aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/libgcc/config/mips/mips16.S
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/libgcc/config/mips/mips16.S')
-rw-r--r--gcc-4.9/libgcc/config/mips/mips16.S752
1 files changed, 752 insertions, 0 deletions
diff --git a/gcc-4.9/libgcc/config/mips/mips16.S b/gcc-4.9/libgcc/config/mips/mips16.S
new file mode 100644
index 000000000..6a43a9839
--- /dev/null
+++ b/gcc-4.9/libgcc/config/mips/mips16.S
@@ -0,0 +1,752 @@
+/* mips16 floating point support code
+ Copyright (C) 1996-2014 Free Software Foundation, Inc.
+ Contributed by Cygnus Support
+
+This file is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 3, or (at your option) any
+later version.
+
+This file is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+<http://www.gnu.org/licenses/>. */
+
+#ifdef __mips_micromips
+ /* DO NOTHING */
+#else
+
+/* This file contains mips16 floating point support functions. These
+ functions are called by mips16 code to handle floating point when
+ -msoft-float is not used. They accept the arguments and return
+ values using the soft-float calling convention, but do the actual
+ operation using the hard floating point instructions. */
+
+#if defined _MIPS_SIM && (_MIPS_SIM == _ABIO32 || _MIPS_SIM == _ABIO64)
+
+/* This file contains 32-bit assembly code. */
+ .set nomips16
+
+/* Start a function. */
+
+#define STARTFN(NAME) .globl NAME; .ent NAME; NAME:
+
+/* Finish a function. */
+
+#define ENDFN(NAME) .end NAME
+
+/* ARG1
+ The FPR that holds the first floating-point argument.
+
+ ARG2
+ The FPR that holds the second floating-point argument.
+
+ RET
+ The FPR that holds a floating-point return value. */
+
+#define RET $f0
+#define ARG1 $f12
+#ifdef __mips64
+#define ARG2 $f13
+#else
+#define ARG2 $f14
+#endif
+
+/* Set 64-bit register GPR so that its high 32 bits contain HIGH_FPR
+ and so that its low 32 bits contain LOW_FPR. */
+#define MERGE_GPRf(GPR, HIGH_FPR, LOW_FPR) \
+ .set noat; \
+ mfc1 $1, LOW_FPR; \
+ mfc1 GPR, HIGH_FPR; \
+ dsll $1, $1, 32; \
+ dsll GPR, GPR, 32; \
+ dsrl $1, $1, 32; \
+ or GPR, GPR, $1; \
+ .set at
+
+/* Move the high 32 bits of GPR to HIGH_FPR and the low 32 bits of
+ GPR to LOW_FPR. */
+#define MERGE_GPRt(GPR, HIGH_FPR, LOW_FPR) \
+ .set noat; \
+ dsrl $1, GPR, 32; \
+ mtc1 GPR, LOW_FPR; \
+ mtc1 $1, HIGH_FPR; \
+ .set at
+
+/* Jump to T, and use "OPCODE, OP2" to implement a delayed move. */
+#define DELAYt(T, OPCODE, OP2) \
+ .set noreorder; \
+ jr T; \
+ OPCODE, OP2; \
+ .set reorder
+
+#if __mips >= 4
+/* Coprocessor moves are interlocked from the MIPS IV ISA up. */
+#define DELAYf(T, OPCODE, OP2) DELAYt (T, OPCODE, OP2)
+#else
+/* Use "OPCODE. OP2" and jump to T. */
+#define DELAYf(T, OPCODE, OP2) OPCODE, OP2; jr T
+#endif
+
+/* MOVE_SF_BYTE0(D)
+ Move the first single-precision floating-point argument between
+ GPRs and FPRs.
+
+ MOVE_SI_BYTE0(D)
+ Likewise the first single-precision integer argument.
+
+ MOVE_SF_BYTE4(D)
+ Move the second single-precision floating-point argument between
+ GPRs and FPRs, given that the first argument occupies 4 bytes.
+
+ MOVE_SF_BYTE8(D)
+ Move the second single-precision floating-point argument between
+ GPRs and FPRs, given that the first argument occupies 8 bytes.
+
+ MOVE_DF_BYTE0(D)
+ Move the first double-precision floating-point argument between
+ GPRs and FPRs.
+
+ MOVE_DF_BYTE8(D)
+ Likewise the second double-precision floating-point argument.
+
+ MOVE_SF_RET(D, T)
+ Likewise a single-precision floating-point return value,
+ then jump to T.
+
+ MOVE_SC_RET(D, T)
+ Likewise a complex single-precision floating-point return value.
+
+ MOVE_DF_RET(D, T)
+ Likewise a double-precision floating-point return value.
+
+ MOVE_DC_RET(D, T)
+ Likewise a complex double-precision floating-point return value.
+
+ MOVE_SI_RET(D, T)
+ Likewise a single-precision integer return value.
+
+ The D argument is "t" to move to FPRs and "f" to move from FPRs.
+ The return macros may assume that the target of the jump does not
+ use a floating-point register. */
+
+#define MOVE_SF_RET(D, T) DELAY##D (T, m##D##c1 $2,$f0)
+#define MOVE_SI_RET(D, T) DELAY##D (T, m##D##c1 $2,$f0)
+
+#if defined(__mips64) && defined(__MIPSEB__)
+#define MOVE_SC_RET(D, T) MERGE_GPR##D ($2, $f0, $f1); jr T
+#elif defined(__mips64)
+/* The high 32 bits of $2 correspond to the second word in memory;
+ i.e. the imaginary part. */
+#define MOVE_SC_RET(D, T) MERGE_GPR##D ($2, $f1, $f0); jr T
+#elif __mips_fpr == 64
+#define MOVE_SC_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##c1 $3,$f1)
+#else
+#define MOVE_SC_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##c1 $3,$f2)
+#endif
+
+#if defined(__mips64)
+#define MOVE_SF_BYTE0(D) m##D##c1 $4,$f12
+#define MOVE_SF_BYTE4(D) m##D##c1 $5,$f13
+#define MOVE_SF_BYTE8(D) m##D##c1 $5,$f13
+#else
+#define MOVE_SF_BYTE0(D) m##D##c1 $4,$f12
+#define MOVE_SF_BYTE4(D) m##D##c1 $5,$f14
+#define MOVE_SF_BYTE8(D) m##D##c1 $6,$f14
+#endif
+#define MOVE_SI_BYTE0(D) MOVE_SF_BYTE0(D)
+
+#if defined(__mips64)
+#define MOVE_DF_BYTE0(D) dm##D##c1 $4,$f12
+#define MOVE_DF_BYTE8(D) dm##D##c1 $5,$f13
+#define MOVE_DF_RET(D, T) DELAY##D (T, dm##D##c1 $2,$f0)
+#define MOVE_DC_RET(D, T) dm##D##c1 $3,$f1; MOVE_DF_RET (D, T)
+#elif __mips_fpr == 64 && defined(__MIPSEB__)
+#define MOVE_DF_BYTE0(D) m##D##c1 $5,$f12; m##D##hc1 $4,$f12
+#define MOVE_DF_BYTE8(D) m##D##c1 $7,$f14; m##D##hc1 $6,$f14
+#define MOVE_DF_RET(D, T) m##D##c1 $3,$f0; DELAY##D (T, m##D##hc1 $2,$f0)
+#define MOVE_DC_RET(D, T) m##D##c1 $5,$f1; m##D##hc1 $4,$f1; MOVE_DF_RET (D, T)
+#elif __mips_fpr == 64
+#define MOVE_DF_BYTE0(D) m##D##c1 $4,$f12; m##D##hc1 $5,$f12
+#define MOVE_DF_BYTE8(D) m##D##c1 $6,$f14; m##D##hc1 $7,$f14
+#define MOVE_DF_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##hc1 $3,$f0)
+#define MOVE_DC_RET(D, T) m##D##c1 $4,$f1; m##D##hc1 $5,$f1; MOVE_DF_RET (D, T)
+#elif defined(__MIPSEB__)
+/* FPRs are little-endian. */
+#define MOVE_DF_BYTE0(D) m##D##c1 $4,$f13; m##D##c1 $5,$f12
+#define MOVE_DF_BYTE8(D) m##D##c1 $6,$f15; m##D##c1 $7,$f14
+#define MOVE_DF_RET(D, T) m##D##c1 $2,$f1; DELAY##D (T, m##D##c1 $3,$f0)
+#define MOVE_DC_RET(D, T) m##D##c1 $4,$f3; m##D##c1 $5,$f2; MOVE_DF_RET (D, T)
+#else
+#define MOVE_DF_BYTE0(D) m##D##c1 $4,$f12; m##D##c1 $5,$f13
+#define MOVE_DF_BYTE8(D) m##D##c1 $6,$f14; m##D##c1 $7,$f15
+#define MOVE_DF_RET(D, T) m##D##c1 $2,$f0; DELAY##D (T, m##D##c1 $3,$f1)
+#define MOVE_DC_RET(D, T) m##D##c1 $4,$f2; m##D##c1 $5,$f3; MOVE_DF_RET (D, T)
+#endif
+
+/* Single-precision math. */
+
+/* Define a function NAME that loads two single-precision values,
+ performs FPU operation OPCODE on them, and returns the single-
+ precision result. */
+
+#define OPSF3(NAME, OPCODE) \
+STARTFN (NAME); \
+ MOVE_SF_BYTE0 (t); \
+ MOVE_SF_BYTE4 (t); \
+ OPCODE RET,ARG1,ARG2; \
+ MOVE_SF_RET (f, $31); \
+ ENDFN (NAME)
+
+#ifdef L_m16addsf3
+OPSF3 (__mips16_addsf3, add.s)
+#endif
+#ifdef L_m16subsf3
+OPSF3 (__mips16_subsf3, sub.s)
+#endif
+#ifdef L_m16mulsf3
+OPSF3 (__mips16_mulsf3, mul.s)
+#endif
+#ifdef L_m16divsf3
+OPSF3 (__mips16_divsf3, div.s)
+#endif
+
+/* Define a function NAME that loads a single-precision value,
+ performs FPU operation OPCODE on it, and returns the single-
+ precision result. */
+
+#define OPSF2(NAME, OPCODE) \
+STARTFN (NAME); \
+ MOVE_SF_BYTE0 (t); \
+ OPCODE RET,ARG1; \
+ MOVE_SF_RET (f, $31); \
+ ENDFN (NAME)
+
+#ifdef L_m16negsf2
+OPSF2 (__mips16_negsf2, neg.s)
+#endif
+#ifdef L_m16abssf2
+OPSF2 (__mips16_abssf2, abs.s)
+#endif
+
+/* Single-precision comparisons. */
+
+/* Define a function NAME that loads two single-precision values,
+ performs floating point comparison OPCODE, and returns TRUE or
+ FALSE depending on the result. */
+
+#define CMPSF(NAME, OPCODE, TRUE, FALSE) \
+STARTFN (NAME); \
+ MOVE_SF_BYTE0 (t); \
+ MOVE_SF_BYTE4 (t); \
+ OPCODE ARG1,ARG2; \
+ li $2,TRUE; \
+ bc1t 1f; \
+ li $2,FALSE; \
+1:; \
+ j $31; \
+ ENDFN (NAME)
+
+/* Like CMPSF, but reverse the comparison operands. */
+
+#define REVCMPSF(NAME, OPCODE, TRUE, FALSE) \
+STARTFN (NAME); \
+ MOVE_SF_BYTE0 (t); \
+ MOVE_SF_BYTE4 (t); \
+ OPCODE ARG2,ARG1; \
+ li $2,TRUE; \
+ bc1t 1f; \
+ li $2,FALSE; \
+1:; \
+ j $31; \
+ ENDFN (NAME)
+
+#ifdef L_m16eqsf2
+CMPSF (__mips16_eqsf2, c.eq.s, 0, 1)
+#endif
+#ifdef L_m16nesf2
+CMPSF (__mips16_nesf2, c.eq.s, 0, 1)
+#endif
+#ifdef L_m16gtsf2
+REVCMPSF (__mips16_gtsf2, c.lt.s, 1, 0)
+#endif
+#ifdef L_m16gesf2
+REVCMPSF (__mips16_gesf2, c.le.s, 0, -1)
+#endif
+#ifdef L_m16lesf2
+CMPSF (__mips16_lesf2, c.le.s, 0, 1)
+#endif
+#ifdef L_m16ltsf2
+CMPSF (__mips16_ltsf2, c.lt.s, -1, 0)
+#endif
+#ifdef L_m16unordsf2
+CMPSF(__mips16_unordsf2, c.un.s, 1, 0)
+#endif
+
+
+/* Single-precision conversions. */
+
+#ifdef L_m16fltsisf
+STARTFN (__mips16_floatsisf)
+ MOVE_SF_BYTE0 (t)
+ cvt.s.w RET,ARG1
+ MOVE_SF_RET (f, $31)
+ ENDFN (__mips16_floatsisf)
+#endif
+
+#ifdef L_m16fltunsisf
+STARTFN (__mips16_floatunsisf)
+ .set noreorder
+ bltz $4,1f
+ MOVE_SF_BYTE0 (t)
+ .set reorder
+ cvt.s.w RET,ARG1
+ MOVE_SF_RET (f, $31)
+1:
+ and $2,$4,1
+ srl $3,$4,1
+ or $2,$2,$3
+ mtc1 $2,RET
+ cvt.s.w RET,RET
+ add.s RET,RET,RET
+ MOVE_SF_RET (f, $31)
+ ENDFN (__mips16_floatunsisf)
+#endif
+
+#ifdef L_m16fix_truncsfsi
+STARTFN (__mips16_fix_truncsfsi)
+ MOVE_SF_BYTE0 (t)
+ trunc.w.s RET,ARG1,$4
+ MOVE_SI_RET (f, $31)
+ ENDFN (__mips16_fix_truncsfsi)
+#endif
+
+#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
+
+/* Double-precision math. */
+
+/* Define a function NAME that loads two double-precision values,
+ performs FPU operation OPCODE on them, and returns the double-
+ precision result. */
+
+#define OPDF3(NAME, OPCODE) \
+STARTFN (NAME); \
+ MOVE_DF_BYTE0 (t); \
+ MOVE_DF_BYTE8 (t); \
+ OPCODE RET,ARG1,ARG2; \
+ MOVE_DF_RET (f, $31); \
+ ENDFN (NAME)
+
+#ifdef L_m16adddf3
+OPDF3 (__mips16_adddf3, add.d)
+#endif
+#ifdef L_m16subdf3
+OPDF3 (__mips16_subdf3, sub.d)
+#endif
+#ifdef L_m16muldf3
+OPDF3 (__mips16_muldf3, mul.d)
+#endif
+#ifdef L_m16divdf3
+OPDF3 (__mips16_divdf3, div.d)
+#endif
+
+/* Define a function NAME that loads a double-precision value,
+ performs FPU operation OPCODE on it, and returns the double-
+ precision result. */
+
+#define OPDF2(NAME, OPCODE) \
+STARTFN (NAME); \
+ MOVE_DF_BYTE0 (t); \
+ OPCODE RET,ARG1; \
+ MOVE_DF_RET (f, $31); \
+ ENDFN (NAME)
+
+#ifdef L_m16negdf2
+OPDF2 (__mips16_negdf2, neg.d)
+#endif
+#ifdef L_m16absdf2
+OPDF2 (__mips16_absdf2, abs.d)
+#endif
+
+/* Conversions between single and double precision. */
+
+#ifdef L_m16extsfdf2
+STARTFN (__mips16_extendsfdf2)
+ MOVE_SF_BYTE0 (t)
+ cvt.d.s RET,ARG1
+ MOVE_DF_RET (f, $31)
+ ENDFN (__mips16_extendsfdf2)
+#endif
+
+#ifdef L_m16trdfsf2
+STARTFN (__mips16_truncdfsf2)
+ MOVE_DF_BYTE0 (t)
+ cvt.s.d RET,ARG1
+ MOVE_SF_RET (f, $31)
+ ENDFN (__mips16_truncdfsf2)
+#endif
+
+/* Double-precision comparisons. */
+
+/* Define a function NAME that loads two double-precision values,
+ performs floating point comparison OPCODE, and returns TRUE or
+ FALSE depending on the result. */
+
+#define CMPDF(NAME, OPCODE, TRUE, FALSE) \
+STARTFN (NAME); \
+ MOVE_DF_BYTE0 (t); \
+ MOVE_DF_BYTE8 (t); \
+ OPCODE ARG1,ARG2; \
+ li $2,TRUE; \
+ bc1t 1f; \
+ li $2,FALSE; \
+1:; \
+ j $31; \
+ ENDFN (NAME)
+
+/* Like CMPDF, but reverse the comparison operands. */
+
+#define REVCMPDF(NAME, OPCODE, TRUE, FALSE) \
+STARTFN (NAME); \
+ MOVE_DF_BYTE0 (t); \
+ MOVE_DF_BYTE8 (t); \
+ OPCODE ARG2,ARG1; \
+ li $2,TRUE; \
+ bc1t 1f; \
+ li $2,FALSE; \
+1:; \
+ j $31; \
+ ENDFN (NAME)
+
+#ifdef L_m16eqdf2
+CMPDF (__mips16_eqdf2, c.eq.d, 0, 1)
+#endif
+#ifdef L_m16nedf2
+CMPDF (__mips16_nedf2, c.eq.d, 0, 1)
+#endif
+#ifdef L_m16gtdf2
+REVCMPDF (__mips16_gtdf2, c.lt.d, 1, 0)
+#endif
+#ifdef L_m16gedf2
+REVCMPDF (__mips16_gedf2, c.le.d, 0, -1)
+#endif
+#ifdef L_m16ledf2
+CMPDF (__mips16_ledf2, c.le.d, 0, 1)
+#endif
+#ifdef L_m16ltdf2
+CMPDF (__mips16_ltdf2, c.lt.d, -1, 0)
+#endif
+#ifdef L_m16unorddf2
+CMPDF(__mips16_unorddf2, c.un.d, 1, 0)
+#endif
+
+/* Double-precision conversions. */
+
+#ifdef L_m16fltsidf
+STARTFN (__mips16_floatsidf)
+ MOVE_SI_BYTE0 (t)
+ cvt.d.w RET,ARG1
+ MOVE_DF_RET (f, $31)
+ ENDFN (__mips16_floatsidf)
+#endif
+
+#ifdef L_m16fltunsidf
+STARTFN (__mips16_floatunsidf)
+ MOVE_SI_BYTE0 (t)
+ cvt.d.w RET,ARG1
+ bgez $4,1f
+ li.d ARG1, 4.294967296e+9
+ add.d RET, RET, ARG1
+1: MOVE_DF_RET (f, $31)
+ ENDFN (__mips16_floatunsidf)
+#endif
+
+#ifdef L_m16fix_truncdfsi
+STARTFN (__mips16_fix_truncdfsi)
+ MOVE_DF_BYTE0 (t)
+ trunc.w.d RET,ARG1,$4
+ MOVE_SI_RET (f, $31)
+ ENDFN (__mips16_fix_truncdfsi)
+#endif
+#endif /* !__mips_single_float */
+
+/* We don't export stubs from libgcc_s.so and always require static
+ versions to be pulled from libgcc.a as needed because they use $2
+ and possibly $3 as arguments, diverging from the standard SysV ABI,
+ and as such would require severe pessimisation of MIPS16 PLT entries
+ just for this single special case.
+
+ For compatibility with old binaries that used safe standard MIPS PLT
+ entries and referred to these functions we still export them at
+ version GCC_4.4.0 for run-time loading only. */
+
+#ifdef SHARED
+#define CE_STARTFN(NAME) \
+STARTFN (NAME##_compat); \
+ .symver NAME##_compat, NAME@GCC_4.4.0
+#define CE_ENDFN(NAME) ENDFN (NAME##_compat)
+#else
+#define CE_STARTFN(NAME) \
+STARTFN (NAME); \
+ .hidden NAME
+#define CE_ENDFN(NAME) ENDFN (NAME)
+#endif
+
+/* Define a function NAME that moves a return value of mode MODE from
+ FPRs to GPRs. */
+
+#define RET_FUNCTION(NAME, MODE) \
+CE_STARTFN (NAME); \
+ MOVE_##MODE##_RET (t, $31); \
+ CE_ENDFN (NAME)
+
+#ifdef L_m16retsf
+RET_FUNCTION (__mips16_ret_sf, SF)
+#endif
+
+#ifdef L_m16retsc
+RET_FUNCTION (__mips16_ret_sc, SC)
+#endif
+
+#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
+#ifdef L_m16retdf
+RET_FUNCTION (__mips16_ret_df, DF)
+#endif
+
+#ifdef L_m16retdc
+RET_FUNCTION (__mips16_ret_dc, DC)
+#endif
+#endif /* !__mips_single_float */
+
+/* STUB_ARGS_X copies the arguments from GPRs to FPRs for argument
+ code X. X is calculated as ARG1 + ARG2 * 4, where ARG1 and ARG2
+ classify the first and second arguments as follows:
+
+ 1: a single-precision argument
+ 2: a double-precision argument
+ 0: no argument, or not one of the above. */
+
+#define STUB_ARGS_0 /* () */
+#define STUB_ARGS_1 MOVE_SF_BYTE0 (t) /* (sf) */
+#define STUB_ARGS_5 MOVE_SF_BYTE0 (t); MOVE_SF_BYTE4 (t) /* (sf, sf) */
+#define STUB_ARGS_9 MOVE_SF_BYTE0 (t); MOVE_DF_BYTE8 (t) /* (sf, df) */
+#define STUB_ARGS_2 MOVE_DF_BYTE0 (t) /* (df) */
+#define STUB_ARGS_6 MOVE_DF_BYTE0 (t); MOVE_SF_BYTE8 (t) /* (df, sf) */
+#define STUB_ARGS_10 MOVE_DF_BYTE0 (t); MOVE_DF_BYTE8 (t) /* (df, df) */
+
+/* These functions are used by 16-bit code when calling via a function
+ pointer. They must copy the floating point arguments from the GPRs
+ to FPRs and then call function $2. */
+
+#define CALL_STUB_NO_RET(NAME, CODE) \
+CE_STARTFN (NAME); \
+ STUB_ARGS_##CODE; \
+ .set noreorder; \
+ jr $2; \
+ move $25,$2; \
+ .set reorder; \
+ CE_ENDFN (NAME)
+
+#ifdef L_m16stub1
+CALL_STUB_NO_RET (__mips16_call_stub_1, 1)
+#endif
+
+#ifdef L_m16stub5
+CALL_STUB_NO_RET (__mips16_call_stub_5, 5)
+#endif
+
+#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
+
+#ifdef L_m16stub2
+CALL_STUB_NO_RET (__mips16_call_stub_2, 2)
+#endif
+
+#ifdef L_m16stub6
+CALL_STUB_NO_RET (__mips16_call_stub_6, 6)
+#endif
+
+#ifdef L_m16stub9
+CALL_STUB_NO_RET (__mips16_call_stub_9, 9)
+#endif
+
+#ifdef L_m16stub10
+CALL_STUB_NO_RET (__mips16_call_stub_10, 10)
+#endif
+#endif /* !__mips_single_float */
+
+/* Now we have the same set of functions, except that this time the
+ function being called returns an SFmode, SCmode, DFmode or DCmode
+ value; we need to instantiate a set for each case. The calling
+ function will arrange to preserve $18, so these functions are free
+ to use it to hold the return address.
+
+ Note that we do not know whether the function we are calling is 16
+ bit or 32 bit. However, it does not matter, because 16-bit
+ functions always return floating point values in both the gp and
+ the fp regs. It would be possible to check whether the function
+ being called is 16 bits, in which case the copy is unnecessary;
+ however, it's faster to always do the copy. */
+
+#define CALL_STUB_RET(NAME, CODE, MODE) \
+CE_STARTFN (NAME); \
+ .cfi_startproc; \
+ /* Create a fake CFA 4 bytes below the stack pointer. */ \
+ .cfi_def_cfa 29,-4; \
+ /* "Save" $sp in itself so we don't use the fake CFA. \
+ This is: DW_CFA_val_expression r29, { DW_OP_reg29 }. */ \
+ .cfi_escape 0x16,29,1,0x6d; \
+ move $18,$31; \
+ .cfi_register 31,18; \
+ STUB_ARGS_##CODE; \
+ .set noreorder; \
+ jalr $2; \
+ move $25,$2; \
+ .set reorder; \
+ MOVE_##MODE##_RET (f, $18); \
+ .cfi_endproc; \
+ CE_ENDFN (NAME)
+
+/* First, instantiate the single-float set. */
+
+#ifdef L_m16stubsf0
+CALL_STUB_RET (__mips16_call_stub_sf_0, 0, SF)
+#endif
+
+#ifdef L_m16stubsf1
+CALL_STUB_RET (__mips16_call_stub_sf_1, 1, SF)
+#endif
+
+#ifdef L_m16stubsf5
+CALL_STUB_RET (__mips16_call_stub_sf_5, 5, SF)
+#endif
+
+#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
+#ifdef L_m16stubsf2
+CALL_STUB_RET (__mips16_call_stub_sf_2, 2, SF)
+#endif
+
+#ifdef L_m16stubsf6
+CALL_STUB_RET (__mips16_call_stub_sf_6, 6, SF)
+#endif
+
+#ifdef L_m16stubsf9
+CALL_STUB_RET (__mips16_call_stub_sf_9, 9, SF)
+#endif
+
+#ifdef L_m16stubsf10
+CALL_STUB_RET (__mips16_call_stub_sf_10, 10, SF)
+#endif
+#endif /* !__mips_single_float */
+
+
+/* Now we have the same set of functions again, except that this time
+ the function being called returns an DFmode value. */
+
+#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
+#ifdef L_m16stubdf0
+CALL_STUB_RET (__mips16_call_stub_df_0, 0, DF)
+#endif
+
+#ifdef L_m16stubdf1
+CALL_STUB_RET (__mips16_call_stub_df_1, 1, DF)
+#endif
+
+#ifdef L_m16stubdf5
+CALL_STUB_RET (__mips16_call_stub_df_5, 5, DF)
+#endif
+
+#ifdef L_m16stubdf2
+CALL_STUB_RET (__mips16_call_stub_df_2, 2, DF)
+#endif
+
+#ifdef L_m16stubdf6
+CALL_STUB_RET (__mips16_call_stub_df_6, 6, DF)
+#endif
+
+#ifdef L_m16stubdf9
+CALL_STUB_RET (__mips16_call_stub_df_9, 9, DF)
+#endif
+
+#ifdef L_m16stubdf10
+CALL_STUB_RET (__mips16_call_stub_df_10, 10, DF)
+#endif
+#endif /* !__mips_single_float */
+
+
+/* Ho hum. Here we have the same set of functions again, this time
+ for when the function being called returns an SCmode value. */
+
+#ifdef L_m16stubsc0
+CALL_STUB_RET (__mips16_call_stub_sc_0, 0, SC)
+#endif
+
+#ifdef L_m16stubsc1
+CALL_STUB_RET (__mips16_call_stub_sc_1, 1, SC)
+#endif
+
+#ifdef L_m16stubsc5
+CALL_STUB_RET (__mips16_call_stub_sc_5, 5, SC)
+#endif
+
+#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
+#ifdef L_m16stubsc2
+CALL_STUB_RET (__mips16_call_stub_sc_2, 2, SC)
+#endif
+
+#ifdef L_m16stubsc6
+CALL_STUB_RET (__mips16_call_stub_sc_6, 6, SC)
+#endif
+
+#ifdef L_m16stubsc9
+CALL_STUB_RET (__mips16_call_stub_sc_9, 9, SC)
+#endif
+
+#ifdef L_m16stubsc10
+CALL_STUB_RET (__mips16_call_stub_sc_10, 10, SC)
+#endif
+#endif /* !__mips_single_float */
+
+
+/* Finally, another set of functions for DCmode. */
+
+#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
+#ifdef L_m16stubdc0
+CALL_STUB_RET (__mips16_call_stub_dc_0, 0, DC)
+#endif
+
+#ifdef L_m16stubdc1
+CALL_STUB_RET (__mips16_call_stub_dc_1, 1, DC)
+#endif
+
+#ifdef L_m16stubdc5
+CALL_STUB_RET (__mips16_call_stub_dc_5, 5, DC)
+#endif
+
+#ifdef L_m16stubdc2
+CALL_STUB_RET (__mips16_call_stub_dc_2, 2, DC)
+#endif
+
+#ifdef L_m16stubdc6
+CALL_STUB_RET (__mips16_call_stub_dc_6, 6, DC)
+#endif
+
+#ifdef L_m16stubdc9
+CALL_STUB_RET (__mips16_call_stub_dc_9, 9, DC)
+#endif
+
+#ifdef L_m16stubdc10
+CALL_STUB_RET (__mips16_call_stub_dc_10, 10, DC)
+#endif
+#endif /* !__mips_single_float */
+
+#endif
+#endif /* __mips_micromips */