, + int level, tree type, tree lb, tree ub, + ivs_params_p ip) +{ + struct loop *loop = graphite_create_new_loop (next_e, stmt, context_loop, + type, lb, ub, level, ip); + edge last_e = single_exit (loop); + edge to_body = single_succ_edge (loop->header); + basic_block after = to_body->dest; + + /* Create a basic block for loop close phi nodes. */ + last_e = single_succ_edge (split_edge (last_e)); + + /* Translate the body of the loop. */ + next_e = translate_clast (loop, stmt->body, to_body, bb_pbb_mapping, + level + 1, ip); + redirect_edge_succ_nodup (next_e, after); + set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src); + + isl_set *domain = isl_set_from_cloog_domain (stmt->domain); + int scheduling_dim = isl_set_n_dim (domain); + + if (flag_loop_parallelize_all + && loop_is_parallel_p (loop, bb_pbb_mapping, scheduling_dim)) + loop->can_be_parallel = true; + + return last_e; +} + +/* Translates a clast for statement STMT to gimple. First a guard is created + protecting the loop, if it is executed zero times. In this guard we create + the real loop structure. + + - NEXT_E is the edge where new generated code should be attached. + - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ + +static edge +translate_clast_for (loop_p context_loop, struct clast_for *stmt, edge next_e, + bb_pbb_htab_type bb_pbb_mapping, int level, + ivs_params_p ip) +{ + tree type, lb, ub; + edge last_e = graphite_create_new_loop_guard (next_e, stmt, &type, + &lb, &ub, ip); + edge true_e = get_true_edge_from_guard_bb (next_e->dest); + + translate_clast_for_loop (context_loop, stmt, true_e, bb_pbb_mapping, level, + type, lb, ub, ip); + return last_e; +} + +/* Translates a clast assignment STMT to gimple. + + - NEXT_E is the edge where new generated code should be attached. + - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ + +static edge +translate_clast_assignment (struct clast_assignment *stmt, edge next_e, + int level, ivs_params_p ip) +{ + gimple_seq stmts; + mpz_t bound_one, bound_two; + tree type, new_name, var; + edge res = single_succ_edge (split_edge (next_e)); + struct clast_expr *expr = (struct clast_expr *) stmt->RHS; + + mpz_init (bound_one); + mpz_init (bound_two); + type = type_for_clast_expr (expr, ip, bound_one, bound_two); + var = create_tmp_var (type, "graphite_var"); + new_name = force_gimple_operand (clast_to_gcc_expression (type, expr, ip), + &stmts, true, var); + if (stmts) + { + gsi_insert_seq_on_edge (next_e, stmts); + gsi_commit_edge_inserts (); + } + + save_clast_name_index (ip->newivs_index, stmt->LHS, + (*ip->newivs).length (), level, + bound_one, bound_two); + (*ip->newivs).safe_push (new_name); + + mpz_clear (bound_one); + mpz_clear (bound_two); + + return res; +} + +/* Translates a clast guard statement STMT to gimple. + + - NEXT_E is the edge where new generated code should be attached. + - CONTEXT_LOOP is the loop in which the generated code will be placed + - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ + +static edge +translate_clast_guard (loop_p context_loop, struct clast_guard *stmt, + edge next_e, bb_pbb_htab_type bb_pbb_mapping, int level, + ivs_params_p ip) +{ + edge last_e = graphite_create_new_guard (next_e, stmt, ip); + edge true_e = get_true_edge_from_guard_bb (next_e->dest); + + translate_clast (context_loop, stmt->then, true_e, bb_pbb_mapping, level, ip); + return last_e; +} + +/* Translates a CLAST statement STMT to GCC representation in the + context of a SESE. + + - NEXT_E is the edge where new generated code should be attached. + - CONTEXT_LOOP is the loop in which the generated code will be placed + - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ + +static edge +translate_clast (loop_p context_loop, struct clast_stmt *stmt, edge next_e, + bb_pbb_htab_type bb_pbb_mapping, int level, ivs_params_p ip) +{ + if (!stmt) + return next_e; + + if (CLAST_STMT_IS_A (stmt, stmt_root)) + ; /* Do nothing. */ + + else if (CLAST_STMT_IS_A (stmt, stmt_user)) + next_e = translate_clast_user ((struct clast_user_stmt *) stmt, + next_e, bb_pbb_mapping, ip); + + else if (CLAST_STMT_IS_A (stmt, stmt_for)) + next_e = translate_clast_for (context_loop, (struct clast_for *) stmt, + next_e, bb_pbb_mapping, level, ip); + + else if (CLAST_STMT_IS_A (stmt, stmt_guard)) + next_e = translate_clast_guard (context_loop, (struct clast_guard *) stmt, + next_e, bb_pbb_mapping, level, ip); + + else if (CLAST_STMT_IS_A (stmt, stmt_block)) + next_e = translate_clast (context_loop, ((struct clast_block *) stmt)->body, + next_e, bb_pbb_mapping, level, ip); + + else if (CLAST_STMT_IS_A (stmt, stmt_ass)) + next_e = translate_clast_assignment ((struct clast_assignment *) stmt, + next_e, level, ip); + else + gcc_unreachable (); + + recompute_all_dominators (); + graphite_verify (); + + return translate_clast (context_loop, stmt->next, next_e, bb_pbb_mapping, + level, ip); +} + +/* Add parameter and iterator names to the CloogUnionDomain. */ + +static CloogUnionDomain * +add_names_to_union_domain (scop_p scop, CloogUnionDomain *union_domain, + int nb_scattering_dims, + clast_index_htab_type params_index) +{ + sese region = SCOP_REGION (scop); + int i; + int nb_iterators = scop_max_loop_depth (scop); + int nb_parameters = SESE_PARAMS (region).length (); + mpz_t bound_one, bound_two; + + mpz_init (bound_one); + mpz_init (bound_two); + + for (i = 0; i < nb_parameters; i++) + { + tree param = SESE_PARAMS (region)[i]; + const char *name = get_name (param); + int len; + char *parameter; + + if (!name) + name = "T"; + + len = strlen (name); + len += 17; + parameter = XNEWVEC (char, len + 1); + snprintf (parameter, len, "%s_%d", name, SSA_NAME_VERSION (param)); + save_clast_name_index (params_index, parameter, i, i, bound_one, + bound_two); + union_domain = cloog_union_domain_set_name (union_domain, CLOOG_PARAM, i, + parameter); + compute_bounds_for_param (scop, i, bound_one, bound_two); + free (parameter); + } + + mpz_clear (bound_one); + mpz_clear (bound_two); + + for (i = 0; i < nb_iterators; i++) + { + int len = 4 + 16; + char *iterator; + iterator = XNEWVEC (char, len); + snprintf (iterator, len, "git_%d", i); + union_domain = cloog_union_domain_set_name (union_domain, CLOOG_ITER, i, + iterator); + free (iterator); + } + + for (i = 0; i < nb_scattering_dims; i++) + { + int len = 5 + 16; + char *scattering; + scattering = XNEWVEC (char, len); + snprintf (scattering, len, "scat_%d", i); + union_domain = cloog_union_domain_set_name (union_domain, CLOOG_SCAT, i, + scattering); + free (scattering); + } + + return union_domain; +} + +/* Initialize a CLooG input file. */ + +static FILE * +init_cloog_input_file (int scop_number) +{ + FILE *graphite_out_file; + int len = strlen (dump_base_name); + char *dumpname = XNEWVEC (char, len + 25); + char *s_scop_number = XNEWVEC (char, 15); + + memcpy (dumpname, dump_base_name, len + 1); + strip_off_ending (dumpname, len); + sprintf (s_scop_number, ".%d", scop_number); + strcat (dumpname, s_scop_number); + strcat (dumpname, ".cloog"); + graphite_out_file = fopen (dumpname, "w+b"); + + if (graphite_out_file == 0) + fatal_error ("can%'t open %s for writing: %m", dumpname); + + free (dumpname); + + return graphite_out_file; +} + +/* Extend the scattering to NEW_DIMS scattering dimensions. */ + +static +isl_map *extend_scattering (isl_map *scattering, int new_dims) +{ + int old_dims, i; + isl_space *space; + isl_basic_map *change_scattering; + isl_map *change_scattering_map; + + old_dims = isl_map_dim (scattering, isl_dim_out); + + space = isl_space_alloc (isl_map_get_ctx (scattering), 0, old_dims, new_dims); + change_scattering = isl_basic_map_universe (isl_space_copy (space)); + + for (i = 0; i < old_dims; i++) + { + isl_constraint *c; + c = isl_equality_alloc + (isl_local_space_from_space (isl_space_copy (space))); + isl_constraint_set_coefficient_si (c, isl_dim_in, i, 1); + isl_constraint_set_coefficient_si (c, isl_dim_out, i, -1); + change_scattering = isl_basic_map_add_constraint (change_scattering, c); + } + + for (i = old_dims; i < new_dims; i++) + { + isl_constraint *c; + c = isl_equality_alloc + (isl_local_space_from_space (isl_space_copy (space))); + isl_constraint_set_coefficient_si (c, isl_dim_out, i, 1); + change_scattering = isl_basic_map_add_constraint (change_scattering, c); + } + + change_scattering_map = isl_map_from_basic_map (change_scattering); + change_scattering_map = isl_map_align_params (change_scattering_map, space); + return isl_map_apply_range (scattering, change_scattering_map); +} + +/* Build cloog union domain for SCoP. */ + +static CloogUnionDomain * +build_cloog_union_domain (scop_p scop, int nb_scattering_dims) +{ + int i; + poly_bb_p pbb; + CloogUnionDomain *union_domain = + cloog_union_domain_alloc (scop_nb_params (scop)); + + FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb) + { + CloogDomain *domain; + CloogScattering *scattering; + + /* Dead code elimination: when the domain of a PBB is empty, + don't generate code for the PBB. */ + if (isl_set_is_empty (pbb->domain)) + continue; + + domain = cloog_domain_from_isl_set (isl_set_copy (pbb->domain)); + scattering = cloog_scattering_from_isl_map + (extend_scattering (isl_map_copy (pbb->transformed), + nb_scattering_dims)); + + union_domain = cloog_union_domain_add_domain (union_domain, "", domain, + scattering, pbb); + } + + return union_domain; +} + +/* Return the options that will be used in GLOOG. */ + +static CloogOptions * +set_cloog_options (void) +{ + CloogOptions *options = cloog_options_malloc (cloog_state); + + /* Change cloog output language to C. If we do use FORTRAN instead, cloog + will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if + we pass an incomplete program to cloog. */ + options->language = CLOOG_LANGUAGE_C; + + /* Enable complex equality spreading: removes dummy statements + (assignments) in the generated code which repeats the + substitution equations for statements. This is useless for + GLooG. */ + options->esp = 1; + + /* Silence CLooG to avoid failing tests due to debug output to stderr. */ + options->quiet = 1; + + /* Allow cloog to build strides with a stride width different to one. + This example has stride = 4: + + for (i = 0; i < 20; i += 4) + A */ + options->strides = 1; + + /* We want the clast to provide the iteration domains of the executed loops. + This allows us to derive minimal/maximal values for the induction + variables. */ + options->save_domains = 1; + + /* Do not remove scalar dimensions. CLooG by default removes scalar + dimensions very early from the input schedule. However, they are + necessary to correctly derive from the saved domains + (options->save_domains) the relationship between the generated loops + and the schedule dimensions they are generated from. */ + options->noscalars = 1; + + /* Disable optimizations and make cloog generate source code closer to the + input. This is useful for debugging, but later we want the optimized + code. + + XXX: We can not disable optimizations, as loop blocking is not working + without them. */ + if (0) + { + options->f = -1; + options->l = INT_MAX; + } + + return options; +} + +/* Prints STMT to STDERR. */ + +void +print_clast_stmt (FILE *file, struct clast_stmt *stmt) +{ + CloogOptions *options = set_cloog_options (); + + clast_pprint (file, stmt, 0, options); + cloog_options_free (options); +} + +/* Prints STMT to STDERR. */ + +DEBUG_FUNCTION void +debug_clast_stmt (struct clast_stmt *stmt) +{ + print_clast_stmt (stderr, stmt); +} + +/* Get the maximal number of scattering dimensions in the scop SCOP. */ + +static +int get_max_scattering_dimensions (scop_p scop) +{ + int i; + poly_bb_p pbb; + int scattering_dims = 0; + + FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb) + { + int pbb_scatt_dims = isl_map_dim (pbb->transformed, isl_dim_out); + if (pbb_scatt_dims > scattering_dims) + scattering_dims = pbb_scatt_dims; + } + + return scattering_dims; +} + +static CloogInput * +generate_cloog_input (scop_p scop, clast_index_htab_type params_index) +{ + CloogUnionDomain *union_domain; + CloogInput *cloog_input; + CloogDomain *context; + int nb_scattering_dims = get_max_scattering_dimensions (scop); + + union_domain = build_cloog_union_domain (scop, nb_scattering_dims); + union_domain = add_names_to_union_domain (scop, union_domain, + nb_scattering_dims, + params_index); + context = cloog_domain_from_isl_set (isl_set_copy (scop->context)); + + cloog_input = cloog_input_alloc (context, union_domain); + + return cloog_input; +} + +/* Translate SCOP to a CLooG program and clast. These two + representations should be freed together: a clast cannot be used + without a program. */ + +static struct clast_stmt * +scop_to_clast (scop_p scop, clast_index_htab_type params_index) +{ + CloogInput *cloog_input; + struct clast_stmt *clast; + CloogOptions *options = set_cloog_options (); + + cloog_input = generate_cloog_input (scop, params_index); + + /* Dump a .cloog input file, if requested. This feature is only + enabled in the Graphite branch. */ + if (0) + { + static size_t file_scop_number = 0; + FILE *cloog_file = init_cloog_input_file (file_scop_number); + cloog_input_dump_cloog (cloog_file, cloog_input, options); + } + + clast = cloog_clast_create_from_input (cloog_input, options); + + cloog_options_free (options); + return clast; +} + +/* Prints to FILE the code generated by CLooG for SCOP. */ + +void +print_generated_program (FILE *file, scop_p scop) +{ + CloogOptions *options = set_cloog_options (); + clast_index_htab_type params_index; + struct clast_stmt *clast; + + params_index.create (10); + + clast = scop_to_clast (scop, params_index); + + fprintf (file, " (clast: \n"); + clast_pprint (file, clast, 0, options); + fprintf (file, " )\n"); + + cloog_options_free (options); + cloog_clast_free (clast); +} + +/* Prints to STDERR the code generated by CLooG for SCOP. */ + +DEBUG_FUNCTION void +debug_generated_program (scop_p scop) +{ + print_generated_program (stderr, scop); +} + +/* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for + the given SCOP. Return true if code generation succeeded. + BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping. +*/ + +bool +gloog (scop_p scop, bb_pbb_htab_type bb_pbb_mapping) +{ + auto_vec newivs; + loop_p context_loop; + sese region = SCOP_REGION (scop); + ifsese if_region = NULL; + clast_index_htab_type newivs_index, params_index; + struct clast_stmt *clast; + struct ivs_params ip; + + timevar_push (TV_GRAPHITE_CODE_GEN); + gloog_error = false; + + params_index.create (10); + + clast = scop_to_clast (scop, params_index); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "\nCLAST generated by CLooG: \n"); + print_clast_stmt (dump_file, clast); + fprintf (dump_file, "\n"); + } + + recompute_all_dominators (); + graphite_verify (); + + if_region = move_sese_in_condition (region); + sese_insert_phis_for_liveouts (region, + if_region->region->exit->src, + if_region->false_region->exit, + if_region->true_region->exit); + recompute_all_dominators (); + graphite_verify (); + + context_loop = SESE_ENTRY (region)->src->loop_father; + newivs_index.create (10); + + ip.newivs = &newivs; + ip.newivs_index = newivs_index; + ip.params = SESE_PARAMS (region); + ip.params_index = params_index; + ip.region = region; + + translate_clast (context_loop, clast, if_region->true_region->entry, + bb_pbb_mapping, 0, &ip); + graphite_verify (); + scev_reset (); + recompute_all_dominators (); + graphite_verify (); + + if (gloog_error) + set_ifsese_condition (if_region, integer_zero_node); + + free (if_region->true_region); + free (if_region->region); + free (if_region); + + newivs_index.dispose (); + params_index.dispose (); + cloog_clast_free (clast); + timevar_pop (TV_GRAPHITE_CODE_GEN); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + loop_p loop; + int num_no_dependency = 0; + + FOR_EACH_LOOP (loop, 0) + if (loop->can_be_parallel) + num_no_dependency++; + + fprintf (dump_file, "\n%d loops carried no dependency.\n", + num_no_dependency); + } + + return !gloog_error; +} +#endif -- cgit v1.2.3