From 85f026f337499654a77d32ca68929fd5d456000e Mon Sep 17 00:00:00 2001 From: Anton Konovalov Date: Sun, 18 May 2014 20:01:49 +0700 Subject: [4.6,4.8,4.9] Porting ARM NEON intrinsics to SSE x86 Added arm_neon.h to gcc 4.6, 4.8 and 4.9 toolchains. Updated config.gcc files. Change-Id: If9c12c3e31f5256b178816dffb41c86af0912db0 Signed-off-by: Anton Konovalov Signed-off-by: Pavel Chupin --- gcc-4.6/gcc/config.gcc | 4 +- gcc-4.6/gcc/config/i386/arm_neon.h | 8641 ++++++++++++++++++++++++++++++++++++ 2 files changed, 8643 insertions(+), 2 deletions(-) create mode 100644 gcc-4.6/gcc/config/i386/arm_neon.h (limited to 'gcc-4.6') diff --git a/gcc-4.6/gcc/config.gcc b/gcc-4.6/gcc/config.gcc index 7a2b9e4b1..892213df6 100644 --- a/gcc-4.6/gcc/config.gcc +++ b/gcc-4.6/gcc/config.gcc @@ -345,7 +345,7 @@ i[34567]86-*-*) nmmintrin.h bmmintrin.h fma4intrin.h wmmintrin.h immintrin.h x86intrin.h avxintrin.h xopintrin.h ia32intrin.h cross-stdarg.h lwpintrin.h popcntintrin.h - abmintrin.h bmiintrin.h tbmintrin.h" + abmintrin.h bmiintrin.h tbmintrin.h arm_neon.h" ;; x86_64-*-*) cpu_type=i386 @@ -357,7 +357,7 @@ x86_64-*-*) nmmintrin.h bmmintrin.h fma4intrin.h wmmintrin.h immintrin.h x86intrin.h avxintrin.h xopintrin.h ia32intrin.h cross-stdarg.h lwpintrin.h popcntintrin.h - abmintrin.h bmiintrin.h tbmintrin.h" + abmintrin.h bmiintrin.h tbmintrin.h arm_neon.h" need_64bit_hwint=yes ;; ia64-*-*) diff --git a/gcc-4.6/gcc/config/i386/arm_neon.h b/gcc-4.6/gcc/config/i386/arm_neon.h new file mode 100644 index 000000000..5f56cbdae --- /dev/null +++ b/gcc-4.6/gcc/config/i386/arm_neon.h @@ -0,0 +1,8641 @@ +//created by Victoria Zhislina, the Senior Application Engineer, Intel Corporation, victoria.zhislina@intel.com + +//*** Copyright (C) 2012-2014 Intel Corporation. All rights reserved. + +//IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. + +//By downloading, copying, installing or using the software you agree to this license. +//If you do not agree to this license, do not download, install, copy or use the software. + +// License Agreement + +//Permission to use, copy, modify, and/or distribute this software for any +//purpose with or without fee is hereby granted, provided that the above +//copyright notice and this permission notice appear in all copies. + +//THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH +//REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY +//AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, +//INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM +//LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR +//OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR +//PERFORMANCE OF THIS SOFTWARE. + +//***************************************************************************************** +// This file is intended to simplify ARM->IA32 porting +// It makes the correspondence between ARM NEON intrinsics (as defined in "arm_neon.h") +// and x86 SSE(up to SSE4.2) intrinsic functions as defined in headers files below +// MMX instruction set is not used due to performance overhead and the necessity to use the +// EMMS instruction (_mm_empty())for mmx-x87 floating point switching +//***************************************************************************************** + +//!!!!!!! To use this file in your project that uses ARM NEON intinsics just keep arm_neon.h included and complile it as usual. +//!!!!!!! Please pay attention at #define USE_SSSE3 and USE_SSE4 below - you need to define them for newest Intel platforms for +//!!!!!!! greater performance. It can be done by -mssse3 or -msse4.2 (which also implies -mssse3) compiler switch. + +#ifndef NEON2SSE_H +#define NEON2SSE_H + +#ifndef USE_SSE4 + #if defined(__SSE4_2__) + #define USE_SSE4 + #define USE_SSSE3 + #endif +#endif + +#ifndef USE_SSSE3 + #if defined(__SSSE3__) + #define USE_SSSE3 + #endif +#endif + +#include //SSE +#include //SSE2 +#include //SSE3 + +#ifdef USE_SSSE3 + #include //SSSE3 +#else +# warning "Some functions require SSSE3 or higher." +#endif + +#ifdef USE_SSE4 + #include //SSE4.1 + #include //SSE4.2 +#endif + +/*********************************************************************************************************************/ +// data types conversion +/*********************************************************************************************************************/ + +typedef __m128 float32x4_t; + +typedef __m128 float16x8_t; //not supported by IA, for compartibility + +typedef __m128i int8x16_t; +typedef __m128i int16x8_t; +typedef __m128i int32x4_t; +typedef __m128i int64x2_t; +typedef __m128i uint8x16_t; +typedef __m128i uint16x8_t; +typedef __m128i uint32x4_t; +typedef __m128i uint64x2_t; +typedef __m128i poly8x16_t; +typedef __m128i poly16x8_t; + +#if defined(_MSC_VER) && (_MSC_VER < 1300) + typedef signed char int8_t; + typedef unsigned char uint8_t; + typedef signed short int16_t; + typedef unsigned short uint16_t; + typedef signed int int32_t; + typedef unsigned int uint32_t; + typedef signed long long int64_t; + typedef unsigned long long uint64_t; +#elif defined(_MSC_VER) + typedef signed __int8 int8_t; + typedef unsigned __int8 uint8_t; + typedef signed __int16 int16_t; + typedef unsigned __int16 uint16_t; + typedef signed __int32 int32_t; + typedef unsigned __int32 uint32_t; + +typedef signed long long int64_t; +typedef unsigned long long uint64_t; +#else + #include + #include +#endif +#if defined(_MSC_VER) +#define SINT_MIN (-2147483647 - 1) /* min signed int value */ +#define SINT_MAX 2147483647 /* max signed int value */ +#else +#define SINT_MIN INT_MIN /* min signed int value */ +#define SINT_MAX INT_MAX /* max signed int value */ +#endif + +typedef float float32_t; +typedef float __fp16; + +typedef uint8_t poly8_t; +typedef uint16_t poly16_t; + +//MSVC compilers (tested up to 2012 VS version) doesn't allow using structures or arrays of __m128x type as functions arguments resulting in +//error C2719: 'src': formal parameter with __declspec(align('16')) won't be aligned. To avoid it we need the special trick for functions that use these types + +//Unfortunately we are unable to merge two 64-bits in on 128 bit register because user should be able to access val[n] members explicitly!!! +struct int8x16x2_t { + int8x16_t val[2]; +}; +struct int16x8x2_t { + int16x8_t val[2]; +}; +struct int32x4x2_t { + int32x4_t val[2]; +}; +struct int64x2x2_t { + int64x2_t val[2]; +}; + +typedef struct int8x16x2_t int8x16x2_t; //for C compilers to make them happy +typedef struct int16x8x2_t int16x8x2_t; //for C compilers to make them happy +typedef struct int32x4x2_t int32x4x2_t; //for C compilers to make them happy +typedef struct int64x2x2_t int64x2x2_t; //for C compilers to make them happy +//to avoid pointers conversion +typedef int8x16x2_t int8x8x2_t; +typedef int16x8x2_t int16x4x2_t; +typedef int32x4x2_t int32x2x2_t; +typedef int64x2x2_t int64x1x2_t; + +/* to avoid pointer conversions the following unsigned integers structures are defined via the corresponding signed integers structures above */ +typedef struct int8x16x2_t uint8x16x2_t; +typedef struct int16x8x2_t uint16x8x2_t; +typedef struct int32x4x2_t uint32x4x2_t; +typedef struct int64x2x2_t uint64x2x2_t; +typedef struct int8x16x2_t poly8x16x2_t; +typedef struct int16x8x2_t poly16x8x2_t; + +typedef int8x8x2_t uint8x8x2_t; +typedef int16x4x2_t uint16x4x2_t; +typedef int32x2x2_t uint32x2x2_t; +typedef int64x1x2_t uint64x1x2_t; +typedef int8x8x2_t poly8x8x2_t; +typedef int16x4x2_t poly16x4x2_t; + +//float +struct float32x4x2_t { + float32x4_t val[2]; +}; +struct float16x8x2_t { + float16x8_t val[2]; +}; +typedef struct float32x4x2_t float32x4x2_t; //for C compilers to make them happy +typedef struct float16x8x2_t float16x8x2_t; //for C compilers to make them happy +typedef float32x4x2_t float32x2x2_t; +typedef float16x8x2_t float16x4x2_t; + +//4 +struct int8x16x4_t { + int8x16_t val[4]; +}; +struct int16x8x4_t { + int16x8_t val[4]; +}; +struct int32x4x4_t { + int32x4_t val[4]; +}; +struct int64x2x4_t { + int64x2_t val[4]; +}; + +typedef struct int8x16x4_t int8x16x4_t; //for C compilers to make them happy +typedef struct int16x8x4_t int16x8x4_t; //for C compilers to make them happy +typedef struct int32x4x4_t int32x4x4_t; //for C compilers to make them happy +typedef struct int64x2x4_t int64x2x4_t; //for C compilers to make them happy +typedef int8x16x4_t int8x8x4_t; +typedef int16x8x4_t int16x4x4_t; +typedef int32x4x4_t int32x2x4_t; +typedef int64x2x4_t int64x1x4_t; + +/* to avoid pointer conversions the following unsigned integers structures are defined via the corresponding signed integers dealing structures above:*/ +typedef int8x8x4_t uint8x8x4_t; +typedef int16x4x4_t uint16x4x4_t; +typedef int32x2x4_t uint32x2x4_t; +typedef int64x1x4_t uint64x1x4_t; +typedef uint8x8x4_t poly8x8x4_t; +typedef uint16x4x4_t poly16x4x4_t; + +typedef struct int8x16x4_t uint8x16x4_t; +typedef struct int16x8x4_t uint16x8x4_t; +typedef struct int32x4x4_t uint32x4x4_t; +typedef struct int64x2x4_t uint64x2x4_t; +typedef struct int8x16x4_t poly8x16x4_t; +typedef struct int16x8x4_t poly16x8x4_t; + +struct float32x4x4_t { + float32x4_t val[4]; +}; +struct float16x8x4_t { + float16x8_t val[4]; +}; + +typedef struct float32x4x4_t float32x4x4_t; //for C compilers to make them happy +typedef struct float16x8x4_t float16x8x4_t; //for C compilers to make them happy +typedef float32x4x4_t float32x2x4_t; +typedef float16x8x4_t float16x4x4_t; + +//3 +struct int16x8x3_t { + int16x8_t val[3]; +}; +struct int32x4x3_t { + int32x4_t val[3]; +}; +struct int64x2x3_t { + int64x2_t val[3]; +}; +struct int8x16x3_t { + int8x16_t val[3]; +}; + +typedef struct int16x8x3_t int16x8x3_t; //for C compilers to make them happy +typedef struct int32x4x3_t int32x4x3_t; //for C compilers to make them happy +typedef struct int64x2x3_t int64x2x3_t; //for C compilers to make them happy +typedef struct int8x16x3_t int8x16x3_t; //for C compilers to make them happy +typedef int16x8x3_t int16x4x3_t; +typedef int32x4x3_t int32x2x3_t; +typedef int64x2x3_t int64x1x3_t; +typedef int8x16x3_t int8x8x3_t; + +/* to avoid pointer conversions the following unsigned integers structures are defined via the corresponding signed integers dealing structures above:*/ +typedef struct int8x16x3_t uint8x16x3_t; +typedef struct int16x8x3_t uint16x8x3_t; +typedef struct int32x4x3_t uint32x4x3_t; +typedef struct int64x2x3_t uint64x2x3_t; +typedef struct int8x16x3_t poly8x16x3_t; +typedef struct int16x8x3_t poly16x8x3_t; +typedef int8x8x3_t uint8x8x3_t; +typedef int16x4x3_t uint16x4x3_t; +typedef int32x2x3_t uint32x2x3_t; +typedef int64x1x3_t uint64x1x3_t; +typedef int8x8x3_t poly8x8x3_t; +typedef int16x4x3_t poly16x4x3_t; + +//float +struct float32x4x3_t { + float32x4_t val[3]; +}; +struct float16x8x3_t { + float16x8_t val[3]; +}; + +typedef struct float32x4x3_t float32x4x3_t; //for C compilers to make them happy +typedef struct float16x8x3_t float16x8x3_t; //for C compilers to make them happy +typedef float32x4x3_t float32x2x3_t; +typedef float16x8x3_t float16x4x3_t; + +//**************************************************************************** +//****** Porting auxiliary macros ******************************************** +#define _M128i(a) (*(__m128i*)&(a)) +#define _M128d(a) (*(__m128d*)&(a)) +#define _M128(a) (*(__m128*)&(a)) +#define _Ui64(a) (*(uint64_t*)&(a)) +#define _UNSIGNED_T(a) u##a + +#define _SIGNBIT64 ((uint64_t)1 << 63) +#define _SWAP_HI_LOW32 (2 | (3 << 2) | (0 << 4) | (1 << 6)) +#define _INSERTPS_NDX(srcField, dstField) (((srcField) << 6) | ((dstField) << 4) ) + +#define _NEON2SSE_REASON_SLOW_SERIAL "The function may be very slow due to the serial implementation, please try to avoid it" +#define _NEON2SSE_REASON_SLOW_UNEFFECTIVE "The function may be slow due to inefficient x86 SIMD implementation, please try to avoid it" + +//*************** functions attributes ******************************************** +//*********************************************************************************** +#ifdef __GNUC__ + #define _GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) + #define _NEON2SSE_ALIGN_16 __attribute__((aligned(16))) + #define _NEON2SSE_INLINE extern inline __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + #if _GCC_VERSION < 40500 + #define _NEON2SSE_PERFORMANCE_WARNING(function, explanation) __attribute__((deprecated)) function + #else + #define _NEON2SSE_PERFORMANCE_WARNING(function, explanation) __attribute__((deprecated(explanation))) function + #endif +#elif defined(_MSC_VER)|| defined (__INTEL_COMPILER) + #define _NEON2SSE_ALIGN_16 __declspec(align(16)) + #define _NEON2SSE_INLINE __inline + #define _NEON2SSE_PERFORMANCE_WARNING(function, EXPLANATION) __declspec(deprecated(EXPLANATION)) function +#else + #define _NEON2SSE_ALIGN_16 __declspec(align(16)) + #define _NEON2SSE_INLINE inline + #define _NEON2SSE_PERFORMANCE_WARNING(function, explanation) function +#endif + +//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +#define __constrange(min,max) const +#define __transfersize(size) +//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +//************************************************************************* +//************************************************************************* +//********* Functions declarations as declared in original arm_neon.h ***** +//************************************************************************* +//Vector add: vadd -> Vr[i]:=Va[i]+Vb[i], Vr, Va, Vb have equal lane sizes. + +int8x16_t vaddq_s8(int8x16_t a, int8x16_t b); // VADD.I8 q0,q0,q0 +int16x8_t vaddq_s16(int16x8_t a, int16x8_t b); // VADD.I16 q0,q0,q0 +int32x4_t vaddq_s32(int32x4_t a, int32x4_t b); // VADD.I32 q0,q0,q0 +int64x2_t vaddq_s64(int64x2_t a, int64x2_t b); // VADD.I64 q0,q0,q0 +float32x4_t vaddq_f32(float32x4_t a, float32x4_t b); // VADD.F32 q0,q0,q0 +uint8x16_t vaddq_u8(uint8x16_t a, uint8x16_t b); // VADD.I8 q0,q0,q0 +uint16x8_t vaddq_u16(uint16x8_t a, uint16x8_t b); // VADD.I16 q0,q0,q0 +uint32x4_t vaddq_u32(uint32x4_t a, uint32x4_t b); // VADD.I32 q0,q0,q0 +uint64x2_t vaddq_u64(uint64x2_t a, uint64x2_t b); // VADD.I64 q0,q0,q0 +//Vector long add: vaddl -> Vr[i]:=Va[i]+Vb[i], Va, Vb have equal lane sizes, result is a 128 bit vector of lanes that are twice the width. + +//Vector wide addw: vadd -> Vr[i]:=Va[i]+Vb[i] + +//Vector halving add: vhadd -> Vr[i]:=(Va[i]+Vb[i])>>1 + +int8x16_t vhaddq_s8(int8x16_t a, int8x16_t b); // VHADD.S8 q0,q0,q0 +int16x8_t vhaddq_s16(int16x8_t a, int16x8_t b); // VHADD.S16 q0,q0,q0 +int32x4_t vhaddq_s32(int32x4_t a, int32x4_t b); // VHADD.S32 q0,q0,q0 +uint8x16_t vhaddq_u8(uint8x16_t a, uint8x16_t b); // VHADD.U8 q0,q0,q0 +uint16x8_t vhaddq_u16(uint16x8_t a, uint16x8_t b); // VHADD.U16 q0,q0,q0 +uint32x4_t vhaddq_u32(uint32x4_t a, uint32x4_t b); // VHADD.U32 q0,q0,q0 +//Vector rounding halving add: vrhadd -> Vr[i]:=(Va[i]+Vb[i]+1)>>1 + +int8x16_t vrhaddq_s8(int8x16_t a, int8x16_t b); // VRHADD.S8 q0,q0,q0 +int16x8_t vrhaddq_s16(int16x8_t a, int16x8_t b); // VRHADD.S16 q0,q0,q0 +int32x4_t vrhaddq_s32(int32x4_t a, int32x4_t b); // VRHADD.S32 q0,q0,q0 +uint8x16_t vrhaddq_u8(uint8x16_t a, uint8x16_t b); // VRHADD.U8 q0,q0,q0 +uint16x8_t vrhaddq_u16(uint16x8_t a, uint16x8_t b); // VRHADD.U16 q0,q0,q0 +uint32x4_t vrhaddq_u32(uint32x4_t a, uint32x4_t b); // VRHADD.U32 q0,q0,q0 +//Vector saturating add: vqadd -> Vr[i]:=sat(Va[i]+Vb[i]) + +int8x16_t vqaddq_s8(int8x16_t a, int8x16_t b); // VQADD.S8 q0,q0,q0 +int16x8_t vqaddq_s16(int16x8_t a, int16x8_t b); // VQADD.S16 q0,q0,q0 +int32x4_t vqaddq_s32(int32x4_t a, int32x4_t b); // VQADD.S32 q0,q0,q0 +int64x2_t vqaddq_s64(int64x2_t a, int64x2_t b); // VQADD.S64 q0,q0,q0 +uint8x16_t vqaddq_u8(uint8x16_t a, uint8x16_t b); // VQADD.U8 q0,q0,q0 +uint16x8_t vqaddq_u16(uint16x8_t a, uint16x8_t b); // VQADD.U16 q0,q0,q0 +uint32x4_t vqaddq_u32(uint32x4_t a, uint32x4_t b); // VQADD.U32 q0,q0,q0 +uint64x2_t vqaddq_u64(uint64x2_t a, uint64x2_t b); // VQADD.U64 q0,q0,q0 +//Vector add high half: vaddhn-> Vr[i]:=Va[i]+Vb[i] + +//Vector rounding add high half: vraddhn + +//Multiplication +//Vector multiply: vmul -> Vr[i] := Va[i] * Vb[i] + +int8x16_t vmulq_s8(int8x16_t a, int8x16_t b); // VMUL.I8 q0,q0,q0 +int16x8_t vmulq_s16(int16x8_t a, int16x8_t b); // VMUL.I16 q0,q0,q0 +int32x4_t vmulq_s32(int32x4_t a, int32x4_t b); // VMUL.I32 q0,q0,q0 +float32x4_t vmulq_f32(float32x4_t a, float32x4_t b); // VMUL.F32 q0,q0,q0 +uint8x16_t vmulq_u8(uint8x16_t a, uint8x16_t b); // VMUL.I8 q0,q0,q0 +uint16x8_t vmulq_u16(uint16x8_t a, uint16x8_t b); // VMUL.I16 q0,q0,q0 +uint32x4_t vmulq_u32(uint32x4_t a, uint32x4_t b); // VMUL.I32 q0,q0,q0 +poly8x16_t vmulq_p8(poly8x16_t a, poly8x16_t b); // VMUL.P8 q0,q0,q0 +//Vector multiply accumulate: vmla -> Vr[i] := Va[i] + Vb[i] * Vc[i] + +int8x16_t vmlaq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VMLA.I8 q0,q0,q0 +int16x8_t vmlaq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VMLA.I16 q0,q0,q0 +int32x4_t vmlaq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VMLA.I32 q0,q0,q0 +float32x4_t vmlaq_f32(float32x4_t a, float32x4_t b, float32x4_t c); // VMLA.F32 q0,q0,q0 +uint8x16_t vmlaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VMLA.I8 q0,q0,q0 +uint16x8_t vmlaq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VMLA.I16 q0,q0,q0 +uint32x4_t vmlaq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VMLA.I32 q0,q0,q0 +//Vector multiply accumulate long: vmlal -> Vr[i] := Va[i] + Vb[i] * Vc[i] + +//Vector multiply subtract: vmls -> Vr[i] := Va[i] - Vb[i] * Vc[i] + +int8x16_t vmlsq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VMLS.I8 q0,q0,q0 +int16x8_t vmlsq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VMLS.I16 q0,q0,q0 +int32x4_t vmlsq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VMLS.I32 q0,q0,q0 +float32x4_t vmlsq_f32(float32x4_t a, float32x4_t b, float32x4_t c); // VMLS.F32 q0,q0,q0 +uint8x16_t vmlsq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VMLS.I8 q0,q0,q0 +uint16x8_t vmlsq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VMLS.I16 q0,q0,q0 +uint32x4_t vmlsq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VMLS.I32 q0,q0,q0 +//Vector multiply subtract long + +//Vector saturating doubling multiply high + +int16x8_t vqdmulhq_s16(int16x8_t a, int16x8_t b); // VQDMULH.S16 q0,q0,q0 +int32x4_t vqdmulhq_s32(int32x4_t a, int32x4_t b); // VQDMULH.S32 q0,q0,q0 +//Vector saturating rounding doubling multiply high + +int16x8_t vqrdmulhq_s16(int16x8_t a, int16x8_t b); // VQRDMULH.S16 q0,q0,q0 +int32x4_t vqrdmulhq_s32(int32x4_t a, int32x4_t b); // VQRDMULH.S32 q0,q0,q0 +//Vector saturating doubling multiply accumulate long + +//Vector saturating doubling multiply subtract long + +//Vector long multiply + +//Vector saturating doubling long multiply + +//Subtraction +//Vector subtract + +int8x16_t vsubq_s8(int8x16_t a, int8x16_t b); // VSUB.I8 q0,q0,q0 +int16x8_t vsubq_s16(int16x8_t a, int16x8_t b); // VSUB.I16 q0,q0,q0 +int32x4_t vsubq_s32(int32x4_t a, int32x4_t b); // VSUB.I32 q0,q0,q0 +int64x2_t vsubq_s64(int64x2_t a, int64x2_t b); // VSUB.I64 q0,q0,q0 +float32x4_t vsubq_f32(float32x4_t a, float32x4_t b); // VSUB.F32 q0,q0,q0 +uint8x16_t vsubq_u8(uint8x16_t a, uint8x16_t b); // VSUB.I8 q0,q0,q0 +uint16x8_t vsubq_u16(uint16x8_t a, uint16x8_t b); // VSUB.I16 q0,q0,q0 +uint32x4_t vsubq_u32(uint32x4_t a, uint32x4_t b); // VSUB.I32 q0,q0,q0 +uint64x2_t vsubq_u64(uint64x2_t a, uint64x2_t b); // VSUB.I64 q0,q0,q0 +//Vector long subtract: vsub -> Vr[i]:=Va[i]+Vb[i] + +//Vector wide subtract: vsub -> Vr[i]:=Va[i]+Vb[i] + +//Vector saturating subtract + +int8x16_t vqsubq_s8(int8x16_t a, int8x16_t b); // VQSUB.S8 q0,q0,q0 +int16x8_t vqsubq_s16(int16x8_t a, int16x8_t b); // VQSUB.S16 q0,q0,q0 +int32x4_t vqsubq_s32(int32x4_t a, int32x4_t b); // VQSUB.S32 q0,q0,q0 +int64x2_t vqsubq_s64(int64x2_t a, int64x2_t b); // VQSUB.S64 q0,q0,q0 +uint8x16_t vqsubq_u8(uint8x16_t a, uint8x16_t b); // VQSUB.U8 q0,q0,q0 +uint16x8_t vqsubq_u16(uint16x8_t a, uint16x8_t b); // VQSUB.U16 q0,q0,q0 +uint32x4_t vqsubq_u32(uint32x4_t a, uint32x4_t b); // VQSUB.U32 q0,q0,q0 +uint64x2_t vqsubq_u64(uint64x2_t a, uint64x2_t b); // VQSUB.U64 q0,q0,q0 +//Vector halving subtract + +int8x16_t vhsubq_s8(int8x16_t a, int8x16_t b); // VHSUB.S8 q0,q0,q0 +int16x8_t vhsubq_s16(int16x8_t a, int16x8_t b); // VHSUB.S16 q0,q0,q0 +int32x4_t vhsubq_s32(int32x4_t a, int32x4_t b); // VHSUB.S32 q0,q0,q0 +uint8x16_t vhsubq_u8(uint8x16_t a, uint8x16_t b); // VHSUB.U8 q0,q0,q0 +uint16x8_t vhsubq_u16(uint16x8_t a, uint16x8_t b); // VHSUB.U16 q0,q0,q0 +uint32x4_t vhsubq_u32(uint32x4_t a, uint32x4_t b); // VHSUB.U32 q0,q0,q0 +//Vector subtract high half + +//Vector rounding subtract high half + +//Comparison +//Vector compare equal + +uint8x16_t vceqq_s8(int8x16_t a, int8x16_t b); // VCEQ.I8 q0, q0, q0 +uint16x8_t vceqq_s16(int16x8_t a, int16x8_t b); // VCEQ.I16 q0, q0, q0 +uint32x4_t vceqq_s32(int32x4_t a, int32x4_t b); // VCEQ.I32 q0, q0, q0 +uint32x4_t vceqq_f32(float32x4_t a, float32x4_t b); // VCEQ.F32 q0, q0, q0 +uint8x16_t vceqq_u8(uint8x16_t a, uint8x16_t b); // VCEQ.I8 q0, q0, q0 +uint16x8_t vceqq_u16(uint16x8_t a, uint16x8_t b); // VCEQ.I16 q0, q0, q0 +uint32x4_t vceqq_u32(uint32x4_t a, uint32x4_t b); // VCEQ.I32 q0, q0, q0 +uint8x16_t vceqq_p8(poly8x16_t a, poly8x16_t b); // VCEQ.I8 q0, q0, q0 +//Vector compare greater-than or equal + +uint8x16_t vcgeq_s8(int8x16_t a, int8x16_t b); // VCGE.S8 q0, q0, q0 +uint16x8_t vcgeq_s16(int16x8_t a, int16x8_t b); // VCGE.S16 q0, q0, q0 +uint32x4_t vcgeq_s32(int32x4_t a, int32x4_t b); // VCGE.S32 q0, q0, q0 +uint32x4_t vcgeq_f32(float32x4_t a, float32x4_t b); // VCGE.F32 q0, q0, q0 +uint8x16_t vcgeq_u8(uint8x16_t a, uint8x16_t b); // VCGE.U8 q0, q0, q0 +uint16x8_t vcgeq_u16(uint16x8_t a, uint16x8_t b); // VCGE.U16 q0, q0, q0 +uint32x4_t vcgeq_u32(uint32x4_t a, uint32x4_t b); // VCGE.U32 q0, q0, q0 +//Vector compare less-than or equal + +uint8x16_t vcleq_s8(int8x16_t a, int8x16_t b); // VCGE.S8 q0, q0, q0 +uint16x8_t vcleq_s16(int16x8_t a, int16x8_t b); // VCGE.S16 q0, q0, q0 +uint32x4_t vcleq_s32(int32x4_t a, int32x4_t b); // VCGE.S32 q0, q0, q0 +uint32x4_t vcleq_f32(float32x4_t a, float32x4_t b); // VCGE.F32 q0, q0, q0 +uint8x16_t vcleq_u8(uint8x16_t a, uint8x16_t b); // VCGE.U8 q0, q0, q0 +uint16x8_t vcleq_u16(uint16x8_t a, uint16x8_t b); // VCGE.U16 q0, q0, q0 +uint32x4_t vcleq_u32(uint32x4_t a, uint32x4_t b); // VCGE.U32 q0, q0, q0 +//Vector compare greater-than + +uint8x16_t vcgtq_s8(int8x16_t a, int8x16_t b); // VCGT.S8 q0, q0, q0 +uint16x8_t vcgtq_s16(int16x8_t a, int16x8_t b); // VCGT.S16 q0, q0, q0 +uint32x4_t vcgtq_s32(int32x4_t a, int32x4_t b); // VCGT.S32 q0, q0, q0 +uint32x4_t vcgtq_f32(float32x4_t a, float32x4_t b); // VCGT.F32 q0, q0, q0 +uint8x16_t vcgtq_u8(uint8x16_t a, uint8x16_t b); // VCGT.U8 q0, q0, q0 +uint16x8_t vcgtq_u16(uint16x8_t a, uint16x8_t b); // VCGT.U16 q0, q0, q0 +uint32x4_t vcgtq_u32(uint32x4_t a, uint32x4_t b); // VCGT.U32 q0, q0, q0 +//Vector compare less-than + +uint8x16_t vcltq_s8(int8x16_t a, int8x16_t b); // VCGT.S8 q0, q0, q0 +uint16x8_t vcltq_s16(int16x8_t a, int16x8_t b); // VCGT.S16 q0, q0, q0 +uint32x4_t vcltq_s32(int32x4_t a, int32x4_t b); // VCGT.S32 q0, q0, q0 +uint32x4_t vcltq_f32(float32x4_t a, float32x4_t b); // VCGT.F32 q0, q0, q0 +uint8x16_t vcltq_u8(uint8x16_t a, uint8x16_t b); // VCGT.U8 q0, q0, q0 +uint16x8_t vcltq_u16(uint16x8_t a, uint16x8_t b); // VCGT.U16 q0, q0, q0 +uint32x4_t vcltq_u32(uint32x4_t a, uint32x4_t b); // VCGT.U32 q0, q0, q0 +//Vector compare absolute greater-than or equal + +uint32x4_t vcageq_f32(float32x4_t a, float32x4_t b); // VACGE.F32 q0, q0, q0 +//Vector compare absolute less-than or equal + +uint32x4_t vcaleq_f32(float32x4_t a, float32x4_t b); // VACGE.F32 q0, q0, q0 +//Vector compare absolute greater-than + +uint32x4_t vcagtq_f32(float32x4_t a, float32x4_t b); // VACGT.F32 q0, q0, q0 +//Vector compare absolute less-than + +uint32x4_t vcaltq_f32(float32x4_t a, float32x4_t b); // VACGT.F32 q0, q0, q0 +//Vector test bits + +uint8x16_t vtstq_s8(int8x16_t a, int8x16_t b); // VTST.8 q0, q0, q0 +uint16x8_t vtstq_s16(int16x8_t a, int16x8_t b); // VTST.16 q0, q0, q0 +uint32x4_t vtstq_s32(int32x4_t a, int32x4_t b); // VTST.32 q0, q0, q0 +uint8x16_t vtstq_u8(uint8x16_t a, uint8x16_t b); // VTST.8 q0, q0, q0 +uint16x8_t vtstq_u16(uint16x8_t a, uint16x8_t b); // VTST.16 q0, q0, q0 +uint32x4_t vtstq_u32(uint32x4_t a, uint32x4_t b); // VTST.32 q0, q0, q0 +uint8x16_t vtstq_p8(poly8x16_t a, poly8x16_t b); // VTST.8 q0, q0, q0 +//Absolute difference +//Absolute difference between the arguments: Vr[i] = | Va[i] - Vb[i] | + +int8x16_t vabdq_s8(int8x16_t a, int8x16_t b); // VABD.S8 q0,q0,q0 +int16x8_t vabdq_s16(int16x8_t a, int16x8_t b); // VABD.S16 q0,q0,q0 +int32x4_t vabdq_s32(int32x4_t a, int32x4_t b); // VABD.S32 q0,q0,q0 +uint8x16_t vabdq_u8(uint8x16_t a, uint8x16_t b); // VABD.U8 q0,q0,q0 +uint16x8_t vabdq_u16(uint16x8_t a, uint16x8_t b); // VABD.U16 q0,q0,q0 +uint32x4_t vabdq_u32(uint32x4_t a, uint32x4_t b); // VABD.U32 q0,q0,q0 +float32x4_t vabdq_f32(float32x4_t a, float32x4_t b); // VABD.F32 q0,q0,q0 +//Absolute difference - long + +//Absolute difference and accumulate: Vr[i] = Va[i] + | Vb[i] - Vc[i] | + +int8x16_t vabaq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VABA.S8 q0,q0,q0 +int16x8_t vabaq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VABA.S16 q0,q0,q0 +int32x4_t vabaq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VABA.S32 q0,q0,q0 +uint8x16_t vabaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VABA.U8 q0,q0,q0 +uint16x8_t vabaq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VABA.U16 q0,q0,q0 +uint32x4_t vabaq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VABA.U32 q0,q0,q0 +//Absolute difference and accumulate - long + +//Max/Min +//vmax -> Vr[i] := (Va[i] >= Vb[i]) ? Va[i] : Vb[i] + +int8x16_t vmaxq_s8(int8x16_t a, int8x16_t b); // VMAX.S8 q0,q0,q0 +int16x8_t vmaxq_s16(int16x8_t a, int16x8_t b); // VMAX.S16 q0,q0,q0 +int32x4_t vmaxq_s32(int32x4_t a, int32x4_t b); // VMAX.S32 q0,q0,q0 +uint8x16_t vmaxq_u8(uint8x16_t a, uint8x16_t b); // VMAX.U8 q0,q0,q0 +uint16x8_t vmaxq_u16(uint16x8_t a, uint16x8_t b); // VMAX.U16 q0,q0,q0 +uint32x4_t vmaxq_u32(uint32x4_t a, uint32x4_t b); // VMAX.U32 q0,q0,q0 +float32x4_t vmaxq_f32(float32x4_t a, float32x4_t b); // VMAX.F32 q0,q0,q0 +//vmin -> Vr[i] := (Va[i] >= Vb[i]) ? Vb[i] : Va[i] + +int8x16_t vminq_s8(int8x16_t a, int8x16_t b); // VMIN.S8 q0,q0,q0 +int16x8_t vminq_s16(int16x8_t a, int16x8_t b); // VMIN.S16 q0,q0,q0 +int32x4_t vminq_s32(int32x4_t a, int32x4_t b); // VMIN.S32 q0,q0,q0 +uint8x16_t vminq_u8(uint8x16_t a, uint8x16_t b); // VMIN.U8 q0,q0,q0 +uint16x8_t vminq_u16(uint16x8_t a, uint16x8_t b); // VMIN.U16 q0,q0,q0 +uint32x4_t vminq_u32(uint32x4_t a, uint32x4_t b); // VMIN.U32 q0,q0,q0 +float32x4_t vminq_f32(float32x4_t a, float32x4_t b); // VMIN.F32 q0,q0,q0 +//Pairwise addition +//Pairwise add + +//Long pairwise add + +int16x8_t vpaddlq_s8(int8x16_t a); // VPADDL.S8 q0,q0 +int32x4_t vpaddlq_s16(int16x8_t a); // VPADDL.S16 q0,q0 +int64x2_t vpaddlq_s32(int32x4_t a); // VPADDL.S32 q0,q0 +uint16x8_t vpaddlq_u8(uint8x16_t a); // VPADDL.U8 q0,q0 +uint32x4_t vpaddlq_u16(uint16x8_t a); // VPADDL.U16 q0,q0 +uint64x2_t vpaddlq_u32(uint32x4_t a); // VPADDL.U32 q0,q0 +//Long pairwise add and accumulate + +int16x8_t vpadalq_s8(int16x8_t a, int8x16_t b); // VPADAL.S8 q0,q0 +int32x4_t vpadalq_s16(int32x4_t a, int16x8_t b); // VPADAL.S16 q0,q0 +int64x2_t vpadalq_s32(int64x2_t a, int32x4_t b); // VPADAL.S32 q0,q0 +uint16x8_t vpadalq_u8(uint16x8_t a, uint8x16_t b); // VPADAL.U8 q0,q0 +uint32x4_t vpadalq_u16(uint32x4_t a, uint16x8_t b); // VPADAL.U16 q0,q0 +uint64x2_t vpadalq_u32(uint64x2_t a, uint32x4_t b); // VPADAL.U32 q0,q0 +//Folding maximum vpmax -> takes maximum of adjacent pairs + +//Folding minimum vpmin -> takes minimum of adjacent pairs + +//Reciprocal/Sqrt + +float32x4_t vrecpsq_f32(float32x4_t a, float32x4_t b); // VRECPS.F32 q0, q0, q0 + +float32x4_t vrsqrtsq_f32(float32x4_t a, float32x4_t b); // VRSQRTS.F32 q0, q0, q0 +//Shifts by signed variable +//Vector shift left: Vr[i] := Va[i] << Vb[i] (negative values shift right) + +int8x16_t vshlq_s8(int8x16_t a, int8x16_t b); // VSHL.S8 q0,q0,q0 +int16x8_t vshlq_s16(int16x8_t a, int16x8_t b); // VSHL.S16 q0,q0,q0 +int32x4_t vshlq_s32(int32x4_t a, int32x4_t b); // VSHL.S32 q0,q0,q0 +int64x2_t vshlq_s64(int64x2_t a, int64x2_t b); // VSHL.S64 q0,q0,q0 +uint8x16_t vshlq_u8(uint8x16_t a, int8x16_t b); // VSHL.U8 q0,q0,q0 +uint16x8_t vshlq_u16(uint16x8_t a, int16x8_t b); // VSHL.U16 q0,q0,q0 +uint32x4_t vshlq_u32(uint32x4_t a, int32x4_t b); // VSHL.U32 q0,q0,q0 +uint64x2_t vshlq_u64(uint64x2_t a, int64x2_t b); // VSHL.U64 q0,q0,q0 +//Vector saturating shift left: (negative values shift right) + +int8x16_t vqshlq_s8(int8x16_t a, int8x16_t b); // VQSHL.S8 q0,q0,q0 +int16x8_t vqshlq_s16(int16x8_t a, int16x8_t b); // VQSHL.S16 q0,q0,q0 +int32x4_t vqshlq_s32(int32x4_t a, int32x4_t b); // VQSHL.S32 q0,q0,q0 +int64x2_t vqshlq_s64(int64x2_t a, int64x2_t b); // VQSHL.S64 q0,q0,q0 +uint8x16_t vqshlq_u8(uint8x16_t a, int8x16_t b); // VQSHL.U8 q0,q0,q0 +uint16x8_t vqshlq_u16(uint16x8_t a, int16x8_t b); // VQSHL.U16 q0,q0,q0 +uint32x4_t vqshlq_u32(uint32x4_t a, int32x4_t b); // VQSHL.U32 q0,q0,q0 +uint64x2_t vqshlq_u64(uint64x2_t a, int64x2_t b); // VQSHL.U64 q0,q0,q0 +//Vector rounding shift left: (negative values shift right) + +int8x16_t vrshlq_s8(int8x16_t a, int8x16_t b); // VRSHL.S8 q0,q0,q0 +int16x8_t vrshlq_s16(int16x8_t a, int16x8_t b); // VRSHL.S16 q0,q0,q0 +int32x4_t vrshlq_s32(int32x4_t a, int32x4_t b); // VRSHL.S32 q0,q0,q0 +int64x2_t vrshlq_s64(int64x2_t a, int64x2_t b); // VRSHL.S64 q0,q0,q0 +uint8x16_t vrshlq_u8(uint8x16_t a, int8x16_t b); // VRSHL.U8 q0,q0,q0 +uint16x8_t vrshlq_u16(uint16x8_t a, int16x8_t b); // VRSHL.U16 q0,q0,q0 +uint32x4_t vrshlq_u32(uint32x4_t a, int32x4_t b); // VRSHL.U32 q0,q0,q0 +uint64x2_t vrshlq_u64(uint64x2_t a, int64x2_t b); // VRSHL.U64 q0,q0,q0 +//Vector saturating rounding shift left: (negative values shift right) + +int8x16_t vqrshlq_s8(int8x16_t a, int8x16_t b); // VQRSHL.S8 q0,q0,q0 +int16x8_t vqrshlq_s16(int16x8_t a, int16x8_t b); // VQRSHL.S16 q0,q0,q0 +int32x4_t vqrshlq_s32(int32x4_t a, int32x4_t b); // VQRSHL.S32 q0,q0,q0 +int64x2_t vqrshlq_s64(int64x2_t a, int64x2_t b); // VQRSHL.S64 q0,q0,q0 +uint8x16_t vqrshlq_u8(uint8x16_t a, int8x16_t b); // VQRSHL.U8 q0,q0,q0 +uint16x8_t vqrshlq_u16(uint16x8_t a, int16x8_t b); // VQRSHL.U16 q0,q0,q0 +uint32x4_t vqrshlq_u32(uint32x4_t a, int32x4_t b); // VQRSHL.U32 q0,q0,q0 +uint64x2_t vqrshlq_u64(uint64x2_t a, int64x2_t b); // VQRSHL.U64 q0,q0,q0 +//Shifts by a constant +//Vector shift right by constant + +int8x16_t vshrq_n_s8(int8x16_t a, __constrange(1,8) int b); // VSHR.S8 q0,q0,#8 +int16x8_t vshrq_n_s16(int16x8_t a, __constrange(1,16) int b); // VSHR.S16 q0,q0,#16 +int32x4_t vshrq_n_s32(int32x4_t a, __constrange(1,32) int b); // VSHR.S32 q0,q0,#32 +int64x2_t vshrq_n_s64(int64x2_t a, __constrange(1,64) int b); // VSHR.S64 q0,q0,#64 +uint8x16_t vshrq_n_u8(uint8x16_t a, __constrange(1,8) int b); // VSHR.U8 q0,q0,#8 +uint16x8_t vshrq_n_u16(uint16x8_t a, __constrange(1,16) int b); // VSHR.U16 q0,q0,#16 +uint32x4_t vshrq_n_u32(uint32x4_t a, __constrange(1,32) int b); // VSHR.U32 q0,q0,#32 +uint64x2_t vshrq_n_u64(uint64x2_t a, __constrange(1,64) int b); // VSHR.U64 q0,q0,#64 +//Vector shift left by constant + +int8x16_t vshlq_n_s8(int8x16_t a, __constrange(0,7) int b); // VSHL.I8 q0,q0,#0 +int16x8_t vshlq_n_s16(int16x8_t a, __constrange(0,15) int b); // VSHL.I16 q0,q0,#0 +int32x4_t vshlq_n_s32(int32x4_t a, __constrange(0,31) int b); // VSHL.I32 q0,q0,#0 +int64x2_t vshlq_n_s64(int64x2_t a, __constrange(0,63) int b); // VSHL.I64 q0,q0,#0 +uint8x16_t vshlq_n_u8(uint8x16_t a, __constrange(0,7) int b); // VSHL.I8 q0,q0,#0 +uint16x8_t vshlq_n_u16(uint16x8_t a, __constrange(0,15) int b); // VSHL.I16 q0,q0,#0 +uint32x4_t vshlq_n_u32(uint32x4_t a, __constrange(0,31) int b); // VSHL.I32 q0,q0,#0 +uint64x2_t vshlq_n_u64(uint64x2_t a, __constrange(0,63) int b); // VSHL.I64 q0,q0,#0 +//Vector rounding shift right by constant + +int8x16_t vrshrq_n_s8(int8x16_t a, __constrange(1,8) int b); // VRSHR.S8 q0,q0,#8 +int16x8_t vrshrq_n_s16(int16x8_t a, __constrange(1,16) int b); // VRSHR.S16 q0,q0,#16 +int32x4_t vrshrq_n_s32(int32x4_t a, __constrange(1,32) int b); // VRSHR.S32 q0,q0,#32 +int64x2_t vrshrq_n_s64(int64x2_t a, __constrange(1,64) int b); // VRSHR.S64 q0,q0,#64 +uint8x16_t vrshrq_n_u8(uint8x16_t a, __constrange(1,8) int b); // VRSHR.U8 q0,q0,#8 +uint16x8_t vrshrq_n_u16(uint16x8_t a, __constrange(1,16) int b); // VRSHR.U16 q0,q0,#16 +uint32x4_t vrshrq_n_u32(uint32x4_t a, __constrange(1,32) int b); // VRSHR.U32 q0,q0,#32 +uint64x2_t vrshrq_n_u64(uint64x2_t a, __constrange(1,64) int b); // VRSHR.U64 q0,q0,#64 +//Vector shift right by constant and accumulate + +int8x16_t vsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VSRA.S8 q0,q0,#8 +int16x8_t vsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VSRA.S16 q0,q0,#16 +int32x4_t vsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VSRA.S32 q0,q0,#32 +int64x2_t vsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VSRA.S64 q0,q0,#64 +uint8x16_t vsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VSRA.U8 q0,q0,#8 +uint16x8_t vsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VSRA.U16 q0,q0,#16 +uint32x4_t vsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VSRA.U32 q0,q0,#32 +uint64x2_t vsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VSRA.U64 q0,q0,#64 +//Vector rounding shift right by constant and accumulate + +int8x16_t vrsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VRSRA.S8 q0,q0,#8 +int16x8_t vrsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VRSRA.S16 q0,q0,#16 +int32x4_t vrsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VRSRA.S32 q0,q0,#32 +int64x2_t vrsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VRSRA.S64 q0,q0,#64 +uint8x16_t vrsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VRSRA.U8 q0,q0,#8 +uint16x8_t vrsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VRSRA.U16 q0,q0,#16 +uint32x4_t vrsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VRSRA.U32 q0,q0,#32 +uint64x2_t vrsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VRSRA.U64 q0,q0,#64 +//Vector saturating shift left by constant + +int8x16_t vqshlq_n_s8(int8x16_t a, __constrange(0,7) int b); // VQSHL.S8 q0,q0,#0 +int16x8_t vqshlq_n_s16(int16x8_t a, __constrange(0,15) int b); // VQSHL.S16 q0,q0,#0 +int32x4_t vqshlq_n_s32(int32x4_t a, __constrange(0,31) int b); // VQSHL.S32 q0,q0,#0 +int64x2_t vqshlq_n_s64(int64x2_t a, __constrange(0,63) int b); // VQSHL.S64 q0,q0,#0 +uint8x16_t vqshlq_n_u8(uint8x16_t a, __constrange(0,7) int b); // VQSHL.U8 q0,q0,#0 +uint16x8_t vqshlq_n_u16(uint16x8_t a, __constrange(0,15) int b); // VQSHL.U16 q0,q0,#0 +uint32x4_t vqshlq_n_u32(uint32x4_t a, __constrange(0,31) int b); // VQSHL.U32 q0,q0,#0 +uint64x2_t vqshlq_n_u64(uint64x2_t a, __constrange(0,63) int b); // VQSHL.U64 q0,q0,#0 +//Vector signed->unsigned saturating shift left by constant + +uint8x16_t vqshluq_n_s8(int8x16_t a, __constrange(0,7) int b); // VQSHLU.S8 q0,q0,#0 +uint16x8_t vqshluq_n_s16(int16x8_t a, __constrange(0,15) int b); // VQSHLU.S16 q0,q0,#0 +uint32x4_t vqshluq_n_s32(int32x4_t a, __constrange(0,31) int b); // VQSHLU.S32 q0,q0,#0 +uint64x2_t vqshluq_n_s64(int64x2_t a, __constrange(0,63) int b); // VQSHLU.S64 q0,q0,#0 +//Vector narrowing shift right by constant + +//Vector signed->unsigned narrowing saturating shift right by constant + +//Vector signed->unsigned rounding narrowing saturating shift right by constant + +//Vector narrowing saturating shift right by constant + +//Vector rounding narrowing shift right by constant + +//Vector rounding narrowing saturating shift right by constant + +//Vector widening shift left by constant + +//Shifts with insert +//Vector shift right and insert + +int8x16_t vsriq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8 +int16x8_t vsriq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16 +int32x4_t vsriq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VSRI.32 q0,q0,#32 +int64x2_t vsriq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VSRI.64 q0,q0,#64 +uint8x16_t vsriq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8 +uint16x8_t vsriq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16 +uint32x4_t vsriq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VSRI.32 q0,q0,#32 +uint64x2_t vsriq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VSRI.64 q0,q0,#64 +poly8x16_t vsriq_n_p8(poly8x16_t a, poly8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8 +poly16x8_t vsriq_n_p16(poly16x8_t a, poly16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16 +//Vector shift left and insert + +int8x16_t vsliq_n_s8(int8x16_t a, int8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0 +int16x8_t vsliq_n_s16(int16x8_t a, int16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0 +int32x4_t vsliq_n_s32(int32x4_t a, int32x4_t b, __constrange(0,31) int c); // VSLI.32 q0,q0,#0 +int64x2_t vsliq_n_s64(int64x2_t a, int64x2_t b, __constrange(0,63) int c); // VSLI.64 q0,q0,#0 +uint8x16_t vsliq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0 +uint16x8_t vsliq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0 +uint32x4_t vsliq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(0,31) int c); // VSLI.32 q0,q0,#0 +uint64x2_t vsliq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(0,63) int c); // VSLI.64 q0,q0,#0 +poly8x16_t vsliq_n_p8(poly8x16_t a, poly8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0 +poly16x8_t vsliq_n_p16(poly16x8_t a, poly16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0 +//Loads of a single vector or lane. Perform loads and stores of a single vector of some type. +//Load a single vector from memory +uint8x16_t vld1q_u8(__transfersize(16) uint8_t const * ptr); // VLD1.8 {d0, d1}, [r0] +uint16x8_t vld1q_u16(__transfersize(8) uint16_t const * ptr); // VLD1.16 {d0, d1}, [r0] +uint32x4_t vld1q_u32(__transfersize(4) uint32_t const * ptr); // VLD1.32 {d0, d1}, [r0] +uint64x2_t vld1q_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0] +int8x16_t vld1q_s8(__transfersize(16) int8_t const * ptr); // VLD1.8 {d0, d1}, [r0] +int16x8_t vld1q_s16(__transfersize(8) int16_t const * ptr); // VLD1.16 {d0, d1}, [r0] +int32x4_t vld1q_s32(__transfersize(4) int32_t const * ptr); // VLD1.32 {d0, d1}, [r0] +int64x2_t vld1q_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0] +float16x8_t vld1q_f16(__transfersize(8) __fp16 const * ptr); // VLD1.16 {d0, d1}, [r0] +float32x4_t vld1q_f32(__transfersize(4) float32_t const * ptr); // VLD1.32 {d0, d1}, [r0] +poly8x16_t vld1q_p8(__transfersize(16) poly8_t const * ptr); // VLD1.8 {d0, d1}, [r0] +poly16x8_t vld1q_p16(__transfersize(8) poly16_t const * ptr); // VLD1.16 {d0, d1}, [r0] + +//Load a single lane from memory +uint8x16_t vld1q_lane_u8(__transfersize(1) uint8_t const * ptr, uint8x16_t vec, __constrange(0,15) int lane); //VLD1.8 {d0[0]}, [r0] +uint16x8_t vld1q_lane_u16(__transfersize(1) uint16_t const * ptr, uint16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0] +uint32x4_t vld1q_lane_u32(__transfersize(1) uint32_t const * ptr, uint32x4_t vec, __constrange(0,3) int lane); // VLD1.32 {d0[0]}, [r0] +uint64x2_t vld1q_lane_u64(__transfersize(1) uint64_t const * ptr, uint64x2_t vec, __constrange(0,1) int lane); // VLD1.64 {d0}, [r0] +int8x16_t vld1q_lane_s8(__transfersize(1) int8_t const * ptr, int8x16_t vec, __constrange(0,15) int lane); //VLD1.8 {d0[0]}, [r0] +int16x8_t vld1q_lane_s16(__transfersize(1) int16_t const * ptr, int16x8_t vec, __constrange(0,7) int lane); //VLD1.16 {d0[0]}, [r0] +int32x4_t vld1q_lane_s32(__transfersize(1) int32_t const * ptr, int32x4_t vec, __constrange(0,3) int lane); //VLD1.32 {d0[0]}, [r0] +float32x4_t vld1q_lane_f32(__transfersize(1) float32_t const * ptr, float32x4_t vec, __constrange(0,3) int lane); // VLD1.32 {d0[0]}, [r0] +int64x2_t vld1q_lane_s64(__transfersize(1) int64_t const * ptr, int64x2_t vec, __constrange(0,1) int lane); //VLD1.64 {d0}, [r0] +poly8x16_t vld1q_lane_p8(__transfersize(1) poly8_t const * ptr, poly8x16_t vec, __constrange(0,15) int lane); //VLD1.8 {d0[0]}, [r0] +poly16x8_t vld1q_lane_p16(__transfersize(1) poly16_t const * ptr, poly16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0] + +//Load all lanes of vector with same value from memory +uint8x16_t vld1q_dup_u8(__transfersize(1) uint8_t const * ptr); // VLD1.8 {d0[]}, [r0] +uint16x8_t vld1q_dup_u16(__transfersize(1) uint16_t const * ptr); // VLD1.16 {d0[]}, [r0] +uint32x4_t vld1q_dup_u32(__transfersize(1) uint32_t const * ptr); // VLD1.32 {d0[]}, [r0] +uint64x2_t vld1q_dup_u64(__transfersize(1) uint64_t const * ptr); // VLD1.64 {d0}, [r0] +int8x16_t vld1q_dup_s8(__transfersize(1) int8_t const * ptr); // VLD1.8 {d0[]}, [r0] +int16x8_t vld1q_dup_s16(__transfersize(1) int16_t const * ptr); // VLD1.16 {d0[]}, [r0] +int32x4_t vld1q_dup_s32(__transfersize(1) int32_t const * ptr); // VLD1.32 {d0[]}, [r0] +int64x2_t vld1q_dup_s64(__transfersize(1) int64_t const * ptr); // VLD1.64 {d0}, [r0] +float16x8_t vld1q_dup_f16(__transfersize(1) __fp16 const * ptr); // VLD1.16 {d0[]}, [r0] +float32x4_t vld1q_dup_f32(__transfersize(1) float32_t const * ptr); // VLD1.32 {d0[]}, [r0] +poly8x16_t vld1q_dup_p8(__transfersize(1) poly8_t const * ptr); // VLD1.8 {d0[]}, [r0] +poly16x8_t vld1q_dup_p16(__transfersize(1) poly16_t const * ptr); // VLD1.16 {d0[]}, [r0] + +//Store a single vector or lane. Stores all lanes or a single lane of a vector. +//Store a single vector into memory +void vst1q_u8(__transfersize(16) uint8_t * ptr, uint8x16_t val); // VST1.8 {d0, d1}, [r0] +void vst1q_u16(__transfersize(8) uint16_t * ptr, uint16x8_t val); // VST1.16 {d0, d1}, [r0] +void vst1q_u32(__transfersize(4) uint32_t * ptr, uint32x4_t val); // VST1.32 {d0, d1}, [r0] +void vst1q_u64(__transfersize(2) uint64_t * ptr, uint64x2_t val); // VST1.64 {d0, d1}, [r0] +void vst1q_s8(__transfersize(16) int8_t * ptr, int8x16_t val); // VST1.8 {d0, d1}, [r0] +void vst1q_s16(__transfersize(8) int16_t * ptr, int16x8_t val); // VST1.16 {d0, d1}, [r0] +void vst1q_s32(__transfersize(4) int32_t * ptr, int32x4_t val); // VST1.32 {d0, d1}, [r0] +void vst1q_s64(__transfersize(2) int64_t * ptr, int64x2_t val); // VST1.64 {d0, d1}, [r0] +void vst1q_f16(__transfersize(8) __fp16 * ptr, float16x8_t val); // VST1.16 {d0, d1}, [r0] +void vst1q_f32(__transfersize(4) float32_t * ptr, float32x4_t val); // VST1.32 {d0, d1}, [r0] +void vst1q_p8(__transfersize(16) poly8_t * ptr, poly8x16_t val); // VST1.8 {d0, d1}, [r0] +void vst1q_p16(__transfersize(8) poly16_t * ptr, poly16x8_t val); // VST1.16 {d0, d1}, [r0] + +//Store a lane of a vector into memory +//Loads of an N-element structure +//Load N-element structure from memory +uint8x16x2_t vld2q_u8(__transfersize(32) uint8_t const * ptr); // VLD2.8 {d0, d2}, [r0] +uint16x8x2_t vld2q_u16(__transfersize(16) uint16_t const * ptr); // VLD2.16 {d0, d2}, [r0] +uint32x4x2_t vld2q_u32(__transfersize(8) uint32_t const * ptr); // VLD2.32 {d0, d2}, [r0] +int8x16x2_t vld2q_s8(__transfersize(32) int8_t const * ptr); // VLD2.8 {d0, d2}, [r0] +int16x8x2_t vld2q_s16(__transfersize(16) int16_t const * ptr); // VLD2.16 {d0, d2}, [r0] +int32x4x2_t vld2q_s32(__transfersize(8) int32_t const * ptr); // VLD2.32 {d0, d2}, [r0] +float16x8x2_t vld2q_f16(__transfersize(16) __fp16 const * ptr); // VLD2.16 {d0, d2}, [r0] +float32x4x2_t vld2q_f32(__transfersize(8) float32_t const * ptr); // VLD2.32 {d0, d2}, [r0] +poly8x16x2_t vld2q_p8(__transfersize(32) poly8_t const * ptr); // VLD2.8 {d0, d2}, [r0] +poly16x8x2_t vld2q_p16(__transfersize(16) poly16_t const * ptr); // VLD2.16 {d0, d2}, [r0] +uint8x8x2_t vld2_u8(__transfersize(16) uint8_t const * ptr); // VLD2.8 {d0, d1}, [r0] +uint16x4x2_t vld2_u16(__transfersize(8) uint16_t const * ptr); // VLD2.16 {d0, d1}, [r0] +uint32x2x2_t vld2_u32(__transfersize(4) uint32_t const * ptr); // VLD2.32 {d0, d1}, [r0] +uint64x1x2_t vld2_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0] +int8x8x2_t vld2_s8(__transfersize(16) int8_t const * ptr); // VLD2.8 {d0, d1}, [r0] +int16x4x2_t vld2_s16(__transfersize(8) int16_t const * ptr); // VLD2.16 {d0, d1}, [r0] +int32x2x2_t vld2_s32(__transfersize(4) int32_t const * ptr); // VLD2.32 {d0, d1}, [r0] +int64x1x2_t vld2_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0] +//float16x4x2_t vld2_f16(__transfersize(8) __fp16 const * ptr); // VLD2.16 {d0, d1}, [r0] +float32x2x2_t vld2_f32(__transfersize(4) float32_t const * ptr); // VLD2.32 {d0, d1}, [r0] +poly8x8x2_t vld2_p8(__transfersize(16) poly8_t const * ptr); // VLD2.8 {d0, d1}, [r0] +poly16x4x2_t vld2_p16(__transfersize(8) poly16_t const * ptr); // VLD2.16 {d0, d1}, [r0] +uint8x16x3_t vld3q_u8(__transfersize(48) uint8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0] +uint16x8x3_t vld3q_u16(__transfersize(24) uint16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0] +uint32x4x3_t vld3q_u32(__transfersize(12) uint32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0] +int8x16x3_t vld3q_s8(__transfersize(48) int8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0] +int16x8x3_t vld3q_s16(__transfersize(24) int16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0] +int32x4x3_t vld3q_s32(__transfersize(12) int32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0] +float16x8x3_t vld3q_f16(__transfersize(24) __fp16 const * ptr); // VLD3.16 {d0, d2, d4}, [r0] +float32x4x3_t vld3q_f32(__transfersize(12) float32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0] +poly8x16x3_t vld3q_p8(__transfersize(48) poly8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0] +poly16x8x3_t vld3q_p16(__transfersize(24) poly16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0] +uint8x8x3_t vld3_u8(__transfersize(24) uint8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0] +uint16x4x3_t vld3_u16(__transfersize(12) uint16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0] +uint32x2x3_t vld3_u32(__transfersize(6) uint32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0] +uint64x1x3_t vld3_u64(__transfersize(3) uint64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0] +int8x8x3_t vld3_s8(__transfersize(24) int8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0] +int16x4x3_t vld3_s16(__transfersize(12) int16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0] +int32x2x3_t vld3_s32(__transfersize(6) int32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0] +int64x1x3_t vld3_s64(__transfersize(3) int64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0] +float16x4x3_t vld3_f16(__transfersize(12) __fp16 const * ptr); // VLD3.16 {d0, d1, d2}, [r0] +float32x2x3_t vld3_f32(__transfersize(6) float32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0] +poly8x8x3_t vld3_p8(__transfersize(24) poly8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0] +poly16x4x3_t vld3_p16(__transfersize(12) poly16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0] +uint8x16x4_t vld4q_u8(__transfersize(64) uint8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0] +uint16x8x4_t vld4q_u16(__transfersize(32) uint16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0] +uint32x4x4_t vld4q_u32(__transfersize(16) uint32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0] +int8x16x4_t vld4q_s8(__transfersize(64) int8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0] +int16x8x4_t vld4q_s16(__transfersize(32) int16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0] +int32x4x4_t vld4q_s32(__transfersize(16) int32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0] +float16x8x4_t vld4q_f16(__transfersize(32) __fp16 const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0] +float32x4x4_t vld4q_f32(__transfersize(16) float32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0] +poly8x16x4_t vld4q_p8(__transfersize(64) poly8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0] +poly16x8x4_t vld4q_p16(__transfersize(32) poly16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0] +uint8x8x4_t vld4_u8(__transfersize(32) uint8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0] +uint16x4x4_t vld4_u16(__transfersize(16) uint16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0] +uint32x2x4_t vld4_u32(__transfersize(8) uint32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0] +uint64x1x4_t vld4_u64(__transfersize(4) uint64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0] +int8x8x4_t vld4_s8(__transfersize(32) int8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0] +int16x4x4_t vld4_s16(__transfersize(16) int16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0] +int32x2x4_t vld4_s32(__transfersize(8) int32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0] +int64x1x4_t vld4_s64(__transfersize(4) int64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0] +float16x4x4_t vld4_f16(__transfersize(16) __fp16 const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0] +float32x2x4_t vld4_f32(__transfersize(8) float32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0] +poly8x8x4_t vld4_p8(__transfersize(32) poly8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0] +poly16x4x4_t vld4_p16(__transfersize(16) poly16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0] +//Load all lanes of N-element structure with same value from memory +uint8x8x2_t vld2_dup_u8(__transfersize(2) uint8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0] +uint16x4x2_t vld2_dup_u16(__transfersize(2) uint16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0] +uint32x2x2_t vld2_dup_u32(__transfersize(2) uint32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0] +uint64x1x2_t vld2_dup_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0] +int8x8x2_t vld2_dup_s8(__transfersize(2) int8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0] +int16x4x2_t vld2_dup_s16(__transfersize(2) int16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0] +int32x2x2_t vld2_dup_s32(__transfersize(2) int32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0] +int64x1x2_t vld2_dup_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0] +//float16x4x2_t vld2_dup_f16(__transfersize(2) __fp16 const * ptr); // VLD2.16 {d0[], d1[]}, [r0] +float32x2x2_t vld2_dup_f32(__transfersize(2) float32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0] +poly8x8x2_t vld2_dup_p8(__transfersize(2) poly8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0] +poly16x4x2_t vld2_dup_p16(__transfersize(2) poly16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0] +uint8x8x3_t vld3_dup_u8(__transfersize(3) uint8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0] +uint16x4x3_t vld3_dup_u16(__transfersize(3) uint16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0] +uint32x2x3_t vld3_dup_u32(__transfersize(3) uint32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0] +uint64x1x3_t vld3_dup_u64(__transfersize(3) uint64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0] +int8x8x3_t vld3_dup_s8(__transfersize(3) int8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0] +int16x4x3_t vld3_dup_s16(__transfersize(3) int16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0] +int32x2x3_t vld3_dup_s32(__transfersize(3) int32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0] +int64x1x3_t vld3_dup_s64(__transfersize(3) int64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0] +float16x4x3_t vld3_dup_f16(__transfersize(3) __fp16 const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0] +float32x2x3_t vld3_dup_f32(__transfersize(3) float32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0] +poly8x8x3_t vld3_dup_p8(__transfersize(3) poly8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0] +poly16x4x3_t vld3_dup_p16(__transfersize(3) poly16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0] +uint8x8x4_t vld4_dup_u8(__transfersize(4) uint8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0] +uint16x4x4_t vld4_dup_u16(__transfersize(4) uint16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] +uint32x2x4_t vld4_dup_u32(__transfersize(4) uint32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0] +uint64x1x4_t vld4_dup_u64(__transfersize(4) uint64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0] +int8x8x4_t vld4_dup_s8(__transfersize(4) int8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0] +int16x4x4_t vld4_dup_s16(__transfersize(4) int16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] +int32x2x4_t vld4_dup_s32(__transfersize(4) int32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0] +int64x1x4_t vld4_dup_s64(__transfersize(4) int64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0] +float16x4x4_t vld4_dup_f16(__transfersize(4) __fp16 const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] +float32x2x4_t vld4_dup_f32(__transfersize(4) float32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0] +poly8x8x4_t vld4_dup_p8(__transfersize(4) poly8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0] +poly16x4x4_t vld4_dup_p16(__transfersize(4) poly16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] +//Load a single lane of N-element structure from memory +//the functions below are modified to deal with the error C2719: 'src': formal parameter with __declspec(align('16')) won't be aligned +uint16x8x2_t vld2q_lane_u16_ptr(__transfersize(2) uint16_t const * ptr, uint16x8x2_t * src, __constrange(0,7) int lane); // VLD2.16 {d0[0], d2[0]}, [r0] +uint32x4x2_t vld2q_lane_u32_ptr(__transfersize(2) uint32_t const * ptr, uint32x4x2_t * src, __constrange(0,3) int lane); // VLD2.32 {d0[0], d2[0]}, [r0] +int16x8x2_t vld2q_lane_s16_ptr(__transfersize(2) int16_t const * ptr, int16x8x2_t * src, __constrange(0,7) int lane); // VLD2.16 {d0[0], d2[0]}, [r0] +int32x4x2_t vld2q_lane_s32_ptr(__transfersize(2) int32_t const * ptr, int32x4x2_t * src, __constrange(0,3) int lane); // VLD2.32 {d0[0], d2[0]}, [r0] +float16x8x2_t vld2q_lane_f16_ptr(__transfersize(2) __fp16 const * ptr, float16x8x2_t * src, __constrange(0,7) int lane); // VLD2.16 {d0[0], d2[0]}, [r0] +float32x4x2_t vld2q_lane_f32_ptr(__transfersize(2) float32_t const * ptr, float32x4x2_t * src, __constrange(0,3) int lane); // VLD2.32 {d0[0], d2[0]}, [r0] +poly16x8x2_t vld2q_lane_p16_ptr(__transfersize(2) poly16_t const * ptr, poly16x8x2_t * src, __constrange(0,7) int lane); // VLD2.16 {d0[0], d2[0]}, [r0] +uint8x8x2_t vld2_lane_u8_ptr(__transfersize(2) uint8_t const * ptr, uint8x8x2_t * src, __constrange(0,7) int lane); //VLD2.8 {d0[0], d1[0]}, [r0] +uint16x4x2_t vld2_lane_u16_ptr(__transfersize(2) uint16_t const * ptr, uint16x4x2_t * src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0] +uint32x2x2_t vld2_lane_u32_ptr(__transfersize(2) uint32_t const * ptr, uint32x2x2_t * src, __constrange(0,1) int lane); // VLD2.32 {d0[0], d1[0]}, [r0] +int8x8x2_t vld2_lane_s8_ptr(__transfersize(2) int8_t const * ptr, int8x8x2_t * src, __constrange(0,7) int lane); //VLD2.8 {d0[0], d1[0]}, [r0] +int16x4x2_t vld2_lane_s16_ptr(__transfersize(2) int16_t const * ptr, int16x4x2_t * src, __constrange(0,3) int lane); //VLD2.16 {d0[0], d1[0]}, [r0] +int32x2x2_t vld2_lane_s32_ptr(__transfersize(2) int32_t const * ptr, int32x2x2_t * src, __constrange(0,1) int lane); //VLD2.32 {d0[0], d1[0]}, [r0] +//float16x4x2_t vld2_lane_f16_ptr(__transfersize(2) __fp16 const * ptr, float16x4x2_t * src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0] +float32x2x2_t vld2_lane_f32_ptr(__transfersize(2) float32_t const * ptr, float32x2x2_t * src, __constrange(0,1) int lane); // VLD2.32 {d0[0], d1[0]}, [r0] +poly8x8x2_t vld2_lane_p8_ptr(__transfersize(2) poly8_t const * ptr, poly8x8x2_t * src, __constrange(0,7) int lane); //VLD2.8 {d0[0], d1[0]}, [r0] +poly16x4x2_t vld2_lane_p16_ptr(__transfersize(2) poly16_t const * ptr, poly16x4x2_t * src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0] +uint16x8x3_t vld3q_lane_u16_ptr(__transfersize(3) uint16_t const * ptr, uint16x8x3_t * src, __constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0] +uint32x4x3_t vld3q_lane_u32_ptr(__transfersize(3) uint32_t const * ptr, uint32x4x3_t * src, __constrange(0,3) int lane); // VLD3.32 {d0[0], d2[0], d4[0]}, [r0] +int16x8x3_t vld3q_lane_s16_ptr(__transfersize(3) int16_t const * ptr, int16x8x3_t * src, __constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0] +int32x4x3_t vld3q_lane_s32_ptr(__transfersize(3) int32_t const * ptr, int32x4x3_t * src, __constrange(0,3) int lane); // VLD3.32 {d0[0], d2[0], d4[0]}, [r0] +float16x8x3_t vld3q_lane_f16_ptr(__transfersize(3) __fp16 const * ptr, float16x8x3_t * src, __constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0] +float32x4x3_t vld3q_lane_f32_ptr(__transfersize(3) float32_t const * ptr, float32x4x3_t * src, __constrange(0,3) int lane); // VLD3.32 {d0[0], d2[0], d4[0]}, [r0] +poly16x8x3_t vld3q_lane_p16_ptr(__transfersize(3) poly16_t const * ptr, poly16x8x3_t * src, __constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0] +uint8x8x3_t vld3_lane_u8_ptr(__transfersize(3) uint8_t const * ptr, uint8x8x3_t * src, __constrange(0,7) int lane); //VLD3.8 {d0[0], d1[0], d2[0]}, [r0] +uint16x4x3_t vld3_lane_u16_ptr(__transfersize(3) uint16_t const * ptr, uint16x4x3_t * src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0] +uint32x2x3_t vld3_lane_u32_ptr(__transfersize(3) uint32_t const * ptr, uint32x2x3_t * src, __constrange(0,1) int lane); // VLD3.32 {d0[0], d1[0], d2[0]}, [r0] +int8x8x3_t vld3_lane_s8_ptr(__transfersize(3) int8_t const * ptr, int8x8x3_t * src, __constrange(0,7) int lane); //VLD3.8 {d0[0], d1[0], d2[0]}, [r0] +int16x4x3_t vld3_lane_s16_ptr(__transfersize(3) int16_t const * ptr, int16x4x3_t * src, __constrange(0,3) int lane); //VLD3.16 {d0[0], d1[0], d2[0]}, [r0] +int32x2x3_t vld3_lane_s32_ptr(__transfersize(3) int32_t const * ptr, int32x2x3_t * src, __constrange(0,1) int lane); //VLD3.32 {d0[0], d1[0], d2[0]}, [r0] +float16x4x3_t vld3_lane_f16_ptr(__transfersize(3) __fp16 const * ptr, float16x4x3_t * src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0] +float32x2x3_t vld3_lane_f32_ptr(__transfersize(3) float32_t const * ptr, float32x2x3_t * src, __constrange(0,1) int lane); // VLD3.32 {d0[0], d1[0], d2[0]}, [r0] +poly8x8x3_t vld3_lane_p8_ptr(__transfersize(3) poly8_t const * ptr, poly8x8x3_t * src, __constrange(0,7) int lane); //VLD3.8 {d0[0], d1[0], d2[0]}, [r0] +poly16x4x3_t vld3_lane_p16_ptr(__transfersize(3) poly16_t const * ptr, poly16x4x3_t * src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0] +uint16x8x4_t vld4q_lane_u16_ptr(__transfersize(4) uint16_t const * ptr, uint16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] +uint32x4x4_t vld4q_lane_u32_ptr(__transfersize(4) uint32_t const * ptr, uint32x4x4_t * src, __constrange(0,3) int lane); // VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] +int16x8x4_t vld4q_lane_s16_ptr(__transfersize(4) int16_t const * ptr, int16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] +int32x4x4_t vld4q_lane_s32_ptr(__transfersize(4) int32_t const * ptr, int32x4x4_t * src, __constrange(0,3) int lane); // VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] +float16x8x4_t vld4q_lane_f16_ptr(__transfersize(4) __fp16 const * ptr, float16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] +float32x4x4_t vld4q_lane_f32_ptr(__transfersize(4) float32_t const * ptr, float32x4x4_t * src, __constrange(0,3) int lane); // VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] +poly16x8x4_t vld4q_lane_p16_ptr(__transfersize(4) poly16_t const * ptr, poly16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] +uint8x8x4_t vld4_lane_u8_ptr(__transfersize(4) uint8_t const * ptr, uint8x8x4_t * src, __constrange(0,7) int lane); //VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] +uint16x4x4_t vld4_lane_u16_ptr(__transfersize(4) uint16_t const * ptr, uint16x4x4_t * src, __constrange(0,3) int lane); // VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] +uint32x2x4_t vld4_lane_u32_ptr(__transfersize(4) uint32_t const * ptr, uint32x2x4_t * src, __constrange(0,1) int lane); // VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] +int8x8x4_t vld4_lane_s8_ptr(__transfersize(4) int8_t const * ptr, int8x8x4_t * src, __constrange(0,7) int lane); //VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] +int16x4x4_t vld4_lane_s16_ptr(__transfersize(4) int16_t const * ptr, int16x4x4_t * src, __constrange(0,3) int lane); //VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] +int32x2x4_t vld4_lane_s32_ptr(__transfersize(4) int32_t const * ptr, int32x2x4_t * src, __constrange(0,1) int lane); //VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] +float16x4x4_t vld4_lane_f16_ptr(__transfersize(4) __fp16 const * ptr, float16x4x4_t * src, __constrange(0,3) int lane); // VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] +float32x2x4_t vld4_lane_f32_ptr(__transfersize(4) float32_t const * ptr, float32x2x4_t * src, __constrange(0,1) int lane); // VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] +poly8x8x4_t vld4_lane_p8_ptr(__transfersize(4) poly8_t const * ptr, poly8x8x4_t * src, __constrange(0,7) int lane); //VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] +poly16x4x4_t vld4_lane_p16_ptr(__transfersize(4) poly16_t const * ptr, poly16x4x4_t * src, __constrange(0,3) int lane); // VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] +//Store N-element structure to memory +void vst2q_u8_ptr(__transfersize(32) uint8_t * ptr, uint8x16x2_t * val); // VST2.8 {d0, d2}, [r0] +void vst2q_u16_ptr(__transfersize(16) uint16_t * ptr, uint16x8x2_t * val); // VST2.16 {d0, d2}, [r0] +void vst2q_u32_ptr(__transfersize(8) uint32_t * ptr, uint32x4x2_t * val); // VST2.32 {d0, d2}, [r0] +void vst2q_s8_ptr(__transfersize(32) int8_t * ptr, int8x16x2_t * val); // VST2.8 {d0, d2}, [r0] +void vst2q_s16_ptr(__transfersize(16) int16_t * ptr, int16x8x2_t * val); // VST2.16 {d0, d2}, [r0] +void vst2q_s32_ptr(__transfersize(8) int32_t * ptr, int32x4x2_t * val); // VST2.32 {d0, d2}, [r0] +void vst2q_f16_ptr(__transfersize(16) __fp16 * ptr, float16x8x2_t * val); // VST2.16 {d0, d2}, [r0] +void vst2q_f32_ptr(__transfersize(8) float32_t * ptr, float32x4x2_t * val); // VST2.32 {d0, d2}, [r0] +void vst2q_p8_ptr(__transfersize(32) poly8_t * ptr, poly8x16x2_t * val); // VST2.8 {d0, d2}, [r0] +void vst2q_p16_ptr(__transfersize(16) poly16_t * ptr, poly16x8x2_t * val); // VST2.16 {d0, d2}, [r0] +void vst2_u8_ptr(__transfersize(16) uint8_t * ptr, uint8x8x2_t * val); // VST2.8 {d0, d1}, [r0] +void vst2_u16_ptr(__transfersize(8) uint16_t * ptr, uint16x4x2_t * val); // VST2.16 {d0, d1}, [r0] +void vst2_u32_ptr(__transfersize(4) uint32_t * ptr, uint32x2x2_t * val); // VST2.32 {d0, d1}, [r0] +void vst2_u64_ptr(__transfersize(2) uint64_t * ptr, uint64x1x2_t * val); // VST1.64 {d0, d1}, [r0] +void vst2_s8_ptr(__transfersize(16) int8_t * ptr, int8x8x2_t * val); // VST2.8 {d0, d1}, [r0] +void vst2_s16_ptr(__transfersize(8) int16_t * ptr, int16x4x2_t * val); // VST2.16 {d0, d1}, [r0] +void vst2_s32_ptr(__transfersize(4) int32_t * ptr, int32x2x2_t * val); // VST2.32 {d0, d1}, [r0] +void vst2_s64_ptr(__transfersize(2) int64_t * ptr, int64x1x2_t * val); // VST1.64 {d0, d1}, [r0] +//void vst2_f16_ptr(__transfersize(8) __fp16 * ptr, float16x4x2_t * val); // VST2.16 {d0, d1}, [r0] +void vst2_f32_ptr(__transfersize(4) float32_t * ptr, float32x2x2_t * val); // VST2.32 {d0, d1}, [r0] +void vst2_p8_ptr(__transfersize(16) poly8_t * ptr, poly8x8x2_t * val); // VST2.8 {d0, d1}, [r0] +void vst2_p16_ptr(__transfersize(8) poly16_t * ptr, poly16x4x2_t * val); // VST2.16 {d0, d1}, [r0] +void vst3q_u8_ptr(__transfersize(48) uint8_t * ptr, uint8x16x3_t * val); // VST3.8 {d0, d2, d4}, [r0] +void vst3q_u16_ptr(__transfersize(24) uint16_t * ptr, uint16x8x3_t * val); // VST3.16 {d0, d2, d4}, [r0] +void vst3q_u32_ptr(__transfersize(12) uint32_t * ptr, uint32x4x3_t * val); // VST3.32 {d0, d2, d4}, [r0] +void vst3q_s8_ptr(__transfersize(48) int8_t * ptr, int8x16x3_t * val); // VST3.8 {d0, d2, d4}, [r0] +void vst3q_s16_ptr(__transfersize(24) int16_t * ptr, int16x8x3_t * val); // VST3.16 {d0, d2, d4}, [r0] +void vst3q_s32_ptr(__transfersize(12) int32_t * ptr, int32x4x3_t * val); // VST3.32 {d0, d2, d4}, [r0] +void vst3q_f16_ptr(__transfersize(24) __fp16 * ptr, float16x8x3_t * val); // VST3.16 {d0, d2, d4}, [r0] +void vst3q_f32_ptr(__transfersize(12) float32_t * ptr, float32x4x3_t * val); // VST3.32 {d0, d2, d4}, [r0] +void vst3q_p8_ptr(__transfersize(48) poly8_t * ptr, poly8x16x3_t * val); // VST3.8 {d0, d2, d4}, [r0] +void vst3q_p16_ptr(__transfersize(24) poly16_t * ptr, poly16x8x3_t * val); // VST3.16 {d0, d2, d4}, [r0] +void vst3_u8_ptr(__transfersize(24) uint8_t * ptr, uint8x8x3_t * val); // VST3.8 {d0, d1, d2}, [r0] +void vst3_u16_ptr(__transfersize(12) uint16_t * ptr, uint16x4x3_t * val); // VST3.16 {d0, d1, d2}, [r0] +void vst3_u32_ptr(__transfersize(6) uint32_t * ptr, uint32x2x3_t * val); // VST3.32 {d0, d1, d2}, [r0] +void vst3_u64_ptr(__transfersize(3) uint64_t * ptr, uint64x1x3_t * val); // VST1.64 {d0, d1, d2}, [r0] +void vst3_s8_ptr(__transfersize(24) int8_t * ptr, int8x8x3_t * val); // VST3.8 {d0, d1, d2}, [r0] +void vst3_s16_ptr(__transfersize(12) int16_t * ptr, int16x4x3_t * val); // VST3.16 {d0, d1, d2}, [r0] +void vst3_s32_ptr(__transfersize(6) int32_t * ptr, int32x2x3_t * val); // VST3.32 {d0, d1, d2}, [r0] +void vst3_s64_ptr(__transfersize(3) int64_t * ptr, int64x1x3_t * val); // VST1.64 {d0, d1, d2}, [r0] +void vst3_f16_ptr(__transfersize(12) __fp16 * ptr, float16x4x3_t * val); // VST3.16 {d0, d1, d2}, [r0] +void vst3_f32_ptr(__transfersize(6) float32_t * ptr, float32x2x3_t * val); // VST3.32 {d0, d1, d2}, [r0] +void vst3_p8_ptr(__transfersize(24) poly8_t * ptr, poly8x8x3_t * val); // VST3.8 {d0, d1, d2}, [r0] +void vst3_p16_ptr(__transfersize(12) poly16_t * ptr, poly16x4x3_t * val); // VST3.16 {d0, d1, d2}, [r0] +void vst4q_u8_ptr(__transfersize(64) uint8_t * ptr, uint8x16x4_t * val); // VST4.8 {d0, d2, d4, d6}, [r0] +void vst4q_u16_ptr(__transfersize(32) uint16_t * ptr, uint16x8x4_t * val); // VST4.16 {d0, d2, d4, d6}, [r0] +void vst4q_u32_ptr(__transfersize(16) uint32_t * ptr, uint32x4x4_t * val); // VST4.32 {d0, d2, d4, d6}, [r0] +void vst4q_s8_ptr(__transfersize(64) int8_t * ptr, int8x16x4_t * val); // VST4.8 {d0, d2, d4, d6}, [r0] +void vst4q_s16_ptr(__transfersize(32) int16_t * ptr, int16x8x4_t * val); // VST4.16 {d0, d2, d4, d6}, [r0] +void vst4q_s32_ptr(__transfersize(16) int32_t * ptr, int32x4x4_t * val); // VST4.32 {d0, d2, d4, d6}, [r0] +void vst4q_f16_ptr(__transfersize(32) __fp16 * ptr, float16x8x4_t * val); // VST4.16 {d0, d2, d4, d6}, [r0] +void vst4q_f32_ptr(__transfersize(16) float32_t * ptr, float32x4x4_t * val); // VST4.32 {d0, d2, d4, d6}, [r0] +void vst4q_p8_ptr(__transfersize(64) poly8_t * ptr, poly8x16x4_t * val); // VST4.8 {d0, d2, d4, d6}, [r0] +void vst4q_p16_ptr(__transfersize(32) poly16_t * ptr, poly16x8x4_t * val); // VST4.16 {d0, d2, d4, d6}, [r0] +void vst4_u8_ptr(__transfersize(32) uint8_t * ptr, uint8x8x4_t * val); // VST4.8 {d0, d1, d2, d3}, [r0] +void vst4_u16_ptr(__transfersize(16) uint16_t * ptr, uint16x4x4_t * val); // VST4.16 {d0, d1, d2, d3}, [r0] +void vst4_u32_ptr(__transfersize(8) uint32_t * ptr, uint32x2x4_t * val); // VST4.32 {d0, d1, d2, d3}, [r0] +void vst4_u64_ptr(__transfersize(4) uint64_t * ptr, uint64x1x4_t * val); // VST1.64 {d0, d1, d2, d3}, [r0] +void vst4_s8_ptr(__transfersize(32) int8_t * ptr, int8x8x4_t * val); // VST4.8 {d0, d1, d2, d3}, [r0] +void vst4_s16_ptr(__transfersize(16) int16_t * ptr, int16x4x4_t * val); // VST4.16 {d0, d1, d2, d3}, [r0] +void vst4_s32_ptr(__transfersize(8) int32_t * ptr, int32x2x4_t * val); // VST4.32 {d0, d1, d2, d3}, [r0] +void vst4_s64_ptr(__transfersize(4) int64_t * ptr, int64x1x4_t * val); // VST1.64 {d0, d1, d2, d3}, [r0] +void vst4_f16_ptr(__transfersize(16) __fp16 * ptr, float16x4x4_t * val); // VST4.16 {d0, d1, d2, d3}, [r0] +void vst4_f32_ptr(__transfersize(8) float32_t * ptr, float32x2x4_t * val); // VST4.32 {d0, d1, d2, d3}, [r0] +void vst4_p8_ptr(__transfersize(32) poly8_t * ptr, poly8x8x4_t * val); // VST4.8 {d0, d1, d2, d3}, [r0] +void vst4_p16_ptr(__transfersize(16) poly16_t * ptr, poly16x4x4_t * val); // VST4.16 {d0, d1, d2, d3}, [r0] +//Store a single lane of N-element structure to memory +void vst2q_lane_u16_ptr(__transfersize(2) uint16_t * ptr, uint16x8x2_t * val, __constrange(0,7) int lane); // VST2.16{d0[0], d2[0]}, [r0] +void vst2q_lane_u32_ptr(__transfersize(2) uint32_t * ptr, uint32x4x2_t * val, __constrange(0,3) int lane); // VST2.32{d0[0], d2[0]}, [r0] +void vst2q_lane_s16_ptr(__transfersize(2) int16_t * ptr, int16x8x2_t * val, __constrange(0,7) int lane); // VST2.16{d0[0], d2[0]}, [r0] +void vst2q_lane_s32_ptr(__transfersize(2) int32_t * ptr, int32x4x2_t * val, __constrange(0,3) int lane); // VST2.32{d0[0], d2[0]}, [r0] +void vst2q_lane_f16_ptr(__transfersize(2) __fp16 * ptr, float16x8x2_t * val, __constrange(0,7) int lane); // VST2.16{d0[0], d2[0]}, [r0] +void vst2q_lane_f32_ptr(__transfersize(2) float32_t * ptr, float32x4x2_t * val, __constrange(0,3) int lane); //VST2.32 {d0[0], d2[0]}, [r0] +void vst2q_lane_p16_ptr(__transfersize(2) poly16_t * ptr, poly16x8x2_t * val, __constrange(0,7) int lane); // VST2.16{d0[0], d2[0]}, [r0] +void vst2_lane_u8_ptr(__transfersize(2) uint8_t * ptr, uint8x8x2_t * val, __constrange(0,7) int lane); // VST2.8{d0[0], d1[0]}, [r0] +void vst2_lane_u16_ptr(__transfersize(2) uint16_t * ptr, uint16x4x2_t * val, __constrange(0,3) int lane); // VST2.16{d0[0], d1[0]}, [r0] +void vst2_lane_u32_ptr(__transfersize(2) uint32_t * ptr, uint32x2x2_t * val, __constrange(0,1) int lane); // VST2.32{d0[0], d1[0]}, [r0] +void vst2_lane_s8_ptr(__transfersize(2) int8_t * ptr, int8x8x2_t * val, __constrange(0,7) int lane); // VST2.8 {d0[0],d1[0]}, [r0] +void vst2_lane_s16_ptr(__transfersize(2) int16_t * ptr, int16x4x2_t * val, __constrange(0,3) int lane); // VST2.16{d0[0], d1[0]}, [r0] +void vst2_lane_s32_ptr(__transfersize(2) int32_t * ptr, int32x2x2_t * val, __constrange(0,1) int lane); // VST2.32{d0[0], d1[0]}, [r0] +void vst2_lane_f16_ptr(__transfersize(2) __fp16 * ptr, float16x4x2_t * val, __constrange(0,3) int lane); // VST2.16{d0[0], d1[0]}, [r0] +void vst2_lane_f32_ptr(__transfersize(2) float32_t * ptr, float32x2x2_t * val, __constrange(0,1) int lane); // VST2.32{d0[0], d1[0]}, [r0] +void vst2_lane_p8_ptr(__transfersize(2) poly8_t * ptr, poly8x8x2_t * val, __constrange(0,7) int lane); // VST2.8{d0[0], d1[0]}, [r0] +void vst2_lane_p16_ptr(__transfersize(2) poly16_t * ptr, poly16x4x2_t * val, __constrange(0,3) int lane); // VST2.16{d0[0], d1[0]}, [r0] +void vst3q_lane_u16_ptr(__transfersize(3) uint16_t * ptr, uint16x8x3_t * val, __constrange(0,7) int lane); // VST3.16{d0[0], d2[0], d4[0]}, [r0] +void vst3q_lane_u32_ptr(__transfersize(3) uint32_t * ptr, uint32x4x3_t * val, __constrange(0,3) int lane); // VST3.32{d0[0], d2[0], d4[0]}, [r0] +void vst3q_lane_s16_ptr(__transfersize(3) int16_t * ptr, int16x8x3_t * val, __constrange(0,7) int lane); // VST3.16{d0[0], d2[0], d4[0]}, [r0] +void vst3q_lane_s32_ptr(__transfersize(3) int32_t * ptr, int32x4x3_t * val, __constrange(0,3) int lane); // VST3.32{d0[0], d2[0], d4[0]}, [r0] +void vst3q_lane_f16_ptr(__transfersize(3) __fp16 * ptr, float16x8x3_t * val, __constrange(0,7) int lane); // VST3.16{d0[0], d2[0], d4[0]}, [r0] +void vst3q_lane_f32_ptr(__transfersize(3) float32_t * ptr, float32x4x3_t * val, __constrange(0,3) int lane); //VST3.32 {d0[0], d2[0], d4[0]}, [r0] +void vst3q_lane_p16_ptr(__transfersize(3) poly16_t * ptr, poly16x8x3_t * val, __constrange(0,7) int lane); // VST3.16{d0[0], d2[0], d4[0]}, [r0] +void vst3_lane_u8_ptr(__transfersize(3) uint8_t * ptr, uint8x8x3_t * val, __constrange(0,7) int lane); // VST3.8{d0[0], d1[0], d2[0]}, [r0] +void vst3_lane_u16_ptr(__transfersize(3) uint16_t * ptr, uint16x4x3_t * val, __constrange(0,3) int lane); // VST3.16{d0[0], d1[0], d2[0]}, [r0] +void vst3_lane_u32_ptr(__transfersize(3) uint32_t * ptr, uint32x2x3_t * val, __constrange(0,1) int lane); // VST3.32{d0[0], d1[0], d2[0]}, [r0] +void vst3_lane_s8_ptr(__transfersize(3) int8_t * ptr, int8x8x3_t * val, __constrange(0,7) int lane); // VST3.8 {d0[0],d1[0], d2[0]}, [r0] +void vst3_lane_s16_ptr(__transfersize(3) int16_t * ptr, int16x4x3_t * val, __constrange(0,3) int lane); // VST3.16{d0[0], d1[0], d2[0]}, [r0] +void vst3_lane_s32_ptr(__transfersize(3) int32_t * ptr, int32x2x3_t * val, __constrange(0,1) int lane); // VST3.32{d0[0], d1[0], d2[0]}, [r0] +void vst3_lane_f16_ptr(__transfersize(3) __fp16 * ptr, float16x4x3_t * val, __constrange(0,3) int lane); // VST3.16{d0[0], d1[0], d2[0]}, [r0] +void vst3_lane_f32_ptr(__transfersize(3) float32_t * ptr, float32x2x3_t * val, __constrange(0,1) int lane); // VST3.32{d0[0], d1[0], d2[0]}, [r0] +void vst3_lane_p8_ptr(__transfersize(3) poly8_t * ptr, poly8x8x3_t * val, __constrange(0,7) int lane); // VST3.8{d0[0], d1[0], d2[0]}, [r0] +void vst3_lane_p16_ptr(__transfersize(3) poly16_t * ptr, poly16x4x3_t * val, __constrange(0,3) int lane); // VST3.16{d0[0], d1[0], d2[0]}, [r0] +void vst4q_lane_u16_ptr(__transfersize(4) uint16_t * ptr, uint16x8x4_t * val, __constrange(0,7) int lane); // VST4.16{d0[0], d2[0], d4[0], d6[0]}, [r0] +void vst4q_lane_u32_ptr(__transfersize(4) uint32_t * ptr, uint32x4x4_t * val, __constrange(0,3) int lane); // VST4.32{d0[0], d2[0], d4[0], d6[0]}, [r0] +void vst4q_lane_s16_ptr(__transfersize(4) int16_t * ptr, int16x8x4_t * val, __constrange(0,7) int lane); // VST4.16{d0[0], d2[0], d4[0], d6[0]}, [r0] +void vst4q_lane_s32_ptr(__transfersize(4) int32_t * ptr, int32x4x4_t * val, __constrange(0,3) int lane); // VST4.32{d0[0], d2[0], d4[0], d6[0]}, [r0] +void vst4q_lane_f16_ptr(__transfersize(4) __fp16 * ptr, float16x8x4_t * val, __constrange(0,7) int lane); // VST4.16{d0[0], d2[0], d4[0], d6[0]}, [r0] +void vst4q_lane_f32_ptr(__transfersize(4) float32_t * ptr, float32x4x4_t * val, __constrange(0,3) int lane); //VST4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] +void vst4q_lane_p16_ptr(__transfersize(4) poly16_t * ptr, poly16x8x4_t * val, __constrange(0,7) int lane); // VST4.16{d0[0], d2[0], d4[0], d6[0]}, [r0] +void vst4_lane_u8_ptr(__transfersize(4) uint8_t * ptr, uint8x8x4_t * val, __constrange(0,7) int lane); // VST4.8{d0[0], d1[0], d2[0], d3[0]}, [r0] +void vst4_lane_u16_ptr(__transfersize(4) uint16_t * ptr, uint16x4x4_t * val, __constrange(0,3) int lane); // VST4.16{d0[0], d1[0], d2[0], d3[0]}, [r0] +void vst4_lane_u32_ptr(__transfersize(4) uint32_t * ptr, uint32x2x4_t * val, __constrange(0,1) int lane); // VST4.32{d0[0], d1[0], d2[0], d3[0]}, [r0] +void vst4_lane_s8_ptr(__transfersize(4) int8_t * ptr, int8x8x4_t * val, __constrange(0,7) int lane); // VST4.8 {d0[0],d1[0], d2[0], d3[0]}, [r0] +void vst4_lane_s16_ptr(__transfersize(4) int16_t * ptr, int16x4x4_t * val, __constrange(0,3) int lane); // VST4.16{d0[0], d1[0], d2[0], d3[0]}, [r0] +void vst4_lane_s32_ptr(__transfersize(4) int32_t * ptr, int32x2x4_t * val, __constrange(0,1) int lane); // VST4.32{d0[0], d1[0], d2[0], d3[0]}, [r0] +void vst4_lane_f16_ptr(__transfersize(4) __fp16 * ptr, float16x4x4_t * val, __constrange(0,3) int lane); // VST4.16{d0[0], d1[0], d2[0], d3[0]}, [r0] +void vst4_lane_f32_ptr(__transfersize(4) float32_t * ptr, float32x2x4_t * val, __constrange(0,1) int lane); // VST4.32{d0[0], d1[0], d2[0], d3[0]}, [r0] +void vst4_lane_p8_ptr(__transfersize(4) poly8_t * ptr, poly8x8x4_t * val, __constrange(0,7) int lane); // VST4.8{d0[0], d1[0], d2[0], d3[0]}, [r0] +void vst4_lane_p16_ptr(__transfersize(4) poly16_t * ptr, poly16x4x4_t * val, __constrange(0,3) int lane); // VST4.16{d0[0], d1[0], d2[0], d3[0]}, [r0] +//Extract lanes from a vector and put into a register. These intrinsics extract a single lane (element) from a vector. + +uint8_t vgetq_lane_u8(uint8x16_t vec, __constrange(0,15) int lane); // VMOV.U8 r0, d0[0] +uint16_t vgetq_lane_u16(uint16x8_t vec, __constrange(0,7) int lane); // VMOV.U16 r0, d0[0] +uint32_t vgetq_lane_u32(uint32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0] +int8_t vgetq_lane_s8(int8x16_t vec, __constrange(0,15) int lane); // VMOV.S8 r0, d0[0] +int16_t vgetq_lane_s16(int16x8_t vec, __constrange(0,7) int lane); // VMOV.S16 r0, d0[0] +int32_t vgetq_lane_s32(int32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0] +poly8_t vgetq_lane_p8(poly8x16_t vec, __constrange(0,15) int lane); // VMOV.U8 r0, d0[0] +poly16_t vgetq_lane_p16(poly16x8_t vec, __constrange(0,7) int lane); // VMOV.U16 r0, d0[0] +float32_t vgetq_lane_f32(float32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0] + +int64_t vgetq_lane_s64(int64x2_t vec, __constrange(0,1) int lane); // VMOV r0,r0,d0 +uint64_t vgetq_lane_u64(uint64x2_t vec, __constrange(0,1) int lane); // VMOV r0,r0,d0 +//Load a single lane of a vector from a literal. These intrinsics set a single lane (element) within a vector. + +uint8x16_t vsetq_lane_u8(uint8_t value, uint8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0 +uint16x8_t vsetq_lane_u16(uint16_t value, uint16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0 +uint32x4_t vsetq_lane_u32(uint32_t value, uint32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0 +int8x16_t vsetq_lane_s8(int8_t value, int8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0 +int16x8_t vsetq_lane_s16(int16_t value, int16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0 +int32x4_t vsetq_lane_s32(int32_t value, int32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0 +poly8x16_t vsetq_lane_p8(poly8_t value, poly8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0 +poly16x8_t vsetq_lane_p16(poly16_t value, poly16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0 +float32x4_t vsetq_lane_f32(float32_t value, float32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0 + +int64x2_t vsetq_lane_s64(int64_t value, int64x2_t vec, __constrange(0,1) int lane); // VMOV d0,r0,r0 +uint64x2_t vsetq_lane_u64(uint64_t value, uint64x2_t vec, __constrange(0,1) int lane); // VMOV d0,r0,r0 +//Initialize a vector from a literal bit pattern. + +//Set all lanes to same value +//Load all lanes of vector to the same literal value + +uint8x16_t vdupq_n_u8(uint8_t value); // VDUP.8 q0,r0 +uint16x8_t vdupq_n_u16(uint16_t value); // VDUP.16 q0,r0 +uint32x4_t vdupq_n_u32(uint32_t value); // VDUP.32 q0,r0 +int8x16_t vdupq_n_s8(int8_t value); // VDUP.8 q0,r0 +int16x8_t vdupq_n_s16(int16_t value); // VDUP.16 q0,r0 +int32x4_t vdupq_n_s32(int32_t value); // VDUP.32 q0,r0 +poly8x16_t vdupq_n_p8(poly8_t value); // VDUP.8 q0,r0 +poly16x8_t vdupq_n_p16(poly16_t value); // VDUP.16 q0,r0 +float32x4_t vdupq_n_f32(float32_t value); // VDUP.32 q0,r0 + +int64x2_t vdupq_n_s64(int64_t value); // VMOV d0,r0,r0 +uint64x2_t vdupq_n_u64(uint64_t value); // VMOV d0,r0,r0 + +uint8x16_t vmovq_n_u8(uint8_t value); // VDUP.8 q0,r0 +uint16x8_t vmovq_n_u16(uint16_t value); // VDUP.16 q0,r0 +uint32x4_t vmovq_n_u32(uint32_t value); // VDUP.32 q0,r0 +int8x16_t vmovq_n_s8(int8_t value); // VDUP.8 q0,r0 +int16x8_t vmovq_n_s16(int16_t value); // VDUP.16 q0,r0 +int32x4_t vmovq_n_s32(int32_t value); // VDUP.32 q0,r0 +poly8x16_t vmovq_n_p8(poly8_t value); // VDUP.8 q0,r0 +poly16x8_t vmovq_n_p16(poly16_t value); // VDUP.16 q0,r0 +float32x4_t vmovq_n_f32(float32_t value); // VDUP.32 q0,r0 + +int64x2_t vmovq_n_s64(int64_t value); // VMOV d0,r0,r0 +uint64x2_t vmovq_n_u64(uint64_t value); // VMOV d0,r0,r0 +//Load all lanes of the vector to the value of a lane of a vector + +//Combining vectors. These intrinsics join two 64 bit vectors into a single 128bit vector. + +//Splitting vectors. These intrinsics split a 128 bit vector into 2 component 64 bit vectors + +//Converting vectors. These intrinsics are used to convert vectors. +//Convert from float + +int32x4_t vcvtq_s32_f32(float32x4_t a); // VCVT.S32.F32 q0, q0 +uint32x4_t vcvtq_u32_f32(float32x4_t a); // VCVT.U32.F32 q0, q0 + +int32x4_t vcvtq_n_s32_f32(float32x4_t a, __constrange(1,32) int b); // VCVT.S32.F32 q0, q0, #32 +uint32x4_t vcvtq_n_u32_f32(float32x4_t a, __constrange(1,32) int b); // VCVT.U32.F32 q0, q0, #32 +//Convert to float + +float32x4_t vcvtq_f32_s32(int32x4_t a); // VCVT.F32.S32 q0, q0 +float32x4_t vcvtq_f32_u32(uint32x4_t a); // VCVT.F32.U32 q0, q0 + +float32x4_t vcvtq_n_f32_s32(int32x4_t a, __constrange(1,32) int b); // VCVT.F32.S32 q0, q0, #32 +float32x4_t vcvtq_n_f32_u32(uint32x4_t a, __constrange(1,32) int b); // VCVT.F32.U32 q0, q0, #32 +//Convert between floats + +//Vector narrow integer + +//Vector long move + +//Vector saturating narrow integer + +//Vector saturating narrow integer signed->unsigned + +//Table look up + +//Extended table look up intrinsics + +//Operations with a scalar value +//Vector multiply accumulate with scalar + +//Vector widening multiply accumulate with scalar + +//Vector widening saturating doubling multiply accumulate with scalar + +//Vector multiply subtract with scalar + +//Vector widening multiply subtract with scalar + +//Vector widening saturating doubling multiply subtract with scalar + +//Vector multiply by scalar + +int16x8_t vmulq_n_s16(int16x8_t a, int16_t b); // VMUL.I16 q0,q0,d0[0] +int32x4_t vmulq_n_s32(int32x4_t a, int32_t b); // VMUL.I32 q0,q0,d0[0] +float32x4_t vmulq_n_f32(float32x4_t a, float32_t b); // VMUL.F32 q0,q0,d0[0] +uint16x8_t vmulq_n_u16(uint16x8_t a, uint16_t b); // VMUL.I16 q0,q0,d0[0] +uint32x4_t vmulq_n_u32(uint32x4_t a, uint32_t b); // VMUL.I32 q0,q0,d0[0] +//Vector long multiply with scalar + +//Vector long multiply by scalar + +//Vector saturating doubling long multiply with scalar + +//Vector saturating doubling long multiply by scalar + +//Vector saturating doubling multiply high with scalar + +int16x8_t vqdmulhq_n_s16(int16x8_t vec1, int16_t val2); // VQDMULH.S16 q0,q0,d0[0] +int32x4_t vqdmulhq_n_s32(int32x4_t vec1, int32_t val2); // VQDMULH.S32 q0,q0,d0[0] +//Vector saturating doubling multiply high by scalar + +//Vector saturating rounding doubling multiply high with scalar + +int16x8_t vqrdmulhq_n_s16(int16x8_t vec1, int16_t val2); // VQRDMULH.S16 q0,q0,d0[0] +int32x4_t vqrdmulhq_n_s32(int32x4_t vec1, int32_t val2); // VQRDMULH.S32 q0,q0,d0[0] +//Vector rounding saturating doubling multiply high by scalar + +//Vector multiply accumulate with scalar + +int16x8_t vmlaq_n_s16(int16x8_t a, int16x8_t b, int16_t c); // VMLA.I16 q0, q0, d0[0] +int32x4_t vmlaq_n_s32(int32x4_t a, int32x4_t b, int32_t c); // VMLA.I32 q0, q0, d0[0] +uint16x8_t vmlaq_n_u16(uint16x8_t a, uint16x8_t b, uint16_t c); // VMLA.I16 q0, q0, d0[0] +uint32x4_t vmlaq_n_u32(uint32x4_t a, uint32x4_t b, uint32_t c); // VMLA.I32 q0, q0, d0[0] +float32x4_t vmlaq_n_f32(float32x4_t a, float32x4_t b, float32_t c); // VMLA.F32 q0, q0, d0[0] +//Vector widening multiply accumulate with scalar + +//Vector widening saturating doubling multiply accumulate with scalar + +//Vector multiply subtract with scalar + +int16x8_t vmlsq_n_s16(int16x8_t a, int16x8_t b, int16_t c); // VMLS.I16 q0, q0, d0[0] +int32x4_t vmlsq_n_s32(int32x4_t a, int32x4_t b, int32_t c); // VMLS.I32 q0, q0, d0[0] +uint16x8_t vmlsq_n_u16(uint16x8_t a, uint16x8_t b, uint16_t c); // VMLS.I16 q0, q0, d0[0] +uint32x4_t vmlsq_n_u32(uint32x4_t a, uint32x4_t b, uint32_t c); // VMLS.I32 q0, q0, d0[0] +float32x4_t vmlsq_n_f32(float32x4_t a, float32x4_t b, float32_t c); // VMLS.F32 q0, q0, d0[0] +//Vector widening multiply subtract with scalar + +//Vector widening saturating doubling multiply subtract with scalar + +//Vector extract + +int8x16_t vextq_s8(int8x16_t a, int8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0 +uint8x16_t vextq_u8(uint8x16_t a, uint8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0 +poly8x16_t vextq_p8(poly8x16_t a, poly8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0 +int16x8_t vextq_s16(int16x8_t a, int16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0 +uint16x8_t vextq_u16(uint16x8_t a, uint16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0 +poly16x8_t vextq_p16(poly16x8_t a, poly16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0 +int32x4_t vextq_s32(int32x4_t a, int32x4_t b, __constrange(0,3) int c); // VEXT.32 q0,q0,q0,#0 +uint32x4_t vextq_u32(uint32x4_t a, uint32x4_t b, __constrange(0,3) int c); // VEXT.32 q0,q0,q0,#0 +int64x2_t vextq_s64(int64x2_t a, int64x2_t b, __constrange(0,1) int c); // VEXT.64 q0,q0,q0,#0 +uint64x2_t vextq_u64(uint64x2_t a, uint64x2_t b, __constrange(0,1) int c); // VEXT.64 q0,q0,q0,#0 +//Reverse vector elements (swap endianness). VREVn.m reverses the order of the m-bit lanes within a set that is n bits wide. + +int8x16_t vrev64q_s8(int8x16_t vec); // VREV64.8 q0,q0 +int16x8_t vrev64q_s16(int16x8_t vec); // VREV64.16 q0,q0 +int32x4_t vrev64q_s32(int32x4_t vec); // VREV64.32 q0,q0 +uint8x16_t vrev64q_u8(uint8x16_t vec); // VREV64.8 q0,q0 +uint16x8_t vrev64q_u16(uint16x8_t vec); // VREV64.16 q0,q0 +uint32x4_t vrev64q_u32(uint32x4_t vec); // VREV64.32 q0,q0 +poly8x16_t vrev64q_p8(poly8x16_t vec); // VREV64.8 q0,q0 +poly16x8_t vrev64q_p16(poly16x8_t vec); // VREV64.16 q0,q0 +float32x4_t vrev64q_f32(float32x4_t vec); // VREV64.32 q0,q0 + +int8x16_t vrev32q_s8(int8x16_t vec); // VREV32.8 q0,q0 +int16x8_t vrev32q_s16(int16x8_t vec); // VREV32.16 q0,q0 +uint8x16_t vrev32q_u8(uint8x16_t vec); // VREV32.8 q0,q0 +uint16x8_t vrev32q_u16(uint16x8_t vec); // VREV32.16 q0,q0 +poly8x16_t vrev32q_p8(poly8x16_t vec); // VREV32.8 q0,q0 + +int8x16_t vrev16q_s8(int8x16_t vec); // VREV16.8 q0,q0 +uint8x16_t vrev16q_u8(uint8x16_t vec); // VREV16.8 q0,q0 +poly8x16_t vrev16q_p8(poly8x16_t vec); // VREV16.8 q0,q0 +//Other single operand arithmetic +//Absolute: Vd[i] = |Va[i]| + +int8x16_t vabsq_s8(int8x16_t a); // VABS.S8 q0,q0 +int16x8_t vabsq_s16(int16x8_t a); // VABS.S16 q0,q0 +int32x4_t vabsq_s32(int32x4_t a); // VABS.S32 q0,q0 +float32x4_t vabsq_f32(float32x4_t a); // VABS.F32 q0,q0 +//Saturating absolute: Vd[i] = sat(|Va[i]|) + +int8x16_t vqabsq_s8(int8x16_t a); // VQABS.S8 q0,q0 +int16x8_t vqabsq_s16(int16x8_t a); // VQABS.S16 q0,q0 +int32x4_t vqabsq_s32(int32x4_t a); // VQABS.S32 q0,q0 +//Negate: Vd[i] = - Va[i] + +int8x16_t vnegq_s8(int8x16_t a); // VNE//q0,q0 +int16x8_t vnegq_s16(int16x8_t a); // VNE//q0,q0 +int32x4_t vnegq_s32(int32x4_t a); // VNE//q0,q0 +float32x4_t vnegq_f32(float32x4_t a); // VNE//q0,q0 +//Saturating Negate: sat(Vd[i] = - Va[i]) + +int8x16_t vqnegq_s8(int8x16_t a); // VQNE//q0,q0 +int16x8_t vqnegq_s16(int16x8_t a); // VQNE//q0,q0 +int32x4_t vqnegq_s32(int32x4_t a); // VQNE//q0,q0 +//Count leading sign bits + +int8x16_t vclsq_s8(int8x16_t a); // VCLS.S8 q0,q0 +int16x8_t vclsq_s16(int16x8_t a); // VCLS.S16 q0,q0 +int32x4_t vclsq_s32(int32x4_t a); // VCLS.S32 q0,q0 +//Count leading zeros + +int8x16_t vclzq_s8(int8x16_t a); // VCLZ.I8 q0,q0 +int16x8_t vclzq_s16(int16x8_t a); // VCLZ.I16 q0,q0 +int32x4_t vclzq_s32(int32x4_t a); // VCLZ.I32 q0,q0 +uint8x16_t vclzq_u8(uint8x16_t a); // VCLZ.I8 q0,q0 +uint16x8_t vclzq_u16(uint16x8_t a); // VCLZ.I16 q0,q0 +uint32x4_t vclzq_u32(uint32x4_t a); // VCLZ.I32 q0,q0 +//Count number of set bits + +uint8x16_t vcntq_u8(uint8x16_t a); // VCNT.8 q0,q0 +int8x16_t vcntq_s8(int8x16_t a); // VCNT.8 q0,q0 +poly8x16_t vcntq_p8(poly8x16_t a); // VCNT.8 q0,q0 +//Reciprocal estimate + +float32x4_t vrecpeq_f32(float32x4_t a); // VRECPE.F32 q0,q0 +uint32x4_t vrecpeq_u32(uint32x4_t a); // VRECPE.U32 q0,q0 +//Reciprocal square root estimate + +float32x4_t vrsqrteq_f32(float32x4_t a); // VRSQRTE.F32 q0,q0 +uint32x4_t vrsqrteq_u32(uint32x4_t a); // VRSQRTE.U32 q0,q0 +//Logical operations +//Bitwise not + +int8x16_t vmvnq_s8(int8x16_t a); // VMVN q0,q0 +int16x8_t vmvnq_s16(int16x8_t a); // VMVN q0,q0 +int32x4_t vmvnq_s32(int32x4_t a); // VMVN q0,q0 +uint8x16_t vmvnq_u8(uint8x16_t a); // VMVN q0,q0 +uint16x8_t vmvnq_u16(uint16x8_t a); // VMVN q0,q0 +uint32x4_t vmvnq_u32(uint32x4_t a); // VMVN q0,q0 +poly8x16_t vmvnq_p8(poly8x16_t a); // VMVN q0,q0 +//Bitwise and + +int8x16_t vandq_s8(int8x16_t a, int8x16_t b); // VAND q0,q0,q0 +int16x8_t vandq_s16(int16x8_t a, int16x8_t b); // VAND q0,q0,q0 +int32x4_t vandq_s32(int32x4_t a, int32x4_t b); // VAND q0,q0,q0 +int64x2_t vandq_s64(int64x2_t a, int64x2_t b); // VAND q0,q0,q0 +uint8x16_t vandq_u8(uint8x16_t a, uint8x16_t b); // VAND q0,q0,q0 +uint16x8_t vandq_u16(uint16x8_t a, uint16x8_t b); // VAND q0,q0,q0 +uint32x4_t vandq_u32(uint32x4_t a, uint32x4_t b); // VAND q0,q0,q0 +uint64x2_t vandq_u64(uint64x2_t a, uint64x2_t b); // VAND q0,q0,q0 +//Bitwise or + +int8x16_t vorrq_s8(int8x16_t a, int8x16_t b); // VORR q0,q0,q0 +int16x8_t vorrq_s16(int16x8_t a, int16x8_t b); // VORR q0,q0,q0 +int32x4_t vorrq_s32(int32x4_t a, int32x4_t b); // VORR q0,q0,q0 +int64x2_t vorrq_s64(int64x2_t a, int64x2_t b); // VORR q0,q0,q0 +uint8x16_t vorrq_u8(uint8x16_t a, uint8x16_t b); // VORR q0,q0,q0 +uint16x8_t vorrq_u16(uint16x8_t a, uint16x8_t b); // VORR q0,q0,q0 +uint32x4_t vorrq_u32(uint32x4_t a, uint32x4_t b); // VORR q0,q0,q0 +uint64x2_t vorrq_u64(uint64x2_t a, uint64x2_t b); // VORR q0,q0,q0 +//Bitwise exclusive or (EOR or XOR) + +int8x16_t veorq_s8(int8x16_t a, int8x16_t b); // VEOR q0,q0,q0 +int16x8_t veorq_s16(int16x8_t a, int16x8_t b); // VEOR q0,q0,q0 +int32x4_t veorq_s32(int32x4_t a, int32x4_t b); // VEOR q0,q0,q0 +int64x2_t veorq_s64(int64x2_t a, int64x2_t b); // VEOR q0,q0,q0 +uint8x16_t veorq_u8(uint8x16_t a, uint8x16_t b); // VEOR q0,q0,q0 +uint16x8_t veorq_u16(uint16x8_t a, uint16x8_t b); // VEOR q0,q0,q0 +uint32x4_t veorq_u32(uint32x4_t a, uint32x4_t b); // VEOR q0,q0,q0 +uint64x2_t veorq_u64(uint64x2_t a, uint64x2_t b); // VEOR q0,q0,q0 +//Bit Clear + +int8x16_t vbicq_s8(int8x16_t a, int8x16_t b); // VBIC q0,q0,q0 +int16x8_t vbicq_s16(int16x8_t a, int16x8_t b); // VBIC q0,q0,q0 +int32x4_t vbicq_s32(int32x4_t a, int32x4_t b); // VBIC q0,q0,q0 +int64x2_t vbicq_s64(int64x2_t a, int64x2_t b); // VBIC q0,q0,q0 +uint8x16_t vbicq_u8(uint8x16_t a, uint8x16_t b); // VBIC q0,q0,q0 +uint16x8_t vbicq_u16(uint16x8_t a, uint16x8_t b); // VBIC q0,q0,q0 +uint32x4_t vbicq_u32(uint32x4_t a, uint32x4_t b); // VBIC q0,q0,q0 +uint64x2_t vbicq_u64(uint64x2_t a, uint64x2_t b); // VBIC q0,q0,q0 +//Bitwise OR complement + +int8x16_t vornq_s8(int8x16_t a, int8x16_t b); // VORN q0,q0,q0 +int16x8_t vornq_s16(int16x8_t a, int16x8_t b); // VORN q0,q0,q0 +int32x4_t vornq_s32(int32x4_t a, int32x4_t b); // VORN q0,q0,q0 +int64x2_t vornq_s64(int64x2_t a, int64x2_t b); // VORN q0,q0,q0 +uint8x16_t vornq_u8(uint8x16_t a, uint8x16_t b); // VORN q0,q0,q0 +uint16x8_t vornq_u16(uint16x8_t a, uint16x8_t b); // VORN q0,q0,q0 +uint32x4_t vornq_u32(uint32x4_t a, uint32x4_t b); // VORN q0,q0,q0 +uint64x2_t vornq_u64(uint64x2_t a, uint64x2_t b); // VORN q0,q0,q0 +//Bitwise Select + +int8x16_t vbslq_s8(uint8x16_t a, int8x16_t b, int8x16_t c); // VBSL q0,q0,q0 +int16x8_t vbslq_s16(uint16x8_t a, int16x8_t b, int16x8_t c); // VBSL q0,q0,q0 +int32x4_t vbslq_s32(uint32x4_t a, int32x4_t b, int32x4_t c); // VBSL q0,q0,q0 +int64x2_t vbslq_s64(uint64x2_t a, int64x2_t b, int64x2_t c); // VBSL q0,q0,q0 +uint8x16_t vbslq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VBSL q0,q0,q0 +uint16x8_t vbslq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VBSL q0,q0,q0 +uint32x4_t vbslq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VBSL q0,q0,q0 +uint64x2_t vbslq_u64(uint64x2_t a, uint64x2_t b, uint64x2_t c); // VBSL q0,q0,q0 +float32x4_t vbslq_f32(uint32x4_t a, float32x4_t b, float32x4_t c); // VBSL q0,q0,q0 +poly8x16_t vbslq_p8(uint8x16_t a, poly8x16_t b, poly8x16_t c); // VBSL q0,q0,q0 +poly16x8_t vbslq_p16(uint16x8_t a, poly16x8_t b, poly16x8_t c); // VBSL q0,q0,q0 +//Transposition operations +//Transpose elements + +int8x16x2_t vtrnq_s8(int8x16_t a, int8x16_t b); // VTRN.8 q0,q0 +int16x8x2_t vtrnq_s16(int16x8_t a, int16x8_t b); // VTRN.16 q0,q0 +int32x4x2_t vtrnq_s32(int32x4_t a, int32x4_t b); // VTRN.32 q0,q0 +uint8x16x2_t vtrnq_u8(uint8x16_t a, uint8x16_t b); // VTRN.8 q0,q0 +uint16x8x2_t vtrnq_u16(uint16x8_t a, uint16x8_t b); // VTRN.16 q0,q0 +uint32x4x2_t vtrnq_u32(uint32x4_t a, uint32x4_t b); // VTRN.32 q0,q0 +float32x4x2_t vtrnq_f32(float32x4_t a, float32x4_t b); // VTRN.32 q0,q0 +poly8x16x2_t vtrnq_p8(poly8x16_t a, poly8x16_t b); // VTRN.8 q0,q0 +poly16x8x2_t vtrnq_p16(poly16x8_t a, poly16x8_t b); // VTRN.16 q0,q0 +//Interleave elements + +int8x16x2_t vzipq_s8(int8x16_t a, int8x16_t b); // VZIP.8 q0,q0 +int16x8x2_t vzipq_s16(int16x8_t a, int16x8_t b); // VZIP.16 q0,q0 +int32x4x2_t vzipq_s32(int32x4_t a, int32x4_t b); // VZIP.32 q0,q0 +uint8x16x2_t vzipq_u8(uint8x16_t a, uint8x16_t b); // VZIP.8 q0,q0 +uint16x8x2_t vzipq_u16(uint16x8_t a, uint16x8_t b); // VZIP.16 q0,q0 +uint32x4x2_t vzipq_u32(uint32x4_t a, uint32x4_t b); // VZIP.32 q0,q0 +float32x4x2_t vzipq_f32(float32x4_t a, float32x4_t b); // VZIP.32 q0,q0 +poly8x16x2_t vzipq_p8(poly8x16_t a, poly8x16_t b); // VZIP.8 q0,q0 +poly16x8x2_t vzipq_p16(poly16x8_t a, poly16x8_t b); // VZIP.16 q0,q0 +//De-Interleave elements + +int8x16x2_t vuzpq_s8(int8x16_t a, int8x16_t b); // VUZP.8 q0,q0 +int16x8x2_t vuzpq_s16(int16x8_t a, int16x8_t b); // VUZP.16 q0,q0 +int32x4x2_t vuzpq_s32(int32x4_t a, int32x4_t b); // VUZP.32 q0,q0 +uint8x16x2_t vuzpq_u8(uint8x16_t a, uint8x16_t b); // VUZP.8 q0,q0 +uint16x8x2_t vuzpq_u16(uint16x8_t a, uint16x8_t b); // VUZP.16 q0,q0 +uint32x4x2_t vuzpq_u32(uint32x4_t a, uint32x4_t b); // VUZP.32 q0,q0 +float32x4x2_t vuzpq_f32(float32x4_t a, float32x4_t b); // VUZP.32 q0,q0 +poly8x16x2_t vuzpq_p8(poly8x16_t a, poly8x16_t b); // VUZP.8 q0,q0 +poly16x8x2_t vuzpq_p16(poly16x8_t a, poly16x8_t b); // VUZP.16 q0,q0 + +//^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +// the following macros solve the problem of the "immediate parameters requirement" for some x86 intrinsics. While for release build it is not a must, +//for debug build we need it to compile the code unless the "Intrinsic parameter must be an immediate value" error is our goal +// +#if ( ((defined _MSC_VER) && (_MSC_VER > 1600)) || defined __INTEL_COMPILER )&& defined NDEBUG //if it is a release build, we also need it to fix the issue for VS2010 and earlier compilers. + + #if defined(USE_SSSE3) + #define _MM_ALIGNR_EPI8 _mm_alignr_epi8 + #endif + + #define _MM_EXTRACT_EPI16 _mm_extract_epi16 + #define _MM_INSERT_EPI16 _mm_insert_epi16 + #ifdef USE_SSE4 + #define _MM_EXTRACT_EPI8 _mm_extract_epi8 + #define _MM_EXTRACT_EPI32 _mm_extract_epi32 + #define _MM_EXTRACT_PS _mm_extract_ps + + #define _MM_INSERT_EPI8 _mm_insert_epi8 + #define _MM_INSERT_EPI32 _mm_insert_epi32 + #define _MM_INSERT_PS _mm_insert_ps + #ifdef _M_X64 + #define _MM_INSERT_EPI64 _mm_insert_epi64 + #define _MM_EXTRACT_EPI64 _mm_extract_epi64 + #endif + #endif //SSE4 +#else + #define _NEON2SSE_COMMA , + #define _NEON2SSE_SWITCH16(NAME, a, b, LANE) \ + switch(LANE) \ + { \ + case 0: return NAME(a b, 0); \ + case 1: return NAME(a b, 1); \ + case 2: return NAME(a b, 2); \ + case 3: return NAME(a b, 3); \ + case 4: return NAME(a b, 4); \ + case 5: return NAME(a b, 5); \ + case 6: return NAME(a b, 6); \ + case 7: return NAME(a b, 7); \ + case 8: return NAME(a b, 8); \ + case 9: return NAME(a b, 9); \ + case 10: return NAME(a b, 10); \ + case 11: return NAME(a b, 11); \ + case 12: return NAME(a b, 12); \ + case 13: return NAME(a b, 13); \ + case 14: return NAME(a b, 14); \ + case 15: return NAME(a b, 15); \ + default: return NAME(a b, 0); \ + } + + #define _NEON2SSE_SWITCH8(NAME, vec, LANE, p) \ + switch(LANE) \ + { \ + case 0: return NAME(vec p,0); \ + case 1: return NAME(vec p,1); \ + case 2: return NAME(vec p,2); \ + case 3: return NAME(vec p,3); \ + case 4: return NAME(vec p,4); \ + case 5: return NAME(vec p,5); \ + case 6: return NAME(vec p,6); \ + case 7: return NAME(vec p,7); \ + default: return NAME(vec p,0); \ + } + + #define _NEON2SSE_SWITCH4(NAME, case0, case1, case2, case3, vec, LANE, p) \ + switch(LANE) \ + { \ + case case0: return NAME(vec p,case0); \ + case case1: return NAME(vec p,case1); \ + case case2: return NAME(vec p,case2); \ + case case3: return NAME(vec p,case3); \ + default: return NAME(vec p,case0); \ + } + + #if defined(USE_SSSE3) + _NEON2SSE_INLINE __m128i _MM_ALIGNR_EPI8(__m128i a, __m128i b, int LANE) + { + _NEON2SSE_SWITCH16(_mm_alignr_epi8, a, _NEON2SSE_COMMA b, LANE) + } + #endif + + _NEON2SSE_INLINE __m128i _MM_INSERT_EPI16(__m128i vec, int p, const int LANE) + { + _NEON2SSE_SWITCH8(_mm_insert_epi16, vec, LANE, _NEON2SSE_COMMA p) + } + + _NEON2SSE_INLINE int _MM_EXTRACT_EPI16(__m128i vec, const int LANE) + { + _NEON2SSE_SWITCH8(_mm_extract_epi16, vec, LANE,) + } + + #ifdef USE_SSE4 + _NEON2SSE_INLINE int _MM_EXTRACT_EPI32(__m128i vec, const int LANE) + { + _NEON2SSE_SWITCH4(_mm_extract_epi32, 0,1,2,3, vec, LANE,) + } + + _NEON2SSE_INLINE int _MM_EXTRACT_PS(__m128 vec, const int LANE) + { + _NEON2SSE_SWITCH4(_mm_extract_ps, 0,1,2,3, vec, LANE,) + } + + _NEON2SSE_INLINE int _MM_EXTRACT_EPI8(__m128i vec, const int LANE) + { + _NEON2SSE_SWITCH16(_mm_extract_epi8, vec, , LANE) + } + + _NEON2SSE_INLINE __m128i _MM_INSERT_EPI32(__m128i vec, int p, const int LANE) + { + _NEON2SSE_SWITCH4(_mm_insert_epi32, 0, 1, 2, 3, vec, LANE, _NEON2SSE_COMMA p) + } + + _NEON2SSE_INLINE __m128i _MM_INSERT_EPI8(__m128i vec, int p, const int LANE) + { + _NEON2SSE_SWITCH16(_mm_insert_epi8, vec, _NEON2SSE_COMMA p, LANE) + } + #ifdef _M_X64 + _NEON2SSE_INLINE __m128i _MM_INSERT_EPI64(__m128i vec, int p, const int LANE) + { + switch(LANE) + { + case 0: + return _mm_insert_epi64(vec, p, 0); + case 1: + return _mm_insert_epi64(vec, p, 1); + default: + return _mm_insert_epi64(vec, p, 0); + } + } + + _NEON2SSE_INLINE int64_t _MM_EXTRACT_EPI64(__m128i val, const int LANE) + { + if (LANE ==0) return _mm_extract_epi64(val, 0); + else return _mm_extract_epi64(val, 1); + } + #endif + _NEON2SSE_INLINE __m128 _MM_INSERT_PS(__m128 vec, __m128 p, const int LANE) + { + _NEON2SSE_SWITCH4(_mm_insert_ps, 0, 16, 32, 48, vec, LANE, _NEON2SSE_COMMA p) + } + + #endif //USE_SSE4 + +#endif //#ifdef NDEBUG + +//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +// Below are some helper functions used either for SSE4 intrinsics "emulation" for SSSE3 limited devices +// or for some specific commonly used operations implementation missing in SSE +#ifdef USE_SSE4 + #define _MM_CVTEPU8_EPI16 _mm_cvtepu8_epi16 + #define _MM_CVTEPU16_EPI32 _mm_cvtepu16_epi32 + #define _MM_CVTEPU32_EPI64 _mm_cvtepu32_epi64 + + #define _MM_CVTEPI8_EPI16 _mm_cvtepi8_epi16 + #define _MM_CVTEPI16_EPI32 _mm_cvtepi16_epi32 + #define _MM_CVTEPI32_EPI64 _mm_cvtepi32_epi64 + + #define _MM_MAX_EPI8 _mm_max_epi8 + #define _MM_MAX_EPI32 _mm_max_epi32 + #define _MM_MAX_EPU16 _mm_max_epu16 + #define _MM_MAX_EPU32 _mm_max_epu32 + + #define _MM_MIN_EPI8 _mm_min_epi8 + #define _MM_MIN_EPI32 _mm_min_epi32 + #define _MM_MIN_EPU16 _mm_min_epu16 + #define _MM_MIN_EPU32 _mm_min_epu32 + + #define _MM_BLENDV_EPI8 _mm_blendv_epi8 + #define _MM_PACKUS_EPI32 _mm_packus_epi32 + #define _MM_PACKUS1_EPI32(a) _mm_packus_epi32(a, a) + + #define _MM_MULLO_EPI32 _mm_mullo_epi32 + #define _MM_MUL_EPI32 _mm_mul_epi32 +#else //no SSE4 !!!!!! + _NEON2SSE_INLINE __m128i _MM_CVTEPU8_EPI16(__m128i a) + { + __m128i zero = _mm_setzero_si128(); + return _mm_unpacklo_epi8(a, zero); + } + + _NEON2SSE_INLINE __m128i _MM_CVTEPU16_EPI32(__m128i a) + { + __m128i zero = _mm_setzero_si128(); + return _mm_unpacklo_epi16(a, zero); + } + + _NEON2SSE_INLINE __m128i _MM_CVTEPU32_EPI64(__m128i a) + { + __m128i zero = _mm_setzero_si128(); + return _mm_unpacklo_epi32(a, zero); + } + + _NEON2SSE_INLINE __m128i _MM_CVTEPI8_EPI16(__m128i a) + { + __m128i zero = _mm_setzero_si128(); + __m128i sign = _mm_cmpgt_epi8(zero, a); + return _mm_unpacklo_epi8(a, sign); + } + + _NEON2SSE_INLINE __m128i _MM_CVTEPI16_EPI32(__m128i a) + { + __m128i zero = _mm_setzero_si128(); + __m128i sign = _mm_cmpgt_epi16(zero, a); + return _mm_unpacklo_epi16(a, sign); + } + + _NEON2SSE_INLINE __m128i _MM_CVTEPI32_EPI64(__m128i a) + { + __m128i zero = _mm_setzero_si128(); + __m128i sign = _mm_cmpgt_epi32(zero, a); + return _mm_unpacklo_epi32(a, sign); + } + + _NEON2SSE_INLINE int _MM_EXTRACT_EPI32(__m128i vec, const int LANE) + { + _NEON2SSE_ALIGN_16 int32_t tmp[4]; + _mm_store_si128((__m128i*)tmp, vec); + return tmp[LANE]; + } + + _NEON2SSE_INLINE int _MM_EXTRACT_EPI8(__m128i vec, const int LANE) + { + _NEON2SSE_ALIGN_16 int8_t tmp[16]; + _mm_store_si128((__m128i*)tmp, vec); + return (int)tmp[LANE]; + } + + _NEON2SSE_INLINE int _MM_EXTRACT_PS(__m128 vec, const int LANE) + { + _NEON2SSE_ALIGN_16 int32_t tmp[4]; + _mm_store_si128((__m128i*)tmp, _M128i(vec)); + return tmp[LANE]; + } + + _NEON2SSE_INLINE __m128i _MM_INSERT_EPI32(__m128i vec, int p, const int LANE) + { + _NEON2SSE_ALIGN_16 int32_t pvec[4] = {0,0,0,0}; + _NEON2SSE_ALIGN_16 uint32_t mask[4] = {0xffffffff,0xffffffff,0xffffffff,0xffffffff}; + __m128i vec_masked, p_masked; + pvec[LANE] = p; + mask[LANE] = 0x0; + vec_masked = _mm_and_si128 (*(__m128i*)mask,vec); //ready for p + p_masked = _mm_andnot_si128 (*(__m128i*)mask,*(__m128i*)pvec); //ready for vec + return _mm_or_si128(vec_masked, p_masked); + } + + _NEON2SSE_INLINE __m128i _MM_INSERT_EPI8(__m128i vec, int p, const int LANE) + { + _NEON2SSE_ALIGN_16 int8_t pvec[16] = {0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0}; + _NEON2SSE_ALIGN_16 uint8_t mask[16] = {0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff}; + __m128i vec_masked, p_masked; + pvec[LANE] = (int8_t)p; + mask[LANE] = 0x0; + vec_masked = _mm_and_si128 (*(__m128i*)mask,vec); //ready for p + p_masked = _mm_andnot_si128 (*(__m128i*)mask,*(__m128i*)pvec); //ready for vec + return _mm_or_si128(vec_masked, p_masked); + } + + _NEON2SSE_INLINE __m128 _MM_INSERT_PS(__m128 vec, __m128 p, const int LANE) + { + _NEON2SSE_ALIGN_16 int32_t mask[4] = {0xffffffff,0xffffffff,0xffffffff,0xffffffff}; + __m128 tmp, vec_masked, p_masked; + mask[LANE >> 4] = 0x0; //here the LANE is not actural lane, need to deal with it + vec_masked = _mm_and_ps (*(__m128*)mask,vec); //ready for p + p_masked = _mm_andnot_ps (*(__m128*)mask, p); //ready for vec + tmp = _mm_or_ps(vec_masked, p_masked); + return tmp; + } + + _NEON2SSE_INLINE __m128i _MM_MAX_EPI8(__m128i a, __m128i b) + { + __m128i cmp, resa, resb; + cmp = _mm_cmpgt_epi8 (a, b); + resa = _mm_and_si128 (cmp, a); + resb = _mm_andnot_si128 (cmp,b); + return _mm_or_si128(resa, resb); + } + + _NEON2SSE_INLINE __m128i _MM_MAX_EPI32(__m128i a, __m128i b) + { + __m128i cmp, resa, resb; + cmp = _mm_cmpgt_epi32(a, b); + resa = _mm_and_si128 (cmp, a); + resb = _mm_andnot_si128 (cmp,b); + return _mm_or_si128(resa, resb); + } + + _NEON2SSE_INLINE __m128i _MM_MAX_EPU16(__m128i a, __m128i b) + { + __m128i c8000, b_s, a_s, cmp; + c8000 = _mm_cmpeq_epi16 (a,a); //0xffff + c8000 = _mm_slli_epi16 (c8000, 15); //0x8000 + b_s = _mm_sub_epi16 (b, c8000); + a_s = _mm_sub_epi16 (a, c8000); + cmp = _mm_cmpgt_epi16 (a_s, b_s); //no unsigned comparison, need to go to signed + a_s = _mm_and_si128 (cmp,a); + b_s = _mm_andnot_si128 (cmp,b); + return _mm_or_si128(a_s, b_s); + } + + _NEON2SSE_INLINE __m128i _MM_MAX_EPU32(__m128i a, __m128i b) + { + __m128i c80000000, b_s, a_s, cmp; + c80000000 = _mm_cmpeq_epi32 (a,a); //0xffffffff + c80000000 = _mm_slli_epi32 (c80000000, 31); //0x80000000 + b_s = _mm_sub_epi32 (b, c80000000); + a_s = _mm_sub_epi32 (a, c80000000); + cmp = _mm_cmpgt_epi32 (a_s, b_s); //no unsigned comparison, need to go to signed + a_s = _mm_and_si128 (cmp,a); + b_s = _mm_andnot_si128 (cmp,b); + return _mm_or_si128(a_s, b_s); + } + + _NEON2SSE_INLINE __m128i _MM_MIN_EPI8(__m128i a, __m128i b) + { + __m128i cmp, resa, resb; + cmp = _mm_cmpgt_epi8 (b, a); + resa = _mm_and_si128 (cmp, a); + resb = _mm_andnot_si128 (cmp,b); + return _mm_or_si128(resa, resb); + } + + _NEON2SSE_INLINE __m128i _MM_MIN_EPI32(__m128i a, __m128i b) + { + __m128i cmp, resa, resb; + cmp = _mm_cmpgt_epi32(b, a); + resa = _mm_and_si128 (cmp, a); + resb = _mm_andnot_si128 (cmp,b); + return _mm_or_si128(resa, resb); + } + + _NEON2SSE_INLINE __m128i _MM_MIN_EPU16(__m128i a, __m128i b) + { + __m128i c8000, b_s, a_s, cmp; + c8000 = _mm_cmpeq_epi16 (a,a); //0xffff + c8000 = _mm_slli_epi16 (c8000, 15); //0x8000 + b_s = _mm_sub_epi16 (b, c8000); + a_s = _mm_sub_epi16 (a, c8000); + cmp = _mm_cmpgt_epi16 (b_s, a_s); //no unsigned comparison, need to go to signed + a_s = _mm_and_si128 (cmp,a); + b_s = _mm_andnot_si128 (cmp,b); + return _mm_or_si128(a_s, b_s); + } + + _NEON2SSE_INLINE __m128i _MM_MIN_EPU32(__m128i a, __m128i b) + { + __m128i c80000000, b_s, a_s, cmp; + c80000000 = _mm_cmpeq_epi32 (a,a); //0xffffffff + c80000000 = _mm_slli_epi32 (c80000000, 31); //0x80000000 + b_s = _mm_sub_epi32 (b, c80000000); + a_s = _mm_sub_epi32 (a, c80000000); + cmp = _mm_cmpgt_epi32 (b_s, a_s); //no unsigned comparison, need to go to signed + a_s = _mm_and_si128 (cmp,a); + b_s = _mm_andnot_si128 (cmp,b); + return _mm_or_si128(a_s, b_s); + } + + _NEON2SSE_INLINE __m128i _MM_BLENDV_EPI8(__m128i a, __m128i b, __m128i mask) //this is NOT exact implementation of _mm_blendv_epi8 !!!!! - please see below + { //it assumes mask is either 0xff or 0 always (like in all usecases below) while for the original _mm_blendv_epi8 only MSB mask byte matters. + __m128i a_masked, b_masked; + b_masked = _mm_and_si128 (mask,b); //use b if mask 0xff + a_masked = _mm_andnot_si128 (mask,a); + return _mm_or_si128(a_masked, b_masked); + } + + #if defined(USE_SSSE3) + _NEON2SSE_INLINE __m128i _MM_PACKUS_EPI32(__m128i a, __m128i b) + { + _NEON2SSE_ALIGN_16 int8_t mask8_32_even_odd[16] = { 0,1, 4,5, 8,9, 12,13, 2,3, 6,7,10,11,14,15}; + __m128i a16, b16, res, reshi,cmp, zero; + zero = _mm_setzero_si128(); + a16 = _mm_shuffle_epi8 (a, *(__m128i*) mask8_32_even_odd); + b16 = _mm_shuffle_epi8 (b, *(__m128i*) mask8_32_even_odd); + res = _mm_unpacklo_epi64(a16, b16); //result without saturation + reshi = _mm_unpackhi_epi64(a16, b16); //hi part of result used for saturation + cmp = _mm_cmpgt_epi16(zero, reshi); //if cmp<0 the result should be zero + res = _mm_andnot_si128(cmp,res); //if cmp zero - do nothing, otherwise cmp <0 and the result is 0 + cmp = _mm_cmpgt_epi16(reshi,zero); //if cmp positive + return _mm_or_si128(res, cmp); //if cmp positive we are out of 16bits need to saturaate to 0xffff + } + #endif + + #if defined(USE_SSSE3) + _NEON2SSE_INLINE __m128i _MM_PACKUS1_EPI32(__m128i a) + { + _NEON2SSE_ALIGN_16 int8_t mask8_32_even_odd[16] = { 0,1, 4,5, 8,9, 12,13, 2,3, 6,7,10,11,14,15}; + __m128i a16, res, reshi,cmp, zero; + zero = _mm_setzero_si128(); + a16 = _mm_shuffle_epi8 (a, *(__m128i*)mask8_32_even_odd); + reshi = _mm_unpackhi_epi64(a16, a16); //hi part of result used for saturation + cmp = _mm_cmpgt_epi16(zero, reshi); //if cmp<0 the result should be zero + res = _mm_andnot_si128(cmp, a16); //if cmp zero - do nothing, otherwise cmp <0 and the result is 0 + cmp = _mm_cmpgt_epi16(reshi,zero); //if cmp positive + return _mm_or_si128(res, cmp); //if cmp positive we are out of 16bits need to saturaate to 0xffff + } + #endif + + _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(__m128i _MM_MULLO_EPI32(__m128i a, __m128i b), _NEON2SSE_REASON_SLOW_SERIAL) + { + _NEON2SSE_ALIGN_16 int32_t atmp[4], btmp[4], res[4]; + int64_t res64; + int i; + _mm_store_si128((__m128i*)atmp, a); + _mm_store_si128((__m128i*)btmp, b); + for (i = 0; i<4; i++) { + res64 = atmp[i] * btmp[i]; + res[i] = (int)(res64 & 0xffffffff); + } + return _mm_load_si128((__m128i*)res); + } + + #if defined(USE_SSSE3) + _NEON2SSE_INLINE __m128i _MM_MUL_EPI32(__m128i a, __m128i b) + { + __m128i sign, zero, mul_us, a_neg, b_neg, mul_us_neg; + sign = _mm_xor_si128 (a, b); + sign = _mm_srai_epi32 (sign, 31); //promote sign bit to all fields, all fff if negative and all 0 if positive + zero = _mm_setzero_si128(); + a_neg = _mm_abs_epi32 (a); //negate a and b + b_neg = _mm_abs_epi32 (b); //negate a and b + mul_us = _mm_mul_epu32 (a_neg, b_neg); //uses 0 and 2nd data lanes, (abs), the multiplication gives 64 bit result + mul_us_neg = _mm_sub_epi64(zero, mul_us); + mul_us_neg = _mm_and_si128(sign, mul_us_neg); + mul_us = _mm_andnot_si128(sign, mul_us); + return _mm_or_si128 (mul_us, mul_us_neg); + } + #endif +#endif //SSE4 + +#ifndef _MM_INSERT_EPI64 //special case of SSE4 and _M_X64 + _NEON2SSE_INLINE __m128i _MM_INSERT_EPI64(__m128i vec, int p, const int LANE) + { + _NEON2SSE_ALIGN_16 uint64_t pvec[2] = {0,0}; + _NEON2SSE_ALIGN_16 uint64_t mask[2] = {0xffffffffffffffff,0xffffffffffffffff}; + __m128i vec_masked, p_masked; + pvec[LANE] = p; + mask[LANE] = 0x0; + vec_masked = _mm_and_si128 (*(__m128i*)mask,vec); //ready for p + p_masked = _mm_andnot_si128 (*(__m128i*)mask,*(__m128i*)pvec); //ready for vec + return _mm_or_si128(vec_masked, p_masked); + } +#endif +#ifndef _MM_EXTRACT_EPI64 //special case of SSE4 and _M_X64 + _NEON2SSE_INLINE int64_t _MM_EXTRACT_EPI64(__m128i val, const int LANE) + { + _NEON2SSE_ALIGN_16 int64_t tmp[2]; + _mm_store_si128((__m128i*)tmp, val); + return tmp[LANE]; + } +#endif + +int32x4_t vqd_s32(int32x4_t a); //Doubling saturation for signed ints +_NEON2SSE_INLINE int32x4_t vqd_s32(int32x4_t a) +{ //Overflow happens only if a and sum have the opposite signs + __m128i c7fffffff, res, res_sat, res_xor_a; + c7fffffff = _mm_set1_epi32(0x7fffffff); + res = _mm_slli_epi32 (a, 1); // res = a*2 + res_sat = _mm_srli_epi32(a, 31); + res_sat = _mm_add_epi32(res_sat, c7fffffff); + res_xor_a = _mm_xor_si128(res, a); + res_xor_a = _mm_srai_epi32(res_xor_a,31); //propagate the sigh bit, all ffff if <0 all ones otherwise + res_sat = _mm_and_si128(res_xor_a, res_sat); + res = _mm_andnot_si128(res_xor_a, res); + return _mm_or_si128(res, res_sat); +} + +//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +//************************************************************************* +//************************************************************************* +//***************** Functions redefinition\implementatin starts here ***** +//************************************************************************* +//************************************************************************* +//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + +/*If the unified intrinsics solutions is necessary please define your SSE intrinsics wrap here like in the following sample: +#ifdef ARM +#define vector_addq_s32 _mm_add_epi32 +#else //if we have IA +#endif + +******************************************************************************************** +Functions below are organised in the following way: + +Each NEON intrinsic function has one of the following options: +1. its x86 full equivalent SSE intrinsic - in this case x86 version just follows the NEON one under the corresponding #define statement +2. x86 implementation using more than one x86 intrinsics. In this case it is shaped as inlined C function with return statement +3. the reference to the NEON function returning the same result and implemented in x86 as above. In this case it is shaped as matching NEON function definition +4. for about 5% of functions due to the corresponding x86 SIMD unavailability or inefficiency in terms of performance +the serial implementation is provided along with the corresponding compiler warnin//these functions are on your app critical path +- please consider such functions removal from your code. +*/ + +//*********************************************************************** +//************************ Vector add ***************************** +//*********************************************************************** + +int8x16_t vaddq_s8(int8x16_t a, int8x16_t b); // VADD.I8 q0,q0,q0 +#define vaddq_s8 _mm_add_epi8 + +int16x8_t vaddq_s16(int16x8_t a, int16x8_t b); // VADD.I16 q0,q0,q0 +#define vaddq_s16 _mm_add_epi16 + +int32x4_t vaddq_s32(int32x4_t a, int32x4_t b); // VADD.I32 q0,q0,q0 +#define vaddq_s32 _mm_add_epi32 + +int64x2_t vaddq_s64(int64x2_t a, int64x2_t b); // VADD.I64 q0,q0,q0 +#define vaddq_s64 _mm_add_epi64 + +float32x4_t vaddq_f32(float32x4_t a, float32x4_t b); // VADD.F32 q0,q0,q0 +#define vaddq_f32 _mm_add_ps + +uint8x16_t vaddq_u8(uint8x16_t a, uint8x16_t b); // VADD.I8 q0,q0,q0 +#define vaddq_u8 _mm_add_epi8 + +uint16x8_t vaddq_u16(uint16x8_t a, uint16x8_t b); // VADD.I16 q0,q0,q0 +#define vaddq_u16 _mm_add_epi16 + +uint32x4_t vaddq_u32(uint32x4_t a, uint32x4_t b); // VADD.I32 q0,q0,q0 +#define vaddq_u32 _mm_add_epi32 + +uint64x2_t vaddq_u64(uint64x2_t a, uint64x2_t b); // VADD.I64 q0,q0,q0 +#define vaddq_u64 _mm_add_epi64 + +//**************************** Vector long add *****************************: +//*********************************************************************** +//Va, Vb have equal lane sizes, result is a 128 bit vector of lanes that are twice the width. + +//*************** Vector wide add: vaddw_. Vr[i]:=Va[i]+Vb[i] ****************** +//*************** ********************************************************************* + +//******************************Vector halving add: vhadd -> Vr[i]:=(Va[i]+Vb[i])>>1 , result truncated ******************************* +//************************************************************************************************************************* + +int8x16_t vhaddq_s8(int8x16_t a, int8x16_t b); // VHADD.S8 q0,q0,q0 +_NEON2SSE_INLINE int8x16_t vhaddq_s8(int8x16_t a, int8x16_t b) +{ //need to avoid internal overflow, will use the (x&y)+((x^y)>>1). + __m128i tmp1, tmp2; + tmp1 = _mm_and_si128(a,b); + tmp2 = _mm_xor_si128(a,b); + tmp2 = vshrq_n_s8(tmp2,1); + return _mm_add_epi8(tmp1,tmp2); +} + +int16x8_t vhaddq_s16(int16x8_t a, int16x8_t b); // VHADD.S1 6 q0,q0,q0 +_NEON2SSE_INLINE int16x8_t vhaddq_s16(int16x8_t a, int16x8_t b) +{ //need to avoid internal overflow, will use the (x&y)+((x^y)>>1). + __m128i tmp1, tmp2; + tmp1 = _mm_and_si128(a,b); + tmp2 = _mm_xor_si128(a,b); + tmp2 = _mm_srai_epi16(tmp2,1); + return _mm_add_epi16(tmp1,tmp2); +} + +int32x4_t vhaddq_s32(int32x4_t a, int32x4_t b); // VHADD.S32 q0,q0,q0 +_NEON2SSE_INLINE int32x4_t vhaddq_s32(int32x4_t a, int32x4_t b) // VHADD.S32 q0,q0,q0 +{ //need to avoid internal overflow, will use the (x&y)+((x^y)>>1). + __m128i tmp1, tmp2; + tmp1 = _mm_and_si128(a,b); + tmp2 = _mm_xor_si128(a,b); + tmp2 = _mm_srai_epi32(tmp2,1); + return _mm_add_epi32(tmp1,tmp2); +} + +uint8x16_t vhaddq_u8(uint8x16_t a, uint8x16_t b); // VHADD.U8 q0,q0,q0 +_NEON2SSE_INLINE uint8x16_t vhaddq_u8(uint8x16_t a, uint8x16_t b) // VHADD.U8 q0,q0,q0 +{ + __m128i c1, sum, res; + c1 = _mm_set1_epi8(1); + sum = _mm_avg_epu8(a, b); //result is rounded, need to compensate it + res = _mm_xor_si128(a, b); //for rounding compensation + res = _mm_and_si128(res,c1); //for rounding compensation + return _mm_sub_epi8 (sum, res); //actual rounding compensation +} + +uint16x8_t vhaddq_u16(uint16x8_t a, uint16x8_t b); // VHADD.s16 q0,q0,q0 +_NEON2SSE_INLINE uint16x8_t vhaddq_u16(uint16x8_t a, uint16x8_t b) // VHADD.s16 q0,q0,q0 +{ + __m128i sum, res; + sum = _mm_avg_epu16(a, b); //result is rounded, need to compensate it + res = _mm_xor_si128(a, b); //for rounding compensation + res = _mm_slli_epi16 (res,15); //shift left then back right to + res = _mm_srli_epi16 (res,15); //get 1 or zero + return _mm_sub_epi16 (sum, res); //actual rounding compensation +} + +uint32x4_t vhaddq_u32(uint32x4_t a, uint32x4_t b); // VHADD.U32 q0,q0,q0 +_NEON2SSE_INLINE uint32x4_t vhaddq_u32(uint32x4_t a, uint32x4_t b) // VHADD.U32 q0,q0,q0 +{ //need to avoid internal overflow, will use the (x&y)+((x^y)>>1). + __m128i tmp1, tmp2; + tmp1 = _mm_and_si128(a,b); + tmp2 = _mm_xor_si128(a,b); + tmp2 = _mm_srli_epi32(tmp2,1); + return _mm_add_epi32(tmp1,tmp2); +} + +//************************Vector rounding halving add: vrhadd{q}_. Vr[i]:=(Va[i]+Vb[i]+1)>>1 *************************** +//***************************************************************************************************************************** + +//SSE, result rounding!!! + +//SSE, result rounding!!! + +int8x16_t vrhaddq_s8(int8x16_t a, int8x16_t b); // VRHADD.S8 q0,q0,q0 +_NEON2SSE_INLINE int8x16_t vrhaddq_s8(int8x16_t a, int8x16_t b) // VRHADD.S8 q0,q0,q0 +{ //no signed average in x86 SIMD, go to unsigned + __m128i c128, au, bu, sum; + c128 = _mm_set1_epi8(128); + au = _mm_add_epi8(a, c128); + bu = _mm_add_epi8(b, c128); + sum = _mm_avg_epu8(au, bu); + return _mm_sub_epi8 (sum, c128); +} + +int16x8_t vrhaddq_s16(int16x8_t a, int16x8_t b); // VRHADD.S16 q0,q0,q0 +_NEON2SSE_INLINE int16x8_t vrhaddq_s16(int16x8_t a, int16x8_t b) // VRHADD.S16 q0,q0,q0 +{ //no signed average in x86 SIMD, go to unsigned + __m128i cx8000, au, bu, sum; + cx8000 = _mm_set1_epi16(0x8000); + au = _mm_add_epi16(a, cx8000); + bu = _mm_add_epi16(b, cx8000); + sum = _mm_avg_epu16(au, bu); + return _mm_sub_epi16 (sum, cx8000); +} + +int32x4_t vrhaddq_s32(int32x4_t a, int32x4_t b); // VRHADD.S32 q0,q0,q0 +_NEON2SSE_INLINE int32x4_t vrhaddq_s32(int32x4_t a, int32x4_t b) +{ //need to avoid overflow + __m128i a2, b2, res, sum; + a2 = _mm_srai_epi32(a,1); //a2=a/2; + b2 = _mm_srai_epi32(b,1); // b2=b/2; + res = _mm_or_si128(a,b); //for rounding + res = _mm_slli_epi32 (res,31); //shift left then back right to + res = _mm_srli_epi32 (res,31); //get 1 or zero + sum = _mm_add_epi32(a2,b2); + return _mm_add_epi32(sum,res); +} + +uint8x16_t vrhaddq_u8(uint8x16_t a, uint8x16_t b); // VRHADD.U8 q0,q0,q0 +#define vrhaddq_u8 _mm_avg_epu8 //SSE2, results rounded + +uint16x8_t vrhaddq_u16(uint16x8_t a, uint16x8_t b); // VRHADD.s16 q0,q0,q0 +#define vrhaddq_u16 _mm_avg_epu16 //SSE2, results rounded + +uint32x4_t vrhaddq_u32(uint32x4_t a, uint32x4_t b); // VRHADD.U32 q0,q0,q0 +_NEON2SSE_INLINE uint32x4_t vrhaddq_u32(uint32x4_t a, uint32x4_t b) // VRHADD.U32 q0,q0,q0 +{ //need to avoid overflow + __m128i a2, b2, res, sum; + a2 = _mm_srli_epi32(a,1); //a2=a/2; + b2 = _mm_srli_epi32(b,1); // b2=b/2; + res = _mm_or_si128(a,b); //for rounding + res = _mm_slli_epi32 (res,31); //shift left then back right to + res = _mm_srli_epi32 (res,31); //get 1 or zero + sum = _mm_add_epi32(a2,b2); + return _mm_add_epi32(sum,res); +} + +//****************** VQADD: Vector saturating add ************************ +//************************************************************************ + +int8x16_t vqaddq_s8(int8x16_t a, int8x16_t b); // VQADD.S8 q0,q0,q0 +#define vqaddq_s8 _mm_adds_epi8 + +int16x8_t vqaddq_s16(int16x8_t a, int16x8_t b); // VQADD.S16 q0,q0,q0 +#define vqaddq_s16 _mm_adds_epi16 + +int32x4_t vqaddq_s32(int32x4_t a, int32x4_t b); // VQADD.S32 q0,q0,q0 +_NEON2SSE_INLINE int32x4_t vqaddq_s32(int32x4_t a, int32x4_t b) +{ //no corresponding x86 SIMD soulution, special tricks are necessary. Overflow happens only if a and b have the same sign and sum has the opposite sign + __m128i c7fffffff, res, res_sat, res_xor_a, b_xor_a_; + c7fffffff = _mm_set1_epi32(0x7fffffff); + res = _mm_add_epi32(a, b); + res_sat = _mm_srli_epi32(a, 31); + res_sat = _mm_add_epi32(res_sat, c7fffffff); + res_xor_a = _mm_xor_si128(res, a); + b_xor_a_ = _mm_xor_si128(b, a); + res_xor_a = _mm_andnot_si128(b_xor_a_, res_xor_a); + res_xor_a = _mm_srai_epi32(res_xor_a,31); //propagate the sigh bit, all ffff if <0 all ones otherwise + res_sat = _mm_and_si128(res_xor_a, res_sat); + res = _mm_andnot_si128(res_xor_a, res); + return _mm_or_si128(res, res_sat); +} + +int64x2_t vqaddq_s64(int64x2_t a, int64x2_t b); // VQADD.S64 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqaddq_s64(int64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + _NEON2SSE_ALIGN_16 uint64_t atmp[2], btmp[2], res[2]; + _mm_store_si128((__m128i*)atmp, a); + _mm_store_si128((__m128i*)btmp, b); + res[0] = atmp[0] + btmp[0]; + res[1] = atmp[1] + btmp[1]; + + atmp[0] = (atmp[0] >> 63) + (~_SIGNBIT64); + atmp[1] = (atmp[1] >> 63) + (~_SIGNBIT64); + + if ((int64_t)((btmp[0] ^ atmp[0]) | ~(res[0] ^ btmp[0]))>=0) { + res[0] = atmp[0]; + } + if ((int64_t)((btmp[1] ^ atmp[1]) | ~(res[1] ^ btmp[1]))>=0) { + res[1] = atmp[1]; + } + return _mm_load_si128((__m128i*)res); +} + +uint8x16_t vqaddq_u8(uint8x16_t a, uint8x16_t b); // VQADD.U8 q0,q0,q0 +#define vqaddq_u8 _mm_adds_epu8 + +uint16x8_t vqaddq_u16(uint16x8_t a, uint16x8_t b); // VQADD.s16 q0,q0,q0 +#define vqaddq_u16 _mm_adds_epu16 + +uint32x4_t vqaddq_u32(uint32x4_t a, uint32x4_t b); // VQADD.U32 q0,q0,q0 +_NEON2SSE_INLINE uint32x4_t vqaddq_u32(uint32x4_t a, uint32x4_t b) +{ + __m128i c80000000, cmp, subsum, suba, sum; + c80000000 = _mm_set1_epi32 (0x80000000); + sum = _mm_add_epi32 (a, b); + subsum = _mm_sub_epi32 (sum, c80000000); + suba = _mm_sub_epi32 (a, c80000000); + cmp = _mm_cmpgt_epi32 ( suba, subsum); //no unsigned comparison, need to go to signed + return _mm_or_si128 (sum, cmp); //saturation +} + +uint64x2_t vqaddq_u64(uint64x2_t a, uint64x2_t b); // VQADD.U64 q0,q0,q0 +#ifdef USE_SSE4 + _NEON2SSE_INLINE uint64x2_t vqaddq_u64(uint64x2_t a, uint64x2_t b) + { + __m128i c80000000, sum, cmp, suba, subsum; + c80000000 = _mm_set_epi32 (0x80000000, 0x0, 0x80000000, 0x0); + sum = _mm_add_epi64 (a, b); + subsum = _mm_sub_epi64 (sum, c80000000); + suba = _mm_sub_epi64 (a, c80000000); + cmp = _mm_cmpgt_epi64 ( suba, subsum); //no unsigned comparison, need to go to signed, SSE4.2!!! + return _mm_or_si128 (sum, cmp); //saturation + } +#else + _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqaddq_u64(uint64x2_t a, uint64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) + { + _NEON2SSE_ALIGN_16 uint64_t atmp[2], btmp[2], res[2]; + _mm_store_si128((__m128i*)atmp, a); + _mm_store_si128((__m128i*)btmp, b); + res[0] = atmp[0] + btmp[0]; + res[1] = atmp[1] + btmp[1]; + if (res[0] < atmp[0]) res[0] = ~(uint64_t)0; + if (res[1] < atmp[1]) res[1] = ~(uint64_t)0; + return _mm_load_si128((__m128i*)(res)); + } +#endif + +//******************* Vector add high half (truncated) ****************** +//************************************************************************ + +//*********** Vector rounding add high half: vraddhn_ ******************. +//*************************************************************************** + +//********************************************************************************** +//********* Multiplication ************************************* +//************************************************************************************** + +//Vector multiply: vmul -> Vr[i] := Va[i] * Vb[i] +//As we don't go to wider result functions are equal to "multiply low" in x86 + +#if defined(USE_SSSE3) +int8x16_t vmulq_s8(int8x16_t a, int8x16_t b); // VMUL.I8 q0,q0,q0 +_NEON2SSE_INLINE int8x16_t vmulq_s8(int8x16_t a, int8x16_t b) // VMUL.I8 q0,q0,q0 +{ // no 8 bit simd multiply, need to go to 16 bits + //solution may be not optimal + __m128i a16, b16, r16_1, r16_2; + _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 }; + a16 = _MM_CVTEPI8_EPI16 (a); // SSE 4.1 + b16 = _MM_CVTEPI8_EPI16 (b); // SSE 4.1 + r16_1 = _mm_mullo_epi16 (a16, b16); + //swap hi and low part of a and b to process the remaining data + a16 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); + b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32); + a16 = _MM_CVTEPI8_EPI16 (a16); // SSE 4.1 + b16 = _MM_CVTEPI8_EPI16 (b16); // SSE 4.1 __m128i r16_2 + + r16_2 = _mm_mullo_epi16 (a16, b16); + r16_1 = _mm_shuffle_epi8 (r16_1, *(__m128i*)mask8_16_even_odd); //return to 8 bit + r16_2 = _mm_shuffle_epi8 (r16_2, *(__m128i*)mask8_16_even_odd); //return to 8 bit + + return _mm_unpacklo_epi64(r16_1, r16_2); +} +#endif + +int16x8_t vmulq_s16(int16x8_t a, int16x8_t b); // VMUL.I16 q0,q0,q0 +#define vmulq_s16 _mm_mullo_epi16 + +int32x4_t vmulq_s32(int32x4_t a, int32x4_t b); // VMUL.I32 q0,q0,q0 +#define vmulq_s32 _MM_MULLO_EPI32 //SSE4.1 + +float32x4_t vmulq_f32(float32x4_t a, float32x4_t b); // VMUL.F32 q0,q0,q0 +#define vmulq_f32 _mm_mul_ps + +uint8x16_t vmulq_u8(uint8x16_t a, uint8x16_t b); // VMUL.I8 q0,q0,q0 +_NEON2SSE_INLINE uint8x16_t vmulq_u8(uint8x16_t a, uint8x16_t b) // VMUL.I8 q0,q0,q0 +{ // no 8 bit simd multiply, need to go to 16 bits + //solution may be not optimal + __m128i maskff, a16, b16, r16_1, r16_2; + maskff = _mm_set1_epi16(0xff); + a16 = _MM_CVTEPU8_EPI16 (a); // SSE 4.1 + b16 = _MM_CVTEPU8_EPI16 (b); // SSE 4.1 + r16_1 = _mm_mullo_epi16 (a16, b16); + r16_1 = _mm_and_si128(r16_1, maskff); //to avoid saturation + //swap hi and low part of a and b to process the remaining data + a16 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); + b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32); + a16 = _MM_CVTEPI8_EPI16 (a16); // SSE 4.1 + b16 = _MM_CVTEPI8_EPI16 (b16); // SSE 4.1 + + r16_2 = _mm_mullo_epi16 (a16, b16); + r16_2 = _mm_and_si128(r16_2, maskff); //to avoid saturation + return _mm_packus_epi16 (r16_1, r16_2); +} + +uint16x8_t vmulq_u16(uint16x8_t a, uint16x8_t b); // VMUL.I16 q0,q0,q0 +#define vmulq_u16 _mm_mullo_epi16 + +uint32x4_t vmulq_u32(uint32x4_t a, uint32x4_t b); // VMUL.I32 q0,q0,q0 +#define vmulq_u32 _MM_MULLO_EPI32 //SSE4.1 + +poly8x16_t vmulq_p8(poly8x16_t a, poly8x16_t b); // VMUL.P8 q0,q0,q0 +_NEON2SSE_INLINE poly8x16_t vmulq_p8(poly8x16_t a, poly8x16_t b) +{ //may be optimized + __m128i c1, res, tmp, bmasked; + int i; + c1 = _mm_cmpeq_epi8 (a,a); //all ones 0xff.... + c1 = vshrq_n_u8(c1,7); //0x1 + bmasked = _mm_and_si128(b, c1); //0x1 + res = vmulq_u8(a, bmasked); + for(i = 1; i<8; i++) { + c1 = _mm_slli_epi16(c1,1); //shift mask left by 1, 16 bit shift is OK here + bmasked = _mm_and_si128(b, c1); //0x1 + tmp = vmulq_u8(a, bmasked); + res = _mm_xor_si128(res, tmp); + } + return res; +} + +//************************* Vector long multiply *********************************** +//**************************************************************************** + +//****************Vector saturating doubling long multiply ************************** +//***************************************************************** + +//********************* Vector multiply accumulate: vmla -> Vr[i] := Va[i] + Vb[i] * Vc[i] ************************ +//****************************************************************************************** + +#if defined(USE_SSSE3) +int8x16_t vmlaq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VMLA.I8 q0,q0,q0 +_NEON2SSE_INLINE int8x16_t vmlaq_s8(int8x16_t a, int8x16_t b, int8x16_t c) // VMLA.I8 q0,q0,q0 +{ //solution may be not optimal + // no 8 bit simd multiply, need to go to 16 bits + __m128i b16, c16, r16_1, a_2,r16_2; + _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 }; + b16 = _MM_CVTEPI8_EPI16 (b); // SSE 4.1 + c16 = _MM_CVTEPI8_EPI16 (c); // SSE 4.1 + r16_1 = _mm_mullo_epi16 (b16, c16); + r16_1 = _mm_shuffle_epi8 (r16_1, *(__m128i*) mask8_16_even_odd); //return to 8 bits + r16_1 = _mm_add_epi8 (r16_1, a); + //swap hi and low part of a, b and c to process the remaining data + a_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); + b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32); + c16 = _mm_shuffle_epi32 (c, _SWAP_HI_LOW32); + b16 = _MM_CVTEPI8_EPI16 (b16); // SSE 4.1 + c16 = _MM_CVTEPI8_EPI16 (c16); // SSE 4.1 + + r16_2 = _mm_mullo_epi16 (b16, c16); + r16_2 = _mm_shuffle_epi8 (r16_2, *(__m128i*) mask8_16_even_odd); + r16_2 = _mm_add_epi8(r16_2, a_2); + return _mm_unpacklo_epi64(r16_1,r16_2); +} +#endif + +int16x8_t vmlaq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VMLA.I16 q0,q0,q0 +_NEON2SSE_INLINE int16x8_t vmlaq_s16(int16x8_t a, int16x8_t b, int16x8_t c) // VMLA.I16 q0,q0,q0 +{ + __m128i res; + res = _mm_mullo_epi16 (c, b); + return _mm_add_epi16 (res, a); +} + +int32x4_t vmlaq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VMLA.I32 q0,q0,q0 +_NEON2SSE_INLINE int32x4_t vmlaq_s32(int32x4_t a, int32x4_t b, int32x4_t c) // VMLA.I32 q0,q0,q0 +{ + __m128i res; + res = _MM_MULLO_EPI32 (c, b); //SSE4.1 + return _mm_add_epi32 (res, a); +} + +float32x4_t vmlaq_f32(float32x4_t a, float32x4_t b, float32x4_t c); // VMLA.F32 q0,q0,q0 +_NEON2SSE_INLINE float32x4_t vmlaq_f32(float32x4_t a, float32x4_t b, float32x4_t c) // VMLA.F32 q0,q0,q0 +{ //fma is coming soon, but right now: + __m128 res; + res = _mm_mul_ps (c, b); + return _mm_add_ps (a, res); +} + +#if defined(USE_SSSE3) +uint8x16_t vmlaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VMLA.I8 q0,q0,q0 +_NEON2SSE_INLINE uint8x16_t vmlaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c) // VMLA.I8 q0,q0,q0 +{ //solution may be not optimal + // no 8 bit simd multiply, need to go to 16 bits + __m128i b16, c16, r16_1, a_2, r16_2; + _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 }; + b16 = _MM_CVTEPU8_EPI16 (b); // SSE 4.1 + c16 = _MM_CVTEPU8_EPI16 (c); // SSE 4.1 + r16_1 = _mm_mullo_epi16 (b16, c16); + r16_1 = _mm_shuffle_epi8 (r16_1, *(__m128i*) mask8_16_even_odd); //return to 8 bits + r16_1 = _mm_add_epi8 (r16_1, a); + //swap hi and low part of a, b and c to process the remaining data + a_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); + b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32); + c16 = _mm_shuffle_epi32 (c, _SWAP_HI_LOW32); + b16 = _MM_CVTEPU8_EPI16 (b16); // SSE 4.1 + c16 = _MM_CVTEPU8_EPI16 (c16); // SSE 4.1 + + r16_2 = _mm_mullo_epi16 (b16, c16); + r16_2 = _mm_shuffle_epi8 (r16_2, *(__m128i*) mask8_16_even_odd); + r16_2 = _mm_add_epi8(r16_2, a_2); + return _mm_unpacklo_epi64(r16_1,r16_2); +} +#endif + +uint16x8_t vmlaq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VMLA.I16 q0,q0,q0 +#define vmlaq_u16 vmlaq_s16 + +uint32x4_t vmlaq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VMLA.I32 q0,q0,q0 +#define vmlaq_u32 vmlaq_s32 + +//********************** Vector widening multiply accumulate (long multiply accumulate): +// vmla -> Vr[i] := Va[i] + Vb[i] * Vc[i] ************** +//******************************************************************************************** + +//******************** Vector multiply subtract: vmls -> Vr[i] := Va[i] - Vb[i] * Vc[i] *************************************** +//******************************************************************************************** + +#if defined(USE_SSSE3) +int8x16_t vmlsq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VMLS.I8 q0,q0,q0 +_NEON2SSE_INLINE int8x16_t vmlsq_s8(int8x16_t a, int8x16_t b, int8x16_t c) // VMLS.I8 q0,q0,q0 +{ //solution may be not optimal + // no 8 bit simd multiply, need to go to 16 bits + __m128i b16, c16, r16_1, a_2, r16_2; + _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 }; + b16 = _MM_CVTEPI8_EPI16 (b); // SSE 4.1 + c16 = _MM_CVTEPI8_EPI16 (c); // SSE 4.1 + r16_1 = _mm_mullo_epi16 (b16, c16); + r16_1 = _mm_shuffle_epi8 (r16_1, *(__m128i*) mask8_16_even_odd); + r16_1 = _mm_sub_epi8 (a, r16_1); + //swap hi and low part of a, b, c to process the remaining data + a_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); + b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32); + c16 = _mm_shuffle_epi32 (c, _SWAP_HI_LOW32); + b16 = _MM_CVTEPI8_EPI16 (b16); // SSE 4.1 + c16 = _MM_CVTEPI8_EPI16 (c16); // SSE 4.1 + + r16_2 = _mm_mullo_epi16 (b16, c16); + r16_2 = _mm_shuffle_epi8 (r16_2, *(__m128i*) mask8_16_even_odd); + r16_2 = _mm_sub_epi8 (a_2, r16_2); + return _mm_unpacklo_epi64(r16_1,r16_2); +} +#endif + +int16x8_t vmlsq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VMLS.I16 q0,q0,q0 +_NEON2SSE_INLINE int16x8_t vmlsq_s16(int16x8_t a, int16x8_t b, int16x8_t c) // VMLS.I16 q0,q0,q0 +{ + __m128i res; + res = _mm_mullo_epi16 (c, b); + return _mm_sub_epi16 (a, res); +} + +int32x4_t vmlsq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VMLS.I32 q0,q0,q0 +_NEON2SSE_INLINE int32x4_t vmlsq_s32(int32x4_t a, int32x4_t b, int32x4_t c) // VMLS.I32 q0,q0,q0 +{ + __m128i res; + res = _MM_MULLO_EPI32 (c, b); //SSE4.1 + return _mm_sub_epi32 (a, res); +} + +float32x4_t vmlsq_f32(float32x4_t a, float32x4_t b, float32x4_t c); // VMLS.F32 q0,q0,q0 +_NEON2SSE_INLINE float32x4_t vmlsq_f32(float32x4_t a, float32x4_t b, float32x4_t c) // VMLS.F32 q0,q0,q0 +{ + __m128 res; + res = _mm_mul_ps (c, b); + return _mm_sub_ps (a, res); +} + +#if defined(USE_SSSE3) +uint8x16_t vmlsq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VMLS.I8 q0,q0,q0 +_NEON2SSE_INLINE uint8x16_t vmlsq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c) // VMLS.I8 q0,q0,q0 +{ //solution may be not optimal + // no 8 bit simd multiply, need to go to 16 bits + __m128i b16, c16, r16_1, a_2, r16_2; + _NEON2SSE_ALIGN_16 int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 }; + b16 = _MM_CVTEPU8_EPI16 (b); // SSE 4.1 + c16 = _MM_CVTEPU8_EPI16 (c); // SSE 4.1 + r16_1 = _mm_mullo_epi16 (b16, c16); + r16_1 = _mm_shuffle_epi8 (r16_1, *(__m128i*) mask8_16_even_odd); //return to 8 bits + r16_1 = _mm_sub_epi8 (a, r16_1); + //swap hi and low part of a, b and c to process the remaining data + a_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); + b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32); + c16 = _mm_shuffle_epi32 (c, _SWAP_HI_LOW32); + b16 = _MM_CVTEPU8_EPI16 (b16); // SSE 4.1 + c16 = _MM_CVTEPU8_EPI16 (c16); // SSE 4.1 + + r16_2 = _mm_mullo_epi16 (b16, c16); + r16_2 = _mm_shuffle_epi8 (r16_2, *(__m128i*) mask8_16_even_odd); + r16_2 = _mm_sub_epi8(a_2, r16_2); + return _mm_unpacklo_epi64(r16_1,r16_2); +} +#endif + +uint16x8_t vmlsq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VMLS.I16 q0,q0,q0 +#define vmlsq_u16 vmlsq_s16 + +uint32x4_t vmlsq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VMLS.I32 q0,q0,q0 +#define vmlsq_u32 vmlsq_s32 + +//******************** Vector multiply subtract long (widening multiply subtract) ************************************ +//************************************************************************************************************* + +//****** Vector saturating doubling multiply high ********************** +//************************************************************************* +//For some ARM implementations if the multiply high result is all 0xffffffff then it is not doubled. We do the same here + +int16x8_t vqdmulhq_s16(int16x8_t a, int16x8_t b); // VQDMULH.S16 q0,q0,q0 +_NEON2SSE_INLINE int16x8_t vqdmulhq_s16(int16x8_t a, int16x8_t b) // VQDMULH.S16 q0,q0,q0 +{ + __m128i res_sat, cffff, mask, res; + res = _mm_mulhi_epi16 (a, b); + cffff = _mm_cmpeq_epi16(res,res); //0xffff + mask = _mm_cmpeq_epi16(res, cffff); //if ffff need to saturate + res_sat = _mm_adds_epi16(res, res); //res *= 2 and saturate + return _mm_or_si128(mask, res_sat); +} + +#if defined(USE_SSSE3) +int32x4_t vqdmulhq_s32(int32x4_t a, int32x4_t b); // VQDMULH.S32 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqdmulhq_s32(int32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_UNEFFECTIVE) +{ // no multiply high 32 bit SIMD in IA32, may be not optimal compared with a serial solution for the SSSE3 target + __m128i ab, ba, res_sat, cffffffff, mask, mul, mul1; + ab = _mm_unpacklo_epi32 (a, b); //a0, b0, a1,b1 + ba = _mm_unpacklo_epi32 (b, a); //b0, a0, b1,a1 + mul = _MM_MUL_EPI32(ab, ba); //uses 1rst and 3rd data lanes, the multiplication gives 64 bit result + ab = _mm_unpackhi_epi32 (a, b); //a2, b2, a3,b3 + ba = _mm_unpackhi_epi32 (b, a); //b2, a2, b3,a3 + mul1 = _MM_MUL_EPI32(ab, ba); //uses 1rst and 3rd data lanes, the multiplication gives 64 bit result + mul = _mm_shuffle_epi32 (mul, 1 | (3 << 2) | (0 << 4) | (2 << 6)); //shuffle the data to get 2 32-bits + mul1 = _mm_shuffle_epi32 (mul1, 1 | (3 << 2) | (0 << 4) | (2 << 6)); //shuffle the data to get 2 32-bits + mul = _mm_unpacklo_epi64(mul, mul1); + cffffffff = _mm_cmpeq_epi32(mul,mul); //0xffffffff + mask = _mm_cmpeq_epi32(mul, cffffffff); //if ffffffff need to saturate + res_sat = vqd_s32(mul); + return _mm_or_si128(mask, res_sat); +} +#endif + +//********* Vector saturating rounding doubling multiply high **************** +//**************************************************************************** +//If use _mm_mulhrs_xx functions the result may differ from NEON one a little due to different rounding rules and order + +#if defined(USE_SSSE3) +int16x8_t vqrdmulhq_s16(int16x8_t a, int16x8_t b); // VQRDMULH.S16 q0,q0,q0 +_NEON2SSE_INLINE int16x8_t vqrdmulhq_s16(int16x8_t a, int16x8_t b) // VQRDMULH.S16 q0,q0,q0 +{ + __m128i res_sat, cffff, mask, res; + res = _mm_mulhrs_epi16 (a, b); + cffff = _mm_cmpeq_epi16(res,res); //0xffff + mask = _mm_cmpeq_epi16(res, cffff); //if ffff need to saturate + res_sat = _mm_adds_epi16(res, res); //res *= 2 and saturate + return _mm_or_si128(mask, res_sat); +} +#endif + +#if defined(USE_SSSE3) +int32x4_t vqrdmulhq_s32(int32x4_t a, int32x4_t b); // VQRDMULH.S32 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqrdmulhq_s32(int32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_UNEFFECTIVE) +{ // no multiply high 32 bit SIMD in IA32, may be not optimal compared with a serial solution for the SSSE3 target + __m128i ab, ba, res_sat, cffffffff, mask, mul, mul1, mask1; + ab = _mm_unpacklo_epi32 (a, b); //a0, b0, a1,b1 + ba = _mm_unpacklo_epi32 (b, a); //b0, a0, b1,a1 + mul = _MM_MUL_EPI32(ab, ba); //uses 1rst and 3rd data lanes, the multiplication gives 64 bit result + ab = _mm_unpackhi_epi32 (a, b); //a2, b2, a3,b3 + ba = _mm_unpackhi_epi32 (b, a); //b2, a2, b3,a3 + mul1 = _MM_MUL_EPI32(ab, ba); //uses 1rst and 3rd data lanes, the multiplication gives 64 bit result + mul = _mm_shuffle_epi32 (mul, 1 | (3 << 2) | (0 << 4) | (2 << 6)); //shuffle the data to get 2 32-bits + mul1 = _mm_shuffle_epi32 (mul1, 1 | (3 << 2) | (0 << 4) | (2 << 6)); //shuffle the data to get 2 32-bits + mul = _mm_unpacklo_epi64(mul, mul1); + cffffffff = _mm_cmpeq_epi32(mul,mul); //0xffffffff + mask1 = _mm_slli_epi32(mul, 17); //shift left then back right to + mask1 = _mm_srli_epi32(mul,31); //get 15-th bit 1 or zero + mul = _mm_add_epi32 (mul, mask1); //actual rounding + mask = _mm_cmpeq_epi32(mul, cffffffff); //if ffffffff need to saturate + res_sat = vqd_s32(mul); + return _mm_or_si128(mask, res_sat); +} +#endif + +//*************Vector widening saturating doubling multiply accumulate (long saturating doubling multiply accumulate) ***** +//************************************************************************************************************************* + +//************************************************************************************ +//****************** Vector subtract *********************************************** +//************************************************************************************ + +int8x16_t vsubq_s8(int8x16_t a, int8x16_t b); // VSUB.I8 q0,q0,q0 +#define vsubq_s8 _mm_sub_epi8 + +int16x8_t vsubq_s16(int16x8_t a, int16x8_t b); // VSUB.I16 q0,q0,q0 +#define vsubq_s16 _mm_sub_epi16 + +int32x4_t vsubq_s32(int32x4_t a, int32x4_t b); // VSUB.I32 q0,q0,q0 +#define vsubq_s32 _mm_sub_epi32 + +int64x2_t vsubq_s64(int64x2_t a, int64x2_t b); // VSUB.I64 q0,q0,q0 +#define vsubq_s64 _mm_sub_epi64 + +float32x4_t vsubq_f32(float32x4_t a, float32x4_t b); // VSUB.F32 q0,q0,q0 +#define vsubq_f32 _mm_sub_ps + +uint8x16_t vsubq_u8(uint8x16_t a, uint8x16_t b); // VSUB.I8 q0,q0,q0 +#define vsubq_u8 _mm_sub_epi8 + +uint16x8_t vsubq_u16(uint16x8_t a, uint16x8_t b); // VSUB.I16 q0,q0,q0 +#define vsubq_u16 _mm_sub_epi16 + +uint32x4_t vsubq_u32(uint32x4_t a, uint32x4_t b); // VSUB.I32 q0,q0,q0 +#define vsubq_u32 _mm_sub_epi32 + +uint64x2_t vsubq_u64(uint64x2_t a, uint64x2_t b); // VSUB.I64 q0,q0,q0 +#define vsubq_u64 _mm_sub_epi64 + +//***************Vector long subtract: vsub -> Vr[i]:=Va[i]-Vb[i] ****************** +//*********************************************************************************** +//Va, Vb have equal lane sizes, result is a 128 bit vector of lanes that are twice the width. + +//***************** Vector wide subtract: vsub -> Vr[i]:=Va[i]-Vb[i] ********************************** +//***************************************************************************************************** + +//************************Vector saturating subtract ********************************* +//************************************************************************************* + +int8x16_t vqsubq_s8(int8x16_t a, int8x16_t b); // VQSUB.S8 q0,q0,q0 +#define vqsubq_s8 _mm_subs_epi8 + +int16x8_t vqsubq_s16(int16x8_t a, int16x8_t b); // VQSUB.S16 q0,q0,q0 +#define vqsubq_s16 _mm_subs_epi16 + +int32x4_t vqsubq_s32(int32x4_t a, int32x4_t b); // VQSUB.S32 q0,q0,q0 +_NEON2SSE_INLINE int32x4_t vqsubq_s32(int32x4_t a, int32x4_t b) +{ //no corresponding x86 SIMD soulution, special tricks are necessary. The overflow is possible only if a and b have opposite signs and sub has opposite sign to a + __m128i c7fffffff, res, res_sat, res_xor_a, b_xor_a; + c7fffffff = _mm_set1_epi32(0x7fffffff); + res = _mm_sub_epi32(a, b); + res_sat = _mm_srli_epi32(a, 31); + res_sat = _mm_add_epi32(res_sat, c7fffffff); + res_xor_a = _mm_xor_si128(res, a); + b_xor_a = _mm_xor_si128(b, a); + res_xor_a = _mm_and_si128(b_xor_a, res_xor_a); + res_xor_a = _mm_srai_epi32(res_xor_a,31); //propagate the sigh bit, all ffff if <0 all ones otherwise + res_sat = _mm_and_si128(res_xor_a, res_sat); + res = _mm_andnot_si128(res_xor_a, res); + return _mm_or_si128(res, res_sat); +} + +int64x2_t vqsubq_s64(int64x2_t a, int64x2_t b); // VQSUB.S64 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqsubq_s64(int64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) //no optimal SIMD soulution +{ + _NEON2SSE_ALIGN_16 int64_t atmp[2], btmp[2]; + _NEON2SSE_ALIGN_16 uint64_t res[2]; + _mm_store_si128((__m128i*)atmp, a); + _mm_store_si128((__m128i*)btmp, b); + res[0] = atmp[0] - btmp[0]; + res[1] = atmp[1] - btmp[1]; + if (((res[0] ^ atmp[0]) & _SIGNBIT64) && ((atmp[0] ^ btmp[0]) & _SIGNBIT64)) { + res[0] = (atmp[0] >> 63) ^ ~_SIGNBIT64; + } + if (((res[1] ^ atmp[1]) & _SIGNBIT64) && ((atmp[1] ^ btmp[1]) & _SIGNBIT64)) { + res[1] = (atmp[1] >> 63) ^ ~_SIGNBIT64; + } + return _mm_load_si128((__m128i*)res); +} + +uint8x16_t vqsubq_u8(uint8x16_t a, uint8x16_t b); // VQSUB.U8 q0,q0,q0 +#define vqsubq_u8 _mm_subs_epu8 + +uint16x8_t vqsubq_u16(uint16x8_t a, uint16x8_t b); // VQSUB.s16 q0,q0,q0 +#define vqsubq_u16 _mm_subs_epu16 + +uint32x4_t vqsubq_u32(uint32x4_t a, uint32x4_t b); // VQSUB.U32 q0,q0,q0 +_NEON2SSE_INLINE uint32x4_t vqsubq_u32(uint32x4_t a, uint32x4_t b) // VQSUB.U32 q0,q0,q0 +{ + __m128i min, mask, sub; + min = _MM_MIN_EPU32(a, b); //SSE4.1 + mask = _mm_cmpeq_epi32 (min, b); + sub = _mm_sub_epi32 (a, b); + return _mm_and_si128 ( sub, mask); +} + +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqsubq_u64(uint64x2_t a, uint64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL); // VQSUB.U64 q0,q0,q0 +#ifdef USE_SSE4 + _NEON2SSE_INLINE uint64x2_t vqsubq_u64(uint64x2_t a, uint64x2_t b) + { + __m128i c80000000, subb, suba, cmp, sub; + c80000000 = _mm_set_epi32 (0x80000000, 0x0, 0x80000000, 0x0); + sub = _mm_sub_epi64 (a, b); + suba = _mm_sub_epi64 (a, c80000000); + subb = _mm_sub_epi64 (b, c80000000); + cmp = _mm_cmpgt_epi64 ( suba, subb); //no unsigned comparison, need to go to signed, SSE4.2!!! + return _mm_and_si128 (sub, cmp); //saturation + } +#else + _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqsubq_u64(uint64x2_t a, uint64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) + { + _NEON2SSE_ALIGN_16 uint64_t atmp[2], btmp[2], res[2]; + _mm_store_si128((__m128i*)atmp, a); + _mm_store_si128((__m128i*)btmp, b); + res[0] = (atmp[0] > btmp[0]) ? atmp[0] - btmp[0] : 0; + res[1] = (atmp[1] > btmp[1]) ? atmp[1] - btmp[1] : 0; + return _mm_load_si128((__m128i*)(res)); + } +#endif + +//**********Vector halving subtract Vr[i]:=(Va[i]-Vb[i])>>1 ****************************************************** +//**************************************************************** + +int8x16_t vhsubq_s8(int8x16_t a, int8x16_t b); // VHSUB.S8 q0,q0,q0 +_NEON2SSE_INLINE int8x16_t vhsubq_s8(int8x16_t a, int8x16_t b) // VHSUB.S8 q0,q0,q0 +{ // //need to deal with the possibility of internal overflow + __m128i c128, au,bu; + c128 = _mm_set1_epi8 (128); + au = _mm_add_epi8( a, c128); + bu = _mm_add_epi8( b, c128); + return vhsubq_u8(au,bu); +} + +int16x8_t vhsubq_s16(int16x8_t a, int16x8_t b); // VHSUB.S16 q0,q0,q0 +_NEON2SSE_INLINE int16x8_t vhsubq_s16(int16x8_t a, int16x8_t b) // VHSUB.S16 q0,q0,q0 +{ //need to deal with the possibility of internal overflow + __m128i c8000, au,bu; + c8000 = _mm_set1_epi16(0x8000); + au = _mm_add_epi16( a, c8000); + bu = _mm_add_epi16( b, c8000); + return vhsubq_u16(au,bu); +} + +int32x4_t vhsubq_s32(int32x4_t a, int32x4_t b); // VHSUB.S32 q0,q0,q0 +_NEON2SSE_INLINE int32x4_t vhsubq_s32(int32x4_t a, int32x4_t b) // VHSUB.S32 q0,q0,q0 +{//need to deal with the possibility of internal overflow + __m128i a2, b2,r, b_1; + a2 = _mm_srai_epi32 (a,1); + b2 = _mm_srai_epi32 (b,1); + r = _mm_sub_epi32 (a2, b2); + b_1 = _mm_andnot_si128(a, b); //!a and b + b_1 = _mm_slli_epi32 (b_1,31); + b_1 = _mm_srli_epi32 (b_1,31); //0 or 1, last b bit + return _mm_sub_epi32(r,b_1); +} + +uint8x16_t vhsubq_u8(uint8x16_t a, uint8x16_t b); // VHSUB.U8 q0,q0,q0 +_NEON2SSE_INLINE uint8x16_t vhsubq_u8(uint8x16_t a, uint8x16_t b) // VHSUB.U8 q0,q0,q0 +{ + __m128i avg; + avg = _mm_avg_epu8 (a, b); + return _mm_sub_epi8(a, avg); +} + +uint16x8_t vhsubq_u16(uint16x8_t a, uint16x8_t b); // VHSUB.s16 q0,q0,q0 +_NEON2SSE_INLINE uint16x8_t vhsubq_u16(uint16x8_t a, uint16x8_t b) // VHSUB.s16 q0,q0,q0 +{ + __m128i avg; + avg = _mm_avg_epu16 (a, b); + return _mm_sub_epi16(a, avg); +} + +uint32x4_t vhsubq_u32(uint32x4_t a, uint32x4_t b); // VHSUB.U32 q0,q0,q0 +_NEON2SSE_INLINE uint32x4_t vhsubq_u32(uint32x4_t a, uint32x4_t b) // VHSUB.U32 q0,q0,q0 +{//need to deal with the possibility of internal overflow + __m128i a2, b2,r, b_1; + a2 = _mm_srli_epi32 (a,1); + b2 = _mm_srli_epi32 (b,1); + r = _mm_sub_epi32 (a2, b2); + b_1 = _mm_andnot_si128(a, b); //!a and b + b_1 = _mm_slli_epi32 (b_1,31); + b_1 = _mm_srli_epi32 (b_1,31); //0 or 1, last b bit + return _mm_sub_epi32(r,b_1); +} + +//******* Vector subtract high half (truncated) ** ************ +//************************************************************ + +//************ Vector rounding subtract high half ********************* +//********************************************************************* + +//*********** Vector saturating doubling multiply subtract long ******************** +//************************************************************************************ + +//****************** COMPARISON *************************************** +//******************* Vector compare equal ************************************* +//**************************************************************************** + +uint8x16_t vceqq_s8(int8x16_t a, int8x16_t b); // VCEQ.I8 q0, q0, q0 +#define vceqq_s8 _mm_cmpeq_epi8 + +uint16x8_t vceqq_s16(int16x8_t a, int16x8_t b); // VCEQ.I16 q0, q0, q0 +#define vceqq_s16 _mm_cmpeq_epi16 + +uint32x4_t vceqq_s32(int32x4_t a, int32x4_t b); // VCEQ.I32 q0, q0, q0 +#define vceqq_s32 _mm_cmpeq_epi32 + +uint32x4_t vceqq_f32(float32x4_t a, float32x4_t b); // VCEQ.F32 q0, q0, q0 +_NEON2SSE_INLINE uint32x4_t vceqq_f32(float32x4_t a, float32x4_t b) +{ + __m128 res; + res = _mm_cmpeq_ps(a,b); + return *(__m128i*)&res; +} + +uint8x16_t vceqq_u8(uint8x16_t a, uint8x16_t b); // VCEQ.I8 q0, q0, q0 +#define vceqq_u8 _mm_cmpeq_epi8 + +uint16x8_t vceqq_u16(uint16x8_t a, uint16x8_t b); // VCEQ.I16 q0, q0, q0 +#define vceqq_u16 _mm_cmpeq_epi16 + +uint32x4_t vceqq_u32(uint32x4_t a, uint32x4_t b); // VCEQ.I32 q0, q0, q0 +#define vceqq_u32 _mm_cmpeq_epi32 + +uint8x16_t vceqq_p8(poly8x16_t a, poly8x16_t b); // VCEQ.I8 q0, q0, q0 +#define vceqq_p8 _mm_cmpeq_epi8 + +//******************Vector compare greater-than or equal************************* +//******************************************************************************* +//in IA SIMD no greater-than-or-equal comparison for integers, +// there is greater-than available only, so we need the following tricks + +uint8x16_t vcgeq_s8(int8x16_t a, int8x16_t b); // VCGE.S8 q0, q0, q0 +_NEON2SSE_INLINE uint8x16_t vcgeq_s8(int8x16_t a, int8x16_t b) // VCGE.S8 q0, q0, q0 +{ + __m128i m1, m2; + m1 = _mm_cmpgt_epi8 ( a, b); + m2 = _mm_cmpeq_epi8 ( a, b); + return _mm_or_si128 ( m1, m2); +} + +uint16x8_t vcgeq_s16(int16x8_t a, int16x8_t b); // VCGE.S16 q0, q0, q0 +_NEON2SSE_INLINE uint16x8_t vcgeq_s16(int16x8_t a, int16x8_t b) // VCGE.S16 q0, q0, q0 +{ + __m128i m1, m2; + m1 = _mm_cmpgt_epi16 ( a, b); + m2 = _mm_cmpeq_epi16 ( a, b); + return _mm_or_si128 ( m1,m2); +} + +uint32x4_t vcgeq_s32(int32x4_t a, int32x4_t b); // VCGE.S32 q0, q0, q0 +_NEON2SSE_INLINE uint32x4_t vcgeq_s32(int32x4_t a, int32x4_t b) // VCGE.S32 q0, q0, q0 +{ + __m128i m1, m2; + m1 = _mm_cmpgt_epi32 (a, b); + m2 = _mm_cmpeq_epi32 (a, b); + return _mm_or_si128 (m1, m2); +} + +uint32x4_t vcgeq_f32(float32x4_t a, float32x4_t b); // VCGE.F32 q0, q0, q0 +_NEON2SSE_INLINE uint32x4_t vcgeq_f32(float32x4_t a, float32x4_t b) +{ + __m128 res; + res = _mm_cmpge_ps(a,b); //use only 2 first entries + return *(__m128i*)&res; +} + +uint8x16_t vcgeq_u8(uint8x16_t a, uint8x16_t b); // VCGE.U8 q0, q0, q0 +_NEON2SSE_INLINE uint8x16_t vcgeq_u8(uint8x16_t a, uint8x16_t b) // VCGE.U8 q0, q0, q0 +{ //no unsigned chars comparison, only signed available,so need the trick + #ifdef USE_SSE4 + __m128i cmp; + cmp = _mm_max_epu8(a, b); + return _mm_cmpeq_epi8(cmp, a); //a>=b + #else + __m128i c128, as, bs, m1, m2; + c128 = _mm_set1_epi8 (128); + as = _mm_sub_epi8( a, c128); + bs = _mm_sub_epi8( b, c128); + m1 = _mm_cmpgt_epi8( as, bs); + m2 = _mm_cmpeq_epi8 (as, bs); + return _mm_or_si128 ( m1, m2); + #endif +} + +uint16x8_t vcgeq_u16(uint16x8_t a, uint16x8_t b); // VCGE.s16 q0, q0, q0 +_NEON2SSE_INLINE uint16x8_t vcgeq_u16(uint16x8_t a, uint16x8_t b) // VCGE.s16 q0, q0, q0 +{ //no unsigned shorts comparison, only signed available,so need the trick + #ifdef USE_SSE4 + __m128i cmp; + cmp = _mm_max_epu16(a, b); + return _mm_cmpeq_epi16(cmp, a); //a>=b + #else + __m128i c8000, as, bs, m1, m2; + c8000 = _mm_set1_epi16 (0x8000); + as = _mm_sub_epi16(a,c8000); + bs = _mm_sub_epi16(b,c8000); + m1 = _mm_cmpgt_epi16(as, bs); + m2 = _mm_cmpeq_epi16 (as, bs); + return _mm_or_si128 ( m1, m2); + #endif +} + +uint32x4_t vcgeq_u32(uint32x4_t a, uint32x4_t b); // VCGE.U32 q0, q0, q0 +_NEON2SSE_INLINE uint32x4_t vcgeq_u32(uint32x4_t a, uint32x4_t b) // VCGE.U32 q0, q0, q0 +{ //no unsigned ints comparison, only signed available,so need the trick + #ifdef USE_SSE4 + __m128i cmp; + cmp = _mm_max_epu32(a, b); + return _mm_cmpeq_epi32(cmp, a); //a>=b + #else + //serial solution may be faster + __m128i c80000000, as, bs, m1, m2; + c80000000 = _mm_set1_epi32 (0x80000000); + as = _mm_sub_epi32(a,c80000000); + bs = _mm_sub_epi32(b,c80000000); + m1 = _mm_cmpgt_epi32 (as, bs); + m2 = _mm_cmpeq_epi32 (as, bs); + return _mm_or_si128 ( m1, m2); + #endif +} + +//**********************Vector compare less-than or equal****************************** +//*************************************************************************************** +//in IA SIMD no less-than-or-equal comparison for integers present, so we need the tricks + +uint8x16_t vcleq_s8(int8x16_t a, int8x16_t b); // VCGE.S8 q0, q0, q0 +_NEON2SSE_INLINE uint8x16_t vcleq_s8(int8x16_t a, int8x16_t b) // VCGE.S8 q0, q0, q0 +{ + __m128i c1, res; + c1 = _mm_cmpeq_epi8 (a,a); //all ones 0xff.... + res = _mm_cmpgt_epi8 ( a, b); + return _mm_andnot_si128 (res, c1); //inverse the cmpgt result, get less-than-or-equal +} + +uint16x8_t vcleq_s16(int16x8_t a, int16x8_t b); // VCGE.S16 q0, q0, q0 +_NEON2SSE_INLINE uint16x8_t vcleq_s16(int16x8_t a, int16x8_t b) // VCGE.S16 q0, q0, q0 +{ + __m128i c1, res; + c1 = _mm_cmpeq_epi16 (a,a); //all ones 0xff.... + res = _mm_cmpgt_epi16 ( a, b); + return _mm_andnot_si128 (res, c1); +} + +uint32x4_t vcleq_s32(int32x4_t a, int32x4_t b); // VCGE.S32 q0, q0, q0 +_NEON2SSE_INLINE uint32x4_t vcleq_s32(int32x4_t a, int32x4_t b) // VCGE.S32 q0, q0, q0 +{ + __m128i c1, res; + c1 = _mm_cmpeq_epi32 (a,a); //all ones 0xff.... + res = _mm_cmpgt_epi32 ( a, b); + return _mm_andnot_si128 (res, c1); +} + +uint32x4_t vcleq_f32(float32x4_t a, float32x4_t b); // VCGE.F32 q0, q0, q0 +_NEON2SSE_INLINE uint32x4_t vcleq_f32(float32x4_t a, float32x4_t b) +{ + __m128 res; + res = _mm_cmple_ps(a,b); + return *(__m128i*)&res; +} + +uint8x16_t vcleq_u8(uint8x16_t a, uint8x16_t b); // VCGE.U8 q0, q0, q0 +#ifdef USE_SSE4 + _NEON2SSE_INLINE uint8x16_t vcleq_u8(uint8x16_t a, uint8x16_t b) // VCGE.U8 q0, q0, q0 + { //no unsigned chars comparison in SSE, only signed available,so need the trick + + __m128i cmp; + cmp = _mm_min_epu8(a, b); + return _mm_cmpeq_epi8(cmp, a); //a<=b + } +#else + #define vcleq_u8(a,b) vcgeq_u8(b,a) +#endif + +uint16x8_t vcleq_u16(uint16x8_t a, uint16x8_t b); // VCGE.s16 q0, q0, q0 +#ifdef USE_SSE4 + _NEON2SSE_INLINE uint16x8_t vcleq_u16(uint16x8_t a, uint16x8_t b) // VCGE.s16 q0, q0, q0 + { //no unsigned shorts comparison in SSE, only signed available,so need the trick + __m128i cmp; + cmp = _mm_min_epu16(a, b); + return _mm_cmpeq_epi16(cmp, a); //a<=b + } +#else + #define vcleq_u16(a,b) vcgeq_u16(b,a) +#endif + +uint32x4_t vcleq_u32(uint32x4_t a, uint32x4_t b); // VCGE.U32 q0, q0, q0 +#ifdef USE_SSE4 + _NEON2SSE_INLINE uint32x4_t vcleq_u32(uint32x4_t a, uint32x4_t b) // VCGE.U32 q0, q0, q0 + { //no unsigned chars comparison in SSE, only signed available,so need the trick + __m128i cmp; + cmp = _mm_min_epu32(a, b); + return _mm_cmpeq_epi32(cmp, a); //a<=b + } +#else +//solution may be not optimal compared with the serial one + #define vcleq_u32(a,b) vcgeq_u32(b,a) +#endif + +//****** Vector compare greater-than ****************************************** +//************************************************************************** + +uint8x16_t vcgtq_s8(int8x16_t a, int8x16_t b); // VCGT.S8 q0, q0, q0 +#define vcgtq_s8 _mm_cmpgt_epi8 + +uint16x8_t vcgtq_s16(int16x8_t a, int16x8_t b); // VCGT.S16 q0, q0, q0 +#define vcgtq_s16 _mm_cmpgt_epi16 + +uint32x4_t vcgtq_s32(int32x4_t a, int32x4_t b); // VCGT.S32 q0, q0, q0 +#define vcgtq_s32 _mm_cmpgt_epi32 + +uint32x4_t vcgtq_f32(float32x4_t a, float32x4_t b); // VCGT.F32 q0, q0, q0 +_NEON2SSE_INLINE uint32x4_t vcgtq_f32(float32x4_t a, float32x4_t b) +{ + __m128 res; + res = _mm_cmpgt_ps(a,b); //use only 2 first entries + return *(__m128i*)&res; +} + +uint8x16_t vcgtq_u8(uint8x16_t a, uint8x16_t b); // VCGT.U8 q0, q0, q0 +_NEON2SSE_INLINE uint8x16_t vcgtq_u8(uint8x16_t a, uint8x16_t b) // VCGT.U8 q0, q0, q0 +{ //no unsigned chars comparison, only signed available,so need the trick + __m128i c128, as, bs; + c128 = _mm_set1_epi8 (128); + as = _mm_sub_epi8(a,c128); + bs = _mm_sub_epi8(b,c128); + return _mm_cmpgt_epi8 (as, bs); +} + +uint16x8_t vcgtq_u16(uint16x8_t a, uint16x8_t b); // VCGT.s16 q0, q0, q0 +_NEON2SSE_INLINE uint16x8_t vcgtq_u16(uint16x8_t a, uint16x8_t b) // VCGT.s16 q0, q0, q0 +{ //no unsigned short comparison, only signed available,so need the trick + __m128i c8000, as, bs; + c8000 = _mm_set1_epi16 (0x8000); + as = _mm_sub_epi16(a,c8000); + bs = _mm_sub_epi16(b,c8000); + return _mm_cmpgt_epi16 ( as, bs); +} + +uint32x4_t vcgtq_u32(uint32x4_t a, uint32x4_t b); // VCGT.U32 q0, q0, q0 +_NEON2SSE_INLINE uint32x4_t vcgtq_u32(uint32x4_t a, uint32x4_t b) // VCGT.U32 q0, q0, q0 +{ //no unsigned int comparison, only signed available,so need the trick + __m128i c80000000, as, bs; + c80000000 = _mm_set1_epi32 (0x80000000); + as = _mm_sub_epi32(a,c80000000); + bs = _mm_sub_epi32(b,c80000000); + return _mm_cmpgt_epi32 ( as, bs); +} + +//********************* Vector compare less-than ************************** +//************************************************************************* + +uint8x16_t vcltq_s8(int8x16_t a, int8x16_t b); // VCGT.S8 q0, q0, q0 +#define vcltq_s8(a,b) vcgtq_s8(b, a) //swap the arguments!! + +uint16x8_t vcltq_s16(int16x8_t a, int16x8_t b); // VCGT.S16 q0, q0, q0 +#define vcltq_s16(a,b) vcgtq_s16(b, a) //swap the arguments!! + +uint32x4_t vcltq_s32(int32x4_t a, int32x4_t b); // VCGT.S32 q0, q0, q0 +#define vcltq_s32(a,b) vcgtq_s32(b, a) //swap the arguments!! + +uint32x4_t vcltq_f32(float32x4_t a, float32x4_t b); // VCGT.F32 q0, q0, q0 +#define vcltq_f32(a,b) vcgtq_f32(b, a) //swap the arguments!! + +uint8x16_t vcltq_u8(uint8x16_t a, uint8x16_t b); // VCGT.U8 q0, q0, q0 +#define vcltq_u8(a,b) vcgtq_u8(b, a) //swap the arguments!! + +uint16x8_t vcltq_u16(uint16x8_t a, uint16x8_t b); // VCGT.s16 q0, q0, q0 +#define vcltq_u16(a,b) vcgtq_u16(b, a) //swap the arguments!! + +uint32x4_t vcltq_u32(uint32x4_t a, uint32x4_t b); // VCGT.U32 q0, q0, q0 +#define vcltq_u32(a,b) vcgtq_u32(b, a) //swap the arguments!! + +//*****************Vector compare absolute greater-than or equal ************ +//*************************************************************************** + +uint32x4_t vcageq_f32(float32x4_t a, float32x4_t b); // VACGE.F32 q0, q0, q0 +_NEON2SSE_INLINE uint32x4_t vcageq_f32(float32x4_t a, float32x4_t b) // VACGE.F32 q0, q0, q0 +{ + __m128i c7fffffff; + __m128 a0, b0; + c7fffffff = _mm_set1_epi32 (0x7fffffff); + a0 = _mm_and_ps (a, *(__m128*)&c7fffffff); + b0 = _mm_and_ps (b, *(__m128*)&c7fffffff); + a0 = _mm_cmpge_ps ( a0, b0); + return (*(__m128i*)&a0); +} + +//********Vector compare absolute less-than or equal ****************** +//******************************************************************** + +uint32x4_t vcaleq_f32(float32x4_t a, float32x4_t b); // VACGE.F32 q0, q0, q0 +_NEON2SSE_INLINE uint32x4_t vcaleq_f32(float32x4_t a, float32x4_t b) // VACGE.F32 q0, q0, q0 +{ + __m128i c7fffffff; + __m128 a0, b0; + c7fffffff = _mm_set1_epi32 (0x7fffffff); + a0 = _mm_and_ps (a, *(__m128*)&c7fffffff); + b0 = _mm_and_ps (b, *(__m128*)&c7fffffff); + a0 = _mm_cmple_ps (a0, b0); + return (*(__m128i*)&a0); +} + +//******** Vector compare absolute greater-than ****************** +//****************************************************************** + +uint32x4_t vcagtq_f32(float32x4_t a, float32x4_t b); // VACGT.F32 q0, q0, q0 +_NEON2SSE_INLINE uint32x4_t vcagtq_f32(float32x4_t a, float32x4_t b) // VACGT.F32 q0, q0, q0 +{ + __m128i c7fffffff; + __m128 a0, b0; + c7fffffff = _mm_set1_epi32 (0x7fffffff); + a0 = _mm_and_ps (a, *(__m128*)&c7fffffff); + b0 = _mm_and_ps (b, *(__m128*)&c7fffffff); + a0 = _mm_cmpgt_ps (a0, b0); + return (*(__m128i*)&a0); +} + +//***************Vector compare absolute less-than *********************** +//************************************************************************* + +uint32x4_t vcaltq_f32(float32x4_t a, float32x4_t b); // VACGT.F32 q0, q0, q0 +_NEON2SSE_INLINE uint32x4_t vcaltq_f32(float32x4_t a, float32x4_t b) // VACGT.F32 q0, q0, q0 +{ + __m128i c7fffffff; + __m128 a0, b0; + c7fffffff = _mm_set1_epi32 (0x7fffffff); + a0 = _mm_and_ps (a, *(__m128*)&c7fffffff); + b0 = _mm_and_ps (b, *(__m128*)&c7fffffff); + a0 = _mm_cmplt_ps (a0, b0); + return (*(__m128i*)&a0); + +} + +//*************************Vector test bits************************************ +//***************************************************************************** +/*VTST (Vector Test Bits) takes each element in a vector, and bitwise logical ANDs them +with the corresponding element of a second vector. If the result is not zero, the +corresponding element in the destination vector is set to all ones. Otherwise, it is set to +all zeros. */ + +uint8x16_t vtstq_s8(int8x16_t a, int8x16_t b); // VTST.8 q0, q0, q0 +_NEON2SSE_INLINE uint8x16_t vtstq_s8(int8x16_t a, int8x16_t b) // VTST.8 q0, q0, q0 +{ + __m128i zero, one, res; + zero = _mm_setzero_si128 (); + one = _mm_cmpeq_epi8(zero,zero); //0xfff..ffff + res = _mm_and_si128 (a, b); + res = _mm_cmpeq_epi8 (res, zero); + return _mm_xor_si128(res, one); //invert result +} + +uint16x8_t vtstq_s16(int16x8_t a, int16x8_t b); // VTST.16 q0, q0, q0 +_NEON2SSE_INLINE uint16x8_t vtstq_s16(int16x8_t a, int16x8_t b) // VTST.16 q0, q0, q0 +{ + __m128i zero, one, res; + zero = _mm_setzero_si128 (); + one = _mm_cmpeq_epi8(zero,zero); //0xfff..ffff + res = _mm_and_si128 (a, b); + res = _mm_cmpeq_epi16 (res, zero); + return _mm_xor_si128(res, one); //invert result +} + +uint32x4_t vtstq_s32(int32x4_t a, int32x4_t b); // VTST.32 q0, q0, q0 +_NEON2SSE_INLINE uint32x4_t vtstq_s32(int32x4_t a, int32x4_t b) // VTST.32 q0, q0, q0 +{ + __m128i zero, one, res; + zero = _mm_setzero_si128 (); + one = _mm_cmpeq_epi8(zero,zero); //0xfff..ffff + res = _mm_and_si128 (a, b); + res = _mm_cmpeq_epi32 (res, zero); + return _mm_xor_si128(res, one); //invert result +} + +uint8x16_t vtstq_u8(uint8x16_t a, uint8x16_t b); // VTST.8 q0, q0, q0 +#define vtstq_u8 vtstq_s8 + +uint16x8_t vtstq_u16(uint16x8_t a, uint16x8_t b); // VTST.16 q0, q0, q0 +#define vtstq_u16 vtstq_s16 + +uint32x4_t vtstq_u32(uint32x4_t a, uint32x4_t b); // VTST.32 q0, q0, q0 +#define vtstq_u32 vtstq_s32 + +uint8x16_t vtstq_p8(poly8x16_t a, poly8x16_t b); // VTST.8 q0, q0, q0 +#define vtstq_p8 vtstq_u8 + +//****************** Absolute difference ******************** +//*** Absolute difference between the arguments: Vr[i] = | Va[i] - Vb[i] |***** +//************************************************************ +#if defined(USE_SSSE3) + +#endif + +#if defined(USE_SSSE3) +int8x16_t vabdq_s8(int8x16_t a, int8x16_t b); // VABD.S8 q0,q0,q0 +_NEON2SSE_INLINE int8x16_t vabdq_s8(int8x16_t a, int8x16_t b) // VABD.S8 q0,q0,q0 +{ + __m128i res; + res = _mm_sub_epi8 (a, b); + return _mm_abs_epi8 (res); +} +#endif + +#if defined(USE_SSSE3) +int16x8_t vabdq_s16(int16x8_t a, int16x8_t b); // VABD.S16 q0,q0,q0 +_NEON2SSE_INLINE int16x8_t vabdq_s16(int16x8_t a, int16x8_t b) // VABD.S16 q0,q0,q0 +{ + __m128i res; + res = _mm_sub_epi16 (a,b); + return _mm_abs_epi16 (res); +} +#endif + +#if defined(USE_SSSE3) +int32x4_t vabdq_s32(int32x4_t a, int32x4_t b); // VABD.S32 q0,q0,q0 +_NEON2SSE_INLINE int32x4_t vabdq_s32(int32x4_t a, int32x4_t b) // VABD.S32 q0,q0,q0 +{ + __m128i res; + res = _mm_sub_epi32 (a,b); + return _mm_abs_epi32 (res); +} +#endif + +uint8x16_t vabdq_u8(uint8x16_t a, uint8x16_t b); // VABD.U8 q0,q0,q0 +_NEON2SSE_INLINE uint8x16_t vabdq_u8(uint8x16_t a, uint8x16_t b) //no abs for unsigned +{ + __m128i cmp, difab, difba; + cmp = vcgtq_u8(a,b); + difab = _mm_sub_epi8(a,b); + difba = _mm_sub_epi8 (b,a); + difab = _mm_and_si128(cmp, difab); + difba = _mm_andnot_si128(cmp, difba); + return _mm_or_si128(difab, difba); +} + +uint16x8_t vabdq_u16(uint16x8_t a, uint16x8_t b); // VABD.s16 q0,q0,q0 +_NEON2SSE_INLINE uint16x8_t vabdq_u16(uint16x8_t a, uint16x8_t b) +{ + __m128i cmp, difab, difba; + cmp = vcgtq_u16(a,b); + difab = _mm_sub_epi16(a,b); + difba = _mm_sub_epi16 (b,a); + difab = _mm_and_si128(cmp, difab); + difba = _mm_andnot_si128(cmp, difba); + return _mm_or_si128(difab, difba); +} + +uint32x4_t vabdq_u32(uint32x4_t a, uint32x4_t b); // VABD.U32 q0,q0,q0 +_NEON2SSE_INLINE uint32x4_t vabdq_u32(uint32x4_t a, uint32x4_t b) +{ + __m128i cmp, difab, difba; + cmp = vcgtq_u32(a,b); + difab = _mm_sub_epi32(a,b); + difba = _mm_sub_epi32 (b,a); + difab = _mm_and_si128(cmp, difab); + difba = _mm_andnot_si128(cmp, difba); + return _mm_or_si128(difab, difba); +} + +float32x4_t vabdq_f32(float32x4_t a, float32x4_t b); // VABD.F32 q0,q0,q0 +_NEON2SSE_INLINE float32x4_t vabdq_f32(float32x4_t a, float32x4_t b) // VABD.F32 q0,q0,q0 +{ + __m128i c1; + __m128 res; + c1 = _mm_set1_epi32(0x7fffffff); + res = _mm_sub_ps (a, b); + return _mm_and_ps (res, *(__m128*)&c1); +} + +//************ Absolute difference - long ************************** +//******************************************************************** + +//**********Absolute difference and accumulate: Vr[i] = Va[i] + | Vb[i] - Vc[i] | ************* +//********************************************************************************************* + +#if defined(USE_SSSE3) +int8x16_t vabaq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VABA.S8 q0,q0,q0 +_NEON2SSE_INLINE int8x16_t vabaq_s8(int8x16_t a, int8x16_t b, int8x16_t c) // VABA.S8 q0,q0,q0 +{ + int8x16_t sub; + sub = vabdq_s8(b, c); + return vaddq_s8( a, sub); +} +#endif + +#if defined(USE_SSSE3) +int16x8_t vabaq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VABA.S16 q0,q0,q0 +_NEON2SSE_INLINE int16x8_t vabaq_s16(int16x8_t a, int16x8_t b, int16x8_t c) // VABA.S16 q0,q0,q0 +{ + int16x8_t sub; + sub = vabdq_s16(b, c); + return vaddq_s16( a, sub); +} +#endif + +#if defined(USE_SSSE3) +int32x4_t vabaq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VABA.S32 q0,q0,q0 +_NEON2SSE_INLINE int32x4_t vabaq_s32(int32x4_t a, int32x4_t b, int32x4_t c) // VABA.S32 q0,q0,q0 +{ + int32x4_t sub; + sub = vabdq_s32(b, c); + return vaddq_s32( a, sub); +} +#endif + +uint8x16_t vabaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VABA.U8 q0,q0,q0 +_NEON2SSE_INLINE uint8x16_t vabaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c) +{ + uint8x16_t sub; + sub = vabdq_u8(b, c); + return vaddq_u8( a, sub); +} + +uint16x8_t vabaq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VABA.s16 q0,q0,q0 +_NEON2SSE_INLINE uint16x8_t vabaq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c) +{ + uint16x8_t sub; + sub = vabdq_u16(b, c); + return vaddq_u16( a, sub); +} + +uint32x4_t vabaq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VABA.U32 q0,q0,q0 +_NEON2SSE_INLINE uint32x4_t vabaq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c) +{ + uint32x4_t sub; + sub = vabdq_u32(b, c); + return vaddq_u32( a, sub); +} + +//************** Absolute difference and accumulate - long ******************************** +//************************************************************************************* + +//*********************************************************************************** +//**************** Maximum and minimum operations ********************************** +//*********************************************************************************** +//************* Maximum: vmax -> Vr[i] := (Va[i] >= Vb[i]) ? Va[i] : Vb[i] ******* +//*********************************************************************************** + +int8x16_t vmaxq_s8(int8x16_t a, int8x16_t b); // VMAX.S8 q0,q0,q0 +#define vmaxq_s8 _MM_MAX_EPI8 //SSE4.1 + +int16x8_t vmaxq_s16(int16x8_t a, int16x8_t b); // VMAX.S16 q0,q0,q0 +#define vmaxq_s16 _mm_max_epi16 + +int32x4_t vmaxq_s32(int32x4_t a, int32x4_t b); // VMAX.S32 q0,q0,q0 +#define vmaxq_s32 _MM_MAX_EPI32 //SSE4.1 + +uint8x16_t vmaxq_u8(uint8x16_t a, uint8x16_t b); // VMAX.U8 q0,q0,q0 +#define vmaxq_u8 _mm_max_epu8 + +uint16x8_t vmaxq_u16(uint16x8_t a, uint16x8_t b); // VMAX.s16 q0,q0,q0 +#define vmaxq_u16 _MM_MAX_EPU16 //SSE4.1 + +uint32x4_t vmaxq_u32(uint32x4_t a, uint32x4_t b); // VMAX.U32 q0,q0,q0 +#define vmaxq_u32 _MM_MAX_EPU32 //SSE4.1 + +float32x4_t vmaxq_f32(float32x4_t a, float32x4_t b); // VMAX.F32 q0,q0,q0 +#define vmaxq_f32 _mm_max_ps + +//*************** Minimum: vmin -> Vr[i] := (Va[i] >= Vb[i]) ? Vb[i] : Va[i] ******************************** +//*********************************************************************************************************** + +int8x16_t vminq_s8(int8x16_t a, int8x16_t b); // VMIN.S8 q0,q0,q0 +#define vminq_s8 _MM_MIN_EPI8 //SSE4.1 + +int16x8_t vminq_s16(int16x8_t a, int16x8_t b); // VMIN.S16 q0,q0,q0 +#define vminq_s16 _mm_min_epi16 + +int32x4_t vminq_s32(int32x4_t a, int32x4_t b); // VMIN.S32 q0,q0,q0 +#define vminq_s32 _MM_MIN_EPI32 //SSE4.1 + +uint8x16_t vminq_u8(uint8x16_t a, uint8x16_t b); // VMIN.U8 q0,q0,q0 +#define vminq_u8 _mm_min_epu8 + +uint16x8_t vminq_u16(uint16x8_t a, uint16x8_t b); // VMIN.s16 q0,q0,q0 +#define vminq_u16 _MM_MIN_EPU16 //SSE4.1 + +uint32x4_t vminq_u32(uint32x4_t a, uint32x4_t b); // VMIN.U32 q0,q0,q0 +#define vminq_u32 _MM_MIN_EPU32 //SSE4.1 + +float32x4_t vminq_f32(float32x4_t a, float32x4_t b); // VMIN.F32 q0,q0,q0 +#define vminq_f32 _mm_min_ps + +//************* Pairwise addition operations. ************************************** +//************************************************************************************ +//Pairwise add - adds adjacent pairs of elements of two vectors, and places the results in the destination vector + +//************************** Long pairwise add ********************************** +//********************************************************************************* +//Adds adjacent pairs of elements of a vector,sign or zero extends the results to twice their original width, +// and places the final results in the destination vector. + +#if defined(USE_SSSE3) +int16x8_t vpaddlq_s8(int8x16_t a); // VPADDL.S8 q0,q0 +_NEON2SSE_INLINE int16x8_t vpaddlq_s8(int8x16_t a) // VPADDL.S8 q0,q0 +{ //no 8 bit hadd in IA32, need to go to 16 bit + __m128i r16_1, r16_2; + r16_1 = _MM_CVTEPI8_EPI16 (a); // SSE 4.1 + //swap hi and low part of r to process the remaining data + r16_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); + r16_2 = _MM_CVTEPI8_EPI16 (r16_2); + return _mm_hadd_epi16 (r16_1, r16_2); +} +#endif + +#if defined(USE_SSSE3) +int32x4_t vpaddlq_s16(int16x8_t a); // VPADDL.S16 q0,q0 +_NEON2SSE_INLINE int32x4_t vpaddlq_s16(int16x8_t a) // VPADDL.S16 q0,q0 +{ //no 8 bit hadd in IA32, need to go to 16 bit + __m128i r32_1, r32_2; + r32_1 = _MM_CVTEPI16_EPI32(a); + //swap hi and low part of r to process the remaining data + r32_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); + r32_2 = _MM_CVTEPI16_EPI32 (r32_2); + return _mm_hadd_epi32 (r32_1, r32_2); +} +#endif + +int64x2_t vpaddlq_s32(int32x4_t a); // VPADDL.S32 q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vpaddlq_s32(int32x4_t a), _NEON2SSE_REASON_SLOW_SERIAL) // VPADDL.S32 q0,q0 +{ + _NEON2SSE_ALIGN_16 int32_t atmp[4]; + _NEON2SSE_ALIGN_16 int64_t res[2]; + _mm_store_si128((__m128i*)atmp, a); + res[0] = (int64_t)atmp[0] + (int64_t)atmp[1]; + res[1] = (int64_t)atmp[2] + (int64_t)atmp[3]; + return _mm_load_si128((__m128i*)res); +} + +#if defined(USE_SSSE3) +uint16x8_t vpaddlq_u8(uint8x16_t a); // VPADDL.U8 q0,q0 +_NEON2SSE_INLINE uint16x8_t vpaddlq_u8(uint8x16_t a) // VPADDL.U8 q0,q0 +{ //no 8 bit hadd in IA32, need to go to 16 bit + __m128i r16_1, r16_2; + r16_1 = _MM_CVTEPU8_EPI16(a); + //swap hi and low part of r to process the remaining data + r16_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); + r16_2 = _MM_CVTEPU8_EPI16 (r16_2); + return _mm_hadd_epi16 (r16_1, r16_2); +} +#endif + +uint32x4_t vpaddlq_u16(uint16x8_t a); // VPADDL.s16 q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vpaddlq_u16(uint16x8_t a), _NEON2SSE_REASON_SLOW_SERIAL) +{ //serial solution looks faster than a SIMD one + _NEON2SSE_ALIGN_16 uint16_t atmp[8]; + _NEON2SSE_ALIGN_16 uint32_t res[4]; + _mm_store_si128((__m128i*)atmp, a); + res[0] = (uint32_t)atmp[0] + (uint32_t)atmp[1]; + res[1] = (uint32_t)atmp[2] + (uint32_t)atmp[3]; + res[2] = (uint32_t)atmp[4] + (uint32_t)atmp[5]; + res[3] = (uint32_t)atmp[6] + (uint32_t)atmp[7]; + return _mm_load_si128((__m128i*)res); +} + +uint64x2_t vpaddlq_u32(uint32x4_t a); // VPADDL.U32 q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vpaddlq_u32(uint32x4_t a), _NEON2SSE_REASON_SLOW_SERIAL) +{ + _NEON2SSE_ALIGN_16 uint32_t atmp[4]; + _NEON2SSE_ALIGN_16 uint64_t res[2]; + _mm_store_si128((__m128i*)atmp, a); + res[0] = (uint64_t)atmp[0] + (uint64_t)atmp[1]; + res[1] = (uint64_t)atmp[2] + (uint64_t)atmp[3]; + return _mm_load_si128((__m128i*)res); +} + +//************************ Long pairwise add and accumulate ************************** +//**************************************************************************************** +//VPADAL (Vector Pairwise Add and Accumulate Long) adds adjacent pairs of elements of a vector, +// and accumulates the values of the results into the elements of the destination (wide) vector + +#if defined(USE_SSSE3) +int16x8_t vpadalq_s8(int16x8_t a, int8x16_t b); // VPADAL.S8 q0,q0 +_NEON2SSE_INLINE int16x8_t vpadalq_s8(int16x8_t a, int8x16_t b) // VPADAL.S8 q0,q0 +{ + int16x8_t pad; + pad = vpaddlq_s8(b); + return _mm_add_epi16 (a, pad); +} +#endif + +#if defined(USE_SSSE3) +int32x4_t vpadalq_s16(int32x4_t a, int16x8_t b); // VPADAL.S16 q0,q0 +_NEON2SSE_INLINE int32x4_t vpadalq_s16(int32x4_t a, int16x8_t b) // VPADAL.S16 q0,q0 +{ + int32x4_t pad; + pad = vpaddlq_s16(b); + return _mm_add_epi32(a, pad); +} +#endif + +int64x2_t vpadalq_s32(int64x2_t a, int32x4_t b); // VPADAL.S32 q0,q0 +_NEON2SSE_INLINE int64x2_t vpadalq_s32(int64x2_t a, int32x4_t b) +{ + int64x2_t pad; + pad = vpaddlq_s32(b); + return _mm_add_epi64 (a, pad); +} + +#if defined(USE_SSSE3) +uint16x8_t vpadalq_u8(uint16x8_t a, uint8x16_t b); // VPADAL.U8 q0,q0 +_NEON2SSE_INLINE uint16x8_t vpadalq_u8(uint16x8_t a, uint8x16_t b) // VPADAL.U8 q0,q0 +{ + uint16x8_t pad; + pad = vpaddlq_u8(b); + return _mm_add_epi16 (a, pad); +} +#endif + +uint32x4_t vpadalq_u16(uint32x4_t a, uint16x8_t b); // VPADAL.s16 q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vpadalq_u16(uint32x4_t a, uint16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + uint32x4_t pad; + pad = vpaddlq_u16(b); + return _mm_add_epi32(a, pad); +} //no optimal SIMD solution, serial is faster + +uint64x2_t vpadalq_u32(uint64x2_t a, uint32x4_t b); // VPADAL.U32 q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vpadalq_u32(uint64x2_t a, uint32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ //no optimal SIMD solution, serial is faster + uint64x2_t pad; + pad = vpaddlq_u32(b); + return _mm_add_epi64(a, pad); +} //no optimal SIMD solution, serial is faster + +//********** Folding maximum ************************************* +//******************************************************************* +//VPMAX (Vector Pairwise Maximum) compares adjacent pairs of elements in two vectors, +//and copies the larger of each pair into the corresponding element in the destination +// no corresponding functionality in IA32 SIMD, so we need to do the vertical comparison + +// ***************** Folding minimum **************************** +// ************************************************************** +//vpmin -> takes minimum of adjacent pairs + +//*************************************************************** +//*********** Reciprocal/Sqrt ************************************ +//*************************************************************** +//****************** Reciprocal estimate ******************************* + +//the ARM NEON and x86 SIMD results may be slightly different + +float32x4_t vrecpeq_f32(float32x4_t a); // VRECPE.F32 q0,q0 +//the ARM NEON and x86 SIMD results may be slightly different +#define vrecpeq_f32 _mm_rcp_ps + +uint32x4_t vrecpeq_u32(uint32x4_t a); // VRECPE.U32 q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vrecpeq_u32(uint32x4_t a), _NEON2SSE_REASON_SLOW_SERIAL) +{ //no reciprocal for ints in IA32 available, neither for unsigned int to float 4 lanes conversion, so serial solution looks faster + _NEON2SSE_ALIGN_16 uint32_t atmp[4], res[4]; + _mm_store_si128((__m128i*)atmp, a); + res[0] = (atmp[0]) ? 1 / atmp[0] : 0xffffffff; + res[1] = (atmp[1]) ? 1 / atmp[1] : 0xffffffff; + return _mm_load_si128((__m128i*)res); +} + +//**********Reciprocal square root estimate **************** +//********************************************************** +//no reciprocal square root for ints in IA32 available, neither for unsigned int to float4 lanes conversion, so a serial solution looks faster + +float32x4_t vrsqrteq_f32(float32x4_t a); // VRSQRTE.F32 q0,q0 +//the ARM NEON and x86 SIMD results may be slightly different +#define vrsqrteq_f32 _mm_rsqrt_ps + +uint32x4_t vrsqrteq_u32(uint32x4_t a); // VRSQRTE.U32 q0,q0 +#define vrsqrteq_u32(a) _mm_castps_si128(_mm_rsqrt_ps(_M128(a)) ) + +//************ Reciprocal estimate/step and 1/sqrt estimate/step *************************** +//****************************************************************************************** +//******VRECPS (Vector Reciprocal Step) *************************************************** +//multiplies the elements of one vector by the corresponding elements of another vector, +//subtracts each of the results from 2, and places the final results into the elements of the destination vector. + +float32x4_t vrecpsq_f32(float32x4_t a, float32x4_t b); // VRECPS.F32 q0, q0, q0 +_NEON2SSE_INLINE float32x4_t vrecpsq_f32(float32x4_t a, float32x4_t b) // VRECPS.F32 q0, q0, q0 +{ + __m128 f2, mul; + f2 = _mm_set1_ps(2.); + mul = _mm_mul_ps(a,b); + return _mm_sub_ps(f2,mul); +} + +//*****************VRSQRTS (Vector Reciprocal Square Root Step) ***************************** +//multiplies the elements of one vector by the corresponding elements of another vector, +//subtracts each of the results from 3, divides these results by two, and places the final results into the elements of the destination vector. + +float32x4_t vrsqrtsq_f32(float32x4_t a, float32x4_t b); // VRSQRTS.F32 q0, q0, q0 +_NEON2SSE_INLINE float32x4_t vrsqrtsq_f32(float32x4_t a, float32x4_t b) // VRSQRTS.F32 q0, q0, q0 +{ + __m128 f3, f05, mul; + f3 = _mm_set1_ps(3.); + f05 = _mm_set1_ps(0.5); + mul = _mm_mul_ps(a,b); + f3 = _mm_sub_ps(f3,mul); + return _mm_mul_ps (f3, f05); +} +//******************************************************************************************** +//***************************** Shifts by signed variable *********************************** +//******************************************************************************************** +//***** Vector shift left: Vr[i] := Va[i] << Vb[i] (negative values shift right) *********************** +//******************************************************************************************** +//No such operations in IA32 SIMD unfortunately, constant shift only available, so need to do the serial solution +//helper macro. It matches ARM implementation for big shifts +#define SERIAL_SHIFT(TYPE, INTERNAL_TYPE, LENMAX, LEN) \ + _NEON2SSE_ALIGN_16 TYPE atmp[LENMAX], res[LENMAX]; _NEON2SSE_ALIGN_16 INTERNAL_TYPE btmp[LENMAX]; int i, lanesize = sizeof(INTERNAL_TYPE) << 3; \ + _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \ + for (i = 0; i= lanesize)||(btmp[i] <= -lanesize) ) res[i] = 0; \ + else res[i] = (btmp[i] >=0) ? atmp[i] << btmp[i] : atmp[i] >> (-btmp[i]); } \ + return _mm_load_si128((__m128i*)res); + +int8x16_t vshlq_s8(int8x16_t a, int8x16_t b); // VSHL.S8 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x16_t vshlq_s8(int8x16_t a, int8x16_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SHIFT(int8_t, int8_t, 16, 16) +} + +int16x8_t vshlq_s16(int16x8_t a, int16x8_t b); // VSHL.S16 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x8_t vshlq_s16(int16x8_t a, int16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SHIFT(int16_t, int16_t, 8, 8) +} + +int32x4_t vshlq_s32(int32x4_t a, int32x4_t b); // VSHL.S32 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vshlq_s32(int32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SHIFT(int32_t, int32_t, 4, 4) +} + +int64x2_t vshlq_s64(int64x2_t a, int64x2_t b); // VSHL.S64 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vshlq_s64(int64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SHIFT(int64_t, int64_t, 2, 2) +} + +uint8x16_t vshlq_u8(uint8x16_t a, int8x16_t b); // VSHL.U8 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x16_t vshlq_u8(uint8x16_t a, int8x16_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SHIFT(uint8_t, int8_t, 16, 16) +} + +uint16x8_t vshlq_u16(uint16x8_t a, int16x8_t b); // VSHL.s16 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x8_t vshlq_u16(uint16x8_t a, int16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SHIFT(uint16_t, int16_t, 8, 8) +} + +uint32x4_t vshlq_u32(uint32x4_t a, int32x4_t b); // VSHL.U32 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vshlq_u32(uint32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SHIFT(uint32_t, int32_t, 4, 4) +} + +uint64x2_t vshlq_u64(uint64x2_t a, int64x2_t b); // VSHL.U64 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING( uint64x2_t vshlq_u64(uint64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SHIFT(uint64_t, int64_t, 2, 2) +} + +//*********** Vector saturating shift left: (negative values shift right) ********************** +//******************************************************************************************** +//No such operations in IA32 SIMD available yet, constant shift only available, so need to do the serial solution +#define SERIAL_SATURATING_SHIFT_SIGNED(TYPE, LENMAX, LEN) \ + _NEON2SSE_ALIGN_16 TYPE atmp[LENMAX], res[LENMAX], btmp[LENMAX]; TYPE limit; int i; \ + int lanesize_1 = (sizeof(TYPE) << 3) - 1; \ + _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \ + for (i = 0; i> (-btmp[i]); \ + else{ \ + if (btmp[i]>lanesize_1) { \ + res[i] = ((_UNSIGNED_T(TYPE))atmp[i] >> lanesize_1 ) + ((TYPE)1 << lanesize_1) - 1; \ + }else{ \ + limit = (TYPE)1 << (lanesize_1 - btmp[i]); \ + if((atmp[i] >= limit)||(atmp[i] <= -limit)) \ + res[i] = ((_UNSIGNED_T(TYPE))atmp[i] >> lanesize_1 ) + ((TYPE)1 << lanesize_1) - 1; \ + else res[i] = atmp[i] << btmp[i]; }}}} \ + return _mm_load_si128((__m128i*)res); + +#define SERIAL_SATURATING_SHIFT_UNSIGNED(TYPE, LENMAX, LEN) \ + _NEON2SSE_ALIGN_16 _UNSIGNED_T(TYPE) atmp[LENMAX], res[LENMAX]; _NEON2SSE_ALIGN_16 TYPE btmp[LENMAX]; _UNSIGNED_T(TYPE) limit; int i; \ + TYPE lanesize = (sizeof(TYPE) << 3); \ + _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \ + for (i = 0; i> (-btmp[i]); \ + else{ \ + if (btmp[i]>lanesize) res[i] = ~((TYPE)0); \ + else{ \ + limit = (TYPE) 1 << (lanesize - btmp[i]); \ + res[i] = ( atmp[i] >= limit) ? res[i] = ~((TYPE)0) : atmp[i] << btmp[i]; }}}} \ + return _mm_load_si128((__m128i*)res); + +int8x16_t vqshlq_s8(int8x16_t a, int8x16_t b); // VQSHL.S8 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x16_t vqshlq_s8(int8x16_t a, int8x16_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SATURATING_SHIFT_SIGNED(int8_t, 16, 16) +} + +int16x8_t vqshlq_s16(int16x8_t a, int16x8_t b); // VQSHL.S16 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x8_t vqshlq_s16(int16x8_t a, int16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SATURATING_SHIFT_SIGNED(int16_t, 8, 8) +} + +int32x4_t vqshlq_s32(int32x4_t a, int32x4_t b); // VQSHL.S32 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqshlq_s32(int32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SATURATING_SHIFT_SIGNED(int32_t, 4, 4) +} + +int64x2_t vqshlq_s64(int64x2_t a, int64x2_t b); // VQSHL.S64 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqshlq_s64(int64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SATURATING_SHIFT_SIGNED(int64_t, 2, 2) +} + +uint8x16_t vqshlq_u8(uint8x16_t a, int8x16_t b); // VQSHL.U8 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x16_t vqshlq_u8(uint8x16_t a, int8x16_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SATURATING_SHIFT_UNSIGNED(int8_t, 16, 16) +} + +uint16x8_t vqshlq_u16(uint16x8_t a, int16x8_t b); // VQSHL.s16 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x8_t vqshlq_u16(uint16x8_t a, int16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SATURATING_SHIFT_UNSIGNED(int16_t, 8, 8) +} + +uint32x4_t vqshlq_u32(uint32x4_t a, int32x4_t b); // VQSHL.U32 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vqshlq_u32(uint32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SATURATING_SHIFT_UNSIGNED(int32_t, 4, 4) +} + +uint64x2_t vqshlq_u64(uint64x2_t a, int64x2_t b); // VQSHL.U64 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqshlq_u64(uint64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SATURATING_SHIFT_UNSIGNED(int64_t, 2, 2) +} + +//******** Vector rounding shift left: (negative values shift right) ********** +//**************************************************************************** +//No such operations in IA32 SIMD available yet, constant shift only available, so need to do the serial solution +//rounding makes sense for right shifts only. +#define SERIAL_ROUNDING_SHIFT(TYPE, INTERNAL_TYPE, LENMAX, LEN) \ + _NEON2SSE_ALIGN_16 TYPE atmp[LENMAX], res[LENMAX]; _NEON2SSE_ALIGN_16 INTERNAL_TYPE btmp[LENMAX]; INTERNAL_TYPE i, lanesize = sizeof(INTERNAL_TYPE) << 3; \ + _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \ + for (i = 0; i= 0) { \ + if(btmp[i] >= lanesize) res[i] = 0; \ + else res[i] = (atmp[i] << btmp[i]); \ + }else{ \ + res[i] = (btmp[i] < -lanesize) ? res[i] = 0 : \ + (btmp[i] == -lanesize) ? (atmp[i] & ((INTERNAL_TYPE)1 << (-btmp[i] - 1))) >> (-btmp[i] - 1) : \ + (atmp[i] >> (-btmp[i])) + ( (atmp[i] & ((INTERNAL_TYPE)1 << (-btmp[i] - 1))) >> (-btmp[i] - 1) ); }} \ + return _mm_load_si128((__m128i*)res); + +int8x16_t vrshlq_s8(int8x16_t a, int8x16_t b); // VRSHL.S8 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x16_t vrshlq_s8(int8x16_t a, int8x16_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_ROUNDING_SHIFT(int8_t, int8_t, 16, 16) +} + +int16x8_t vrshlq_s16(int16x8_t a, int16x8_t b); // VRSHL.S16 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x8_t vrshlq_s16(int16x8_t a, int16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_ROUNDING_SHIFT(int16_t, int16_t, 8, 8) +} + +int32x4_t vrshlq_s32(int32x4_t a, int32x4_t b); // VRSHL.S32 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vrshlq_s32(int32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_ROUNDING_SHIFT(int32_t, int32_t, 4, 4) +} + +int64x2_t vrshlq_s64(int64x2_t a, int64x2_t b); // VRSHL.S64 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vrshlq_s64(int64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_ROUNDING_SHIFT(int64_t, int64_t, 2, 2) +} + +uint8x16_t vrshlq_u8(uint8x16_t a, int8x16_t b); // VRSHL.U8 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x16_t vrshlq_u8(uint8x16_t a, int8x16_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_ROUNDING_SHIFT(uint8_t, int8_t, 16, 16) +} + +uint16x8_t vrshlq_u16(uint16x8_t a, int16x8_t b); // VRSHL.s16 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x8_t vrshlq_u16(uint16x8_t a, int16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_ROUNDING_SHIFT(uint16_t, int16_t, 8, 8) +} + +uint32x4_t vrshlq_u32(uint32x4_t a, int32x4_t b); // VRSHL.U32 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vrshlq_u32(uint32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_ROUNDING_SHIFT(uint32_t, int32_t, 4, 4) +} + +uint64x2_t vrshlq_u64(uint64x2_t a, int64x2_t b); // VRSHL.U64 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vrshlq_u64(uint64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_ROUNDING_SHIFT(uint64_t, int64_t, 2, 2) +} + +//********** Vector saturating rounding shift left: (negative values shift right) **************** +//************************************************************************************************* +//No such operations in IA32 SIMD unfortunately, constant shift only available, so need to do the serial solution +//Saturation happens for left shifts only while rounding makes sense for right shifts only. +#define SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED(TYPE, LENMAX, LEN) \ + _NEON2SSE_ALIGN_16 TYPE atmp[LENMAX], res[LENMAX], btmp[LENMAX]; TYPE limit; int i; \ + int lanesize_1 = (sizeof(TYPE) << 3) - 1; \ + _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \ + for (i = 0; i> (-btmp[i])) + ( (atmp[i] & ((TYPE)1 << (-btmp[i] - 1))) >> (-btmp[i] - 1) ); \ + else{ \ + if (btmp[i]>lanesize_1) { \ + res[i] = ((_UNSIGNED_T(TYPE))atmp[i] >> lanesize_1 ) + ((TYPE)1 << lanesize_1) - 1; \ + }else{ \ + limit = (TYPE)1 << (lanesize_1 - btmp[i]); \ + if((atmp[i] >= limit)||(atmp[i] <= -limit)) \ + res[i] = ((_UNSIGNED_T(TYPE))atmp[i] >> lanesize_1 ) + ((TYPE)1 << lanesize_1) - 1; \ + else res[i] = atmp[i] << btmp[i]; }}}} \ + return _mm_load_si128((__m128i*)res); + +#define SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED(TYPE, LENMAX, LEN) \ + _NEON2SSE_ALIGN_16 _UNSIGNED_T(TYPE) atmp[LENMAX], res[LENMAX]; _NEON2SSE_ALIGN_16 TYPE btmp[LENMAX]; _UNSIGNED_T(TYPE) limit; int i; \ + int lanesize = (sizeof(TYPE) << 3); \ + _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \ + for (i = 0; i> (-btmp[i])) + ( (atmp[i] & ((TYPE)1 << (-btmp[i] - 1))) >> (-btmp[i] - 1) ); \ + else{ \ + if (btmp[i]>lanesize) res[i] = ~((TYPE)0); \ + else{ \ + limit = (TYPE) 1 << (lanesize - btmp[i]); \ + res[i] = ( atmp[i] >= limit) ? res[i] = ~((TYPE)0) : atmp[i] << btmp[i]; }}}} \ + return _mm_load_si128((__m128i*)res); + +int8x16_t vqrshlq_s8(int8x16_t a, int8x16_t b); // VQRSHL.S8 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x16_t vqrshlq_s8(int8x16_t a, int8x16_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED(int8_t, 16, 16) +} + +int16x8_t vqrshlq_s16(int16x8_t a, int16x8_t b); // VQRSHL.S16 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x8_t vqrshlq_s16(int16x8_t a, int16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED(int16_t, 8, 8) +} + +int32x4_t vqrshlq_s32(int32x4_t a, int32x4_t b); // VQRSHL.S32 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqrshlq_s32(int32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED(int32_t, 4, 4) +} + +int64x2_t vqrshlq_s64(int64x2_t a, int64x2_t b); // VQRSHL.S64 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqrshlq_s64(int64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED(int64_t, 2, 2) +} + +uint8x16_t vqrshlq_u8(uint8x16_t a, int8x16_t b); // VQRSHL.U8 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x16_t vqrshlq_u8(uint8x16_t a, int8x16_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED(int8_t, 16, 16) +} + +uint16x8_t vqrshlq_u16(uint16x8_t a, int16x8_t b); // VQRSHL.s16 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x8_t vqrshlq_u16(uint16x8_t a, int16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED(int16_t, 8, 8) +} + +uint32x4_t vqrshlq_u32(uint32x4_t a, int32x4_t b); // VQRSHL.U32 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vqrshlq_u32(uint32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED(int32_t, 4, 4) +} + +uint64x2_t vqrshlq_u64(uint64x2_t a, int64x2_t b); // VQRSHL.U64 q0,q0,q0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqrshlq_u64(uint64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) +{ + SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED(int64_t, 2, 2) +} + +// ********************************************************************************* +// ***************************** Shifts by a constant ***************************** +// ********************************************************************************* +//**************** Vector shift right by constant************************************* +//************************************************************************************ + +int8x16_t vshrq_n_s8(int8x16_t a, __constrange(1,8) int b); // VSHR.S8 q0,q0,#8 +_NEON2SSE_INLINE int8x16_t vshrq_n_s8(int8x16_t a, __constrange(1,8) int b) // VSHR.S8 q0,q0,#8 +{ //no 8 bit shift available, go to 16 bit trick + __m128i zero, mask0, a_sign, r, a_sign_mask; + _NEON2SSE_ALIGN_16 int16_t mask0_16[9] = {0x0000, 0x0080, 0x00c0, 0x00e0, 0x00f0, 0x00f8, 0x00fc, 0x00fe, 0x00ff}; + zero = _mm_setzero_si128(); + mask0 = _mm_set1_epi16(mask0_16[b]); //to mask the bits to be "spoiled" by 16 bit shift + a_sign = _mm_cmpgt_epi8 (zero, a); //ff if a<0 or zero if a>0 + r = _mm_srai_epi16 (a, b); + a_sign_mask = _mm_and_si128 (mask0, a_sign); + r = _mm_andnot_si128 (mask0, r); + return _mm_or_si128 (r, a_sign_mask); +} + +int16x8_t vshrq_n_s16(int16x8_t a, __constrange(1,16) int b); // VSHR.S16 q0,q0,#16 +#define vshrq_n_s16 _mm_srai_epi16 + +int32x4_t vshrq_n_s32(int32x4_t a, __constrange(1,32) int b); // VSHR.S32 q0,q0,#32 +#define vshrq_n_s32 _mm_srai_epi32 + +int64x2_t vshrq_n_s64(int64x2_t a, __constrange(1,64) int b); // VSHR.S64 q0,q0,#64 +_NEON2SSE_INLINE int64x2_t vshrq_n_s64(int64x2_t a, __constrange(1,64) int b) +{ //SIMD implementation may be not optimal due to 64 bit arithmetic shift absense in x86 SIMD + __m128i c1, signmask,a0, res64; + _NEON2SSE_ALIGN_16 uint64_t mask[] = {0x8000000000000000, 0x8000000000000000}; + c1 = _mm_cmpeq_epi32(a,a); //0xffffffffffffffff + signmask = _mm_slli_epi64 (c1, (64 - b)); + a0 = _mm_or_si128(a, *(__m128i*)mask); //get the first bit + #ifdef USE_SSE4 + a0 = _mm_cmpeq_epi64 (a, a0); //SSE4.1 + #else + a0 = _mm_cmpeq_epi32 (a, a0); + a0 = _mm_shuffle_epi32 (a0, 1 | (1 << 2) | (3 << 4) | (3 << 6)); //copy the information from hi to low part of the 64 bit data + #endif + signmask = _mm_and_si128(a0, signmask); + res64 = _mm_srli_epi64 (a, b); + return _mm_or_si128(res64, signmask); +} + +uint8x16_t vshrq_n_u8(uint8x16_t a, __constrange(1,8) int b); // VSHR.U8 q0,q0,#8 +_NEON2SSE_INLINE uint8x16_t vshrq_n_u8(uint8x16_t a, __constrange(1,8) int b) // VSHR.U8 q0,q0,#8 +{ //no 8 bit shift available, need the special trick + __m128i mask0, r; + _NEON2SSE_ALIGN_16 uint16_t mask10_16[9] = {0xffff, 0xff7f, 0xff3f, 0xff1f, 0xff0f, 0xff07, 0xff03, 0xff01, 0xff00}; + mask0 = _mm_set1_epi16(mask10_16[b]); //to mask the bits to be "spoiled" by 16 bit shift + r = _mm_srli_epi16 ( a, b); + return _mm_and_si128 (r, mask0); +} + +uint16x8_t vshrq_n_u16(uint16x8_t a, __constrange(1,16) int b); // VSHR.s16 q0,q0,#16 +#define vshrq_n_u16 _mm_srli_epi16 + +uint32x4_t vshrq_n_u32(uint32x4_t a, __constrange(1,32) int b); // VSHR.U32 q0,q0,#32 +#define vshrq_n_u32 _mm_srli_epi32 + +uint64x2_t vshrq_n_u64(uint64x2_t a, __constrange(1,64) int b); // VSHR.U64 q0,q0,#64 +#define vshrq_n_u64 _mm_srli_epi64 + +//*************************** Vector shift left by constant ************************* +//********************************************************************************* + +int8x16_t vshlq_n_s8(int8x16_t a, __constrange(0,7) int b); // VSHL.I8 q0,q0,#0 +#define vshlq_n_s8 vshlq_n_u8 + +int16x8_t vshlq_n_s16(int16x8_t a, __constrange(0,15) int b); // VSHL.I16 q0,q0,#0 +#define vshlq_n_s16 _mm_slli_epi16 + +int32x4_t vshlq_n_s32(int32x4_t a, __constrange(0,31) int b); // VSHL.I32 q0,q0,#0 +#define vshlq_n_s32 _mm_slli_epi32 + +int64x2_t vshlq_n_s64(int64x2_t a, __constrange(0,63) int b); // VSHL.I64 q0,q0,#0 +#define vshlq_n_s64 _mm_slli_epi64 + +uint8x16_t vshlq_n_u8(uint8x16_t a, __constrange(0,7) int b); // VSHL.I8 q0,q0,#0 +_NEON2SSE_INLINE uint8x16_t vshlq_n_u8(uint8x16_t a, __constrange(0,7) int b) +{ //no 8 bit shift available, need the special trick + __m128i mask0, r; + _NEON2SSE_ALIGN_16 uint16_t mask10_16[9] = {0xffff, 0xfeff, 0xfcff, 0xf8ff, 0xf0ff, 0xe0ff, 0xc0ff, 0x80ff, 0xff}; + mask0 = _mm_set1_epi16(mask10_16[b]); //to mask the bits to be "spoiled" by 16 bit shift + r = _mm_slli_epi16 ( a, b); + return _mm_and_si128 (r, mask0); +} + +uint16x8_t vshlq_n_u16(uint16x8_t a, __constrange(0,15) int b); // VSHL.I16 q0,q0,#0 +#define vshlq_n_u16 vshlq_n_s16 + +uint32x4_t vshlq_n_u32(uint32x4_t a, __constrange(0,31) int b); // VSHL.I32 q0,q0,#0 +#define vshlq_n_u32 vshlq_n_s32 + +uint64x2_t vshlq_n_u64(uint64x2_t a, __constrange(0,63) int b); // VSHL.I64 q0,q0,#0 +#define vshlq_n_u64 vshlq_n_s64 + +//************* Vector rounding shift right by constant ****************** +//************************************************************************* +//No corresponding x86 intrinsics exist, need to do some tricks + +int8x16_t vrshrq_n_s8(int8x16_t a, __constrange(1,8) int b); // VRSHR.S8 q0,q0,#8 +_NEON2SSE_INLINE int8x16_t vrshrq_n_s8(int8x16_t a, __constrange(1,8) int b) // VRSHR.S8 q0,q0,#8 +{ //no 8 bit shift available, go to 16 bit trick + __m128i r, mask1, maskb; + _NEON2SSE_ALIGN_16 uint16_t mask2b[9] = {0x0000, 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080}; // 2^b-th bit set to 1 + r = vshrq_n_s8 (a, b); + mask1 = _mm_set1_epi16(mask2b[b]); // 2^b-th bit set to 1 for 16bit, need it for rounding + maskb = _mm_and_si128(a, mask1); //get b or 0 for rounding + maskb = _mm_srli_epi16 (maskb, b - 1); // to add 1 + return _mm_add_epi8(r, maskb); //actual rounding +} + +int16x8_t vrshrq_n_s16(int16x8_t a, __constrange(1,16) int b); // VRSHR.S16 q0,q0,#16 +_NEON2SSE_INLINE int16x8_t vrshrq_n_s16(int16x8_t a, __constrange(1,16) int b) // VRSHR.S16 q0,q0,#16 +{ + __m128i maskb, r; + maskb = _mm_slli_epi16(a, (16 - b)); //to get rounding (b-1)th bit + maskb = _mm_srli_epi16(maskb, 15); //1 or 0 + r = _mm_srai_epi16 (a, b); + return _mm_add_epi16 (r, maskb); //actual rounding +} + +int32x4_t vrshrq_n_s32(int32x4_t a, __constrange(1,32) int b); // VRSHR.S32 q0,q0,#32 +_NEON2SSE_INLINE int32x4_t vrshrq_n_s32(int32x4_t a, __constrange(1,32) int b) // VRSHR.S32 q0,q0,#32 +{ + __m128i maskb, r; + maskb = _mm_slli_epi32 (a, (32 - b)); //to get rounding (b-1)th bit + maskb = _mm_srli_epi32 (maskb,31); //1 or 0 + r = _mm_srai_epi32(a, b); + return _mm_add_epi32 (r, maskb); //actual rounding +} + +int64x2_t vrshrq_n_s64(int64x2_t a, __constrange(1,64) int b); // VRSHR.S64 q0,q0,#64 +_NEON2SSE_INLINE int64x2_t vrshrq_n_s64(int64x2_t a, __constrange(1,64) int b) +{ //solution may be not optimal compared with a serial one + __m128i maskb; + int64x2_t r; + maskb = _mm_slli_epi64 (a, (64 - b)); //to get rounding (b-1)th bit + maskb = _mm_srli_epi64 (maskb,63); //1 or 0 + r = vshrq_n_s64(a, b); + return _mm_add_epi64 (r, maskb); //actual rounding +} + +uint8x16_t vrshrq_n_u8(uint8x16_t a, __constrange(1,8) int b); // VRSHR.U8 q0,q0,#8 +_NEON2SSE_INLINE uint8x16_t vrshrq_n_u8(uint8x16_t a, __constrange(1,8) int b) // VRSHR.U8 q0,q0,#8 +{ //no 8 bit shift available, go to 16 bit trick + __m128i r, mask1, maskb; + _NEON2SSE_ALIGN_16 uint16_t mask2b[9] = {0x0000, 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080}; // 2^b-th bit set to 1 + r = vshrq_n_u8 (a, b); + mask1 = _mm_set1_epi16(mask2b[b]); // 2^b-th bit set to 1 for 16bit, need it for rounding + maskb = _mm_and_si128(a, mask1); //get b or 0 for rounding + maskb = _mm_srli_epi16 (maskb, b - 1); // to add 1 + return _mm_add_epi8(r, maskb); //actual rounding +} + +uint16x8_t vrshrq_n_u16(uint16x8_t a, __constrange(1,16) int b); // VRSHR.s16 q0,q0,#16 +_NEON2SSE_INLINE uint16x8_t vrshrq_n_u16(uint16x8_t a, __constrange(1,16) int b) // VRSHR.S16 q0,q0,#16 +{ + __m128i maskb, r; + maskb = _mm_slli_epi16(a, (16 - b)); //to get rounding (b-1)th bit + maskb = _mm_srli_epi16(maskb, 15); //1 or 0 + r = _mm_srli_epi16 (a, b); + return _mm_add_epi16 (r, maskb); //actual rounding +} + +uint32x4_t vrshrq_n_u32(uint32x4_t a, __constrange(1,32) int b); // VRSHR.U32 q0,q0,#32 +_NEON2SSE_INLINE uint32x4_t vrshrq_n_u32(uint32x4_t a, __constrange(1,32) int b) // VRSHR.S32 q0,q0,#32 +{ + __m128i maskb, r; + maskb = _mm_slli_epi32 (a, (32 - b)); //to get rounding (b-1)th bit + maskb = _mm_srli_epi32 (maskb,31); //1 or 0 + r = _mm_srli_epi32(a, b); + return _mm_add_epi32 (r, maskb); //actual rounding +} + +uint64x2_t vrshrq_n_u64(uint64x2_t a, __constrange(1,64) int b); // VRSHR.U64 q0,q0,#64 +_NEON2SSE_INLINE uint64x2_t vrshrq_n_u64(uint64x2_t a, __constrange(1,64) int b) +{ //solution may be not optimal compared with a serial one + __m128i maskb, r; + maskb = _mm_slli_epi64 (a, (64 - b)); //to get rounding (b-1)th bit + maskb = _mm_srli_epi64 (maskb,63); //1 or 0 + r = _mm_srli_epi64(a, b); + return _mm_add_epi64 (r, maskb); //actual rounding +} + +//************* Vector shift right by constant and accumulate ********* +//********************************************************************* + +int8x16_t vsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VSRA.S8 q0,q0,#8 +_NEON2SSE_INLINE int8x16_t vsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c) // VSRA.S8 q0,q0,#8 +{ + int8x16_t shift; + shift = vshrq_n_s8(b, c); + return vaddq_s8(a, shift); +} + +int16x8_t vsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VSRA.S16 q0,q0,#16 +_NEON2SSE_INLINE int16x8_t vsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c) // VSRA.S16 q0,q0,#16 +{ + int16x8_t shift; + shift = vshrq_n_s16(b, c); + return vaddq_s16(a, shift); +} + +int32x4_t vsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VSRA.S32 q0,q0,#32 +_NEON2SSE_INLINE int32x4_t vsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c) // VSRA.S32 q0,q0,#32 +{ + int32x4_t shift; + shift = vshrq_n_s32(b, c); + return vaddq_s32(a, shift); +} + +int64x2_t vsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VSRA.S64 q0,q0,#64 +_NEON2SSE_INLINE int64x2_t vsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c) // VSRA.S64 q0,q0,#64 +{ + int64x2_t shift; + shift = vshrq_n_s64(b, c); + return vaddq_s64( a, shift); +} + +uint8x16_t vsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VSRA.U8 q0,q0,#8 +_NEON2SSE_INLINE uint8x16_t vsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c) // VSRA.U8 q0,q0,#8 +{ + uint8x16_t shift; + shift = vshrq_n_u8(b, c); + return vaddq_u8(a, shift); +} + +uint16x8_t vsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VSRA.s16 q0,q0,#16 +_NEON2SSE_INLINE uint16x8_t vsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c) // VSRA.s16 q0,q0,#16 +{ + uint16x8_t shift; + shift = vshrq_n_u16(b, c); + return vaddq_u16(a, shift); +} + +uint32x4_t vsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VSRA.U32 q0,q0,#32 +_NEON2SSE_INLINE uint32x4_t vsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c) // VSRA.U32 q0,q0,#32 +{ + uint32x4_t shift; + shift = vshrq_n_u32(b, c); + return vaddq_u32(a, shift); +} + +uint64x2_t vsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VSRA.U64 q0,q0,#64 +_NEON2SSE_INLINE uint64x2_t vsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c) // VSRA.U64 q0,q0,#64 +{ + uint64x2_t shift; + shift = vshrq_n_u64(b, c); + return vaddq_u64(a, shift); +} + +//************* Vector rounding shift right by constant and accumulate **************************** +//************************************************************************************************ + +int8x16_t vrsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VRSRA.S8 q0,q0,#8 +_NEON2SSE_INLINE int8x16_t vrsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c) // VRSRA.S8 q0,q0,#8 +{ + int8x16_t shift; + shift = vrshrq_n_s8(b, c); + return vaddq_s8(a, shift); +} + +int16x8_t vrsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VRSRA.S16 q0,q0,#16 +_NEON2SSE_INLINE int16x8_t vrsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c) // VRSRA.S16 q0,q0,#16 +{ + int16x8_t shift; + shift = vrshrq_n_s16(b, c); + return vaddq_s16(a, shift); +} + +int32x4_t vrsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VRSRA.S32 q0,q0,#32 +_NEON2SSE_INLINE int32x4_t vrsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c) // VRSRA.S32 q0,q0,#32 +{ + int32x4_t shift; + shift = vrshrq_n_s32(b, c); + return vaddq_s32(a, shift); +} + +int64x2_t vrsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VRSRA.S64 q0,q0,#64 +_NEON2SSE_INLINE int64x2_t vrsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c) +{ + int64x2_t shift; + shift = vrshrq_n_s64(b, c); + return vaddq_s64(a, shift); +} + +uint8x16_t vrsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VRSRA.U8 q0,q0,#8 +_NEON2SSE_INLINE uint8x16_t vrsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c) // VRSRA.U8 q0,q0,#8 +{ + uint8x16_t shift; + shift = vrshrq_n_u8(b, c); + return vaddq_u8(a, shift); +} + +uint16x8_t vrsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VRSRA.s16 q0,q0,#16 +_NEON2SSE_INLINE uint16x8_t vrsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c) // VRSRA.s16 q0,q0,#16 +{ + uint16x8_t shift; + shift = vrshrq_n_u16(b, c); + return vaddq_u16(a, shift); +} + +uint32x4_t vrsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VRSRA.U32 q0,q0,#32 +_NEON2SSE_INLINE uint32x4_t vrsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c) // VRSRA.U32 q0,q0,#32 +{ + uint32x4_t shift; + shift = vrshrq_n_u32(b, c); + return vaddq_u32(a, shift); +} + +uint64x2_t vrsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VRSRA.U64 q0,q0,#64 +_NEON2SSE_INLINE uint64x2_t vrsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c) +{ + uint64x2_t shift; + shift = vrshrq_n_u64(b, c); + return vaddq_u64(a, shift); +} + +//**********************Vector saturating shift left by constant ***************************** +//******************************************************************************************** +//we don't check const ranges assuming they are met + +int8x16_t vqshlq_n_s8(int8x16_t a, __constrange(0,7) int b); // VQSHL.S8 q0,q0,#0 +_NEON2SSE_INLINE int8x16_t vqshlq_n_s8(int8x16_t a, __constrange(0,7) int b) // VQSHL.S8 q0,q0,#0 +{ // go to 16 bit to get the auto saturation (in packs function) + __m128i a128, r128_1, r128_2; + a128 = _MM_CVTEPI8_EPI16 (a); //SSE 4.1 + r128_1 = _mm_slli_epi16 (a128, b); + //swap hi and low part of a128 to process the remaining data + a128 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); + a128 = _MM_CVTEPI8_EPI16 (a128); + r128_2 = _mm_slli_epi16 (a128, b); + return _mm_packs_epi16 (r128_1, r128_2); //saturated s8 +} + +int16x8_t vqshlq_n_s16(int16x8_t a, __constrange(0,15) int b); // VQSHL.S16 q0,q0,#0 +_NEON2SSE_INLINE int16x8_t vqshlq_n_s16(int16x8_t a, __constrange(0,15) int b) // VQSHL.S16 q0,q0,#0 +{ // manual saturation solution looks LESS optimal than 32 bits conversion one + // go to 32 bit to get the auto saturation (in packs function) + __m128i a128, r128_1, r128_2; + a128 = _MM_CVTEPI16_EPI32 (a); //SSE 4.1 + r128_1 = _mm_slli_epi32 (a128, b); //shift_res + //swap hi and low part of a128 to process the remaining data + a128 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); + a128 = _MM_CVTEPI16_EPI32 (a128); + r128_2 = _mm_slli_epi32 (a128, b); + return _mm_packs_epi32 (r128_1, r128_2); //saturated s16 +} + +int32x4_t vqshlq_n_s32(int32x4_t a, __constrange(0,31) int b); // VQSHL.S32 q0,q0,#0 +_NEON2SSE_INLINE int32x4_t vqshlq_n_s32(int32x4_t a, __constrange(0,31) int b) // VQSHL.S32 q0,q0,#0 +{ // no 64 bit saturation option available, special tricks necessary + __m128i c1, maskA, saturation_mask, c7ffffff_mask, shift_res, shift_res_mask; + c1 = _mm_cmpeq_epi32(a,a); //0xff..ff + maskA = _mm_srli_epi32(c1, b + 1); //mask for positive numbers (32-b+1) zeros and b-1 ones + saturation_mask = _mm_cmpgt_epi32 (a, maskA); //0xff...ff if we need saturation, 0 otherwise + c7ffffff_mask = _mm_srli_epi32(saturation_mask, 1); //saturated to 0x7f..ff when needed and zeros if not + shift_res = _mm_slli_epi32 (a, b); + shift_res_mask = _mm_andnot_si128(saturation_mask, shift_res); + //result with positive numbers saturated + shift_res = _mm_or_si128 (c7ffffff_mask, shift_res_mask); + //treat negative numbers + maskA = _mm_slli_epi32(c1, 31 - b); //mask for negative numbers b-1 ones and (32-b+1) zeros + saturation_mask = _mm_cmpgt_epi32 (maskA,a); //0xff...ff if we need saturation, 0 otherwise + c7ffffff_mask = _mm_slli_epi32(saturation_mask, 31); //saturated to 0x80..00 when needed and zeros if not + shift_res_mask = _mm_andnot_si128(saturation_mask, shift_res); + return _mm_or_si128 (c7ffffff_mask, shift_res_mask); +} + +int64x2_t vqshlq_n_s64(int64x2_t a, __constrange(0,63) int b); // VQSHL.S64 q0,q0,#0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqshlq_n_s64(int64x2_t a, __constrange(0,63) int b), _NEON2SSE_REASON_SLOW_SERIAL) +{ // no effective SIMD solution here + _NEON2SSE_ALIGN_16 int64_t atmp[2], res[2]; + int64_t bmask; + int i; + bmask = ( int64_t)1 << (63 - b); //positive + _mm_store_si128((__m128i*)atmp, a); + for (i = 0; i<2; i++) { + if (atmp[i] >= bmask) { + res[i] = ~(_SIGNBIT64); + } else { + res[i] = (atmp[i] <= -bmask) ? _SIGNBIT64 : atmp[i] << b; + } + } + return _mm_load_si128((__m128i*)res); +} + +uint8x16_t vqshlq_n_u8(uint8x16_t a, __constrange(0,7) int b); // VQSHL.U8 q0,q0,#0 +_NEON2SSE_INLINE uint8x16_t vqshlq_n_u8(uint8x16_t a, __constrange(0,7) int b) // VQSHL.U8 q0,q0,#0 +{ // go to 16 bit to get the auto saturation (in packs function) + __m128i a128, r128_1, r128_2; + a128 = _MM_CVTEPU8_EPI16 (a); //SSE 4.1 + r128_1 = _mm_slli_epi16 (a128, b); + //swap hi and low part of a128 to process the remaining data + a128 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); + a128 = _MM_CVTEPU8_EPI16 (a128); + r128_2 = _mm_slli_epi16 (a128, b); + return _mm_packus_epi16 (r128_1, r128_2); //saturated u8 +} + +uint16x8_t vqshlq_n_u16(uint16x8_t a, __constrange(0,15) int b); // VQSHL.s16 q0,q0,#0 +_NEON2SSE_INLINE uint16x8_t vqshlq_n_u16(uint16x8_t a, __constrange(0,15) int b) // VQSHL.s16 q0,q0,#0 +{ // manual saturation solution looks more optimal than 32 bits conversion one + __m128i cb, c8000, a_signed, saturation_mask, shift_res; + cb = _mm_set1_epi16((1 << (16 - b)) - 1 - 0x8000 ); + c8000 = _mm_set1_epi16 (0x8000); +//no unsigned shorts comparison in SSE, only signed available, so need the trick + a_signed = _mm_sub_epi16(a, c8000); //go to signed + saturation_mask = _mm_cmpgt_epi16 (a_signed, cb); + shift_res = _mm_slli_epi16 (a, b); + return _mm_or_si128 (shift_res, saturation_mask); +} + +uint32x4_t vqshlq_n_u32(uint32x4_t a, __constrange(0,31) int b); // VQSHL.U32 q0,q0,#0 +_NEON2SSE_INLINE uint32x4_t vqshlq_n_u32(uint32x4_t a, __constrange(0,31) int b) // VQSHL.U32 q0,q0,#0 +{ // manual saturation solution, no 64 bit saturation option, the serial version may be faster + __m128i cb, c80000000, a_signed, saturation_mask, shift_res; + cb = _mm_set1_epi32((1 << (32 - b)) - 1 - 0x80000000 ); + c80000000 = _mm_set1_epi32 (0x80000000); +//no unsigned ints comparison in SSE, only signed available, so need the trick + a_signed = _mm_sub_epi32(a, c80000000); //go to signed + saturation_mask = _mm_cmpgt_epi32 (a_signed, cb); + shift_res = _mm_slli_epi32 (a, b); + return _mm_or_si128 (shift_res, saturation_mask); +} + +uint64x2_t vqshlq_n_u64(uint64x2_t a, __constrange(0,63) int b); // VQSHL.U64 q0,q0,#0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqshlq_n_u64(uint64x2_t a, __constrange(0,63) int b), _NEON2SSE_REASON_SLOW_SERIAL) +{ // no effective SIMD solution here + _NEON2SSE_ALIGN_16 uint64_t atmp[2], res[2]; + uint64_t bmask; + int i; + bmask = ( uint64_t)1 << (64 - b); + _mm_store_si128((__m128i*)atmp, a); + for (i = 0; i<2; i++) { + res[i] = (atmp[i] >= bmask)&&(b>0) ? 0xffffffffffffffff : atmp[i] << b; //if b=0 we are fine with any a + } + return _mm_load_si128((__m128i*)res); +} + +//**************Vector signed->unsigned saturating shift left by constant ************* +//************************************************************************************* + +uint8x16_t vqshluq_n_s8(int8x16_t a, __constrange(0,7) int b); // VQSHLU.S8 q0,q0,#0 +_NEON2SSE_INLINE uint8x16_t vqshluq_n_s8(int8x16_t a, __constrange(0,7) int b) // VQSHLU.S8 q0,q0,#0 +{ + __m128i a128, r128_1, r128_2; + a128 = _MM_CVTEPI8_EPI16 (a); //SSE 4.1 + r128_1 = _mm_slli_epi16 (a128, b); + //swap hi and low part of a128 to process the remaining data + a128 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); + a128 = _MM_CVTEPI8_EPI16 (a128); + r128_2 = _mm_slli_epi16 (a128, b); + return _mm_packus_epi16 (r128_1, r128_2); //saturated u8 +} + +#if defined(USE_SSSE3) +uint16x8_t vqshluq_n_s16(int16x8_t a, __constrange(0,15) int b); // VQSHLU.S16 q0,q0,#0 +_NEON2SSE_INLINE uint16x8_t vqshluq_n_s16(int16x8_t a, __constrange(0,15) int b) // VQSHLU.S16 q0,q0,#0 +{ // manual saturation solution looks LESS optimal than 32 bits conversion one + __m128i a128, r128_1, r128_2; + a128 = _MM_CVTEPI16_EPI32 (a); //SSE 4.1 + r128_1 = _mm_slli_epi32 (a128, b); //shift_res + //swap hi and low part of a128 to process the remaining data + a128 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); + a128 = _MM_CVTEPI16_EPI32 (a128); + r128_2 = _mm_slli_epi32 (a128, b); + return _MM_PACKUS_EPI32 (r128_1, r128_2); //saturated s16 +} +#endif + +uint32x4_t vqshluq_n_s32(int32x4_t a, __constrange(0,31) int b); // VQSHLU.S32 q0,q0,#0 +_NEON2SSE_INLINE uint32x4_t vqshluq_n_s32(int32x4_t a, __constrange(0,31) int b) // VQSHLU.S32 q0,q0,#0 +{ //solution may be not optimal compared with the serial one + __m128i zero, maskA, maskGT0, a0, a_masked, a_shift; + zero = _mm_setzero_si128(); + maskA = _mm_cmpeq_epi32(a, a); + maskA = _mm_slli_epi32(maskA,(32 - b)); // b ones and (32-b)zeros + //saturate negative numbers to zero + maskGT0 = _mm_cmpgt_epi32 (a, zero); // //0xffffffff if positive number and zero otherwise (negative numbers) + a0 = _mm_and_si128 (a, maskGT0); //negative are zeros now + //saturate positive to 0xffffffff + a_masked = _mm_and_si128 (a0, maskA); + a_masked = _mm_cmpgt_epi32 (a_masked, zero); //0xffffffff if saturation necessary 0 otherwise + a_shift = _mm_slli_epi32 (a0, b); + return _mm_or_si128 (a_shift, a_masked); //actual saturation +} + +uint64x2_t vqshluq_n_s64(int64x2_t a, __constrange(0,63) int b); // VQSHLU.S64 q0,q0,#0 +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqshluq_n_s64(int64x2_t a, __constrange(0,63) int b), _NEON2SSE_REASON_SLOW_SERIAL) +{ // no effective SIMD solution here, serial execution looks faster + _NEON2SSE_ALIGN_16 int64_t atmp[2]; + _NEON2SSE_ALIGN_16 uint64_t res[2]; + uint64_t limit; + int i; + _mm_store_si128((__m128i*)atmp, a); + for (i = 0; i<2; i++) { + if (atmp[i]<=0) { + res[i] = 0; + } else { + limit = (uint64_t) 1 << (64 - b); + res[i] = ( ((uint64_t)atmp[i]) >= limit) ? res[i] = ~((uint64_t)0) : atmp[i] << b; + } + } + return _mm_load_si128((__m128i*)res); +} + +//************** Vector narrowing shift right by constant ************** +//********************************************************************** + +//************** Vector signed->unsigned narrowing saturating shift right by constant ******** +//********************************************************************************************* + +//**** Vector signed->unsigned rounding narrowing saturating shift right by constant ***** + +//***** Vector narrowing saturating shift right by constant ****** +//***************************************************************** + +//********* Vector rounding narrowing shift right by constant ************************* +//**************************************************************************************** + +//************* Vector rounding narrowing saturating shift right by constant ************ +//**************************************************************************************** + +//************** Vector widening shift left by constant **************** +//************************************************************************ + +//************************************************************************************ +//**************************** Shifts with insert ************************************ +//************************************************************************************ +//takes each element in a vector, shifts them by an immediate value, +//and inserts the results in the destination vector. Bits shifted out of the each element are lost. + +//**************** Vector shift right and insert ************************************ +//Actually the "c" left bits from "a" are the only bits remained from "a" after the shift. +//All other bits are taken from b shifted. + +int8x16_t vsriq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8 +_NEON2SSE_INLINE int8x16_t vsriq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c) // VSRI.8 q0,q0,#8 +{ + __m128i maskA, a_masked; + uint8x16_t b_shift; + _NEON2SSE_ALIGN_16 uint8_t maskLeft[9] = {0x0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; //"a" bits mask, 0 bit not used + maskA = _mm_set1_epi8(maskLeft[c]); // c ones and (8-c)zeros + a_masked = _mm_and_si128 (a, maskA); + b_shift = vshrq_n_u8( b, c); // c zeros on the left in b due to logical shift + return _mm_or_si128 (a_masked, b_shift); //combine (insert b into a) +} + +int16x8_t vsriq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16 +_NEON2SSE_INLINE int16x8_t vsriq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c) // VSRI.16 q0,q0,#16 +{ //to cut "c" left bits from a we do shift right and then shift back left providing c right zeros in a + uint16x8_t b_shift; + uint16x8_t a_c; + b_shift = vshrq_n_u16( b, c); // c zeros on the left in b due to logical shift + a_c = vshrq_n_u16( a, (16 - c)); + a_c = _mm_slli_epi16(a_c, (16 - c)); //logical shift provides right "c" bits zeros in a + return _mm_or_si128 (a_c, b_shift); //combine (insert b into a) +} + +int32x4_t vsriq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VSRI.32 q0,q0,#32 +_NEON2SSE_INLINE int32x4_t vsriq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c) // VSRI.32 q0,q0,#32 +{ //to cut "c" left bits from a we do shift right and then shift back left providing c right zeros in a + uint32x4_t b_shift; + uint32x4_t a_c; + b_shift = vshrq_n_u32( b, c); // c zeros on the left in b due to logical shift + a_c = vshrq_n_u32( a, (32 - c)); + a_c = _mm_slli_epi32(a_c, (32 - c)); //logical shift provides right "c" bits zeros in a + return _mm_or_si128 (a_c, b_shift); //combine (insert b into a) +} + +int64x2_t vsriq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VSRI.64 q0,q0,#64 +_NEON2SSE_INLINE int64x2_t vsriq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c) +{ //serial solution may be faster + uint64x2_t b_shift; + uint64x2_t a_c; + b_shift = _mm_srli_epi64(b, c); // c zeros on the left in b due to logical shift + a_c = _mm_srli_epi64(a, (64 - c)); + a_c = _mm_slli_epi64(a_c, (64 - c)); //logical shift provides right "c" bits zeros in a + return _mm_or_si128 (a_c, b_shift); //combine (insert b into a) +} + +uint8x16_t vsriq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8 +#define vsriq_n_u8 vsriq_n_s8 + +uint16x8_t vsriq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16 +#define vsriq_n_u16 vsriq_n_s16 + +uint32x4_t vsriq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VSRI.32 q0,q0,#32 +#define vsriq_n_u32 vsriq_n_s32 + +uint64x2_t vsriq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VSRI.64 q0,q0,#64 +#define vsriq_n_u64 vsriq_n_s64 + +poly8x16_t vsriq_n_p8(poly8x16_t a, poly8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8 +#define vsriq_n_p8 vsriq_n_u8 + +poly16x8_t vsriq_n_p16(poly16x8_t a, poly16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16 +#define vsriq_n_p16 vsriq_n_u16 + +//***** Vector shift left and insert ********************************************* +//********************************************************************************* +//Actually the "c" right bits from "a" are the only bits remained from "a" after the shift. +//All other bits are taken from b shifted. Ending zeros are inserted in b in the shift proces. We need to combine "a" and "b shifted". + +int8x16_t vsliq_n_s8(int8x16_t a, int8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0 +_NEON2SSE_INLINE int8x16_t vsliq_n_s8(int8x16_t a, int8x16_t b, __constrange(0,7) int c) // VSLI.8 q0,q0,#0 +{ + __m128i maskA, a_masked; + int8x16_t b_shift; + _NEON2SSE_ALIGN_16 uint8_t maskRight[8] = {0x0, 0x1, 0x3, 0x7, 0x0f, 0x1f, 0x3f, 0x7f}; //"a" bits mask + maskA = _mm_set1_epi8(maskRight[c]); // (8-c)zeros and c ones + b_shift = vshlq_n_s8( b, c); + a_masked = _mm_and_si128 (a, maskA); + return _mm_or_si128 (b_shift, a_masked); //combine (insert b into a) +} + +int16x8_t vsliq_n_s16(int16x8_t a, int16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0 +_NEON2SSE_INLINE int16x8_t vsliq_n_s16(int16x8_t a, int16x8_t b, __constrange(0,15) int c) // VSLI.16 q0,q0,#0 +{ //to cut "c" right bits from a we do shift left and then logical shift back right providing (16-c)zeros in a + int16x8_t b_shift; + int16x8_t a_c; + b_shift = vshlq_n_s16( b, c); + a_c = vshlq_n_s16( a, (16 - c)); + a_c = _mm_srli_epi16(a_c, (16 - c)); + return _mm_or_si128 (b_shift, a_c); //combine (insert b into a) +} + +int32x4_t vsliq_n_s32(int32x4_t a, int32x4_t b, __constrange(0,31) int c); // VSLI.32 q0,q0,#0 +_NEON2SSE_INLINE int32x4_t vsliq_n_s32(int32x4_t a, int32x4_t b, __constrange(0,31) int c) // VSLI.32 q0,q0,#0 +{ //solution may be not optimal compared with the serial one + //to cut "c" right bits from a we do shift left and then logical shift back right providing (32-c)zeros in a + int32x4_t b_shift; + int32x4_t a_c; + b_shift = vshlq_n_s32( b, c); + a_c = vshlq_n_s32( a, (32 - c)); + a_c = _mm_srli_epi32(a_c, (32 - c)); + return _mm_or_si128 (b_shift, a_c); //combine (insert b into a) +} + +int64x2_t vsliq_n_s64(int64x2_t a, int64x2_t b, __constrange(0,63) int c); // VSLI.64 q0,q0,#0 +_NEON2SSE_INLINE int64x2_t vsliq_n_s64(int64x2_t a, int64x2_t b, __constrange(0,63) int c) // VSLI.64 q0,q0,#0 +{ //solution may be not optimal compared with the serial one + //to cut "c" right bits from a we do shift left and then logical shift back right providing (64-c)zeros in a + int64x2_t b_shift; + int64x2_t a_c; + b_shift = vshlq_n_s64( b, c); + a_c = vshlq_n_s64( a, (64 - c)); + a_c = _mm_srli_epi64(a_c, (64 - c)); + return _mm_or_si128 (b_shift, a_c); //combine (insert b into a) +} + +uint8x16_t vsliq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0 +#define vsliq_n_u8 vsliq_n_s8 + +uint16x8_t vsliq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0 +#define vsliq_n_u16 vsliq_n_s16 + +uint32x4_t vsliq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(0,31) int c); // VSLI.32 q0,q0,#0 +#define vsliq_n_u32 vsliq_n_s32 + +uint64x2_t vsliq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(0,63) int c); // VSLI.64 q0,q0,#0 +#define vsliq_n_u64 vsliq_n_s64 + +poly8x16_t vsliq_n_p8(poly8x16_t a, poly8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0 +#define vsliq_n_p8 vsliq_n_u8 + +poly16x8_t vsliq_n_p16(poly16x8_t a, poly16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0 +#define vsliq_n_p16 vsliq_n_u16 + +// *********************************************************************************************** +// ****************** Loads and stores of a single vector *************************************** +// *********************************************************************************************** +//Performs loads and stores of a single vector of some type. +//******************************* Loads ******************************************************** +// *********************************************************************************************** +//We assume ptr is NOT aligned in general case and use __m128i _mm_loadu_si128 ((__m128i*) ptr);. +//also for SSE3 supporting systems the __m128i _mm_lddqu_si128 (__m128i const* p) usage for unaligned access may be advantageous. +// it loads a 32-byte block aligned on a 16-byte boundary and extracts the 16 bytes corresponding to the unaligned access +//If the ptr is aligned then could use __m128i _mm_load_si128 ((__m128i*) ptr) instead; +#define LOAD_SI128(ptr) \ + ( ((unsigned long)(ptr) & 15) == 0 ) ? _mm_load_si128((__m128i*)(ptr)) : _mm_loadu_si128((__m128i*)(ptr)); + +uint8x16_t vld1q_u8(__transfersize(16) uint8_t const * ptr); // VLD1.8 {d0, d1}, [r0] +#define vld1q_u8 LOAD_SI128 + +uint16x8_t vld1q_u16(__transfersize(8) uint16_t const * ptr); // VLD1.16 {d0, d1}, [r0] +#define vld1q_u16 LOAD_SI128 + +uint32x4_t vld1q_u32(__transfersize(4) uint32_t const * ptr); // VLD1.32 {d0, d1}, [r0] +#define vld1q_u32 LOAD_SI128 + +uint64x2_t vld1q_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0] +#define vld1q_u64 LOAD_SI128 + +int8x16_t vld1q_s8(__transfersize(16) int8_t const * ptr); // VLD1.8 {d0, d1}, [r0] +#define vld1q_s8 LOAD_SI128 + +int16x8_t vld1q_s16(__transfersize(8) int16_t const * ptr); // VLD1.16 {d0, d1}, [r0] +#define vld1q_s16 LOAD_SI128 + +int32x4_t vld1q_s32(__transfersize(4) int32_t const * ptr); // VLD1.32 {d0, d1}, [r0] +#define vld1q_s32 LOAD_SI128 + +int64x2_t vld1q_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0] +#define vld1q_s64 LOAD_SI128 + +float16x8_t vld1q_f16(__transfersize(8) __fp16 const * ptr); // VLD1.16 {d0, d1}, [r0] +// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers +/* _NEON2SSE_INLINE float16x8_t vld1q_f16(__transfersize(8) __fp16 const * ptr)// VLD1.16 {d0, d1}, [r0] +{__m128 f1 = _mm_set_ps (ptr[3], ptr[2], ptr[1], ptr[0]); +__m128 f2; +f2 = _mm_set_ps (ptr[7], ptr[6], ptr[5], ptr[4]); +}*/ + +float32x4_t vld1q_f32(__transfersize(4) float32_t const * ptr); // VLD1.32 {d0, d1}, [r0] +_NEON2SSE_INLINE float32x4_t vld1q_f32(__transfersize(4) float32_t const * ptr) +{ + if( (((unsigned long)(ptr)) & 15 ) == 0 ) //16 bits aligned + return _mm_load_ps(ptr); + else + return _mm_loadu_ps(ptr); +} + +poly8x16_t vld1q_p8(__transfersize(16) poly8_t const * ptr); // VLD1.8 {d0, d1}, [r0] +#define vld1q_p8 LOAD_SI128 + +poly16x8_t vld1q_p16(__transfersize(8) poly16_t const * ptr); // VLD1.16 {d0, d1}, [r0] +#define vld1q_p16 LOAD_SI128 + +// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit like _mm_set_ps (ptr[3], ptr[2], ptr[1], ptr[0]); + +//*********************************************************************************************************** +//******* Lane load functions - insert the data at vector's given position (lane) ************************* +//*********************************************************************************************************** +uint8x16_t vld1q_lane_u8(__transfersize(1) uint8_t const * ptr, uint8x16_t vec, __constrange(0,15) int lane); // VLD1.8 {d0[0]}, [r0] +#define vld1q_lane_u8(ptr, vec, lane) _MM_INSERT_EPI8(vec, *(ptr), lane) + +uint16x8_t vld1q_lane_u16(__transfersize(1) uint16_t const * ptr, uint16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0] +#define vld1q_lane_u16(ptr, vec, lane) _MM_INSERT_EPI16(vec, *(ptr), lane) + +uint32x4_t vld1q_lane_u32(__transfersize(1) uint32_t const * ptr, uint32x4_t vec, __constrange(0,3) int lane); // VLD1.32 {d0[0]}, [r0] +#define vld1q_lane_u32(ptr, vec, lane) _MM_INSERT_EPI32(vec, *(ptr), lane) + +uint64x2_t vld1q_lane_u64(__transfersize(1) uint64_t const * ptr, uint64x2_t vec, __constrange(0,1) int lane); // VLD1.64 {d0}, [r0] +#define vld1q_lane_u64(ptr, vec, lane) _MM_INSERT_EPI64(vec, *(ptr), lane); // _p; + +int8x16_t vld1q_lane_s8(__transfersize(1) int8_t const * ptr, int8x16_t vec, __constrange(0,15) int lane); // VLD1.8 {d0[0]}, [r0] +#define vld1q_lane_s8(ptr, vec, lane) _MM_INSERT_EPI8(vec, *(ptr), lane) + +int16x8_t vld1q_lane_s16(__transfersize(1) int16_t const * ptr, int16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0] +#define vld1q_lane_s16(ptr, vec, lane) _MM_INSERT_EPI16(vec, *(ptr), lane) + +int32x4_t vld1q_lane_s32(__transfersize(1) int32_t const * ptr, int32x4_t vec, __constrange(0,3) int lane); // VLD1.32 {d0[0]}, [r0] +#define vld1q_lane_s32(ptr, vec, lane) _MM_INSERT_EPI32(vec, *(ptr), lane) + +//current IA SIMD doesn't support float16 + +float32x4_t vld1q_lane_f32(__transfersize(1) float32_t const * ptr, float32x4_t vec, __constrange(0,3) int lane); // VLD1.32 {d0[0]}, [r0] +_NEON2SSE_INLINE float32x4_t vld1q_lane_f32(__transfersize(1) float32_t const * ptr, float32x4_t vec, __constrange(0,3) int lane) +{ //we need to deal with ptr 16bit NOT aligned case + __m128 p; + p = _mm_set1_ps(*(ptr)); + return _MM_INSERT_PS(vec, p, _INSERTPS_NDX(0, lane)); +} + +int64x2_t vld1q_lane_s64(__transfersize(1) int64_t const * ptr, int64x2_t vec, __constrange(0,1) int lane); // VLD1.64 {d0}, [r0] +#define vld1q_lane_s64(ptr, vec, lane) _MM_INSERT_EPI64(vec, *(ptr), lane) + +poly8x16_t vld1q_lane_p8(__transfersize(1) poly8_t const * ptr, poly8x16_t vec, __constrange(0,15) int lane); // VLD1.8 {d0[0]}, [r0] +#define vld1q_lane_p8(ptr, vec, lane) _MM_INSERT_EPI8(vec, *(ptr), lane) + +poly16x8_t vld1q_lane_p16(__transfersize(1) poly16_t const * ptr, poly16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0] +#define vld1q_lane_p16(ptr, vec, lane) _MM_INSERT_EPI16(vec, *(ptr), lane) + +//serial solution may be faster + +//current IA SIMD doesn't support float16 + +// ****************** Load single value ( set all lanes of vector with same value from memory)********************** +// ****************************************************************************************************************** +uint8x16_t vld1q_dup_u8(__transfersize(1) uint8_t const * ptr); // VLD1.8 {d0[]}, [r0] +#define vld1q_dup_u8(ptr) _mm_set1_epi8(*(ptr)) + +uint16x8_t vld1q_dup_u16(__transfersize(1) uint16_t const * ptr); // VLD1.16 {d0[]}, [r0] +#define vld1q_dup_u16(ptr) _mm_set1_epi16(*(ptr)) + +uint32x4_t vld1q_dup_u32(__transfersize(1) uint32_t const * ptr); // VLD1.32 {d0[]}, [r0] +#define vld1q_dup_u32(ptr) _mm_set1_epi32(*(ptr)) + +uint64x2_t vld1q_dup_u64(__transfersize(1) uint64_t const * ptr); // VLD1.64 {d0}, [r0] +_NEON2SSE_INLINE uint64x2_t vld1q_dup_u64(__transfersize(1) uint64_t const * ptr) +{ + _NEON2SSE_ALIGN_16 uint64_t val[2] = {*(ptr), *(ptr)}; + return LOAD_SI128(val); +} + +int8x16_t vld1q_dup_s8(__transfersize(1) int8_t const * ptr); // VLD1.8 {d0[]}, [r0] +#define vld1q_dup_s8(ptr) _mm_set1_epi8(*(ptr)) + +int16x8_t vld1q_dup_s16(__transfersize(1) int16_t const * ptr); // VLD1.16 {d0[]}, [r0] +#define vld1q_dup_s16(ptr) _mm_set1_epi16 (*(ptr)) + +int32x4_t vld1q_dup_s32(__transfersize(1) int32_t const * ptr); // VLD1.32 {d0[]}, [r0] +#define vld1q_dup_s32(ptr) _mm_set1_epi32 (*(ptr)) + +int64x2_t vld1q_dup_s64(__transfersize(1) int64_t const * ptr); // VLD1.64 {d0}, [r0] +#define vld1q_dup_s64(ptr) vld1q_dup_u64((uint64_t*)ptr) + +float16x8_t vld1q_dup_f16(__transfersize(1) __fp16 const * ptr); // VLD1.16 {d0[]}, [r0] +//current IA SIMD doesn't support float16, need to go to 32 bits + +float32x4_t vld1q_dup_f32(__transfersize(1) float32_t const * ptr); // VLD1.32 {d0[]}, [r0] +#define vld1q_dup_f32(ptr) _mm_set1_ps (*(ptr)) + +poly8x16_t vld1q_dup_p8(__transfersize(1) poly8_t const * ptr); // VLD1.8 {d0[]}, [r0] +#define vld1q_dup_p8(ptr) _mm_set1_epi8(*(ptr)) + +poly16x8_t vld1q_dup_p16(__transfersize(1) poly16_t const * ptr); // VLD1.16 {d0[]}, [r0] +#define vld1q_dup_p16(ptr) _mm_set1_epi16 (*(ptr)) + +//current IA SIMD doesn't support float16 + +//************************************************************************************* +//********************************* Store ********************************************** +//************************************************************************************* +// If ptr is 16bit aligned and you need to store data without cache pollution then use void _mm_stream_si128 ((__m128i*)ptr, val); +//here we assume the case of NOT 16bit aligned ptr possible. If it is aligned we could to use _mm_store_si128 like shown in the following macro +#define STORE_SI128(ptr, val) \ + (((unsigned long)(ptr) & 15) == 0 ) ? _mm_store_si128 ((__m128i*)(ptr), val) : _mm_storeu_si128 ((__m128i*)(ptr), val); + +void vst1q_u8(__transfersize(16) uint8_t * ptr, uint8x16_t val); // VST1.8 {d0, d1}, [r0] +#define vst1q_u8 STORE_SI128 + +void vst1q_u16(__transfersize(8) uint16_t * ptr, uint16x8_t val); // VST1.16 {d0, d1}, [r0] +#define vst1q_u16 STORE_SI128 + +void vst1q_u32(__transfersize(4) uint32_t * ptr, uint32x4_t val); // VST1.32 {d0, d1}, [r0] +#define vst1q_u32 STORE_SI128 + +void vst1q_u64(__transfersize(2) uint64_t * ptr, uint64x2_t val); // VST1.64 {d0, d1}, [r0] +#define vst1q_u64 STORE_SI128 + +void vst1q_s8(__transfersize(16) int8_t * ptr, int8x16_t val); // VST1.8 {d0, d1}, [r0] +#define vst1q_s8 STORE_SI128 + +void vst1q_s16(__transfersize(8) int16_t * ptr, int16x8_t val); // VST1.16 {d0, d1}, [r0] +#define vst1q_s16 STORE_SI128 + +void vst1q_s32(__transfersize(4) int32_t * ptr, int32x4_t val); // VST1.32 {d0, d1}, [r0] +#define vst1q_s32 STORE_SI128 + +void vst1q_s64(__transfersize(2) int64_t * ptr, int64x2_t val); // VST1.64 {d0, d1}, [r0] +#define vst1q_s64 STORE_SI128 + +void vst1q_f16(__transfersize(8) __fp16 * ptr, float16x8_t val); // VST1.16 {d0, d1}, [r0] +// IA32 SIMD doesn't work with 16bit floats currently + +void vst1q_f32(__transfersize(4) float32_t * ptr, float32x4_t val); // VST1.32 {d0, d1}, [r0] +_NEON2SSE_INLINE void vst1q_f32(__transfersize(4) float32_t * ptr, float32x4_t val) +{ + if( ((unsigned long)(ptr) & 15) == 0 ) //16 bits aligned + _mm_store_ps (ptr, val); + else + _mm_storeu_ps (ptr, val); +} + +void vst1q_p8(__transfersize(16) poly8_t * ptr, poly8x16_t val); // VST1.8 {d0, d1}, [r0] +#define vst1q_p8 vst1q_u8 + +void vst1q_p16(__transfersize(8) poly16_t * ptr, poly16x8_t val); // VST1.16 {d0, d1}, [r0] +#define vst1q_p16 vst1q_u16 + +//current IA SIMD doesn't support float16 + +//***********Store a lane of a vector into memory (extract given lane) ********************* +//****************************************************************************************** +void vst1q_lane_u8(__transfersize(1) uint8_t * ptr, uint8x16_t val, __constrange(0,15) int lane); // VST1.8 {d0[0]}, [r0] +#define vst1q_lane_u8(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI8 (val, lane) + +void vst1q_lane_u16(__transfersize(1) uint16_t * ptr, uint16x8_t val, __constrange(0,7) int lane); // VST1.16 {d0[0]}, [r0] +#define vst1q_lane_u16(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI16 (val, lane) + +void vst1q_lane_u32(__transfersize(1) uint32_t * ptr, uint32x4_t val, __constrange(0,3) int lane); // VST1.32 {d0[0]}, [r0] +#define vst1q_lane_u32(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI32 (val, lane) + +void vst1q_lane_u64(__transfersize(1) uint64_t * ptr, uint64x2_t val, __constrange(0,1) int lane); // VST1.64 {d0}, [r0] +#define vst1q_lane_u64(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI64 (val, lane) + +void vst1q_lane_s8(__transfersize(1) int8_t * ptr, int8x16_t val, __constrange(0,15) int lane); // VST1.8 {d0[0]}, [r0] +#define vst1q_lane_s8(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI8 (val, lane) + +void vst1q_lane_s16(__transfersize(1) int16_t * ptr, int16x8_t val, __constrange(0,7) int lane); // VST1.16 {d0[0]}, [r0] +#define vst1q_lane_s16(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI16 (val, lane) + +void vst1q_lane_s32(__transfersize(1) int32_t * ptr, int32x4_t val, __constrange(0,3) int lane); // VST1.32 {d0[0]}, [r0] +#define vst1q_lane_s32(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI32 (val, lane) + +void vst1q_lane_s64(__transfersize(1) int64_t * ptr, int64x2_t val, __constrange(0,1) int lane); // VST1.64 {d0}, [r0] +#define vst1q_lane_s64(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI64 (val, lane) + +void vst1q_lane_f16(__transfersize(1) __fp16 * ptr, float16x8_t val, __constrange(0,7) int lane); // VST1.16 {d0[0]}, [r0] +//current IA SIMD doesn't support float16 + +void vst1q_lane_f32(__transfersize(1) float32_t * ptr, float32x4_t val, __constrange(0,3) int lane); // VST1.32 {d0[0]}, [r0] +_NEON2SSE_INLINE void vst1q_lane_f32(__transfersize(1) float32_t * ptr, float32x4_t val, __constrange(0,3) int lane) +{ + int32_t ilane; + ilane = _MM_EXTRACT_PS(val,lane); + *(ptr) = *((float*)&ilane); +} + +void vst1q_lane_p8(__transfersize(1) poly8_t * ptr, poly8x16_t val, __constrange(0,15) int lane); // VST1.8 {d0[0]}, [r0] +#define vst1q_lane_p8 vst1q_lane_u8 + +void vst1q_lane_p16(__transfersize(1) poly16_t * ptr, poly16x8_t val, __constrange(0,7) int lane); // VST1.16 {d0[0]}, [r0] +#define vst1q_lane_p16 vst1q_lane_s16 + +//current IA SIMD doesn't support float16 + +//*********************************************************************************************** +//**************** Loads and stores of an N-element structure ********************************** +//*********************************************************************************************** +//These intrinsics load or store an n-element structure. The array structures are defined in the beginning +//We assume ptr is NOT aligned in general case, for more details see "Loads and stores of a single vector functions" +//****************** 2 elements load ********************************************* +uint8x16x2_t vld2q_u8(__transfersize(32) uint8_t const * ptr); // VLD2.8 {d0, d2}, [r0] +_NEON2SSE_INLINE uint8x16x2_t vld2q_u8(__transfersize(32) uint8_t const * ptr) // VLD2.8 {d0, d2}, [r0] +{ + uint8x16x2_t v; + v.val[0] = vld1q_u8(ptr); + v.val[1] = vld1q_u8((ptr + 16)); + v = vuzpq_s8(v.val[0], v.val[1]); + return v; +} + +#if defined(USE_SSSE3) +uint16x8x2_t vld2q_u16(__transfersize(16) uint16_t const * ptr); // VLD2.16 {d0, d2}, [r0] +_NEON2SSE_INLINE uint16x8x2_t vld2q_u16(__transfersize(16) uint16_t const * ptr) // VLD2.16 {d0, d2}, [r0] +{ + uint16x8x2_t v; + v.val[0] = vld1q_u16( ptr); + v.val[1] = vld1q_u16( (ptr + 8)); + v = vuzpq_s16(v.val[0], v.val[1]); + return v; +} +#endif + +uint32x4x2_t vld2q_u32(__transfersize(8) uint32_t const * ptr); // VLD2.32 {d0, d2}, [r0] +_NEON2SSE_INLINE uint32x4x2_t vld2q_u32(__transfersize(8) uint32_t const * ptr) // VLD2.32 {d0, d2}, [r0] +{ + uint32x4x2_t v; + v.val[0] = vld1q_u32 ( ptr); + v.val[1] = vld1q_u32 ( (ptr + 4)); + v = vuzpq_s32(v.val[0], v.val[1]); + return v; +} + +int8x16x2_t vld2q_s8(__transfersize(32) int8_t const * ptr); +#define vld2q_s8(ptr) vld2q_u8((uint8_t*) ptr) + +#if defined(USE_SSSE3) +int16x8x2_t vld2q_s16(__transfersize(16) int16_t const * ptr); // VLD2.16 {d0, d2}, [r0] +#define vld2q_s16(ptr) vld2q_u16((uint16_t*) ptr) +#endif + +int32x4x2_t vld2q_s32(__transfersize(8) int32_t const * ptr); // VLD2.32 {d0, d2}, [r0] +#define vld2q_s32(ptr) vld2q_u32((uint32_t*) ptr) + +float16x8x2_t vld2q_f16(__transfersize(16) __fp16 const * ptr); // VLD2.16 {d0, d2}, [r0] +// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example + +float32x4x2_t vld2q_f32(__transfersize(8) float32_t const * ptr); // VLD2.32 {d0, d2}, [r0] +_NEON2SSE_INLINE float32x4x2_t vld2q_f32(__transfersize(8) float32_t const * ptr) // VLD2.32 {d0, d2}, [r0] +{ + float32x4x2_t v; + v.val[0] = vld1q_f32 (ptr); + v.val[1] = vld1q_f32 ((ptr + 4)); + v = vuzpq_f32(v.val[0], v.val[1]); + return v; +} + +poly8x16x2_t vld2q_p8(__transfersize(32) poly8_t const * ptr); // VLD2.8 {d0, d2}, [r0] +#define vld2q_p8 vld2q_u8 + +#if defined(USE_SSSE3) +poly16x8x2_t vld2q_p16(__transfersize(16) poly16_t const * ptr); // VLD2.16 {d0, d2}, [r0] +#define vld2q_p16 vld2q_u16 +#endif + +#if defined(USE_SSSE3) +uint8x8x2_t vld2_u8(__transfersize(16) uint8_t const * ptr); // VLD2.8 {d0, d1}, [r0] +_NEON2SSE_INLINE uint8x8x2_t vld2_u8(__transfersize(16) uint8_t const * ptr) +{ + uint8x8x2_t v; + _NEON2SSE_ALIGN_16 int8_t mask8_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15}; + __m128i ld128; + ld128 = vld1q_u8(ptr); //merge two 64-bits in 128 bit + v.val[0] = _mm_shuffle_epi8(ld128, *(__m128i*)mask8_even_odd); + v.val[1] = _mm_shuffle_epi32(v.val[0], _SWAP_HI_LOW32); + return v; +} +#endif + +#if defined(USE_SSSE3) +uint16x4x2_t vld2_u16(__transfersize(8) uint16_t const * ptr); // VLD2.16 {d0, d1}, [r0] +_NEON2SSE_INLINE uint16x4x2_t vld2_u16(__transfersize(8) uint16_t const * ptr) +{ + uint16x4x2_t v; + _NEON2SSE_ALIGN_16 int8_t mask16_even_odd[16] = { 0,1, 4,5, 8,9, 12,13, 2,3, 6,7, 10,11, 14,15}; + __m128i ld128; + ld128 = vld1q_u16(ptr); //merge two 64-bits in 128 bit + v.val[0] = _mm_shuffle_epi8(ld128, *(__m128i*)mask16_even_odd); + v.val[1] = _mm_shuffle_epi32(v.val[0], _SWAP_HI_LOW32); + return v; +} +#endif + +uint32x2x2_t vld2_u32(__transfersize(4) uint32_t const * ptr); // VLD2.32 {d0, d1}, [r0] +_NEON2SSE_INLINE uint32x2x2_t vld2_u32(__transfersize(4) uint32_t const * ptr) +{ + uint32x2x2_t v; + __m128i ld128; + ld128 = vld1q_u32(ptr); //merge two 64-bits in 128 bit + v.val[0] = _mm_shuffle_epi32(ld128, 0 | (2 << 2) | (1 << 4) | (3 << 6)); + v.val[1] = _mm_shuffle_epi32(v.val[0], _SWAP_HI_LOW32); + return v; +} + +uint64x1x2_t vld2_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0] +_NEON2SSE_INLINE uint64x1x2_t vld2_u64(__transfersize(2) uint64_t const * ptr) +{ + uint64x1x2_t v; + v.val[0] = vld1q_u64(ptr); + v.val[1] = _mm_shuffle_epi32(v.val[0], _SWAP_HI_LOW32); + return v; +} + +#if defined(USE_SSSE3) +int8x8x2_t vld2_s8(__transfersize(16) int8_t const * ptr); // VLD2.8 {d0, d1}, [r0] +#define vld2_s8(ptr) vld2_u8((uint8_t*)ptr) + +int16x4x2_t vld2_s16(__transfersize(8) int16_t const * ptr); // VLD2.16 {d0, d1}, [r0] +#define vld2_s16(ptr) vld2_u16((uint16_t*)ptr) +#endif + +int32x2x2_t vld2_s32(__transfersize(4) int32_t const * ptr); // VLD2.32 {d0, d1}, [r0] +#define vld2_s32(ptr) vld2_u32((uint32_t*)ptr) + +int64x1x2_t vld2_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0] +#define vld2_s64(ptr) vld2_u64((uint64_t*)ptr) + +float16x4x2_t vld2_f16(__transfersize(8) __fp16 const * ptr); // VLD2.16 {d0, d1}, [r0] + +float32x2x2_t vld2_f32(__transfersize(4) float32_t const * ptr); // VLD2.32 {d0, d1}, [r0] +_NEON2SSE_INLINE float32x2x2_t vld2_f32(__transfersize(4) float32_t const * ptr) +{ + float32x2x2_t v; + v.val[0] = vld1q_f32(ptr); + v.val[0] = _mm_shuffle_ps(v.val[0], v.val[0], _MM_SHUFFLE(3,1, 2, 0)); + v.val[1] = _mm_movehl_ps(v.val[0],v.val[0]); + return v; +} + +#if defined(USE_SSSE3) +poly8x8x2_t vld2_p8(__transfersize(16) poly8_t const * ptr); // VLD2.8 {d0, d1}, [r0] +#define vld2_p8 vld2_u8 + +poly16x4x2_t vld2_p16(__transfersize(8) poly16_t const * ptr); // VLD2.16 {d0, d1}, [r0] +#define vld2_p16 vld2_u16 +#endif + +//******************** Triplets *************************************** +//********************************************************************* +#if defined(USE_SSSE3) +uint8x16x3_t vld3q_u8(__transfersize(48) uint8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0] +_NEON2SSE_INLINE uint8x16x3_t vld3q_u8(__transfersize(48) uint8_t const * ptr) // VLD3.8 {d0, d2, d4}, [r0] +{ //a0,a1,a2,a3,...a7,a8,...a15, b0,b1,b2,...b7,b8,...b15, c0,c1,c2,...c7,c8,...c15 -> + //a:0,3,6,9,12,15,b:2,5,8,11,14, c:1,4,7,10,13 + //a:1,4,7,10,13, b:0,3,6,9,12,15,c:2,5,8,11,14, + //a:2,5,8,11,14, b:1,4,7,10,13, c:0,3,6,9,12,15 + uint8x16x3_t v; + __m128i tmp0, tmp1,tmp2, tmp3; + _NEON2SSE_ALIGN_16 int8_t mask8_0[16] = {0,3,6,9,12,15,1,4,7,10,13,2,5,8,11,14}; + _NEON2SSE_ALIGN_16 int8_t mask8_1[16] = {2,5,8,11,14,0,3,6,9,12,15,1,4,7,10,13}; + _NEON2SSE_ALIGN_16 int8_t mask8_2[16] = {1,4,7,10,13,2,5,8,11,14,0,3,6,9,12,15}; + + v.val[0] = vld1q_u8 (ptr); //a0,a1,a2,a3,...a7, ...a15 + v.val[1] = vld1q_u8 ((ptr + 16)); //b0,b1,b2,b3...b7, ...b15 + v.val[2] = vld1q_u8 ((ptr + 32)); //c0,c1,c2,c3,...c7,...c15 + + tmp0 = _mm_shuffle_epi8(v.val[0], *(__m128i*)mask8_0); //a:0,3,6,9,12,15,1,4,7,10,13,2,5,8,11 + tmp1 = _mm_shuffle_epi8(v.val[1], *(__m128i*)mask8_1); //b:2,5,8,11,14,0,3,6,9,12,15,1,4,7,10,13 + tmp2 = _mm_shuffle_epi8(v.val[2], *(__m128i*)mask8_2); //c:1,4,7,10,13,2,5,8,11,14,3,6,9,12,15 + + tmp3 = _mm_slli_si128(tmp0,10); //0,0,0,0,0,0,0,0,0,0,a0,a3,a6,a9,a12,a15 + tmp3 = _mm_alignr_epi8(tmp1,tmp3, 10); //a:0,3,6,9,12,15,b:2,5,8,11,14,x,x,x,x,x + tmp3 = _mm_slli_si128(tmp3, 5); //0,0,0,0,0,a:0,3,6,9,12,15,b:2,5,8,11,14, + tmp3 = _mm_srli_si128(tmp3, 5); //a:0,3,6,9,12,15,b:2,5,8,11,14,:0,0,0,0,0 + v.val[0] = _mm_slli_si128(tmp2, 11); //0,0,0,0,0,0,0,0,0,0,0,0, 1,4,7,10,13, + v.val[0] = _mm_or_si128(v.val[0],tmp3) ;//a:0,3,6,9,12,15,b:2,5,8,11,14,c:1,4,7,10,13, + + tmp3 = _mm_slli_si128(tmp0, 5);//0,0,0,0,0,a:0,3,6,9,12,15,1,4,7,10,13, + tmp3 = _mm_srli_si128(tmp3, 11); //a:1,4,7,10,13, 0,0,0,0,0,0,0,0,0,0,0 + v.val[1] = _mm_srli_si128(tmp1,5); //b:0,3,6,9,12,15,C:1,4,7,10,13, 0,0,0,0,0 + v.val[1] = _mm_slli_si128(v.val[1], 5);//0,0,0,0,0,b:0,3,6,9,12,15,C:1,4,7,10,13, + v.val[1] = _mm_or_si128(v.val[1],tmp3);//a:1,4,7,10,13,b:0,3,6,9,12,15,C:1,4,7,10,13, + v.val[1] = _mm_slli_si128(v.val[1],5);//0,0,0,0,0,a:1,4,7,10,13,b:0,3,6,9,12,15, + v.val[1] = _mm_srli_si128(v.val[1], 5);//a:1,4,7,10,13,b:0,3,6,9,12,15,0,0,0,0,0 + tmp3 = _mm_srli_si128(tmp2,5); //c:2,5,8,11,14,0,3,6,9,12,15,0,0,0,0,0 + tmp3 = _mm_slli_si128(tmp3,11);//0,0,0,0,0,0,0,0,0,0,0,c:2,5,8,11,14, + v.val[1] = _mm_or_si128(v.val[1],tmp3);//a:1,4,7,10,13,b:0,3,6,9,12,15,c:2,5,8,11,14, + + tmp3 = _mm_srli_si128(tmp2,10); //c:0,3,6,9,12,15, 0,0,0,0,0,0,0,0,0,0, + tmp3 = _mm_slli_si128(tmp3,10); //0,0,0,0,0,0,0,0,0,0, c:0,3,6,9,12,15, + v.val[2] = _mm_srli_si128(tmp1,11); //b:1,4,7,10,13,0,0,0,0,0,0,0,0,0,0,0 + v.val[2] = _mm_slli_si128(v.val[2],5);//0,0,0,0,0,b:1,4,7,10,13, 0,0,0,0,0,0 + v.val[2] = _mm_or_si128(v.val[2],tmp3);//0,0,0,0,0,b:1,4,7,10,13,c:0,3,6,9,12,15, + tmp0 = _mm_srli_si128(tmp0, 11); //a:2,5,8,11,14, 0,0,0,0,0,0,0,0,0,0,0, + v.val[2] = _mm_or_si128(v.val[2],tmp0);//a:2,5,8,11,14,b:1,4,7,10,13,c:0,3,6,9,12,15, + return v; +} +#endif + +#if defined(USE_SSSE3) +uint16x8x3_t vld3q_u16(__transfersize(24) uint16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0] +_NEON2SSE_INLINE uint16x8x3_t vld3q_u16(__transfersize(24) uint16_t const * ptr) // VLD3.16 {d0, d2, d4}, [r0] +{ //a0, a1,a2,a3,...a7, b0,b1,b2,b3,...b7, c0,c1,c2,c3...c7 -> a0,a3,a6,b1,b4,b7,c2,c5, a1,a4,a7,b2,b5,c0,c3,c6, a2,a5,b0,b3,b6,c1,c4,c7 + uint16x8x3_t v; + __m128i tmp0, tmp1,tmp2, tmp3; + _NEON2SSE_ALIGN_16 int8_t mask16_0[16] = {0,1, 6,7, 12,13, 2,3, 8,9, 14,15, 4,5, 10,11}; + _NEON2SSE_ALIGN_16 int8_t mask16_1[16] = {2,3, 8,9, 14,15, 4,5, 10,11, 0,1, 6,7, 12,13}; + _NEON2SSE_ALIGN_16 int8_t mask16_2[16] = {4,5, 10,11, 0,1, 6,7, 12,13, 2,3, 8,9, 14,15}; + + v.val[0] = vld1q_u16 (ptr); //a0,a1,a2,a3,...a7, + v.val[1] = vld1q_u16 ((ptr + 8)); //b0,b1,b2,b3...b7 + v.val[2] = vld1q_u16 ((ptr + 16)); //c0,c1,c2,c3,...c7 + + tmp0 = _mm_shuffle_epi8(v.val[0], *(__m128i*)mask16_0); //a0,a3,a6,a1,a4,a7,a2,a5, + tmp1 = _mm_shuffle_epi8(v.val[1], *(__m128i*)mask16_1); //b1,b4,b7,b2,b5,b0,b3,b6 + tmp2 = _mm_shuffle_epi8(v.val[2], *(__m128i*)mask16_2); //c2,c5, c0,c3,c6, c1,c4,c7 + + tmp3 = _mm_slli_si128(tmp0,10); //0,0,0,0,0,a0,a3,a6, + tmp3 = _mm_alignr_epi8(tmp1,tmp3, 10); //a0,a3,a6,b1,b4,b7,x,x + tmp3 = _mm_slli_si128(tmp3, 4); //0,0, a0,a3,a6,b1,b4,b7 + tmp3 = _mm_srli_si128(tmp3, 4); //a0,a3,a6,b1,b4,b7,0,0 + v.val[0] = _mm_slli_si128(tmp2, 12); //0,0,0,0,0,0, c2,c5, + v.val[0] = _mm_or_si128(v.val[0],tmp3);//a0,a3,a6,b1,b4,b7,c2,c5 + + tmp3 = _mm_slli_si128(tmp0, 4);//0,0,a0,a3,a6,a1,a4,a7 + tmp3 = _mm_srli_si128(tmp3,10); //a1,a4,a7, 0,0,0,0,0 + v.val[1] = _mm_srli_si128(tmp1,6); //b2,b5,b0,b3,b6,0,0 + v.val[1] = _mm_slli_si128(v.val[1], 6); //0,0,0,b2,b5,b0,b3,b6, + v.val[1] = _mm_or_si128(v.val[1],tmp3);//a1,a4,a7,b2,b5,b0,b3,b6, + v.val[1] = _mm_slli_si128(v.val[1],6);//0,0,0,a1,a4,a7,b2,b5, + v.val[1] = _mm_srli_si128(v.val[1], 6);//a1,a4,a7,b2,b5,0,0,0, + tmp3 = _mm_srli_si128(tmp2,4); //c0,c3,c6, c1,c4,c7,0,0 + tmp3 = _mm_slli_si128(tmp3,10); //0,0,0,0,0,c0,c3,c6, + v.val[1] = _mm_or_si128(v.val[1],tmp3); //a1,a4,a7,b2,b5,c0,c3,c6, + + tmp3 = _mm_srli_si128(tmp2,10); //c1,c4,c7, 0,0,0,0,0 + tmp3 = _mm_slli_si128(tmp3,10); //0,0,0,0,0, c1,c4,c7, + v.val[2] = _mm_srli_si128(tmp1,10); //b0,b3,b6,0,0, 0,0,0 + v.val[2] = _mm_slli_si128(v.val[2],4);//0,0, b0,b3,b6,0,0,0 + v.val[2] = _mm_or_si128(v.val[2],tmp3);//0,0, b0,b3,b6,c1,c4,c7, + tmp0 = _mm_srli_si128(tmp0, 12); //a2,a5,0,0,0,0,0,0 + v.val[2] = _mm_or_si128(v.val[2],tmp0);//a2,a5,b0,b3,b6,c1,c4,c7, + return v; +} +#endif + +uint32x4x3_t vld3q_u32(__transfersize(12) uint32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0] +_NEON2SSE_INLINE uint32x4x3_t vld3q_u32(__transfersize(12) uint32_t const * ptr) // VLD3.32 {d0, d2, d4}, [r0] +{//a0,a1,a2,a3, b0,b1,b2,b3, c0,c1,c2,c3 -> a0,a3,b2,c1, a1,b0,b3,c2, a2,b1,c0,c3, + uint32x4x3_t v; + __m128i tmp0, tmp1,tmp2, tmp3; + v.val[0] = vld1q_u32 (ptr); //a0,a1,a2,a3, + v.val[1] = vld1q_u32 ((ptr + 4)); //b0,b1,b2,b3 + v.val[2] = vld1q_u32 ((ptr + 8)); //c0,c1,c2,c3, + + tmp0 = _mm_shuffle_epi32(v.val[0], 0 | (3 << 2) | (1 << 4) | (2 << 6)); //a0,a3,a1,a2 + tmp1 = _mm_shuffle_epi32(v.val[1], _SWAP_HI_LOW32); //b2,b3,b0,b1 + tmp2 = _mm_shuffle_epi32(v.val[2], 1 | (2 << 2) | (0 << 4) | (3 << 6)); //c1,c2, c0,c3 + + tmp3 = _mm_unpacklo_epi32(tmp1, tmp2); //b2,c1, b3,c2 + v.val[0] = _mm_unpacklo_epi64(tmp0,tmp3); //a0,a3,b2,c1 + tmp0 = _mm_unpackhi_epi32(tmp0, tmp1); //a1,b0, a2,b1 + v.val[1] = _mm_shuffle_epi32(tmp0, _SWAP_HI_LOW32 ); //a2,b1, a1,b0, + v.val[1] = _mm_unpackhi_epi64(v.val[1], tmp3); //a1,b0, b3,c2 + v.val[2] = _mm_unpackhi_epi64(tmp0, tmp2); //a2,b1, c0,c3 + return v; +} + +#if defined(USE_SSSE3) +int8x16x3_t vld3q_s8(__transfersize(48) int8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0] +#define vld3q_s8(ptr) vld3q_u8((uint8_t*) (ptr)) + +int16x8x3_t vld3q_s16(__transfersize(24) int16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0] +#define vld3q_s16(ptr) vld3q_u16((uint16_t*) (ptr)) +#endif + +int32x4x3_t vld3q_s32(__transfersize(12) int32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0] +#define vld3q_s32(ptr) vld3q_u32((uint32_t*) (ptr)) + +float16x8x3_t vld3q_f16(__transfersize(24) __fp16 const * ptr); // VLD3.16 {d0, d2, d4}, [r0] +// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example + +float32x4x3_t vld3q_f32(__transfersize(12) float32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0] +_NEON2SSE_INLINE float32x4x3_t vld3q_f32(__transfersize(12) float32_t const * ptr) // VLD3.32 {d0, d2, d4}, [r0] +{ //a0,a1,a2,a3, b0,b1,b2,b3, c0,c1,c2,c3 -> a0,a3,b2,c1, a1,b0,b3,c2, a2,b1,c0,c3, + float32x4x3_t v; + __m128 tmp0, tmp1,tmp2, tmp3; + v.val[0] = vld1q_f32 (ptr); //a0,a1,a2,a3, + v.val[1] = vld1q_f32 ((ptr + 4)); //b0,b1,b2,b3 + v.val[2] = vld1q_f32 ((ptr + 8)); //c0,c1,c2,c3, + + tmp0 = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(v.val[0]), 0 | (3 << 2) | (1 << 4) | (2 << 6))); //a0,a3,a1,a2 + tmp1 = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(v.val[1]), _SWAP_HI_LOW32)); //b2,b3,b0,b1 + tmp2 = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(v.val[2]), 1 | (2 << 2) | (0 << 4) | (3 << 6))); //c1,c2, c0,c3 + tmp3 = _mm_unpacklo_ps(tmp1, tmp2); //b2,c1, b3,c2 + + v.val[0] = _mm_movelh_ps(tmp0,tmp3); //a0,a3,b2,c1 + tmp0 = _mm_unpackhi_ps(tmp0, tmp1); //a1,b0, a2,b1 + v.val[1] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(tmp0), _SWAP_HI_LOW32 )); //a2,b1, a1,b0, + v.val[1] = _mm_movehl_ps(tmp3,v.val[1]); //a1,b0, b3,c2 + v.val[2] = _mm_movehl_ps(tmp2,tmp0); //a2,b1, c0,c3 + return v; +} + +#if defined(USE_SSSE3) +poly8x16x3_t vld3q_p8(__transfersize(48) poly8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0] +#define vld3q_p8 vld3q_u8 + +poly16x8x3_t vld3q_p16(__transfersize(24) poly16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0] +#define vld3q_p16 vld3q_u16 +#endif + +#if defined(USE_SSSE3) +uint8x8x3_t vld3_u8(__transfersize(24) uint8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0] +_NEON2SSE_INLINE uint8x8x3_t vld3_u8(__transfersize(24) uint8_t const * ptr) // VLD3.8 {d0, d1, d2}, [r0] +{ //a0, a1,a2,a3,...a7, b0,b1,b2,b3,...b7, c0,c1,c2,c3...c7 -> a0,a3,a6,b1,b4,b7,c2,c5, a1,a4,a7,b2,b5,c0,c3,c6, a2,a5,b0,b3,b6,c1,c4,c7 + uint8x8x3_t v; + __m128i tmp0, tmp1; + _NEON2SSE_ALIGN_16 int8_t mask8_0[16] = {0,3,6,9,12,15, 1,4,7,10,13, 2,5,8,11,14}; + _NEON2SSE_ALIGN_16 int8_t mask8_1[16] = {2,5, 0,3,6, 1,4,7, 0,0,0,0,0,0,0,0}; + v.val[0] = vld1q_u8 (ptr); //a0,a1,a2,a3,...a7, b0,b1,b2,b3...b7 + + tmp0 = _mm_shuffle_epi8(v.val[0], *(__m128i*)mask8_0); //a0,a3,a6,b1,b4,b7, a1,a4,a7,b2,b5, a2,a5,b0,b3,b6, + tmp1 = _mm_shuffle_epi8(v.val[2], *(__m128i*)mask8_1); //c2,c5, c0,c3,c6, c1,c4,c7,x,x,x,x,x,x,x,x + v.val[0] = _mm_slli_si128(tmp0,10); + v.val[0] = _mm_srli_si128(v.val[0],10); //a0,a3,a6,b1,b4,b7, 0,0,0,0,0,0,0,0,0,0 + v.val[2] = _mm_slli_si128(tmp1,6);//0,0,0,0,0,0,c2,c5,x,x,x,x,x,x,x,x + v.val[0] = _mm_or_si128(v.val[0],v.val[2]) ;//a0,a3,a6,b1,b4,b7,c2,c5 x,x,x,x,x,x,x,x + + v.val[1] = _mm_slli_si128(tmp0,5); //0,0,0,0,0,0,0,0,0,0,0, a1,a4,a7,b2,b5, + v.val[1] = _mm_srli_si128(v.val[1],11); //a1,a4,a7,b2,b5,0,0,0,0,0,0,0,0,0,0,0, + v.val[2] = _mm_srli_si128(tmp1,2); //c0,c3,c6,c1,c4,c7,x,x,x,x,x,x,x,x,0,0 + v.val[2] = _mm_slli_si128(v.val[2],5);//0,0,0,0,0,c0,c3,c6,0,0,0,0,0,0,0,0 + v.val[1] = _mm_or_si128(v.val[1],v.val[2]) ;//a1,a4,a7,b2,b5,c0,c3,c6,x,x,x,x,x,x,x,x + + tmp0 = _mm_srli_si128(tmp0,11); //a2,a5,b0,b3,b6,0,0,0,0,0,0,0,0,0,0,0, + v.val[2] = _mm_srli_si128(tmp1,5); //c1,c4,c7,0,0,0,0,0,0,0,0,0,0,0,0,0 + v.val[2] = _mm_slli_si128(v.val[2],5);//0,0,0,0,0,c1,c4,c7, + v.val[2] = _mm_or_si128(tmp0, v.val[2]) ;//a2,a5,b0,b3,b6,c1,c4,c7,x,x,x,x,x,x,x,x + return v; +} +#endif + +#if defined(USE_SSSE3) +uint16x4x3_t vld3_u16(__transfersize(12) uint16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0] +_NEON2SSE_INLINE uint16x4x3_t vld3_u16(__transfersize(12) uint16_t const * ptr) // VLD3.16 {d0, d1, d2}, [r0] +{ //a0,a1,a2,a3, b0,b1,b2,b3, c0,c1,c2,c3 -> a0,a3,b2,c1, a1,b0,b3,c2, a2,b1,c0,c3, + uint16x4x3_t v; + __m128i tmp0, tmp1; + _NEON2SSE_ALIGN_16 int8_t mask16[16] = {0,1, 6,7, 12,13, 2,3, 8,9, 14,15, 4,5, 10,11}; + v.val[0] = vld1q_u16 (ptr); //a0,a1,a2,a3, b0,b1,b2,b3 + + tmp0 = _mm_shuffle_epi8(v.val[0], *(__m128i*)mask16); //a0, a3, b2,a1, b0, b3, a2, b1 + tmp1 = _mm_shufflelo_epi16(v.val[2], 201); //11 00 10 01 : c1, c2, c0, c3, + v.val[0] = _mm_slli_si128(tmp0,10); + v.val[0] = _mm_srli_si128(v.val[0],10); //a0, a3, b2, 0,0, 0,0, + v.val[2] = _mm_slli_si128(tmp1,14);//0,0,0,0,0,0,0,c1 + v.val[2] = _mm_srli_si128(v.val[2],8);//0,0,0,c1,0,0,0,0 + v.val[0] = _mm_or_si128(v.val[0],v.val[2]) ;//a0, a3, b2, c1, x,x,x,x + + v.val[1] = _mm_slli_si128(tmp0,4); //0,0,0,0,0,a1, b0, b3 + v.val[1] = _mm_srli_si128(v.val[1],10); //a1, b0, b3, 0,0, 0,0, + v.val[2] = _mm_srli_si128(tmp1,2);//c2, 0,0,0,0,0,0,0, + v.val[2] = _mm_slli_si128(v.val[2],6);//0,0,0,c2,0,0,0,0 + v.val[1] = _mm_or_si128(v.val[1],v.val[2]); //a1, b0, b3, c2, x,x,x,x + + tmp0 = _mm_srli_si128(tmp0,12); //a2, b1,0,0,0,0,0,0 + tmp1 = _mm_srli_si128(tmp1,4); + tmp1 = _mm_slli_si128(tmp1,4); //0,0,c0, c3, + v.val[2] = _mm_or_si128(tmp0, tmp1); //a2, b1, c0, c3, + return v; +} +#endif + +uint32x2x3_t vld3_u32(__transfersize(6) uint32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0] +_NEON2SSE_INLINE uint32x2x3_t vld3_u32(__transfersize(6) uint32_t const * ptr) // VLD3.32 {d0, d1, d2}, [r0] +{ //a0,a1, b0,b1, c0,c1, -> a0,b1, a1,c0, b0,c1 + uint32x2x3_t v; + v.val[0] = vld1q_u32 (ptr); //a0,a1, b0,b1, + + v.val[0] = _mm_shuffle_epi32(v.val[0], 0 | (3 << 2) | (1 << 4) | (2 << 6)); //a0,b1, a1, b0 + v.val[2] = _mm_slli_si128(v.val[2], 8); //x, x,c0,c1, + v.val[1] = _mm_unpackhi_epi32(v.val[0],v.val[2]); //a1,c0, b0, c1 + v.val[2] = _mm_srli_si128(v.val[1], 8); //b0, c1, x, x, + return v; +} +uint64x1x3_t vld3_u64(__transfersize(3) uint64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0] +_NEON2SSE_INLINE uint64x1x3_t vld3_u64(__transfersize(3) uint64_t const * ptr) // VLD1.64 {d0, d1, d2}, [r0] +{ + uint64x1x3_t v; + v.val[0] = vld1q_u64 (ptr); + v.val[1] = _mm_shuffle_epi32(v.val[0], _SWAP_HI_LOW32); + return v; +} + +#if defined(USE_SSSE3) +int8x8x3_t vld3_s8(__transfersize(24) int8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0] +#define vld3_s8(ptr) vld3_u8((uint8_t*)ptr) + +int16x4x3_t vld3_s16(__transfersize(12) int16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0] +#define vld3_s16(ptr) vld3_u16((uint16_t*)ptr) +#endif + +int32x2x3_t vld3_s32(__transfersize(6) int32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0] +#define vld3_s32(ptr) vld3_u32((uint32_t*)ptr) + +int64x1x3_t vld3_s64(__transfersize(3) int64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0] +#define vld3_s64(ptr) vld3_u64((uint64_t*)ptr) + +float16x4x3_t vld3_f16(__transfersize(12) __fp16 const * ptr); // VLD3.16 {d0, d1, d2}, [r0] +// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example + +float32x2x3_t vld3_f32(__transfersize(6) float32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0] +_NEON2SSE_INLINE float32x2x3_t vld3_f32(__transfersize(6) float32_t const * ptr) +{ //a0,a1, b0,b1, c0,c1, -> a0,b1, a1,c0, b0,c1 + float32x2x3_t v; + v.val[0] = vld1q_f32 (ptr); //a0,a1, b0,b1, + + v.val[0] = _mm_shuffle_ps(v.val[0],v.val[0], _MM_SHUFFLE(2,1, 3, 0)); //a0,b1, a1, b0 + v.val[2] = _mm_movelh_ps(v.val[2], v.val[2]); //x, x,c0,c1, + v.val[1] = _mm_unpackhi_ps(v.val[0],v.val[2]); //a1,c0, b0, c1 + v.val[2] = _mm_movehl_ps(v.val[1], v.val[1]); //b0, c1, x, x, + return v; +} + +#if defined(USE_SSSE3) +poly8x8x3_t vld3_p8(__transfersize(24) poly8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0] +#define vld3_p8 vld3_u8 + +poly16x4x3_t vld3_p16(__transfersize(12) poly16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0] +#define vld3_p16 vld3_u16 +#endif + +//*************** Quadruples load ******************************** +//***************************************************************** +uint8x16x4_t vld4q_u8(__transfersize(64) uint8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0] +_NEON2SSE_INLINE uint8x16x4_t vld4q_u8(__transfersize(64) uint8_t const * ptr) // VLD4.8 {d0, d2, d4, d6}, [r0] +{ + uint8x16x4_t v; + __m128i tmp3, tmp2, tmp1, tmp0; + + v.val[0] = vld1q_u8 ( ptr); //a0,a1,a2,...a7, ...a15 + v.val[1] = vld1q_u8 ( (ptr + 16));//b0, b1,b2,...b7.... b15 + v.val[2] = vld1q_u8 ( (ptr + 32));//c0, c1,c2,...c7....c15 + v.val[3] = vld1q_u8 ( (ptr + 48)); //d0,d1,d2,...d7....d15 + + tmp0= _mm_unpacklo_epi8(v.val[0],v.val[1]); //a0,b0, a1,b1, a2,b2, a3,b3,....a7,b7 + tmp1= _mm_unpacklo_epi8(v.val[2],v.val[3]); //c0,d0, c1,d1, c2,d2, c3,d3,... c7,d7 + tmp2= _mm_unpackhi_epi8(v.val[0],v.val[1]);//a8,b8, a9,b9, a10,b10, a11,b11,...a15,b15 + tmp3= _mm_unpackhi_epi8(v.val[2],v.val[3]);//c8,d8, c9,d9, c10,d10, c11,d11,...c15,d15 + + v.val[0] = _mm_unpacklo_epi8(tmp0, tmp2); //a0,a8, b0,b8, a1,a9, b1,b9, ....a3,a11, b3,b11 + v.val[1] = _mm_unpackhi_epi8(tmp0, tmp2); //a4,a12, b4,b12, a5,a13, b5,b13,....a7,a15,b7,b15 + v.val[2] = _mm_unpacklo_epi8(tmp1, tmp3); //c0,c8, d0,d8, c1,c9, d1,d9.....d3,d11 + v.val[3] = _mm_unpackhi_epi8(tmp1, tmp3); //c4,c12,d4,d12, c5,c13, d5,d13,....d7,d15 + + tmp0 = _mm_unpacklo_epi32(v.val[0] , v.val[2] ); ///a0,a8, b0,b8, c0,c8, d0,d8, a1,a9, b1,b9, c1,c9, d1,d9 + tmp1 = _mm_unpackhi_epi32(v.val[0] , v.val[2] ); //a2,a10, b2,b10, c2,c10, d2,d10, a3,a11, b3,b11, c3,c11, d3,d11 + tmp2 = _mm_unpacklo_epi32(v.val[1] , v.val[3] ); //a4,a12, b4,b12, c4,c12, d4,d12, a5,a13, b5,b13, c5,c13, d5,d13, + tmp3 = _mm_unpackhi_epi32(v.val[1] , v.val[3] ); //a6,a14, b6,b14, c6,c14, d6,d14, a7,a15,b7,b15,c7,c15,d7,d15 + + v.val[0] = _mm_unpacklo_epi8(tmp0, tmp2); //a0,a4,a8,a12,b0,b4,b8,b12,c0,c4,c8,c12,d0,d4,d8,d12 + v.val[1] = _mm_unpackhi_epi8(tmp0, tmp2); //a1,a5, a9, a13, b1,b5, b9,b13, c1,c5, c9, c13, d1,d5, d9,d13 + v.val[2] = _mm_unpacklo_epi8(tmp1, tmp3); //a2,a6, a10,a14, b2,b6, b10,b14,c2,c6, c10,c14, d2,d6, d10,d14 + v.val[3] = _mm_unpackhi_epi8(tmp1, tmp3); //a3,a7, a11,a15, b3,b7, b11,b15,c3,c7, c11, c15,d3,d7, d11,d15 + return v; +} + +uint16x8x4_t vld4q_u16(__transfersize(32) uint16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0] +_NEON2SSE_INLINE uint16x8x4_t vld4q_u16(__transfersize(32) uint16_t const * ptr) // VLD4.16 {d0, d2, d4, d6}, [r0] +{ + uint16x8x4_t v; + __m128i tmp3, tmp2, tmp1, tmp0; + tmp0 = vld1q_u16 (ptr); //a0,a1,a2,...a7 + tmp1 = vld1q_u16 ((ptr + 8)); //b0, b1,b2,...b7 + tmp2 = vld1q_u16 ((ptr + 16)); //c0, c1,c2,...c7 + tmp3 = vld1q_u16 ((ptr + 24)); //d0,d1,d2,...d7 + v.val[0]= _mm_unpacklo_epi16(tmp0,tmp1); //a0,b0, a1,b1, a2,b2, a3,b3, + v.val[1]= _mm_unpacklo_epi16(tmp2,tmp3); //c0,d0, c1,d1, c2,d2, c3,d3, + v.val[2]= _mm_unpackhi_epi16(tmp0,tmp1);//a4,b4, a5,b5, a6,b6, a7,b7 + v.val[3]= _mm_unpackhi_epi16(tmp2,tmp3);//c4,d4, c5,d5, c6,d6, c7,d7 + tmp0 = _mm_unpacklo_epi16(v.val[0], v.val[2]);//a0,a4, b0,b4, a1,a5, b1,b5 + tmp1 = _mm_unpackhi_epi16(v.val[0], v.val[2]); //a2,a6, b2,b6, a3,a7, b3,b7 + tmp2 = _mm_unpacklo_epi16(v.val[1], v.val[3]); //c0,c4, d0,d4, c1,c5, d1,d5 + tmp3 = _mm_unpackhi_epi16(v.val[1], v.val[3]);//c2,c6, d2,d6, c3,c7, d3,d7 + v.val[0] = _mm_unpacklo_epi64(tmp0, tmp2); //a0,a4, b0,b4, c0,c4, d0,d4, + v.val[1] = _mm_unpackhi_epi64(tmp0, tmp2); //a1,a5, b1,b5, c1,c5, d1,d5 + v.val[2] = _mm_unpacklo_epi64(tmp1, tmp3); //a2,a6, b2,b6, c2,c6, d2,d6, + v.val[3] = _mm_unpackhi_epi64(tmp1, tmp3); //a3,a7, b3,b7, c3,c7, d3,d7 + return v; +} + +uint32x4x4_t vld4q_u32(__transfersize(16) uint32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0] +_NEON2SSE_INLINE uint32x4x4_t vld4q_u32(__transfersize(16) uint32_t const * ptr) // VLD4.32 {d0, d2, d4, d6}, [r0] +{ + uint32x4x4_t v; + __m128i tmp3, tmp2, tmp1, tmp0; + v.val[0] = vld1q_u32 (ptr); + v.val[1] = vld1q_u32 ((ptr + 4)); + v.val[2] = vld1q_u32 ((ptr + 8)); + v.val[3] = vld1q_u32 ((ptr + 12)); + tmp0 = _mm_unpacklo_epi32(v.val[0],v.val[1]); + tmp1 = _mm_unpacklo_epi32(v.val[2],v.val[3]); + tmp2 = _mm_unpackhi_epi32(v.val[0],v.val[1]); + tmp3 = _mm_unpackhi_epi32(v.val[2],v.val[3]); + v.val[0] = _mm_unpacklo_epi64(tmp0, tmp1); + v.val[1] = _mm_unpackhi_epi64(tmp0, tmp1); + v.val[2] = _mm_unpacklo_epi64(tmp2, tmp3); + v.val[3] = _mm_unpackhi_epi64(tmp2, tmp3); + return v; +} + +int8x16x4_t vld4q_s8(__transfersize(64) int8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0] +#define vld4q_s8(ptr) vld4q_u8((uint8_t*)ptr) + +int16x8x4_t vld4q_s16(__transfersize(32) int16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0] +#define vld4q_s16(ptr) vld4q_u16((uint16_t*)ptr) + +int32x4x4_t vld4q_s32(__transfersize(16) int32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0] +#define vld4q_s32(ptr) vld4q_u32((uint32_t*)ptr) + +float16x8x4_t vld4q_f16(__transfersize(32) __fp16 const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0] +// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example + +float32x4x4_t vld4q_f32(__transfersize(16) float32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0] +_NEON2SSE_INLINE float32x4x4_t vld4q_f32(__transfersize(16) float32_t const * ptr) // VLD4.32 {d0, d2, d4, d6}, [r0] +{ + float32x4x4_t v; + __m128 tmp3, tmp2, tmp1, tmp0; + + v.val[0] = vld1q_f32 ((float*) ptr); + v.val[1] = vld1q_f32 ((float*) (ptr + 4)); + v.val[2] = vld1q_f32 ((float*) (ptr + 8)); + v.val[3] = vld1q_f32 ((float*) (ptr + 12)); + tmp0 = _mm_unpacklo_ps(v.val[0], v.val[1]); + tmp2 = _mm_unpacklo_ps(v.val[2], v.val[3]); + tmp1 = _mm_unpackhi_ps(v.val[0], v.val[1]); + tmp3 = _mm_unpackhi_ps(v.val[2], v.val[3]); + v.val[0] = _mm_movelh_ps(tmp0, tmp2); + v.val[1] = _mm_movehl_ps(tmp2, tmp0); + v.val[2] = _mm_movelh_ps(tmp1, tmp3); + v.val[3] = _mm_movehl_ps(tmp3, tmp1); + return v; +} + +poly8x16x4_t vld4q_p8(__transfersize(64) poly8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0] +#define vld4q_p8 vld4q_u8 + +poly16x8x4_t vld4q_p16(__transfersize(32) poly16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0] +#define vld4q_p16 vld4q_s16 + +#if defined(USE_SSSE3) +uint8x8x4_t vld4_u8(__transfersize(32) uint8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0] +_NEON2SSE_INLINE uint8x8x4_t vld4_u8(__transfersize(32) uint8_t const * ptr) // VLD4.8 {d0, d1, d2, d3}, [r0] +{ + uint8x8x4_t v; + __m128i sh0, sh1; + _NEON2SSE_ALIGN_16 int8_t mask4_8[16] = {0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15}; + + v.val[0] = vld1q_u8(( ptr)); //load first 64-bits in val[0] and val[1] + v.val[1] = vld1q_u8(( ptr + 16)); //load third and forth 64-bits in val[2], val[3] + + sh0 = _mm_shuffle_epi8(v.val[0], *(__m128i*)mask4_8); + sh1 = _mm_shuffle_epi8(v.val[1], *(__m128i*)mask4_8); + v.val[0] = _mm_unpacklo_epi32(sh0,sh1); //0,4,8,12,16,20,24,28, 1,5,9,13,17,21,25,29 + v.val[2] = _mm_unpackhi_epi32(sh0,sh1); //2,6,10,14,18,22,26,30, 3,7,11,15,19,23,27,31 + v.val[1] = _mm_shuffle_epi32(v.val[0],_SWAP_HI_LOW32); + v.val[3] = _mm_shuffle_epi32(v.val[2],_SWAP_HI_LOW32); + + return v; +} +#endif + +#if defined(USE_SSSE3) +uint16x4x4_t vld4_u16(__transfersize(16) uint16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0] +_NEON2SSE_INLINE uint16x4x4_t vld4_u16(__transfersize(16) uint16_t const * ptr) // VLD4.16 {d0, d1, d2, d3}, [r0] +{ + uint16x4x4_t v; + __m128i sh0, sh1; + _NEON2SSE_ALIGN_16 int8_t mask4_16[16] = {0,1, 8,9, 2,3, 10,11, 4,5, 12,13, 6,7, 14,15}; //0, 4, 1, 5, 2, 6, 3, 7 + v.val[0] = vld1q_u16 ( (ptr)); //load first 64-bits in val[0] and val[1] + v.val[2] = vld1q_u16 ( (ptr + 8)); //load third and forth 64-bits in val[2], val[3] + sh0 = _mm_shuffle_epi8(v.val[0], *(__m128i*)mask4_16); + sh1 = _mm_shuffle_epi8(v.val[2], *(__m128i*)mask4_16); + v.val[0] = _mm_unpacklo_epi32(sh0,sh1); //0,4,8,12, 1,5,9,13 + v.val[2] = _mm_unpackhi_epi32(sh0,sh1); //2,6,10,14, 3,7,11,15 + v.val[1] = _mm_shuffle_epi32(v.val[0],_SWAP_HI_LOW32); + v.val[3] = _mm_shuffle_epi32(v.val[2],_SWAP_HI_LOW32); + return v; +} +#endif + +uint32x2x4_t vld4_u32(__transfersize(8) uint32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0] +_NEON2SSE_INLINE uint32x2x4_t vld4_u32(__transfersize(8) uint32_t const * ptr) +{ //a0,a1, b0,b1, c0,c1, d0,d1 -> a0,c0, a1,c1, b0,d0, b1,d1 + uint32x4x4_t v, res; + v.val[0] = vld1q_u32 (ptr); //a0,a1, b0,b1, + v.val[2] = vld1q_u32 ((ptr + 4)); //c0,c1, d0,d1 + res.val[0] = _mm_unpacklo_epi32(v.val[0],v.val[2]); //a0, c0, a1,c1, + res.val[2] = _mm_unpackhi_epi32(v.val[0],v.val[2]); //b0,d0, b1, d1 + res.val[1] = _mm_shuffle_epi32(res.val[0],_SWAP_HI_LOW32); //a1,c1, a0, c0, + res.val[3] = _mm_shuffle_epi32(res.val[2],_SWAP_HI_LOW32);//b1, d1,b0,d0, + return res; +} + +uint64x1x4_t vld4_u64(__transfersize(4) uint64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0] +_NEON2SSE_INLINE uint64x1x4_t vld4_u64(__transfersize(4) uint64_t const * ptr) // VLD1.64 {d0, d1, d2, d3}, [r0] +{ + uint64x1x4_t v; + v.val[0] = vld1q_u64( (ptr)); //load first 64-bits in val[0] and val[1] + v.val[2] = vld1q_u64( (ptr + 2)); //load third and forth 64-bits in val[2], val[3] + return v; +} + +#if defined(USE_SSSE3) +int8x8x4_t vld4_s8(__transfersize(32) int8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0] +#define vld4_s8(ptr) vld4_u8((uint8_t*)ptr) + +int16x4x4_t vld4_s16(__transfersize(16) int16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0] +#define vld4_s16(ptr) vld4_u16((uint16_t*)ptr) +#endif + +int32x2x4_t vld4_s32(__transfersize(8) int32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0] +#define vld4_s32(ptr) vld4_u32((uint32_t*)ptr) + +int64x1x4_t vld4_s64(__transfersize(4) int64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0] +#define vld4_s64(ptr) vld4_u64((uint64_t*)ptr) + +float16x4x4_t vld4_f16(__transfersize(16) __fp16 const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0] +// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example + +float32x2x4_t vld4_f32(__transfersize(8) float32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0] +_NEON2SSE_INLINE float32x2x4_t vld4_f32(__transfersize(8) float32_t const * ptr) // VLD4.32 {d0, d1, d2, d3}, [r0] +{ //a0,a1, b0,b1, c0,c1, d0,d1 -> a0,c0, a1,c1, b0,d0, b1,d1 + float32x2x4_t v, res; + v.val[0] = vld1q_f32 ((float*) ptr); //a0,a1, b0,b1, + v.val[2] = vld1q_f32 ((float*) (ptr + 4)); //c0,c1, d0,d1 + res.val[0] = _mm_unpacklo_ps(v.val[0],v.val[2]); //a0, c0, a1,c1, + res.val[2] = _mm_unpackhi_ps(v.val[0],v.val[2]); //b0,d0, b1, d1 + res.val[1] = _mm_movehl_ps(res.val[0],res.val[0]); // a1,c1, a0, c0, + res.val[3] = _mm_movehl_ps(res.val[2],res.val[2]); // b1, d1, b0,d0, + return res; +} + +#if defined(USE_SSSE3) +poly8x8x4_t vld4_p8(__transfersize(32) poly8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0] +#define vld4_p8 vld4_u8 + +poly16x4x4_t vld4_p16(__transfersize(16) poly16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0] +#define vld4_p16 vld4_u16 +#endif + +//************* Duplicate (or propagate) ptr[0] to all val[0] lanes and ptr[1] to all val[1] lanes ******************* +//******************************************************************************************************************* +uint8x8x2_t vld2_dup_u8(__transfersize(2) uint8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0] +_NEON2SSE_INLINE uint8x8x2_t vld2_dup_u8(__transfersize(2) uint8_t const * ptr) // VLD2.8 {d0[], d1[]}, [r0] +{ + uint8x8x2_t v; + v.val[0] = LOAD_SI128(ptr); //0,1,x,x, x,x,x,x,x,x,x,x, x,x,x,x + v.val[1] = _mm_unpacklo_epi8(v.val[0],v.val[0]);//0,0,1,1,x,x,x,x, x,x,x,x,x,x,x,x, + v.val[1] = _mm_unpacklo_epi16(v.val[1],v.val[1]);//0,0,0,0, 1,1,1,1,x,x,x,x, x,x,x,x + v.val[0] = _mm_unpacklo_epi32(v.val[1],v.val[1]);//0,0,0,0, 0,0,0,0,1,1,1,1,1,1,1,1, + v.val[1] = _mm_shuffle_epi32(v.val[0], _SWAP_HI_LOW32); + return v; +} + +uint16x4x2_t vld2_dup_u16(__transfersize(2) uint16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0] +_NEON2SSE_INLINE uint16x4x2_t vld2_dup_u16(__transfersize(2) uint16_t const * ptr) // VLD2.16 {d0[], d1[]}, [r0] +{ + uint16x4x2_t v; + v.val[1] = LOAD_SI128(ptr); //0,1,x,x, x,x,x,x + v.val[0] = _mm_shufflelo_epi16(v.val[1], 0); //00 00 00 00 (all 0) + v.val[1] = _mm_shufflelo_epi16(v.val[1], 85);//01 01 01 01 (all 1) + return v; +} + +uint32x2x2_t vld2_dup_u32(__transfersize(2) uint32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0] +_NEON2SSE_INLINE uint32x2x2_t vld2_dup_u32(__transfersize(2) uint32_t const * ptr) // VLD2.32 {d0[], d1[]}, [r0] +{ + uint32x2x2_t v; + v.val[0] = LOAD_SI128(ptr); //0,1,x,x + v.val[0] = _mm_shuffle_epi32(v.val[0], 0 | (0 << 2) | (1 << 4) | (1 << 6)); //0,0,1,1 + v.val[1] = _mm_srli_si128(v.val[0], 8); //1,1,0x0,0x0 + return v; +} + +uint64x1x2_t vld2_dup_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0] +#define vld2_dup_u64 vld2_u64 + +int8x8x2_t vld2_dup_s8(__transfersize(2) int8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0] +#define vld2_dup_s8(ptr) vld2_dup_u8((uint8_t*)ptr) + +int16x4x2_t vld2_dup_s16(__transfersize(2) int16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0] +#define vld2_dup_s16(ptr) vld2_dup_u16((uint16_t*)ptr) + +int32x2x2_t vld2_dup_s32(__transfersize(2) int32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0] +#define vld2_dup_s32(ptr) vld2_dup_u32((uint32_t*)ptr) + +int64x1x2_t vld2_dup_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0] +#define vld2_dup_s64(ptr) vld2_dup_u64((uint64_t*)ptr) + +float16x4x2_t vld2_dup_f16(__transfersize(2) __fp16 const * ptr); // VLD2.16 {d0[], d1[]}, [r0] +// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example + +float32x2x2_t vld2_dup_f32(__transfersize(2) float32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0] +_NEON2SSE_INLINE float32x2x2_t vld2_dup_f32(__transfersize(2) float32_t const * ptr) // VLD2.32 {d0[], d1[]}, [r0] +{ + float32x2x2_t v; + v.val[0] = vld1q_f32(ptr); //0,1,x,x + v.val[1] = _mm_movehdup_ps(v.val[0]); //1,1,x,x + v.val[0] = _mm_moveldup_ps(v.val[0]); //0,0,x,x + return v; +} + +poly8x8x2_t vld2_dup_p8(__transfersize(2) poly8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0] +#define vld2_dup_p8 vld2_dup_u8 + +poly16x4x2_t vld2_dup_p16(__transfersize(2) poly16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0] +#define vld2_dup_p16 vld2_dup_s16 + +//************* Duplicate (or propagate)triplets: ******************* +//******************************************************************** +//ptr[0] to all val[0] lanes, ptr[1] to all val[1] lanes and ptr[2] to all val[2] lanes +uint8x8x3_t vld3_dup_u8(__transfersize(3) uint8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0] +_NEON2SSE_INLINE uint8x8x3_t vld3_dup_u8(__transfersize(3) uint8_t const * ptr) // VLD3.8 {d0[], d1[], d2[]}, [r0] +{ + uint8x8x3_t v; + v.val[0] = LOAD_SI128(ptr); //0,1,2,x, x,x,x,x,x,x,x,x, x,x,x,x + v.val[1] = _mm_unpacklo_epi8(v.val[0],v.val[0]);//0,0,1,1,2,2,x,x, x,x,x,x,x,x,x,x, + v.val[1] = _mm_unpacklo_epi16(v.val[1],v.val[1]);//0,0,0,0, 1,1,1,1,2,2,2,2,x,x,x,x, + v.val[0] = _mm_unpacklo_epi32(v.val[1],v.val[1]);//0,0,0,0, 0,0,0,0,1,1,1,1,1,1,1,1, + v.val[2] = _mm_unpackhi_epi32(v.val[1],v.val[1]);// 2,2,2,2,2,2,2,2, x,x,x,x,x,x,x,x, + v.val[1] = _mm_shuffle_epi32(v.val[0], _SWAP_HI_LOW32); + return v; +} + +uint16x4x3_t vld3_dup_u16(__transfersize(3) uint16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0] +_NEON2SSE_INLINE uint16x4x3_t vld3_dup_u16(__transfersize(3) uint16_t const * ptr) // VLD3.16 {d0[], d1[], d2[]}, [r0] +{ + uint16x4x3_t v; + v.val[2] = LOAD_SI128(ptr); //0,1,2,x, x,x,x,x + v.val[0] = _mm_shufflelo_epi16(v.val[2], 0); //00 00 00 00 (all 0) + v.val[1] = _mm_shufflelo_epi16(v.val[2], 85);//01 01 01 01 (all 1) + v.val[2] = _mm_shufflelo_epi16(v.val[2], 170);//10 10 10 10 (all 2) + return v; +} + +uint32x2x3_t vld3_dup_u32(__transfersize(3) uint32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0] +_NEON2SSE_INLINE uint32x2x3_t vld3_dup_u32(__transfersize(3) uint32_t const * ptr) // VLD3.32 {d0[], d1[], d2[]}, [r0] +{ + uint32x2x3_t v; + v.val[2] = LOAD_SI128(ptr); //0,1,2,x + v.val[0] = _mm_shuffle_epi32(v.val[2], 0 | (0 << 2) | (2 << 4) | (2 << 6)); //0,0,2,2 + v.val[1] = _mm_shuffle_epi32(v.val[2], 1 | (1 << 2) | (2 << 4) | (2 << 6)); //1,1,2,2 + v.val[2] = _mm_srli_si128(v.val[0], 8); //2,2,0x0,0x0 + return v; +} + +uint64x1x3_t vld3_dup_u64(__transfersize(3) uint64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0] +_NEON2SSE_INLINE uint64x1x3_t vld3_dup_u64(__transfersize(3) uint64_t const * ptr) // VLD1.64 {d0, d1, d2}, [r0] +{ + uint64x1x3_t v; + v.val[0] = LOAD_SI128(ptr);//0,1, + v.val[1] = _mm_shuffle_epi32(v.val[0], _SWAP_HI_LOW32); //1,0 + v.val[2] = LOAD_SI128((ptr + 2)); //2,x + return v; +} + +int8x8x3_t vld3_dup_s8(__transfersize(3) int8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0] +#define vld3_dup_s8(ptr) vld3_dup_u8((uint8_t*)ptr) + +int16x4x3_t vld3_dup_s16(__transfersize(3) int16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0] +#define vld3_dup_s16(ptr) vld3_dup_u16((uint16_t*)ptr) + +int32x2x3_t vld3_dup_s32(__transfersize(3) int32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0] +#define vld3_dup_s32(ptr) vld3_dup_u32((uint32_t*)ptr) + +int64x1x3_t vld3_dup_s64(__transfersize(3) int64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0] +#define vld3_dup_s64(ptr) vld3_dup_u64((uint64_t*)ptr) + +float16x4x3_t vld3_dup_f16(__transfersize(3) __fp16 const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0] +// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example + +float32x2x3_t vld3_dup_f32(__transfersize(3) float32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0] +_NEON2SSE_INLINE float32x2x3_t vld3_dup_f32(__transfersize(3) float32_t const * ptr) // VLD3.32 {d0[], d1[], d2[]}, [r0] +{ + float32x2x3_t v; + v.val[0] = vld1q_f32(ptr); //0,1,2,x + v.val[1] = _mm_movehdup_ps(v.val[0]); //1,1,x,x + v.val[0] = _mm_moveldup_ps(v.val[0]); //0,0,2,2 + v.val[2] = _mm_movehl_ps(v.val[0], v.val[0]); //2,2,0,0, + return v; +} + +poly8x8x3_t vld3_dup_p8(__transfersize(3) poly8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0] +#define vld3_dup_p8 vld3_dup_u8 + +poly16x4x3_t vld3_dup_p16(__transfersize(3) poly16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0] +#define vld3_dup_p16 vld3_dup_s16 + +//************* Duplicate (or propagate) quadruples: ******************* +//*********************************************************************** +//ptr[0] to all val[0] lanes, ptr[1] to all val[1] lanes, ptr[2] to all val[2] lanes and ptr[3] to all val[3] lanes +uint8x8x4_t vld4_dup_u8(__transfersize(4) uint8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0] +_NEON2SSE_INLINE uint8x8x4_t vld4_dup_u8(__transfersize(4) uint8_t const * ptr) // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0] +{ + uint8x8x4_t v; + v.val[0] = LOAD_SI128(ptr); //0,1,2,3, x,x,x,x,x,x,x,x, x,x,x,x + v.val[1] = _mm_unpacklo_epi8(v.val[0],v.val[0]);//0,0,1,1,2,2,3,3, x,x,x,x,x,x,x,x, + v.val[1] = _mm_unpacklo_epi16(v.val[1],v.val[1]);//0,0,0,0, 1,1,1,1,2,2,2,2,3,3,3,3 + v.val[0] = _mm_unpacklo_epi32(v.val[1],v.val[1]);//0,0,0,0, 0,0,0,0,1,1,1,1,1,1,1,1, + v.val[2] = _mm_unpackhi_epi32(v.val[1],v.val[1]);// 2,2,2,2,2,2,2,2, 3,3,3,3, 3,3,3,3 + v.val[1] = _mm_shuffle_epi32(v.val[0], _SWAP_HI_LOW32); + v.val[3] = _mm_shuffle_epi32(v.val[2], _SWAP_HI_LOW32); + return v; +} + +uint16x4x4_t vld4_dup_u16(__transfersize(4) uint16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] +_NEON2SSE_INLINE uint16x4x4_t vld4_dup_u16(__transfersize(4) uint16_t const * ptr) // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] +{ + uint16x4x4_t v; + v.val[3] = LOAD_SI128(ptr); //0,1,2,3, x,x,x,x + v.val[0] = _mm_shufflelo_epi16(v.val[3], 0); //00 00 00 00 (all 0) + v.val[1] = _mm_shufflelo_epi16(v.val[3], 85);//01 01 01 01 (all 1) + v.val[2] = _mm_shufflelo_epi16(v.val[3], 170);//10 10 10 10 (all 2) + v.val[3] = _mm_shufflelo_epi16(v.val[3], 255);//11 11 11 11 (all 3) + return v; +} + +uint32x2x4_t vld4_dup_u32(__transfersize(4) uint32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0] +_NEON2SSE_INLINE uint32x2x4_t vld4_dup_u32(__transfersize(4) uint32_t const * ptr) // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0] +{ + uint32x2x4_t v; + v.val[3] = LOAD_SI128(ptr) ; //0,1,2,3 + v.val[0] = _mm_shuffle_epi32(v.val[3], 0 | (0 << 2) | (2 << 4) | (3 << 6)); //0,0,2,3 + v.val[1] = _mm_shuffle_epi32(v.val[3], 1 | (1 << 2) | (2 << 4) | (3 << 6)); //1,1,2,3 + v.val[2] = _mm_shuffle_epi32(v.val[3], 2 | (2 << 2) | (3 << 4) | (3 << 6)); //2,2,3,3 + v.val[3] = _mm_shuffle_epi32(v.val[3], 3 | (3 << 2) | (3 << 4) | (3 << 6)); //3,3,2,2 + return v; +} + +uint64x1x4_t vld4_dup_u64(__transfersize(4) uint64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0] +_NEON2SSE_INLINE uint64x1x4_t vld4_dup_u64(__transfersize(4) uint64_t const * ptr) // VLD1.64 {d0, d1, d2, d3}, [r0] +{ + uint64x1x4_t v; + v.val[0] = LOAD_SI128(ptr); //0,1, + v.val[1] = _mm_shuffle_epi32(v.val[0], _SWAP_HI_LOW32); //1,0 + v.val[2] = LOAD_SI128((ptr + 2)); //2,3 + v.val[3] = _mm_shuffle_epi32(v.val[2], _SWAP_HI_LOW32); //3,2 + return v; +} + +int8x8x4_t vld4_dup_s8(__transfersize(4) int8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0] +#define vld4_dup_s8(ptr) vld4_dup_u8((uint8_t*)ptr) + +int16x4x4_t vld4_dup_s16(__transfersize(4) int16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] +#define vld4_dup_s16(ptr) vld4_dup_u16((uint16_t*)ptr) + +int32x2x4_t vld4_dup_s32(__transfersize(4) int32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0] +#define vld4_dup_s32(ptr) vld4_dup_u32((uint32_t*)ptr) + +int64x1x4_t vld4_dup_s64(__transfersize(4) int64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0] +#define vld4_dup_s64(ptr) vld4_dup_u64((uint64_t*)ptr) + +float16x4x4_t vld4_dup_f16(__transfersize(4) __fp16 const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] +// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example + +float32x2x4_t vld4_dup_f32(__transfersize(4) float32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0] +_NEON2SSE_INLINE float32x2x4_t vld4_dup_f32(__transfersize(4) float32_t const * ptr) // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0] +{ + float32x2x4_t v; + v.val[0] = vld1q_f32(ptr); //0,1,2,3 + v.val[1] = _mm_movehdup_ps(v.val[0]); //1,1,3,3 + v.val[0] = _mm_moveldup_ps(v.val[0]); //0,0,2,2 + v.val[2] = _mm_movehl_ps(v.val[0], v.val[0]); //2,2,0,0, + v.val[3] = _mm_movehl_ps(v.val[1], v.val[1]); //3,3,1,1, + return v; +} + +poly8x8x4_t vld4_dup_p8(__transfersize(4) poly8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0] +#define vld4_dup_p8 vld4_dup_u8 + +poly16x4x4_t vld4_dup_p16(__transfersize(4) poly16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] +#define vld4_dup_p16 vld4_dup_u16 + +//********************************************************************************** +//*******************Lane loads for an N-element structures *********************** +//********************************************************************************** +//********************** Lane pairs ************************************************ +//does vld1_lane_xx ptr[0] to src->val[0] at lane positon and ptr[1] to src->val[1] at lane positon +//we assume src is 16 bit aligned + +//!!!!!! Microsoft compiler does not allow xxxxxx_2t function arguments resulting in "formal parameter with __declspec(align('16')) won't be aligned" error +//to fix it the all functions below work with xxxxxx_2t pointers and the corresponding original functions are redefined + +//uint16x8x2_t vld2q_lane_u16(__transfersize(2) uint16_t const * ptr, uint16x8x2_t src,__constrange(0,7) int lane);// VLD2.16 {d0[0], d2[0]}, [r0] +_NEON2SSE_INLINE uint16x8x2_t vld2q_lane_u16_ptr(__transfersize(2) uint16_t const * ptr, uint16x8x2_t* src,__constrange(0,7) int lane) // VLD2.16 {d0[0], d2[0]}, [r0] +{ + uint16x8x2_t v; + v.val[0] = vld1q_lane_s16 (ptr, src->val[0], lane); + v.val[1] = vld1q_lane_s16 ((ptr + 1), src->val[1], lane); + return v; +} +#define vld2q_lane_u16(ptr, src, lane) vld2q_lane_u16_ptr(ptr, &src, lane) + +//uint32x4x2_t vld2q_lane_u32(__transfersize(2) uint32_t const * ptr, uint32x4x2_t src,__constrange(0,3) int lane);// VLD2.32 {d0[0], d2[0]}, [r0] +_NEON2SSE_INLINE uint32x4x2_t vld2q_lane_u32_ptr(__transfersize(2) uint32_t const * ptr, uint32x4x2_t* src,__constrange(0,3) int lane) // VLD2.32 {d0[0], d2[0]}, [r0] +{ + uint32x4x2_t v; + v.val[0] = _MM_INSERT_EPI32 (src->val[0], ptr[0], lane); + v.val[1] = _MM_INSERT_EPI32 (src->val[1], ptr[1], lane); + return v; +} +#define vld2q_lane_u32(ptr, src, lane) vld2q_lane_u32_ptr(ptr, &src, lane) + +//int16x8x2_t vld2q_lane_s16(__transfersize(2) int16_t const * ptr, int16x8x2_t src, __constrange(0,7)int lane);// VLD2.16 {d0[0], d2[0]}, [r0] +_NEON2SSE_INLINE int16x8x2_t vld2q_lane_s16_ptr(__transfersize(2) int16_t const * ptr, int16x8x2_t* src, __constrange(0,7) int lane) +{ + int16x8x2_t v; + v.val[0] = vld1q_lane_s16 (ptr, src->val[0], lane); + v.val[1] = vld1q_lane_s16 ((ptr + 1), src->val[1], lane); + return v; +} +#define vld2q_lane_s16(ptr, src, lane) vld2q_lane_s16_ptr(ptr, &src, lane) + +//int32x4x2_t vld2q_lane_s32(__transfersize(2) int32_t const * ptr, int32x4x2_t src, __constrange(0,3)int lane);// VLD2.32 {d0[0], d2[0]}, [r0] +_NEON2SSE_INLINE int32x4x2_t vld2q_lane_s32_ptr(__transfersize(2) int32_t const * ptr, int32x4x2_t* src, __constrange(0,3) int lane) +{ + int32x4x2_t v; + v.val[0] = _MM_INSERT_EPI32 (src->val[0], ptr[0], lane); + v.val[1] = _MM_INSERT_EPI32 (src->val[1], ptr[1], lane); + return v; +} +#define vld2q_lane_s32(ptr, src, lane) vld2q_lane_s32_ptr(ptr, &src, lane) + +//float16x8x2_t vld2q_lane_f16(__transfersize(2) __fp16 const * ptr, float16x8x2_t src, __constrange(0,7)int lane);// VLD2.16 {d0[0], d2[0]}, [r0] +//current IA SIMD doesn't support float16 + +//float32x4x2_t vld2q_lane_f32(__transfersize(2) float32_t const * ptr, float32x4x2_t src,__constrange(0,3) int lane);// VLD2.32 {d0[0], d2[0]}, [r0] +_NEON2SSE_INLINE float32x4x2_t vld2q_lane_f32_ptr(__transfersize(2) float32_t const * ptr, float32x4x2_t* src,__constrange(0,3) int lane) // VLD2.32 {d0[0], d2[0]}, [r0] +{ + float32x4x2_t v; + v.val[0] = vld1q_lane_f32(ptr, src->val[0], lane); + v.val[1] = vld1q_lane_f32((ptr + 1), src->val[1], lane); + return v; +} +#define vld2q_lane_f32(ptr, src, lane) vld2q_lane_f32_ptr(ptr, &src, lane) + +//poly16x8x2_t vld2q_lane_p16(__transfersize(2) poly16_t const * ptr, poly16x8x2_t src,__constrange(0,7) int lane);// VLD2.16 {d0[0], d2[0]}, [r0] +#define vld2q_lane_p16 vld2q_lane_u16 + +//uint8x8x2_t vld2_lane_u8(__transfersize(2) uint8_t const * ptr, uint8x8x2_t src, __constrange(0,7) int lane);// VLD2.8 {d0[0], d1[0]}, [r0] +_NEON2SSE_INLINE uint8x8x2_t vld2_lane_u8_ptr(__transfersize(2) uint8_t const * ptr, uint8x8x2_t* src, __constrange(0,7) int lane) // VLD2.8 {d0[0], d1[0]}, [r0] +{ + uint8x8x2_t val; + val.val[0] = _MM_INSERT_EPI8 (src->val[0], (int)ptr[0], lane); + val.val[1] = _MM_INSERT_EPI8 (src->val[1], (int)ptr[1], lane); + return val; +} +#define vld2_lane_u8(ptr, src, lane) vld2_lane_u8_ptr(ptr, &src, lane) + +//uint16x4x2_t vld2_lane_u16(__transfersize(2) uint16_t const * ptr, uint16x4x2_t src, __constrange(0,3)int lane);// VLD2.16 {d0[0], d1[0]}, [r0] +#define vld2_lane_u16 vld2q_lane_u16 + +//uint32x2x2_t vld2_lane_u32(__transfersize(2) uint32_t const * ptr, uint32x2x2_t src, __constrange(0,1)int lane);// VLD2.32 {d0[0], d1[0]}, [r0] +#define vld2_lane_u32 vld2q_lane_u32 + +//int8x8x2_t vld2_lane_s8(__transfersize(2) int8_t const * ptr, int8x8x2_t src, __constrange(0,7) int lane);// VLD2.8 {d0[0], d1[0]}, [r0] +int8x8x2_t vld2_lane_s8_ptr(__transfersize(2) int8_t const * ptr, int8x8x2_t * src, __constrange(0,7) int lane); // VLD2.8 {d0[0], d1[0]}, [r0] +#define vld2_lane_s8(ptr, src, lane) vld2_lane_u8(( uint8_t*) ptr, src, lane) + +//int16x4x2_t vld2_lane_s16(__transfersize(2) int16_t const * ptr, int16x4x2_t src, __constrange(0,3) int lane);// VLD2.16 {d0[0], d1[0]}, [r0] +int16x4x2_t vld2_lane_s16_ptr(__transfersize(2) int16_t const * ptr, int16x4x2_t * src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0] +#define vld2_lane_s16(ptr, src, lane) vld2_lane_u16(( uint16_t*) ptr, src, lane) + +//int32x2x2_t vld2_lane_s32(__transfersize(2) int32_t const * ptr, int32x2x2_t src, __constrange(0,1) int lane);// VLD2.32 {d0[0], d1[0]}, [r0] +int32x2x2_t vld2_lane_s32_ptr(__transfersize(2) int32_t const * ptr, int32x2x2_t * src, __constrange(0,1) int lane); // VLD2.32 {d0[0], d1[0]}, [r0] +#define vld2_lane_s32(ptr, src, lane) vld2_lane_u32(( uint32_t*) ptr, src, lane) + +//float16x4x2_t vld2_lane_f16(__transfersize(2) __fp16 const * ptr, float16x4x2_t src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0] +//current IA SIMD doesn't support float16 + +float32x2x2_t vld2_lane_f32_ptr(__transfersize(2) float32_t const * ptr, float32x2x2_t * src,__constrange(0,1) int lane); // VLD2.32 {d0[0], d1[0]}, [r0] +#define vld2_lane_f32 vld2q_lane_f32 + +//poly8x8x2_t vld2_lane_p8(__transfersize(2) poly8_t const * ptr, poly8x8x2_t src, __constrange(0,7) int lane);// VLD2.8 {d0[0], d1[0]}, [r0] +poly8x8x2_t vld2_lane_p8_ptr(__transfersize(2) poly8_t const * ptr, poly8x8x2_t * src, __constrange(0,7) int lane); // VLD2.8 {d0[0], d1[0]}, [r0] +#define vld2_lane_p8 vld2_lane_u8 + +//poly16x4x2_t vld2_lane_p16(__transfersize(2) poly16_t const * ptr, poly16x4x2_t src, __constrange(0,3)int lane);// VLD2.16 {d0[0], d1[0]}, [r0] +poly16x4x2_t vld2_lane_p16_ptr(__transfersize(2) poly16_t const * ptr, poly16x4x2_t * src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0] +#define vld2_lane_p16 vld2_lane_u16 + +//*********** Lane triplets ********************** +//************************************************* +//does vld1_lane_xx ptr[0] to src->val[0], ptr[1] to src->val[1] and ptr[2] to src->val[2] at lane positon +//we assume src is 16 bit aligned + +//uint16x8x3_t vld3q_lane_u16(__transfersize(3) uint16_t const * ptr, uint16x8x3_t src,__constrange(0,7) int lane);// VLD3.16 {d0[0], d2[0], d4[0]}, [r0] +_NEON2SSE_INLINE uint16x8x3_t vld3q_lane_u16_ptr(__transfersize(3) uint16_t const * ptr, uint16x8x3_t* src,__constrange(0,7) int lane) // VLD3.16 {d0[0], d2[0], d4[0]}, [r0] +{ + uint16x8x3_t v; + v.val[0] = _MM_INSERT_EPI16 ( src->val[0], ptr[0], lane); + v.val[1] = _MM_INSERT_EPI16 ( src->val[1], ptr[1], lane); + v.val[2] = _MM_INSERT_EPI16 ( src->val[2], ptr[2], lane); + return v; +} +#define vld3q_lane_u16(ptr, src, lane) vld3q_lane_u16_ptr(ptr, &src, lane) + +//uint32x4x3_t vld3q_lane_u32(__transfersize(3) uint32_t const * ptr, uint32x4x3_t src,__constrange(0,3) int lane);// VLD3.32 {d0[0], d2[0], d4[0]}, [r0] +_NEON2SSE_INLINE uint32x4x3_t vld3q_lane_u32_ptr(__transfersize(3) uint32_t const * ptr, uint32x4x3_t* src,__constrange(0,3) int lane) // VLD3.32 {d0[0], d2[0], d4[0]}, [r0] +{ + uint32x4x3_t v; + v.val[0] = _MM_INSERT_EPI32 ( src->val[0], ptr[0], lane); + v.val[1] = _MM_INSERT_EPI32 ( src->val[1], ptr[1], lane); + v.val[2] = _MM_INSERT_EPI32 ( src->val[2], ptr[2], lane); + return v; +} +#define vld3q_lane_u32(ptr, src, lane) vld3q_lane_u32_ptr(ptr, &src, lane) + +//int16x8x3_t vld3q_lane_s16(__transfersize(3) int16_t const * ptr, int16x8x3_t src, __constrange(0,7)int lane);// VLD3.16 {d0[0], d2[0], d4[0]}, [r0] +_NEON2SSE_INLINE int16x8x3_t vld3q_lane_s16_ptr(__transfersize(3) int16_t const * ptr, int16x8x3_t* src, __constrange(0,7) int lane) // VLD3.16 {d0[0], d2[0], d4[0]}, [r0] +{ + int16x8x3_t v; + v.val[0] = _MM_INSERT_EPI16 ( src->val[0], ptr[0], lane); + v.val[1] = _MM_INSERT_EPI16 ( src->val[1], ptr[1], lane); + v.val[2] = _MM_INSERT_EPI16 ( src->val[2], ptr[2], lane); + return v; +} +#define vld3q_lane_s16(ptr, src, lane) vld3q_lane_s16_ptr(ptr, &src, lane) + +//int32x4x3_t vld3q_lane_s32(__transfersize(3) int32_t const * ptr, int32x4x3_t src, __constrange(0,3)int lane);// VLD3.32 {d0[0], d2[0], d4[0]}, [r0] +_NEON2SSE_INLINE int32x4x3_t vld3q_lane_s32_ptr(__transfersize(3) int32_t const * ptr, int32x4x3_t* src, __constrange(0,3) int lane) // VLD3.32 {d0[0], d2[0], d4[0]}, [r0] +{ + int32x4x3_t v; + v.val[0] = _MM_INSERT_EPI32 ( src->val[0], ptr[0], lane); + v.val[1] = _MM_INSERT_EPI32 ( src->val[1], ptr[1], lane); + v.val[2] = _MM_INSERT_EPI32 ( src->val[2], ptr[2], lane); + return v; +} +#define vld3q_lane_s32(ptr, src, lane) vld3q_lane_s32_ptr(ptr, &src, lane) + +float16x8x3_t vld3q_lane_f16_ptr(__transfersize(3) __fp16 const * ptr, float16x8x3_t * src, __constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0] +//current IA SIMD doesn't support float16 +#define vld3q_lane_f16(ptr, src, lane) vld3q_lane_f16_ptr(ptr, &src, lane) + +//float32x4x3_t vld3q_lane_f32(__transfersize(3) float32_t const * ptr, float32x4x3_t src,__constrange(0,3) int lane);// VLD3.32 {d0[0], d2[0], d4[0]}, [r0] +_NEON2SSE_INLINE float32x4x3_t vld3q_lane_f32_ptr(__transfersize(3) float32_t const * ptr, float32x4x3_t* src,__constrange(0,3) int lane) // VLD3.32 {d0[0], d2[0], d4[0]}, [r0] +{ + float32x4x3_t v; + v.val[0] = vld1q_lane_f32(&ptr[0], src->val[0], lane); + v.val[1] = vld1q_lane_f32(&ptr[1], src->val[1], lane); + v.val[2] = vld1q_lane_f32(&ptr[2], src->val[2], lane); + return v; +} +#define vld3q_lane_f32(ptr, src, lane) vld3q_lane_f32_ptr(ptr, &src, lane) + +poly16x8x3_t vld3q_lane_p16_ptr(__transfersize(3) poly16_t const * ptr, poly16x8x3_t * src,__constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0] +#define vld3q_lane_p16 vld3q_lane_u16 + +//uint8x8x3_t vld3_lane_u8(__transfersize(3) uint8_t const * ptr, uint8x8x3_t src, __constrange(0,7) int lane);// VLD3.8 {d0[0], d1[0], d2[0]}, [r0] +_NEON2SSE_INLINE uint8x8x3_t vld3_lane_u8_ptr(__transfersize(3) uint8_t const * ptr, uint8x8x3_t* src, __constrange(0,7) int lane) // VLD3.8 {d0[0], d1[0], d2[0]}, [r0] +{ + uint8x8x3_t v; + v.val[0] = _MM_INSERT_EPI8 (src->val[0], ptr[0], lane); + v.val[1] = _MM_INSERT_EPI8 (src->val[1], ptr[1], lane); + v.val[2] = _MM_INSERT_EPI8 (src->val[2], ptr[2], lane); + return v; +} +#define vld3_lane_u8(ptr, src, lane) vld3_lane_u8_ptr(ptr, &src, lane) + +//uint16x4x3_t vld3_lane_u16(__transfersize(3) uint16_t const * ptr, uint16x4x3_t src, __constrange(0,3)int lane);// VLD3.16 {d0[0], d1[0], d2[0]}, [r0] +_NEON2SSE_INLINE uint16x4x3_t vld3_lane_u16_ptr(__transfersize(3) uint16_t const * ptr, uint16x4x3_t* src, __constrange(0,3) int lane) // VLD3.16 {d0[0], d1[0], d2[0]}, [r0] +{ + uint16x4x3_t v; + v.val[0] = _MM_INSERT_EPI16 (src->val[0], ptr[0], lane); + v.val[1] = _MM_INSERT_EPI16 (src->val[1], ptr[1], lane); + v.val[2] = _MM_INSERT_EPI16 (src->val[2], ptr[2], lane); + return v; +} +#define vld3_lane_u16(ptr, src, lane) vld3_lane_u16_ptr(ptr, &src, lane) + +//uint32x2x3_t vld3_lane_u32(__transfersize(3) uint32_t const * ptr, uint32x2x3_t src, __constrange(0,1)int lane);// VLD3.32 {d0[0], d1[0], d2[0]}, [r0] +_NEON2SSE_INLINE uint32x2x3_t vld3_lane_u32_ptr(__transfersize(3) uint32_t const * ptr, uint32x2x3_t* src, __constrange(0,1) int lane) // VLD3.32 {d0[0], d1[0], d2[0]}, [r0] +{ //need to merge into 128 bit anyway + uint32x2x3_t v; + v.val[0] = _MM_INSERT_EPI32 (src->val[0], ptr[0], lane); + v.val[1] = _MM_INSERT_EPI32 (src->val[1], ptr[1], lane); + v.val[2] = _MM_INSERT_EPI32 (src->val[2], ptr[2], lane); + return v; +} +#define vld3_lane_u32(ptr, src, lane) vld3_lane_u32_ptr(ptr, &src, lane) + +int8x8x3_t vld3_lane_s8_ptr(__transfersize(3) int8_t const * ptr, int8x8x3_t * src, __constrange(0,7) int lane); // VLD3.8 {d0[0], d1[0], d2[0]}, [r0] +#define vld3_lane_s8(ptr, src, lane) vld3_lane_u8_ptr(( uint8_t*) ptr, &src, lane) + +int16x4x3_t vld3_lane_s16_ptr(__transfersize(3) int16_t const * ptr, int16x4x3_t * src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0] +#define vld3_lane_s16(ptr, src, lane) vld3_lane_u16_ptr(( uint16_t*) ptr, &src, lane) + +int32x2x3_t vld3_lane_s32_ptr(__transfersize(3) int32_t const * ptr, int32x2x3_t * src, __constrange(0,1) int lane); // VLD3.32 {d0[0], d1[0], d2[0]}, [r0] +#define vld3_lane_s32(ptr, src, lane) vld3_lane_u32_ptr(( uint32_t*) ptr, &src, lane) + +float16x4x3_t vld3_lane_f16_ptr(__transfersize(3) __fp16 const * ptr, float16x4x3_t * src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0] +//current IA SIMD doesn't support float16 + +//float32x2x3_t vld3_lane_f32(__transfersize(3) float32_t const * ptr, float32x2x3_t src,__constrange(0,1) int lane);// VLD3.32 {d0[0], d1[0], d2[0]}, [r0] +_NEON2SSE_INLINE float32x2x3_t vld3_lane_f32_ptr(__transfersize(3) float32_t const * ptr, float32x2x3_t* src,__constrange(0,1) int lane) // VLD3.32 {d0[0], d1[0], d2[0]}, [r0] +{ + float32x2x3_t v; + v.val[0] = vld1q_lane_f32(ptr, src->val[0], lane); + return v; +} +#define vld3_lane_f32(ptr, src, lane) vld3_lane_f32_ptr(ptr, &src, lane) + +//poly8x8x3_t vld3_lane_p8_ptr(__transfersize(3) poly8_t const * ptr, poly8x8x3_t * src, __constrange(0,7) int lane); // VLD3.8 {d0[0], d1[0], d2[0]}, [r0] +#define vld3_lane_p8 vld3_lane_u8 + +//poly16x4x3_t vld3_lane_p16(__transfersize(3) poly16_t const * ptr, poly16x4x3_t * src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0] +#define vld3_lane_p16 vld3_lane_u16 + +//******************* Lane Quadruples load *************************** +//********************************************************************* +//does vld1_lane_xx ptr[0] to src->val[0], ptr[1] to src->val[1], ptr[2] to src->val[2] and ptr[3] to src->val[3] at lane positon +//we assume src is 16 bit aligned + +//uint16x8x4_t vld4q_lane_u16(__transfersize(4) uint16_t const * ptr, uint16x8x4_t src,__constrange(0,7) int lane)// VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] +_NEON2SSE_INLINE uint16x8x4_t vld4q_lane_u16_ptr(__transfersize(4) uint16_t const * ptr, uint16x8x4_t* src,__constrange(0,7) int lane) +{ + uint16x8x4_t v; + v.val[0] = _MM_INSERT_EPI16 ( src->val[0], ptr[0], lane); + v.val[1] = _MM_INSERT_EPI16 ( src->val[1], ptr[1], lane); + v.val[2] = _MM_INSERT_EPI16 ( src->val[2], ptr[2], lane); + v.val[3] = _MM_INSERT_EPI16 ( src->val[3], ptr[3], lane); + return v; +} +#define vld4q_lane_u16(ptr, src, lane) vld4q_lane_u16_ptr(ptr, &src, lane) + +//uint32x4x4_t vld4q_lane_u32(__transfersize(4) uint32_t const * ptr, uint32x4x4_t src,__constrange(0,3) int lane)// VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] +_NEON2SSE_INLINE uint32x4x4_t vld4q_lane_u32_ptr(__transfersize(4) uint32_t const * ptr, uint32x4x4_t* src,__constrange(0,3) int lane) +{ + uint32x4x4_t v; + v.val[0] = _MM_INSERT_EPI32 ( src->val[0], ptr[0], lane); + v.val[1] = _MM_INSERT_EPI32 ( src->val[1], ptr[1], lane); + v.val[2] = _MM_INSERT_EPI32 ( src->val[2], ptr[2], lane); + v.val[3] = _MM_INSERT_EPI32 ( src->val[3], ptr[3], lane); + return v; +} +#define vld4q_lane_u32(ptr, src, lane) vld4q_lane_u32_ptr(ptr, &src, lane) + +//int16x8x4_t vld4q_lane_s16(__transfersize(4) int16_t const * ptr, int16x8x4_t src, __constrange(0,7)int lane);// VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] +int16x8x4_t vld4q_lane_s16_ptr(__transfersize(4) int16_t const * ptr, int16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] +#define vld4q_lane_s16(ptr, src, lane) vld4q_lane_u16(( uint16_t*) ptr, src, lane) + +//int32x4x4_t vld4q_lane_s32(__transfersize(4) int32_t const * ptr, int32x4x4_t src, __constrange(0,3)int lane);// VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] +int32x4x4_t vld4q_lane_s32_ptr(__transfersize(4) int32_t const * ptr, int32x4x4_t * src, __constrange(0,3) int lane); // VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] +#define vld4q_lane_s32(ptr, src, lane) vld4q_lane_u32(( uint32_t*) ptr, src, lane) + +//float16x8x4_t vld4q_lane_f16(__transfersize(4) __fp16 const * ptr, float16x8x4_t src, __constrange(0,7)int lane);// VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] +float16x8x4_t vld4q_lane_f16_ptr(__transfersize(4) __fp16 const * ptr, float16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] +//current IA SIMD doesn't support float16 + +//float32x4x4_t vld4q_lane_f32(__transfersize(4) float32_t const * ptr, float32x4x4_t src,__constrange(0,3) int lane)// VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] +_NEON2SSE_INLINE float32x4x4_t vld4q_lane_f32_ptr(__transfersize(4) float32_t const * ptr, float32x4x4_t* src,__constrange(0,3) int lane) +{ + float32x4x4_t v; + v.val[0] = vld1q_lane_f32(&ptr[0], src->val[0], lane); + v.val[1] = vld1q_lane_f32(&ptr[1], src->val[1], lane); + v.val[2] = vld1q_lane_f32(&ptr[2], src->val[2], lane); + v.val[3] = vld1q_lane_f32(&ptr[3], src->val[3], lane); + return v; +} +#define vld4q_lane_f32(ptr, src, lane) vld4q_lane_f32_ptr(ptr, &src, lane) + +//poly16x8x4_t vld4q_lane_p16(__transfersize(4) poly16_t const * ptr, poly16x8x4_t src,__constrange(0,7) int lane);// VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] +poly16x8x4_t vld4q_lane_p16_ptr(__transfersize(4) poly16_t const * ptr, poly16x8x4_t * src,__constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] +#define vld4q_lane_p16 vld4q_lane_u16 + +//uint8x8x4_t vld4_lane_u8(__transfersize(4) uint8_t const * ptr, uint8x8x4_t src, __constrange(0,7) int lane)// VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] +_NEON2SSE_INLINE uint8x8x4_t vld4_lane_u8_ptr(__transfersize(4) uint8_t const * ptr, uint8x8x4_t* src, __constrange(0,7) int lane) +{ + uint8x8x4_t v; + v.val[0] = _MM_INSERT_EPI8 (src->val[0], ptr[0], lane); + v.val[1] = _MM_INSERT_EPI8 (src->val[1], ptr[1], lane ); + v.val[2] = _MM_INSERT_EPI8 (src->val[2], ptr[2], lane ); + v.val[3] = _MM_INSERT_EPI8 (src->val[3], ptr[3], lane ); + return v; +} +#define vld4_lane_u8(ptr, src, lane) vld4_lane_u8_ptr(ptr, &src, lane) + +//uint16x4x4_t vld4_lane_u16(__transfersize(4) uint16_t const * ptr, uint16x4x4_t src, __constrange(0,3)int lane)// VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] +_NEON2SSE_INLINE uint16x4x4_t vld4_lane_u16_ptr(__transfersize(4) uint16_t const * ptr, uint16x4x4_t* src, __constrange(0,3) int lane) +{ + uint16x4x4_t v; + v.val[0] = _MM_INSERT_EPI16 (src->val[0], ptr[0], lane); + v.val[1] = _MM_INSERT_EPI16 (src->val[1], ptr[1], lane ); + v.val[2] = _MM_INSERT_EPI16 (src->val[2], ptr[2], lane ); + v.val[3] = _MM_INSERT_EPI16 (src->val[3], ptr[3], lane ); + return v; +} +#define vld4_lane_u16(ptr, src, lane) vld4_lane_u16_ptr(ptr, &src, lane) + +//uint32x2x4_t vld4_lane_u32(__transfersize(4) uint32_t const * ptr, uint32x2x4_t src, __constrange(0,1)int lane)// VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] +_NEON2SSE_INLINE uint32x2x4_t vld4_lane_u32_ptr(__transfersize(4) uint32_t const * ptr, uint32x2x4_t* src, __constrange(0,1) int lane) +{ + uint32x2x4_t v; + v.val[0] = _MM_INSERT_EPI32 (src->val[0], ptr[0], lane); + v.val[1] = _MM_INSERT_EPI32 (src->val[1], ptr[1], lane ); + v.val[2] = _MM_INSERT_EPI32 (src->val[2], ptr[2], lane ); + v.val[3] = _MM_INSERT_EPI32 (src->val[3], ptr[3], lane ); + return v; +} +#define vld4_lane_u32(ptr, src, lane) vld4_lane_u32_ptr(ptr, &src, lane) + +//int8x8x4_t vld4_lane_s8(__transfersize(4) int8_t const * ptr, int8x8x4_t src, __constrange(0,7) int lane);// VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] +int8x8x4_t vld4_lane_s8_ptr(__transfersize(4) int8_t const * ptr, int8x8x4_t * src, __constrange(0,7) int lane); +#define vld4_lane_s8(ptr,src,lane) vld4_lane_u8((uint8_t*)ptr,src,lane) + +//int16x4x4_t vld4_lane_s16(__transfersize(4) int16_t const * ptr, int16x4x4_t src, __constrange(0,3) int lane);// VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] +int16x4x4_t vld4_lane_s16_ptr(__transfersize(4) int16_t const * ptr, int16x4x4_t * src, __constrange(0,3) int lane); +#define vld4_lane_s16(ptr,src,lane) vld4_lane_u16((uint16_t*)ptr,src,lane) + +//int32x2x4_t vld4_lane_s32(__transfersize(4) int32_t const * ptr, int32x2x4_t src, __constrange(0,1) int lane);// VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] +int32x2x4_t vld4_lane_s32_ptr(__transfersize(4) int32_t const * ptr, int32x2x4_t * src, __constrange(0,1) int lane); +#define vld4_lane_s32(ptr,src,lane) vld4_lane_u32((uint32_t*)ptr,src,lane) + +//float16x4x4_t vld4_lane_f16(__transfersize(4) __fp16 const * ptr, float16x4x4_t src, __constrange(0,3)int lane);// VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] +float16x4x4_t vld4_lane_f16_ptr(__transfersize(4) __fp16 const * ptr, float16x4x4_t * src, __constrange(0,3) int lane); +//current IA SIMD doesn't support float16 + +//float32x2x4_t vld4_lane_f32(__transfersize(4) float32_t const * ptr, float32x2x4_t src,__constrange(0,1) int lane)// VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] +_NEON2SSE_INLINE float32x2x4_t vld4_lane_f32_ptr(__transfersize(4) float32_t const * ptr, float32x2x4_t* src,__constrange(0,1) int lane) +{ //serial solution may be faster + float32x2x4_t v; + return v; +} +#define vld4_lane_f32(ptr, src, lane) vld4_lane_f32_ptr(ptr, &src, lane) + +//poly8x8x4_t vld4_lane_p8(__transfersize(4) poly8_t const * ptr, poly8x8x4_t src, __constrange(0,7) int lane);// VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] +poly8x8x4_t vld4_lane_p8_ptr(__transfersize(4) poly8_t const * ptr, poly8x8x4_t * src, __constrange(0,7) int lane); +#define vld4_lane_p8 vld4_lane_u8 + +//poly16x4x4_t vld4_lane_p16(__transfersize(4) poly16_t const * ptr, poly16x4x4_t src, __constrange(0,3)int lane);// VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] +poly16x4x4_t vld4_lane_p16_ptr(__transfersize(4) poly16_t const * ptr, poly16x4x4_t * src, __constrange(0,3) int lane); +#define vld4_lane_p16 vld4_lane_u16 + +//******************* Store duplets ********************************************* +//******************************************************************************** +//here we assume the ptr is 16bit aligned. If not we need to use _mm_storeu_si128 like shown in vst1q_u8 function +//If necessary you need to modify all store functions accordingly. See more comments to "Store single" functions +//void vst2q_u8(__transfersize(32) uint8_t * ptr, uint8x16x2_t val)// VST2.8 {d0, d2}, [r0] +_NEON2SSE_INLINE void vst2q_u8_ptr(__transfersize(32) uint8_t * ptr, uint8x16x2_t* val) +{ + uint8x16x2_t v; + v.val[0] = _mm_unpacklo_epi8(val->val[0], val->val[1]); + v.val[1] = _mm_unpackhi_epi8(val->val[0], val->val[1]); + vst1q_u8 (ptr, v.val[0]); + vst1q_u8 ((ptr + 16), v.val[1]); +} +#define vst2q_u8(ptr, val) vst2q_u8_ptr(ptr, &val) + +//void vst2q_u16(__transfersize(16) uint16_t * ptr, uint16x8x2_t val)// VST2.16 {d0, d2}, [r0] +_NEON2SSE_INLINE void vst2q_u16_ptr(__transfersize(16) uint16_t * ptr, uint16x8x2_t* val) +{ + uint16x8x2_t v; + v.val[0] = _mm_unpacklo_epi16(val->val[0], val->val[1]); + v.val[1] = _mm_unpackhi_epi16(val->val[0], val->val[1]); + vst1q_u16 (ptr, v.val[0]); + vst1q_u16 ((ptr + 8), v.val[1]); +} +#define vst2q_u16(ptr, val) vst2q_u16_ptr(ptr, &val) + +//void vst2q_u32(__transfersize(8) uint32_t * ptr, uint32x4x2_t val)// VST2.32 {d0, d2}, [r0] +_NEON2SSE_INLINE void vst2q_u32_ptr(__transfersize(8) uint32_t* ptr, uint32x4x2_t* val) +{ + uint32x4x2_t v; + v.val[0] = _mm_unpacklo_epi32(val->val[0], val->val[1]); + v.val[1] = _mm_unpackhi_epi32(val->val[0], val->val[1]); + vst1q_u32 (ptr, v.val[0]); + vst1q_u32 ((ptr + 4), v.val[1]); +} +#define vst2q_u32(ptr, val) vst2q_u32_ptr(ptr, &val) + +//void vst2q_s8(__transfersize(32) int8_t * ptr, int8x16x2_t val); // VST2.8 {d0, d2}, [r0] +void vst2q_s8_ptr(__transfersize(32) int8_t * ptr, int8x16x2_t * val); +#define vst2q_s8(ptr, val) vst2q_u8((uint8_t*)(ptr), val) + +//void vst2q_s16(__transfersize(16) int16_t * ptr, int16x8x2_t val);// VST2.16 {d0, d2}, [r0] +void vst2q_s16_ptr(__transfersize(16) int16_t * ptr, int16x8x2_t * val); +#define vst2q_s16(ptr, val) vst2q_u16((uint16_t*)(ptr), val) + +//void vst2q_s32(__transfersize(8) int32_t * ptr, int32x4x2_t val);// VST2.32 {d0, d2}, [r0] +void vst2q_s32_ptr(__transfersize(8) int32_t * ptr, int32x4x2_t * val); +#define vst2q_s32(ptr, val) vst2q_u32((uint32_t*)(ptr), val) + +//void vst2q_f16(__transfersize(16) __fp16 * ptr, float16x8x2_t val);// VST2.16 {d0, d2}, [r0] +void vst2q_f16_ptr(__transfersize(16) __fp16 * ptr, float16x8x2_t * val); +// IA32 SIMD doesn't work with 16bit floats currently + +//void vst2q_f32(__transfersize(8) float32_t * ptr, float32x4x2_t val)// VST2.32 {d0, d2}, [r0] +_NEON2SSE_INLINE void vst2q_f32_ptr(__transfersize(8) float32_t* ptr, float32x4x2_t* val) +{ + float32x4x2_t v; + v.val[0] = _mm_unpacklo_ps(val->val[0], val->val[1]); + v.val[1] = _mm_unpackhi_ps(val->val[0], val->val[1]); + vst1q_f32 (ptr, v.val[0]); + vst1q_f32 ((ptr + 4), v.val[1]); +} +#define vst2q_f32(ptr, val) vst2q_f32_ptr(ptr, &val) + +//void vst2q_p8(__transfersize(32) poly8_t * ptr, poly8x16x2_t val);// VST2.8 {d0, d2}, [r0] +void vst2q_p8_ptr(__transfersize(32) poly8_t * ptr, poly8x16x2_t * val); +#define vst2q_p8 vst2q_u8 + +//void vst2q_p16(__transfersize(16) poly16_t * ptr, poly16x8x2_t val);// VST2.16 {d0, d2}, [r0] +void vst2q_p16_ptr(__transfersize(16) poly16_t * ptr, poly16x8x2_t * val); +#define vst2q_p16 vst2q_u16 + +//void vst2_u8(__transfersize(16) uint8_t * ptr, uint8x8x2_t val);// VST2.8 {d0, d1}, [r0] +_NEON2SSE_INLINE void vst2_u8_ptr(__transfersize(16) uint8_t * ptr, uint8x8x2_t* val) +{ + uint8x8x2_t v; + v.val[0] = _mm_unpacklo_epi8(val->val[0], val->val[1]); + vst1q_u8 (ptr, v.val[0]); +} +#define vst2_u8(ptr, val) vst2_u8_ptr(ptr, &val) + +//void vst2_u16(__transfersize(8) uint16_t * ptr, uint16x4x2_t val);// VST2.16 {d0, d1}, [r0] +_NEON2SSE_INLINE void vst2_u16_ptr(__transfersize(8) uint16_t * ptr, uint16x4x2_t* val) +{ + uint16x4x2_t v; + v.val[0] = _mm_unpacklo_epi16(val->val[0], val->val[1]); + vst1q_u16 (ptr, v.val[0]); +} +#define vst2_u16(ptr, val) vst2_u16_ptr(ptr, &val) + +//void vst2_u32(__transfersize(4) uint32_t * ptr, uint32x2x2_t val);// VST2.32 {d0, d1}, [r0] +_NEON2SSE_INLINE void vst2_u32_ptr(__transfersize(4) uint32_t * ptr, uint32x2x2_t* val) +{ + uint32x2x2_t v; + v.val[0] = _mm_unpacklo_epi32(val->val[0], val->val[1]); + vst1q_u32 (ptr, v.val[0]); +} +#define vst2_u32(ptr, val) vst2_u32_ptr(ptr, &val) + +//void vst2_u64(__transfersize(2) uint64_t * ptr, uint64x1x2_t val);// VST1.64 {d0, d1}, [r0] +void vst2_u64_ptr(__transfersize(2) uint64_t * ptr, uint64x1x2_t * val); +_NEON2SSE_INLINE void vst2_u64_ptr(__transfersize(2) uint64_t * ptr, uint64x1x2_t* val) +{ + uint64x1x2_t v; + v.val[0] = _mm_unpacklo_epi64(val->val[0], val->val[1]); + vst1q_u64(ptr, v.val[0]); +} +#define vst2_u64(ptr, val) vst2_u64_ptr(ptr, &val) + +//void vst2_s8(__transfersize(16) int8_t * ptr, int8x8x2_t val);// VST2.8 {d0, d1}, [r0] +#define vst2_s8(ptr, val) vst2_u8((uint8_t*) ptr, val) + +//void vst2_s16(__transfersize(8) int16_t * ptr, int16x4x2_t val); // VST2.16 {d0, d1}, [r0] +#define vst2_s16(ptr,val) vst2_u16((uint16_t*) ptr, val) + +//void vst2_s32(__transfersize(4) int32_t * ptr, int32x2x2_t val); // VST2.32 {d0, d1}, [r0] +#define vst2_s32(ptr,val) vst2_u32((uint32_t*) ptr, val) + +//void vst2_s64(__transfersize(2) int64_t * ptr, int64x1x2_t val); +#define vst2_s64(ptr,val) vst2_u64((uint64_t*) ptr,val) + +//void vst2_f16(__transfersize(8) __fp16 * ptr, float16x4x2_t val); // VST2.16 {d0, d1}, [r0] +//current IA SIMD doesn't support float16 + +void vst2_f32_ptr(__transfersize(4) float32_t * ptr, float32x2x2_t * val); // VST2.32 {d0, d1}, [r0] +_NEON2SSE_INLINE void vst2_f32_ptr(__transfersize(4) float32_t* ptr, float32x2x2_t* val) +{ + float32x4x2_t v; + v.val[0] = _mm_unpacklo_ps(val->val[0], val->val[1]); + vst1q_f32 (ptr, v.val[0]); +} +#define vst2_f32(ptr, val) vst2_f32_ptr(ptr, &val) + +//void vst2_p8_ptr(__transfersize(16) poly8_t * ptr, poly8x8x2_t * val); // VST2.8 {d0, d1}, [r0] +#define vst2_p8 vst2_u8 + +//void vst2_p16_ptr(__transfersize(8) poly16_t * ptr, poly16x4x2_t * val); // VST2.16 {d0, d1}, [r0] +#define vst2_p16 vst2_u16 + +//******************** Triplets store ***************************************** +//****************************************************************************** +//void vst3q_u8(__transfersize(48) uint8_t * ptr, uint8x16x3_t val)// VST3.8 {d0, d2, d4}, [r0] +#if defined(USE_SSSE3) +_NEON2SSE_INLINE void vst3q_u8_ptr(__transfersize(48) uint8_t * ptr, uint8x16x3_t* val) +{ + uint8x16x3_t v; + __m128i v0,v1,v2, cff, bldmask; + _NEON2SSE_ALIGN_16 uint8_t mask0[16] = {0, 1, 0xff, 2, 3,0xff, 4, 5,0xff, 6,7,0xff, 8,9,0xff, 10}; + _NEON2SSE_ALIGN_16 uint8_t mask1[16] = {0, 0xff, 1, 2, 0xff, 3, 4, 0xff, 5, 6, 0xff, 7,8,0xff, 9,10}; + _NEON2SSE_ALIGN_16 uint8_t mask2[16] = {0xff, 6, 7, 0xff, 8, 9,0xff, 10, 11,0xff, 12,13,0xff, 14,15,0xff}; + _NEON2SSE_ALIGN_16 uint8_t mask2lo[16] = {0xff,0xff, 0, 0xff,0xff, 1, 0xff,0xff, 2, 0xff,0xff, 3, 0xff,0xff, 4, 0xff}; + _NEON2SSE_ALIGN_16 uint8_t mask2med[16] = {0xff, 5, 0xff, 0xff, 6, 0xff,0xff, 7, 0xff,0xff, 8, 0xff,0xff, 9, 0xff, 0xff}; + _NEON2SSE_ALIGN_16 uint8_t mask2hi[16] = {10, 0xff,0xff, 11, 0xff,0xff, 12, 0xff,0xff, 13, 0xff,0xff, 14, 0xff, 0xff, 15}; + + v0 = _mm_unpacklo_epi8(val->val[0], val->val[1]); //0,1, 3,4, 6,7, 9,10, 12,13, 15,16, 18,19, 21,22 + v2 = _mm_unpackhi_epi8(val->val[0], val->val[1]); //24,25, 27,28, 30,31, 33,34, 36,37, 39,40, 42,43, 45,46 + v1 = _mm_alignr_epi8(v2, v0, 11); //12,13, 15,16, 18,19, 21,22, 24,25, 27,28, 30,31, 33,34 + v.val[0] = _mm_shuffle_epi8(v0, *(__m128i*)mask0); //make holes for the v.val[2] data embedding + v.val[2] = _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2lo); //make plugs for the v.val[2] data embedding + cff = _mm_cmpeq_epi8(v0, v0); //all ff + bldmask = _mm_cmpeq_epi8(*(__m128i*)mask0, cff); + v.val[0] = _MM_BLENDV_EPI8(v.val[0], v.val[2], bldmask); + vst1q_u8(ptr, v.val[0]); + v.val[0] = _mm_shuffle_epi8(v1, *(__m128i*)mask1); //make holes for the v.val[2] data embedding + v.val[2] = _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2med); //make plugs for the v.val[2] data embedding + bldmask = _mm_cmpeq_epi8(*(__m128i*)mask1, cff); + v.val[1] = _MM_BLENDV_EPI8(v.val[0],v.val[2], bldmask); + vst1q_u8((ptr + 16), v.val[1]); + v.val[0] = _mm_shuffle_epi8(v2, *(__m128i*)mask2); //make holes for the v.val[2] data embedding + v.val[2] = _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2hi); //make plugs for the v.val[2] data embedding + bldmask = _mm_cmpeq_epi8(*(__m128i*)mask2, cff); + v.val[2] = _MM_BLENDV_EPI8(v.val[0],v.val[2], bldmask ); + vst1q_u8((ptr + 32), v.val[2]); +} +#define vst3q_u8(ptr, val) vst3q_u8_ptr(ptr, &val) +#endif + +#if defined(USE_SSSE3) +//void vst3q_u16(__transfersize(24) uint16_t * ptr, uint16x8x3_t val)// VST3.16 {d0, d2, d4}, [r0] +_NEON2SSE_INLINE void vst3q_u16_ptr(__transfersize(24) uint16_t * ptr, uint16x8x3_t* val) +{ + uint16x8x3_t v; + __m128i v0,v1,v2, cff, bldmask; + _NEON2SSE_ALIGN_16 uint8_t mask0[16] = {0,1, 2,3, 0xff,0xff, 4,5, 6,7,0xff,0xff, 8,9,10,11}; + _NEON2SSE_ALIGN_16 uint8_t mask1[16] = {0xff, 0xff, 0,1, 2,3, 0xff,0xff, 4,5, 6,7, 0xff,0xff, 8,9}; + _NEON2SSE_ALIGN_16 uint8_t mask2[16] = {6,7,0xff,0xff, 8,9,10,11, 0xff, 0xff, 12,13,14,15, 0xff, 0xff}; + _NEON2SSE_ALIGN_16 uint8_t mask2lo[16] = {0xff,0xff, 0xff,0xff, 0,1, 0xff,0xff, 0xff,0xff, 2,3, 0xff,0xff, 0xff,0xff}; + _NEON2SSE_ALIGN_16 uint8_t mask2med[16] = {4,5, 0xff,0xff,0xff,0xff, 6,7, 0xff, 0xff,0xff,0xff, 8,9, 0xff, 0xff}; + _NEON2SSE_ALIGN_16 uint8_t mask2hi[16] = {0xff, 0xff, 10,11, 0xff, 0xff, 0xff, 0xff, 12,13, 0xff, 0xff, 0xff, 0xff,14,15}; + + v0 = _mm_unpacklo_epi16(val->val[0], val->val[1]); //0,1, 3,4, 6,7, 9,10 + v2 = _mm_unpackhi_epi16(val->val[0], val->val[1]); //12,13, 15,16, 18,19, 21,22, + v1 = _mm_alignr_epi8(v2, v0, 12); //9,10, 12,13, 15,16, 18,19 + v.val[0] = _mm_shuffle_epi8(v0, *(__m128i*)mask0); //make holes for the v.val[2] data embedding + v.val[2] = _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2lo); //make plugs for the v.val[2] data embedding + cff = _mm_cmpeq_epi16(v0, v0); //all ff + bldmask = _mm_cmpeq_epi16(*(__m128i*)mask0, cff); + v.val[0] = _MM_BLENDV_EPI8(v.val[0], v.val[2], bldmask); + vst1q_u16(ptr, v.val[0]); + v.val[0] = _mm_shuffle_epi8(v1, *(__m128i*)mask1); //make holes for the v.val[2] data embedding + v.val[2] = _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2med); //make plugs for the v.val[2] data embedding + bldmask = _mm_cmpeq_epi16(*(__m128i*)mask1, cff); + v.val[1] = _MM_BLENDV_EPI8(v.val[0],v.val[2], bldmask); + vst1q_u16((ptr + 8), v.val[1]); + v.val[0] = _mm_shuffle_epi8(v2, *(__m128i*)mask2); //make holes for the v.val[2] data embedding + v.val[2] = _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2hi); //make plugs for the v.val[2] data embedding + bldmask = _mm_cmpeq_epi16(*(__m128i*)mask2, cff); + v.val[2] = _MM_BLENDV_EPI8(v.val[0],v.val[2], bldmask ); + vst1q_u16((ptr + 16), v.val[2]); +} +#define vst3q_u16(ptr, val) vst3q_u16_ptr(ptr, &val) +#endif + +//void vst3q_u32(__transfersize(12) uint32_t * ptr, uint32x4x3_t val)// VST3.32 {d0, d2, d4}, [r0] +_NEON2SSE_INLINE void vst3q_u32_ptr(__transfersize(12) uint32_t * ptr, uint32x4x3_t* val) +{ //a0,a1,a2,a3, b0,b1,b2,b3, c0,c1,c2,c3 -> a0,b0,c0,a1, b1,c1,a2,b2, c2,a3,b3,c3 + uint32x4x3_t v; + __m128i tmp0, tmp1,tmp2; + tmp0 = _mm_unpacklo_epi32(val->val[0], val->val[1]); //a0,b0,a1,b1 + tmp1 = _mm_unpackhi_epi32(val->val[0], val->val[1]); //a2,b2,a3,b3 + tmp2 = _mm_unpacklo_epi32(val->val[1], val->val[2]); //b0,c0,b1,c1 + v.val[1] = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(tmp2),_mm_castsi128_ps(tmp1), _MM_SHUFFLE(1,0,3,2))); //b1,c1,a2,b2, + v.val[2] = _mm_unpackhi_epi64(tmp1, val->val[2]); //a3,b3, c2,c3 + v.val[2] = _mm_shuffle_epi32(v.val[2], 2 | (0 << 2) | (1 << 4) | (3 << 6)); //c2,a3,b3,c3 + tmp1 = _mm_unpacklo_epi32(tmp2,val->val[0]); //b0,a0,c0,a1 + v.val[0] = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(tmp0),_mm_castsi128_ps(tmp1), _MM_SHUFFLE(3,2,1,0))); //a0,b0,c0,a1, + + vst1q_u32(ptr, v.val[0]); + vst1q_u32((ptr + 4), v.val[1]); + vst1q_u32((ptr + 8), v.val[2]); +} +#define vst3q_u32(ptr, val) vst3q_u32_ptr(ptr, &val) + +#if defined(USE_SSSE3) +//void vst3q_s8(__transfersize(48) int8_t * ptr, int8x16x3_t val); +void vst3q_s8_ptr(__transfersize(48) int8_t * ptr, int8x16x3_t * val); +#define vst3q_s8(ptr, val) vst3q_u8((uint8_t*)(ptr), val) + +//void vst3q_s16(__transfersize(24) int16_t * ptr, int16x8x3_t val); +void vst3q_s16_ptr(__transfersize(24) int16_t * ptr, int16x8x3_t * val); +#define vst3q_s16(ptr, val) vst3q_u16((uint16_t*)(ptr), val) +#endif + +//void vst3q_s32(__transfersize(12) int32_t * ptr, int32x4x3_t val); +void vst3q_s32_ptr(__transfersize(12) int32_t * ptr, int32x4x3_t * val); +#define vst3q_s32(ptr, val) vst3q_u32((uint32_t*)(ptr), val) + +//void vst3q_f16(__transfersize(24) __fp16 * ptr, float16x8x3_t val);// VST3.16 {d0, d2, d4}, [r0] +void vst3q_f16_ptr(__transfersize(24) __fp16 * ptr, float16x8x3_t * val); +// IA32 SIMD doesn't work with 16bit floats currently + +//void vst3q_f32(__transfersize(12) float32_t * ptr, float32x4x3_t val)// VST3.32 {d0, d2, d4}, [r0] +_NEON2SSE_INLINE void vst3q_f32_ptr(__transfersize(12) float32_t * ptr, float32x4x3_t* val) +{ + float32x4x3_t v; + __m128 tmp0, tmp1,tmp2; + tmp0 = _mm_unpacklo_ps(val->val[0], val->val[1]); //a0,b0,a1,b1 + tmp1 = _mm_unpackhi_ps(val->val[0], val->val[1]); //a2,b2,a3,b3 + tmp2 = _mm_unpacklo_ps(val->val[1], val->val[2]); //b0,c0,b1,c1 + v.val[1] = _mm_shuffle_ps(tmp2,tmp1, _MM_SHUFFLE(1,0,3,2)); //b1,c1,a2,b2, + v.val[2] = _mm_movehl_ps(val->val[2],tmp1); //a3,b3, c2,c3 + v.val[2] = _mm_shuffle_ps(v.val[2],v.val[2], _MM_SHUFFLE(3,1,0,2)); //c2,a3,b3,c3 + tmp1 = _mm_unpacklo_ps(tmp2,val->val[0]); //b0,a0,c0,a1 + v.val[0] = _mm_shuffle_ps(tmp0,tmp1, _MM_SHUFFLE(3,2,1,0)); //a0,b0,c0,a1, + + vst1q_f32( ptr, v.val[0]); + vst1q_f32( (ptr + 4), v.val[1]); + vst1q_f32( (ptr + 8), v.val[2]); +} +#define vst3q_f32(ptr, val) vst3q_f32_ptr(ptr, &val) + +#if defined(USE_SSSE3) +//void vst3q_p8(__transfersize(48) poly8_t * ptr, poly8x16x3_t val);// VST3.8 {d0, d2, d4}, [r0] +void vst3q_p8_ptr(__transfersize(48) poly8_t * ptr, poly8x16x3_t * val); +#define vst3q_p8 vst3q_u8 + +//void vst3q_p16(__transfersize(24) poly16_t * ptr, poly16x8x3_t val);// VST3.16 {d0, d2, d4}, [r0] +void vst3q_p16_ptr(__transfersize(24) poly16_t * ptr, poly16x8x3_t * val); +#define vst3q_p16 vst3q_u16 +#endif + +//void vst3_u8(__transfersize(24) uint8_t * ptr, uint8x8x3_t val)// VST3.8 {d0, d1, d2}, [r0] +#if defined(USE_SSSE3) +_NEON2SSE_INLINE void vst3_u8_ptr(__transfersize(24) uint8_t * ptr, uint8x8x3_t* val) +{ + uint8x8x3_t v; + __m128i tmp, sh0, sh1; + _NEON2SSE_ALIGN_16 int8_t mask0[16] = { 0, 8, 16, 1, 9, 17, 2, 10, 18, 3, 11, 19, 4, 12, 20, 5}; + _NEON2SSE_ALIGN_16 int8_t mask1[16] = {13, 21, 6, 14, 22, 7, 15, 23, 0,0,0,0,0,0,0,0}; + _NEON2SSE_ALIGN_16 int8_t mask0_sel[16] = {0, 0, 0xff, 0, 0, 0xff, 0, 0, 0xff, 0, 0, 0xff, 0, 0, 0xff, 0}; + _NEON2SSE_ALIGN_16 int8_t mask1_sel[16] = {0, 0xff, 0, 0, 0xff, 0, 0, 0xff, 0,0,0,0,0,0,0,0}; + tmp = _mm_unpacklo_epi64(val->val[0], val->val[1]); + sh0 = _mm_shuffle_epi8(tmp, *(__m128i*)mask0); //for bi>15 bi is wrapped (bi-=15) + sh1 = _mm_shuffle_epi8(val->val[2], *(__m128i*)mask0); + v.val[0] = _MM_BLENDV_EPI8(sh0, sh1, *(__m128i*)mask0_sel); + vst1q_u8(ptr, v.val[0]); //store as 128 bit structure + sh0 = _mm_shuffle_epi8(tmp, *(__m128i*)mask1); //for bi>15 bi is wrapped (bi-=15) + sh1 = _mm_shuffle_epi8(val->val[2], *(__m128i*)mask1); + v.val[1] = _MM_BLENDV_EPI8(sh0, sh1, *(__m128i*)mask1_sel); +} +#define vst3_u8(ptr, val) vst3_u8_ptr(ptr, &val) +#endif + +//void vst3_u16(__transfersize(12) uint16_t * ptr, uint16x4x3_t val)// VST3.16 {d0, d1, d2}, [r0] +#if defined(USE_SSSE3) +_NEON2SSE_INLINE void vst3_u16_ptr(__transfersize(12) uint16_t * ptr, uint16x4x3_t* val) +{ + uint16x4x3_t v; + __m128i tmp; + _NEON2SSE_ALIGN_16 int8_t mask0[16] = {0,1, 8,9, 16,17, 2,3, 10,11, 18,19, 4,5, 12,13}; + _NEON2SSE_ALIGN_16 int8_t mask1[16] = {20,21, 6,7, 14,15, 22,23, 0,0,0,0,0,0,0,0}; + _NEON2SSE_ALIGN_16 uint16_t mask0f[8] = {0xffff, 0xffff, 0, 0xffff, 0xffff, 0, 0xffff, 0xffff}; //if all ones we take the result from v.val[0] otherwise from v.val[1] + _NEON2SSE_ALIGN_16 uint16_t mask1f[8] = {0xffff, 0, 0, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; //if all ones we take the result from v.val[1] otherwise from v.val[0] + tmp = _mm_unpacklo_epi64(val->val[0], val->val[1]); + v.val[0] = _mm_shuffle_epi8(tmp, *(__m128i*)mask0); + v.val[1] = _mm_shuffle_epi8(val->val[2], *(__m128i*)mask0); + v.val[0] = _MM_BLENDV_EPI8(v.val[1], v.val[0], *(__m128i*)mask0f); + vst1q_u16(ptr, v.val[0]); //store as 128 bit structure + v.val[0] = _mm_shuffle_epi8(tmp, *(__m128i*)mask1); + v.val[1] = _mm_shuffle_epi8(val->val[2], *(__m128i*)mask1); + v.val[1] = _MM_BLENDV_EPI8(v.val[0], v.val[1], *(__m128i*)mask1f); //change the operands order +} +#define vst3_u16(ptr, val) vst3_u16_ptr(ptr, &val) +#endif + +//void vst3_u32(__transfersize(6) uint32_t * ptr, uint32x2x3_t val)// VST3.32 {d0, d1, d2}, [r0] +_NEON2SSE_INLINE void vst3_u32_ptr(__transfersize(6) uint32_t * ptr, uint32x2x3_t* val) +{ //val->val[0]:0,3,val->val[1]:1,4; val->val[2]:2,5,x,x; + uint32x2x3_t res; + res.val[0] = _mm_unpacklo_epi64(val->val[1], val->val[2]); //val[0]: 1,4,2,5 + res.val[0] = _mm_shuffle_epi32(res.val[0], 0 | (2 << 2) | (1 << 4) | (3 << 6)); //1,2,4,5 + res.val[1] = _mm_srli_si128(res.val[0], 8); //4,5, x,x + res.val[0] = _mm_unpacklo_epi32(val->val[0], res.val[0]); //0,1,3,2 + res.val[0] = _mm_shuffle_epi32(res.val[0], 0 | (1 << 2) | (3 << 4) | (2 << 6)); //0,1,2, 3 + vst1q_u32(ptr, res.val[0]); //store as 128 bit structure +} +#define vst3_u32(ptr, val) vst3_u32_ptr(ptr, &val) + +//void vst3_u64(__transfersize(3) uint64_t * ptr, uint64x1x3_t val)// VST1.64 {d0, d1, d2}, [r0] +_NEON2SSE_INLINE void vst3_u64_ptr(__transfersize(3) uint64_t * ptr, uint64x1x3_t* val) +{ + __m128i tmp; + tmp = _mm_unpacklo_epi64(val->val[0], val->val[1]); + vst1q_u64(ptr, tmp); //store as 128 bit structure +} +#define vst3_u64(ptr, val) vst3_u64_ptr(ptr, &val) + +#if defined(USE_SSSE3) +//void vst3_s8(__transfersize(24) int8_t * ptr, int8x8x3_t val) // VST3.8 {d0, d1, d2}, [r0] +#define vst3_s8(ptr, val) vst3_u8_ptr((uint8_t*)ptr, &val) + +//void vst3_s16(__transfersize(12) int16_t * ptr, int16x4x3_t val) // VST3.16 {d0, d1, d2}, [r0] +#define vst3_s16(ptr, val) vst3_u16_ptr((uint16_t*)ptr, &val) +#endif + +//void vst3_s32(__transfersize(6) int32_t * ptr, int32x2x3_t val); // VST3.32 {d0, d1, d2}, [r0] +#define vst3_s32(ptr, val) vst3_u32_ptr((uint32_t*)ptr, &val) + +//void vst3_s64(__transfersize(3) int64_t * ptr, int64x1x3_t val) // VST1.64 {d0, d1, d2}, [r0] +#define vst3_s64(ptr, val) vst3_u64_ptr((uint64_t*)ptr, &val) + +//void vst3_f16(__transfersize(12) __fp16 * ptr, float16x4x3_t val);// VST3.16 {d0, d1, d2}, [r0] +void vst3_f16_ptr(__transfersize(12) __fp16 * ptr, float16x4x3_t * val); // VST3.16 {d0, d1, d2}, [r0] +// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example + +//void vst3_f32(__transfersize(6) float32_t * ptr, float32x2x3_t val)// VST3.32 {d0, d1, d2}, [r0] +_NEON2SSE_INLINE void vst3_f32_ptr(__transfersize(6) float32_t * ptr, float32x2x3_t* val) +{ //val->val[0]:0,3,val->val[1]:1,4; val->val[2]:2,5,x,x; + float32x2x3_t res; + res.val[0] = _mm_castsi128_ps(_mm_unpacklo_epi64(_mm_castps_si128(val->val[1]), _mm_castps_si128(val->val[2])) ); + res.val[0] = _mm_shuffle_ps(res.val[0],res.val[0], _MM_SHUFFLE(3,1,2,0)); //1,2,4,5 + res.val[1] = _mm_shuffle_ps(res.val[0],res.val[0], _MM_SHUFFLE(1,0,3,2)); //4,5, 1,2 + res.val[0] = _mm_unpacklo_ps(val->val[0], res.val[0]); //0,1,3, 2 + res.val[0] = _mm_shuffle_ps(res.val[0],res.val[0], _MM_SHUFFLE(2,3,1,0)); //0,1,2, 3 + vst1q_f32(ptr, res.val[0]); //store as 128 bit structure +} +#define vst3_f32(ptr, val) vst3_f32_ptr(ptr, &val) + +#if defined(USE_SSSE3) +//void vst3_p8(__transfersize(24) poly8_t * ptr, poly8x8x3_t val);// VST3.8 {d0, d1, d2}, [r0] +void vst3_p8_ptr(__transfersize(24) poly8_t * ptr, poly8x8x3_t * val); +#define vst3_p8 vst3_u8 + +//void vst3_p16(__transfersize(12) poly16_t * ptr, poly16x4x3_t val);// VST3.16 {d0, d1, d2}, [r0] +void vst3_p16_ptr(__transfersize(12) poly16_t * ptr, poly16x4x3_t * val); +#define vst3_p16 vst3_s16 +#endif + +//*************** Quadruples store ******************************** +//********************************************************************* +//void vst4q_u8(__transfersize(64) uint8_t * ptr, uint8x16x4_t val)// VST4.8 {d0, d2, d4, d6}, [r0] +_NEON2SSE_INLINE void vst4q_u8_ptr(__transfersize(64) uint8_t * ptr, uint8x16x4_t* val) +{ + __m128i tmp1, tmp2, res; + tmp1 = _mm_unpacklo_epi8(val->val[0], val->val[1]); // 0,1, 4,5, 8,9, 12,13, 16,17, 20,21, 24,25, 28,29 + tmp2 = _mm_unpacklo_epi8(val->val[2], val->val[3]); // 2,3, 6,7, 10,11, 14,15, 18,19, 22,23, 26,27, 30,31 + res = _mm_unpacklo_epi16(tmp1, tmp2); //0,1, 2,3, 4,5, 6,7, 8,9, 10,11, 12,13, 14,15 + vst1q_u8(ptr, res); + res = _mm_unpackhi_epi16(tmp1, tmp2); //16,17, 18,19, 20,21, 22,23, 24,25, 26,27, 28,29, 30,31 + vst1q_u8((ptr + 16), res); + tmp1 = _mm_unpackhi_epi8(val->val[0], val->val[1]); // + tmp2 = _mm_unpackhi_epi8(val->val[2], val->val[3]); // + res = _mm_unpacklo_epi16(tmp1, tmp2); // + vst1q_u8((ptr + 32), res); + res = _mm_unpackhi_epi16(tmp1, tmp2); // + vst1q_u8((ptr + 48), res); +} +#define vst4q_u8(ptr, val) vst4q_u8_ptr(ptr, &val) + +//void vst4q_u16(__transfersize(32) uint16_t * ptr, uint16x8x4_t val)// VST4.16 {d0, d2, d4, d6}, [r0] +_NEON2SSE_INLINE void vst4q_u16_ptr(__transfersize(32) uint16_t * ptr, uint16x8x4_t* val) +{ + uint16x8x4_t v; + __m128i tmp1, tmp2; + tmp1 = _mm_unpacklo_epi16(val->val[0], val->val[1]); //0,1, 4,5, 8,9, 12,13 + tmp2 = _mm_unpacklo_epi16(val->val[2], val->val[3]); //2,3, 6,7 , 10,11, 14,15 + v.val[0] = _mm_unpacklo_epi32(tmp1, tmp2); + v.val[1] = _mm_unpackhi_epi32(tmp1, tmp2); + tmp1 = _mm_unpackhi_epi16(val->val[0], val->val[1]); //0,1, 4,5, 8,9, 12,13 + tmp2 = _mm_unpackhi_epi16(val->val[2], val->val[3]); //2,3, 6,7 , 10,11, 14,15 + v.val[2] = _mm_unpacklo_epi32(tmp1, tmp2); + v.val[3] = _mm_unpackhi_epi32(tmp1, tmp2); + vst1q_u16(ptr, v.val[0]); + vst1q_u16((ptr + 8), v.val[1]); + vst1q_u16((ptr + 16),v.val[2]); + vst1q_u16((ptr + 24), v.val[3]); +} +#define vst4q_u16(ptr, val) vst4q_u16_ptr(ptr, &val) + +//void vst4q_u32(__transfersize(16) uint32_t * ptr, uint32x4x4_t val)// VST4.32 {d0, d2, d4, d6}, [r0] +_NEON2SSE_INLINE void vst4q_u32_ptr(__transfersize(16) uint32_t * ptr, uint32x4x4_t* val) +{ + uint16x8x4_t v; + __m128i tmp1, tmp2; + tmp1 = _mm_unpacklo_epi32(val->val[0], val->val[1]); //0,1, 4,5, 8,9, 12,13 + tmp2 = _mm_unpacklo_epi32(val->val[2], val->val[3]); //2,3, 6,7 , 10,11, 14,15 + v.val[0] = _mm_unpacklo_epi64(tmp1, tmp2); + v.val[1] = _mm_unpackhi_epi64(tmp1, tmp2); + tmp1 = _mm_unpackhi_epi32(val->val[0], val->val[1]); //0,1, 4,5, 8,9, 12,13 + tmp2 = _mm_unpackhi_epi32(val->val[2], val->val[3]); //2,3, 6,7 , 10,11, 14,15 + v.val[2] = _mm_unpacklo_epi64(tmp1, tmp2); + v.val[3] = _mm_unpackhi_epi64(tmp1, tmp2); + vst1q_u32(ptr, v.val[0]); + vst1q_u32((ptr + 4), v.val[1]); + vst1q_u32((ptr + 8), v.val[2]); + vst1q_u32((ptr + 12), v.val[3]); +} +#define vst4q_u32(ptr, val) vst4q_u32_ptr(ptr, &val) + +//void vst4q_s8(__transfersize(64) int8_t * ptr, int8x16x4_t val); +void vst4q_s8_ptr(__transfersize(64) int8_t * ptr, int8x16x4_t * val); +#define vst4q_s8(ptr, val) vst4q_u8((uint8_t*)(ptr), val) + +//void vst4q_s16(__transfersize(32) int16_t * ptr, int16x8x4_t val); +void vst4q_s16_ptr(__transfersize(32) int16_t * ptr, int16x8x4_t * val); +#define vst4q_s16(ptr, val) vst4q_u16((uint16_t*)(ptr), val) + +//void vst4q_s32(__transfersize(16) int32_t * ptr, int32x4x4_t val); +void vst4q_s32_ptr(__transfersize(16) int32_t * ptr, int32x4x4_t * val); +#define vst4q_s32(ptr, val) vst4q_u32((uint32_t*)(ptr), val) + +//void vst4q_f16(__transfersize(32) __fp16 * ptr, float16x8x4_t val);// VST4.16 {d0, d2, d4, d6}, [r0] +void vst4q_f16_ptr(__transfersize(32) __fp16 * ptr, float16x8x4_t * val); +// IA32 SIMD doesn't work with 16bit floats currently + +//void vst4q_f32(__transfersize(16) float32_t * ptr, float32x4x4_t val)// VST4.32 {d0, d2, d4, d6}, [r0] +_NEON2SSE_INLINE void vst4q_f32_ptr(__transfersize(16) float32_t * ptr, float32x4x4_t* val) +{ + __m128 tmp3, tmp2, tmp1, tmp0; + float32x4x4_t v; + tmp0 = _mm_unpacklo_ps(val->val[0], val->val[1]); + tmp2 = _mm_unpacklo_ps(val->val[2], val->val[3]); + tmp1 = _mm_unpackhi_ps(val->val[0], val->val[1]); + tmp3 = _mm_unpackhi_ps(val->val[2], val->val[3]); + v.val[0] = _mm_movelh_ps(tmp0, tmp2); + v.val[1] = _mm_movehl_ps(tmp2, tmp0); + v.val[2] = _mm_movelh_ps(tmp1, tmp3); + v.val[3] = _mm_movehl_ps(tmp3, tmp1); + vst1q_f32(ptr, v.val[0]); + vst1q_f32((ptr + 4), v.val[1]); + vst1q_f32((ptr + 8), v.val[2]); + vst1q_f32((ptr + 12), v.val[3]); +} +#define vst4q_f32(ptr, val) vst4q_f32_ptr(ptr, &val) + +//void vst4q_p8(__transfersize(64) poly8_t * ptr, poly8x16x4_t val);// VST4.8 {d0, d2, d4, d6}, [r0] +void vst4q_p8_ptr(__transfersize(64) poly8_t * ptr, poly8x16x4_t * val); +#define vst4q_p8 vst4q_u8 + +//void vst4q_p16(__transfersize(32) poly16_t * ptr, poly16x8x4_t val);// VST4.16 {d0, d2, d4, d6}, [r0] +void vst4q_p16_ptr(__transfersize(32) poly16_t * ptr, poly16x8x4_t * val); +#define vst4q_p16 vst4q_s16 + +//void vst4_u8(__transfersize(32) uint8_t * ptr, uint8x8x4_t val)// VST4.8 {d0, d1, d2, d3}, [r0] +_NEON2SSE_INLINE void vst4_u8_ptr(__transfersize(32) uint8_t * ptr, uint8x8x4_t* val) +{ + uint8x8x4_t v; + __m128i sh0, sh1; + sh0 = _mm_unpacklo_epi8(val->val[0],val->val[1]); // a0,b0,a1,b1,a2,b2,a3,b3,a4,b4,a5,b5, a6,b6,a7,b7, + sh1 = _mm_unpacklo_epi8(val->val[2],val->val[3]); // c0,d0,c1,d1,c2,d2,c3,d3, c4,d4,c5,d5,c6,d6,c7,d7 + v.val[0] = _mm_unpacklo_epi16(sh0,sh1); // a0,b0,c0,d0,a1,b1,c1,d1,a2,b2,c2,d2,a3,b3,c3,d3, + v.val[2] = _mm_unpackhi_epi16(sh0,sh1); //a4,b4,c4,d4,a5,b5,c5,d5, a6,b6,c6,d6,a7,b7,c7,d7 + vst1q_u8(ptr, v.val[0]); + vst1q_u8((ptr + 16), v.val[2]); +} +#define vst4_u8(ptr, val) vst4_u8_ptr(ptr, &val) + +//void vst4_u16(__transfersize(16) uint16_t * ptr, uint16x4x4_t val)// VST4.16 {d0, d1, d2, d3}, [r0] +_NEON2SSE_INLINE void vst4_u16_ptr(__transfersize(16) uint16_t * ptr, uint16x4x4_t* val) +{ + uint16x4x4_t v; + __m128i sh0, sh1; + sh0 = _mm_unpacklo_epi16(val->val[0],val->val[1]); //a0,a1,b0,b1,c0,c1,d0,d1, + sh1 = _mm_unpacklo_epi16(val->val[2],val->val[3]); //a2,a3,b2,b3,c2,c3,d2,d3 + v.val[0] = _mm_unpacklo_epi32(sh0,sh1); // a0,a1,a2,a3,b0,b1,b2,b3 + v.val[2] = _mm_unpackhi_epi32(sh0,sh1); // c0,c1,c2,c3,d0,d1,d2,d3 + vst1q_u16(ptr, v.val[0]); //store as 128 bit structure + vst1q_u16((ptr + 8), v.val[2]); +} +#define vst4_u16(ptr, val) vst4_u16_ptr(ptr, &val) + +//void vst4_u32(__transfersize(8) uint32_t * ptr, uint32x2x4_t val)// VST4.32 {d0, d1, d2, d3}, [r0] +_NEON2SSE_INLINE void vst4_u32_ptr(__transfersize(8) uint32_t * ptr, uint32x2x4_t* val) +{ //0,4, 1,5, 2,6, 3,7 + uint32x2x4_t v; + __m128i sh0, sh1; + sh0 = _mm_unpacklo_epi32(val->val[0], val->val[1]); //0,1,4,5 + sh1 = _mm_unpacklo_epi32(val->val[2], val->val[3]); //2,3,6,7 + v.val[0] = _mm_unpacklo_epi64(sh0,sh1); // + v.val[1] = _mm_unpackhi_epi64(sh0,sh1); // + vst1q_u32(ptr, v.val[0]); //store as 128 bit structure + vst1q_u32((ptr + 4), v.val[1]); +} +#define vst4_u32(ptr, val) vst4_u32_ptr(ptr, &val) + +//void vst4_u64(__transfersize(4) uint64_t * ptr, uint64x1x4_t val)// VST1.64 {d0, d1, d2, d3}, [r0] +_NEON2SSE_INLINE void vst4_u64_ptr(__transfersize(4) uint64_t * ptr, uint64x1x4_t* val) +{ + vst1q_u64(ptr, val->val[0]); + vst1q_u64((ptr + 2), val->val[2]); +} +#define vst4_u64(ptr, val) vst4_u64_ptr(ptr, &val) + +//void vst4_s8(__transfersize(32) int8_t * ptr, int8x8x4_t val) //VST4.8 {d0, d1, d2, d3}, [r0] +#define vst4_s8(ptr, val) vst4_u8((uint8_t*)ptr, val) + +//void vst4_s16(__transfersize(16) int16_t * ptr, int16x4x4_t val) // VST4.16 {d0, d1, d2, d3}, [r0] +#define vst4_s16(ptr, val) vst4_u16((uint16_t*)ptr, val) + +//void vst4_s32(__transfersize(8) int32_t * ptr, int32x2x4_t val) // VST4.32 {d0, d1, d2, d3}, [r0] +#define vst4_s32(ptr, val) vst4_u32((uint32_t*)ptr, val) + +//void vst4_s64(__transfersize(4) int64_t * ptr, int64x1x4_t val); // VST1.64 {d0, d1, d2, d3}, [r0] +void vst4_s64_ptr(__transfersize(4) int64_t * ptr, int64x1x4_t * val); +#define vst4_s64(ptr, val) vst4_u64((uint64_t*)ptr, val) + +//void vst4_f16(__transfersize(16) __fp16 * ptr, float16x4x4_t val);// VST4.16 {d0, d1, d2, d3}, [r0] +void vst4_f16_ptr(__transfersize(16) __fp16 * ptr, float16x4x4_t * val); +// IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example + +//void vst4_f32(__transfersize(8) float32_t * ptr, float32x2x4_t val)// VST4.32 {d0, d1, d2, d3}, [r0] +_NEON2SSE_INLINE void vst4_f32_ptr(__transfersize(8) float32_t * ptr, float32x2x4_t* val) +{ //a0,a1, b0,b1, c0,c1, d0,d1 -> a0,c0, a1,c1, b0,d0, b1,d1 + float32x2x4_t v; + v.val[0] = _mm_unpacklo_ps(val->val[0],val->val[1]); + v.val[2] = _mm_unpacklo_ps(val->val[2],val->val[3]); + v.val[1] = _mm_movelh_ps (v.val[0], v.val[2]); //a0, c0, a1,c1, + v.val[3] = _mm_movehl_ps (v.val[2],v.val[0]); //b0,d0, b1, d1 + vst1q_f32(ptr, v.val[1]); //store as 128 bit structure + vst1q_f32((ptr + 4), v.val[3]); +} +#define vst4_f32(ptr, val) vst4_f32_ptr(ptr, &val) + +//void vst4_p8(__transfersize(32) poly8_t * ptr, poly8x8x4_t val);// VST4.8 {d0, d1, d2, d3}, [r0] +void vst4_p8_ptr(__transfersize(32) poly8_t * ptr, poly8x8x4_t * val); +#define vst4_p8 vst4_u8 + +//void vst4_p16(__transfersize(16) poly16_t * ptr, poly16x4x4_t val);// VST4.16 {d0, d1, d2, d3}, [r0] +void vst4_p16_ptr(__transfersize(16) poly16_t * ptr, poly16x4x4_t * val); +#define vst4_p16 vst4_u16 + +//*********** Store a lane of a vector into memory (extract given lane) for a couple of vectors ********************* +//******************************************************************************************************************** +//void vst2q_lane_u16(__transfersize(2) uint16_t * ptr, uint16x8x2_t val, __constrange(0,7) int lane)// VST2.16 {d0[0], d2[0]}, [r0] +_NEON2SSE_INLINE void vst2q_lane_u16_ptr(__transfersize(2) uint16_t * ptr, uint16x8x2_t* val, __constrange(0,7) int lane) +{ + vst1q_lane_s16(ptr, val->val[0], lane); + vst1q_lane_s16((ptr + 1), val->val[1], lane); +} +#define vst2q_lane_u16(ptr, val, lane) vst2q_lane_u16_ptr(ptr, &val, lane) + +//void vst2q_lane_u32(__transfersize(2) uint32_t * ptr, uint32x4x2_t val, __constrange(0,3) int lane)// VST2.32 {d0[0], d2[0]}, [r0] +_NEON2SSE_INLINE void vst2q_lane_u32_ptr(__transfersize(2) uint32_t* ptr, uint32x4x2_t* val, __constrange(0,3) int lane) +{ + vst1q_lane_u32(ptr, val->val[0], lane); + vst1q_lane_u32((ptr + 1), val->val[1], lane); +} +#define vst2q_lane_u32(ptr, val, lane) vst2q_lane_u32_ptr(ptr, &val, lane) + +//void vst2q_lane_s16(__transfersize(2) int16_t * ptr, int16x8x2_t val, __constrange(0,7) int lane);// VST2.16 {d0[0], d2[0]}, [r0] +void vst2q_lane_s16_ptr(__transfersize(2) int16_t * ptr, int16x8x2_t * val, __constrange(0,7) int lane); +#define vst2q_lane_s16(ptr, val, lane) vst2q_lane_u16((uint16_t*)ptr, val, lane) + +//void vst2q_lane_s32(__transfersize(2) int32_t * ptr, int32x4x2_t val, __constrange(0,3) int lane);// VST2.32 {d0[0], d2[0]}, [r0] +void vst2q_lane_s32_ptr(__transfersize(2) int32_t * ptr, int32x4x2_t * val, __constrange(0,3) int lane); +#define vst2q_lane_s32(ptr, val, lane) vst2q_lane_u32((uint32_t*)ptr, val, lane) + +//void vst2q_lane_f16(__transfersize(2) __fp16 * ptr, float16x8x2_t val, __constrange(0,7) int lane);// VST2.16 {d0[0], d2[0]}, [r0] +void vst2q_lane_f16_ptr(__transfersize(2) __fp16 * ptr, float16x8x2_t * val, __constrange(0,7) int lane); +//current IA SIMD doesn't support float16 + +//void vst2q_lane_f32(__transfersize(2) float32_t * ptr, float32x4x2_t val, __constrange(0,3) int lane)// VST2.32 {d0[0], d2[0]}, [r0] +_NEON2SSE_INLINE void vst2q_lane_f32_ptr(__transfersize(2) float32_t* ptr, float32x4x2_t* val, __constrange(0,3) int lane) +{ + vst1q_lane_f32(ptr, val->val[0], lane); + vst1q_lane_f32((ptr + 1), val->val[1], lane); +} +#define vst2q_lane_f32(ptr, val, lane) vst2q_lane_f32_ptr(ptr, &val, lane) + +//void vst2q_lane_p16(__transfersize(2) poly16_t * ptr, poly16x8x2_t val, __constrange(0,7) int lane);// VST2.16 {d0[0], d2[0]}, [r0] +void vst2q_lane_p16_ptr(__transfersize(2) poly16_t * ptr, poly16x8x2_t * val, __constrange(0,7) int lane); +#define vst2q_lane_p16 vst2q_lane_s16 + +//void vst2_lane_u16(__transfersize(2) uint16_t * ptr, uint16x4x2_t val, __constrange(0,3) int lane);// VST2.16 {d0[0], d1[0]}, [r0] +void vst2_lane_u16_ptr(__transfersize(2) uint16_t * ptr, uint16x4x2_t * val, __constrange(0,3) int lane); // VST2.16 {d0[0], d1[0]}, [r0] +#define vst2_lane_u16 vst2q_lane_u16 + +//void vst2_lane_u32(__transfersize(2) uint32_t * ptr, uint32x2x2_t val, __constrange(0,1) int lane);// VST2.32 {d0[0], d1[0]}, [r0] +void vst2_lane_u32_ptr(__transfersize(2) uint32_t * ptr, uint32x2x2_t * val, __constrange(0,1) int lane); // VST2.32 {d0[0], d1[0]}, [r0] +#define vst2_lane_u32 vst2q_lane_u32 + +//void vst2_lane_s8(__transfersize(2) int8_t * ptr, int8x8x2_t val, __constrange(0,7) int lane);// VST2.8 {d0[0], d1[0]}, [r0] +void vst2_lane_s8_ptr(__transfersize(2) int8_t * ptr, int8x8x2_t * val, __constrange(0,7) int lane); +#define vst2_lane_s8(ptr, val, lane) vst2_lane_u8((uint8_t*)ptr, val, lane) + +//void vst2_lane_s16(__transfersize(2) int16_t * ptr, int16x4x2_t val, __constrange(0,3) int lane);// VST2.16 {d0[0], d1[0]}, [r0] +void vst2_lane_s16_ptr(__transfersize(2) int16_t * ptr, int16x4x2_t * val, __constrange(0,3) int lane); +#define vst2_lane_s16 vst2q_lane_s16 + +//void vst2_lane_s32(__transfersize(2) int32_t * ptr, int32x2x2_t val, __constrange(0,1) int lane);// VST2.32 {d0[0], d1[0]}, [r0] +void vst2_lane_s32_ptr(__transfersize(2) int32_t * ptr, int32x2x2_t * val, __constrange(0,1) int lane); +#define vst2_lane_s32 vst2q_lane_s32 + +//void vst2_lane_f16(__transfersize(2) __fp16 * ptr, float16x4x2_t val, __constrange(0,3) int lane); // VST2.16 {d0[0], d1[0]}, [r0] +//current IA SIMD doesn't support float16 + +void vst2_lane_f32_ptr(__transfersize(2) float32_t * ptr, float32x2x2_t * val, __constrange(0,1) int lane); // VST2.32 {d0[0], d1[0]}, [r0] +#define vst2_lane_f32 vst2q_lane_f32 + +//void vst2_lane_p8(__transfersize(2) poly8_t * ptr, poly8x8x2_t val, __constrange(0,7) int lane);// VST2.8 {d0[0], d1[0]}, [r0] +#define vst2_lane_p8 vst2_lane_u8 + +//void vst2_lane_p16(__transfersize(2) poly16_t * ptr, poly16x4x2_t val, __constrange(0,3) int lane);// VST2.16 {d0[0], d1[0]}, [r0] +#define vst2_lane_p16 vst2_lane_u16 + +//************************* Triple lanes stores ******************************************************* +//******************************************************************************************************* +//void vst3q_lane_u16(__transfersize(3) uint16_t * ptr, uint16x8x3_t val, __constrange(0,7) int lane)// VST3.16 {d0[0], d2[0], d4[0]}, [r0] +_NEON2SSE_INLINE void vst3q_lane_u16_ptr(__transfersize(3) uint16_t * ptr, uint16x8x3_t* val, __constrange(0,7) int lane) +{ + vst2q_lane_u16_ptr(ptr, (uint16x8x2_t*)val, lane); + vst1q_lane_u16((ptr + 2), val->val[2], lane); +} +#define vst3q_lane_u16(ptr, val, lane) vst3q_lane_u16_ptr(ptr, &val, lane) + +//void vst3q_lane_u32(__transfersize(3) uint32_t * ptr, uint32x4x3_t val, __constrange(0,3) int lane)// VST3.32 {d0[0], d2[0], d4[0]}, [r0] +_NEON2SSE_INLINE void vst3q_lane_u32_ptr(__transfersize(3) uint32_t * ptr, uint32x4x3_t* val, __constrange(0,3) int lane) +{ + vst2q_lane_u32_ptr(ptr, (uint32x4x2_t*)val, lane); + vst1q_lane_u32((ptr + 2), val->val[2], lane); +} +#define vst3q_lane_u32(ptr, val, lane) vst3q_lane_u32_ptr(ptr, &val, lane) + +//void vst3q_lane_s16(__transfersize(3) int16_t * ptr, int16x8x3_t val, __constrange(0,7) int lane);// VST3.16 {d0[0], d2[0], d4[0]}, [r0] +void vst3q_lane_s16_ptr(__transfersize(3) int16_t * ptr, int16x8x3_t * val, __constrange(0,7) int lane); +#define vst3q_lane_s16(ptr, val, lane) vst3q_lane_u16((uint16_t *)ptr, val, lane) + +//void vst3q_lane_s32(__transfersize(3) int32_t * ptr, int32x4x3_t val, __constrange(0,3) int lane);// VST3.32 {d0[0], d2[0], d4[0]}, [r0] +void vst3q_lane_s32_ptr(__transfersize(3) int32_t * ptr, int32x4x3_t * val, __constrange(0,3) int lane); +#define vst3q_lane_s32(ptr, val, lane) vst3q_lane_u32((uint32_t *)ptr, val, lane) + +//void vst3q_lane_f16(__transfersize(3) __fp16 * ptr, float16x8x3_t val, __constrange(0,7) int lane);// VST3.16 {d0[0], d2[0], d4[0]}, [r0] +void vst3q_lane_f16_ptr(__transfersize(3) __fp16 * ptr, float16x8x3_t * val, __constrange(0,7) int lane); +//current IA SIMD doesn't support float16 + +//void vst3q_lane_f32(__transfersize(3) float32_t * ptr, float32x4x3_t val, __constrange(0,3) int lane)// VST3.32 {d0[0], d2[0], d4[0]}, [r0] +_NEON2SSE_INLINE void vst3q_lane_f32_ptr(__transfersize(3) float32_t * ptr, float32x4x3_t* val, __constrange(0,3) int lane) +{ + vst1q_lane_f32(ptr, val->val[0], lane); + vst1q_lane_f32((ptr + 1), val->val[1], lane); + vst1q_lane_f32((ptr + 2), val->val[2], lane); +} +#define vst3q_lane_f32(ptr, val, lane) vst3q_lane_f32_ptr(ptr, &val, lane) + +//void vst3_lane_s8(__transfersize(3) int8_t * ptr, int8x8x3_t val, __constrange(0,7) int lane);// VST3.8 {d0[0], d1[0], d2[0]}, [r0] +void vst3_lane_s8_ptr(__transfersize(3) int8_t * ptr, int8x8x3_t * val, __constrange(0,7) int lane); +#define vst3_lane_s8(ptr, val, lane) vst3_lane_u8((uint8_t *)ptr, val, lane) + +//void vst3_lane_s16(__transfersize(3) int16_t * ptr, int16x4x3_t val, __constrange(0,3) int lane);// VST3.16 {d0[0], d1[0], d2[0]}, [r0] +void vst3_lane_s16_ptr(__transfersize(3) int16_t * ptr, int16x4x3_t * val, __constrange(0,3) int lane); +#define vst3_lane_s16(ptr, val, lane) vst3_lane_u16((uint16_t *)ptr, val, lane) + +//void vst3_lane_s32(__transfersize(3) int32_t * ptr, int32x2x3_t val, __constrange(0,1) int lane);// VST3.32 {d0[0], d1[0], d2[0]}, [r0] +void vst3_lane_s32_ptr(__transfersize(3) int32_t * ptr, int32x2x3_t * val, __constrange(0,1) int lane); +#define vst3_lane_s32(ptr, val, lane) vst3_lane_u32((uint32_t *)ptr, val, lane) + +//void vst3_lane_f16(__transfersize(3) __fp16 * ptr, float16x4x3_t val, __constrange(0,3) int lane);// VST3.16 {d0[0], d1[0], d2[0]}, [r0] +void vst3_lane_f16_ptr(__transfersize(3) __fp16 * ptr, float16x4x3_t * val, __constrange(0,3) int lane); +//current IA SIMD doesn't support float16 + +//void vst3_lane_f32(__transfersize(3) float32_t * ptr, float32x2x3_t val, __constrange(0,1) int lane)// VST3.32 {d0[0], d1[0], d2[0]}, [r0] +void vst3_lane_f32_ptr(__transfersize(3) float32_t * ptr, float32x2x3_t * val, __constrange(0,1) int lane); +#define vst3_lane_f32 vst3q_lane_f32 + +//void vst3_lane_p8(__transfersize(3) poly8_t * ptr, poly8x8x3_t val, __constrange(0,7) int lane);// VST3.8 {d0[0], d1[0], d2[0]}, [r0] +void vst3_lane_p8_ptr(__transfersize(3) poly8_t * ptr, poly8x8x3_t * val, __constrange(0,7) int lane); +#define vst3_lane_p8 vst3_lane_u8 + +//void vst3_lane_p16(__transfersize(3) poly16_t * ptr, poly16x4x3_t val, __constrange(0,3) int lane);// VST3.16 {d0[0], d1[0], d2[0]}, [r0] +void vst3_lane_p16_ptr(__transfersize(3) poly16_t * ptr, poly16x4x3_t * val, __constrange(0,3) int lane); +#define vst3_lane_p16 vst3_lane_s16 + +//******************************** Quadruple lanes stores *********************************************** +//******************************************************************************************************* +//void vst4q_lane_u16(__transfersize(4) uint16_t * ptr, uint16x8x4_t val, __constrange(0,7) int lane)// VST4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] +_NEON2SSE_INLINE void vst4q_lane_u16_ptr(__transfersize(4) uint16_t * ptr, uint16x8x4_t* val4, __constrange(0,7) int lane) +{ + vst2q_lane_u16_ptr(ptr, (uint16x8x2_t*)val4->val, lane); + vst2q_lane_u16_ptr((ptr + 2),((uint16x8x2_t*)val4->val + 1), lane); +} +#define vst4q_lane_u16(ptr, val, lane) vst4q_lane_u16_ptr(ptr, &val, lane) + +//void vst4q_lane_u32(__transfersize(4) uint32_t * ptr, uint32x4x4_t val, __constrange(0,3) int lane)// VST4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] +_NEON2SSE_INLINE void vst4q_lane_u32_ptr(__transfersize(4) uint32_t * ptr, uint32x4x4_t* val4, __constrange(0,3) int lane) +{ + vst2q_lane_u32_ptr(ptr, (uint32x4x2_t*)val4->val, lane); + vst2q_lane_u32_ptr((ptr + 2), ((uint32x4x2_t*)val4->val + 1), lane); +} +#define vst4q_lane_u32(ptr, val, lane) vst4q_lane_u32_ptr(ptr, &val, lane) + +//void vst4q_lane_s16(__transfersize(4) int16_t * ptr, int16x8x4_t val, __constrange(0,7) int lane);// VST4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] +void vst4q_lane_s16_ptr(__transfersize(4) int16_t * ptr, int16x8x4_t * val, __constrange(0,7) int lane); +#define vst4q_lane_s16(ptr,val,lane) vst4q_lane_u16((uint16_t *)ptr,val,lane) + +//void vst4q_lane_s32(__transfersize(4) int32_t * ptr, int32x4x4_t val, __constrange(0,3) int lane);// VST4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] +void vst4q_lane_s32_ptr(__transfersize(4) int32_t * ptr, int32x4x4_t * val, __constrange(0,3) int lane); +#define vst4q_lane_s32(ptr,val,lane) vst4q_lane_u32((uint32_t *)ptr,val,lane) + +//void vst4q_lane_f16(__transfersize(4) __fp16 * ptr, float16x8x4_t val, __constrange(0,7) int lane);// VST4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] +void vst4q_lane_f16_ptr(__transfersize(4) __fp16 * ptr, float16x8x4_t * val, __constrange(0,7) int lane); +//current IA SIMD doesn't support float16 + +//void vst4q_lane_f32(__transfersize(4) float32_t * ptr, float32x4x4_t val, __constrange(0,3) int lane)// VST4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] +_NEON2SSE_INLINE void vst4q_lane_f32_ptr(__transfersize(4) float32_t * ptr, float32x4x4_t* val, __constrange(0,3) int lane) +{ + vst1q_lane_f32(ptr, val->val[0], lane); + vst1q_lane_f32((ptr + 1), val->val[1], lane); + vst1q_lane_f32((ptr + 2), val->val[2], lane); + vst1q_lane_f32((ptr + 3), val->val[3], lane); +} +#define vst4q_lane_f32(ptr, val, lane) vst4q_lane_f32_ptr(ptr, &val, lane) + +//void vst4q_lane_p16(__transfersize(4) poly16_t * ptr, poly16x8x4_t val, __constrange(0,7) int lane);// VST4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] +void vst4q_lane_p16_ptr(__transfersize(4) poly16_t * ptr, poly16x8x4_t * val, __constrange(0,7) int lane); +#define vst4q_lane_p16 vst4q_lane_u16 + +//void vst4_lane_u8(__transfersize(4) uint8_t * ptr, uint8x8x4_t val, __constrange(0,7) int lane)// VST4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] +_NEON2SSE_INLINE void vst4_lane_u8_ptr(__transfersize(4) uint8_t * ptr, uint8x8x4_t* val, __constrange(0,7) int lane) +{ + vst1q_lane_u8(ptr, val->val[0], lane); + vst1q_lane_u8((ptr + 1), val->val[1], lane); + vst1q_lane_u8((ptr + 2), val->val[2], lane); + vst1q_lane_u8((ptr + 3), val->val[3], lane); +} +#define vst4_lane_u8(ptr, val, lane) vst4_lane_u8_ptr(ptr, &val, lane) + +//void vst4_lane_u16(__transfersize(4) uint16_t * ptr, uint16x4x4_t val, __constrange(0,3) int lane)// VST4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] +_NEON2SSE_INLINE void vst4_lane_u16_ptr(__transfersize(4) uint16_t * ptr, uint16x4x4_t* val, __constrange(0,3) int lane) +{ + vst1q_lane_u16(ptr, val->val[0], lane); + vst1q_lane_u16((ptr + 1),val->val[1], lane); + vst1q_lane_u16((ptr + 2), val->val[2], lane); + vst1q_lane_u16((ptr + 3), val->val[3], lane); +} +#define vst4_lane_u16(ptr, val, lane) vst4_lane_u16_ptr(ptr, &val, lane) + +//void vst4_lane_u32(__transfersize(4) uint32_t * ptr, uint32x2x4_t val, __constrange(0,1) int lane)// VST4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] +_NEON2SSE_INLINE void vst4_lane_u32_ptr(__transfersize(4) uint32_t * ptr, uint32x2x4_t* val, __constrange(0,1) int lane) +{ + vst1q_lane_u32(ptr, val->val[0], lane); + vst1q_lane_u32((ptr + 1), val->val[1], lane); + vst1q_lane_u32((ptr + 2), val->val[2], lane); + vst1q_lane_u32((ptr + 3), val->val[3], lane); + +} +#define vst4_lane_u32(ptr, val, lane) vst4_lane_u32_ptr(ptr, &val, lane) + +//void vst4_lane_s8(__transfersize(4) int8_t * ptr, int8x8x4_t val, __constrange(0,7) int lane)// VST4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] +#define vst4_lane_s8(ptr, val, lane) vst4_lane_u8((uint8_t*)ptr, val, lane) + +//void vst4_lane_s16(__transfersize(4) int16_t * ptr, int16x4x4_t val, __constrange(0,3) int lane)// VST4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] +#define vst4_lane_s16(ptr, val, lane) vst4_lane_u16((uint16_t*)ptr, val, lane) + +//void vst4_lane_s32(__transfersize(4) int32_t * ptr, int32x2x4_t val, __constrange(0,1) int lane)// VST4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] +#define vst4_lane_s32(ptr, val, lane) vst4_lane_u32((uint32_t*)ptr, val, lane) + +//void vst4_lane_f16(__transfersize(4) __fp16 * ptr, float16x4x4_t val, __constrange(0,3) int lane);// VST4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] +void vst4_lane_f16_ptr(__transfersize(4) __fp16 * ptr, float16x4x4_t * val, __constrange(0,3) int lane); +//current IA SIMD doesn't support float16 + +//void vst4_lane_f32(__transfersize(4) float32_t * ptr, float32x2x4_t val, __constrange(0,1) int lane)// VST4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] +#define vst4_lane_f32 vst4q_lane_f32 + +//void vst4_lane_p8(__transfersize(4) poly8_t * ptr, poly8x8x4_t val, __constrange(0,7) int lane);// VST4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] +void vst4_lane_p8_ptr(__transfersize(4) poly8_t * ptr, poly8x8x4_t * val, __constrange(0,7) int lane); +#define vst4_lane_p8 vst4_lane_u8 + +//void vst4_lane_p16(__transfersize(4) poly16_t * ptr, poly16x4x4_t val, __constrange(0,3) int lane);// VST4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] +void vst4_lane_p16_ptr(__transfersize(4) poly16_t * ptr, poly16x4x4_t * val, __constrange(0,3) int lane); +#define vst4_lane_p16 vst4_lane_u16 + +//************************************************************************************************** +//************************ Extract lanes from a vector ******************************************** +//************************************************************************************************** +//These intrinsics extract a single lane (element) from a vector. + +uint8_t vgetq_lane_u8(uint8x16_t vec, __constrange(0,15) int lane); // VMOV.U8 r0, d0[0] +#define vgetq_lane_u8 _MM_EXTRACT_EPI8 + +uint16_t vgetq_lane_u16(uint16x8_t vec, __constrange(0,7) int lane); // VMOV.s16 r0, d0[0] +#define vgetq_lane_u16 _MM_EXTRACT_EPI16 + +uint32_t vgetq_lane_u32(uint32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0] +#define vgetq_lane_u32 _MM_EXTRACT_EPI32 + +int8_t vgetq_lane_s8(int8x16_t vec, __constrange(0,15) int lane); // VMOV.S8 r0, d0[0] +#define vgetq_lane_s8 vgetq_lane_u8 + +int16_t vgetq_lane_s16(int16x8_t vec, __constrange(0,7) int lane); // VMOV.S16 r0, d0[0] +#define vgetq_lane_s16 vgetq_lane_u16 + +int32_t vgetq_lane_s32(int32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0] +#define vgetq_lane_s32 vgetq_lane_u32 + +poly8_t vgetq_lane_p8(poly8x16_t vec, __constrange(0,15) int lane); // VMOV.U8 r0, d0[0] +#define vgetq_lane_p8 vgetq_lane_u8 + +poly16_t vgetq_lane_p16(poly16x8_t vec, __constrange(0,7) int lane); // VMOV.s16 r0, d0[0] +#define vgetq_lane_p16 vgetq_lane_u16 + +float32_t vgetq_lane_f32(float32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0] +_NEON2SSE_INLINE float32_t vgetq_lane_f32(float32x4_t vec, __constrange(0,3) int lane) +{ + int32_t ilane; + ilane = _MM_EXTRACT_PS(vec,lane); + return *(float*)&ilane; +} + +int64_t vgetq_lane_s64(int64x2_t vec, __constrange(0,1) int lane); // VMOV r0,r0,d0 +#define vgetq_lane_s64 (int64_t) vgetq_lane_u64 + +uint64_t vgetq_lane_u64(uint64x2_t vec, __constrange(0,1) int lane); // VMOV r0,r0,d0 +#define vgetq_lane_u64 _MM_EXTRACT_EPI64 + +// ***************** Set lanes within a vector ******************************************** +// ************************************************************************************** +//These intrinsics set a single lane (element) within a vector. +//same functions as vld1_lane_xx ones, but take the value to be set directly. + +uint8x16_t vsetq_lane_u8(uint8_t value, uint8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0 +_NEON2SSE_INLINE uint8x16_t vsetq_lane_u8(uint8_t value, uint8x16_t vec, __constrange(0,15) int lane) +{ + uint8_t val; + val = value; + return vld1q_lane_u8(&val, vec, lane); +} + +uint16x8_t vsetq_lane_u16(uint16_t value, uint16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0 +_NEON2SSE_INLINE uint16x8_t vsetq_lane_u16(uint16_t value, uint16x8_t vec, __constrange(0,7) int lane) +{ + uint16_t val; + val = value; + return vld1q_lane_u16(&val, vec, lane); +} + +uint32x4_t vsetq_lane_u32(uint32_t value, uint32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0 +_NEON2SSE_INLINE uint32x4_t vsetq_lane_u32(uint32_t value, uint32x4_t vec, __constrange(0,3) int lane) +{ + uint32_t val; + val = value; + return vld1q_lane_u32(&val, vec, lane); +} + +int8x16_t vsetq_lane_s8(int8_t value, int8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0 +_NEON2SSE_INLINE int8x16_t vsetq_lane_s8(int8_t value, int8x16_t vec, __constrange(0,15) int lane) +{ + int8_t val; + val = value; + return vld1q_lane_s8(&val, vec, lane); +} + +int16x8_t vsetq_lane_s16(int16_t value, int16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0 +_NEON2SSE_INLINE int16x8_t vsetq_lane_s16(int16_t value, int16x8_t vec, __constrange(0,7) int lane) +{ + int16_t val; + val = value; + return vld1q_lane_s16(&val, vec, lane); +} + +int32x4_t vsetq_lane_s32(int32_t value, int32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0 +_NEON2SSE_INLINE int32x4_t vsetq_lane_s32(int32_t value, int32x4_t vec, __constrange(0,3) int lane) +{ + int32_t val; + val = value; + return vld1q_lane_s32(&val, vec, lane); +} + +poly8x16_t vsetq_lane_p8(poly8_t value, poly8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0 +#define vsetq_lane_p8 vsetq_lane_u8 + +poly16x8_t vsetq_lane_p16(poly16_t value, poly16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0 +#define vsetq_lane_p16 vsetq_lane_u16 + +float32x4_t vsetq_lane_f32(float32_t value, float32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0 +_NEON2SSE_INLINE float32x4_t vsetq_lane_f32(float32_t value, float32x4_t vec, __constrange(0,3) int lane) +{ + float32_t val; + val = value; +} + +int64x2_t vsetq_lane_s64(int64_t value, int64x2_t vec, __constrange(0,1) int lane); // VMOV d0,r0,r0 +_NEON2SSE_INLINE int64x2_t vsetq_lane_s64(int64_t value, int64x2_t vec, __constrange(0,1) int lane) +{ + uint64_t val; + val = value; + return vld1q_lane_s64(&val, vec, lane); +} + +uint64x2_t vsetq_lane_u64(uint64_t value, uint64x2_t vec, __constrange(0,1) int lane); // VMOV d0,r0,r0 +#define vsetq_lane_u64 vsetq_lane_s64 + +// ******************************************************************************* +// **************** Initialize a vector from bit pattern *************************** +// ******************************************************************************* +//These intrinsics create a vector from a literal bit pattern. + +//no IA32 SIMD avalilable + +//********************* Set all lanes to same value ******************************** +//********************************************************************************* +//These intrinsics set all lanes to the same value. + +uint8x16_t vdupq_n_u8(uint8_t value); // VDUP.8 q0,r0 +#define vdupq_n_u8(value) _mm_set1_epi8((uint8_t) (value)) + +uint16x8_t vdupq_n_u16(uint16_t value); // VDUP.16 q0,r0 +#define vdupq_n_u16(value) _mm_set1_epi16((uint16_t) (value)) + +uint32x4_t vdupq_n_u32(uint32_t value); // VDUP.32 q0,r0 +#define vdupq_n_u32(value) _mm_set1_epi32((uint32_t) (value)) + +int8x16_t vdupq_n_s8(int8_t value); // VDUP.8 q0,r0 +#define vdupq_n_s8 _mm_set1_epi8 + +int16x8_t vdupq_n_s16(int16_t value); // VDUP.16 q0,r0 +#define vdupq_n_s16 _mm_set1_epi16 + +int32x4_t vdupq_n_s32(int32_t value); // VDUP.32 q0,r0 +#define vdupq_n_s32 _mm_set1_epi32 + +poly8x16_t vdupq_n_p8(poly8_t value); // VDUP.8 q0,r0 +#define vdupq_n_p8 vdupq_n_u8 + +poly16x8_t vdupq_n_p16(poly16_t value); // VDUP.16 q0,r0 +#define vdupq_n_p16 vdupq_n_u16 + +float32x4_t vdupq_n_f32(float32_t value); // VDUP.32 q0,r0 +#define vdupq_n_f32 _mm_set1_ps + +int64x2_t vdupq_n_s64(int64_t value); // VMOV d0,r0,r0 +_NEON2SSE_INLINE int64x2_t vdupq_n_s64(int64_t value) +{ + _NEON2SSE_ALIGN_16 int64_t value2[2] = {value, value}; //value may be an immediate + return LOAD_SI128(value2); +} + +uint64x2_t vdupq_n_u64(uint64_t value); // VMOV d0,r0,r0 +_NEON2SSE_INLINE uint64x2_t vdupq_n_u64(uint64_t value) +{ + _NEON2SSE_ALIGN_16 uint64_t val[2] = {value, value}; //value may be an immediate + return LOAD_SI128(val); +} + +//**** Set all lanes to same value ************************ +//Same functions as above - just aliaces.******************** +//Probably they reflect the fact that 128-bit functions versions use VMOV instruction ********** + +uint8x16_t vmovq_n_u8(uint8_t value); // VDUP.8 q0,r0 +#define vmovq_n_u8 vdupq_n_u8 + +uint16x8_t vmovq_n_u16(uint16_t value); // VDUP.16 q0,r0 +#define vmovq_n_u16 vdupq_n_s16 + +uint32x4_t vmovq_n_u32(uint32_t value); // VDUP.32 q0,r0 +#define vmovq_n_u32 vdupq_n_u32 + +int8x16_t vmovq_n_s8(int8_t value); // VDUP.8 q0,r0 +#define vmovq_n_s8 vdupq_n_s8 + +int16x8_t vmovq_n_s16(int16_t value); // VDUP.16 q0,r0 +#define vmovq_n_s16 vdupq_n_s16 + +int32x4_t vmovq_n_s32(int32_t value); // VDUP.32 q0,r0 +#define vmovq_n_s32 vdupq_n_s32 + +poly8x16_t vmovq_n_p8(poly8_t value); // VDUP.8 q0,r0 +#define vmovq_n_p8 vdupq_n_u8 + +poly16x8_t vmovq_n_p16(poly16_t value); // VDUP.16 q0,r0 +#define vmovq_n_p16 vdupq_n_s16 + +float32x4_t vmovq_n_f32(float32_t value); // VDUP.32 q0,r0 +#define vmovq_n_f32 vdupq_n_f32 + +int64x2_t vmovq_n_s64(int64_t value); // VMOV d0,r0,r0 +#define vmovq_n_s64 vdupq_n_s64 + +uint64x2_t vmovq_n_u64(uint64_t value); // VMOV d0,r0,r0 +#define vmovq_n_u64 vdupq_n_u64 + +//**************Set all lanes to the value of one lane of a vector ************* +//**************************************************************************** +//here shuffle is better solution than lane extraction followed by set1 function + +// ******************************************************************** +// ******************** Combining vectors ***************************** +// ******************************************************************** +//These intrinsics join two 64 bit vectors into a single 128bit vector. + +//current IA SIMD doesn't support float16 + +//********************************************************************** +//************************* Splitting vectors ************************** +//********************************************************************** +//**************** Get high part ****************************************** +//These intrinsics split a 128 bit vector into 2 component 64 bit vectors + +// IA32 SIMD doesn't work with 16bit floats currently + +//********************** Get low part ********************** +//********************************************************** + +// IA32 SIMD doesn't work with 16bit floats currently + +//************************************************************************** +//************************ Converting vectors ********************************** +//************************************************************************** +//************* Convert from float *************************************** +// need to set _MM_SET_ROUNDING_MODE ( x) accordingly + +int32x4_t vcvtq_s32_f32(float32x4_t a); // VCVT.S32.F32 q0, q0 +#define vcvtq_s32_f32 _mm_cvtps_epi32 + +uint32x4_t vcvtq_u32_f32(float32x4_t a); // VCVT.U32.F32 q0, q0 +_NEON2SSE_INLINE uint32x4_t vcvtq_u32_f32(float32x4_t a) // VCVT.U32.F32 q0, q0 +{ //No single instruction SSE solution but we could implement it as following: + __m128i resi; + __m128 zero, mask, a_pos, mask_f_max_si, res; + _NEON2SSE_ALIGN_16 int32_t c7fffffff[4] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff}; + zero = _mm_setzero_ps(); + mask = _mm_cmpgt_ps(a, zero); + a_pos = _mm_and_ps(a, mask); + mask_f_max_si = _mm_cmpgt_ps(a_pos,*(__m128*)c7fffffff); + res = _mm_sub_ps(a_pos, mask_f_max_si); //if the input fits to signed we don't subtract anything + resi = _mm_cvtps_epi32(res); + return _mm_add_epi32(resi, *(__m128i*)&mask_f_max_si); +} + +// ***** Convert to the fixed point with the number of fraction bits specified by b *********** +//************************************************************************************************* +//Intel SIMD doesn't support fixed point + +int32x4_t vcvtq_n_s32_f32(float32x4_t a, __constrange(1,32) int b); // VCVT.S32.F32 q0, q0, #32 +uint32x4_t vcvtq_n_u32_f32(float32x4_t a, __constrange(1,32) int b); // VCVT.U32.F32 q0, q0, #32 + +//***************** Convert to float ************************* +//************************************************************* + +float32x4_t vcvtq_f32_s32(int32x4_t a); // VCVT.F32.S32 q0, q0 +#define vcvtq_f32_s32(a) _mm_cvtepi32_ps(a) + +float32x4_t vcvtq_f32_u32(uint32x4_t a); // VCVT.F32.U32 q0, q0 +_NEON2SSE_INLINE float32x4_t vcvtq_f32_u32(uint32x4_t a) // VCVT.F32.U32 q0, q0 +{ //solution may be not optimal + __m128 two16, fHi, fLo; + __m128i hi, lo; + two16 = _mm_set1_ps((float)0x10000); //2^16 + // Avoid double rounding by doing two exact conversions + // of high and low 16-bit segments + hi = _mm_srli_epi32(a, 16); + lo = _mm_srli_epi32(_mm_slli_epi32(a, 16), 16); + fHi = _mm_mul_ps(_mm_cvtepi32_ps(hi), two16); + fLo = _mm_cvtepi32_ps(lo); + // do single rounding according to current rounding mode + return _mm_add_ps(fHi, fLo); +} + +//**************Convert between floats *********************** +//************************************************************ + +//Intel SIMD doesn't support 16bits floats curently + +//Intel SIMD doesn't support 16bits floats curently, the only solution is to store 16bit floats and load as 32 bits + +//************Vector narrow integer conversion (truncation) ****************** +//**************************************************************************** + +//**************** Vector long move *********************** +//*********************************************************** + +//*************Vector saturating narrow integer***************** +//************************************************************** + +//************* Vector saturating narrow integer signed->unsigned ************** +//***************************************************************************** + +// ******************************************************** +// **************** Table look up ************************** +// ******************************************************** +//VTBL (Vector Table Lookup) uses byte indexes in a control vector to look up byte values +//in a table and generate a new vector. Indexes out of range return 0. +//for Intel SIMD we need to set the MSB to 1 for zero return + +//Special trick to avoid __declspec(align('8')) won't be aligned" error + +//Special trick to avoid __declspec(align('16')) won't be aligned" error + +//****************** Extended table look up intrinsics *************************** +//********************************************************************************** +//VTBX (Vector Table Extension) works in the same way as VTBL do, +// except that indexes out of range leave the destination element unchanged. + +//Special trick to avoid __declspec(align('8')) won't be aligned" error + +//************************************************************************************************* +// *************************** Operations with a scalar value ********************************* +//************************************************************************************************* + +//******* Vector multiply accumulate by scalar ************************************************* +//********************************************************************************************** + +//***************** Vector widening multiply accumulate by scalar ********************** +//*************************************************************************************** + +// ******** Vector widening saturating doubling multiply accumulate by scalar ******************************* +// ************************************************************************************************ + +// ****** Vector multiply subtract by scalar ***************** +// ************************************************************* + +// **** Vector widening multiply subtract by scalar **** +// **************************************************** + +//********* Vector widening saturating doubling multiply subtract by scalar ************************** +//****************************************************************************************************** + +//********** Vector multiply with scalar ***************************** + +int16x8_t vmulq_n_s16(int16x8_t a, int16_t b); // VMUL.I16 q0,q0,d0[0] +_NEON2SSE_INLINE int16x8_t vmulq_n_s16(int16x8_t a, int16_t b) // VMUL.I16 q0,q0,d0[0] +{ + int16x8_t b16x8; + b16x8 = vdupq_n_s16(b); + return vmulq_s16(a, b16x8); +} + +int32x4_t vmulq_n_s32(int32x4_t a, int32_t b); // VMUL.I32 q0,q0,d0[0] +_NEON2SSE_INLINE int32x4_t vmulq_n_s32(int32x4_t a, int32_t b) // VMUL.I32 q0,q0,d0[0] +{ + int32x4_t b32x4; + b32x4 = vdupq_n_s32(b); + return vmulq_s32(a, b32x4); +} + +float32x4_t vmulq_n_f32(float32x4_t a, float32_t b); // VMUL.F32 q0,q0,d0[0] +_NEON2SSE_INLINE float32x4_t vmulq_n_f32(float32x4_t a, float32_t b) // VMUL.F32 q0,q0,d0[0] +{ + float32x4_t b32x4; + b32x4 = vdupq_n_f32(b); + return vmulq_f32(a, b32x4); +} + +uint16x8_t vmulq_n_u16(uint16x8_t a, uint16_t b); // VMUL.I16 q0,q0,d0[0] +_NEON2SSE_INLINE uint16x8_t vmulq_n_u16(uint16x8_t a, uint16_t b) // VMUL.I16 q0,q0,d0[0] +{ + uint16x8_t b16x8; + b16x8 = vdupq_n_s16(b); + return vmulq_s16(a, b16x8); +} + +uint32x4_t vmulq_n_u32(uint32x4_t a, uint32_t b); // VMUL.I32 q0,q0,d0[0] +_NEON2SSE_INLINE uint32x4_t vmulq_n_u32(uint32x4_t a, uint32_t b) // VMUL.I32 q0,q0,d0[0] +{ + uint32x4_t b32x4; + b32x4 = vdupq_n_u32(b); + return vmulq_u32(a, b32x4); +} + +//**** Vector long multiply with scalar ************ + +//**** Vector long multiply by scalar **** + +//********* Vector saturating doubling long multiply with scalar ******************* + +//************* Vector saturating doubling long multiply by scalar *********************************************** + +// *****Vector saturating doubling multiply high with scalar ***** + +int16x8_t vqdmulhq_n_s16(int16x8_t vec1, int16_t val2); // VQDMULH.S16 q0,q0,d0[0] +_NEON2SSE_INLINE int16x8_t vqdmulhq_n_s16(int16x8_t vec1, int16_t val2) // VQDMULH.S16 q0,q0,d0[0] +{ //solution may be not optimal + int16x8_t scalar; + scalar = vdupq_n_s16(val2); + return vqdmulhq_s16(vec1, scalar); +} + +int32x4_t vqdmulhq_n_s32(int32x4_t vec1, int32_t val2); // VQDMULH.S32 q0,q0,d0[0] +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqdmulhq_n_s32(int32x4_t vec1, int32_t val2), _NEON2SSE_REASON_SLOW_UNEFFECTIVE) +{ + int32x4_t scalar; + scalar = vdupq_n_s32(val2); + return vqdmulhq_s32(vec1, scalar); +} + +//***** Vector saturating doubling multiply high by scalar **************** + +//******** Vector saturating rounding doubling multiply high with scalar *** + +#if defined(USE_SSSE3) +int16x8_t vqrdmulhq_n_s16(int16x8_t vec1, int16_t val2); // VQRDMULH.S16 q0,q0,d0[0] +_NEON2SSE_INLINE int16x8_t vqrdmulhq_n_s16(int16x8_t vec1, int16_t val2) // VQRDMULH.S16 q0,q0,d0[0] +{ //solution may be not optimal + int16x8_t scalar; + scalar = vdupq_n_s16(val2); + return vqrdmulhq_s16(vec1, scalar); +} +#endif + +#if defined(USE_SSSE3) +int32x4_t vqrdmulhq_n_s32(int32x4_t vec1, int32_t val2); // VQRDMULH.S32 q0,q0,d0[0] +_NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqrdmulhq_n_s32(int32x4_t vec1, int32_t val2), _NEON2SSE_REASON_SLOW_UNEFFECTIVE) +{ + int32x4_t scalar; + scalar = vdupq_n_s32(val2); + return vqrdmulhq_s32(vec1, scalar); +} +#endif + +//********* Vector rounding saturating doubling multiply high by scalar **** + +//**************Vector multiply accumulate with scalar ******************* + +int16x8_t vmlaq_n_s16(int16x8_t a, int16x8_t b, int16_t c); // VMLA.I16 q0, q0, d0[0] +_NEON2SSE_INLINE int16x8_t vmlaq_n_s16(int16x8_t a, int16x8_t b, int16_t c) // VMLA.I16 q0, q0, d0[0] +{ + int16x8_t scalar; + scalar = vdupq_n_s16(c); + return vmlaq_s16(a,b,scalar); +} + +int32x4_t vmlaq_n_s32(int32x4_t a, int32x4_t b, int32_t c); // VMLA.I32 q0, q0, d0[0] +_NEON2SSE_INLINE int32x4_t vmlaq_n_s32(int32x4_t a, int32x4_t b, int32_t c) // VMLA.I32 q0, q0, d0[0] +{ + int32x4_t scalar; + scalar = vdupq_n_s32(c); + return vmlaq_s32(a,b,scalar); +} + +uint16x8_t vmlaq_n_u16(uint16x8_t a, uint16x8_t b, uint16_t c); // VMLA.I16 q0, q0, d0[0] +#define vmlaq_n_u16 vmlaq_n_s16 + +uint32x4_t vmlaq_n_u32(uint32x4_t a, uint32x4_t b, uint32_t c); // VMLA.I32 q0, q0, d0[0] +#define vmlaq_n_u32 vmlaq_n_s32 + +float32x4_t vmlaq_n_f32(float32x4_t a, float32x4_t b, float32_t c); // VMLA.F32 q0, q0, d0[0] +_NEON2SSE_INLINE float32x4_t vmlaq_n_f32(float32x4_t a, float32x4_t b, float32_t c) // VMLA.F32 q0, q0, d0[0] +{ + float32x4_t scalar; + scalar = vdupq_n_f32(c); + return vmlaq_f32(a,b,scalar); +} + +//************Vector widening multiply accumulate with scalar**************************** + +//************ Vector widening saturating doubling multiply accumulate with scalar ************** + +//******** Vector multiply subtract with scalar ************** + +int16x8_t vmlsq_n_s16(int16x8_t a, int16x8_t b, int16_t c); // VMLS.I16 q0, q0, d0[0] +_NEON2SSE_INLINE int16x8_t vmlsq_n_s16(int16x8_t a, int16x8_t b, int16_t c) // VMLS.I16 q0, q0, d0[0] +{ + int16x8_t vc; + vc = vdupq_n_s16(c); + return vmlsq_s16(a, b,vc); +} + +int32x4_t vmlsq_n_s32(int32x4_t a, int32x4_t b, int32_t c); // VMLS.I32 q0, q0, d0[0] +_NEON2SSE_INLINE int32x4_t vmlsq_n_s32(int32x4_t a, int32x4_t b, int32_t c) // VMLS.I32 q0, q0, d0[0] +{ + int32x4_t vc; + vc = vdupq_n_s32(c); + return vmlsq_s32(a,b,vc); +} + +uint16x8_t vmlsq_n_u16(uint16x8_t a, uint16x8_t b, uint16_t c); // VMLS.I16 q0, q0, d0[0] +_NEON2SSE_INLINE uint16x8_t vmlsq_n_u16(uint16x8_t a, uint16x8_t b, uint16_t c) // VMLS.I16 q0, q0, d0[0] +{ + uint32x4_t vc; + vc = vdupq_n_u32(c); + return vmlsq_u32(a,b,vc); +} + +uint32x4_t vmlsq_n_u32(uint32x4_t a, uint32x4_t b, uint32_t c); // VMLS.I32 q0, q0, d0[0] +_NEON2SSE_INLINE uint32x4_t vmlsq_n_u32(uint32x4_t a, uint32x4_t b, uint32_t c) // VMLS.I32 q0, q0, d0[0] +{ + uint32x4_t vc; + vc = vdupq_n_u32(c); + return vmlsq_u32(a,b,vc); +} + +float32x4_t vmlsq_n_f32(float32x4_t a, float32x4_t b, float32_t c); // VMLS.F32 q0, q0, d0[0] +_NEON2SSE_INLINE float32x4_t vmlsq_n_f32(float32x4_t a, float32x4_t b, float32_t c) +{ + float32x4_t vc; + vc = vdupq_n_f32(c); + return vmlsq_f32(a,b,vc); +} + +//**** Vector widening multiply subtract with scalar ****** + +//***** Vector widening saturating doubling multiply subtract with scalar ********* +//********************************************************************************** + +//******************* Vector extract *********************************************** +//************************************************************************************* +//VEXT (Vector Extract) extracts elements from the bottom end of the second operand +//vector and the top end of the first, concatenates them, and places the result in the destination vector +//c elements from the bottom end of the second operand and (8-c) from the top end of the first + +#if defined(USE_SSSE3) +//same result tested + +#endif + +#if defined(USE_SSSE3) +int8x16_t vextq_s8(int8x16_t a, int8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0 +#define vextq_s8(a,b,c) _MM_ALIGNR_EPI8 (b,a,c) + +uint8x16_t vextq_u8(uint8x16_t a, uint8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0 +#define vextq_u8(a,b,c) _MM_ALIGNR_EPI8 (b,a,c) + +poly8x16_t vextq_p8(poly8x16_t a, poly8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0 +#define vextq_p8 vextq_s8 + +int16x8_t vextq_s16(int16x8_t a, int16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0 +#define vextq_s16(a,b,c) _MM_ALIGNR_EPI8 (b,a,c * 2) + +uint16x8_t vextq_u16(uint16x8_t a, uint16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0 +#define vextq_u16(a,b,c) _MM_ALIGNR_EPI8 (b,a,c * 2) + +poly16x8_t vextq_p16(poly16x8_t a, poly16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0 +#define vextq_p16 vextq_s16 +#endif + +#if defined(USE_SSSE3) +int32x4_t vextq_s32(int32x4_t a, int32x4_t b, __constrange(0,3) int c); // VEXT.32 q0,q0,q0,#0 +#define vextq_s32(a,b,c) _MM_ALIGNR_EPI8 (b,a,c * 4) + +uint32x4_t vextq_u32(uint32x4_t a, uint32x4_t b, __constrange(0,3) int c); // VEXT.32 q0,q0,q0,#0 +#define vextq_u32(a,b,c) _MM_ALIGNR_EPI8 (b,a,c * 4) + +int64x2_t vextq_s64(int64x2_t a, int64x2_t b, __constrange(0,1) int c); // VEXT.64 q0,q0,q0,#0 +#define vextq_s64(a,b,c) _MM_ALIGNR_EPI8(b,a,c * 8) + +uint64x2_t vextq_u64(uint64x2_t a, uint64x2_t b, __constrange(0,1) int c); // VEXT.64 q0,q0,q0,#0 +#define vextq_u64(a,b,c) _MM_ALIGNR_EPI8(b,a,c * 8) +#endif + +//************ Reverse vector elements (swap endianness)***************** +//************************************************************************* +//VREVn.m reverses the order of the m-bit lanes within a set that is n bits wide. + +#if defined(USE_SSSE3) +int8x16_t vrev64q_s8(int8x16_t vec); // VREV64.8 q0,q0 +_NEON2SSE_INLINE int8x16_t vrev64q_s8(int8x16_t vec) // VREV64.8 q0,q0 +{ + _NEON2SSE_ALIGN_16 int8_t mask_rev_e8[16] = {7,6,5,4,3,2,1,0, 15,14,13,12,11,10,9, 8}; + return _mm_shuffle_epi8 (vec, *(__m128i*) mask_rev_e8); +} +#endif + +#if defined(USE_SSSE3) +int16x8_t vrev64q_s16(int16x8_t vec); // VREV64.16 q0,q0 +_NEON2SSE_INLINE int16x8_t vrev64q_s16(int16x8_t vec) // VREV64.16 q0,q0 +{ //no _mm_shuffle_epi16, _mm_shuffle_epi8 to be used with the corresponding mask + _NEON2SSE_ALIGN_16 int8_t mask_rev_e16[16] = {6,7, 4,5,2,3,0,1,14,15,12,13,10,11,8,9}; + return _mm_shuffle_epi8 (vec, *(__m128i*)mask_rev_e16); +} +#endif + +int32x4_t vrev64q_s32(int32x4_t vec); // VREV64.32 q0,q0 +_NEON2SSE_INLINE int32x4_t vrev64q_s32(int32x4_t vec) // VREV64.32 q0,q0 +{ + return _mm_shuffle_epi32 (vec, 1 | (0 << 2) | (3 << 4) | (2 << 6) ); +} + +#if defined(USE_SSSE3) +uint8x16_t vrev64q_u8(uint8x16_t vec); // VREV64.8 q0,q0 +#define vrev64q_u8 vrev64q_s8 + +uint16x8_t vrev64q_u16(uint16x8_t vec); // VREV64.16 q0,q0 +#define vrev64q_u16 vrev64q_s16 +#endif + +uint32x4_t vrev64q_u32(uint32x4_t vec); // VREV64.32 q0,q0 +#define vrev64q_u32 vrev64q_s32 + +#if defined(USE_SSSE3) +poly8x16_t vrev64q_p8(poly8x16_t vec); // VREV64.8 q0,q0 +#define vrev64q_p8 vrev64q_u8 + +poly16x8_t vrev64q_p16(poly16x8_t vec); // VREV64.16 q0,q0 +#define vrev64q_p16 vrev64q_s16 +#endif + +float32x4_t vrev64q_f32(float32x4_t vec); // VREV64.32 q0,q0 +#define vrev64q_f32(vec) _mm_shuffle_ps (vec, vec, _MM_SHUFFLE(2,3, 0,1)) + +//******************** 32 bit shuffles ********************** +//************************************************************ + +#if defined(USE_SSSE3) +int8x16_t vrev32q_s8(int8x16_t vec); // VREV32.8 q0,q0 +_NEON2SSE_INLINE int8x16_t vrev32q_s8(int8x16_t vec) // VREV32.8 q0,q0 +{ + _NEON2SSE_ALIGN_16 int8_t mask_rev_e8[16] = {3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12}; + return _mm_shuffle_epi8 (vec, *(__m128i*) mask_rev_e8); +} +#endif + +#if defined(USE_SSSE3) +int16x8_t vrev32q_s16(int16x8_t vec); // VREV32.16 q0,q0 +_NEON2SSE_INLINE int16x8_t vrev32q_s16(int16x8_t vec) // VREV32.16 q0,q0 +{ + _NEON2SSE_ALIGN_16 int8_t mask_rev_e8[16] = {2,3,0,1, 6,7, 4,5, 10,11, 8,9, 14,15,12,13}; + return _mm_shuffle_epi8 (vec, *(__m128i*) mask_rev_e8); +} +#endif + +#if defined(USE_SSSE3) +uint8x16_t vrev32q_u8(uint8x16_t vec); // VREV32.8 q0,q0 +#define vrev32q_u8 vrev32q_s8 + +uint16x8_t vrev32q_u16(uint16x8_t vec); // VREV32.16 q0,q0 +#define vrev32q_u16 vrev32q_s16 + +poly8x16_t vrev32q_p8(poly8x16_t vec); // VREV32.8 q0,q0 +#define vrev32q_p8 vrev32q_u8 +#endif + +//************* 16 bit shuffles ********************** +//****************************************************** + +#if defined(USE_SSSE3) +int8x16_t vrev16q_s8(int8x16_t vec); // VREV16.8 q0,q0 +_NEON2SSE_INLINE int8x16_t vrev16q_s8(int8x16_t vec) // VREV16.8 q0,q0 +{ + _NEON2SSE_ALIGN_16 int8_t mask_rev8[16] = {1,0, 3,2, 5,4, 7,6, 9,8, 11, 10, 13, 12, 15, 14}; + return _mm_shuffle_epi8 (vec, *(__m128i*) mask_rev8); +} +#endif + +#if defined(USE_SSSE3) +uint8x16_t vrev16q_u8(uint8x16_t vec); // VREV16.8 q0,q0 +#define vrev16q_u8 vrev16q_s8 + +poly8x16_t vrev16q_p8(poly8x16_t vec); // VREV16.8 q0,q0 +#define vrev16q_p8 vrev16q_u8 +#endif + +//********************************************************************* +//**************** Other single operand arithmetic ******************* +//********************************************************************* + +//*********** Absolute: Vd[i] = |Va[i]| ********************************** +//************************************************************************ + +int8x16_t vabsq_s8(int8x16_t a); // VABS.S8 q0,q0 +#define vabsq_s8 _mm_abs_epi8 + +int16x8_t vabsq_s16(int16x8_t a); // VABS.S16 q0,q0 +#define vabsq_s16 _mm_abs_epi16 + +int32x4_t vabsq_s32(int32x4_t a); // VABS.S32 q0,q0 +#define vabsq_s32 _mm_abs_epi32 + +float32x4_t vabsq_f32(float32x4_t a); // VABS.F32 q0,q0 +_NEON2SSE_INLINE float32x4_t vabsq_f32(float32x4_t a) // VABS.F32 q0,q0 +{ + _NEON2SSE_ALIGN_16 int32_t c7fffffff[4] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff}; + return _mm_and_ps (a, *(__m128*)c7fffffff); +} + +//****** Saturating absolute: Vd[i] = sat(|Va[i]|) ********************* +//********************************************************************** +//For signed-integer data types, the absolute value of the most negative value is not representable by the data type, saturation takes place + +#if defined(USE_SSSE3) +int8x16_t vqabsq_s8(int8x16_t a); // VQABS.S8 q0,q0 +_NEON2SSE_INLINE int8x16_t vqabsq_s8(int8x16_t a) // VQABS.S8 q0,q0 +{ + __m128i c_128, abs, abs_cmp; + c_128 = _mm_set1_epi8 (0x80); //-128 + abs = _mm_abs_epi8 (a); + abs_cmp = _mm_cmpeq_epi8 (abs, c_128); + return _mm_xor_si128 (abs, abs_cmp); +} +#endif + +#if defined(USE_SSSE3) +int16x8_t vqabsq_s16(int16x8_t a); // VQABS.S16 q0,q0 +_NEON2SSE_INLINE int16x8_t vqabsq_s16(int16x8_t a) // VQABS.S16 q0,q0 +{ + __m128i c_32768, abs, abs_cmp; + c_32768 = _mm_set1_epi16 (0x8000); //-32768 + abs = _mm_abs_epi16 (a); + abs_cmp = _mm_cmpeq_epi16 (abs, c_32768); + return _mm_xor_si128 (abs, abs_cmp); +} +#endif + +#if defined(USE_SSSE3) +int32x4_t vqabsq_s32(int32x4_t a); // VQABS.S32 q0,q0 +_NEON2SSE_INLINE int32x4_t vqabsq_s32(int32x4_t a) // VQABS.S32 q0,q0 +{ + __m128i c80000000, abs, abs_cmp; + c80000000 = _mm_set1_epi32 (0x80000000); //most negative value + abs = _mm_abs_epi32 (a); + abs_cmp = _mm_cmpeq_epi32 (abs, c80000000); + return _mm_xor_si128 (abs, abs_cmp); +} +#endif + +//*************** Negate: Vd[i] = - Va[i] ************************************* +//***************************************************************************** +//several Negate implementations possible for SIMD. +//e.//function _mm_sign function(a, negative numbers vector), but the following one gives good performance: + +int8x16_t vnegq_s8(int8x16_t a); // VNE//q0,q0 +_NEON2SSE_INLINE int8x16_t vnegq_s8(int8x16_t a) // VNE//q0,q0 +{ + __m128i zero; + zero = _mm_setzero_si128 (); + return _mm_sub_epi8 (zero, a); +} //or _mm_sign_epi8 (a, negative numbers vector) + +int16x8_t vnegq_s16(int16x8_t a); // VNE//q0,q0 +_NEON2SSE_INLINE int16x8_t vnegq_s16(int16x8_t a) // VNE//q0,q0 +{ + __m128i zero; + zero = _mm_setzero_si128 (); + return _mm_sub_epi16 (zero, a); +} //or _mm_sign_epi16 (a, negative numbers vector) + +int32x4_t vnegq_s32(int32x4_t a); // VNE//q0,q0 +_NEON2SSE_INLINE int32x4_t vnegq_s32(int32x4_t a) // VNE//q0,q0 +{ + __m128i zero; + zero = _mm_setzero_si128 (); + return _mm_sub_epi32 (zero, a); +} //or _mm_sign_epi32 (a, negative numbers vector) + +float32x4_t vnegq_f32(float32x4_t a); // VNE//q0,q0 +_NEON2SSE_INLINE float32x4_t vnegq_f32(float32x4_t a) // VNE//q0,q0 +{ + _NEON2SSE_ALIGN_16 int32_t c80000000[4] = {0x80000000, 0x80000000, 0x80000000, 0x80000000}; + return _mm_xor_ps (a, *(__m128*) c80000000); +} + +//************** Saturating Negate: sat(Vd[i] = - Va[i]) ************************** +//*************************************************************************************** +//For signed-integer data types, the negation of the most negative value can't be produced without saturation, while with saturation it is max positive + +int8x16_t vqnegq_s8(int8x16_t a); // VQNE//q0,q0 +_NEON2SSE_INLINE int8x16_t vqnegq_s8(int8x16_t a) // VQNE//q0,q0 +{ + __m128i zero; + zero = _mm_setzero_si128 (); + return _mm_subs_epi8 (zero, a); //saturating substraction +} + +int16x8_t vqnegq_s16(int16x8_t a); // VQNE//q0,q0 +_NEON2SSE_INLINE int16x8_t vqnegq_s16(int16x8_t a) // VQNE//q0,q0 +{ + __m128i zero; + zero = _mm_setzero_si128 (); + return _mm_subs_epi16 (zero, a); //saturating substraction +} + +int32x4_t vqnegq_s32(int32x4_t a); // VQNE//q0,q0 +_NEON2SSE_INLINE int32x4_t vqnegq_s32(int32x4_t a) // VQNE//q0,q0 +{ //solution may be not optimal compared with a serial + __m128i c80000000, zero, sub, cmp; + c80000000 = _mm_set1_epi32 (0x80000000); //most negative value + zero = _mm_setzero_si128 (); + sub = _mm_sub_epi32 (zero, a); //substraction + cmp = _mm_cmpeq_epi32 (a, c80000000); + return _mm_xor_si128 (sub, cmp); +} + +//****************** Count leading zeros ******************************** +//************************************************************************** +//no corresponding vector intrinsics in IA32, need to implement it. While the implementation is effective for 8 bits, it may be not for 16 and 32 bits + +#if defined(USE_SSSE3) +int8x16_t vclzq_s8(int8x16_t a); // VCLZ.I8 q0,q0 +_NEON2SSE_INLINE int8x16_t vclzq_s8(int8x16_t a) +{ + _NEON2SSE_ALIGN_16 int8_t mask_CLZ[16] = { /* 0 */ 4,/* 1 */ 3,/* 2 */ 2,/* 3 */ 2, + /* 4 */ 1,/* 5 */ 1,/* 6 */ 1,/* 7 */ 1, + /* 8 */ 0,/* 9 */ 0,/* a */ 0,/* b */ 0, + /* c */ 0,/* d */ 0,/* e */ 0,/* f */ 0}; + __m128i maskLOW, c4, lowclz, mask, hiclz; + maskLOW = _mm_set1_epi8(0x0f); //low 4 bits, don't need masking low to avoid zero if MSB is set - it happens automatically + c4 = _mm_set1_epi8(4); + lowclz = _mm_shuffle_epi8( *(__m128i*)mask_CLZ, a); //uses low 4 bits anyway + mask = _mm_srli_epi16(a, 4); //get high 4 bits as low bits + mask = _mm_and_si128(mask, maskLOW); //low 4 bits, need masking to avoid zero if MSB is set + hiclz = _mm_shuffle_epi8( *(__m128i*) mask_CLZ, mask); //uses low 4 bits anyway + mask = _mm_cmpeq_epi8(hiclz, c4); // shows the need to add lowclz zeros + lowclz = _mm_and_si128(lowclz,mask); + return _mm_add_epi8(lowclz, hiclz); +} +#endif + +#if defined(USE_SSSE3) +int16x8_t vclzq_s16(int16x8_t a); // VCLZ.I16 q0,q0 +_NEON2SSE_INLINE int16x8_t vclzq_s16(int16x8_t a) +{ + __m128i c7, res8x16, res8x16_swap; + _NEON2SSE_ALIGN_16 int8_t mask8_sab[16] = { 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}; + _NEON2SSE_ALIGN_16 uint16_t mask8bit[8] = {0x00ff, 0x00ff, 0x00ff, 0x00ff,0x00ff, 0x00ff, 0x00ff, 0x00ff}; + c7 = _mm_srli_epi16(*(__m128i*)mask8bit, 5); //7 + res8x16 = vclzq_s8(a); + res8x16_swap = _mm_shuffle_epi8 (res8x16, *(__m128i*) mask8_sab); //horisontal pairs swap + res8x16 = _mm_and_si128(res8x16, *(__m128i*)mask8bit); //lowclz + res8x16_swap = _mm_and_si128(res8x16_swap, *(__m128i*)mask8bit); //hiclz + c7 = _mm_cmpgt_epi16(res8x16_swap, c7); // shows the need to add lowclz zeros + res8x16 = _mm_and_si128(res8x16, c7); //lowclz + return _mm_add_epi16(res8x16_swap, res8x16); +} +#endif + +int32x4_t vclzq_s32(int32x4_t a); // VCLZ.I32 q0,q0 +_NEON2SSE_INLINE int32x4_t vclzq_s32(int32x4_t a) +{ + __m128i c55555555, c33333333, c0f0f0f0f, c3f, c32, tmp, tmp1, res; + c55555555 = _mm_set1_epi32(0x55555555); + c33333333 = _mm_set1_epi32(0x33333333); + c0f0f0f0f = _mm_set1_epi32(0x0f0f0f0f); + c3f = _mm_set1_epi32(0x3f); + c32 = _mm_set1_epi32(32); + tmp = _mm_srli_epi32(a, 1); + res = _mm_or_si128(tmp, a); //atmp[i] |= (atmp[i] >> 1); + tmp = _mm_srli_epi32(res, 2); + res = _mm_or_si128(tmp, res); //atmp[i] |= (atmp[i] >> 2); + tmp = _mm_srli_epi32(res, 4); + res = _mm_or_si128(tmp, res); //atmp[i] |= (atmp[i] >> 4); + tmp = _mm_srli_epi32(res, 8); + res = _mm_or_si128(tmp, res); //atmp[i] |= (atmp[i] >> 8); + tmp = _mm_srli_epi32(res, 16); + res = _mm_or_si128(tmp, res); //atmp[i] |= (atmp[i] >> 16); + + tmp = _mm_srli_epi32(res, 1); + tmp = _mm_and_si128(tmp, c55555555); + res = _mm_sub_epi32(res, tmp); //atmp[i] -= ((atmp[i] >> 1) & 0x55555555); + + tmp = _mm_srli_epi32(res, 2); + tmp = _mm_and_si128(tmp, c33333333); + tmp1 = _mm_and_si128(res, c33333333); + res = _mm_add_epi32(tmp, tmp1); //atmp[i] = (((atmp[i] >> 2) & 0x33333333) + (atmp[i] & 0x33333333)); + + tmp = _mm_srli_epi32(res, 4); + tmp = _mm_add_epi32(tmp, res); + res = _mm_and_si128(tmp, c0f0f0f0f); //atmp[i] = (((atmp[i] >> 4) + atmp[i]) & 0x0f0f0f0f); + + tmp = _mm_srli_epi32(res, 8); + res = _mm_add_epi32(tmp, res); //atmp[i] += (atmp[i] >> 8); + + tmp = _mm_srli_epi32(res, 16); + res = _mm_add_epi32(tmp, res); //atmp[i] += (atmp[i] >> 16); + + res = _mm_and_si128(res, c3f); //atmp[i] = atmp[i] & 0x0000003f; + + return _mm_sub_epi32(c32, res); //res[i] = 32 - atmp[i]; +} + +#if defined(USE_SSSE3) +uint8x16_t vclzq_u8(uint8x16_t a); // VCLZ.I8 q0,q0 +#define vclzq_u8 vclzq_s8 + +uint16x8_t vclzq_u16(uint16x8_t a); // VCLZ.I16 q0,q0 +#define vclzq_u16 vclzq_s16 +#endif + +uint32x4_t vclzq_u32(uint32x4_t a); // VCLZ.I32 q0,q0 +#define vclzq_u32 vclzq_s32 + +//************** Count leading sign bits ************************** +//******************************************************************** +//VCLS (Vector Count Leading Sign bits) counts the number of consecutive bits following +// the topmost bit, that are the same as the topmost bit, in each element in a vector +//No corresponding vector intrinsics in IA32, need to implement it. +//While the implementation is effective for 8 bits, it may be not for 16 and 32 bits + +#if defined(USE_SSSE3) +int8x16_t vclsq_s8(int8x16_t a); // VCLS.S8 q0,q0 +_NEON2SSE_INLINE int8x16_t vclsq_s8(int8x16_t a) +{ + __m128i cff, c80, c1, a_mask, a_neg, a_pos, a_comb; + cff = _mm_cmpeq_epi8 (a,a); //0xff + c80 = _mm_set1_epi8(0x80); + c1 = _mm_set1_epi8(1); + a_mask = _mm_and_si128(a, c80); + a_mask = _mm_cmpeq_epi8(a_mask, c80); //0xff if negative input and 0 if positive + a_neg = _mm_xor_si128(a, cff); + a_neg = _mm_and_si128(a_mask, a_neg); + a_pos = _mm_andnot_si128(a_mask, a); + a_comb = _mm_or_si128(a_pos, a_neg); + a_comb = vclzq_s8(a_comb); + return _mm_sub_epi8(a_comb, c1); +} +#endif + +#if defined(USE_SSSE3) +int16x8_t vclsq_s16(int16x8_t a); // VCLS.S16 q0,q0 +_NEON2SSE_INLINE int16x8_t vclsq_s16(int16x8_t a) +{ + __m128i cffff, c8000, c1, a_mask, a_neg, a_pos, a_comb; + cffff = _mm_cmpeq_epi16(a,a); + c8000 = _mm_slli_epi16(cffff, 15); //0x8000 + c1 = _mm_srli_epi16(cffff,15); //0x1 + a_mask = _mm_and_si128(a, c8000); + a_mask = _mm_cmpeq_epi16(a_mask, c8000); //0xffff if negative input and 0 if positive + a_neg = _mm_xor_si128(a, cffff); + a_neg = _mm_and_si128(a_mask, a_neg); + a_pos = _mm_andnot_si128(a_mask, a); + a_comb = _mm_or_si128(a_pos, a_neg); + a_comb = vclzq_s16(a_comb); + return _mm_sub_epi16(a_comb, c1); +} +#endif + +int32x4_t vclsq_s32(int32x4_t a); // VCLS.S32 q0,q0 +_NEON2SSE_INLINE int32x4_t vclsq_s32(int32x4_t a) +{ + __m128i cffffffff, c80000000, c1, a_mask, a_neg, a_pos, a_comb; + cffffffff = _mm_cmpeq_epi32(a,a); + c80000000 = _mm_slli_epi32(cffffffff, 31); //0x80000000 + c1 = _mm_srli_epi32(cffffffff,31); //0x1 + a_mask = _mm_and_si128(a, c80000000); + a_mask = _mm_cmpeq_epi32(a_mask, c80000000); //0xffffffff if negative input and 0 if positive + a_neg = _mm_xor_si128(a, cffffffff); + a_neg = _mm_and_si128(a_mask, a_neg); + a_pos = _mm_andnot_si128(a_mask, a); + a_comb = _mm_or_si128(a_pos, a_neg); + a_comb = vclzq_s32(a_comb); + return _mm_sub_epi32(a_comb, c1); +} + +//************************* Count number of set bits ******************************** +//************************************************************************************* +//No corresponding SIMD solution. One option is to get a elements, convert it to 32 bits and then use SSE4.2 _mm_popcnt__u32 (unsigned int v) for each element +//another option is to do the following algorithm: + +#if defined(USE_SSSE3) +uint8x16_t vcntq_u8(uint8x16_t a); // VCNT.8 q0,q0 +_NEON2SSE_INLINE uint8x16_t vcntq_u8(uint8x16_t a) +{ + _NEON2SSE_ALIGN_16 int8_t mask_POPCOUNT[16] = { /* 0 */ 0,/* 1 */ 1,/* 2 */ 1,/* 3 */ 2, + /* 4 */ 1,/* 5 */ 2,/* 6 */ 2,/* 7 */ 3, + /* 8 */ 1,/* 9 */ 2,/* a */ 2,/* b */ 3, + /* c */ 2,/* d */ 3,/* e */ 3,/* f */ 4}; + __m128i maskLOW, mask, lowpopcnt, hipopcnt; + maskLOW = _mm_set1_epi8(0x0f); //low 4 bits, need masking to avoid zero if MSB is set + mask = _mm_and_si128(a, maskLOW); + lowpopcnt = _mm_shuffle_epi8( *(__m128i*)mask_POPCOUNT, mask); //uses low 4 bits anyway + mask = _mm_srli_epi16(a, 4); //get high 4 bits as low bits + mask = _mm_and_si128(mask, maskLOW); //low 4 bits, need masking to avoid zero if MSB is set + hipopcnt = _mm_shuffle_epi8( *(__m128i*) mask_POPCOUNT, mask); //uses low 4 bits anyway + return _mm_add_epi8(lowpopcnt, hipopcnt); +} +#endif + +#if defined(USE_SSSE3) +int8x16_t vcntq_s8(int8x16_t a); // VCNT.8 q0,q0 +#define vcntq_s8 vcntq_u8 + +poly8x16_t vcntq_p8(poly8x16_t a); // VCNT.8 q0,q0 +#define vcntq_p8 vcntq_u8 +#endif + +//************************************************************************************** +//*********************** Logical operations **************************************** +//************************************************************************************** +//************************** Bitwise not *********************************** +//several Bitwise not implementations possible for SIMD. Eg "xor" with all ones, but the following one gives good performance + +int8x16_t vmvnq_s8(int8x16_t a); // VMVN q0,q0 +_NEON2SSE_INLINE int8x16_t vmvnq_s8(int8x16_t a) // VMVN q0,q0 +{ + __m128i c1; + c1 = _mm_cmpeq_epi8 (a,a); //0xff + return _mm_andnot_si128 (a, c1); +} + +int16x8_t vmvnq_s16(int16x8_t a); // VMVN q0,q0 +_NEON2SSE_INLINE int16x8_t vmvnq_s16(int16x8_t a) // VMVN q0,q0 +{ + __m128i c1; + c1 = _mm_cmpeq_epi16 (a,a); //0xffff + return _mm_andnot_si128 (a, c1); +} + +int32x4_t vmvnq_s32(int32x4_t a); // VMVN q0,q0 +_NEON2SSE_INLINE int32x4_t vmvnq_s32(int32x4_t a) // VMVN q0,q0 +{ + __m128i c1; + c1 = _mm_cmpeq_epi32 (a,a); //0xffffffff + return _mm_andnot_si128 (a, c1); +} + +uint8x16_t vmvnq_u8(uint8x16_t a); // VMVN q0,q0 +#define vmvnq_u8 vmvnq_s8 + +uint16x8_t vmvnq_u16(uint16x8_t a); // VMVN q0,q0 +#define vmvnq_u16 vmvnq_s16 + +uint32x4_t vmvnq_u32(uint32x4_t a); // VMVN q0,q0 +#define vmvnq_u32 vmvnq_s32 + +poly8x16_t vmvnq_p8(poly8x16_t a); // VMVN q0,q0 +#define vmvnq_p8 vmvnq_u8 + +//****************** Bitwise and *********************** +//****************************************************** + +int8x16_t vandq_s8(int8x16_t a, int8x16_t b); // VAND q0,q0,q0 +#define vandq_s8 _mm_and_si128 + +int16x8_t vandq_s16(int16x8_t a, int16x8_t b); // VAND q0,q0,q0 +#define vandq_s16 _mm_and_si128 + +int32x4_t vandq_s32(int32x4_t a, int32x4_t b); // VAND q0,q0,q0 +#define vandq_s32 _mm_and_si128 + +int64x2_t vandq_s64(int64x2_t a, int64x2_t b); // VAND q0,q0,q0 +#define vandq_s64 _mm_and_si128 + +uint8x16_t vandq_u8(uint8x16_t a, uint8x16_t b); // VAND q0,q0,q0 +#define vandq_u8 _mm_and_si128 + +uint16x8_t vandq_u16(uint16x8_t a, uint16x8_t b); // VAND q0,q0,q0 +#define vandq_u16 _mm_and_si128 + +uint32x4_t vandq_u32(uint32x4_t a, uint32x4_t b); // VAND q0,q0,q0 +#define vandq_u32 _mm_and_si128 + +uint64x2_t vandq_u64(uint64x2_t a, uint64x2_t b); // VAND q0,q0,q0 +#define vandq_u64 _mm_and_si128 + +//******************** Bitwise or ********************************* +//****************************************************************** + +int8x16_t vorrq_s8(int8x16_t a, int8x16_t b); // VORR q0,q0,q0 +#define vorrq_s8 _mm_or_si128 + +int16x8_t vorrq_s16(int16x8_t a, int16x8_t b); // VORR q0,q0,q0 +#define vorrq_s16 _mm_or_si128 + +int32x4_t vorrq_s32(int32x4_t a, int32x4_t b); // VORR q0,q0,q0 +#define vorrq_s32 _mm_or_si128 + +int64x2_t vorrq_s64(int64x2_t a, int64x2_t b); // VORR q0,q0,q0 +#define vorrq_s64 _mm_or_si128 + +uint8x16_t vorrq_u8(uint8x16_t a, uint8x16_t b); // VORR q0,q0,q0 +#define vorrq_u8 _mm_or_si128 + +uint16x8_t vorrq_u16(uint16x8_t a, uint16x8_t b); // VORR q0,q0,q0 +#define vorrq_u16 _mm_or_si128 + +uint32x4_t vorrq_u32(uint32x4_t a, uint32x4_t b); // VORR q0,q0,q0 +#define vorrq_u32 _mm_or_si128 + +uint64x2_t vorrq_u64(uint64x2_t a, uint64x2_t b); // VORR q0,q0,q0 +#define vorrq_u64 _mm_or_si128 + +//************* Bitwise exclusive or (EOR or XOR) ****************** +//******************************************************************* + +int8x16_t veorq_s8(int8x16_t a, int8x16_t b); // VEOR q0,q0,q0 +#define veorq_s8 _mm_xor_si128 + +int16x8_t veorq_s16(int16x8_t a, int16x8_t b); // VEOR q0,q0,q0 +#define veorq_s16 _mm_xor_si128 + +int32x4_t veorq_s32(int32x4_t a, int32x4_t b); // VEOR q0,q0,q0 +#define veorq_s32 _mm_xor_si128 + +int64x2_t veorq_s64(int64x2_t a, int64x2_t b); // VEOR q0,q0,q0 +#define veorq_s64 _mm_xor_si128 + +uint8x16_t veorq_u8(uint8x16_t a, uint8x16_t b); // VEOR q0,q0,q0 +#define veorq_u8 _mm_xor_si128 + +uint16x8_t veorq_u16(uint16x8_t a, uint16x8_t b); // VEOR q0,q0,q0 +#define veorq_u16 _mm_xor_si128 + +uint32x4_t veorq_u32(uint32x4_t a, uint32x4_t b); // VEOR q0,q0,q0 +#define veorq_u32 _mm_xor_si128 + +uint64x2_t veorq_u64(uint64x2_t a, uint64x2_t b); // VEOR q0,q0,q0 +#define veorq_u64 _mm_xor_si128 + +//********************** Bit Clear ********************************** +//******************************************************************* +//Logical AND complement (AND negation or AND NOT) + +//notice arguments "swap" + +//notice arguments "swap" + +//notice arguments "swap" + +//notice arguments "swap" + +//notice arguments "swap" + +//notice arguments "swap" + +//notice arguments "swap" + +//notice arguments "swap" + +int8x16_t vbicq_s8(int8x16_t a, int8x16_t b); // VBIC q0,q0,q0 +#define vbicq_s8(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap" + +int16x8_t vbicq_s16(int16x8_t a, int16x8_t b); // VBIC q0,q0,q0 +#define vbicq_s16(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap" + +int32x4_t vbicq_s32(int32x4_t a, int32x4_t b); // VBIC q0,q0,q0 +#define vbicq_s32(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap" + +int64x2_t vbicq_s64(int64x2_t a, int64x2_t b); // VBIC q0,q0,q0 +#define vbicq_s64(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap" + +uint8x16_t vbicq_u8(uint8x16_t a, uint8x16_t b); // VBIC q0,q0,q0 +#define vbicq_u8(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap" + +uint16x8_t vbicq_u16(uint16x8_t a, uint16x8_t b); // VBIC q0,q0,q0 +#define vbicq_u16(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap" + +uint32x4_t vbicq_u32(uint32x4_t a, uint32x4_t b); // VBIC q0,q0,q0 +#define vbicq_u32(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap" + +uint64x2_t vbicq_u64(uint64x2_t a, uint64x2_t b); // VBIC q0,q0,q0 +#define vbicq_u64(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap" + +//**************** Bitwise OR complement ******************************** +//**************************************** ******************************** +//no exact IA 32 match, need to implement it as following + +int8x16_t vornq_s8(int8x16_t a, int8x16_t b); // VORN q0,q0,q0 +_NEON2SSE_INLINE int8x16_t vornq_s8(int8x16_t a, int8x16_t b) // VORN q0,q0,q0 +{ + __m128i b1; + b1 = vmvnq_s8( b); //bitwise not for b + return _mm_or_si128 (a, b1); +} + +int16x8_t vornq_s16(int16x8_t a, int16x8_t b); // VORN q0,q0,q0 +_NEON2SSE_INLINE int16x8_t vornq_s16(int16x8_t a, int16x8_t b) // VORN q0,q0,q0 +{ + __m128i b1; + b1 = vmvnq_s16( b); //bitwise not for b + return _mm_or_si128 (a, b1); +} + +int32x4_t vornq_s32(int32x4_t a, int32x4_t b); // VORN q0,q0,q0 +_NEON2SSE_INLINE int32x4_t vornq_s32(int32x4_t a, int32x4_t b) // VORN q0,q0,q0 +{ + __m128i b1; + b1 = vmvnq_s32( b); //bitwise not for b + return _mm_or_si128 (a, b1); +} + +int64x2_t vornq_s64(int64x2_t a, int64x2_t b); // VORN q0,q0,q0 +_NEON2SSE_INLINE int64x2_t vornq_s64(int64x2_t a, int64x2_t b) +{ + __m128i c1, b1; + c1 = _mm_cmpeq_epi8 (a, a); //all ones 0xfffffff...fffff + b1 = _mm_andnot_si128 (b, c1); + return _mm_or_si128 (a, b1); +} + +uint8x16_t vornq_u8(uint8x16_t a, uint8x16_t b); // VORN q0,q0,q0 +_NEON2SSE_INLINE uint8x16_t vornq_u8(uint8x16_t a, uint8x16_t b) // VORN q0,q0,q0 +{ + __m128i b1; + b1 = vmvnq_u8( b); //bitwise not for b + return _mm_or_si128 (a, b1); +} + +uint16x8_t vornq_u16(uint16x8_t a, uint16x8_t b); // VORN q0,q0,q0 +_NEON2SSE_INLINE uint16x8_t vornq_u16(uint16x8_t a, uint16x8_t b) // VORN q0,q0,q0 +{ + __m128i b1; + b1 = vmvnq_s16( b); //bitwise not for b + return _mm_or_si128 (a, b1); +} + +uint32x4_t vornq_u32(uint32x4_t a, uint32x4_t b); // VORN q0,q0,q0 +_NEON2SSE_INLINE uint32x4_t vornq_u32(uint32x4_t a, uint32x4_t b) // VORN q0,q0,q0 +{ + __m128i b1; + b1 = vmvnq_u32( b); //bitwise not for b + return _mm_or_si128 (a, b1); +} +uint64x2_t vornq_u64(uint64x2_t a, uint64x2_t b); // VORN q0,q0,q0 +#define vornq_u64 vornq_s64 + +//********************* Bitwise Select ***************************** +//****************************************************************** +//Note This intrinsic can compile to any of VBSL/VBIF/VBIT depending on register allocation.(?????????) + +//VBSL (Bitwise Select) selects each bit for the destination from the first operand if the +//corresponding bit of the destination is 1, or from the second operand if the corresponding bit of the destination is 0. + +//VBIF (Bitwise Insert if False) inserts each bit from the first operand into the destination +//if the corresponding bit of the second operand is 0, otherwise leaves the destination bit unchanged + +//VBIT (Bitwise Insert if True) inserts each bit from the first operand into the destination +//if the corresponding bit of the second operand is 1, otherwise leaves the destination bit unchanged. + +//VBSL only is implemented for SIMD + +int8x16_t vbslq_s8(uint8x16_t a, int8x16_t b, int8x16_t c); // VBSL q0,q0,q0 +_NEON2SSE_INLINE int8x16_t vbslq_s8(uint8x16_t a, int8x16_t b, int8x16_t c) // VBSL q0,q0,q0 +{ + __m128i sel1, sel2; + sel1 = _mm_and_si128 (a, b); + sel2 = _mm_andnot_si128 (a, c); + return _mm_or_si128 (sel1, sel2); +} + +int16x8_t vbslq_s16(uint16x8_t a, int16x8_t b, int16x8_t c); // VBSL q0,q0,q0 +#define vbslq_s16 vbslq_s8 + +int32x4_t vbslq_s32(uint32x4_t a, int32x4_t b, int32x4_t c); // VBSL q0,q0,q0 +#define vbslq_s32 vbslq_s8 + +int64x2_t vbslq_s64(uint64x2_t a, int64x2_t b, int64x2_t c); // VBSL q0,q0,q0 +#define vbslq_s64 vbslq_s8 + +uint8x16_t vbslq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VBSL q0,q0,q0 +#define vbslq_u8 vbslq_s8 + +uint16x8_t vbslq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VBSL q0,q0,q0 +#define vbslq_u16 vbslq_s8 + +uint32x4_t vbslq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VBSL q0,q0,q0 +#define vbslq_u32 vbslq_s8 + +uint64x2_t vbslq_u64(uint64x2_t a, uint64x2_t b, uint64x2_t c); // VBSL q0,q0,q0 +#define vbslq_u64 vbslq_s8 + +float32x4_t vbslq_f32(uint32x4_t a, float32x4_t b, float32x4_t c); // VBSL q0,q0,q0 +_NEON2SSE_INLINE float32x4_t vbslq_f32(uint32x4_t a, float32x4_t b, float32x4_t c) // VBSL q0,q0,q0 +{ + __m128 sel1, sel2; + sel1 = _mm_and_ps (*(__m128*)&a, b); + sel2 = _mm_andnot_ps (*(__m128*)&a, c); + return _mm_or_ps (sel1, sel2); +} + +poly8x16_t vbslq_p8(uint8x16_t a, poly8x16_t b, poly8x16_t c); // VBSL q0,q0,q0 +#define vbslq_p8 vbslq_u8 + +poly16x8_t vbslq_p16(uint16x8_t a, poly16x8_t b, poly16x8_t c); // VBSL q0,q0,q0 +#define vbslq_p16 vbslq_s8 + +//************************************************************************************ +//**************** Transposition operations **************************************** +//************************************************************************************ +//***************** Vector Transpose ************************************************ +//************************************************************************************ +//VTRN (Vector Transpose) treats the elements of its operand vectors as elements of 2 x 2 matrices, and transposes the matrices. +// making the result look as (a0, b0, a2, b2, a4, b4,....) (a1, b1, a3, b3, a5, b5,.....) + +#if defined(USE_SSSE3) +//int8x16x2_t vtrnq_s8(int8x16_t a, int8x16_t b); // VTRN.8 q0,q0 +_NEON2SSE_INLINE int8x16x2_t vtrnq_s8(int8x16_t a, int8x16_t b) // VTRN.8 q0,q0 +{ + int8x16x2_t r8x16; + __m128i a_sh, b_sh; + _NEON2SSE_ALIGN_16 int8_t mask8_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3,5, 7, 9, 11, 13, 15}; + a_sh = _mm_shuffle_epi8 (a, *(__m128i*)mask8_even_odd); //a0, a2, a4, a6, a8, a10, a12, a14, a1, a3, a5, a7, a9, a11, a13, a15 + b_sh = _mm_shuffle_epi8 (b, *(__m128i*)mask8_even_odd); //b0, b2, b4, b6, b8, b10, b12, b14, b1, b3, b5, b7, b9, b11, b13, b15 + + r8x16.val[0] = _mm_unpacklo_epi8(a_sh, b_sh); //(a0, b0, a2, b2, a4, b4, a6, b6, a8,b8, a10,b10, a12,b12, a14,b14) + r8x16.val[1] = _mm_unpackhi_epi8(a_sh, b_sh); // (a1, b1, a3, b3, a5, b5, a7, b7, a9,b9, a11,b11, a13,b13, a15,b15) + return r8x16; +} +#endif + +#if defined(USE_SSSE3) +int16x8x2_t vtrnq_s16(int16x8_t a, int16x8_t b); // VTRN.16 q0,q0 +_NEON2SSE_INLINE int16x8x2_t vtrnq_s16(int16x8_t a, int16x8_t b) // VTRN.16 q0,q0 +{ + int16x8x2_t v16x8; + __m128i a_sh, b_sh; + _NEON2SSE_ALIGN_16 int8_t mask16_even_odd[16] = { 0,1, 4,5, 8,9, 12,13, 2,3, 6,7, 10,11, 14,15}; + a_sh = _mm_shuffle_epi8 (a, *(__m128i*)mask16_even_odd); //a0, a2, a4, a6, a1, a3, a5, a7 + b_sh = _mm_shuffle_epi8 (b, *(__m128i*)mask16_even_odd); //b0, b2, b4, b6, b1, b3, b5, b7 + v16x8.val[0] = _mm_unpacklo_epi16(a_sh, b_sh); //a0, b0, a2, b2, a4, b4, a6, b6 + v16x8.val[1] = _mm_unpackhi_epi16(a_sh, b_sh); //a1, b1, a3, b3, a5, b5, a7, b7 + return v16x8; +} +#endif + +int32x4x2_t vtrnq_s32(int32x4_t a, int32x4_t b); // VTRN.32 q0,q0 +_NEON2SSE_INLINE int32x4x2_t vtrnq_s32(int32x4_t a, int32x4_t b) // VTRN.32 q0,q0 +{ //may be not optimal solution compared with serial + int32x4x2_t v32x4; + __m128i a_sh, b_sh; + a_sh = _mm_shuffle_epi32 (a, 216); //a0, a2, a1, a3 + b_sh = _mm_shuffle_epi32 (b, 216); //b0, b2, b1, b3 + + v32x4.val[0] = _mm_unpacklo_epi32(a_sh, b_sh); //a0, b0, a2, b2 + v32x4.val[1] = _mm_unpackhi_epi32(a_sh, b_sh); //a1, b1, a3, b3 + return v32x4; +} + +#if defined(USE_SSSE3) +uint8x16x2_t vtrnq_u8(uint8x16_t a, uint8x16_t b); // VTRN.8 q0,q0 +#define vtrnq_u8 vtrnq_s8 + +uint16x8x2_t vtrnq_u16(uint16x8_t a, uint16x8_t b); // VTRN.16 q0,q0 +#define vtrnq_u16 vtrnq_s16 +#endif + +uint32x4x2_t vtrnq_u32(uint32x4_t a, uint32x4_t b); // VTRN.32 q0,q0 +#define vtrnq_u32 vtrnq_s32 + +float32x4x2_t vtrnq_f32(float32x4_t a, float32x4_t b); // VTRN.32 q0,q0 +_NEON2SSE_INLINE float32x4x2_t vtrnq_f32(float32x4_t a, float32x4_t b) // VTRN.32 q0,q0 +{ //may be not optimal solution compared with serial + float32x4x2_t f32x4; + __m128 a_sh, b_sh; + a_sh = _mm_shuffle_ps (a, a, _MM_SHUFFLE(3,1, 2, 0)); //a0, a2, a1, a3, need to check endiness + b_sh = _mm_shuffle_ps (b, b, _MM_SHUFFLE(3,1, 2, 0)); //b0, b2, b1, b3, need to check endiness + + f32x4.val[0] = _mm_unpacklo_ps(a_sh, b_sh); //a0, b0, a2, b2 + f32x4.val[1] = _mm_unpackhi_ps(a_sh, b_sh); //a1, b1, a3, b3 + return f32x4; +} + +#if defined(USE_SSSE3) +poly8x16x2_t vtrnq_p8(poly8x16_t a, poly8x16_t b); // VTRN.8 q0,q0 +#define vtrnq_p8 vtrnq_s8 + +poly16x8x2_t vtrnq_p16(poly16x8_t a, poly16x8_t b); // VTRN.16 q0,q0 +#define vtrnq_p16 vtrnq_s16 +#endif + +//***************** Interleave elements *************************** +//***************************************************************** +//output has (a0,b0,a1,b1, a2,b2,.....) + +int8x16x2_t vzipq_s8(int8x16_t a, int8x16_t b); // VZIP.8 q0,q0 +_NEON2SSE_INLINE int8x16x2_t vzipq_s8(int8x16_t a, int8x16_t b) // VZIP.8 q0,q0 +{ + int8x16x2_t r8x16; + r8x16.val[0] = _mm_unpacklo_epi8(a, b); + r8x16.val[1] = _mm_unpackhi_epi8(a, b); + return r8x16; +} + +int16x8x2_t vzipq_s16(int16x8_t a, int16x8_t b); // VZIP.16 q0,q0 +_NEON2SSE_INLINE int16x8x2_t vzipq_s16(int16x8_t a, int16x8_t b) // VZIP.16 q0,q0 +{ + int16x8x2_t r16x8; + r16x8.val[0] = _mm_unpacklo_epi16(a, b); + r16x8.val[1] = _mm_unpackhi_epi16(a, b); + return r16x8; +} + +int32x4x2_t vzipq_s32(int32x4_t a, int32x4_t b); // VZIP.32 q0,q0 +_NEON2SSE_INLINE int32x4x2_t vzipq_s32(int32x4_t a, int32x4_t b) // VZIP.32 q0,q0 +{ + int32x4x2_t r32x4; + r32x4.val[0] = _mm_unpacklo_epi32(a, b); + r32x4.val[1] = _mm_unpackhi_epi32(a, b); + return r32x4; +} + +uint8x16x2_t vzipq_u8(uint8x16_t a, uint8x16_t b); // VZIP.8 q0,q0 +#define vzipq_u8 vzipq_s8 + +uint16x8x2_t vzipq_u16(uint16x8_t a, uint16x8_t b); // VZIP.16 q0,q0 +#define vzipq_u16 vzipq_s16 + +uint32x4x2_t vzipq_u32(uint32x4_t a, uint32x4_t b); // VZIP.32 q0,q0 +#define vzipq_u32 vzipq_s32 + +float32x4x2_t vzipq_f32(float32x4_t a, float32x4_t b); // VZIP.32 q0,q0 +_NEON2SSE_INLINE float32x4x2_t vzipq_f32(float32x4_t a, float32x4_t b) // VZIP.32 q0,q0 +{ + float32x4x2_t f32x4; + f32x4.val[0] = _mm_unpacklo_ps ( a, b); + f32x4.val[1] = _mm_unpackhi_ps ( a, b); + return f32x4; +} + +poly8x16x2_t vzipq_p8(poly8x16_t a, poly8x16_t b); // VZIP.8 q0,q0 +#define vzipq_p8 vzipq_u8 + +poly16x8x2_t vzipq_p16(poly16x8_t a, poly16x8_t b); // VZIP.16 q0,q0 +#define vzipq_p16 vzipq_u16 + +//*********************** De-Interleave elements ************************* +//************************************************************************* +//As the result of these functions first val contains (a0,a2,a4,....,b0,b2, b4,...) and the second val (a1,a3,a5,....b1,b3,b5...) +//no such functions in IA32 SIMD, shuffle is required + +#if defined(USE_SSSE3) +int8x16x2_t vuzpq_s8(int8x16_t a, int8x16_t b); // VUZP.8 q0,q0 +_NEON2SSE_INLINE int8x16x2_t vuzpq_s8(int8x16_t a, int8x16_t b) // VUZP.8 q0,q0 +{ + int8x16x2_t v8x16; + __m128i a_sh, b_sh; + _NEON2SSE_ALIGN_16 int8_t mask8_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3,5, 7, 9, 11, 13, 15}; + a_sh = _mm_shuffle_epi8 (a, *(__m128i*)mask8_even_odd); //a0, a2, a4, a6, a8, a10, a12, a14, a1, a3, a5, a7, a9, a11, a13, a15 + b_sh = _mm_shuffle_epi8 (b, *(__m128i*)mask8_even_odd); //b0, b2, b4, b6, b8, b10, b12, b14, b1, b3, b5, b7, b9, b11, b13, b15 + //we need unpack64 to combine lower (upper) 64 bits from a with lower (upper) 64 bits from b + v8x16.val[0] = _mm_unpacklo_epi64(a_sh, b_sh); ///a0, a2, a4, a6, a8, a10, a12, a14, b0, b2, b4, b6, b8, b10, b12, b14, + v8x16.val[1] = _mm_unpackhi_epi64(a_sh, b_sh); //a1, a3, a5, a7, a9, a11, a13, a15, b1, b3, b5, b7, b9, b11, b13, b15 + return v8x16; +} +#endif + +#if defined(USE_SSSE3) +int16x8x2_t vuzpq_s16(int16x8_t a, int16x8_t b); // VUZP.16 q0,q0 +_NEON2SSE_INLINE int16x8x2_t vuzpq_s16(int16x8_t a, int16x8_t b) // VUZP.16 q0,q0 +{ + int16x8x2_t v16x8; + __m128i a_sh, b_sh; + _NEON2SSE_ALIGN_16 int8_t mask16_even_odd[16] = { 0,1, 4,5, 8,9, 12,13, 2,3, 6,7, 10,11, 14,15}; + a_sh = _mm_shuffle_epi8 (a, *(__m128i*)mask16_even_odd); //a0, a2, a4, a6, a1, a3, a5, a7 + b_sh = _mm_shuffle_epi8 (b, *(__m128i*)mask16_even_odd); //b0, b2, b4, b6, b1, b3, b5, b7 + v16x8.val[0] = _mm_unpacklo_epi64(a_sh, b_sh); //a0, a2, a4, a6, b0, b2, b4, b6 + v16x8.val[1] = _mm_unpackhi_epi64(a_sh, b_sh); //a1, a3, a5, a7, b1, b3, b5, b7 + return v16x8; +} +#endif + +int32x4x2_t vuzpq_s32(int32x4_t a, int32x4_t b); // VUZP.32 q0,q0 +_NEON2SSE_INLINE int32x4x2_t vuzpq_s32(int32x4_t a, int32x4_t b) // VUZP.32 q0,q0 +{ //may be not optimal solution compared with serial + int32x4x2_t v32x4; + __m128i a_sh, b_sh; + a_sh = _mm_shuffle_epi32 (a, 216); //a0, a2, a1, a3 + b_sh = _mm_shuffle_epi32 (b, 216); //b0, b2, b1, b3 + + v32x4.val[0] = _mm_unpacklo_epi64(a_sh, b_sh); //a0, a2, b0, b2 + v32x4.val[1] = _mm_unpackhi_epi64(a_sh, b_sh); //a1, a3, b1, b3 + return v32x4; +} + +#if defined(USE_SSSE3) +uint8x16x2_t vuzpq_u8(uint8x16_t a, uint8x16_t b); // VUZP.8 q0,q0 +#define vuzpq_u8 vuzpq_s8 + +uint16x8x2_t vuzpq_u16(uint16x8_t a, uint16x8_t b); // VUZP.16 q0,q0 +#define vuzpq_u16 vuzpq_s16 +#endif + +uint32x4x2_t vuzpq_u32(uint32x4_t a, uint32x4_t b); // VUZP.32 q0,q0 +#define vuzpq_u32 vuzpq_s32 + +float32x4x2_t vuzpq_f32(float32x4_t a, float32x4_t b); // VUZP.32 q0,q0 +_NEON2SSE_INLINE float32x4x2_t vuzpq_f32(float32x4_t a, float32x4_t b) // VUZP.32 q0,q0 +{ + float32x4x2_t v32x4; + v32x4.val[0] = _mm_shuffle_ps(a, b, _MM_SHUFFLE(2,0, 2, 0)); //a0, a2, b0, b2 , need to check endianess however + v32x4.val[1] = _mm_shuffle_ps(a, b, _MM_SHUFFLE(3,1, 3, 1)); //a1, a3, b1, b3, need to check endianess however + return v32x4; +} + +#if defined(USE_SSSE3) +poly8x16x2_t vuzpq_p8(poly8x16_t a, poly8x16_t b); // VUZP.8 q0,q0 +#define vuzpq_p8 vuzpq_u8 + +poly16x8x2_t vuzpq_p16(poly16x8_t a, poly16x8_t b); // VUZP.16 q0,q0 +#define vuzpq_p16 vuzpq_u16 +#endif + +//############################################################################################## +//*********************** Reinterpret cast intrinsics.****************************************** +//############################################################################################## +// Not a part of oficial NEON instruction set but available in gcc compiler ********************* + +poly8x16_t vreinterpretq_p8_u32 (uint32x4_t t); +#define vreinterpretq_p8_u32 + +poly8x16_t vreinterpretq_p8_u16 (uint16x8_t t); +#define vreinterpretq_p8_u16 + +poly8x16_t vreinterpretq_p8_u8 (uint8x16_t t); +#define vreinterpretq_p8_u8 + +poly8x16_t vreinterpretq_p8_s32 (int32x4_t t); +#define vreinterpretq_p8_s32 + +poly8x16_t vreinterpretq_p8_s16 (int16x8_t t); +#define vreinterpretq_p8_s16 + +poly8x16_t vreinterpretq_p8_s8 (int8x16_t t); +#define vreinterpretq_p8_s8 + +poly8x16_t vreinterpretq_p8_u64 (uint64x2_t t); +#define vreinterpretq_p8_u64 + +poly8x16_t vreinterpretq_p8_s64 (int64x2_t t); +#define vreinterpretq_p8_s64 + +poly8x16_t vreinterpretq_p8_f32 (float32x4_t t); +#define vreinterpretq_p8_f32(t) _M128i(t) + +poly8x16_t vreinterpretq_p8_p16 (poly16x8_t t); +#define vreinterpretq_p8_p16 + +poly16x8_t vreinterpretq_p16_u32 (uint32x4_t t); +#define vreinterpretq_p16_u32 + +poly16x8_t vreinterpretq_p16_u16 (uint16x8_t t); +#define vreinterpretq_p16_u16 + +poly16x8_t vreinterpretq_p16_s32 (int32x4_t t); +#define vreinterpretq_p16_s32 + +poly16x8_t vreinterpretq_p16_s16 (int16x8_t t); +#define vreinterpretq_p16_s16 + +poly16x8_t vreinterpretq_p16_s8 (int8x16_t t); +#define vreinterpretq_p16_s8 + +poly16x8_t vreinterpretq_p16_u64 (uint64x2_t t); +#define vreinterpretq_p16_u64 + +poly16x8_t vreinterpretq_p16_s64 (int64x2_t t); +#define vreinterpretq_p16_s64 + +poly16x8_t vreinterpretq_p16_f32 (float32x4_t t); +#define vreinterpretq_p16_f32(t) _M128i(t) + +poly16x8_t vreinterpretq_p16_p8 (poly8x16_t t); +#define vreinterpretq_p16_p8 vreinterpretq_s16_p8 + +//**** Integer to float ****** + +float32x4_t vreinterpretq_f32_u32 (uint32x4_t t); +#define vreinterpretq_f32_u32(t) *(__m128*)&(t) + +float32x4_t vreinterpretq_f32_u16 (uint16x8_t t); +#define vreinterpretq_f32_u16 vreinterpretq_f32_u32 + +float32x4_t vreinterpretq_f32_u8 (uint8x16_t t); +#define vreinterpretq_f32_u8 vreinterpretq_f32_u32 + +float32x4_t vreinterpretq_f32_s32 (int32x4_t t); +#define vreinterpretq_f32_s32 vreinterpretq_f32_u32 + +float32x4_t vreinterpretq_f32_s16 (int16x8_t t); +#define vreinterpretq_f32_s16 vreinterpretq_f32_u32 + +float32x4_t vreinterpretq_f32_s8 (int8x16_t t); +#define vreinterpretq_f32_s8 vreinterpretq_f32_u32 + +float32x4_t vreinterpretq_f32_u64 (uint64x2_t t); +#define vreinterpretq_f32_u64 vreinterpretq_f32_u32 + +float32x4_t vreinterpretq_f32_s64 (int64x2_t t); +#define vreinterpretq_f32_s64 vreinterpretq_f32_u32 + +float32x4_t vreinterpretq_f32_p16 (poly16x8_t t); +#define vreinterpretq_f32_p16 vreinterpretq_f32_u32 + +float32x4_t vreinterpretq_f32_p8 (poly8x16_t t); +#define vreinterpretq_f32_p8 vreinterpretq_f32_u32 + +//*** Integer type conversions ****************** +//no conversion necessary for the following functions because it is same data type + +int64x2_t vreinterpretq_s64_u32 (uint32x4_t t); +#define vreinterpretq_s64_u32 + +int64x2_t vreinterpretq_s64_s16 (uint16x8_t t); +#define vreinterpretq_s64_s16 + +int64x2_t vreinterpretq_s64_u8 (uint8x16_t t); +#define vreinterpretq_s64_u8 + +int64x2_t vreinterpretq_s64_s32 (int32x4_t t); +#define vreinterpretq_s64_s32 + +int64x2_t vreinterpretq_s64_u16 (int16x8_t t); +#define vreinterpretq_s64_u16 + +int64x2_t vreinterpretq_s64_s8 (int8x16_t t); +#define vreinterpretq_s64_s8 + +int64x2_t vreinterpretq_s64_u64 (uint64x2_t t); +#define vreinterpretq_s64_u64 + +int64x2_t vreinterpretq_s64_f32 (float32x4_t t); +#define vreinterpretq_s64_f32(t) _M128i(t) + +int64x2_t vreinterpretq_s64_p16 (poly16x8_t t); +#define vreinterpretq_s64_p16 + +int64x2_t vreinterpretq_s64_p8 (poly8x16_t t); +#define vreinterpretq_s64_p8 + +uint64x2_t vreinterpretq_u64_u32 (uint32x4_t t); +#define vreinterpretq_u64_u32 + +uint64x2_t vreinterpretq_u64_u16 (uint16x8_t t); +#define vreinterpretq_u64_u16 + +uint64x2_t vreinterpretq_u64_u8 (uint8x16_t t); +#define vreinterpretq_u64_u8 + +uint64x2_t vreinterpretq_u64_s32 (int32x4_t t); +#define vreinterpretq_u64_s32 + +uint64x2_t vreinterpretq_u64_s16 (int16x8_t t); +#define vreinterpretq_u64_s16 + +uint64x2_t vreinterpretq_u64_s8 (int8x16_t t); +#define vreinterpretq_u64_s8 + +uint64x2_t vreinterpretq_u64_s64 (int64x2_t t); +#define vreinterpretq_u64_s64 + +uint64x2_t vreinterpretq_u64_f32 (float32x4_t t); +#define vreinterpretq_u64_f32(t) _M128i(t) + +uint64x2_t vreinterpretq_u64_p16 (poly16x8_t t); +#define vreinterpretq_u64_p16 + +uint64x2_t vreinterpretq_u64_p8 (poly8x16_t t); +#define vreinterpretq_u64_p8 + +int8x16_t vreinterpretq_s8_u32 (uint32x4_t t); +#define vreinterpretq_s8_u32 + +int8x16_t vreinterpretq_s8_u16 (uint16x8_t t); +#define vreinterpretq_s8_u16 + +int8x16_t vreinterpretq_s8_u8 (uint8x16_t t); +#define vreinterpretq_s8_u8 + +int8x16_t vreinterpretq_s8_s32 (int32x4_t t); +#define vreinterpretq_s8_s32 + +int8x16_t vreinterpretq_s8_s16 (int16x8_t t); +#define vreinterpretq_s8_s16 + +int8x16_t vreinterpretq_s8_u64 (uint64x2_t t); +#define vreinterpretq_s8_u64 + +int8x16_t vreinterpretq_s8_s64 (int64x2_t t); +#define vreinterpretq_s8_s64 + +int8x16_t vreinterpretq_s8_f32 (float32x4_t t); +#define vreinterpretq_s8_f32(t) _M128i(t) + +int8x16_t vreinterpretq_s8_p16 (poly16x8_t t); +#define vreinterpretq_s8_p16 + +int8x16_t vreinterpretq_s8_p8 (poly8x16_t t); +#define vreinterpretq_s8_p8 + +int16x8_t vreinterpretq_s16_u32 (uint32x4_t t); +#define vreinterpretq_s16_u32 + +int16x8_t vreinterpretq_s16_u16 (uint16x8_t t); +#define vreinterpretq_s16_u16 + +int16x8_t vreinterpretq_s16_u8 (uint8x16_t t); +#define vreinterpretq_s16_u8 + +int16x8_t vreinterpretq_s16_s32 (int32x4_t t); +#define vreinterpretq_s16_s32 + +int16x8_t vreinterpretq_s16_s8 (int8x16_t t); +#define vreinterpretq_s16_s8 + +int16x8_t vreinterpretq_s16_u64 (uint64x2_t t); +#define vreinterpretq_s16_u64 + +int16x8_t vreinterpretq_s16_s64 (int64x2_t t); +#define vreinterpretq_s16_s64 + +int16x8_t vreinterpretq_s16_f32 (float32x4_t t); +#define vreinterpretq_s16_f32(t) _M128i(t) + +int16x8_t vreinterpretq_s16_p16 (poly16x8_t t); +#define vreinterpretq_s16_p16 + +int16x8_t vreinterpretq_s16_p8 (poly8x16_t t); +#define vreinterpretq_s16_p8 + +int32x4_t vreinterpretq_s32_u32 (uint32x4_t t); +#define vreinterpretq_s32_u32 + +int32x4_t vreinterpretq_s32_u16 (uint16x8_t t); +#define vreinterpretq_s32_u16 + +int32x4_t vreinterpretq_s32_u8 (uint8x16_t t); +#define vreinterpretq_s32_u8 + +int32x4_t vreinterpretq_s32_s16 (int16x8_t t); +#define vreinterpretq_s32_s16 + +int32x4_t vreinterpretq_s32_s8 (int8x16_t t); +#define vreinterpretq_s32_s8 + +int32x4_t vreinterpretq_s32_u64 (uint64x2_t t); +#define vreinterpretq_s32_u64 + +int32x4_t vreinterpretq_s32_s64 (int64x2_t t); +#define vreinterpretq_s32_s64 + +int32x4_t vreinterpretq_s32_f32 (float32x4_t t); +#define vreinterpretq_s32_f32(t) _mm_castps_si128(t) //(*(__m128i*)&(t)) + +int32x4_t vreinterpretq_s32_p16 (poly16x8_t t); +#define vreinterpretq_s32_p16 + +int32x4_t vreinterpretq_s32_p8 (poly8x16_t t); +#define vreinterpretq_s32_p8 + +uint8x16_t vreinterpretq_u8_u32 (uint32x4_t t); +#define vreinterpretq_u8_u32 + +uint8x16_t vreinterpretq_u8_u16 (uint16x8_t t); +#define vreinterpretq_u8_u16 + +uint8x16_t vreinterpretq_u8_s32 (int32x4_t t); +#define vreinterpretq_u8_s32 + +uint8x16_t vreinterpretq_u8_s16 (int16x8_t t); +#define vreinterpretq_u8_s16 + +uint8x16_t vreinterpretq_u8_s8 (int8x16_t t); +#define vreinterpretq_u8_s8 + +uint8x16_t vreinterpretq_u8_u64 (uint64x2_t t); +#define vreinterpretq_u8_u64 + +uint8x16_t vreinterpretq_u8_s64 (int64x2_t t); +#define vreinterpretq_u8_s64 + +uint8x16_t vreinterpretq_u8_f32 (float32x4_t t); +#define vreinterpretq_u8_f32(t) _M128i(t) + +uint8x16_t vreinterpretq_u8_p16 (poly16x8_t t); +#define vreinterpretq_u8_p16 + +uint8x16_t vreinterpretq_u8_p8 (poly8x16_t t); +#define vreinterpretq_u8_p8 + +uint16x8_t vreinterpretq_u16_u32 (uint32x4_t t); +#define vreinterpretq_u16_u32 + +uint16x8_t vreinterpretq_u16_u8 (uint8x16_t t); +#define vreinterpretq_u16_u8 + +uint16x8_t vreinterpretq_u16_s32 (int32x4_t t); +#define vreinterpretq_u16_s32 + +uint16x8_t vreinterpretq_u16_s16 (int16x8_t t); +#define vreinterpretq_u16_s16 + +uint16x8_t vreinterpretq_u16_s8 (int8x16_t t); +#define vreinterpretq_u16_s8 + +uint16x8_t vreinterpretq_u16_u64 (uint64x2_t t); +#define vreinterpretq_u16_u64 + +uint16x8_t vreinterpretq_u16_s64 (int64x2_t t); +#define vreinterpretq_u16_s64 + +uint16x8_t vreinterpretq_u16_f32 (float32x4_t t); +#define vreinterpretq_u16_f32(t) _M128i(t) + +uint16x8_t vreinterpretq_u16_p16 (poly16x8_t t); +#define vreinterpretq_u16_p16 + +uint16x8_t vreinterpretq_u16_p8 (poly8x16_t t); +#define vreinterpretq_u16_p8 + +uint32x4_t vreinterpretq_u32_u16 (uint16x8_t t); +#define vreinterpretq_u32_u16 + +uint32x4_t vreinterpretq_u32_u8 (uint8x16_t t); +#define vreinterpretq_u32_u8 + +uint32x4_t vreinterpretq_u32_s32 (int32x4_t t); +#define vreinterpretq_u32_s32 + +uint32x4_t vreinterpretq_u32_s16 (int16x8_t t); +#define vreinterpretq_u32_s16 + +uint32x4_t vreinterpretq_u32_s8 (int8x16_t t); +#define vreinterpretq_u32_s8 + +uint32x4_t vreinterpretq_u32_u64 (uint64x2_t t); +#define vreinterpretq_u32_u64 + +uint32x4_t vreinterpretq_u32_s64 (int64x2_t t); +#define vreinterpretq_u32_s64 + +uint32x4_t vreinterpretq_u32_f32 (float32x4_t t); +#define vreinterpretq_u32_f32(t) _M128i(t) + +uint32x4_t vreinterpretq_u32_p16 (poly16x8_t t); +#define vreinterpretq_u32_p16 + +uint32x4_t vreinterpretq_u32_p8 (poly8x16_t t); +#define vreinterpretq_u32_p8 + +#endif /* NEON2SSE_H */ -- cgit v1.2.3