From f378ebf14df0952eae870c9865bab8326aa8f137 Mon Sep 17 00:00:00 2001 From: Dan Albert Date: Wed, 17 Jun 2015 11:09:54 -0700 Subject: Delete old versions of GCC. Change-Id: I710f125d905290e1024cbd67f48299861790c66c --- gcc-4.4.3/gcc/ada/a-crbtgk.adb | 573 ----------------------------------------- 1 file changed, 573 deletions(-) delete mode 100644 gcc-4.4.3/gcc/ada/a-crbtgk.adb (limited to 'gcc-4.4.3/gcc/ada/a-crbtgk.adb') diff --git a/gcc-4.4.3/gcc/ada/a-crbtgk.adb b/gcc-4.4.3/gcc/ada/a-crbtgk.adb deleted file mode 100644 index c06f31e1d..000000000 --- a/gcc-4.4.3/gcc/ada/a-crbtgk.adb +++ /dev/null @@ -1,573 +0,0 @@ ------------------------------------------------------------------------------- --- -- --- GNAT LIBRARY COMPONENTS -- --- -- --- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_KEYS -- --- -- --- B o d y -- --- -- --- Copyright (C) 2004-2009, Free Software Foundation, Inc. -- --- -- --- GNAT is free software; you can redistribute it and/or modify it under -- --- terms of the GNU General Public License as published by the Free Soft- -- --- ware Foundation; either version 3, or (at your option) any later ver- -- --- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- --- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- --- or FITNESS FOR A PARTICULAR PURPOSE. -- --- -- --- As a special exception under Section 7 of GPL version 3, you are granted -- --- additional permissions described in the GCC Runtime Library Exception, -- --- version 3.1, as published by the Free Software Foundation. -- --- -- --- You should have received a copy of the GNU General Public License and -- --- a copy of the GCC Runtime Library Exception along with this program; -- --- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- --- . -- --- -- --- This unit was originally developed by Matthew J Heaney. -- ------------------------------------------------------------------------------- - -package body Ada.Containers.Red_Black_Trees.Generic_Keys is - - package Ops renames Tree_Operations; - - ------------- - -- Ceiling -- - ------------- - - -- AKA Lower_Bound - - function Ceiling (Tree : Tree_Type; Key : Key_Type) return Node_Access is - Y : Node_Access; - X : Node_Access; - - begin - X := Tree.Root; - while X /= null loop - if Is_Greater_Key_Node (Key, X) then - X := Ops.Right (X); - else - Y := X; - X := Ops.Left (X); - end if; - end loop; - - return Y; - end Ceiling; - - ---------- - -- Find -- - ---------- - - function Find (Tree : Tree_Type; Key : Key_Type) return Node_Access is - Y : Node_Access; - X : Node_Access; - - begin - X := Tree.Root; - while X /= null loop - if Is_Greater_Key_Node (Key, X) then - X := Ops.Right (X); - else - Y := X; - X := Ops.Left (X); - end if; - end loop; - - if Y = null then - return null; - end if; - - if Is_Less_Key_Node (Key, Y) then - return null; - end if; - - return Y; - end Find; - - ----------- - -- Floor -- - ----------- - - function Floor (Tree : Tree_Type; Key : Key_Type) return Node_Access is - Y : Node_Access; - X : Node_Access; - - begin - X := Tree.Root; - while X /= null loop - if Is_Less_Key_Node (Key, X) then - X := Ops.Left (X); - else - Y := X; - X := Ops.Right (X); - end if; - end loop; - - return Y; - end Floor; - - -------------------------------- - -- Generic_Conditional_Insert -- - -------------------------------- - - procedure Generic_Conditional_Insert - (Tree : in out Tree_Type; - Key : Key_Type; - Node : out Node_Access; - Inserted : out Boolean) - is - Y : Node_Access := null; - X : Node_Access := Tree.Root; - - begin - Inserted := True; - while X /= null loop - Y := X; - Inserted := Is_Less_Key_Node (Key, X); - - if Inserted then - X := Ops.Left (X); - else - X := Ops.Right (X); - end if; - end loop; - - -- If Inserted is True, then this means either that Tree is - -- empty, or there was a least one node (strictly) greater than - -- Key. Otherwise, it means that Key is equal to or greater than - -- every node. - - if Inserted then - if Y = Tree.First then - Insert_Post (Tree, Y, True, Node); - return; - end if; - - Node := Ops.Previous (Y); - - else - Node := Y; - end if; - - -- Here Node has a value that is less than or equal to Key. We - -- now have to resolve whether Key is equal to or greater than - -- Node, which determines whether the insertion succeeds. - - if Is_Greater_Key_Node (Key, Node) then - Insert_Post (Tree, Y, Inserted, Node); - Inserted := True; - return; - end if; - - Inserted := False; - end Generic_Conditional_Insert; - - ------------------------------------------ - -- Generic_Conditional_Insert_With_Hint -- - ------------------------------------------ - - procedure Generic_Conditional_Insert_With_Hint - (Tree : in out Tree_Type; - Position : Node_Access; - Key : Key_Type; - Node : out Node_Access; - Inserted : out Boolean) - is - begin - -- The purpose of a hint is to avoid a search from the root of - -- tree. If we have it hint it means we only need to traverse the - -- subtree rooted at the hint to find the nearest neighbor. Note - -- that finding the neighbor means merely walking the tree; this - -- is not a search and the only comparisons that occur are with - -- the hint and its neighbor. - - -- If Position is null, this is interpreted to mean that Key is - -- large relative to the nodes in the tree. If the tree is empty, - -- or Key is greater than the last node in the tree, then we're - -- done; otherwise the hint was "wrong" and we must search. - - if Position = null then -- largest - if Tree.Last = null - or else Is_Greater_Key_Node (Key, Tree.Last) - then - Insert_Post (Tree, Tree.Last, False, Node); - Inserted := True; - else - Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted); - end if; - - return; - end if; - - pragma Assert (Tree.Length > 0); - - -- A hint can either name the node that immediately follows Key, - -- or immediately precedes Key. We first test whether Key is - -- less than the hint, and if so we compare Key to the node that - -- precedes the hint. If Key is both less than the hint and - -- greater than the hint's preceding neighbor, then we're done; - -- otherwise we must search. - - -- Note also that a hint can either be an anterior node or a leaf - -- node. A new node is always inserted at the bottom of the tree - -- (at least prior to rebalancing), becoming the new left or - -- right child of leaf node (which prior to the insertion must - -- necessarily be null, since this is a leaf). If the hint names - -- an anterior node then its neighbor must be a leaf, and so - -- (here) we insert after the neighbor. If the hint names a leaf - -- then its neighbor must be anterior and so we insert before the - -- hint. - - if Is_Less_Key_Node (Key, Position) then - declare - Before : constant Node_Access := Ops.Previous (Position); - - begin - if Before = null then - Insert_Post (Tree, Tree.First, True, Node); - Inserted := True; - - elsif Is_Greater_Key_Node (Key, Before) then - if Ops.Right (Before) = null then - Insert_Post (Tree, Before, False, Node); - else - Insert_Post (Tree, Position, True, Node); - end if; - - Inserted := True; - - else - Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted); - end if; - end; - - return; - end if; - - -- We know that Key isn't less than the hint so we try again, - -- this time to see if it's greater than the hint. If so we - -- compare Key to the node that follows the hint. If Key is both - -- greater than the hint and less than the hint's next neighbor, - -- then we're done; otherwise we must search. - - if Is_Greater_Key_Node (Key, Position) then - declare - After : constant Node_Access := Ops.Next (Position); - - begin - if After = null then - Insert_Post (Tree, Tree.Last, False, Node); - Inserted := True; - - elsif Is_Less_Key_Node (Key, After) then - if Ops.Right (Position) = null then - Insert_Post (Tree, Position, False, Node); - else - Insert_Post (Tree, After, True, Node); - end if; - - Inserted := True; - - else - Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted); - end if; - end; - - return; - end if; - - -- We know that Key is neither less than the hint nor greater - -- than the hint, and that's the definition of equivalence. - -- There's nothing else we need to do, since a search would just - -- reach the same conclusion. - - Node := Position; - Inserted := False; - end Generic_Conditional_Insert_With_Hint; - - ------------------------- - -- Generic_Insert_Post -- - ------------------------- - - procedure Generic_Insert_Post - (Tree : in out Tree_Type; - Y : Node_Access; - Before : Boolean; - Z : out Node_Access) - is - begin - if Tree.Length = Count_Type'Last then - raise Constraint_Error with "too many elements"; - end if; - - if Tree.Busy > 0 then - raise Program_Error with - "attempt to tamper with cursors (container is busy)"; - end if; - - Z := New_Node; - pragma Assert (Z /= null); - pragma Assert (Ops.Color (Z) = Red); - - if Y = null then - pragma Assert (Tree.Length = 0); - pragma Assert (Tree.Root = null); - pragma Assert (Tree.First = null); - pragma Assert (Tree.Last = null); - - Tree.Root := Z; - Tree.First := Z; - Tree.Last := Z; - - elsif Before then - pragma Assert (Ops.Left (Y) = null); - - Ops.Set_Left (Y, Z); - - if Y = Tree.First then - Tree.First := Z; - end if; - - else - pragma Assert (Ops.Right (Y) = null); - - Ops.Set_Right (Y, Z); - - if Y = Tree.Last then - Tree.Last := Z; - end if; - end if; - - Ops.Set_Parent (Z, Y); - Ops.Rebalance_For_Insert (Tree, Z); - Tree.Length := Tree.Length + 1; - end Generic_Insert_Post; - - ----------------------- - -- Generic_Iteration -- - ----------------------- - - procedure Generic_Iteration - (Tree : Tree_Type; - Key : Key_Type) - is - procedure Iterate (Node : Node_Access); - - ------------- - -- Iterate -- - ------------- - - procedure Iterate (Node : Node_Access) is - N : Node_Access; - begin - N := Node; - while N /= null loop - if Is_Less_Key_Node (Key, N) then - N := Ops.Left (N); - elsif Is_Greater_Key_Node (Key, N) then - N := Ops.Right (N); - else - Iterate (Ops.Left (N)); - Process (N); - N := Ops.Right (N); - end if; - end loop; - end Iterate; - - -- Start of processing for Generic_Iteration - - begin - Iterate (Tree.Root); - end Generic_Iteration; - - ------------------------------- - -- Generic_Reverse_Iteration -- - ------------------------------- - - procedure Generic_Reverse_Iteration - (Tree : Tree_Type; - Key : Key_Type) - is - procedure Iterate (Node : Node_Access); - - ------------- - -- Iterate -- - ------------- - - procedure Iterate (Node : Node_Access) is - N : Node_Access; - begin - N := Node; - while N /= null loop - if Is_Less_Key_Node (Key, N) then - N := Ops.Left (N); - elsif Is_Greater_Key_Node (Key, N) then - N := Ops.Right (N); - else - Iterate (Ops.Right (N)); - Process (N); - N := Ops.Left (N); - end if; - end loop; - end Iterate; - - -- Start of processing for Generic_Reverse_Iteration - - begin - Iterate (Tree.Root); - end Generic_Reverse_Iteration; - - ---------------------------------- - -- Generic_Unconditional_Insert -- - ---------------------------------- - - procedure Generic_Unconditional_Insert - (Tree : in out Tree_Type; - Key : Key_Type; - Node : out Node_Access) - is - Y : Node_Access; - X : Node_Access; - - Before : Boolean; - - begin - Y := null; - Before := False; - - X := Tree.Root; - while X /= null loop - Y := X; - Before := Is_Less_Key_Node (Key, X); - - if Before then - X := Ops.Left (X); - else - X := Ops.Right (X); - end if; - end loop; - - Insert_Post (Tree, Y, Before, Node); - end Generic_Unconditional_Insert; - - -------------------------------------------- - -- Generic_Unconditional_Insert_With_Hint -- - -------------------------------------------- - - procedure Generic_Unconditional_Insert_With_Hint - (Tree : in out Tree_Type; - Hint : Node_Access; - Key : Key_Type; - Node : out Node_Access) - is - begin - -- There are fewer constraints for an unconditional insertion - -- than for a conditional insertion, since we allow duplicate - -- keys. So instead of having to check (say) whether Key is - -- (strictly) greater than the hint's previous neighbor, here we - -- allow Key to be equal to or greater than the previous node. - - -- There is the issue of what to do if Key is equivalent to the - -- hint. Does the new node get inserted before or after the hint? - -- We decide that it gets inserted after the hint, reasoning that - -- this is consistent with behavior for non-hint insertion, which - -- inserts a new node after existing nodes with equivalent keys. - - -- First we check whether the hint is null, which is interpreted - -- to mean that Key is large relative to existing nodes. - -- Following our rule above, if Key is equal to or greater than - -- the last node, then we insert the new node immediately after - -- last. (We don't have an operation for testing whether a key is - -- "equal to or greater than" a node, so we must say instead "not - -- less than", which is equivalent.) - - if Hint = null then -- largest - if Tree.Last = null then - Insert_Post (Tree, null, False, Node); - elsif Is_Less_Key_Node (Key, Tree.Last) then - Unconditional_Insert_Sans_Hint (Tree, Key, Node); - else - Insert_Post (Tree, Tree.Last, False, Node); - end if; - - return; - end if; - - pragma Assert (Tree.Length > 0); - - -- We decide here whether to insert the new node prior to the - -- hint. Key could be equivalent to the hint, so in theory we - -- could write the following test as "not greater than" (same as - -- "less than or equal to"). If Key were equivalent to the hint, - -- that would mean that the new node gets inserted before an - -- equivalent node. That wouldn't break any container invariants, - -- but our rule above says that new nodes always get inserted - -- after equivalent nodes. So here we test whether Key is both - -- less than the hint and equal to or greater than the hint's - -- previous neighbor, and if so insert it before the hint. - - if Is_Less_Key_Node (Key, Hint) then - declare - Before : constant Node_Access := Ops.Previous (Hint); - begin - if Before = null then - Insert_Post (Tree, Hint, True, Node); - elsif Is_Less_Key_Node (Key, Before) then - Unconditional_Insert_Sans_Hint (Tree, Key, Node); - elsif Ops.Right (Before) = null then - Insert_Post (Tree, Before, False, Node); - else - Insert_Post (Tree, Hint, True, Node); - end if; - end; - - return; - end if; - - -- We know that Key isn't less than the hint, so it must be equal - -- or greater. So we just test whether Key is less than or equal - -- to (same as "not greater than") the hint's next neighbor, and - -- if so insert it after the hint. - - declare - After : constant Node_Access := Ops.Next (Hint); - begin - if After = null then - Insert_Post (Tree, Hint, False, Node); - elsif Is_Greater_Key_Node (Key, After) then - Unconditional_Insert_Sans_Hint (Tree, Key, Node); - elsif Ops.Right (Hint) = null then - Insert_Post (Tree, Hint, False, Node); - else - Insert_Post (Tree, After, True, Node); - end if; - end; - end Generic_Unconditional_Insert_With_Hint; - - ----------------- - -- Upper_Bound -- - ----------------- - - function Upper_Bound - (Tree : Tree_Type; - Key : Key_Type) return Node_Access - is - Y : Node_Access; - X : Node_Access; - - begin - X := Tree.Root; - while X /= null loop - if Is_Less_Key_Node (Key, X) then - Y := X; - X := Ops.Left (X); - else - X := Ops.Right (X); - end if; - end loop; - - return Y; - end Upper_Bound; - -end Ada.Containers.Red_Black_Trees.Generic_Keys; -- cgit v1.2.3