aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/libgcc/config/libbid/bid64_minmax.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/libgcc/config/libbid/bid64_minmax.c')
-rw-r--r--gcc-4.9/libgcc/config/libbid/bid64_minmax.c854
1 files changed, 854 insertions, 0 deletions
diff --git a/gcc-4.9/libgcc/config/libbid/bid64_minmax.c b/gcc-4.9/libgcc/config/libbid/bid64_minmax.c
new file mode 100644
index 000000000..e54946b18
--- /dev/null
+++ b/gcc-4.9/libgcc/config/libbid/bid64_minmax.c
@@ -0,0 +1,854 @@
+/* Copyright (C) 2007-2014 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+<http://www.gnu.org/licenses/>. */
+
+#include "bid_internal.h"
+
+/*****************************************************************************
+ * BID64 minimum function - returns greater of two numbers
+ *****************************************************************************/
+
+static const UINT64 mult_factor[16] = {
+ 1ull, 10ull, 100ull, 1000ull,
+ 10000ull, 100000ull, 1000000ull, 10000000ull,
+ 100000000ull, 1000000000ull, 10000000000ull, 100000000000ull,
+ 1000000000000ull, 10000000000000ull,
+ 100000000000000ull, 1000000000000000ull
+};
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_minnum (UINT64 * pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+UINT64
+bid64_minnum (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) {
+#endif
+
+ UINT64 res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0;
+
+ // check for non-canonical x
+ if ((x & MASK_NAN) == MASK_NAN) { // x is NaN
+ x = x & 0xfe03ffffffffffffull; // clear G6-G12
+ if ((x & 0x0003ffffffffffffull) > 999999999999999ull) {
+ x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
+ }
+ } else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
+ x = x & (MASK_SIGN | MASK_INF);
+ } else { // x is not special
+ // check for non-canonical values - treated as zero
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ // if the steering bits are 11, then the exponent is G[0:w+1]
+ if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
+ 9999999999999999ull) {
+ // non-canonical
+ x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2);
+ } // else canonical
+ } // else canonical
+ }
+
+ // check for non-canonical y
+ if ((y & MASK_NAN) == MASK_NAN) { // y is NaN
+ y = y & 0xfe03ffffffffffffull; // clear G6-G12
+ if ((y & 0x0003ffffffffffffull) > 999999999999999ull) {
+ y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
+ }
+ } else if ((y & MASK_INF) == MASK_INF) { // check for Infinity
+ y = y & (MASK_SIGN | MASK_INF);
+ } else { // y is not special
+ // check for non-canonical values - treated as zero
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ // if the steering bits are 11, then the exponent is G[0:w+1]
+ if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
+ 9999999999999999ull) {
+ // non-canonical
+ y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2);
+ } // else canonical
+ } // else canonical
+ }
+
+ // NaN (CASE1)
+ if ((x & MASK_NAN) == MASK_NAN) { // x is NAN
+ if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNaN
+ // if x is SNAN, then return quiet (x)
+ *pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
+ x = x & 0xfdffffffffffffffull; // quietize x
+ res = x;
+ } else { // x is QNaN
+ if ((y & MASK_NAN) == MASK_NAN) { // y is NAN
+ if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
+ *pfpsf |= INVALID_EXCEPTION; // set invalid flag
+ }
+ res = x;
+ } else {
+ res = y;
+ }
+ }
+ BID_RETURN (res);
+ } else if ((y & MASK_NAN) == MASK_NAN) { // y is NaN, but x is not
+ if ((y & MASK_SNAN) == MASK_SNAN) {
+ *pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
+ y = y & 0xfdffffffffffffffull; // quietize y
+ res = y;
+ } else {
+ // will return x (which is not NaN)
+ res = x;
+ }
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal, return either number
+ if (x == y) {
+ res = x;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x is neg infinity, there is no way it is greater than y, return x
+ if (((x & MASK_SIGN) == MASK_SIGN)) {
+ res = x;
+ BID_RETURN (res);
+ }
+ // x is pos infinity, return y
+ else {
+ res = y;
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so if y is positive infinity, then x is less, return y
+ // if y is negative infinity, then x is greater, return x
+ res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x;
+ BID_RETURN (res);
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ }
+
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ }
+
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO == -ZERO) => therefore
+ // ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (sig_y == 0) {
+ y_is_zero = 1;
+ }
+
+ if (x_is_zero && y_is_zero) {
+ // if both numbers are zero, neither is greater => return either
+ res = y;
+ BID_RETURN (res);
+ } else if (x_is_zero) {
+ // is x is zero, it is greater if Y is negative
+ res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x;
+ BID_RETURN (res);
+ } else if (y_is_zero) {
+ // is y is zero, X is greater if it is positive
+ res = ((x & MASK_SIGN) != MASK_SIGN) ? y : x;;
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is greater if y is negative
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x;
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+
+ // if both components are either bigger or smaller,
+ // it is clear what needs to be done
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN) ? y : x;
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN) ? y : x;
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = ((x & MASK_SIGN) != MASK_SIGN) ? y : x; // difference cannot be >10^15
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN) ? y : x;
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+ // if postitive, return whichever significand is larger
+ // (converse if negative)
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = y;
+ BID_RETURN (res);
+ }
+
+ res = (((sig_n_prime.w[1] > 0)
+ || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN)) ? y : x;
+ BID_RETURN (res);
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+
+ // if postitive, return whichever significand is larger (converse if negative)
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = y;
+ BID_RETURN (res);
+ }
+ res = (((sig_n_prime.w[1] == 0)
+ && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN)) ? y : x;
+ BID_RETURN (res);
+}
+
+/*****************************************************************************
+ * BID64 minimum magnitude function - returns greater of two numbers
+ *****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_minnum_mag (UINT64 * pres, UINT64 * px,
+ UINT64 * py _EXC_FLAGS_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+UINT64
+bid64_minnum_mag (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) {
+#endif
+
+ UINT64 res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+
+ // check for non-canonical x
+ if ((x & MASK_NAN) == MASK_NAN) { // x is NaN
+ x = x & 0xfe03ffffffffffffull; // clear G6-G12
+ if ((x & 0x0003ffffffffffffull) > 999999999999999ull) {
+ x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
+ }
+ } else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
+ x = x & (MASK_SIGN | MASK_INF);
+ } else { // x is not special
+ // check for non-canonical values - treated as zero
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ // if the steering bits are 11, then the exponent is G[0:w+1]
+ if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
+ 9999999999999999ull) {
+ // non-canonical
+ x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2);
+ } // else canonical
+ } // else canonical
+ }
+
+ // check for non-canonical y
+ if ((y & MASK_NAN) == MASK_NAN) { // y is NaN
+ y = y & 0xfe03ffffffffffffull; // clear G6-G12
+ if ((y & 0x0003ffffffffffffull) > 999999999999999ull) {
+ y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
+ }
+ } else if ((y & MASK_INF) == MASK_INF) { // check for Infinity
+ y = y & (MASK_SIGN | MASK_INF);
+ } else { // y is not special
+ // check for non-canonical values - treated as zero
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ // if the steering bits are 11, then the exponent is G[0:w+1]
+ if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
+ 9999999999999999ull) {
+ // non-canonical
+ y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2);
+ } // else canonical
+ } // else canonical
+ }
+
+ // NaN (CASE1)
+ if ((x & MASK_NAN) == MASK_NAN) { // x is NAN
+ if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNaN
+ // if x is SNAN, then return quiet (x)
+ *pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
+ x = x & 0xfdffffffffffffffull; // quietize x
+ res = x;
+ } else { // x is QNaN
+ if ((y & MASK_NAN) == MASK_NAN) { // y is NAN
+ if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
+ *pfpsf |= INVALID_EXCEPTION; // set invalid flag
+ }
+ res = x;
+ } else {
+ res = y;
+ }
+ }
+ BID_RETURN (res);
+ } else if ((y & MASK_NAN) == MASK_NAN) { // y is NaN, but x is not
+ if ((y & MASK_SNAN) == MASK_SNAN) {
+ *pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
+ y = y & 0xfdffffffffffffffull; // quietize y
+ res = y;
+ } else {
+ // will return x (which is not NaN)
+ res = x;
+ }
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal, return either number
+ if (x == y) {
+ res = x;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // x is infinity, its magnitude is greater than or equal to y
+ // return x only if y is infinity and x is negative
+ res = ((x & MASK_SIGN) == MASK_SIGN
+ && (y & MASK_INF) == MASK_INF) ? x : y;
+ BID_RETURN (res);
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // y is infinity, then it must be greater in magnitude, return x
+ res = x;
+ BID_RETURN (res);
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ }
+
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ }
+
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO == -ZERO) => therefore
+ // ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (sig_x == 0) {
+ res = x; // x_is_zero, its magnitude must be smaller than y
+ BID_RETURN (res);
+ }
+ if (sig_y == 0) {
+ res = y; // y_is_zero, its magnitude must be smaller than x
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ // if both components are either bigger or smaller,
+ // it is clear what needs to be done
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = y;
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = x;
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = y; // difference cannot be greater than 10^15
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = x;
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+ // now, sig_n_prime has: sig_x * 10^(exp_x-exp_y), this is
+ // the compensated signif.
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ // two numbers are equal, return minNum(x,y)
+ res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x;
+ BID_RETURN (res);
+ }
+ // now, if compensated_x (sig_n_prime) is greater than y, return y,
+ // otherwise return x
+ res = ((sig_n_prime.w[1] != 0) || sig_n_prime.w[0] > sig_y) ? y : x;
+ BID_RETURN (res);
+ }
+ // exp_y must be greater than exp_x, thus adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x;
+ // two numbers are equal, return either
+ BID_RETURN (res);
+ }
+
+ res = ((sig_n_prime.w[1] == 0) && (sig_x > sig_n_prime.w[0])) ? y : x;
+ BID_RETURN (res);
+}
+
+/*****************************************************************************
+ * BID64 maximum function - returns greater of two numbers
+ *****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_maxnum (UINT64 * pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+UINT64
+bid64_maxnum (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) {
+#endif
+
+ UINT64 res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0;
+
+ // check for non-canonical x
+ if ((x & MASK_NAN) == MASK_NAN) { // x is NaN
+ x = x & 0xfe03ffffffffffffull; // clear G6-G12
+ if ((x & 0x0003ffffffffffffull) > 999999999999999ull) {
+ x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
+ }
+ } else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
+ x = x & (MASK_SIGN | MASK_INF);
+ } else { // x is not special
+ // check for non-canonical values - treated as zero
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ // if the steering bits are 11, then the exponent is G[0:w+1]
+ if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
+ 9999999999999999ull) {
+ // non-canonical
+ x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2);
+ } // else canonical
+ } // else canonical
+ }
+
+ // check for non-canonical y
+ if ((y & MASK_NAN) == MASK_NAN) { // y is NaN
+ y = y & 0xfe03ffffffffffffull; // clear G6-G12
+ if ((y & 0x0003ffffffffffffull) > 999999999999999ull) {
+ y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
+ }
+ } else if ((y & MASK_INF) == MASK_INF) { // check for Infinity
+ y = y & (MASK_SIGN | MASK_INF);
+ } else { // y is not special
+ // check for non-canonical values - treated as zero
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ // if the steering bits are 11, then the exponent is G[0:w+1]
+ if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
+ 9999999999999999ull) {
+ // non-canonical
+ y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2);
+ } // else canonical
+ } // else canonical
+ }
+
+ // NaN (CASE1)
+ if ((x & MASK_NAN) == MASK_NAN) { // x is NAN
+ if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNaN
+ // if x is SNAN, then return quiet (x)
+ *pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
+ x = x & 0xfdffffffffffffffull; // quietize x
+ res = x;
+ } else { // x is QNaN
+ if ((y & MASK_NAN) == MASK_NAN) { // y is NAN
+ if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
+ *pfpsf |= INVALID_EXCEPTION; // set invalid flag
+ }
+ res = x;
+ } else {
+ res = y;
+ }
+ }
+ BID_RETURN (res);
+ } else if ((y & MASK_NAN) == MASK_NAN) { // y is NaN, but x is not
+ if ((y & MASK_SNAN) == MASK_SNAN) {
+ *pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
+ y = y & 0xfdffffffffffffffull; // quietize y
+ res = y;
+ } else {
+ // will return x (which is not NaN)
+ res = x;
+ }
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal (not Greater).
+ if (x == y) {
+ res = x;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x is neg infinity, there is no way it is greater than y, return y
+ // x is pos infinity, it is greater, unless y is positive infinity =>
+ // return y!=pos_infinity
+ if (((x & MASK_SIGN) == MASK_SIGN)) {
+ res = y;
+ BID_RETURN (res);
+ } else {
+ res = (((y & MASK_INF) != MASK_INF)
+ || ((y & MASK_SIGN) == MASK_SIGN)) ? x : y;
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so if y is positive infinity, then x is less, return y
+ // if y is negative infinity, then x is greater, return x
+ res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y;
+ BID_RETURN (res);
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ }
+
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ }
+
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO == -ZERO) => therefore
+ // ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (sig_y == 0) {
+ y_is_zero = 1;
+ }
+
+ if (x_is_zero && y_is_zero) {
+ // if both numbers are zero, neither is greater => return NOTGREATERTHAN
+ res = y;
+ BID_RETURN (res);
+ } else if (x_is_zero) {
+ // is x is zero, it is greater if Y is negative
+ res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y;
+ BID_RETURN (res);
+ } else if (y_is_zero) {
+ // is y is zero, X is greater if it is positive
+ res = ((x & MASK_SIGN) != MASK_SIGN) ? x : y;;
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is greater if y is negative
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y;
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+
+ // if both components are either bigger or smaller,
+ // it is clear what needs to be done
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN) ? x : y;
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN) ? x : y;
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = ((x & MASK_SIGN) != MASK_SIGN) ? x : y;
+ // difference cannot be > 10^15
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN) ? x : y;
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+ // if postitive, return whichever significand is larger
+ // (converse if negative)
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = y;
+ BID_RETURN (res);
+ }
+ res = (((sig_n_prime.w[1] > 0)
+ || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN)) ? x : y;
+ BID_RETURN (res);
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+
+ // if postitive, return whichever significand is larger (converse if negative)
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = y;
+ BID_RETURN (res);
+ }
+ res = (((sig_n_prime.w[1] == 0)
+ && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN)) ? x : y;
+ BID_RETURN (res);
+}
+
+/*****************************************************************************
+ * BID64 maximum magnitude function - returns greater of two numbers
+ *****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_maxnum_mag (UINT64 * pres, UINT64 * px,
+ UINT64 * py _EXC_FLAGS_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+UINT64
+bid64_maxnum_mag (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) {
+#endif
+
+ UINT64 res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+
+ // check for non-canonical x
+ if ((x & MASK_NAN) == MASK_NAN) { // x is NaN
+ x = x & 0xfe03ffffffffffffull; // clear G6-G12
+ if ((x & 0x0003ffffffffffffull) > 999999999999999ull) {
+ x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
+ }
+ } else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
+ x = x & (MASK_SIGN | MASK_INF);
+ } else { // x is not special
+ // check for non-canonical values - treated as zero
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ // if the steering bits are 11, then the exponent is G[0:w+1]
+ if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
+ 9999999999999999ull) {
+ // non-canonical
+ x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2);
+ } // else canonical
+ } // else canonical
+ }
+
+ // check for non-canonical y
+ if ((y & MASK_NAN) == MASK_NAN) { // y is NaN
+ y = y & 0xfe03ffffffffffffull; // clear G6-G12
+ if ((y & 0x0003ffffffffffffull) > 999999999999999ull) {
+ y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
+ }
+ } else if ((y & MASK_INF) == MASK_INF) { // check for Infinity
+ y = y & (MASK_SIGN | MASK_INF);
+ } else { // y is not special
+ // check for non-canonical values - treated as zero
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ // if the steering bits are 11, then the exponent is G[0:w+1]
+ if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
+ 9999999999999999ull) {
+ // non-canonical
+ y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2);
+ } // else canonical
+ } // else canonical
+ }
+
+ // NaN (CASE1)
+ if ((x & MASK_NAN) == MASK_NAN) { // x is NAN
+ if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNaN
+ // if x is SNAN, then return quiet (x)
+ *pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
+ x = x & 0xfdffffffffffffffull; // quietize x
+ res = x;
+ } else { // x is QNaN
+ if ((y & MASK_NAN) == MASK_NAN) { // y is NAN
+ if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
+ *pfpsf |= INVALID_EXCEPTION; // set invalid flag
+ }
+ res = x;
+ } else {
+ res = y;
+ }
+ }
+ BID_RETURN (res);
+ } else if ((y & MASK_NAN) == MASK_NAN) { // y is NaN, but x is not
+ if ((y & MASK_SNAN) == MASK_SNAN) {
+ *pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
+ y = y & 0xfdffffffffffffffull; // quietize y
+ res = y;
+ } else {
+ // will return x (which is not NaN)
+ res = x;
+ }
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal, return either number
+ if (x == y) {
+ res = x;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // x is infinity, its magnitude is greater than or equal to y
+ // return y as long as x isn't negative infinity
+ res = ((x & MASK_SIGN) == MASK_SIGN
+ && (y & MASK_INF) == MASK_INF) ? y : x;
+ BID_RETURN (res);
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // y is infinity, then it must be greater in magnitude
+ res = y;
+ BID_RETURN (res);
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ }
+
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ }
+
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO == -ZERO) => therefore
+ // ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (sig_x == 0) {
+ res = y; // x_is_zero, its magnitude must be smaller than y
+ BID_RETURN (res);
+ }
+ if (sig_y == 0) {
+ res = x; // y_is_zero, its magnitude must be smaller than x
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ // if both components are either bigger or smaller,
+ // it is clear what needs to be done
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = x;
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = y;
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = x; // difference cannot be greater than 10^15
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = y;
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+ // now, sig_n_prime has: sig_x * 10^(exp_x-exp_y),
+ // this is the compensated signif.
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ // two numbers are equal, return maxNum(x,y)
+ res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y;
+ BID_RETURN (res);
+ }
+ // now, if compensated_x (sig_n_prime) is greater than y return y,
+ // otherwise return x
+ res = ((sig_n_prime.w[1] != 0) || sig_n_prime.w[0] > sig_y) ? x : y;
+ BID_RETURN (res);
+ }
+ // exp_y must be greater than exp_x, thus adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y;
+ // two numbers are equal, return either
+ BID_RETURN (res);
+ }
+
+ res = ((sig_n_prime.w[1] == 0) && (sig_x > sig_n_prime.w[0])) ? x : y;
+ BID_RETURN (res);
+}