aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/tree-cfg.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/tree-cfg.c')
-rw-r--r--gcc-4.9/gcc/tree-cfg.c8587
1 files changed, 8587 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/tree-cfg.c b/gcc-4.9/gcc/tree-cfg.c
new file mode 100644
index 000000000..56b6c3595
--- /dev/null
+++ b/gcc-4.9/gcc/tree-cfg.c
@@ -0,0 +1,8587 @@
+/* Control flow functions for trees.
+ Copyright (C) 2001-2014 Free Software Foundation, Inc.
+ Contributed by Diego Novillo <dnovillo@redhat.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "hash-table.h"
+#include "tm.h"
+#include "tree.h"
+#include "trans-mem.h"
+#include "stor-layout.h"
+#include "print-tree.h"
+#include "tm_p.h"
+#include "basic-block.h"
+#include "flags.h"
+#include "function.h"
+#include "gimple-pretty-print.h"
+#include "pointer-set.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-fold.h"
+#include "tree-eh.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimple-iterator.h"
+#include "gimplify-me.h"
+#include "gimple-walk.h"
+#include "gimple-ssa.h"
+#include "cgraph.h"
+#include "tree-cfg.h"
+#include "tree-phinodes.h"
+#include "ssa-iterators.h"
+#include "stringpool.h"
+#include "tree-ssanames.h"
+#include "tree-ssa-loop-manip.h"
+#include "tree-ssa-loop-niter.h"
+#include "tree-into-ssa.h"
+#include "expr.h"
+#include "tree-dfa.h"
+#include "tree-ssa.h"
+#include "tree-dump.h"
+#include "tree-pass.h"
+#include "diagnostic-core.h"
+#include "except.h"
+#include "cfgloop.h"
+#include "tree-ssa-propagate.h"
+#include "value-prof.h"
+#include "tree-inline.h"
+#include "target.h"
+#include "tree-ssa-live.h"
+#include "omp-low.h"
+#include "tree-cfgcleanup.h"
+
+/* This file contains functions for building the Control Flow Graph (CFG)
+ for a function tree. */
+
+/* Local declarations. */
+
+/* Initial capacity for the basic block array. */
+static const int initial_cfg_capacity = 20;
+
+/* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
+ which use a particular edge. The CASE_LABEL_EXPRs are chained together
+ via their CASE_CHAIN field, which we clear after we're done with the
+ hash table to prevent problems with duplication of GIMPLE_SWITCHes.
+
+ Access to this list of CASE_LABEL_EXPRs allows us to efficiently
+ update the case vector in response to edge redirections.
+
+ Right now this table is set up and torn down at key points in the
+ compilation process. It would be nice if we could make the table
+ more persistent. The key is getting notification of changes to
+ the CFG (particularly edge removal, creation and redirection). */
+
+static struct pointer_map_t *edge_to_cases;
+
+/* If we record edge_to_cases, this bitmap will hold indexes
+ of basic blocks that end in a GIMPLE_SWITCH which we touched
+ due to edge manipulations. */
+
+static bitmap touched_switch_bbs;
+
+/* CFG statistics. */
+struct cfg_stats_d
+{
+ long num_merged_labels;
+};
+
+static struct cfg_stats_d cfg_stats;
+
+/* Hash table to store last discriminator assigned for each locus. */
+struct locus_discrim_map
+{
+ location_t locus;
+ int discriminator;
+};
+
+/* Hashtable helpers. */
+
+struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
+{
+ typedef locus_discrim_map value_type;
+ typedef locus_discrim_map compare_type;
+ static inline hashval_t hash (const value_type *);
+ static inline bool equal (const value_type *, const compare_type *);
+};
+
+/* Trivial hash function for a location_t. ITEM is a pointer to
+ a hash table entry that maps a location_t to a discriminator. */
+
+inline hashval_t
+locus_discrim_hasher::hash (const value_type *item)
+{
+ return LOCATION_LINE (item->locus);
+}
+
+/* Equality function for the locus-to-discriminator map. A and B
+ point to the two hash table entries to compare. */
+
+inline bool
+locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
+{
+ return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
+}
+
+static hash_table <locus_discrim_hasher> discriminator_per_locus;
+
+/* Basic blocks and flowgraphs. */
+static void make_blocks (gimple_seq);
+
+/* Edges. */
+static void make_edges (void);
+static void assign_discriminators (void);
+static void make_cond_expr_edges (basic_block);
+static void make_gimple_switch_edges (basic_block);
+static bool make_goto_expr_edges (basic_block);
+static void make_gimple_asm_edges (basic_block);
+static edge gimple_redirect_edge_and_branch (edge, basic_block);
+static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
+
+/* Various helpers. */
+static inline bool stmt_starts_bb_p (gimple, gimple);
+static int gimple_verify_flow_info (void);
+static void gimple_make_forwarder_block (edge);
+static gimple first_non_label_stmt (basic_block);
+static bool verify_gimple_transaction (gimple);
+
+/* Flowgraph optimization and cleanup. */
+static void gimple_merge_blocks (basic_block, basic_block);
+static bool gimple_can_merge_blocks_p (basic_block, basic_block);
+static void remove_bb (basic_block);
+static edge find_taken_edge_computed_goto (basic_block, tree);
+static edge find_taken_edge_cond_expr (basic_block, tree);
+static edge find_taken_edge_switch_expr (basic_block, tree);
+static tree find_case_label_for_value (gimple, tree);
+
+void
+init_empty_tree_cfg_for_function (struct function *fn)
+{
+ /* Initialize the basic block array. */
+ init_flow (fn);
+ profile_status_for_fn (fn) = PROFILE_ABSENT;
+ n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
+ last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
+ vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
+ vec_safe_grow_cleared (basic_block_info_for_fn (fn),
+ initial_cfg_capacity);
+
+ /* Build a mapping of labels to their associated blocks. */
+ vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
+ vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
+ initial_cfg_capacity);
+
+ SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
+ SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
+
+ ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
+ = EXIT_BLOCK_PTR_FOR_FN (fn);
+ EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
+ = ENTRY_BLOCK_PTR_FOR_FN (fn);
+}
+
+void
+init_empty_tree_cfg (void)
+{
+ init_empty_tree_cfg_for_function (cfun);
+}
+
+/*---------------------------------------------------------------------------
+ Create basic blocks
+---------------------------------------------------------------------------*/
+
+/* Entry point to the CFG builder for trees. SEQ is the sequence of
+ statements to be added to the flowgraph. */
+
+static void
+build_gimple_cfg (gimple_seq seq)
+{
+ /* Register specific gimple functions. */
+ gimple_register_cfg_hooks ();
+
+ memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
+
+ init_empty_tree_cfg ();
+
+ make_blocks (seq);
+
+ /* Make sure there is always at least one block, even if it's empty. */
+ if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
+ create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
+
+ /* Adjust the size of the array. */
+ if (basic_block_info_for_fn (cfun)->length ()
+ < (size_t) n_basic_blocks_for_fn (cfun))
+ vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
+ n_basic_blocks_for_fn (cfun));
+
+ /* To speed up statement iterator walks, we first purge dead labels. */
+ cleanup_dead_labels ();
+
+ /* Group case nodes to reduce the number of edges.
+ We do this after cleaning up dead labels because otherwise we miss
+ a lot of obvious case merging opportunities. */
+ group_case_labels ();
+
+ /* Create the edges of the flowgraph. */
+ discriminator_per_locus.create (13);
+ make_edges ();
+ assign_discriminators ();
+ cleanup_dead_labels ();
+ discriminator_per_locus.dispose ();
+}
+
+
+/* Search for ANNOTATE call with annot_expr_ivdep_kind; if found, remove
+ it and set loop->safelen to INT_MAX. We assume that the annotation
+ comes immediately before the condition. */
+
+static void
+replace_loop_annotate ()
+{
+ struct loop *loop;
+ basic_block bb;
+ gimple_stmt_iterator gsi;
+ gimple stmt;
+
+ FOR_EACH_LOOP (loop, 0)
+ {
+ gsi = gsi_last_bb (loop->header);
+ stmt = gsi_stmt (gsi);
+ if (stmt && gimple_code (stmt) == GIMPLE_COND)
+ {
+ gsi_prev_nondebug (&gsi);
+ if (gsi_end_p (gsi))
+ continue;
+ stmt = gsi_stmt (gsi);
+ if (gimple_code (stmt) != GIMPLE_CALL)
+ continue;
+ if (!gimple_call_internal_p (stmt)
+ || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
+ continue;
+ if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))
+ != annot_expr_ivdep_kind)
+ continue;
+ stmt = gimple_build_assign (gimple_call_lhs (stmt),
+ gimple_call_arg (stmt, 0));
+ gsi_replace (&gsi, stmt, true);
+ loop->safelen = INT_MAX;
+ }
+ }
+
+ /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ gsi = gsi_last_bb (bb);
+ stmt = gsi_stmt (gsi);
+ if (stmt && gimple_code (stmt) == GIMPLE_COND)
+ gsi_prev_nondebug (&gsi);
+ if (gsi_end_p (gsi))
+ continue;
+ stmt = gsi_stmt (gsi);
+ if (gimple_code (stmt) != GIMPLE_CALL)
+ continue;
+ if (!gimple_call_internal_p (stmt)
+ || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
+ continue;
+ if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))
+ != annot_expr_ivdep_kind)
+ continue;
+ warning_at (gimple_location (stmt), 0, "ignoring %<GCC ivdep%> "
+ "annotation");
+ stmt = gimple_build_assign (gimple_call_lhs (stmt),
+ gimple_call_arg (stmt, 0));
+ gsi_replace (&gsi, stmt, true);
+ }
+}
+
+
+static unsigned int
+execute_build_cfg (void)
+{
+ gimple_seq body = gimple_body (current_function_decl);
+
+ build_gimple_cfg (body);
+ gimple_set_body (current_function_decl, NULL);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Scope blocks:\n");
+ dump_scope_blocks (dump_file, dump_flags);
+ }
+ cleanup_tree_cfg ();
+ loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
+ replace_loop_annotate ();
+ return 0;
+}
+
+namespace {
+
+const pass_data pass_data_build_cfg =
+{
+ GIMPLE_PASS, /* type */
+ "cfg", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ false, /* has_gate */
+ true, /* has_execute */
+ TV_TREE_CFG, /* tv_id */
+ PROP_gimple_leh, /* properties_required */
+ ( PROP_cfg | PROP_loops ), /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_verify_stmts, /* todo_flags_finish */
+};
+
+class pass_build_cfg : public gimple_opt_pass
+{
+public:
+ pass_build_cfg (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_build_cfg, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ unsigned int execute () { return execute_build_cfg (); }
+
+}; // class pass_build_cfg
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_build_cfg (gcc::context *ctxt)
+{
+ return new pass_build_cfg (ctxt);
+}
+
+
+/* Return true if T is a computed goto. */
+
+bool
+computed_goto_p (gimple t)
+{
+ return (gimple_code (t) == GIMPLE_GOTO
+ && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
+}
+
+/* Returns true for edge E where e->src ends with a GIMPLE_COND and
+ the other edge points to a bb with just __builtin_unreachable ().
+ I.e. return true for C->M edge in:
+ <bb C>:
+ ...
+ if (something)
+ goto <bb N>;
+ else
+ goto <bb M>;
+ <bb N>:
+ __builtin_unreachable ();
+ <bb M>: */
+
+bool
+assert_unreachable_fallthru_edge_p (edge e)
+{
+ basic_block pred_bb = e->src;
+ gimple last = last_stmt (pred_bb);
+ if (last && gimple_code (last) == GIMPLE_COND)
+ {
+ basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
+ if (other_bb == e->dest)
+ other_bb = EDGE_SUCC (pred_bb, 1)->dest;
+ if (EDGE_COUNT (other_bb->succs) == 0)
+ {
+ gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
+ gimple stmt;
+
+ if (gsi_end_p (gsi))
+ return false;
+ stmt = gsi_stmt (gsi);
+ while (is_gimple_debug (stmt) || gimple_clobber_p (stmt))
+ {
+ gsi_next (&gsi);
+ if (gsi_end_p (gsi))
+ return false;
+ stmt = gsi_stmt (gsi);
+ }
+ return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
+ }
+ }
+ return false;
+}
+
+
+/* Build a flowgraph for the sequence of stmts SEQ. */
+
+static void
+make_blocks (gimple_seq seq)
+{
+ gimple_stmt_iterator i = gsi_start (seq);
+ gimple stmt = NULL;
+ bool start_new_block = true;
+ bool first_stmt_of_seq = true;
+ basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
+
+ while (!gsi_end_p (i))
+ {
+ gimple prev_stmt;
+
+ prev_stmt = stmt;
+ stmt = gsi_stmt (i);
+
+ /* If the statement starts a new basic block or if we have determined
+ in a previous pass that we need to create a new block for STMT, do
+ so now. */
+ if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
+ {
+ if (!first_stmt_of_seq)
+ gsi_split_seq_before (&i, &seq);
+ bb = create_basic_block (seq, NULL, bb);
+ start_new_block = false;
+ }
+
+ /* Now add STMT to BB and create the subgraphs for special statement
+ codes. */
+ gimple_set_bb (stmt, bb);
+
+ /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
+ next iteration. */
+ if (stmt_ends_bb_p (stmt))
+ {
+ /* If the stmt can make abnormal goto use a new temporary
+ for the assignment to the LHS. This makes sure the old value
+ of the LHS is available on the abnormal edge. Otherwise
+ we will end up with overlapping life-ranges for abnormal
+ SSA names. */
+ if (gimple_has_lhs (stmt)
+ && stmt_can_make_abnormal_goto (stmt)
+ && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
+ {
+ tree lhs = gimple_get_lhs (stmt);
+ tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
+ gimple s = gimple_build_assign (lhs, tmp);
+ gimple_set_location (s, gimple_location (stmt));
+ gimple_set_block (s, gimple_block (stmt));
+ gimple_set_lhs (stmt, tmp);
+ if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
+ || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
+ DECL_GIMPLE_REG_P (tmp) = 1;
+ gsi_insert_after (&i, s, GSI_SAME_STMT);
+ }
+ start_new_block = true;
+ }
+
+ gsi_next (&i);
+ first_stmt_of_seq = false;
+ }
+}
+
+
+/* Create and return a new empty basic block after bb AFTER. */
+
+static basic_block
+create_bb (void *h, void *e, basic_block after)
+{
+ basic_block bb;
+
+ gcc_assert (!e);
+
+ /* Create and initialize a new basic block. Since alloc_block uses
+ GC allocation that clears memory to allocate a basic block, we do
+ not have to clear the newly allocated basic block here. */
+ bb = alloc_block ();
+
+ bb->index = last_basic_block_for_fn (cfun);
+ bb->flags = BB_NEW;
+ set_bb_seq (bb, h ? (gimple_seq) h : NULL);
+
+ /* Add the new block to the linked list of blocks. */
+ link_block (bb, after);
+
+ /* Grow the basic block array if needed. */
+ if ((size_t) last_basic_block_for_fn (cfun)
+ == basic_block_info_for_fn (cfun)->length ())
+ {
+ size_t new_size =
+ (last_basic_block_for_fn (cfun)
+ + (last_basic_block_for_fn (cfun) + 3) / 4);
+ vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
+ }
+
+ /* Add the newly created block to the array. */
+ SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
+
+ n_basic_blocks_for_fn (cfun)++;
+ last_basic_block_for_fn (cfun)++;
+
+ return bb;
+}
+
+
+/*---------------------------------------------------------------------------
+ Edge creation
+---------------------------------------------------------------------------*/
+
+/* Fold COND_EXPR_COND of each COND_EXPR. */
+
+void
+fold_cond_expr_cond (void)
+{
+ basic_block bb;
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ gimple stmt = last_stmt (bb);
+
+ if (stmt && gimple_code (stmt) == GIMPLE_COND)
+ {
+ location_t loc = gimple_location (stmt);
+ tree cond;
+ bool zerop, onep;
+
+ fold_defer_overflow_warnings ();
+ cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
+ gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
+ if (cond)
+ {
+ zerop = integer_zerop (cond);
+ onep = integer_onep (cond);
+ }
+ else
+ zerop = onep = false;
+
+ fold_undefer_overflow_warnings (zerop || onep,
+ stmt,
+ WARN_STRICT_OVERFLOW_CONDITIONAL);
+ if (zerop)
+ gimple_cond_make_false (stmt);
+ else if (onep)
+ gimple_cond_make_true (stmt);
+ }
+ }
+}
+
+/* If basic block BB has an abnormal edge to a basic block
+ containing IFN_ABNORMAL_DISPATCHER internal call, return
+ that the dispatcher's basic block, otherwise return NULL. */
+
+basic_block
+get_abnormal_succ_dispatcher (basic_block bb)
+{
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
+ {
+ gimple_stmt_iterator gsi
+ = gsi_start_nondebug_after_labels_bb (e->dest);
+ gimple g = gsi_stmt (gsi);
+ if (g
+ && is_gimple_call (g)
+ && gimple_call_internal_p (g)
+ && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER)
+ return e->dest;
+ }
+ return NULL;
+}
+
+/* Helper function for make_edges. Create a basic block with
+ with ABNORMAL_DISPATCHER internal call in it if needed, and
+ create abnormal edges from BBS to it and from it to FOR_BB
+ if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
+
+static void
+handle_abnormal_edges (basic_block *dispatcher_bbs,
+ basic_block for_bb, int *bb_to_omp_idx,
+ auto_vec<basic_block> *bbs, bool computed_goto)
+{
+ basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
+ unsigned int idx = 0;
+ basic_block bb;
+ bool inner = false;
+
+ if (bb_to_omp_idx)
+ {
+ dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
+ if (bb_to_omp_idx[for_bb->index] != 0)
+ inner = true;
+ }
+
+ /* If the dispatcher has been created already, then there are basic
+ blocks with abnormal edges to it, so just make a new edge to
+ for_bb. */
+ if (*dispatcher == NULL)
+ {
+ /* Check if there are any basic blocks that need to have
+ abnormal edges to this dispatcher. If there are none, return
+ early. */
+ if (bb_to_omp_idx == NULL)
+ {
+ if (bbs->is_empty ())
+ return;
+ }
+ else
+ {
+ FOR_EACH_VEC_ELT (*bbs, idx, bb)
+ if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
+ break;
+ if (bb == NULL)
+ return;
+ }
+
+ /* Create the dispatcher bb. */
+ *dispatcher = create_basic_block (NULL, NULL, for_bb);
+ if (computed_goto)
+ {
+ /* Factor computed gotos into a common computed goto site. Also
+ record the location of that site so that we can un-factor the
+ gotos after we have converted back to normal form. */
+ gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
+
+ /* Create the destination of the factored goto. Each original
+ computed goto will put its desired destination into this
+ variable and jump to the label we create immediately below. */
+ tree var = create_tmp_var (ptr_type_node, "gotovar");
+
+ /* Build a label for the new block which will contain the
+ factored computed goto. */
+ tree factored_label_decl
+ = create_artificial_label (UNKNOWN_LOCATION);
+ gimple factored_computed_goto_label
+ = gimple_build_label (factored_label_decl);
+ gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
+
+ /* Build our new computed goto. */
+ gimple factored_computed_goto = gimple_build_goto (var);
+ gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
+
+ FOR_EACH_VEC_ELT (*bbs, idx, bb)
+ {
+ if (bb_to_omp_idx
+ && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
+ continue;
+
+ gsi = gsi_last_bb (bb);
+ gimple last = gsi_stmt (gsi);
+
+ gcc_assert (computed_goto_p (last));
+
+ /* Copy the original computed goto's destination into VAR. */
+ gimple assignment
+ = gimple_build_assign (var, gimple_goto_dest (last));
+ gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
+
+ edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
+ e->goto_locus = gimple_location (last);
+ gsi_remove (&gsi, true);
+ }
+ }
+ else
+ {
+ tree arg = inner ? boolean_true_node : boolean_false_node;
+ gimple g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
+ 1, arg);
+ gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
+ gsi_insert_after (&gsi, g, GSI_NEW_STMT);
+
+ /* Create predecessor edges of the dispatcher. */
+ FOR_EACH_VEC_ELT (*bbs, idx, bb)
+ {
+ if (bb_to_omp_idx
+ && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
+ continue;
+ make_edge (bb, *dispatcher, EDGE_ABNORMAL);
+ }
+ }
+ }
+
+ make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
+}
+
+/* Join all the blocks in the flowgraph. */
+
+static void
+make_edges (void)
+{
+ basic_block bb;
+ struct omp_region *cur_region = NULL;
+ auto_vec<basic_block> ab_edge_goto;
+ auto_vec<basic_block> ab_edge_call;
+ int *bb_to_omp_idx = NULL;
+ int cur_omp_region_idx = 0;
+
+ /* Create an edge from entry to the first block with executable
+ statements in it. */
+ make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
+ BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
+ EDGE_FALLTHRU);
+
+ /* Traverse the basic block array placing edges. */
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ gimple last = last_stmt (bb);
+ bool fallthru;
+
+ if (bb_to_omp_idx)
+ bb_to_omp_idx[bb->index] = cur_omp_region_idx;
+
+ if (last)
+ {
+ enum gimple_code code = gimple_code (last);
+ switch (code)
+ {
+ case GIMPLE_GOTO:
+ if (make_goto_expr_edges (bb))
+ ab_edge_goto.safe_push (bb);
+ fallthru = false;
+ break;
+ case GIMPLE_RETURN:
+ make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
+ fallthru = false;
+ break;
+ case GIMPLE_COND:
+ make_cond_expr_edges (bb);
+ fallthru = false;
+ break;
+ case GIMPLE_SWITCH:
+ make_gimple_switch_edges (bb);
+ fallthru = false;
+ break;
+ case GIMPLE_RESX:
+ make_eh_edges (last);
+ fallthru = false;
+ break;
+ case GIMPLE_EH_DISPATCH:
+ fallthru = make_eh_dispatch_edges (last);
+ break;
+
+ case GIMPLE_CALL:
+ /* If this function receives a nonlocal goto, then we need to
+ make edges from this call site to all the nonlocal goto
+ handlers. */
+ if (stmt_can_make_abnormal_goto (last))
+ ab_edge_call.safe_push (bb);
+
+ /* If this statement has reachable exception handlers, then
+ create abnormal edges to them. */
+ make_eh_edges (last);
+
+ /* BUILTIN_RETURN is really a return statement. */
+ if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
+ {
+ make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
+ fallthru = false;
+ }
+ /* Some calls are known not to return. */
+ else
+ fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
+ break;
+
+ case GIMPLE_ASSIGN:
+ /* A GIMPLE_ASSIGN may throw internally and thus be considered
+ control-altering. */
+ if (is_ctrl_altering_stmt (last))
+ make_eh_edges (last);
+ fallthru = true;
+ break;
+
+ case GIMPLE_ASM:
+ make_gimple_asm_edges (bb);
+ fallthru = true;
+ break;
+
+ CASE_GIMPLE_OMP:
+ fallthru = make_gimple_omp_edges (bb, &cur_region,
+ &cur_omp_region_idx);
+ if (cur_region && bb_to_omp_idx == NULL)
+ bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
+ break;
+
+ case GIMPLE_TRANSACTION:
+ {
+ tree abort_label = gimple_transaction_label (last);
+ if (abort_label)
+ make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
+ fallthru = true;
+ }
+ break;
+
+ default:
+ gcc_assert (!stmt_ends_bb_p (last));
+ fallthru = true;
+ }
+ }
+ else
+ fallthru = true;
+
+ if (fallthru)
+ make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
+ }
+
+ /* Computed gotos are hell to deal with, especially if there are
+ lots of them with a large number of destinations. So we factor
+ them to a common computed goto location before we build the
+ edge list. After we convert back to normal form, we will un-factor
+ the computed gotos since factoring introduces an unwanted jump.
+ For non-local gotos and abnormal edges from calls to calls that return
+ twice or forced labels, factor the abnormal edges too, by having all
+ abnormal edges from the calls go to a common artificial basic block
+ with ABNORMAL_DISPATCHER internal call and abnormal edges from that
+ basic block to all forced labels and calls returning twice.
+ We do this per-OpenMP structured block, because those regions
+ are guaranteed to be single entry single exit by the standard,
+ so it is not allowed to enter or exit such regions abnormally this way,
+ thus all computed gotos, non-local gotos and setjmp/longjmp calls
+ must not transfer control across SESE region boundaries. */
+ if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
+ {
+ gimple_stmt_iterator gsi;
+ basic_block dispatcher_bb_array[2] = { NULL, NULL };
+ basic_block *dispatcher_bbs = dispatcher_bb_array;
+ int count = n_basic_blocks_for_fn (cfun);
+
+ if (bb_to_omp_idx)
+ dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple label_stmt = gsi_stmt (gsi);
+ tree target;
+
+ if (gimple_code (label_stmt) != GIMPLE_LABEL)
+ break;
+
+ target = gimple_label_label (label_stmt);
+
+ /* Make an edge to every label block that has been marked as a
+ potential target for a computed goto or a non-local goto. */
+ if (FORCED_LABEL (target))
+ handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
+ &ab_edge_goto, true);
+ if (DECL_NONLOCAL (target))
+ {
+ handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
+ &ab_edge_call, false);
+ break;
+ }
+ }
+
+ if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
+ gsi_next_nondebug (&gsi);
+ if (!gsi_end_p (gsi))
+ {
+ /* Make an edge to every setjmp-like call. */
+ gimple call_stmt = gsi_stmt (gsi);
+ if (is_gimple_call (call_stmt)
+ && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
+ || gimple_call_builtin_p (call_stmt,
+ BUILT_IN_SETJMP_RECEIVER)))
+ handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
+ &ab_edge_call, false);
+ }
+ }
+
+ if (bb_to_omp_idx)
+ XDELETE (dispatcher_bbs);
+ }
+
+ XDELETE (bb_to_omp_idx);
+
+ free_omp_regions ();
+
+ /* Fold COND_EXPR_COND of each COND_EXPR. */
+ fold_cond_expr_cond ();
+}
+
+/* Find the next available discriminator value for LOCUS. The
+ discriminator distinguishes among several basic blocks that
+ share a common locus, allowing for more accurate sample-based
+ profiling. */
+
+static int
+next_discriminator_for_locus (location_t locus)
+{
+ struct locus_discrim_map item;
+ struct locus_discrim_map **slot;
+
+ item.locus = locus;
+ item.discriminator = 0;
+ slot = discriminator_per_locus.find_slot_with_hash (
+ &item, LOCATION_LINE (locus), INSERT);
+ gcc_assert (slot);
+ if (*slot == HTAB_EMPTY_ENTRY)
+ {
+ *slot = XNEW (struct locus_discrim_map);
+ gcc_assert (*slot);
+ (*slot)->locus = locus;
+ (*slot)->discriminator = 0;
+ }
+ (*slot)->discriminator++;
+ return (*slot)->discriminator;
+}
+
+/* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
+
+static bool
+same_line_p (location_t locus1, location_t locus2)
+{
+ expanded_location from, to;
+
+ if (locus1 == locus2)
+ return true;
+
+ from = expand_location (locus1);
+ to = expand_location (locus2);
+
+ if (from.line != to.line)
+ return false;
+ if (from.file == to.file)
+ return true;
+ return (from.file != NULL
+ && to.file != NULL
+ && filename_cmp (from.file, to.file) == 0);
+}
+
+/* Assign discriminators to each basic block. */
+
+static void
+assign_discriminators (void)
+{
+ basic_block bb;
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ edge e;
+ edge_iterator ei;
+ gimple last = last_stmt (bb);
+ location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
+
+ if (locus == UNKNOWN_LOCATION)
+ continue;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ gimple first = first_non_label_stmt (e->dest);
+ gimple last = last_stmt (e->dest);
+ if ((first && same_line_p (locus, gimple_location (first)))
+ || (last && same_line_p (locus, gimple_location (last))))
+ {
+ if (e->dest->discriminator != 0 && bb->discriminator == 0)
+ bb->discriminator = next_discriminator_for_locus (locus);
+ else
+ e->dest->discriminator = next_discriminator_for_locus (locus);
+ }
+ }
+ }
+}
+
+/* Create the edges for a GIMPLE_COND starting at block BB. */
+
+static void
+make_cond_expr_edges (basic_block bb)
+{
+ gimple entry = last_stmt (bb);
+ gimple then_stmt, else_stmt;
+ basic_block then_bb, else_bb;
+ tree then_label, else_label;
+ edge e;
+
+ gcc_assert (entry);
+ gcc_assert (gimple_code (entry) == GIMPLE_COND);
+
+ /* Entry basic blocks for each component. */
+ then_label = gimple_cond_true_label (entry);
+ else_label = gimple_cond_false_label (entry);
+ then_bb = label_to_block (then_label);
+ else_bb = label_to_block (else_label);
+ then_stmt = first_stmt (then_bb);
+ else_stmt = first_stmt (else_bb);
+
+ e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
+ e->goto_locus = gimple_location (then_stmt);
+ e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
+ if (e)
+ e->goto_locus = gimple_location (else_stmt);
+
+ /* We do not need the labels anymore. */
+ gimple_cond_set_true_label (entry, NULL_TREE);
+ gimple_cond_set_false_label (entry, NULL_TREE);
+}
+
+
+/* Called for each element in the hash table (P) as we delete the
+ edge to cases hash table.
+
+ Clear all the TREE_CHAINs to prevent problems with copying of
+ SWITCH_EXPRs and structure sharing rules, then free the hash table
+ element. */
+
+static bool
+edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
+ void *data ATTRIBUTE_UNUSED)
+{
+ tree t, next;
+
+ for (t = (tree) *value; t; t = next)
+ {
+ next = CASE_CHAIN (t);
+ CASE_CHAIN (t) = NULL;
+ }
+
+ *value = NULL;
+ return true;
+}
+
+/* Start recording information mapping edges to case labels. */
+
+void
+start_recording_case_labels (void)
+{
+ gcc_assert (edge_to_cases == NULL);
+ edge_to_cases = pointer_map_create ();
+ touched_switch_bbs = BITMAP_ALLOC (NULL);
+}
+
+/* Return nonzero if we are recording information for case labels. */
+
+static bool
+recording_case_labels_p (void)
+{
+ return (edge_to_cases != NULL);
+}
+
+/* Stop recording information mapping edges to case labels and
+ remove any information we have recorded. */
+void
+end_recording_case_labels (void)
+{
+ bitmap_iterator bi;
+ unsigned i;
+ pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
+ pointer_map_destroy (edge_to_cases);
+ edge_to_cases = NULL;
+ EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
+ {
+ basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
+ if (bb)
+ {
+ gimple stmt = last_stmt (bb);
+ if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
+ group_case_labels_stmt (stmt);
+ }
+ }
+ BITMAP_FREE (touched_switch_bbs);
+}
+
+/* If we are inside a {start,end}_recording_cases block, then return
+ a chain of CASE_LABEL_EXPRs from T which reference E.
+
+ Otherwise return NULL. */
+
+static tree
+get_cases_for_edge (edge e, gimple t)
+{
+ void **slot;
+ size_t i, n;
+
+ /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
+ chains available. Return NULL so the caller can detect this case. */
+ if (!recording_case_labels_p ())
+ return NULL;
+
+ slot = pointer_map_contains (edge_to_cases, e);
+ if (slot)
+ return (tree) *slot;
+
+ /* If we did not find E in the hash table, then this must be the first
+ time we have been queried for information about E & T. Add all the
+ elements from T to the hash table then perform the query again. */
+
+ n = gimple_switch_num_labels (t);
+ for (i = 0; i < n; i++)
+ {
+ tree elt = gimple_switch_label (t, i);
+ tree lab = CASE_LABEL (elt);
+ basic_block label_bb = label_to_block (lab);
+ edge this_edge = find_edge (e->src, label_bb);
+
+ /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
+ a new chain. */
+ slot = pointer_map_insert (edge_to_cases, this_edge);
+ CASE_CHAIN (elt) = (tree) *slot;
+ *slot = elt;
+ }
+
+ return (tree) *pointer_map_contains (edge_to_cases, e);
+}
+
+/* Create the edges for a GIMPLE_SWITCH starting at block BB. */
+
+static void
+make_gimple_switch_edges (basic_block bb)
+{
+ gimple entry = last_stmt (bb);
+ size_t i, n;
+
+ n = gimple_switch_num_labels (entry);
+
+ for (i = 0; i < n; ++i)
+ {
+ tree lab = CASE_LABEL (gimple_switch_label (entry, i));
+ basic_block label_bb = label_to_block (lab);
+ make_edge (bb, label_bb, 0);
+ }
+}
+
+
+/* Return the basic block holding label DEST. */
+
+basic_block
+label_to_block_fn (struct function *ifun, tree dest)
+{
+ int uid = LABEL_DECL_UID (dest);
+
+ /* We would die hard when faced by an undefined label. Emit a label to
+ the very first basic block. This will hopefully make even the dataflow
+ and undefined variable warnings quite right. */
+ if (seen_error () && uid < 0)
+ {
+ gimple_stmt_iterator gsi =
+ gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
+ gimple stmt;
+
+ stmt = gimple_build_label (dest);
+ gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
+ uid = LABEL_DECL_UID (dest);
+ }
+ if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
+ return NULL;
+ return (*ifun->cfg->x_label_to_block_map)[uid];
+}
+
+/* Create edges for a goto statement at block BB. Returns true
+ if abnormal edges should be created. */
+
+static bool
+make_goto_expr_edges (basic_block bb)
+{
+ gimple_stmt_iterator last = gsi_last_bb (bb);
+ gimple goto_t = gsi_stmt (last);
+
+ /* A simple GOTO creates normal edges. */
+ if (simple_goto_p (goto_t))
+ {
+ tree dest = gimple_goto_dest (goto_t);
+ basic_block label_bb = label_to_block (dest);
+ edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
+ e->goto_locus = gimple_location (goto_t);
+ gsi_remove (&last, true);
+ return false;
+ }
+
+ /* A computed GOTO creates abnormal edges. */
+ return true;
+}
+
+/* Create edges for an asm statement with labels at block BB. */
+
+static void
+make_gimple_asm_edges (basic_block bb)
+{
+ gimple stmt = last_stmt (bb);
+ int i, n = gimple_asm_nlabels (stmt);
+
+ for (i = 0; i < n; ++i)
+ {
+ tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
+ basic_block label_bb = label_to_block (label);
+ make_edge (bb, label_bb, 0);
+ }
+}
+
+/*---------------------------------------------------------------------------
+ Flowgraph analysis
+---------------------------------------------------------------------------*/
+
+/* Cleanup useless labels in basic blocks. This is something we wish
+ to do early because it allows us to group case labels before creating
+ the edges for the CFG, and it speeds up block statement iterators in
+ all passes later on.
+ We rerun this pass after CFG is created, to get rid of the labels that
+ are no longer referenced. After then we do not run it any more, since
+ (almost) no new labels should be created. */
+
+/* A map from basic block index to the leading label of that block. */
+static struct label_record
+{
+ /* The label. */
+ tree label;
+
+ /* True if the label is referenced from somewhere. */
+ bool used;
+} *label_for_bb;
+
+/* Given LABEL return the first label in the same basic block. */
+
+static tree
+main_block_label (tree label)
+{
+ basic_block bb = label_to_block (label);
+ tree main_label = label_for_bb[bb->index].label;
+
+ /* label_to_block possibly inserted undefined label into the chain. */
+ if (!main_label)
+ {
+ label_for_bb[bb->index].label = label;
+ main_label = label;
+ }
+
+ label_for_bb[bb->index].used = true;
+ return main_label;
+}
+
+/* Clean up redundant labels within the exception tree. */
+
+static void
+cleanup_dead_labels_eh (void)
+{
+ eh_landing_pad lp;
+ eh_region r;
+ tree lab;
+ int i;
+
+ if (cfun->eh == NULL)
+ return;
+
+ for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
+ if (lp && lp->post_landing_pad)
+ {
+ lab = main_block_label (lp->post_landing_pad);
+ if (lab != lp->post_landing_pad)
+ {
+ EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
+ EH_LANDING_PAD_NR (lab) = lp->index;
+ }
+ }
+
+ FOR_ALL_EH_REGION (r)
+ switch (r->type)
+ {
+ case ERT_CLEANUP:
+ case ERT_MUST_NOT_THROW:
+ break;
+
+ case ERT_TRY:
+ {
+ eh_catch c;
+ for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
+ {
+ lab = c->label;
+ if (lab)
+ c->label = main_block_label (lab);
+ }
+ }
+ break;
+
+ case ERT_ALLOWED_EXCEPTIONS:
+ lab = r->u.allowed.label;
+ if (lab)
+ r->u.allowed.label = main_block_label (lab);
+ break;
+ }
+}
+
+
+/* Cleanup redundant labels. This is a three-step process:
+ 1) Find the leading label for each block.
+ 2) Redirect all references to labels to the leading labels.
+ 3) Cleanup all useless labels. */
+
+void
+cleanup_dead_labels (void)
+{
+ basic_block bb;
+ label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
+
+ /* Find a suitable label for each block. We use the first user-defined
+ label if there is one, or otherwise just the first label we see. */
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ gimple_stmt_iterator i;
+
+ for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
+ {
+ tree label;
+ gimple stmt = gsi_stmt (i);
+
+ if (gimple_code (stmt) != GIMPLE_LABEL)
+ break;
+
+ label = gimple_label_label (stmt);
+
+ /* If we have not yet seen a label for the current block,
+ remember this one and see if there are more labels. */
+ if (!label_for_bb[bb->index].label)
+ {
+ label_for_bb[bb->index].label = label;
+ continue;
+ }
+
+ /* If we did see a label for the current block already, but it
+ is an artificially created label, replace it if the current
+ label is a user defined label. */
+ if (!DECL_ARTIFICIAL (label)
+ && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
+ {
+ label_for_bb[bb->index].label = label;
+ break;
+ }
+ }
+ }
+
+ /* Now redirect all jumps/branches to the selected label.
+ First do so for each block ending in a control statement. */
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ gimple stmt = last_stmt (bb);
+ tree label, new_label;
+
+ if (!stmt)
+ continue;
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_COND:
+ label = gimple_cond_true_label (stmt);
+ if (label)
+ {
+ new_label = main_block_label (label);
+ if (new_label != label)
+ gimple_cond_set_true_label (stmt, new_label);
+ }
+
+ label = gimple_cond_false_label (stmt);
+ if (label)
+ {
+ new_label = main_block_label (label);
+ if (new_label != label)
+ gimple_cond_set_false_label (stmt, new_label);
+ }
+ break;
+
+ case GIMPLE_SWITCH:
+ {
+ size_t i, n = gimple_switch_num_labels (stmt);
+
+ /* Replace all destination labels. */
+ for (i = 0; i < n; ++i)
+ {
+ tree case_label = gimple_switch_label (stmt, i);
+ label = CASE_LABEL (case_label);
+ new_label = main_block_label (label);
+ if (new_label != label)
+ CASE_LABEL (case_label) = new_label;
+ }
+ break;
+ }
+
+ case GIMPLE_ASM:
+ {
+ int i, n = gimple_asm_nlabels (stmt);
+
+ for (i = 0; i < n; ++i)
+ {
+ tree cons = gimple_asm_label_op (stmt, i);
+ tree label = main_block_label (TREE_VALUE (cons));
+ TREE_VALUE (cons) = label;
+ }
+ break;
+ }
+
+ /* We have to handle gotos until they're removed, and we don't
+ remove them until after we've created the CFG edges. */
+ case GIMPLE_GOTO:
+ if (!computed_goto_p (stmt))
+ {
+ label = gimple_goto_dest (stmt);
+ new_label = main_block_label (label);
+ if (new_label != label)
+ gimple_goto_set_dest (stmt, new_label);
+ }
+ break;
+
+ case GIMPLE_TRANSACTION:
+ {
+ tree label = gimple_transaction_label (stmt);
+ if (label)
+ {
+ tree new_label = main_block_label (label);
+ if (new_label != label)
+ gimple_transaction_set_label (stmt, new_label);
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ /* Do the same for the exception region tree labels. */
+ cleanup_dead_labels_eh ();
+
+ /* Finally, purge dead labels. All user-defined labels and labels that
+ can be the target of non-local gotos and labels which have their
+ address taken are preserved. */
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ gimple_stmt_iterator i;
+ tree label_for_this_bb = label_for_bb[bb->index].label;
+
+ if (!label_for_this_bb)
+ continue;
+
+ /* If the main label of the block is unused, we may still remove it. */
+ if (!label_for_bb[bb->index].used)
+ label_for_this_bb = NULL;
+
+ for (i = gsi_start_bb (bb); !gsi_end_p (i); )
+ {
+ tree label;
+ gimple stmt = gsi_stmt (i);
+
+ if (gimple_code (stmt) != GIMPLE_LABEL)
+ break;
+
+ label = gimple_label_label (stmt);
+
+ if (label == label_for_this_bb
+ || !DECL_ARTIFICIAL (label)
+ || DECL_NONLOCAL (label)
+ || FORCED_LABEL (label))
+ gsi_next (&i);
+ else
+ gsi_remove (&i, true);
+ }
+ }
+
+ free (label_for_bb);
+}
+
+/* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
+ the ones jumping to the same label.
+ Eg. three separate entries 1: 2: 3: become one entry 1..3: */
+
+void
+group_case_labels_stmt (gimple stmt)
+{
+ int old_size = gimple_switch_num_labels (stmt);
+ int i, j, new_size = old_size;
+ basic_block default_bb = NULL;
+
+ default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
+
+ /* Look for possible opportunities to merge cases. */
+ i = 1;
+ while (i < old_size)
+ {
+ tree base_case, base_high;
+ basic_block base_bb;
+
+ base_case = gimple_switch_label (stmt, i);
+
+ gcc_assert (base_case);
+ base_bb = label_to_block (CASE_LABEL (base_case));
+
+ /* Discard cases that have the same destination as the
+ default case. */
+ if (base_bb == default_bb)
+ {
+ gimple_switch_set_label (stmt, i, NULL_TREE);
+ i++;
+ new_size--;
+ continue;
+ }
+
+ base_high = CASE_HIGH (base_case)
+ ? CASE_HIGH (base_case)
+ : CASE_LOW (base_case);
+ i++;
+
+ /* Try to merge case labels. Break out when we reach the end
+ of the label vector or when we cannot merge the next case
+ label with the current one. */
+ while (i < old_size)
+ {
+ tree merge_case = gimple_switch_label (stmt, i);
+ basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
+ double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
+
+ /* Merge the cases if they jump to the same place,
+ and their ranges are consecutive. */
+ if (merge_bb == base_bb
+ && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
+ {
+ base_high = CASE_HIGH (merge_case) ?
+ CASE_HIGH (merge_case) : CASE_LOW (merge_case);
+ CASE_HIGH (base_case) = base_high;
+ gimple_switch_set_label (stmt, i, NULL_TREE);
+ new_size--;
+ i++;
+ }
+ else
+ break;
+ }
+ }
+
+ /* Compress the case labels in the label vector, and adjust the
+ length of the vector. */
+ for (i = 0, j = 0; i < new_size; i++)
+ {
+ while (! gimple_switch_label (stmt, j))
+ j++;
+ gimple_switch_set_label (stmt, i,
+ gimple_switch_label (stmt, j++));
+ }
+
+ gcc_assert (new_size <= old_size);
+ gimple_switch_set_num_labels (stmt, new_size);
+}
+
+/* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
+ and scan the sorted vector of cases. Combine the ones jumping to the
+ same label. */
+
+void
+group_case_labels (void)
+{
+ basic_block bb;
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ gimple stmt = last_stmt (bb);
+ if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
+ group_case_labels_stmt (stmt);
+ }
+}
+
+/* Checks whether we can merge block B into block A. */
+
+static bool
+gimple_can_merge_blocks_p (basic_block a, basic_block b)
+{
+ gimple stmt;
+ gimple_stmt_iterator gsi;
+
+ if (!single_succ_p (a))
+ return false;
+
+ if (single_succ_edge (a)->flags & EDGE_COMPLEX)
+ return false;
+
+ if (single_succ (a) != b)
+ return false;
+
+ if (!single_pred_p (b))
+ return false;
+
+ if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
+ return false;
+
+ /* If A ends by a statement causing exceptions or something similar, we
+ cannot merge the blocks. */
+ stmt = last_stmt (a);
+ if (stmt && stmt_ends_bb_p (stmt))
+ return false;
+
+ /* Do not allow a block with only a non-local label to be merged. */
+ if (stmt
+ && gimple_code (stmt) == GIMPLE_LABEL
+ && DECL_NONLOCAL (gimple_label_label (stmt)))
+ return false;
+
+ /* Examine the labels at the beginning of B. */
+ for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ tree lab;
+ stmt = gsi_stmt (gsi);
+ if (gimple_code (stmt) != GIMPLE_LABEL)
+ break;
+ lab = gimple_label_label (stmt);
+
+ /* Do not remove user forced labels or for -O0 any user labels. */
+ if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
+ return false;
+ }
+
+ /* Protect the loop latches. */
+ if (current_loops && b->loop_father->latch == b)
+ return false;
+
+ /* It must be possible to eliminate all phi nodes in B. If ssa form
+ is not up-to-date and a name-mapping is registered, we cannot eliminate
+ any phis. Symbols marked for renaming are never a problem though. */
+ for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple phi = gsi_stmt (gsi);
+ /* Technically only new names matter. */
+ if (name_registered_for_update_p (PHI_RESULT (phi)))
+ return false;
+ }
+
+ /* When not optimizing, don't merge if we'd lose goto_locus. */
+ if (!optimize
+ && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
+ {
+ location_t goto_locus = single_succ_edge (a)->goto_locus;
+ gimple_stmt_iterator prev, next;
+ prev = gsi_last_nondebug_bb (a);
+ next = gsi_after_labels (b);
+ if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
+ gsi_next_nondebug (&next);
+ if ((gsi_end_p (prev)
+ || gimple_location (gsi_stmt (prev)) != goto_locus)
+ && (gsi_end_p (next)
+ || gimple_location (gsi_stmt (next)) != goto_locus))
+ return false;
+ }
+
+ return true;
+}
+
+/* Replaces all uses of NAME by VAL. */
+
+void
+replace_uses_by (tree name, tree val)
+{
+ imm_use_iterator imm_iter;
+ use_operand_p use;
+ gimple stmt;
+ edge e;
+
+ FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
+ {
+ /* Mark the block if we change the last stmt in it. */
+ if (cfgcleanup_altered_bbs
+ && stmt_ends_bb_p (stmt))
+ bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
+
+ FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
+ {
+ replace_exp (use, val);
+
+ if (gimple_code (stmt) == GIMPLE_PHI)
+ {
+ e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
+ if (e->flags & EDGE_ABNORMAL)
+ {
+ /* This can only occur for virtual operands, since
+ for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
+ would prevent replacement. */
+ gcc_checking_assert (virtual_operand_p (name));
+ SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
+ }
+ }
+ }
+
+ if (gimple_code (stmt) != GIMPLE_PHI)
+ {
+ gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
+ gimple orig_stmt = stmt;
+ size_t i;
+
+ /* FIXME. It shouldn't be required to keep TREE_CONSTANT
+ on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
+ only change sth from non-invariant to invariant, and only
+ when propagating constants. */
+ if (is_gimple_min_invariant (val))
+ for (i = 0; i < gimple_num_ops (stmt); i++)
+ {
+ tree op = gimple_op (stmt, i);
+ /* Operands may be empty here. For example, the labels
+ of a GIMPLE_COND are nulled out following the creation
+ of the corresponding CFG edges. */
+ if (op && TREE_CODE (op) == ADDR_EXPR)
+ recompute_tree_invariant_for_addr_expr (op);
+ }
+
+ if (fold_stmt (&gsi))
+ stmt = gsi_stmt (gsi);
+
+ if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
+ gimple_purge_dead_eh_edges (gimple_bb (stmt));
+
+ update_stmt (stmt);
+ }
+ }
+
+ gcc_checking_assert (has_zero_uses (name));
+
+ /* Also update the trees stored in loop structures. */
+ if (current_loops)
+ {
+ struct loop *loop;
+
+ FOR_EACH_LOOP (loop, 0)
+ {
+ substitute_in_loop_info (loop, name, val);
+ }
+ }
+}
+
+/* Merge block B into block A. */
+
+static void
+gimple_merge_blocks (basic_block a, basic_block b)
+{
+ gimple_stmt_iterator last, gsi, psi;
+
+ if (dump_file)
+ fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
+
+ /* Remove all single-valued PHI nodes from block B of the form
+ V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
+ gsi = gsi_last_bb (a);
+ for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
+ {
+ gimple phi = gsi_stmt (psi);
+ tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
+ gimple copy;
+ bool may_replace_uses = (virtual_operand_p (def)
+ || may_propagate_copy (def, use));
+
+ /* In case we maintain loop closed ssa form, do not propagate arguments
+ of loop exit phi nodes. */
+ if (current_loops
+ && loops_state_satisfies_p (LOOP_CLOSED_SSA)
+ && !virtual_operand_p (def)
+ && TREE_CODE (use) == SSA_NAME
+ && a->loop_father != b->loop_father)
+ may_replace_uses = false;
+
+ if (!may_replace_uses)
+ {
+ gcc_assert (!virtual_operand_p (def));
+
+ /* Note that just emitting the copies is fine -- there is no problem
+ with ordering of phi nodes. This is because A is the single
+ predecessor of B, therefore results of the phi nodes cannot
+ appear as arguments of the phi nodes. */
+ copy = gimple_build_assign (def, use);
+ gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
+ remove_phi_node (&psi, false);
+ }
+ else
+ {
+ /* If we deal with a PHI for virtual operands, we can simply
+ propagate these without fussing with folding or updating
+ the stmt. */
+ if (virtual_operand_p (def))
+ {
+ imm_use_iterator iter;
+ use_operand_p use_p;
+ gimple stmt;
+
+ FOR_EACH_IMM_USE_STMT (stmt, iter, def)
+ FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
+ SET_USE (use_p, use);
+
+ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
+ SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
+ }
+ else
+ replace_uses_by (def, use);
+
+ remove_phi_node (&psi, true);
+ }
+ }
+
+ /* Ensure that B follows A. */
+ move_block_after (b, a);
+
+ gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
+ gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
+
+ /* Remove labels from B and set gimple_bb to A for other statements. */
+ for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
+ {
+ gimple stmt = gsi_stmt (gsi);
+ if (gimple_code (stmt) == GIMPLE_LABEL)
+ {
+ tree label = gimple_label_label (stmt);
+ int lp_nr;
+
+ gsi_remove (&gsi, false);
+
+ /* Now that we can thread computed gotos, we might have
+ a situation where we have a forced label in block B
+ However, the label at the start of block B might still be
+ used in other ways (think about the runtime checking for
+ Fortran assigned gotos). So we can not just delete the
+ label. Instead we move the label to the start of block A. */
+ if (FORCED_LABEL (label))
+ {
+ gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
+ gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
+ }
+ /* Other user labels keep around in a form of a debug stmt. */
+ else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
+ {
+ gimple dbg = gimple_build_debug_bind (label,
+ integer_zero_node,
+ stmt);
+ gimple_debug_bind_reset_value (dbg);
+ gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
+ }
+
+ lp_nr = EH_LANDING_PAD_NR (label);
+ if (lp_nr)
+ {
+ eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
+ lp->post_landing_pad = NULL;
+ }
+ }
+ else
+ {
+ gimple_set_bb (stmt, a);
+ gsi_next (&gsi);
+ }
+ }
+
+ /* Merge the sequences. */
+ last = gsi_last_bb (a);
+ gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
+ set_bb_seq (b, NULL);
+
+ if (cfgcleanup_altered_bbs)
+ bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
+}
+
+
+/* Return the one of two successors of BB that is not reachable by a
+ complex edge, if there is one. Else, return BB. We use
+ this in optimizations that use post-dominators for their heuristics,
+ to catch the cases in C++ where function calls are involved. */
+
+basic_block
+single_noncomplex_succ (basic_block bb)
+{
+ edge e0, e1;
+ if (EDGE_COUNT (bb->succs) != 2)
+ return bb;
+
+ e0 = EDGE_SUCC (bb, 0);
+ e1 = EDGE_SUCC (bb, 1);
+ if (e0->flags & EDGE_COMPLEX)
+ return e1->dest;
+ if (e1->flags & EDGE_COMPLEX)
+ return e0->dest;
+
+ return bb;
+}
+
+/* T is CALL_EXPR. Set current_function_calls_* flags. */
+
+void
+notice_special_calls (gimple call)
+{
+ int flags = gimple_call_flags (call);
+
+ if (flags & ECF_MAY_BE_ALLOCA)
+ cfun->calls_alloca = true;
+ if (flags & ECF_RETURNS_TWICE)
+ cfun->calls_setjmp = true;
+}
+
+
+/* Clear flags set by notice_special_calls. Used by dead code removal
+ to update the flags. */
+
+void
+clear_special_calls (void)
+{
+ cfun->calls_alloca = false;
+ cfun->calls_setjmp = false;
+}
+
+/* Remove PHI nodes associated with basic block BB and all edges out of BB. */
+
+static void
+remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
+{
+ /* Since this block is no longer reachable, we can just delete all
+ of its PHI nodes. */
+ remove_phi_nodes (bb);
+
+ /* Remove edges to BB's successors. */
+ while (EDGE_COUNT (bb->succs) > 0)
+ remove_edge (EDGE_SUCC (bb, 0));
+}
+
+
+/* Remove statements of basic block BB. */
+
+static void
+remove_bb (basic_block bb)
+{
+ gimple_stmt_iterator i;
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "Removing basic block %d\n", bb->index);
+ if (dump_flags & TDF_DETAILS)
+ {
+ dump_bb (dump_file, bb, 0, dump_flags);
+ fprintf (dump_file, "\n");
+ }
+ }
+
+ if (current_loops)
+ {
+ struct loop *loop = bb->loop_father;
+
+ /* If a loop gets removed, clean up the information associated
+ with it. */
+ if (loop->latch == bb
+ || loop->header == bb)
+ free_numbers_of_iterations_estimates_loop (loop);
+ }
+
+ /* Remove all the instructions in the block. */
+ if (bb_seq (bb) != NULL)
+ {
+ /* Walk backwards so as to get a chance to substitute all
+ released DEFs into debug stmts. See
+ eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
+ details. */
+ for (i = gsi_last_bb (bb); !gsi_end_p (i);)
+ {
+ gimple stmt = gsi_stmt (i);
+ if (gimple_code (stmt) == GIMPLE_LABEL
+ && (FORCED_LABEL (gimple_label_label (stmt))
+ || DECL_NONLOCAL (gimple_label_label (stmt))))
+ {
+ basic_block new_bb;
+ gimple_stmt_iterator new_gsi;
+
+ /* A non-reachable non-local label may still be referenced.
+ But it no longer needs to carry the extra semantics of
+ non-locality. */
+ if (DECL_NONLOCAL (gimple_label_label (stmt)))
+ {
+ DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
+ FORCED_LABEL (gimple_label_label (stmt)) = 1;
+ }
+
+ new_bb = bb->prev_bb;
+ new_gsi = gsi_start_bb (new_bb);
+ gsi_remove (&i, false);
+ gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
+ }
+ else
+ {
+ /* Release SSA definitions if we are in SSA. Note that we
+ may be called when not in SSA. For example,
+ final_cleanup calls this function via
+ cleanup_tree_cfg. */
+ if (gimple_in_ssa_p (cfun))
+ release_defs (stmt);
+
+ gsi_remove (&i, true);
+ }
+
+ if (gsi_end_p (i))
+ i = gsi_last_bb (bb);
+ else
+ gsi_prev (&i);
+ }
+ }
+
+ remove_phi_nodes_and_edges_for_unreachable_block (bb);
+ bb->il.gimple.seq = NULL;
+ bb->il.gimple.phi_nodes = NULL;
+}
+
+
+/* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
+ predicate VAL, return the edge that will be taken out of the block.
+ If VAL does not match a unique edge, NULL is returned. */
+
+edge
+find_taken_edge (basic_block bb, tree val)
+{
+ gimple stmt;
+
+ stmt = last_stmt (bb);
+
+ gcc_assert (stmt);
+ gcc_assert (is_ctrl_stmt (stmt));
+
+ if (val == NULL)
+ return NULL;
+
+ if (!is_gimple_min_invariant (val))
+ return NULL;
+
+ if (gimple_code (stmt) == GIMPLE_COND)
+ return find_taken_edge_cond_expr (bb, val);
+
+ if (gimple_code (stmt) == GIMPLE_SWITCH)
+ return find_taken_edge_switch_expr (bb, val);
+
+ if (computed_goto_p (stmt))
+ {
+ /* Only optimize if the argument is a label, if the argument is
+ not a label then we can not construct a proper CFG.
+
+ It may be the case that we only need to allow the LABEL_REF to
+ appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
+ appear inside a LABEL_EXPR just to be safe. */
+ if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
+ && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
+ return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
+ return NULL;
+ }
+
+ gcc_unreachable ();
+}
+
+/* Given a constant value VAL and the entry block BB to a GOTO_EXPR
+ statement, determine which of the outgoing edges will be taken out of the
+ block. Return NULL if either edge may be taken. */
+
+static edge
+find_taken_edge_computed_goto (basic_block bb, tree val)
+{
+ basic_block dest;
+ edge e = NULL;
+
+ dest = label_to_block (val);
+ if (dest)
+ {
+ e = find_edge (bb, dest);
+ gcc_assert (e != NULL);
+ }
+
+ return e;
+}
+
+/* Given a constant value VAL and the entry block BB to a COND_EXPR
+ statement, determine which of the two edges will be taken out of the
+ block. Return NULL if either edge may be taken. */
+
+static edge
+find_taken_edge_cond_expr (basic_block bb, tree val)
+{
+ edge true_edge, false_edge;
+
+ extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
+
+ gcc_assert (TREE_CODE (val) == INTEGER_CST);
+ return (integer_zerop (val) ? false_edge : true_edge);
+}
+
+/* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
+ statement, determine which edge will be taken out of the block. Return
+ NULL if any edge may be taken. */
+
+static edge
+find_taken_edge_switch_expr (basic_block bb, tree val)
+{
+ basic_block dest_bb;
+ edge e;
+ gimple switch_stmt;
+ tree taken_case;
+
+ switch_stmt = last_stmt (bb);
+ taken_case = find_case_label_for_value (switch_stmt, val);
+ dest_bb = label_to_block (CASE_LABEL (taken_case));
+
+ e = find_edge (bb, dest_bb);
+ gcc_assert (e);
+ return e;
+}
+
+
+/* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
+ We can make optimal use here of the fact that the case labels are
+ sorted: We can do a binary search for a case matching VAL. */
+
+static tree
+find_case_label_for_value (gimple switch_stmt, tree val)
+{
+ size_t low, high, n = gimple_switch_num_labels (switch_stmt);
+ tree default_case = gimple_switch_default_label (switch_stmt);
+
+ for (low = 0, high = n; high - low > 1; )
+ {
+ size_t i = (high + low) / 2;
+ tree t = gimple_switch_label (switch_stmt, i);
+ int cmp;
+
+ /* Cache the result of comparing CASE_LOW and val. */
+ cmp = tree_int_cst_compare (CASE_LOW (t), val);
+
+ if (cmp > 0)
+ high = i;
+ else
+ low = i;
+
+ if (CASE_HIGH (t) == NULL)
+ {
+ /* A singe-valued case label. */
+ if (cmp == 0)
+ return t;
+ }
+ else
+ {
+ /* A case range. We can only handle integer ranges. */
+ if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
+ return t;
+ }
+ }
+
+ return default_case;
+}
+
+
+/* Dump a basic block on stderr. */
+
+void
+gimple_debug_bb (basic_block bb)
+{
+ dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
+}
+
+
+/* Dump basic block with index N on stderr. */
+
+basic_block
+gimple_debug_bb_n (int n)
+{
+ gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
+ return BASIC_BLOCK_FOR_FN (cfun, n);
+}
+
+
+/* Dump the CFG on stderr.
+
+ FLAGS are the same used by the tree dumping functions
+ (see TDF_* in dumpfile.h). */
+
+void
+gimple_debug_cfg (int flags)
+{
+ gimple_dump_cfg (stderr, flags);
+}
+
+
+/* Dump the program showing basic block boundaries on the given FILE.
+
+ FLAGS are the same used by the tree dumping functions (see TDF_* in
+ tree.h). */
+
+void
+gimple_dump_cfg (FILE *file, int flags)
+{
+ if (flags & TDF_DETAILS)
+ {
+ dump_function_header (file, current_function_decl, flags);
+ fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
+ n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
+ last_basic_block_for_fn (cfun));
+
+ brief_dump_cfg (file, flags | TDF_COMMENT);
+ fprintf (file, "\n");
+ }
+
+ if (flags & TDF_STATS)
+ dump_cfg_stats (file);
+
+ dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
+}
+
+
+/* Dump CFG statistics on FILE. */
+
+void
+dump_cfg_stats (FILE *file)
+{
+ static long max_num_merged_labels = 0;
+ unsigned long size, total = 0;
+ long num_edges;
+ basic_block bb;
+ const char * const fmt_str = "%-30s%-13s%12s\n";
+ const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
+ const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
+ const char * const fmt_str_3 = "%-43s%11lu%c\n";
+ const char *funcname = current_function_name ();
+
+ fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
+
+ fprintf (file, "---------------------------------------------------------\n");
+ fprintf (file, fmt_str, "", " Number of ", "Memory");
+ fprintf (file, fmt_str, "", " instances ", "used ");
+ fprintf (file, "---------------------------------------------------------\n");
+
+ size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
+ total += size;
+ fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
+ SCALE (size), LABEL (size));
+
+ num_edges = 0;
+ FOR_EACH_BB_FN (bb, cfun)
+ num_edges += EDGE_COUNT (bb->succs);
+ size = num_edges * sizeof (struct edge_def);
+ total += size;
+ fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
+
+ fprintf (file, "---------------------------------------------------------\n");
+ fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
+ LABEL (total));
+ fprintf (file, "---------------------------------------------------------\n");
+ fprintf (file, "\n");
+
+ if (cfg_stats.num_merged_labels > max_num_merged_labels)
+ max_num_merged_labels = cfg_stats.num_merged_labels;
+
+ fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
+ cfg_stats.num_merged_labels, max_num_merged_labels);
+
+ fprintf (file, "\n");
+}
+
+
+/* Dump CFG statistics on stderr. Keep extern so that it's always
+ linked in the final executable. */
+
+DEBUG_FUNCTION void
+debug_cfg_stats (void)
+{
+ dump_cfg_stats (stderr);
+}
+
+/*---------------------------------------------------------------------------
+ Miscellaneous helpers
+---------------------------------------------------------------------------*/
+
+/* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
+ flow. Transfers of control flow associated with EH are excluded. */
+
+static bool
+call_can_make_abnormal_goto (gimple t)
+{
+ /* If the function has no non-local labels, then a call cannot make an
+ abnormal transfer of control. */
+ if (!cfun->has_nonlocal_label
+ && !cfun->calls_setjmp)
+ return false;
+
+ /* Likewise if the call has no side effects. */
+ if (!gimple_has_side_effects (t))
+ return false;
+
+ /* Likewise if the called function is leaf. */
+ if (gimple_call_flags (t) & ECF_LEAF)
+ return false;
+
+ return true;
+}
+
+
+/* Return true if T can make an abnormal transfer of control flow.
+ Transfers of control flow associated with EH are excluded. */
+
+bool
+stmt_can_make_abnormal_goto (gimple t)
+{
+ if (computed_goto_p (t))
+ return true;
+ if (is_gimple_call (t))
+ return call_can_make_abnormal_goto (t);
+ return false;
+}
+
+
+/* Return true if T represents a stmt that always transfers control. */
+
+bool
+is_ctrl_stmt (gimple t)
+{
+ switch (gimple_code (t))
+ {
+ case GIMPLE_COND:
+ case GIMPLE_SWITCH:
+ case GIMPLE_GOTO:
+ case GIMPLE_RETURN:
+ case GIMPLE_RESX:
+ return true;
+ default:
+ return false;
+ }
+}
+
+
+/* Return true if T is a statement that may alter the flow of control
+ (e.g., a call to a non-returning function). */
+
+bool
+is_ctrl_altering_stmt (gimple t)
+{
+ gcc_assert (t);
+
+ switch (gimple_code (t))
+ {
+ case GIMPLE_CALL:
+ {
+ int flags = gimple_call_flags (t);
+
+ /* A call alters control flow if it can make an abnormal goto. */
+ if (call_can_make_abnormal_goto (t))
+ return true;
+
+ /* A call also alters control flow if it does not return. */
+ if (flags & ECF_NORETURN)
+ return true;
+
+ /* TM ending statements have backedges out of the transaction.
+ Return true so we split the basic block containing them.
+ Note that the TM_BUILTIN test is merely an optimization. */
+ if ((flags & ECF_TM_BUILTIN)
+ && is_tm_ending_fndecl (gimple_call_fndecl (t)))
+ return true;
+
+ /* BUILT_IN_RETURN call is same as return statement. */
+ if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
+ return true;
+ }
+ break;
+
+ case GIMPLE_EH_DISPATCH:
+ /* EH_DISPATCH branches to the individual catch handlers at
+ this level of a try or allowed-exceptions region. It can
+ fallthru to the next statement as well. */
+ return true;
+
+ case GIMPLE_ASM:
+ if (gimple_asm_nlabels (t) > 0)
+ return true;
+ break;
+
+ CASE_GIMPLE_OMP:
+ /* OpenMP directives alter control flow. */
+ return true;
+
+ case GIMPLE_TRANSACTION:
+ /* A transaction start alters control flow. */
+ return true;
+
+ default:
+ break;
+ }
+
+ /* If a statement can throw, it alters control flow. */
+ return stmt_can_throw_internal (t);
+}
+
+
+/* Return true if T is a simple local goto. */
+
+bool
+simple_goto_p (gimple t)
+{
+ return (gimple_code (t) == GIMPLE_GOTO
+ && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
+}
+
+
+/* Return true if STMT should start a new basic block. PREV_STMT is
+ the statement preceding STMT. It is used when STMT is a label or a
+ case label. Labels should only start a new basic block if their
+ previous statement wasn't a label. Otherwise, sequence of labels
+ would generate unnecessary basic blocks that only contain a single
+ label. */
+
+static inline bool
+stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
+{
+ if (stmt == NULL)
+ return false;
+
+ /* Labels start a new basic block only if the preceding statement
+ wasn't a label of the same type. This prevents the creation of
+ consecutive blocks that have nothing but a single label. */
+ if (gimple_code (stmt) == GIMPLE_LABEL)
+ {
+ /* Nonlocal and computed GOTO targets always start a new block. */
+ if (DECL_NONLOCAL (gimple_label_label (stmt))
+ || FORCED_LABEL (gimple_label_label (stmt)))
+ return true;
+
+ if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
+ {
+ if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
+ return true;
+
+ cfg_stats.num_merged_labels++;
+ return false;
+ }
+ else
+ return true;
+ }
+ else if (gimple_code (stmt) == GIMPLE_CALL
+ && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
+ /* setjmp acts similar to a nonlocal GOTO target and thus should
+ start a new block. */
+ return true;
+
+ return false;
+}
+
+
+/* Return true if T should end a basic block. */
+
+bool
+stmt_ends_bb_p (gimple t)
+{
+ return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
+}
+
+/* Remove block annotations and other data structures. */
+
+void
+delete_tree_cfg_annotations (void)
+{
+ vec_free (label_to_block_map_for_fn (cfun));
+}
+
+
+/* Return the first statement in basic block BB. */
+
+gimple
+first_stmt (basic_block bb)
+{
+ gimple_stmt_iterator i = gsi_start_bb (bb);
+ gimple stmt = NULL;
+
+ while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
+ {
+ gsi_next (&i);
+ stmt = NULL;
+ }
+ return stmt;
+}
+
+/* Return the first non-label statement in basic block BB. */
+
+static gimple
+first_non_label_stmt (basic_block bb)
+{
+ gimple_stmt_iterator i = gsi_start_bb (bb);
+ while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
+ gsi_next (&i);
+ return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
+}
+
+/* Return the last statement in basic block BB. */
+
+gimple
+last_stmt (basic_block bb)
+{
+ gimple_stmt_iterator i = gsi_last_bb (bb);
+ gimple stmt = NULL;
+
+ while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
+ {
+ gsi_prev (&i);
+ stmt = NULL;
+ }
+ return stmt;
+}
+
+/* Return the last statement of an otherwise empty block. Return NULL
+ if the block is totally empty, or if it contains more than one
+ statement. */
+
+gimple
+last_and_only_stmt (basic_block bb)
+{
+ gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
+ gimple last, prev;
+
+ if (gsi_end_p (i))
+ return NULL;
+
+ last = gsi_stmt (i);
+ gsi_prev_nondebug (&i);
+ if (gsi_end_p (i))
+ return last;
+
+ /* Empty statements should no longer appear in the instruction stream.
+ Everything that might have appeared before should be deleted by
+ remove_useless_stmts, and the optimizers should just gsi_remove
+ instead of smashing with build_empty_stmt.
+
+ Thus the only thing that should appear here in a block containing
+ one executable statement is a label. */
+ prev = gsi_stmt (i);
+ if (gimple_code (prev) == GIMPLE_LABEL)
+ return last;
+ else
+ return NULL;
+}
+
+/* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
+
+static void
+reinstall_phi_args (edge new_edge, edge old_edge)
+{
+ edge_var_map_vector *v;
+ edge_var_map *vm;
+ int i;
+ gimple_stmt_iterator phis;
+
+ v = redirect_edge_var_map_vector (old_edge);
+ if (!v)
+ return;
+
+ for (i = 0, phis = gsi_start_phis (new_edge->dest);
+ v->iterate (i, &vm) && !gsi_end_p (phis);
+ i++, gsi_next (&phis))
+ {
+ gimple phi = gsi_stmt (phis);
+ tree result = redirect_edge_var_map_result (vm);
+ tree arg = redirect_edge_var_map_def (vm);
+
+ gcc_assert (result == gimple_phi_result (phi));
+
+ add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
+ }
+
+ redirect_edge_var_map_clear (old_edge);
+}
+
+/* Returns the basic block after which the new basic block created
+ by splitting edge EDGE_IN should be placed. Tries to keep the new block
+ near its "logical" location. This is of most help to humans looking
+ at debugging dumps. */
+
+static basic_block
+split_edge_bb_loc (edge edge_in)
+{
+ basic_block dest = edge_in->dest;
+ basic_block dest_prev = dest->prev_bb;
+
+ if (dest_prev)
+ {
+ edge e = find_edge (dest_prev, dest);
+ if (e && !(e->flags & EDGE_COMPLEX))
+ return edge_in->src;
+ }
+ return dest_prev;
+}
+
+/* Split a (typically critical) edge EDGE_IN. Return the new block.
+ Abort on abnormal edges. */
+
+static basic_block
+gimple_split_edge (edge edge_in)
+{
+ basic_block new_bb, after_bb, dest;
+ edge new_edge, e;
+
+ /* Abnormal edges cannot be split. */
+ gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
+
+ dest = edge_in->dest;
+
+ after_bb = split_edge_bb_loc (edge_in);
+
+ new_bb = create_empty_bb (after_bb);
+ new_bb->frequency = EDGE_FREQUENCY (edge_in);
+ new_bb->count = edge_in->count;
+ new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
+ new_edge->probability = REG_BR_PROB_BASE;
+ new_edge->count = edge_in->count;
+
+ e = redirect_edge_and_branch (edge_in, new_bb);
+ gcc_assert (e == edge_in);
+ reinstall_phi_args (new_edge, e);
+
+ return new_bb;
+}
+
+
+/* Verify properties of the address expression T with base object BASE. */
+
+static tree
+verify_address (tree t, tree base)
+{
+ bool old_constant;
+ bool old_side_effects;
+ bool new_constant;
+ bool new_side_effects;
+
+ old_constant = TREE_CONSTANT (t);
+ old_side_effects = TREE_SIDE_EFFECTS (t);
+
+ recompute_tree_invariant_for_addr_expr (t);
+ new_side_effects = TREE_SIDE_EFFECTS (t);
+ new_constant = TREE_CONSTANT (t);
+
+ if (old_constant != new_constant)
+ {
+ error ("constant not recomputed when ADDR_EXPR changed");
+ return t;
+ }
+ if (old_side_effects != new_side_effects)
+ {
+ error ("side effects not recomputed when ADDR_EXPR changed");
+ return t;
+ }
+
+ if (!(TREE_CODE (base) == VAR_DECL
+ || TREE_CODE (base) == PARM_DECL
+ || TREE_CODE (base) == RESULT_DECL))
+ return NULL_TREE;
+
+ if (DECL_GIMPLE_REG_P (base))
+ {
+ error ("DECL_GIMPLE_REG_P set on a variable with address taken");
+ return base;
+ }
+
+ return NULL_TREE;
+}
+
+/* Callback for walk_tree, check that all elements with address taken are
+ properly noticed as such. The DATA is an int* that is 1 if TP was seen
+ inside a PHI node. */
+
+static tree
+verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
+{
+ tree t = *tp, x;
+
+ if (TYPE_P (t))
+ *walk_subtrees = 0;
+
+ /* Check operand N for being valid GIMPLE and give error MSG if not. */
+#define CHECK_OP(N, MSG) \
+ do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
+ { error (MSG); return TREE_OPERAND (t, N); }} while (0)
+
+ switch (TREE_CODE (t))
+ {
+ case SSA_NAME:
+ if (SSA_NAME_IN_FREE_LIST (t))
+ {
+ error ("SSA name in freelist but still referenced");
+ return *tp;
+ }
+ break;
+
+ case INDIRECT_REF:
+ error ("INDIRECT_REF in gimple IL");
+ return t;
+
+ case MEM_REF:
+ x = TREE_OPERAND (t, 0);
+ if (!POINTER_TYPE_P (TREE_TYPE (x))
+ || !is_gimple_mem_ref_addr (x))
+ {
+ error ("invalid first operand of MEM_REF");
+ return x;
+ }
+ if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
+ || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
+ {
+ error ("invalid offset operand of MEM_REF");
+ return TREE_OPERAND (t, 1);
+ }
+ if (TREE_CODE (x) == ADDR_EXPR
+ && (x = verify_address (x, TREE_OPERAND (x, 0))))
+ return x;
+ *walk_subtrees = 0;
+ break;
+
+ case ASSERT_EXPR:
+ x = fold (ASSERT_EXPR_COND (t));
+ if (x == boolean_false_node)
+ {
+ error ("ASSERT_EXPR with an always-false condition");
+ return *tp;
+ }
+ break;
+
+ case MODIFY_EXPR:
+ error ("MODIFY_EXPR not expected while having tuples");
+ return *tp;
+
+ case ADDR_EXPR:
+ {
+ tree tem;
+
+ gcc_assert (is_gimple_address (t));
+
+ /* Skip any references (they will be checked when we recurse down the
+ tree) and ensure that any variable used as a prefix is marked
+ addressable. */
+ for (x = TREE_OPERAND (t, 0);
+ handled_component_p (x);
+ x = TREE_OPERAND (x, 0))
+ ;
+
+ if ((tem = verify_address (t, x)))
+ return tem;
+
+ if (!(TREE_CODE (x) == VAR_DECL
+ || TREE_CODE (x) == PARM_DECL
+ || TREE_CODE (x) == RESULT_DECL))
+ return NULL;
+
+ if (!TREE_ADDRESSABLE (x))
+ {
+ error ("address taken, but ADDRESSABLE bit not set");
+ return x;
+ }
+
+ break;
+ }
+
+ case COND_EXPR:
+ x = COND_EXPR_COND (t);
+ if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
+ {
+ error ("non-integral used in condition");
+ return x;
+ }
+ if (!is_gimple_condexpr (x))
+ {
+ error ("invalid conditional operand");
+ return x;
+ }
+ break;
+
+ case NON_LVALUE_EXPR:
+ case TRUTH_NOT_EXPR:
+ gcc_unreachable ();
+
+ CASE_CONVERT:
+ case FIX_TRUNC_EXPR:
+ case FLOAT_EXPR:
+ case NEGATE_EXPR:
+ case ABS_EXPR:
+ case BIT_NOT_EXPR:
+ CHECK_OP (0, "invalid operand to unary operator");
+ break;
+
+ case REALPART_EXPR:
+ case IMAGPART_EXPR:
+ case BIT_FIELD_REF:
+ if (!is_gimple_reg_type (TREE_TYPE (t)))
+ {
+ error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
+ return t;
+ }
+
+ if (TREE_CODE (t) == BIT_FIELD_REF)
+ {
+ tree t0 = TREE_OPERAND (t, 0);
+ tree t1 = TREE_OPERAND (t, 1);
+ tree t2 = TREE_OPERAND (t, 2);
+ if (!tree_fits_uhwi_p (t1)
+ || !tree_fits_uhwi_p (t2))
+ {
+ error ("invalid position or size operand to BIT_FIELD_REF");
+ return t;
+ }
+ if (INTEGRAL_TYPE_P (TREE_TYPE (t))
+ && (TYPE_PRECISION (TREE_TYPE (t))
+ != tree_to_uhwi (t1)))
+ {
+ error ("integral result type precision does not match "
+ "field size of BIT_FIELD_REF");
+ return t;
+ }
+ else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
+ && TYPE_MODE (TREE_TYPE (t)) != BLKmode
+ && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
+ != tree_to_uhwi (t1)))
+ {
+ error ("mode precision of non-integral result does not "
+ "match field size of BIT_FIELD_REF");
+ return t;
+ }
+ if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
+ && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
+ > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
+ {
+ error ("position plus size exceeds size of referenced object in "
+ "BIT_FIELD_REF");
+ return t;
+ }
+ }
+ t = TREE_OPERAND (t, 0);
+
+ /* Fall-through. */
+ case COMPONENT_REF:
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ case VIEW_CONVERT_EXPR:
+ /* We have a nest of references. Verify that each of the operands
+ that determine where to reference is either a constant or a variable,
+ verify that the base is valid, and then show we've already checked
+ the subtrees. */
+ while (handled_component_p (t))
+ {
+ if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
+ CHECK_OP (2, "invalid COMPONENT_REF offset operator");
+ else if (TREE_CODE (t) == ARRAY_REF
+ || TREE_CODE (t) == ARRAY_RANGE_REF)
+ {
+ CHECK_OP (1, "invalid array index");
+ if (TREE_OPERAND (t, 2))
+ CHECK_OP (2, "invalid array lower bound");
+ if (TREE_OPERAND (t, 3))
+ CHECK_OP (3, "invalid array stride");
+ }
+ else if (TREE_CODE (t) == BIT_FIELD_REF
+ || TREE_CODE (t) == REALPART_EXPR
+ || TREE_CODE (t) == IMAGPART_EXPR)
+ {
+ error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
+ "REALPART_EXPR");
+ return t;
+ }
+
+ t = TREE_OPERAND (t, 0);
+ }
+
+ if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
+ {
+ error ("invalid reference prefix");
+ return t;
+ }
+ *walk_subtrees = 0;
+ break;
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
+ POINTER_PLUS_EXPR. */
+ if (POINTER_TYPE_P (TREE_TYPE (t)))
+ {
+ error ("invalid operand to plus/minus, type is a pointer");
+ return t;
+ }
+ CHECK_OP (0, "invalid operand to binary operator");
+ CHECK_OP (1, "invalid operand to binary operator");
+ break;
+
+ case POINTER_PLUS_EXPR:
+ /* Check to make sure the first operand is a pointer or reference type. */
+ if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
+ {
+ error ("invalid operand to pointer plus, first operand is not a pointer");
+ return t;
+ }
+ /* Check to make sure the second operand is a ptrofftype. */
+ if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
+ {
+ error ("invalid operand to pointer plus, second operand is not an "
+ "integer type of appropriate width");
+ return t;
+ }
+ /* FALLTHROUGH */
+ case LT_EXPR:
+ case LE_EXPR:
+ case GT_EXPR:
+ case GE_EXPR:
+ case EQ_EXPR:
+ case NE_EXPR:
+ case UNORDERED_EXPR:
+ case ORDERED_EXPR:
+ case UNLT_EXPR:
+ case UNLE_EXPR:
+ case UNGT_EXPR:
+ case UNGE_EXPR:
+ case UNEQ_EXPR:
+ case LTGT_EXPR:
+ case MULT_EXPR:
+ case TRUNC_DIV_EXPR:
+ case CEIL_DIV_EXPR:
+ case FLOOR_DIV_EXPR:
+ case ROUND_DIV_EXPR:
+ case TRUNC_MOD_EXPR:
+ case CEIL_MOD_EXPR:
+ case FLOOR_MOD_EXPR:
+ case ROUND_MOD_EXPR:
+ case RDIV_EXPR:
+ case EXACT_DIV_EXPR:
+ case MIN_EXPR:
+ case MAX_EXPR:
+ case LSHIFT_EXPR:
+ case RSHIFT_EXPR:
+ case LROTATE_EXPR:
+ case RROTATE_EXPR:
+ case BIT_IOR_EXPR:
+ case BIT_XOR_EXPR:
+ case BIT_AND_EXPR:
+ CHECK_OP (0, "invalid operand to binary operator");
+ CHECK_OP (1, "invalid operand to binary operator");
+ break;
+
+ case CONSTRUCTOR:
+ if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
+ *walk_subtrees = 0;
+ break;
+
+ case CASE_LABEL_EXPR:
+ if (CASE_CHAIN (t))
+ {
+ error ("invalid CASE_CHAIN");
+ return t;
+ }
+ break;
+
+ default:
+ break;
+ }
+ return NULL;
+
+#undef CHECK_OP
+}
+
+
+/* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
+ Returns true if there is an error, otherwise false. */
+
+static bool
+verify_types_in_gimple_min_lval (tree expr)
+{
+ tree op;
+
+ if (is_gimple_id (expr))
+ return false;
+
+ if (TREE_CODE (expr) != TARGET_MEM_REF
+ && TREE_CODE (expr) != MEM_REF)
+ {
+ error ("invalid expression for min lvalue");
+ return true;
+ }
+
+ /* TARGET_MEM_REFs are strange beasts. */
+ if (TREE_CODE (expr) == TARGET_MEM_REF)
+ return false;
+
+ op = TREE_OPERAND (expr, 0);
+ if (!is_gimple_val (op))
+ {
+ error ("invalid operand in indirect reference");
+ debug_generic_stmt (op);
+ return true;
+ }
+ /* Memory references now generally can involve a value conversion. */
+
+ return false;
+}
+
+/* Verify if EXPR is a valid GIMPLE reference expression. If
+ REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
+ if there is an error, otherwise false. */
+
+static bool
+verify_types_in_gimple_reference (tree expr, bool require_lvalue)
+{
+ while (handled_component_p (expr))
+ {
+ tree op = TREE_OPERAND (expr, 0);
+
+ if (TREE_CODE (expr) == ARRAY_REF
+ || TREE_CODE (expr) == ARRAY_RANGE_REF)
+ {
+ if (!is_gimple_val (TREE_OPERAND (expr, 1))
+ || (TREE_OPERAND (expr, 2)
+ && !is_gimple_val (TREE_OPERAND (expr, 2)))
+ || (TREE_OPERAND (expr, 3)
+ && !is_gimple_val (TREE_OPERAND (expr, 3))))
+ {
+ error ("invalid operands to array reference");
+ debug_generic_stmt (expr);
+ return true;
+ }
+ }
+
+ /* Verify if the reference array element types are compatible. */
+ if (TREE_CODE (expr) == ARRAY_REF
+ && !useless_type_conversion_p (TREE_TYPE (expr),
+ TREE_TYPE (TREE_TYPE (op))))
+ {
+ error ("type mismatch in array reference");
+ debug_generic_stmt (TREE_TYPE (expr));
+ debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
+ return true;
+ }
+ if (TREE_CODE (expr) == ARRAY_RANGE_REF
+ && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
+ TREE_TYPE (TREE_TYPE (op))))
+ {
+ error ("type mismatch in array range reference");
+ debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
+ debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
+ return true;
+ }
+
+ if ((TREE_CODE (expr) == REALPART_EXPR
+ || TREE_CODE (expr) == IMAGPART_EXPR)
+ && !useless_type_conversion_p (TREE_TYPE (expr),
+ TREE_TYPE (TREE_TYPE (op))))
+ {
+ error ("type mismatch in real/imagpart reference");
+ debug_generic_stmt (TREE_TYPE (expr));
+ debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
+ return true;
+ }
+
+ if (TREE_CODE (expr) == COMPONENT_REF
+ && !useless_type_conversion_p (TREE_TYPE (expr),
+ TREE_TYPE (TREE_OPERAND (expr, 1))))
+ {
+ error ("type mismatch in component reference");
+ debug_generic_stmt (TREE_TYPE (expr));
+ debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
+ return true;
+ }
+
+ if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
+ {
+ /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
+ that their operand is not an SSA name or an invariant when
+ requiring an lvalue (this usually means there is a SRA or IPA-SRA
+ bug). Otherwise there is nothing to verify, gross mismatches at
+ most invoke undefined behavior. */
+ if (require_lvalue
+ && (TREE_CODE (op) == SSA_NAME
+ || is_gimple_min_invariant (op)))
+ {
+ error ("conversion of an SSA_NAME on the left hand side");
+ debug_generic_stmt (expr);
+ return true;
+ }
+ else if (TREE_CODE (op) == SSA_NAME
+ && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
+ {
+ error ("conversion of register to a different size");
+ debug_generic_stmt (expr);
+ return true;
+ }
+ else if (!handled_component_p (op))
+ return false;
+ }
+
+ expr = op;
+ }
+
+ if (TREE_CODE (expr) == MEM_REF)
+ {
+ if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
+ {
+ error ("invalid address operand in MEM_REF");
+ debug_generic_stmt (expr);
+ return true;
+ }
+ if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
+ || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
+ {
+ error ("invalid offset operand in MEM_REF");
+ debug_generic_stmt (expr);
+ return true;
+ }
+ }
+ else if (TREE_CODE (expr) == TARGET_MEM_REF)
+ {
+ if (!TMR_BASE (expr)
+ || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
+ {
+ error ("invalid address operand in TARGET_MEM_REF");
+ return true;
+ }
+ if (!TMR_OFFSET (expr)
+ || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
+ || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
+ {
+ error ("invalid offset operand in TARGET_MEM_REF");
+ debug_generic_stmt (expr);
+ return true;
+ }
+ }
+
+ return ((require_lvalue || !is_gimple_min_invariant (expr))
+ && verify_types_in_gimple_min_lval (expr));
+}
+
+/* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
+ list of pointer-to types that is trivially convertible to DEST. */
+
+static bool
+one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
+{
+ tree src;
+
+ if (!TYPE_POINTER_TO (src_obj))
+ return true;
+
+ for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
+ if (useless_type_conversion_p (dest, src))
+ return true;
+
+ return false;
+}
+
+/* Return true if TYPE1 is a fixed-point type and if conversions to and
+ from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
+
+static bool
+valid_fixed_convert_types_p (tree type1, tree type2)
+{
+ return (FIXED_POINT_TYPE_P (type1)
+ && (INTEGRAL_TYPE_P (type2)
+ || SCALAR_FLOAT_TYPE_P (type2)
+ || FIXED_POINT_TYPE_P (type2)));
+}
+
+/* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
+ is a problem, otherwise false. */
+
+static bool
+verify_gimple_call (gimple stmt)
+{
+ tree fn = gimple_call_fn (stmt);
+ tree fntype, fndecl;
+ unsigned i;
+
+ if (gimple_call_internal_p (stmt))
+ {
+ if (fn)
+ {
+ error ("gimple call has two targets");
+ debug_generic_stmt (fn);
+ return true;
+ }
+ }
+ else
+ {
+ if (!fn)
+ {
+ error ("gimple call has no target");
+ return true;
+ }
+ }
+
+ if (fn && !is_gimple_call_addr (fn))
+ {
+ error ("invalid function in gimple call");
+ debug_generic_stmt (fn);
+ return true;
+ }
+
+ if (fn
+ && (!POINTER_TYPE_P (TREE_TYPE (fn))
+ || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
+ && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
+ {
+ error ("non-function in gimple call");
+ return true;
+ }
+
+ fndecl = gimple_call_fndecl (stmt);
+ if (fndecl
+ && TREE_CODE (fndecl) == FUNCTION_DECL
+ && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
+ && !DECL_PURE_P (fndecl)
+ && !TREE_READONLY (fndecl))
+ {
+ error ("invalid pure const state for function");
+ return true;
+ }
+
+ if (gimple_call_lhs (stmt)
+ && (!is_gimple_lvalue (gimple_call_lhs (stmt))
+ || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
+ {
+ error ("invalid LHS in gimple call");
+ return true;
+ }
+
+ if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
+ {
+ error ("LHS in noreturn call");
+ return true;
+ }
+
+ fntype = gimple_call_fntype (stmt);
+ if (fntype
+ && gimple_call_lhs (stmt)
+ && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
+ TREE_TYPE (fntype))
+ /* ??? At least C++ misses conversions at assignments from
+ void * call results.
+ ??? Java is completely off. Especially with functions
+ returning java.lang.Object.
+ For now simply allow arbitrary pointer type conversions. */
+ && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
+ && POINTER_TYPE_P (TREE_TYPE (fntype))))
+ {
+ error ("invalid conversion in gimple call");
+ debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
+ debug_generic_stmt (TREE_TYPE (fntype));
+ return true;
+ }
+
+ if (gimple_call_chain (stmt)
+ && !is_gimple_val (gimple_call_chain (stmt)))
+ {
+ error ("invalid static chain in gimple call");
+ debug_generic_stmt (gimple_call_chain (stmt));
+ return true;
+ }
+
+ /* If there is a static chain argument, this should not be an indirect
+ call, and the decl should have DECL_STATIC_CHAIN set. */
+ if (gimple_call_chain (stmt))
+ {
+ if (!gimple_call_fndecl (stmt))
+ {
+ error ("static chain in indirect gimple call");
+ return true;
+ }
+ fn = TREE_OPERAND (fn, 0);
+
+ if (!DECL_STATIC_CHAIN (fn))
+ {
+ error ("static chain with function that doesn%'t use one");
+ return true;
+ }
+ }
+
+ /* ??? The C frontend passes unpromoted arguments in case it
+ didn't see a function declaration before the call. So for now
+ leave the call arguments mostly unverified. Once we gimplify
+ unit-at-a-time we have a chance to fix this. */
+
+ for (i = 0; i < gimple_call_num_args (stmt); ++i)
+ {
+ tree arg = gimple_call_arg (stmt, i);
+ if ((is_gimple_reg_type (TREE_TYPE (arg))
+ && !is_gimple_val (arg))
+ || (!is_gimple_reg_type (TREE_TYPE (arg))
+ && !is_gimple_lvalue (arg)))
+ {
+ error ("invalid argument to gimple call");
+ debug_generic_expr (arg);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* Verifies the gimple comparison with the result type TYPE and
+ the operands OP0 and OP1. */
+
+static bool
+verify_gimple_comparison (tree type, tree op0, tree op1)
+{
+ tree op0_type = TREE_TYPE (op0);
+ tree op1_type = TREE_TYPE (op1);
+
+ if (!is_gimple_val (op0) || !is_gimple_val (op1))
+ {
+ error ("invalid operands in gimple comparison");
+ return true;
+ }
+
+ /* For comparisons we do not have the operations type as the
+ effective type the comparison is carried out in. Instead
+ we require that either the first operand is trivially
+ convertible into the second, or the other way around.
+ Because we special-case pointers to void we allow
+ comparisons of pointers with the same mode as well. */
+ if (!useless_type_conversion_p (op0_type, op1_type)
+ && !useless_type_conversion_p (op1_type, op0_type)
+ && (!POINTER_TYPE_P (op0_type)
+ || !POINTER_TYPE_P (op1_type)
+ || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
+ {
+ error ("mismatching comparison operand types");
+ debug_generic_expr (op0_type);
+ debug_generic_expr (op1_type);
+ return true;
+ }
+
+ /* The resulting type of a comparison may be an effective boolean type. */
+ if (INTEGRAL_TYPE_P (type)
+ && (TREE_CODE (type) == BOOLEAN_TYPE
+ || TYPE_PRECISION (type) == 1))
+ {
+ if (TREE_CODE (op0_type) == VECTOR_TYPE
+ || TREE_CODE (op1_type) == VECTOR_TYPE)
+ {
+ error ("vector comparison returning a boolean");
+ debug_generic_expr (op0_type);
+ debug_generic_expr (op1_type);
+ return true;
+ }
+ }
+ /* Or an integer vector type with the same size and element count
+ as the comparison operand types. */
+ else if (TREE_CODE (type) == VECTOR_TYPE
+ && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
+ {
+ if (TREE_CODE (op0_type) != VECTOR_TYPE
+ || TREE_CODE (op1_type) != VECTOR_TYPE)
+ {
+ error ("non-vector operands in vector comparison");
+ debug_generic_expr (op0_type);
+ debug_generic_expr (op1_type);
+ return true;
+ }
+
+ if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
+ || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
+ != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
+ /* The result of a vector comparison is of signed
+ integral type. */
+ || TYPE_UNSIGNED (TREE_TYPE (type)))
+ {
+ error ("invalid vector comparison resulting type");
+ debug_generic_expr (type);
+ return true;
+ }
+ }
+ else
+ {
+ error ("bogus comparison result type");
+ debug_generic_expr (type);
+ return true;
+ }
+
+ return false;
+}
+
+/* Verify a gimple assignment statement STMT with an unary rhs.
+ Returns true if anything is wrong. */
+
+static bool
+verify_gimple_assign_unary (gimple stmt)
+{
+ enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
+ tree lhs = gimple_assign_lhs (stmt);
+ tree lhs_type = TREE_TYPE (lhs);
+ tree rhs1 = gimple_assign_rhs1 (stmt);
+ tree rhs1_type = TREE_TYPE (rhs1);
+
+ if (!is_gimple_reg (lhs))
+ {
+ error ("non-register as LHS of unary operation");
+ return true;
+ }
+
+ if (!is_gimple_val (rhs1))
+ {
+ error ("invalid operand in unary operation");
+ return true;
+ }
+
+ /* First handle conversions. */
+ switch (rhs_code)
+ {
+ CASE_CONVERT:
+ {
+ /* Allow conversions from pointer type to integral type only if
+ there is no sign or zero extension involved.
+ For targets were the precision of ptrofftype doesn't match that
+ of pointers we need to allow arbitrary conversions to ptrofftype. */
+ if ((POINTER_TYPE_P (lhs_type)
+ && INTEGRAL_TYPE_P (rhs1_type))
+ || (POINTER_TYPE_P (rhs1_type)
+ && INTEGRAL_TYPE_P (lhs_type)
+ && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
+ || ptrofftype_p (sizetype))))
+ return false;
+
+ /* Allow conversion from integral to offset type and vice versa. */
+ if ((TREE_CODE (lhs_type) == OFFSET_TYPE
+ && INTEGRAL_TYPE_P (rhs1_type))
+ || (INTEGRAL_TYPE_P (lhs_type)
+ && TREE_CODE (rhs1_type) == OFFSET_TYPE))
+ return false;
+
+ /* Otherwise assert we are converting between types of the
+ same kind. */
+ if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
+ {
+ error ("invalid types in nop conversion");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ return true;
+ }
+
+ return false;
+ }
+
+ case ADDR_SPACE_CONVERT_EXPR:
+ {
+ if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
+ || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
+ == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
+ {
+ error ("invalid types in address space conversion");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ return true;
+ }
+
+ return false;
+ }
+
+ case FIXED_CONVERT_EXPR:
+ {
+ if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
+ && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
+ {
+ error ("invalid types in fixed-point conversion");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ return true;
+ }
+
+ return false;
+ }
+
+ case FLOAT_EXPR:
+ {
+ if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
+ && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
+ || !VECTOR_FLOAT_TYPE_P (lhs_type)))
+ {
+ error ("invalid types in conversion to floating point");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ return true;
+ }
+
+ return false;
+ }
+
+ case FIX_TRUNC_EXPR:
+ {
+ if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
+ && (!VECTOR_INTEGER_TYPE_P (lhs_type)
+ || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
+ {
+ error ("invalid types in conversion to integer");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ return true;
+ }
+
+ return false;
+ }
+
+ case VEC_UNPACK_HI_EXPR:
+ case VEC_UNPACK_LO_EXPR:
+ case REDUC_MAX_EXPR:
+ case REDUC_MIN_EXPR:
+ case REDUC_PLUS_EXPR:
+ case VEC_UNPACK_FLOAT_HI_EXPR:
+ case VEC_UNPACK_FLOAT_LO_EXPR:
+ /* FIXME. */
+ return false;
+
+ case NEGATE_EXPR:
+ case ABS_EXPR:
+ case BIT_NOT_EXPR:
+ case PAREN_EXPR:
+ case NON_LVALUE_EXPR:
+ case CONJ_EXPR:
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ /* For the remaining codes assert there is no conversion involved. */
+ if (!useless_type_conversion_p (lhs_type, rhs1_type))
+ {
+ error ("non-trivial conversion in unary operation");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ return true;
+ }
+
+ return false;
+}
+
+/* Verify a gimple assignment statement STMT with a binary rhs.
+ Returns true if anything is wrong. */
+
+static bool
+verify_gimple_assign_binary (gimple stmt)
+{
+ enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
+ tree lhs = gimple_assign_lhs (stmt);
+ tree lhs_type = TREE_TYPE (lhs);
+ tree rhs1 = gimple_assign_rhs1 (stmt);
+ tree rhs1_type = TREE_TYPE (rhs1);
+ tree rhs2 = gimple_assign_rhs2 (stmt);
+ tree rhs2_type = TREE_TYPE (rhs2);
+
+ if (!is_gimple_reg (lhs))
+ {
+ error ("non-register as LHS of binary operation");
+ return true;
+ }
+
+ if (!is_gimple_val (rhs1)
+ || !is_gimple_val (rhs2))
+ {
+ error ("invalid operands in binary operation");
+ return true;
+ }
+
+ /* First handle operations that involve different types. */
+ switch (rhs_code)
+ {
+ case COMPLEX_EXPR:
+ {
+ if (TREE_CODE (lhs_type) != COMPLEX_TYPE
+ || !(INTEGRAL_TYPE_P (rhs1_type)
+ || SCALAR_FLOAT_TYPE_P (rhs1_type))
+ || !(INTEGRAL_TYPE_P (rhs2_type)
+ || SCALAR_FLOAT_TYPE_P (rhs2_type)))
+ {
+ error ("type mismatch in complex expression");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ debug_generic_expr (rhs2_type);
+ return true;
+ }
+
+ return false;
+ }
+
+ case LSHIFT_EXPR:
+ case RSHIFT_EXPR:
+ case LROTATE_EXPR:
+ case RROTATE_EXPR:
+ {
+ /* Shifts and rotates are ok on integral types, fixed point
+ types and integer vector types. */
+ if ((!INTEGRAL_TYPE_P (rhs1_type)
+ && !FIXED_POINT_TYPE_P (rhs1_type)
+ && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
+ && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
+ || (!INTEGRAL_TYPE_P (rhs2_type)
+ /* Vector shifts of vectors are also ok. */
+ && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
+ && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
+ && TREE_CODE (rhs2_type) == VECTOR_TYPE
+ && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
+ || !useless_type_conversion_p (lhs_type, rhs1_type))
+ {
+ error ("type mismatch in shift expression");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ debug_generic_expr (rhs2_type);
+ return true;
+ }
+
+ return false;
+ }
+
+ case VEC_LSHIFT_EXPR:
+ case VEC_RSHIFT_EXPR:
+ {
+ if (TREE_CODE (rhs1_type) != VECTOR_TYPE
+ || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
+ || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
+ || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
+ || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
+ || (!INTEGRAL_TYPE_P (rhs2_type)
+ && (TREE_CODE (rhs2_type) != VECTOR_TYPE
+ || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
+ || !useless_type_conversion_p (lhs_type, rhs1_type))
+ {
+ error ("type mismatch in vector shift expression");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ debug_generic_expr (rhs2_type);
+ return true;
+ }
+ /* For shifting a vector of non-integral components we
+ only allow shifting by a constant multiple of the element size. */
+ if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
+ && (TREE_CODE (rhs2) != INTEGER_CST
+ || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
+ TYPE_SIZE (TREE_TYPE (rhs1_type)))))
+ {
+ error ("non-element sized vector shift of floating point vector");
+ return true;
+ }
+
+ return false;
+ }
+
+ case WIDEN_LSHIFT_EXPR:
+ {
+ if (!INTEGRAL_TYPE_P (lhs_type)
+ || !INTEGRAL_TYPE_P (rhs1_type)
+ || TREE_CODE (rhs2) != INTEGER_CST
+ || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
+ {
+ error ("type mismatch in widening vector shift expression");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ debug_generic_expr (rhs2_type);
+ return true;
+ }
+
+ return false;
+ }
+
+ case VEC_WIDEN_LSHIFT_HI_EXPR:
+ case VEC_WIDEN_LSHIFT_LO_EXPR:
+ {
+ if (TREE_CODE (rhs1_type) != VECTOR_TYPE
+ || TREE_CODE (lhs_type) != VECTOR_TYPE
+ || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
+ || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
+ || TREE_CODE (rhs2) != INTEGER_CST
+ || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
+ > TYPE_PRECISION (TREE_TYPE (lhs_type))))
+ {
+ error ("type mismatch in widening vector shift expression");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ debug_generic_expr (rhs2_type);
+ return true;
+ }
+
+ return false;
+ }
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ {
+ tree lhs_etype = lhs_type;
+ tree rhs1_etype = rhs1_type;
+ tree rhs2_etype = rhs2_type;
+ if (TREE_CODE (lhs_type) == VECTOR_TYPE)
+ {
+ if (TREE_CODE (rhs1_type) != VECTOR_TYPE
+ || TREE_CODE (rhs2_type) != VECTOR_TYPE)
+ {
+ error ("invalid non-vector operands to vector valued plus");
+ return true;
+ }
+ lhs_etype = TREE_TYPE (lhs_type);
+ rhs1_etype = TREE_TYPE (rhs1_type);
+ rhs2_etype = TREE_TYPE (rhs2_type);
+ }
+ if (POINTER_TYPE_P (lhs_etype)
+ || POINTER_TYPE_P (rhs1_etype)
+ || POINTER_TYPE_P (rhs2_etype))
+ {
+ error ("invalid (pointer) operands to plus/minus");
+ return true;
+ }
+
+ /* Continue with generic binary expression handling. */
+ break;
+ }
+
+ case POINTER_PLUS_EXPR:
+ {
+ if (!POINTER_TYPE_P (rhs1_type)
+ || !useless_type_conversion_p (lhs_type, rhs1_type)
+ || !ptrofftype_p (rhs2_type))
+ {
+ error ("type mismatch in pointer plus expression");
+ debug_generic_stmt (lhs_type);
+ debug_generic_stmt (rhs1_type);
+ debug_generic_stmt (rhs2_type);
+ return true;
+ }
+
+ return false;
+ }
+
+ case TRUTH_ANDIF_EXPR:
+ case TRUTH_ORIF_EXPR:
+ case TRUTH_AND_EXPR:
+ case TRUTH_OR_EXPR:
+ case TRUTH_XOR_EXPR:
+
+ gcc_unreachable ();
+
+ case LT_EXPR:
+ case LE_EXPR:
+ case GT_EXPR:
+ case GE_EXPR:
+ case EQ_EXPR:
+ case NE_EXPR:
+ case UNORDERED_EXPR:
+ case ORDERED_EXPR:
+ case UNLT_EXPR:
+ case UNLE_EXPR:
+ case UNGT_EXPR:
+ case UNGE_EXPR:
+ case UNEQ_EXPR:
+ case LTGT_EXPR:
+ /* Comparisons are also binary, but the result type is not
+ connected to the operand types. */
+ return verify_gimple_comparison (lhs_type, rhs1, rhs2);
+
+ case WIDEN_MULT_EXPR:
+ if (TREE_CODE (lhs_type) != INTEGER_TYPE)
+ return true;
+ return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
+ || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
+
+ case WIDEN_SUM_EXPR:
+ case VEC_WIDEN_MULT_HI_EXPR:
+ case VEC_WIDEN_MULT_LO_EXPR:
+ case VEC_WIDEN_MULT_EVEN_EXPR:
+ case VEC_WIDEN_MULT_ODD_EXPR:
+ case VEC_PACK_TRUNC_EXPR:
+ case VEC_PACK_SAT_EXPR:
+ case VEC_PACK_FIX_TRUNC_EXPR:
+ /* FIXME. */
+ return false;
+
+ case MULT_EXPR:
+ case MULT_HIGHPART_EXPR:
+ case TRUNC_DIV_EXPR:
+ case CEIL_DIV_EXPR:
+ case FLOOR_DIV_EXPR:
+ case ROUND_DIV_EXPR:
+ case TRUNC_MOD_EXPR:
+ case CEIL_MOD_EXPR:
+ case FLOOR_MOD_EXPR:
+ case ROUND_MOD_EXPR:
+ case RDIV_EXPR:
+ case EXACT_DIV_EXPR:
+ case MIN_EXPR:
+ case MAX_EXPR:
+ case BIT_IOR_EXPR:
+ case BIT_XOR_EXPR:
+ case BIT_AND_EXPR:
+ /* Continue with generic binary expression handling. */
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (!useless_type_conversion_p (lhs_type, rhs1_type)
+ || !useless_type_conversion_p (lhs_type, rhs2_type))
+ {
+ error ("type mismatch in binary expression");
+ debug_generic_stmt (lhs_type);
+ debug_generic_stmt (rhs1_type);
+ debug_generic_stmt (rhs2_type);
+ return true;
+ }
+
+ return false;
+}
+
+/* Verify a gimple assignment statement STMT with a ternary rhs.
+ Returns true if anything is wrong. */
+
+static bool
+verify_gimple_assign_ternary (gimple stmt)
+{
+ enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
+ tree lhs = gimple_assign_lhs (stmt);
+ tree lhs_type = TREE_TYPE (lhs);
+ tree rhs1 = gimple_assign_rhs1 (stmt);
+ tree rhs1_type = TREE_TYPE (rhs1);
+ tree rhs2 = gimple_assign_rhs2 (stmt);
+ tree rhs2_type = TREE_TYPE (rhs2);
+ tree rhs3 = gimple_assign_rhs3 (stmt);
+ tree rhs3_type = TREE_TYPE (rhs3);
+
+ if (!is_gimple_reg (lhs))
+ {
+ error ("non-register as LHS of ternary operation");
+ return true;
+ }
+
+ if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
+ ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
+ || !is_gimple_val (rhs2)
+ || !is_gimple_val (rhs3))
+ {
+ error ("invalid operands in ternary operation");
+ return true;
+ }
+
+ /* First handle operations that involve different types. */
+ switch (rhs_code)
+ {
+ case WIDEN_MULT_PLUS_EXPR:
+ case WIDEN_MULT_MINUS_EXPR:
+ if ((!INTEGRAL_TYPE_P (rhs1_type)
+ && !FIXED_POINT_TYPE_P (rhs1_type))
+ || !useless_type_conversion_p (rhs1_type, rhs2_type)
+ || !useless_type_conversion_p (lhs_type, rhs3_type)
+ || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
+ || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
+ {
+ error ("type mismatch in widening multiply-accumulate expression");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ debug_generic_expr (rhs2_type);
+ debug_generic_expr (rhs3_type);
+ return true;
+ }
+ break;
+
+ case FMA_EXPR:
+ if (!useless_type_conversion_p (lhs_type, rhs1_type)
+ || !useless_type_conversion_p (lhs_type, rhs2_type)
+ || !useless_type_conversion_p (lhs_type, rhs3_type))
+ {
+ error ("type mismatch in fused multiply-add expression");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ debug_generic_expr (rhs2_type);
+ debug_generic_expr (rhs3_type);
+ return true;
+ }
+ break;
+
+ case COND_EXPR:
+ case VEC_COND_EXPR:
+ if (!useless_type_conversion_p (lhs_type, rhs2_type)
+ || !useless_type_conversion_p (lhs_type, rhs3_type))
+ {
+ error ("type mismatch in conditional expression");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs2_type);
+ debug_generic_expr (rhs3_type);
+ return true;
+ }
+ break;
+
+ case VEC_PERM_EXPR:
+ if (!useless_type_conversion_p (lhs_type, rhs1_type)
+ || !useless_type_conversion_p (lhs_type, rhs2_type))
+ {
+ error ("type mismatch in vector permute expression");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ debug_generic_expr (rhs2_type);
+ debug_generic_expr (rhs3_type);
+ return true;
+ }
+
+ if (TREE_CODE (rhs1_type) != VECTOR_TYPE
+ || TREE_CODE (rhs2_type) != VECTOR_TYPE
+ || TREE_CODE (rhs3_type) != VECTOR_TYPE)
+ {
+ error ("vector types expected in vector permute expression");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ debug_generic_expr (rhs2_type);
+ debug_generic_expr (rhs3_type);
+ return true;
+ }
+
+ if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
+ || TYPE_VECTOR_SUBPARTS (rhs2_type)
+ != TYPE_VECTOR_SUBPARTS (rhs3_type)
+ || TYPE_VECTOR_SUBPARTS (rhs3_type)
+ != TYPE_VECTOR_SUBPARTS (lhs_type))
+ {
+ error ("vectors with different element number found "
+ "in vector permute expression");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ debug_generic_expr (rhs2_type);
+ debug_generic_expr (rhs3_type);
+ return true;
+ }
+
+ if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
+ || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
+ != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
+ {
+ error ("invalid mask type in vector permute expression");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ debug_generic_expr (rhs2_type);
+ debug_generic_expr (rhs3_type);
+ return true;
+ }
+
+ return false;
+
+ case DOT_PROD_EXPR:
+ case REALIGN_LOAD_EXPR:
+ /* FIXME. */
+ return false;
+
+ default:
+ gcc_unreachable ();
+ }
+ return false;
+}
+
+/* Verify a gimple assignment statement STMT with a single rhs.
+ Returns true if anything is wrong. */
+
+static bool
+verify_gimple_assign_single (gimple stmt)
+{
+ enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
+ tree lhs = gimple_assign_lhs (stmt);
+ tree lhs_type = TREE_TYPE (lhs);
+ tree rhs1 = gimple_assign_rhs1 (stmt);
+ tree rhs1_type = TREE_TYPE (rhs1);
+ bool res = false;
+
+ if (!useless_type_conversion_p (lhs_type, rhs1_type))
+ {
+ error ("non-trivial conversion at assignment");
+ debug_generic_expr (lhs_type);
+ debug_generic_expr (rhs1_type);
+ return true;
+ }
+
+ if (gimple_clobber_p (stmt)
+ && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
+ {
+ error ("non-decl/MEM_REF LHS in clobber statement");
+ debug_generic_expr (lhs);
+ return true;
+ }
+
+ if (handled_component_p (lhs)
+ || TREE_CODE (lhs) == MEM_REF
+ || TREE_CODE (lhs) == TARGET_MEM_REF)
+ res |= verify_types_in_gimple_reference (lhs, true);
+
+ /* Special codes we cannot handle via their class. */
+ switch (rhs_code)
+ {
+ case ADDR_EXPR:
+ {
+ tree op = TREE_OPERAND (rhs1, 0);
+ if (!is_gimple_addressable (op))
+ {
+ error ("invalid operand in unary expression");
+ return true;
+ }
+
+ /* Technically there is no longer a need for matching types, but
+ gimple hygiene asks for this check. In LTO we can end up
+ combining incompatible units and thus end up with addresses
+ of globals that change their type to a common one. */
+ if (!in_lto_p
+ && !types_compatible_p (TREE_TYPE (op),
+ TREE_TYPE (TREE_TYPE (rhs1)))
+ && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
+ TREE_TYPE (op)))
+ {
+ error ("type mismatch in address expression");
+ debug_generic_stmt (TREE_TYPE (rhs1));
+ debug_generic_stmt (TREE_TYPE (op));
+ return true;
+ }
+
+ return verify_types_in_gimple_reference (op, true);
+ }
+
+ /* tcc_reference */
+ case INDIRECT_REF:
+ error ("INDIRECT_REF in gimple IL");
+ return true;
+
+ case COMPONENT_REF:
+ case BIT_FIELD_REF:
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ case VIEW_CONVERT_EXPR:
+ case REALPART_EXPR:
+ case IMAGPART_EXPR:
+ case TARGET_MEM_REF:
+ case MEM_REF:
+ if (!is_gimple_reg (lhs)
+ && is_gimple_reg_type (TREE_TYPE (lhs)))
+ {
+ error ("invalid rhs for gimple memory store");
+ debug_generic_stmt (lhs);
+ debug_generic_stmt (rhs1);
+ return true;
+ }
+ return res || verify_types_in_gimple_reference (rhs1, false);
+
+ /* tcc_constant */
+ case SSA_NAME:
+ case INTEGER_CST:
+ case REAL_CST:
+ case FIXED_CST:
+ case COMPLEX_CST:
+ case VECTOR_CST:
+ case STRING_CST:
+ return res;
+
+ /* tcc_declaration */
+ case CONST_DECL:
+ return res;
+ case VAR_DECL:
+ case PARM_DECL:
+ if (!is_gimple_reg (lhs)
+ && !is_gimple_reg (rhs1)
+ && is_gimple_reg_type (TREE_TYPE (lhs)))
+ {
+ error ("invalid rhs for gimple memory store");
+ debug_generic_stmt (lhs);
+ debug_generic_stmt (rhs1);
+ return true;
+ }
+ return res;
+
+ case CONSTRUCTOR:
+ if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
+ {
+ unsigned int i;
+ tree elt_i, elt_v, elt_t = NULL_TREE;
+
+ if (CONSTRUCTOR_NELTS (rhs1) == 0)
+ return res;
+ /* For vector CONSTRUCTORs we require that either it is empty
+ CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
+ (then the element count must be correct to cover the whole
+ outer vector and index must be NULL on all elements, or it is
+ a CONSTRUCTOR of scalar elements, where we as an exception allow
+ smaller number of elements (assuming zero filling) and
+ consecutive indexes as compared to NULL indexes (such
+ CONSTRUCTORs can appear in the IL from FEs). */
+ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
+ {
+ if (elt_t == NULL_TREE)
+ {
+ elt_t = TREE_TYPE (elt_v);
+ if (TREE_CODE (elt_t) == VECTOR_TYPE)
+ {
+ tree elt_t = TREE_TYPE (elt_v);
+ if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
+ TREE_TYPE (elt_t)))
+ {
+ error ("incorrect type of vector CONSTRUCTOR"
+ " elements");
+ debug_generic_stmt (rhs1);
+ return true;
+ }
+ else if (CONSTRUCTOR_NELTS (rhs1)
+ * TYPE_VECTOR_SUBPARTS (elt_t)
+ != TYPE_VECTOR_SUBPARTS (rhs1_type))
+ {
+ error ("incorrect number of vector CONSTRUCTOR"
+ " elements");
+ debug_generic_stmt (rhs1);
+ return true;
+ }
+ }
+ else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
+ elt_t))
+ {
+ error ("incorrect type of vector CONSTRUCTOR elements");
+ debug_generic_stmt (rhs1);
+ return true;
+ }
+ else if (CONSTRUCTOR_NELTS (rhs1)
+ > TYPE_VECTOR_SUBPARTS (rhs1_type))
+ {
+ error ("incorrect number of vector CONSTRUCTOR elements");
+ debug_generic_stmt (rhs1);
+ return true;
+ }
+ }
+ else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
+ {
+ error ("incorrect type of vector CONSTRUCTOR elements");
+ debug_generic_stmt (rhs1);
+ return true;
+ }
+ if (elt_i != NULL_TREE
+ && (TREE_CODE (elt_t) == VECTOR_TYPE
+ || TREE_CODE (elt_i) != INTEGER_CST
+ || compare_tree_int (elt_i, i) != 0))
+ {
+ error ("vector CONSTRUCTOR with non-NULL element index");
+ debug_generic_stmt (rhs1);
+ return true;
+ }
+ }
+ }
+ return res;
+ case OBJ_TYPE_REF:
+ case ASSERT_EXPR:
+ case WITH_SIZE_EXPR:
+ /* FIXME. */
+ return res;
+
+ default:;
+ }
+
+ return res;
+}
+
+/* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
+ is a problem, otherwise false. */
+
+static bool
+verify_gimple_assign (gimple stmt)
+{
+ switch (gimple_assign_rhs_class (stmt))
+ {
+ case GIMPLE_SINGLE_RHS:
+ return verify_gimple_assign_single (stmt);
+
+ case GIMPLE_UNARY_RHS:
+ return verify_gimple_assign_unary (stmt);
+
+ case GIMPLE_BINARY_RHS:
+ return verify_gimple_assign_binary (stmt);
+
+ case GIMPLE_TERNARY_RHS:
+ return verify_gimple_assign_ternary (stmt);
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
+ is a problem, otherwise false. */
+
+static bool
+verify_gimple_return (gimple stmt)
+{
+ tree op = gimple_return_retval (stmt);
+ tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
+
+ /* We cannot test for present return values as we do not fix up missing
+ return values from the original source. */
+ if (op == NULL)
+ return false;
+
+ if (!is_gimple_val (op)
+ && TREE_CODE (op) != RESULT_DECL)
+ {
+ error ("invalid operand in return statement");
+ debug_generic_stmt (op);
+ return true;
+ }
+
+ if ((TREE_CODE (op) == RESULT_DECL
+ && DECL_BY_REFERENCE (op))
+ || (TREE_CODE (op) == SSA_NAME
+ && SSA_NAME_VAR (op)
+ && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
+ && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
+ op = TREE_TYPE (op);
+
+ if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
+ {
+ error ("invalid conversion in return statement");
+ debug_generic_stmt (restype);
+ debug_generic_stmt (TREE_TYPE (op));
+ return true;
+ }
+
+ return false;
+}
+
+
+/* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
+ is a problem, otherwise false. */
+
+static bool
+verify_gimple_goto (gimple stmt)
+{
+ tree dest = gimple_goto_dest (stmt);
+
+ /* ??? We have two canonical forms of direct goto destinations, a
+ bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
+ if (TREE_CODE (dest) != LABEL_DECL
+ && (!is_gimple_val (dest)
+ || !POINTER_TYPE_P (TREE_TYPE (dest))))
+ {
+ error ("goto destination is neither a label nor a pointer");
+ return true;
+ }
+
+ return false;
+}
+
+/* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
+ is a problem, otherwise false. */
+
+static bool
+verify_gimple_switch (gimple stmt)
+{
+ unsigned int i, n;
+ tree elt, prev_upper_bound = NULL_TREE;
+ tree index_type, elt_type = NULL_TREE;
+
+ if (!is_gimple_val (gimple_switch_index (stmt)))
+ {
+ error ("invalid operand to switch statement");
+ debug_generic_stmt (gimple_switch_index (stmt));
+ return true;
+ }
+
+ index_type = TREE_TYPE (gimple_switch_index (stmt));
+ if (! INTEGRAL_TYPE_P (index_type))
+ {
+ error ("non-integral type switch statement");
+ debug_generic_expr (index_type);
+ return true;
+ }
+
+ elt = gimple_switch_label (stmt, 0);
+ if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
+ {
+ error ("invalid default case label in switch statement");
+ debug_generic_expr (elt);
+ return true;
+ }
+
+ n = gimple_switch_num_labels (stmt);
+ for (i = 1; i < n; i++)
+ {
+ elt = gimple_switch_label (stmt, i);
+
+ if (! CASE_LOW (elt))
+ {
+ error ("invalid case label in switch statement");
+ debug_generic_expr (elt);
+ return true;
+ }
+ if (CASE_HIGH (elt)
+ && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
+ {
+ error ("invalid case range in switch statement");
+ debug_generic_expr (elt);
+ return true;
+ }
+
+ if (elt_type)
+ {
+ if (TREE_TYPE (CASE_LOW (elt)) != elt_type
+ || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
+ {
+ error ("type mismatch for case label in switch statement");
+ debug_generic_expr (elt);
+ return true;
+ }
+ }
+ else
+ {
+ elt_type = TREE_TYPE (CASE_LOW (elt));
+ if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
+ {
+ error ("type precision mismatch in switch statement");
+ return true;
+ }
+ }
+
+ if (prev_upper_bound)
+ {
+ if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
+ {
+ error ("case labels not sorted in switch statement");
+ return true;
+ }
+ }
+
+ prev_upper_bound = CASE_HIGH (elt);
+ if (! prev_upper_bound)
+ prev_upper_bound = CASE_LOW (elt);
+ }
+
+ return false;
+}
+
+/* Verify a gimple debug statement STMT.
+ Returns true if anything is wrong. */
+
+static bool
+verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
+{
+ /* There isn't much that could be wrong in a gimple debug stmt. A
+ gimple debug bind stmt, for example, maps a tree, that's usually
+ a VAR_DECL or a PARM_DECL, but that could also be some scalarized
+ component or member of an aggregate type, to another tree, that
+ can be an arbitrary expression. These stmts expand into debug
+ insns, and are converted to debug notes by var-tracking.c. */
+ return false;
+}
+
+/* Verify a gimple label statement STMT.
+ Returns true if anything is wrong. */
+
+static bool
+verify_gimple_label (gimple stmt)
+{
+ tree decl = gimple_label_label (stmt);
+ int uid;
+ bool err = false;
+
+ if (TREE_CODE (decl) != LABEL_DECL)
+ return true;
+ if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
+ && DECL_CONTEXT (decl) != current_function_decl)
+ {
+ error ("label's context is not the current function decl");
+ err |= true;
+ }
+
+ uid = LABEL_DECL_UID (decl);
+ if (cfun->cfg
+ && (uid == -1
+ || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
+ {
+ error ("incorrect entry in label_to_block_map");
+ err |= true;
+ }
+
+ uid = EH_LANDING_PAD_NR (decl);
+ if (uid)
+ {
+ eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
+ if (decl != lp->post_landing_pad)
+ {
+ error ("incorrect setting of landing pad number");
+ err |= true;
+ }
+ }
+
+ return err;
+}
+
+/* Verify the GIMPLE statement STMT. Returns true if there is an
+ error, otherwise false. */
+
+static bool
+verify_gimple_stmt (gimple stmt)
+{
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_ASSIGN:
+ return verify_gimple_assign (stmt);
+
+ case GIMPLE_LABEL:
+ return verify_gimple_label (stmt);
+
+ case GIMPLE_CALL:
+ return verify_gimple_call (stmt);
+
+ case GIMPLE_COND:
+ if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
+ {
+ error ("invalid comparison code in gimple cond");
+ return true;
+ }
+ if (!(!gimple_cond_true_label (stmt)
+ || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
+ || !(!gimple_cond_false_label (stmt)
+ || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
+ {
+ error ("invalid labels in gimple cond");
+ return true;
+ }
+
+ return verify_gimple_comparison (boolean_type_node,
+ gimple_cond_lhs (stmt),
+ gimple_cond_rhs (stmt));
+
+ case GIMPLE_GOTO:
+ return verify_gimple_goto (stmt);
+
+ case GIMPLE_SWITCH:
+ return verify_gimple_switch (stmt);
+
+ case GIMPLE_RETURN:
+ return verify_gimple_return (stmt);
+
+ case GIMPLE_ASM:
+ return false;
+
+ case GIMPLE_TRANSACTION:
+ return verify_gimple_transaction (stmt);
+
+ /* Tuples that do not have tree operands. */
+ case GIMPLE_NOP:
+ case GIMPLE_PREDICT:
+ case GIMPLE_RESX:
+ case GIMPLE_EH_DISPATCH:
+ case GIMPLE_EH_MUST_NOT_THROW:
+ return false;
+
+ CASE_GIMPLE_OMP:
+ /* OpenMP directives are validated by the FE and never operated
+ on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
+ non-gimple expressions when the main index variable has had
+ its address taken. This does not affect the loop itself
+ because the header of an GIMPLE_OMP_FOR is merely used to determine
+ how to setup the parallel iteration. */
+ return false;
+
+ case GIMPLE_DEBUG:
+ return verify_gimple_debug (stmt);
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
+ and false otherwise. */
+
+static bool
+verify_gimple_phi (gimple phi)
+{
+ bool err = false;
+ unsigned i;
+ tree phi_result = gimple_phi_result (phi);
+ bool virtual_p;
+
+ if (!phi_result)
+ {
+ error ("invalid PHI result");
+ return true;
+ }
+
+ virtual_p = virtual_operand_p (phi_result);
+ if (TREE_CODE (phi_result) != SSA_NAME
+ || (virtual_p
+ && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
+ {
+ error ("invalid PHI result");
+ err = true;
+ }
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ {
+ tree t = gimple_phi_arg_def (phi, i);
+
+ if (!t)
+ {
+ error ("missing PHI def");
+ err |= true;
+ continue;
+ }
+ /* Addressable variables do have SSA_NAMEs but they
+ are not considered gimple values. */
+ else if ((TREE_CODE (t) == SSA_NAME
+ && virtual_p != virtual_operand_p (t))
+ || (virtual_p
+ && (TREE_CODE (t) != SSA_NAME
+ || SSA_NAME_VAR (t) != gimple_vop (cfun)))
+ || (!virtual_p
+ && !is_gimple_val (t)))
+ {
+ error ("invalid PHI argument");
+ debug_generic_expr (t);
+ err |= true;
+ }
+#ifdef ENABLE_TYPES_CHECKING
+ if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
+ {
+ error ("incompatible types in PHI argument %u", i);
+ debug_generic_stmt (TREE_TYPE (phi_result));
+ debug_generic_stmt (TREE_TYPE (t));
+ err |= true;
+ }
+#endif
+ }
+
+ return err;
+}
+
+/* Verify the GIMPLE statements inside the sequence STMTS. */
+
+static bool
+verify_gimple_in_seq_2 (gimple_seq stmts)
+{
+ gimple_stmt_iterator ittr;
+ bool err = false;
+
+ for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
+ {
+ gimple stmt = gsi_stmt (ittr);
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_BIND:
+ err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
+ break;
+
+ case GIMPLE_TRY:
+ err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
+ err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
+ break;
+
+ case GIMPLE_EH_FILTER:
+ err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
+ break;
+
+ case GIMPLE_EH_ELSE:
+ err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
+ err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
+ break;
+
+ case GIMPLE_CATCH:
+ err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
+ break;
+
+ case GIMPLE_TRANSACTION:
+ err |= verify_gimple_transaction (stmt);
+ break;
+
+ default:
+ {
+ bool err2 = verify_gimple_stmt (stmt);
+ if (err2)
+ debug_gimple_stmt (stmt);
+ err |= err2;
+ }
+ }
+ }
+
+ return err;
+}
+
+/* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
+ is a problem, otherwise false. */
+
+static bool
+verify_gimple_transaction (gimple stmt)
+{
+ tree lab = gimple_transaction_label (stmt);
+ if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
+ return true;
+ return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
+}
+
+
+/* Verify the GIMPLE statements inside the statement list STMTS. */
+
+DEBUG_FUNCTION void
+verify_gimple_in_seq (gimple_seq stmts)
+{
+ timevar_push (TV_TREE_STMT_VERIFY);
+ if (verify_gimple_in_seq_2 (stmts))
+ internal_error ("verify_gimple failed");
+ timevar_pop (TV_TREE_STMT_VERIFY);
+}
+
+/* Return true when the T can be shared. */
+
+static bool
+tree_node_can_be_shared (tree t)
+{
+ if (IS_TYPE_OR_DECL_P (t)
+ || is_gimple_min_invariant (t)
+ || TREE_CODE (t) == SSA_NAME
+ || t == error_mark_node
+ || TREE_CODE (t) == IDENTIFIER_NODE)
+ return true;
+
+ if (TREE_CODE (t) == CASE_LABEL_EXPR)
+ return true;
+
+ if (DECL_P (t))
+ return true;
+
+ return false;
+}
+
+/* Called via walk_tree. Verify tree sharing. */
+
+static tree
+verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
+{
+ struct pointer_set_t *visited = (struct pointer_set_t *) data;
+
+ if (tree_node_can_be_shared (*tp))
+ {
+ *walk_subtrees = false;
+ return NULL;
+ }
+
+ if (pointer_set_insert (visited, *tp))
+ return *tp;
+
+ return NULL;
+}
+
+/* Called via walk_gimple_stmt. Verify tree sharing. */
+
+static tree
+verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
+{
+ struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
+ return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
+}
+
+static bool eh_error_found;
+static int
+verify_eh_throw_stmt_node (void **slot, void *data)
+{
+ struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
+ struct pointer_set_t *visited = (struct pointer_set_t *) data;
+
+ if (!pointer_set_contains (visited, node->stmt))
+ {
+ error ("dead STMT in EH table");
+ debug_gimple_stmt (node->stmt);
+ eh_error_found = true;
+ }
+ return 1;
+}
+
+/* Verify if the location LOCs block is in BLOCKS. */
+
+static bool
+verify_location (pointer_set_t *blocks, location_t loc)
+{
+ tree block = LOCATION_BLOCK (loc);
+ if (block != NULL_TREE
+ && !pointer_set_contains (blocks, block))
+ {
+ error ("location references block not in block tree");
+ return true;
+ }
+ if (block != NULL_TREE)
+ return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
+ return false;
+}
+
+/* Called via walk_tree. Verify that expressions have no blocks. */
+
+static tree
+verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
+{
+ if (!EXPR_P (*tp))
+ {
+ *walk_subtrees = false;
+ return NULL;
+ }
+
+ location_t loc = EXPR_LOCATION (*tp);
+ if (LOCATION_BLOCK (loc) != NULL)
+ return *tp;
+
+ return NULL;
+}
+
+/* Called via walk_tree. Verify locations of expressions. */
+
+static tree
+verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
+{
+ struct pointer_set_t *blocks = (struct pointer_set_t *) data;
+
+ if (TREE_CODE (*tp) == VAR_DECL
+ && DECL_HAS_DEBUG_EXPR_P (*tp))
+ {
+ tree t = DECL_DEBUG_EXPR (*tp);
+ tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
+ if (addr)
+ return addr;
+ }
+ if ((TREE_CODE (*tp) == VAR_DECL
+ || TREE_CODE (*tp) == PARM_DECL
+ || TREE_CODE (*tp) == RESULT_DECL)
+ && DECL_HAS_VALUE_EXPR_P (*tp))
+ {
+ tree t = DECL_VALUE_EXPR (*tp);
+ tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
+ if (addr)
+ return addr;
+ }
+
+ if (!EXPR_P (*tp))
+ {
+ *walk_subtrees = false;
+ return NULL;
+ }
+
+ location_t loc = EXPR_LOCATION (*tp);
+ if (verify_location (blocks, loc))
+ return *tp;
+
+ return NULL;
+}
+
+/* Called via walk_gimple_op. Verify locations of expressions. */
+
+static tree
+verify_expr_location (tree *tp, int *walk_subtrees, void *data)
+{
+ struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
+ return verify_expr_location_1 (tp, walk_subtrees, wi->info);
+}
+
+/* Insert all subblocks of BLOCK into BLOCKS and recurse. */
+
+static void
+collect_subblocks (pointer_set_t *blocks, tree block)
+{
+ tree t;
+ for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
+ {
+ pointer_set_insert (blocks, t);
+ collect_subblocks (blocks, t);
+ }
+}
+
+/* Verify the GIMPLE statements in the CFG of FN. */
+
+DEBUG_FUNCTION void
+verify_gimple_in_cfg (struct function *fn)
+{
+ basic_block bb;
+ bool err = false;
+ struct pointer_set_t *visited, *visited_stmts, *blocks;
+
+ timevar_push (TV_TREE_STMT_VERIFY);
+ visited = pointer_set_create ();
+ visited_stmts = pointer_set_create ();
+
+ /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
+ blocks = pointer_set_create ();
+ if (DECL_INITIAL (fn->decl))
+ {
+ pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
+ collect_subblocks (blocks, DECL_INITIAL (fn->decl));
+ }
+
+ FOR_EACH_BB_FN (bb, fn)
+ {
+ gimple_stmt_iterator gsi;
+
+ for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple phi = gsi_stmt (gsi);
+ bool err2 = false;
+ unsigned i;
+
+ pointer_set_insert (visited_stmts, phi);
+
+ if (gimple_bb (phi) != bb)
+ {
+ error ("gimple_bb (phi) is set to a wrong basic block");
+ err2 = true;
+ }
+
+ err2 |= verify_gimple_phi (phi);
+
+ /* Only PHI arguments have locations. */
+ if (gimple_location (phi) != UNKNOWN_LOCATION)
+ {
+ error ("PHI node with location");
+ err2 = true;
+ }
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ {
+ tree arg = gimple_phi_arg_def (phi, i);
+ tree addr = walk_tree (&arg, verify_node_sharing_1,
+ visited, NULL);
+ if (addr)
+ {
+ error ("incorrect sharing of tree nodes");
+ debug_generic_expr (addr);
+ err2 |= true;
+ }
+ location_t loc = gimple_phi_arg_location (phi, i);
+ if (virtual_operand_p (gimple_phi_result (phi))
+ && loc != UNKNOWN_LOCATION)
+ {
+ error ("virtual PHI with argument locations");
+ err2 = true;
+ }
+ addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
+ if (addr)
+ {
+ debug_generic_expr (addr);
+ err2 = true;
+ }
+ err2 |= verify_location (blocks, loc);
+ }
+
+ if (err2)
+ debug_gimple_stmt (phi);
+ err |= err2;
+ }
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ bool err2 = false;
+ struct walk_stmt_info wi;
+ tree addr;
+ int lp_nr;
+
+ pointer_set_insert (visited_stmts, stmt);
+
+ if (gimple_bb (stmt) != bb)
+ {
+ error ("gimple_bb (stmt) is set to a wrong basic block");
+ err2 = true;
+ }
+
+ err2 |= verify_gimple_stmt (stmt);
+ err2 |= verify_location (blocks, gimple_location (stmt));
+
+ memset (&wi, 0, sizeof (wi));
+ wi.info = (void *) visited;
+ addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
+ if (addr)
+ {
+ error ("incorrect sharing of tree nodes");
+ debug_generic_expr (addr);
+ err2 |= true;
+ }
+
+ memset (&wi, 0, sizeof (wi));
+ wi.info = (void *) blocks;
+ addr = walk_gimple_op (stmt, verify_expr_location, &wi);
+ if (addr)
+ {
+ debug_generic_expr (addr);
+ err2 |= true;
+ }
+
+ /* ??? Instead of not checking these stmts at all the walker
+ should know its context via wi. */
+ if (!is_gimple_debug (stmt)
+ && !is_gimple_omp (stmt))
+ {
+ memset (&wi, 0, sizeof (wi));
+ addr = walk_gimple_op (stmt, verify_expr, &wi);
+ if (addr)
+ {
+ debug_generic_expr (addr);
+ inform (gimple_location (stmt), "in statement");
+ err2 |= true;
+ }
+ }
+
+ /* If the statement is marked as part of an EH region, then it is
+ expected that the statement could throw. Verify that when we
+ have optimizations that simplify statements such that we prove
+ that they cannot throw, that we update other data structures
+ to match. */
+ lp_nr = lookup_stmt_eh_lp (stmt);
+ if (lp_nr != 0)
+ {
+ if (!stmt_could_throw_p (stmt))
+ {
+ error ("statement marked for throw, but doesn%'t");
+ err2 |= true;
+ }
+ else if (lp_nr > 0
+ && !gsi_one_before_end_p (gsi)
+ && stmt_can_throw_internal (stmt))
+ {
+ error ("statement marked for throw in middle of block");
+ err2 |= true;
+ }
+ }
+
+ if (err2)
+ debug_gimple_stmt (stmt);
+ err |= err2;
+ }
+ }
+
+ eh_error_found = false;
+ if (get_eh_throw_stmt_table (cfun))
+ htab_traverse (get_eh_throw_stmt_table (cfun),
+ verify_eh_throw_stmt_node,
+ visited_stmts);
+
+ if (err || eh_error_found)
+ internal_error ("verify_gimple failed");
+
+ pointer_set_destroy (visited);
+ pointer_set_destroy (visited_stmts);
+ pointer_set_destroy (blocks);
+ verify_histograms ();
+ timevar_pop (TV_TREE_STMT_VERIFY);
+}
+
+
+/* Verifies that the flow information is OK. */
+
+static int
+gimple_verify_flow_info (void)
+{
+ int err = 0;
+ basic_block bb;
+ gimple_stmt_iterator gsi;
+ gimple stmt;
+ edge e;
+ edge_iterator ei;
+
+ if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
+ || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
+ {
+ error ("ENTRY_BLOCK has IL associated with it");
+ err = 1;
+ }
+
+ if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
+ || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
+ {
+ error ("EXIT_BLOCK has IL associated with it");
+ err = 1;
+ }
+
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
+ if (e->flags & EDGE_FALLTHRU)
+ {
+ error ("fallthru to exit from bb %d", e->src->index);
+ err = 1;
+ }
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ bool found_ctrl_stmt = false;
+
+ stmt = NULL;
+
+ /* Skip labels on the start of basic block. */
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ tree label;
+ gimple prev_stmt = stmt;
+
+ stmt = gsi_stmt (gsi);
+
+ if (gimple_code (stmt) != GIMPLE_LABEL)
+ break;
+
+ label = gimple_label_label (stmt);
+ if (prev_stmt && DECL_NONLOCAL (label))
+ {
+ error ("nonlocal label ");
+ print_generic_expr (stderr, label, 0);
+ fprintf (stderr, " is not first in a sequence of labels in bb %d",
+ bb->index);
+ err = 1;
+ }
+
+ if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
+ {
+ error ("EH landing pad label ");
+ print_generic_expr (stderr, label, 0);
+ fprintf (stderr, " is not first in a sequence of labels in bb %d",
+ bb->index);
+ err = 1;
+ }
+
+ if (label_to_block (label) != bb)
+ {
+ error ("label ");
+ print_generic_expr (stderr, label, 0);
+ fprintf (stderr, " to block does not match in bb %d",
+ bb->index);
+ err = 1;
+ }
+
+ if (decl_function_context (label) != current_function_decl)
+ {
+ error ("label ");
+ print_generic_expr (stderr, label, 0);
+ fprintf (stderr, " has incorrect context in bb %d",
+ bb->index);
+ err = 1;
+ }
+ }
+
+ /* Verify that body of basic block BB is free of control flow. */
+ for (; !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+
+ if (found_ctrl_stmt)
+ {
+ error ("control flow in the middle of basic block %d",
+ bb->index);
+ err = 1;
+ }
+
+ if (stmt_ends_bb_p (stmt))
+ found_ctrl_stmt = true;
+
+ if (gimple_code (stmt) == GIMPLE_LABEL)
+ {
+ error ("label ");
+ print_generic_expr (stderr, gimple_label_label (stmt), 0);
+ fprintf (stderr, " in the middle of basic block %d", bb->index);
+ err = 1;
+ }
+ }
+
+ gsi = gsi_last_bb (bb);
+ if (gsi_end_p (gsi))
+ continue;
+
+ stmt = gsi_stmt (gsi);
+
+ if (gimple_code (stmt) == GIMPLE_LABEL)
+ continue;
+
+ err |= verify_eh_edges (stmt);
+
+ if (is_ctrl_stmt (stmt))
+ {
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (e->flags & EDGE_FALLTHRU)
+ {
+ error ("fallthru edge after a control statement in bb %d",
+ bb->index);
+ err = 1;
+ }
+ }
+
+ if (gimple_code (stmt) != GIMPLE_COND)
+ {
+ /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
+ after anything else but if statement. */
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
+ {
+ error ("true/false edge after a non-GIMPLE_COND in bb %d",
+ bb->index);
+ err = 1;
+ }
+ }
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_COND:
+ {
+ edge true_edge;
+ edge false_edge;
+
+ extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
+
+ if (!true_edge
+ || !false_edge
+ || !(true_edge->flags & EDGE_TRUE_VALUE)
+ || !(false_edge->flags & EDGE_FALSE_VALUE)
+ || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
+ || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
+ || EDGE_COUNT (bb->succs) >= 3)
+ {
+ error ("wrong outgoing edge flags at end of bb %d",
+ bb->index);
+ err = 1;
+ }
+ }
+ break;
+
+ case GIMPLE_GOTO:
+ if (simple_goto_p (stmt))
+ {
+ error ("explicit goto at end of bb %d", bb->index);
+ err = 1;
+ }
+ else
+ {
+ /* FIXME. We should double check that the labels in the
+ destination blocks have their address taken. */
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
+ | EDGE_FALSE_VALUE))
+ || !(e->flags & EDGE_ABNORMAL))
+ {
+ error ("wrong outgoing edge flags at end of bb %d",
+ bb->index);
+ err = 1;
+ }
+ }
+ break;
+
+ case GIMPLE_CALL:
+ if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
+ break;
+ /* ... fallthru ... */
+ case GIMPLE_RETURN:
+ if (!single_succ_p (bb)
+ || (single_succ_edge (bb)->flags
+ & (EDGE_FALLTHRU | EDGE_ABNORMAL
+ | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
+ {
+ error ("wrong outgoing edge flags at end of bb %d", bb->index);
+ err = 1;
+ }
+ if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
+ {
+ error ("return edge does not point to exit in bb %d",
+ bb->index);
+ err = 1;
+ }
+ break;
+
+ case GIMPLE_SWITCH:
+ {
+ tree prev;
+ edge e;
+ size_t i, n;
+
+ n = gimple_switch_num_labels (stmt);
+
+ /* Mark all the destination basic blocks. */
+ for (i = 0; i < n; ++i)
+ {
+ tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
+ basic_block label_bb = label_to_block (lab);
+ gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
+ label_bb->aux = (void *)1;
+ }
+
+ /* Verify that the case labels are sorted. */
+ prev = gimple_switch_label (stmt, 0);
+ for (i = 1; i < n; ++i)
+ {
+ tree c = gimple_switch_label (stmt, i);
+ if (!CASE_LOW (c))
+ {
+ error ("found default case not at the start of "
+ "case vector");
+ err = 1;
+ continue;
+ }
+ if (CASE_LOW (prev)
+ && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
+ {
+ error ("case labels not sorted: ");
+ print_generic_expr (stderr, prev, 0);
+ fprintf (stderr," is greater than ");
+ print_generic_expr (stderr, c, 0);
+ fprintf (stderr," but comes before it.\n");
+ err = 1;
+ }
+ prev = c;
+ }
+ /* VRP will remove the default case if it can prove it will
+ never be executed. So do not verify there always exists
+ a default case here. */
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ if (!e->dest->aux)
+ {
+ error ("extra outgoing edge %d->%d",
+ bb->index, e->dest->index);
+ err = 1;
+ }
+
+ e->dest->aux = (void *)2;
+ if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
+ | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
+ {
+ error ("wrong outgoing edge flags at end of bb %d",
+ bb->index);
+ err = 1;
+ }
+ }
+
+ /* Check that we have all of them. */
+ for (i = 0; i < n; ++i)
+ {
+ tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
+ basic_block label_bb = label_to_block (lab);
+
+ if (label_bb->aux != (void *)2)
+ {
+ error ("missing edge %i->%i", bb->index, label_bb->index);
+ err = 1;
+ }
+ }
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ e->dest->aux = (void *)0;
+ }
+ break;
+
+ case GIMPLE_EH_DISPATCH:
+ err |= verify_eh_dispatch_edge (stmt);
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
+ verify_dominators (CDI_DOMINATORS);
+
+ return err;
+}
+
+
+/* Updates phi nodes after creating a forwarder block joined
+ by edge FALLTHRU. */
+
+static void
+gimple_make_forwarder_block (edge fallthru)
+{
+ edge e;
+ edge_iterator ei;
+ basic_block dummy, bb;
+ tree var;
+ gimple_stmt_iterator gsi;
+
+ dummy = fallthru->src;
+ bb = fallthru->dest;
+
+ if (single_pred_p (bb))
+ return;
+
+ /* If we redirected a branch we must create new PHI nodes at the
+ start of BB. */
+ for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple phi, new_phi;
+
+ phi = gsi_stmt (gsi);
+ var = gimple_phi_result (phi);
+ new_phi = create_phi_node (var, bb);
+ gimple_phi_set_result (phi, copy_ssa_name (var, phi));
+ add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
+ UNKNOWN_LOCATION);
+ }
+
+ /* Add the arguments we have stored on edges. */
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ if (e == fallthru)
+ continue;
+
+ flush_pending_stmts (e);
+ }
+}
+
+
+/* Return a non-special label in the head of basic block BLOCK.
+ Create one if it doesn't exist. */
+
+tree
+gimple_block_label (basic_block bb)
+{
+ gimple_stmt_iterator i, s = gsi_start_bb (bb);
+ bool first = true;
+ tree label;
+ gimple stmt;
+
+ for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
+ {
+ stmt = gsi_stmt (i);
+ if (gimple_code (stmt) != GIMPLE_LABEL)
+ break;
+ label = gimple_label_label (stmt);
+ if (!DECL_NONLOCAL (label))
+ {
+ if (!first)
+ gsi_move_before (&i, &s);
+ return label;
+ }
+ }
+
+ label = create_artificial_label (UNKNOWN_LOCATION);
+ stmt = gimple_build_label (label);
+ gsi_insert_before (&s, stmt, GSI_NEW_STMT);
+ return label;
+}
+
+
+/* Attempt to perform edge redirection by replacing a possibly complex
+ jump instruction by a goto or by removing the jump completely.
+ This can apply only if all edges now point to the same block. The
+ parameters and return values are equivalent to
+ redirect_edge_and_branch. */
+
+static edge
+gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
+{
+ basic_block src = e->src;
+ gimple_stmt_iterator i;
+ gimple stmt;
+
+ /* We can replace or remove a complex jump only when we have exactly
+ two edges. */
+ if (EDGE_COUNT (src->succs) != 2
+ /* Verify that all targets will be TARGET. Specifically, the
+ edge that is not E must also go to TARGET. */
+ || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
+ return NULL;
+
+ i = gsi_last_bb (src);
+ if (gsi_end_p (i))
+ return NULL;
+
+ stmt = gsi_stmt (i);
+
+ if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
+ {
+ gsi_remove (&i, true);
+ e = ssa_redirect_edge (e, target);
+ e->flags = EDGE_FALLTHRU;
+ return e;
+ }
+
+ return NULL;
+}
+
+
+/* Redirect E to DEST. Return NULL on failure. Otherwise, return the
+ edge representing the redirected branch. */
+
+static edge
+gimple_redirect_edge_and_branch (edge e, basic_block dest)
+{
+ basic_block bb = e->src;
+ gimple_stmt_iterator gsi;
+ edge ret;
+ gimple stmt;
+
+ if (e->flags & EDGE_ABNORMAL)
+ return NULL;
+
+ if (e->dest == dest)
+ return NULL;
+
+ if (e->flags & EDGE_EH)
+ return redirect_eh_edge (e, dest);
+
+ if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
+ {
+ ret = gimple_try_redirect_by_replacing_jump (e, dest);
+ if (ret)
+ return ret;
+ }
+
+ gsi = gsi_last_bb (bb);
+ stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
+
+ switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
+ {
+ case GIMPLE_COND:
+ /* For COND_EXPR, we only need to redirect the edge. */
+ break;
+
+ case GIMPLE_GOTO:
+ /* No non-abnormal edges should lead from a non-simple goto, and
+ simple ones should be represented implicitly. */
+ gcc_unreachable ();
+
+ case GIMPLE_SWITCH:
+ {
+ tree label = gimple_block_label (dest);
+ tree cases = get_cases_for_edge (e, stmt);
+
+ /* If we have a list of cases associated with E, then use it
+ as it's a lot faster than walking the entire case vector. */
+ if (cases)
+ {
+ edge e2 = find_edge (e->src, dest);
+ tree last, first;
+
+ first = cases;
+ while (cases)
+ {
+ last = cases;
+ CASE_LABEL (cases) = label;
+ cases = CASE_CHAIN (cases);
+ }
+
+ /* If there was already an edge in the CFG, then we need
+ to move all the cases associated with E to E2. */
+ if (e2)
+ {
+ tree cases2 = get_cases_for_edge (e2, stmt);
+
+ CASE_CHAIN (last) = CASE_CHAIN (cases2);
+ CASE_CHAIN (cases2) = first;
+ }
+ bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
+ }
+ else
+ {
+ size_t i, n = gimple_switch_num_labels (stmt);
+
+ for (i = 0; i < n; i++)
+ {
+ tree elt = gimple_switch_label (stmt, i);
+ if (label_to_block (CASE_LABEL (elt)) == e->dest)
+ CASE_LABEL (elt) = label;
+ }
+ }
+ }
+ break;
+
+ case GIMPLE_ASM:
+ {
+ int i, n = gimple_asm_nlabels (stmt);
+ tree label = NULL;
+
+ for (i = 0; i < n; ++i)
+ {
+ tree cons = gimple_asm_label_op (stmt, i);
+ if (label_to_block (TREE_VALUE (cons)) == e->dest)
+ {
+ if (!label)
+ label = gimple_block_label (dest);
+ TREE_VALUE (cons) = label;
+ }
+ }
+
+ /* If we didn't find any label matching the former edge in the
+ asm labels, we must be redirecting the fallthrough
+ edge. */
+ gcc_assert (label || (e->flags & EDGE_FALLTHRU));
+ }
+ break;
+
+ case GIMPLE_RETURN:
+ gsi_remove (&gsi, true);
+ e->flags |= EDGE_FALLTHRU;
+ break;
+
+ case GIMPLE_OMP_RETURN:
+ case GIMPLE_OMP_CONTINUE:
+ case GIMPLE_OMP_SECTIONS_SWITCH:
+ case GIMPLE_OMP_FOR:
+ /* The edges from OMP constructs can be simply redirected. */
+ break;
+
+ case GIMPLE_EH_DISPATCH:
+ if (!(e->flags & EDGE_FALLTHRU))
+ redirect_eh_dispatch_edge (stmt, e, dest);
+ break;
+
+ case GIMPLE_TRANSACTION:
+ /* The ABORT edge has a stored label associated with it, otherwise
+ the edges are simply redirectable. */
+ if (e->flags == 0)
+ gimple_transaction_set_label (stmt, gimple_block_label (dest));
+ break;
+
+ default:
+ /* Otherwise it must be a fallthru edge, and we don't need to
+ do anything besides redirecting it. */
+ gcc_assert (e->flags & EDGE_FALLTHRU);
+ break;
+ }
+
+ /* Update/insert PHI nodes as necessary. */
+
+ /* Now update the edges in the CFG. */
+ e = ssa_redirect_edge (e, dest);
+
+ return e;
+}
+
+/* Returns true if it is possible to remove edge E by redirecting
+ it to the destination of the other edge from E->src. */
+
+static bool
+gimple_can_remove_branch_p (const_edge e)
+{
+ if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
+ return false;
+
+ return true;
+}
+
+/* Simple wrapper, as we can always redirect fallthru edges. */
+
+static basic_block
+gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
+{
+ e = gimple_redirect_edge_and_branch (e, dest);
+ gcc_assert (e);
+
+ return NULL;
+}
+
+
+/* Splits basic block BB after statement STMT (but at least after the
+ labels). If STMT is NULL, BB is split just after the labels. */
+
+static basic_block
+gimple_split_block (basic_block bb, void *stmt)
+{
+ gimple_stmt_iterator gsi;
+ gimple_stmt_iterator gsi_tgt;
+ gimple act;
+ gimple_seq list;
+ basic_block new_bb;
+ edge e;
+ edge_iterator ei;
+
+ new_bb = create_empty_bb (bb);
+
+ /* Redirect the outgoing edges. */
+ new_bb->succs = bb->succs;
+ bb->succs = NULL;
+ FOR_EACH_EDGE (e, ei, new_bb->succs)
+ e->src = new_bb;
+
+ if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
+ stmt = NULL;
+
+ /* Move everything from GSI to the new basic block. */
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ act = gsi_stmt (gsi);
+ if (gimple_code (act) == GIMPLE_LABEL)
+ continue;
+
+ if (!stmt)
+ break;
+
+ if (stmt == act)
+ {
+ gsi_next (&gsi);
+ break;
+ }
+ }
+
+ if (gsi_end_p (gsi))
+ return new_bb;
+
+ /* Split the statement list - avoid re-creating new containers as this
+ brings ugly quadratic memory consumption in the inliner.
+ (We are still quadratic since we need to update stmt BB pointers,
+ sadly.) */
+ gsi_split_seq_before (&gsi, &list);
+ set_bb_seq (new_bb, list);
+ for (gsi_tgt = gsi_start (list);
+ !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
+ gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
+
+ return new_bb;
+}
+
+
+/* Moves basic block BB after block AFTER. */
+
+static bool
+gimple_move_block_after (basic_block bb, basic_block after)
+{
+ if (bb->prev_bb == after)
+ return true;
+
+ unlink_block (bb);
+ link_block (bb, after);
+
+ return true;
+}
+
+
+/* Return TRUE if block BB has no executable statements, otherwise return
+ FALSE. */
+
+static bool
+gimple_empty_block_p (basic_block bb)
+{
+ /* BB must have no executable statements. */
+ gimple_stmt_iterator gsi = gsi_after_labels (bb);
+ if (phi_nodes (bb))
+ return false;
+ if (gsi_end_p (gsi))
+ return true;
+ if (is_gimple_debug (gsi_stmt (gsi)))
+ gsi_next_nondebug (&gsi);
+ return gsi_end_p (gsi);
+}
+
+
+/* Split a basic block if it ends with a conditional branch and if the
+ other part of the block is not empty. */
+
+static basic_block
+gimple_split_block_before_cond_jump (basic_block bb)
+{
+ gimple last, split_point;
+ gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
+ if (gsi_end_p (gsi))
+ return NULL;
+ last = gsi_stmt (gsi);
+ if (gimple_code (last) != GIMPLE_COND
+ && gimple_code (last) != GIMPLE_SWITCH)
+ return NULL;
+ gsi_prev_nondebug (&gsi);
+ split_point = gsi_stmt (gsi);
+ return split_block (bb, split_point)->dest;
+}
+
+
+/* Return true if basic_block can be duplicated. */
+
+static bool
+gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
+{
+ return true;
+}
+
+/* Create a duplicate of the basic block BB. NOTE: This does not
+ preserve SSA form. */
+
+static basic_block
+gimple_duplicate_bb (basic_block bb)
+{
+ basic_block new_bb;
+ gimple_stmt_iterator gsi, gsi_tgt;
+ gimple_seq phis = phi_nodes (bb);
+ gimple phi, stmt, copy;
+
+ new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
+
+ /* Copy the PHI nodes. We ignore PHI node arguments here because
+ the incoming edges have not been setup yet. */
+ for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ phi = gsi_stmt (gsi);
+ copy = create_phi_node (NULL_TREE, new_bb);
+ create_new_def_for (gimple_phi_result (phi), copy,
+ gimple_phi_result_ptr (copy));
+ gimple_set_uid (copy, gimple_uid (phi));
+ }
+
+ gsi_tgt = gsi_start_bb (new_bb);
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ def_operand_p def_p;
+ ssa_op_iter op_iter;
+ tree lhs;
+
+ stmt = gsi_stmt (gsi);
+ if (gimple_code (stmt) == GIMPLE_LABEL)
+ continue;
+
+ /* Don't duplicate label debug stmts. */
+ if (gimple_debug_bind_p (stmt)
+ && TREE_CODE (gimple_debug_bind_get_var (stmt))
+ == LABEL_DECL)
+ continue;
+
+ /* Create a new copy of STMT and duplicate STMT's virtual
+ operands. */
+ copy = gimple_copy (stmt);
+ gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
+
+ maybe_duplicate_eh_stmt (copy, stmt);
+ gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
+
+ /* When copying around a stmt writing into a local non-user
+ aggregate, make sure it won't share stack slot with other
+ vars. */
+ lhs = gimple_get_lhs (stmt);
+ if (lhs && TREE_CODE (lhs) != SSA_NAME)
+ {
+ tree base = get_base_address (lhs);
+ if (base
+ && (TREE_CODE (base) == VAR_DECL
+ || TREE_CODE (base) == RESULT_DECL)
+ && DECL_IGNORED_P (base)
+ && !TREE_STATIC (base)
+ && !DECL_EXTERNAL (base)
+ && (TREE_CODE (base) != VAR_DECL
+ || !DECL_HAS_VALUE_EXPR_P (base)))
+ DECL_NONSHAREABLE (base) = 1;
+ }
+
+ /* Create new names for all the definitions created by COPY and
+ add replacement mappings for each new name. */
+ FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
+ create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
+ }
+
+ return new_bb;
+}
+
+/* Adds phi node arguments for edge E_COPY after basic block duplication. */
+
+static void
+add_phi_args_after_copy_edge (edge e_copy)
+{
+ basic_block bb, bb_copy = e_copy->src, dest;
+ edge e;
+ edge_iterator ei;
+ gimple phi, phi_copy;
+ tree def;
+ gimple_stmt_iterator psi, psi_copy;
+
+ if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
+ return;
+
+ bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
+
+ if (e_copy->dest->flags & BB_DUPLICATED)
+ dest = get_bb_original (e_copy->dest);
+ else
+ dest = e_copy->dest;
+
+ e = find_edge (bb, dest);
+ if (!e)
+ {
+ /* During loop unrolling the target of the latch edge is copied.
+ In this case we are not looking for edge to dest, but to
+ duplicated block whose original was dest. */
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ if ((e->dest->flags & BB_DUPLICATED)
+ && get_bb_original (e->dest) == dest)
+ break;
+ }
+
+ gcc_assert (e != NULL);
+ }
+
+ for (psi = gsi_start_phis (e->dest),
+ psi_copy = gsi_start_phis (e_copy->dest);
+ !gsi_end_p (psi);
+ gsi_next (&psi), gsi_next (&psi_copy))
+ {
+ phi = gsi_stmt (psi);
+ phi_copy = gsi_stmt (psi_copy);
+ def = PHI_ARG_DEF_FROM_EDGE (phi, e);
+ add_phi_arg (phi_copy, def, e_copy,
+ gimple_phi_arg_location_from_edge (phi, e));
+ }
+}
+
+
+/* Basic block BB_COPY was created by code duplication. Add phi node
+ arguments for edges going out of BB_COPY. The blocks that were
+ duplicated have BB_DUPLICATED set. */
+
+void
+add_phi_args_after_copy_bb (basic_block bb_copy)
+{
+ edge e_copy;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
+ {
+ add_phi_args_after_copy_edge (e_copy);
+ }
+}
+
+/* Blocks in REGION_COPY array of length N_REGION were created by
+ duplication of basic blocks. Add phi node arguments for edges
+ going from these blocks. If E_COPY is not NULL, also add
+ phi node arguments for its destination.*/
+
+void
+add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
+ edge e_copy)
+{
+ unsigned i;
+
+ for (i = 0; i < n_region; i++)
+ region_copy[i]->flags |= BB_DUPLICATED;
+
+ for (i = 0; i < n_region; i++)
+ add_phi_args_after_copy_bb (region_copy[i]);
+ if (e_copy)
+ add_phi_args_after_copy_edge (e_copy);
+
+ for (i = 0; i < n_region; i++)
+ region_copy[i]->flags &= ~BB_DUPLICATED;
+}
+
+/* Duplicates a REGION (set of N_REGION basic blocks) with just a single
+ important exit edge EXIT. By important we mean that no SSA name defined
+ inside region is live over the other exit edges of the region. All entry
+ edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
+ to the duplicate of the region. Dominance and loop information is
+ updated if UPDATE_DOMINANCE is true, but not the SSA web. If
+ UPDATE_DOMINANCE is false then we assume that the caller will update the
+ dominance information after calling this function. The new basic
+ blocks are stored to REGION_COPY in the same order as they had in REGION,
+ provided that REGION_COPY is not NULL.
+ The function returns false if it is unable to copy the region,
+ true otherwise. */
+
+bool
+gimple_duplicate_sese_region (edge entry, edge exit,
+ basic_block *region, unsigned n_region,
+ basic_block *region_copy,
+ bool update_dominance)
+{
+ unsigned i;
+ bool free_region_copy = false, copying_header = false;
+ struct loop *loop = entry->dest->loop_father;
+ edge exit_copy;
+ vec<basic_block> doms;
+ edge redirected;
+ int total_freq = 0, entry_freq = 0;
+ gcov_type total_count = 0, entry_count = 0;
+
+ if (!can_copy_bbs_p (region, n_region))
+ return false;
+
+ /* Some sanity checking. Note that we do not check for all possible
+ missuses of the functions. I.e. if you ask to copy something weird,
+ it will work, but the state of structures probably will not be
+ correct. */
+ for (i = 0; i < n_region; i++)
+ {
+ /* We do not handle subloops, i.e. all the blocks must belong to the
+ same loop. */
+ if (region[i]->loop_father != loop)
+ return false;
+
+ if (region[i] != entry->dest
+ && region[i] == loop->header)
+ return false;
+ }
+
+ /* In case the function is used for loop header copying (which is the primary
+ use), ensure that EXIT and its copy will be new latch and entry edges. */
+ if (loop->header == entry->dest)
+ {
+ copying_header = true;
+
+ if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
+ return false;
+
+ for (i = 0; i < n_region; i++)
+ if (region[i] != exit->src
+ && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
+ return false;
+ }
+
+ initialize_original_copy_tables ();
+
+ if (copying_header)
+ set_loop_copy (loop, loop_outer (loop));
+ else
+ set_loop_copy (loop, loop);
+
+ if (!region_copy)
+ {
+ region_copy = XNEWVEC (basic_block, n_region);
+ free_region_copy = true;
+ }
+
+ /* Record blocks outside the region that are dominated by something
+ inside. */
+ if (update_dominance)
+ {
+ doms.create (0);
+ doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
+ }
+
+ if (entry->dest->count)
+ {
+ total_count = entry->dest->count;
+ entry_count = entry->count;
+ /* Fix up corner cases, to avoid division by zero or creation of negative
+ frequencies. */
+ if (entry_count > total_count)
+ entry_count = total_count;
+ }
+ else
+ {
+ total_freq = entry->dest->frequency;
+ entry_freq = EDGE_FREQUENCY (entry);
+ /* Fix up corner cases, to avoid division by zero or creation of negative
+ frequencies. */
+ if (total_freq == 0)
+ total_freq = 1;
+ else if (entry_freq > total_freq)
+ entry_freq = total_freq;
+ }
+
+ copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
+ split_edge_bb_loc (entry), update_dominance);
+ if (total_count)
+ {
+ scale_bbs_frequencies_gcov_type (region, n_region,
+ total_count - entry_count,
+ total_count);
+ scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
+ total_count);
+ }
+ else
+ {
+ scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
+ total_freq);
+ scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
+ }
+
+ if (copying_header)
+ {
+ loop->header = exit->dest;
+ loop->latch = exit->src;
+ }
+
+ /* Redirect the entry and add the phi node arguments. */
+ redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
+ gcc_assert (redirected != NULL);
+ flush_pending_stmts (entry);
+
+ /* Concerning updating of dominators: We must recount dominators
+ for entry block and its copy. Anything that is outside of the
+ region, but was dominated by something inside needs recounting as
+ well. */
+ if (update_dominance)
+ {
+ set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
+ doms.safe_push (get_bb_original (entry->dest));
+ iterate_fix_dominators (CDI_DOMINATORS, doms, false);
+ doms.release ();
+ }
+
+ /* Add the other PHI node arguments. */
+ add_phi_args_after_copy (region_copy, n_region, NULL);
+
+ if (free_region_copy)
+ free (region_copy);
+
+ free_original_copy_tables ();
+ return true;
+}
+
+/* Checks if BB is part of the region defined by N_REGION BBS. */
+static bool
+bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
+{
+ unsigned int n;
+
+ for (n = 0; n < n_region; n++)
+ {
+ if (bb == bbs[n])
+ return true;
+ }
+ return false;
+}
+
+/* Duplicates REGION consisting of N_REGION blocks. The new blocks
+ are stored to REGION_COPY in the same order in that they appear
+ in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
+ the region, EXIT an exit from it. The condition guarding EXIT
+ is moved to ENTRY. Returns true if duplication succeeds, false
+ otherwise.
+
+ For example,
+
+ some_code;
+ if (cond)
+ A;
+ else
+ B;
+
+ is transformed to
+
+ if (cond)
+ {
+ some_code;
+ A;
+ }
+ else
+ {
+ some_code;
+ B;
+ }
+*/
+
+bool
+gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
+ basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
+ basic_block *region_copy ATTRIBUTE_UNUSED)
+{
+ unsigned i;
+ bool free_region_copy = false;
+ struct loop *loop = exit->dest->loop_father;
+ struct loop *orig_loop = entry->dest->loop_father;
+ basic_block switch_bb, entry_bb, nentry_bb;
+ vec<basic_block> doms;
+ int total_freq = 0, exit_freq = 0;
+ gcov_type total_count = 0, exit_count = 0;
+ edge exits[2], nexits[2], e;
+ gimple_stmt_iterator gsi;
+ gimple cond_stmt;
+ edge sorig, snew;
+ basic_block exit_bb;
+ gimple_stmt_iterator psi;
+ gimple phi;
+ tree def;
+ struct loop *target, *aloop, *cloop;
+
+ gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
+ exits[0] = exit;
+ exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
+
+ if (!can_copy_bbs_p (region, n_region))
+ return false;
+
+ initialize_original_copy_tables ();
+ set_loop_copy (orig_loop, loop);
+
+ target= loop;
+ for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
+ {
+ if (bb_part_of_region_p (aloop->header, region, n_region))
+ {
+ cloop = duplicate_loop (aloop, target);
+ duplicate_subloops (aloop, cloop);
+ }
+ }
+
+ if (!region_copy)
+ {
+ region_copy = XNEWVEC (basic_block, n_region);
+ free_region_copy = true;
+ }
+
+ gcc_assert (!need_ssa_update_p (cfun));
+
+ /* Record blocks outside the region that are dominated by something
+ inside. */
+ doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
+
+ if (exit->src->count)
+ {
+ total_count = exit->src->count;
+ exit_count = exit->count;
+ /* Fix up corner cases, to avoid division by zero or creation of negative
+ frequencies. */
+ if (exit_count > total_count)
+ exit_count = total_count;
+ }
+ else
+ {
+ total_freq = exit->src->frequency;
+ exit_freq = EDGE_FREQUENCY (exit);
+ /* Fix up corner cases, to avoid division by zero or creation of negative
+ frequencies. */
+ if (total_freq == 0)
+ total_freq = 1;
+ if (exit_freq > total_freq)
+ exit_freq = total_freq;
+ }
+
+ copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
+ split_edge_bb_loc (exit), true);
+ if (total_count)
+ {
+ scale_bbs_frequencies_gcov_type (region, n_region,
+ total_count - exit_count,
+ total_count);
+ scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
+ total_count);
+ }
+ else
+ {
+ scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
+ total_freq);
+ scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
+ }
+
+ /* Create the switch block, and put the exit condition to it. */
+ entry_bb = entry->dest;
+ nentry_bb = get_bb_copy (entry_bb);
+ if (!last_stmt (entry->src)
+ || !stmt_ends_bb_p (last_stmt (entry->src)))
+ switch_bb = entry->src;
+ else
+ switch_bb = split_edge (entry);
+ set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
+
+ gsi = gsi_last_bb (switch_bb);
+ cond_stmt = last_stmt (exit->src);
+ gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
+ cond_stmt = gimple_copy (cond_stmt);
+
+ gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
+
+ sorig = single_succ_edge (switch_bb);
+ sorig->flags = exits[1]->flags;
+ snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
+
+ /* Register the new edge from SWITCH_BB in loop exit lists. */
+ rescan_loop_exit (snew, true, false);
+
+ /* Add the PHI node arguments. */
+ add_phi_args_after_copy (region_copy, n_region, snew);
+
+ /* Get rid of now superfluous conditions and associated edges (and phi node
+ arguments). */
+ exit_bb = exit->dest;
+
+ e = redirect_edge_and_branch (exits[0], exits[1]->dest);
+ PENDING_STMT (e) = NULL;
+
+ /* The latch of ORIG_LOOP was copied, and so was the backedge
+ to the original header. We redirect this backedge to EXIT_BB. */
+ for (i = 0; i < n_region; i++)
+ if (get_bb_original (region_copy[i]) == orig_loop->latch)
+ {
+ gcc_assert (single_succ_edge (region_copy[i]));
+ e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
+ PENDING_STMT (e) = NULL;
+ for (psi = gsi_start_phis (exit_bb);
+ !gsi_end_p (psi);
+ gsi_next (&psi))
+ {
+ phi = gsi_stmt (psi);
+ def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
+ add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
+ }
+ }
+ e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
+ PENDING_STMT (e) = NULL;
+
+ /* Anything that is outside of the region, but was dominated by something
+ inside needs to update dominance info. */
+ iterate_fix_dominators (CDI_DOMINATORS, doms, false);
+ doms.release ();
+ /* Update the SSA web. */
+ update_ssa (TODO_update_ssa);
+
+ if (free_region_copy)
+ free (region_copy);
+
+ free_original_copy_tables ();
+ return true;
+}
+
+/* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
+ adding blocks when the dominator traversal reaches EXIT. This
+ function silently assumes that ENTRY strictly dominates EXIT. */
+
+void
+gather_blocks_in_sese_region (basic_block entry, basic_block exit,
+ vec<basic_block> *bbs_p)
+{
+ basic_block son;
+
+ for (son = first_dom_son (CDI_DOMINATORS, entry);
+ son;
+ son = next_dom_son (CDI_DOMINATORS, son))
+ {
+ bbs_p->safe_push (son);
+ if (son != exit)
+ gather_blocks_in_sese_region (son, exit, bbs_p);
+ }
+}
+
+/* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
+ The duplicates are recorded in VARS_MAP. */
+
+static void
+replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
+ tree to_context)
+{
+ tree t = *tp, new_t;
+ struct function *f = DECL_STRUCT_FUNCTION (to_context);
+ void **loc;
+
+ if (DECL_CONTEXT (t) == to_context)
+ return;
+
+ loc = pointer_map_contains (vars_map, t);
+
+ if (!loc)
+ {
+ loc = pointer_map_insert (vars_map, t);
+
+ if (SSA_VAR_P (t))
+ {
+ new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
+ add_local_decl (f, new_t);
+ }
+ else
+ {
+ gcc_assert (TREE_CODE (t) == CONST_DECL);
+ new_t = copy_node (t);
+ }
+ DECL_CONTEXT (new_t) = to_context;
+
+ *loc = new_t;
+ }
+ else
+ new_t = (tree) *loc;
+
+ *tp = new_t;
+}
+
+
+/* Creates an ssa name in TO_CONTEXT equivalent to NAME.
+ VARS_MAP maps old ssa names and var_decls to the new ones. */
+
+static tree
+replace_ssa_name (tree name, struct pointer_map_t *vars_map,
+ tree to_context)
+{
+ void **loc;
+ tree new_name;
+
+ gcc_assert (!virtual_operand_p (name));
+
+ loc = pointer_map_contains (vars_map, name);
+
+ if (!loc)
+ {
+ tree decl = SSA_NAME_VAR (name);
+ if (decl)
+ {
+ replace_by_duplicate_decl (&decl, vars_map, to_context);
+ new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
+ decl, SSA_NAME_DEF_STMT (name));
+ if (SSA_NAME_IS_DEFAULT_DEF (name))
+ set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
+ decl, new_name);
+ }
+ else
+ new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
+ name, SSA_NAME_DEF_STMT (name));
+
+ loc = pointer_map_insert (vars_map, name);
+ *loc = new_name;
+ }
+ else
+ new_name = (tree) *loc;
+
+ return new_name;
+}
+
+struct move_stmt_d
+{
+ tree orig_block;
+ tree new_block;
+ tree from_context;
+ tree to_context;
+ struct pointer_map_t *vars_map;
+ htab_t new_label_map;
+ struct pointer_map_t *eh_map;
+ bool remap_decls_p;
+};
+
+/* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
+ contained in *TP if it has been ORIG_BLOCK previously and change the
+ DECL_CONTEXT of every local variable referenced in *TP. */
+
+static tree
+move_stmt_op (tree *tp, int *walk_subtrees, void *data)
+{
+ struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
+ struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
+ tree t = *tp;
+
+ if (EXPR_P (t))
+ {
+ tree block = TREE_BLOCK (t);
+ if (block == p->orig_block
+ || (p->orig_block == NULL_TREE
+ && block != NULL_TREE))
+ TREE_SET_BLOCK (t, p->new_block);
+#ifdef ENABLE_CHECKING
+ else if (block != NULL_TREE)
+ {
+ while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
+ block = BLOCK_SUPERCONTEXT (block);
+ gcc_assert (block == p->orig_block);
+ }
+#endif
+ }
+ else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
+ {
+ if (TREE_CODE (t) == SSA_NAME)
+ *tp = replace_ssa_name (t, p->vars_map, p->to_context);
+ else if (TREE_CODE (t) == LABEL_DECL)
+ {
+ if (p->new_label_map)
+ {
+ struct tree_map in, *out;
+ in.base.from = t;
+ out = (struct tree_map *)
+ htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
+ if (out)
+ *tp = t = out->to;
+ }
+
+ DECL_CONTEXT (t) = p->to_context;
+ }
+ else if (p->remap_decls_p)
+ {
+ /* Replace T with its duplicate. T should no longer appear in the
+ parent function, so this looks wasteful; however, it may appear
+ in referenced_vars, and more importantly, as virtual operands of
+ statements, and in alias lists of other variables. It would be
+ quite difficult to expunge it from all those places. ??? It might
+ suffice to do this for addressable variables. */
+ if ((TREE_CODE (t) == VAR_DECL
+ && !is_global_var (t))
+ || TREE_CODE (t) == CONST_DECL)
+ replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
+ }
+ *walk_subtrees = 0;
+ }
+ else if (TYPE_P (t))
+ *walk_subtrees = 0;
+
+ return NULL_TREE;
+}
+
+/* Helper for move_stmt_r. Given an EH region number for the source
+ function, map that to the duplicate EH regio number in the dest. */
+
+static int
+move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
+{
+ eh_region old_r, new_r;
+ void **slot;
+
+ old_r = get_eh_region_from_number (old_nr);
+ slot = pointer_map_contains (p->eh_map, old_r);
+ new_r = (eh_region) *slot;
+
+ return new_r->index;
+}
+
+/* Similar, but operate on INTEGER_CSTs. */
+
+static tree
+move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
+{
+ int old_nr, new_nr;
+
+ old_nr = tree_to_shwi (old_t_nr);
+ new_nr = move_stmt_eh_region_nr (old_nr, p);
+
+ return build_int_cst (integer_type_node, new_nr);
+}
+
+/* Like move_stmt_op, but for gimple statements.
+
+ Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
+ contained in the current statement in *GSI_P and change the
+ DECL_CONTEXT of every local variable referenced in the current
+ statement. */
+
+static tree
+move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
+ struct walk_stmt_info *wi)
+{
+ struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
+ gimple stmt = gsi_stmt (*gsi_p);
+ tree block = gimple_block (stmt);
+
+ if (block == p->orig_block
+ || (p->orig_block == NULL_TREE
+ && block != NULL_TREE))
+ gimple_set_block (stmt, p->new_block);
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_CALL:
+ /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
+ {
+ tree r, fndecl = gimple_call_fndecl (stmt);
+ if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
+ switch (DECL_FUNCTION_CODE (fndecl))
+ {
+ case BUILT_IN_EH_COPY_VALUES:
+ r = gimple_call_arg (stmt, 1);
+ r = move_stmt_eh_region_tree_nr (r, p);
+ gimple_call_set_arg (stmt, 1, r);
+ /* FALLTHRU */
+
+ case BUILT_IN_EH_POINTER:
+ case BUILT_IN_EH_FILTER:
+ r = gimple_call_arg (stmt, 0);
+ r = move_stmt_eh_region_tree_nr (r, p);
+ gimple_call_set_arg (stmt, 0, r);
+ break;
+
+ default:
+ break;
+ }
+ }
+ break;
+
+ case GIMPLE_RESX:
+ {
+ int r = gimple_resx_region (stmt);
+ r = move_stmt_eh_region_nr (r, p);
+ gimple_resx_set_region (stmt, r);
+ }
+ break;
+
+ case GIMPLE_EH_DISPATCH:
+ {
+ int r = gimple_eh_dispatch_region (stmt);
+ r = move_stmt_eh_region_nr (r, p);
+ gimple_eh_dispatch_set_region (stmt, r);
+ }
+ break;
+
+ case GIMPLE_OMP_RETURN:
+ case GIMPLE_OMP_CONTINUE:
+ break;
+ default:
+ if (is_gimple_omp (stmt))
+ {
+ /* Do not remap variables inside OMP directives. Variables
+ referenced in clauses and directive header belong to the
+ parent function and should not be moved into the child
+ function. */
+ bool save_remap_decls_p = p->remap_decls_p;
+ p->remap_decls_p = false;
+ *handled_ops_p = true;
+
+ walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
+ move_stmt_op, wi);
+
+ p->remap_decls_p = save_remap_decls_p;
+ }
+ break;
+ }
+
+ return NULL_TREE;
+}
+
+/* Move basic block BB from function CFUN to function DEST_FN. The
+ block is moved out of the original linked list and placed after
+ block AFTER in the new list. Also, the block is removed from the
+ original array of blocks and placed in DEST_FN's array of blocks.
+ If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
+ updated to reflect the moved edges.
+
+ The local variables are remapped to new instances, VARS_MAP is used
+ to record the mapping. */
+
+static void
+move_block_to_fn (struct function *dest_cfun, basic_block bb,
+ basic_block after, bool update_edge_count_p,
+ struct move_stmt_d *d)
+{
+ struct control_flow_graph *cfg;
+ edge_iterator ei;
+ edge e;
+ gimple_stmt_iterator si;
+ unsigned old_len, new_len;
+
+ /* Remove BB from dominance structures. */
+ delete_from_dominance_info (CDI_DOMINATORS, bb);
+
+ /* Move BB from its current loop to the copy in the new function. */
+ if (current_loops)
+ {
+ struct loop *new_loop = (struct loop *)bb->loop_father->aux;
+ if (new_loop)
+ bb->loop_father = new_loop;
+ }
+
+ /* Link BB to the new linked list. */
+ move_block_after (bb, after);
+
+ /* Update the edge count in the corresponding flowgraphs. */
+ if (update_edge_count_p)
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ cfun->cfg->x_n_edges--;
+ dest_cfun->cfg->x_n_edges++;
+ }
+
+ /* Remove BB from the original basic block array. */
+ (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
+ cfun->cfg->x_n_basic_blocks--;
+
+ /* Grow DEST_CFUN's basic block array if needed. */
+ cfg = dest_cfun->cfg;
+ cfg->x_n_basic_blocks++;
+ if (bb->index >= cfg->x_last_basic_block)
+ cfg->x_last_basic_block = bb->index + 1;
+
+ old_len = vec_safe_length (cfg->x_basic_block_info);
+ if ((unsigned) cfg->x_last_basic_block >= old_len)
+ {
+ new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
+ vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
+ }
+
+ (*cfg->x_basic_block_info)[bb->index] = bb;
+
+ /* Remap the variables in phi nodes. */
+ for (si = gsi_start_phis (bb); !gsi_end_p (si); )
+ {
+ gimple phi = gsi_stmt (si);
+ use_operand_p use;
+ tree op = PHI_RESULT (phi);
+ ssa_op_iter oi;
+ unsigned i;
+
+ if (virtual_operand_p (op))
+ {
+ /* Remove the phi nodes for virtual operands (alias analysis will be
+ run for the new function, anyway). */
+ remove_phi_node (&si, true);
+ continue;
+ }
+
+ SET_PHI_RESULT (phi,
+ replace_ssa_name (op, d->vars_map, dest_cfun->decl));
+ FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
+ {
+ op = USE_FROM_PTR (use);
+ if (TREE_CODE (op) == SSA_NAME)
+ SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
+ }
+
+ for (i = 0; i < EDGE_COUNT (bb->preds); i++)
+ {
+ location_t locus = gimple_phi_arg_location (phi, i);
+ tree block = LOCATION_BLOCK (locus);
+
+ if (locus == UNKNOWN_LOCATION)
+ continue;
+ if (d->orig_block == NULL_TREE || block == d->orig_block)
+ {
+ if (d->new_block == NULL_TREE)
+ locus = LOCATION_LOCUS (locus);
+ else
+ locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
+ gimple_phi_arg_set_location (phi, i, locus);
+ }
+ }
+
+ gsi_next (&si);
+ }
+
+ for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple stmt = gsi_stmt (si);
+ struct walk_stmt_info wi;
+
+ memset (&wi, 0, sizeof (wi));
+ wi.info = d;
+ walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
+
+ if (gimple_code (stmt) == GIMPLE_LABEL)
+ {
+ tree label = gimple_label_label (stmt);
+ int uid = LABEL_DECL_UID (label);
+
+ gcc_assert (uid > -1);
+
+ old_len = vec_safe_length (cfg->x_label_to_block_map);
+ if (old_len <= (unsigned) uid)
+ {
+ new_len = 3 * uid / 2 + 1;
+ vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
+ }
+
+ (*cfg->x_label_to_block_map)[uid] = bb;
+ (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
+
+ gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
+
+ if (uid >= dest_cfun->cfg->last_label_uid)
+ dest_cfun->cfg->last_label_uid = uid + 1;
+ }
+
+ maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
+ remove_stmt_from_eh_lp_fn (cfun, stmt);
+
+ gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
+ gimple_remove_stmt_histograms (cfun, stmt);
+
+ /* We cannot leave any operands allocated from the operand caches of
+ the current function. */
+ free_stmt_operands (cfun, stmt);
+ push_cfun (dest_cfun);
+ update_stmt (stmt);
+ pop_cfun ();
+ }
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (e->goto_locus != UNKNOWN_LOCATION)
+ {
+ tree block = LOCATION_BLOCK (e->goto_locus);
+ if (d->orig_block == NULL_TREE
+ || block == d->orig_block)
+ e->goto_locus = d->new_block ?
+ COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
+ LOCATION_LOCUS (e->goto_locus);
+ }
+}
+
+/* Examine the statements in BB (which is in SRC_CFUN); find and return
+ the outermost EH region. Use REGION as the incoming base EH region. */
+
+static eh_region
+find_outermost_region_in_block (struct function *src_cfun,
+ basic_block bb, eh_region region)
+{
+ gimple_stmt_iterator si;
+
+ for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple stmt = gsi_stmt (si);
+ eh_region stmt_region;
+ int lp_nr;
+
+ lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
+ stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
+ if (stmt_region)
+ {
+ if (region == NULL)
+ region = stmt_region;
+ else if (stmt_region != region)
+ {
+ region = eh_region_outermost (src_cfun, stmt_region, region);
+ gcc_assert (region != NULL);
+ }
+ }
+ }
+
+ return region;
+}
+
+static tree
+new_label_mapper (tree decl, void *data)
+{
+ htab_t hash = (htab_t) data;
+ struct tree_map *m;
+ void **slot;
+
+ gcc_assert (TREE_CODE (decl) == LABEL_DECL);
+
+ m = XNEW (struct tree_map);
+ m->hash = DECL_UID (decl);
+ m->base.from = decl;
+ m->to = create_artificial_label (UNKNOWN_LOCATION);
+ LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
+ if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
+ cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
+
+ slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
+ gcc_assert (*slot == NULL);
+
+ *slot = m;
+
+ return m->to;
+}
+
+/* Change DECL_CONTEXT of all BLOCK_VARS in block, including
+ subblocks. */
+
+static void
+replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
+ tree to_context)
+{
+ tree *tp, t;
+
+ for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
+ {
+ t = *tp;
+ if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
+ continue;
+ replace_by_duplicate_decl (&t, vars_map, to_context);
+ if (t != *tp)
+ {
+ if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
+ {
+ SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
+ DECL_HAS_VALUE_EXPR_P (t) = 1;
+ }
+ DECL_CHAIN (t) = DECL_CHAIN (*tp);
+ *tp = t;
+ }
+ }
+
+ for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
+ replace_block_vars_by_duplicates (block, vars_map, to_context);
+}
+
+/* Fixup the loop arrays and numbers after moving LOOP and its subloops
+ from FN1 to FN2. */
+
+static void
+fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
+ struct loop *loop)
+{
+ /* Discard it from the old loop array. */
+ (*get_loops (fn1))[loop->num] = NULL;
+
+ /* Place it in the new loop array, assigning it a new number. */
+ loop->num = number_of_loops (fn2);
+ vec_safe_push (loops_for_fn (fn2)->larray, loop);
+
+ /* Recurse to children. */
+ for (loop = loop->inner; loop; loop = loop->next)
+ fixup_loop_arrays_after_move (fn1, fn2, loop);
+}
+
+/* Move a single-entry, single-exit region delimited by ENTRY_BB and
+ EXIT_BB to function DEST_CFUN. The whole region is replaced by a
+ single basic block in the original CFG and the new basic block is
+ returned. DEST_CFUN must not have a CFG yet.
+
+ Note that the region need not be a pure SESE region. Blocks inside
+ the region may contain calls to abort/exit. The only restriction
+ is that ENTRY_BB should be the only entry point and it must
+ dominate EXIT_BB.
+
+ Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
+ functions outermost BLOCK, move all subblocks of ORIG_BLOCK
+ to the new function.
+
+ All local variables referenced in the region are assumed to be in
+ the corresponding BLOCK_VARS and unexpanded variable lists
+ associated with DEST_CFUN. */
+
+basic_block
+move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
+ basic_block exit_bb, tree orig_block)
+{
+ vec<basic_block> bbs, dom_bbs;
+ basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
+ basic_block after, bb, *entry_pred, *exit_succ, abb;
+ struct function *saved_cfun = cfun;
+ int *entry_flag, *exit_flag;
+ unsigned *entry_prob, *exit_prob;
+ unsigned i, num_entry_edges, num_exit_edges, num_nodes;
+ edge e;
+ edge_iterator ei;
+ htab_t new_label_map;
+ struct pointer_map_t *vars_map, *eh_map;
+ struct loop *loop = entry_bb->loop_father;
+ struct loop *loop0 = get_loop (saved_cfun, 0);
+ struct move_stmt_d d;
+
+ /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
+ region. */
+ gcc_assert (entry_bb != exit_bb
+ && (!exit_bb
+ || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
+
+ /* Collect all the blocks in the region. Manually add ENTRY_BB
+ because it won't be added by dfs_enumerate_from. */
+ bbs.create (0);
+ bbs.safe_push (entry_bb);
+ gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
+
+ /* The blocks that used to be dominated by something in BBS will now be
+ dominated by the new block. */
+ dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
+ bbs.address (),
+ bbs.length ());
+
+ /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
+ the predecessor edges to ENTRY_BB and the successor edges to
+ EXIT_BB so that we can re-attach them to the new basic block that
+ will replace the region. */
+ num_entry_edges = EDGE_COUNT (entry_bb->preds);
+ entry_pred = XNEWVEC (basic_block, num_entry_edges);
+ entry_flag = XNEWVEC (int, num_entry_edges);
+ entry_prob = XNEWVEC (unsigned, num_entry_edges);
+ i = 0;
+ for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
+ {
+ entry_prob[i] = e->probability;
+ entry_flag[i] = e->flags;
+ entry_pred[i++] = e->src;
+ remove_edge (e);
+ }
+
+ if (exit_bb)
+ {
+ num_exit_edges = EDGE_COUNT (exit_bb->succs);
+ exit_succ = XNEWVEC (basic_block, num_exit_edges);
+ exit_flag = XNEWVEC (int, num_exit_edges);
+ exit_prob = XNEWVEC (unsigned, num_exit_edges);
+ i = 0;
+ for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
+ {
+ exit_prob[i] = e->probability;
+ exit_flag[i] = e->flags;
+ exit_succ[i++] = e->dest;
+ remove_edge (e);
+ }
+ }
+ else
+ {
+ num_exit_edges = 0;
+ exit_succ = NULL;
+ exit_flag = NULL;
+ exit_prob = NULL;
+ }
+
+ /* Switch context to the child function to initialize DEST_FN's CFG. */
+ gcc_assert (dest_cfun->cfg == NULL);
+ push_cfun (dest_cfun);
+
+ init_empty_tree_cfg ();
+
+ /* Initialize EH information for the new function. */
+ eh_map = NULL;
+ new_label_map = NULL;
+ if (saved_cfun->eh)
+ {
+ eh_region region = NULL;
+
+ FOR_EACH_VEC_ELT (bbs, i, bb)
+ region = find_outermost_region_in_block (saved_cfun, bb, region);
+
+ init_eh_for_function ();
+ if (region != NULL)
+ {
+ new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
+ eh_map = duplicate_eh_regions (saved_cfun, region, 0,
+ new_label_mapper, new_label_map);
+ }
+ }
+
+ /* Initialize an empty loop tree. */
+ struct loops *loops = ggc_alloc_cleared_loops ();
+ init_loops_structure (dest_cfun, loops, 1);
+ loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
+ set_loops_for_fn (dest_cfun, loops);
+
+ /* Move the outlined loop tree part. */
+ num_nodes = bbs.length ();
+ FOR_EACH_VEC_ELT (bbs, i, bb)
+ {
+ if (bb->loop_father->header == bb)
+ {
+ struct loop *this_loop = bb->loop_father;
+ struct loop *outer = loop_outer (this_loop);
+ if (outer == loop
+ /* If the SESE region contains some bbs ending with
+ a noreturn call, those are considered to belong
+ to the outermost loop in saved_cfun, rather than
+ the entry_bb's loop_father. */
+ || outer == loop0)
+ {
+ if (outer != loop)
+ num_nodes -= this_loop->num_nodes;
+ flow_loop_tree_node_remove (bb->loop_father);
+ flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
+ fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
+ }
+ }
+ else if (bb->loop_father == loop0 && loop0 != loop)
+ num_nodes--;
+
+ /* Remove loop exits from the outlined region. */
+ if (loops_for_fn (saved_cfun)->exits)
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ void **slot = htab_find_slot_with_hash
+ (loops_for_fn (saved_cfun)->exits, e,
+ htab_hash_pointer (e), NO_INSERT);
+ if (slot)
+ htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
+ }
+ }
+
+
+ /* Adjust the number of blocks in the tree root of the outlined part. */
+ get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
+
+ /* Setup a mapping to be used by move_block_to_fn. */
+ loop->aux = current_loops->tree_root;
+ loop0->aux = current_loops->tree_root;
+
+ pop_cfun ();
+
+ /* Move blocks from BBS into DEST_CFUN. */
+ gcc_assert (bbs.length () >= 2);
+ after = dest_cfun->cfg->x_entry_block_ptr;
+ vars_map = pointer_map_create ();
+
+ memset (&d, 0, sizeof (d));
+ d.orig_block = orig_block;
+ d.new_block = DECL_INITIAL (dest_cfun->decl);
+ d.from_context = cfun->decl;
+ d.to_context = dest_cfun->decl;
+ d.vars_map = vars_map;
+ d.new_label_map = new_label_map;
+ d.eh_map = eh_map;
+ d.remap_decls_p = true;
+
+ FOR_EACH_VEC_ELT (bbs, i, bb)
+ {
+ /* No need to update edge counts on the last block. It has
+ already been updated earlier when we detached the region from
+ the original CFG. */
+ move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
+ after = bb;
+ }
+
+ loop->aux = NULL;
+ loop0->aux = NULL;
+ /* Loop sizes are no longer correct, fix them up. */
+ loop->num_nodes -= num_nodes;
+ for (struct loop *outer = loop_outer (loop);
+ outer; outer = loop_outer (outer))
+ outer->num_nodes -= num_nodes;
+ loop0->num_nodes -= bbs.length () - num_nodes;
+
+ if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vect_loops)
+ {
+ struct loop *aloop;
+ for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
+ if (aloop != NULL)
+ {
+ if (aloop->simduid)
+ {
+ replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
+ d.to_context);
+ dest_cfun->has_simduid_loops = true;
+ }
+ if (aloop->force_vect)
+ dest_cfun->has_force_vect_loops = true;
+ }
+ }
+
+ /* Rewire BLOCK_SUBBLOCKS of orig_block. */
+ if (orig_block)
+ {
+ tree block;
+ gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
+ == NULL_TREE);
+ BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
+ = BLOCK_SUBBLOCKS (orig_block);
+ for (block = BLOCK_SUBBLOCKS (orig_block);
+ block; block = BLOCK_CHAIN (block))
+ BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
+ BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
+ }
+
+ replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
+ vars_map, dest_cfun->decl);
+
+ if (new_label_map)
+ htab_delete (new_label_map);
+ if (eh_map)
+ pointer_map_destroy (eh_map);
+ pointer_map_destroy (vars_map);
+
+ /* Rewire the entry and exit blocks. The successor to the entry
+ block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
+ the child function. Similarly, the predecessor of DEST_FN's
+ EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
+ need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
+ various CFG manipulation function get to the right CFG.
+
+ FIXME, this is silly. The CFG ought to become a parameter to
+ these helpers. */
+ push_cfun (dest_cfun);
+ make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
+ if (exit_bb)
+ make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
+ pop_cfun ();
+
+ /* Back in the original function, the SESE region has disappeared,
+ create a new basic block in its place. */
+ bb = create_empty_bb (entry_pred[0]);
+ if (current_loops)
+ add_bb_to_loop (bb, loop);
+ for (i = 0; i < num_entry_edges; i++)
+ {
+ e = make_edge (entry_pred[i], bb, entry_flag[i]);
+ e->probability = entry_prob[i];
+ }
+
+ for (i = 0; i < num_exit_edges; i++)
+ {
+ e = make_edge (bb, exit_succ[i], exit_flag[i]);
+ e->probability = exit_prob[i];
+ }
+
+ set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
+ FOR_EACH_VEC_ELT (dom_bbs, i, abb)
+ set_immediate_dominator (CDI_DOMINATORS, abb, bb);
+ dom_bbs.release ();
+
+ if (exit_bb)
+ {
+ free (exit_prob);
+ free (exit_flag);
+ free (exit_succ);
+ }
+ free (entry_prob);
+ free (entry_flag);
+ free (entry_pred);
+ bbs.release ();
+
+ return bb;
+}
+
+
+/* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
+ */
+
+void
+dump_function_to_file (tree fndecl, FILE *file, int flags)
+{
+ tree arg, var, old_current_fndecl = current_function_decl;
+ struct function *dsf;
+ bool ignore_topmost_bind = false, any_var = false;
+ basic_block bb;
+ tree chain;
+ bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
+ && decl_is_tm_clone (fndecl));
+ struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
+
+ current_function_decl = fndecl;
+ fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
+
+ arg = DECL_ARGUMENTS (fndecl);
+ while (arg)
+ {
+ print_generic_expr (file, TREE_TYPE (arg), dump_flags);
+ fprintf (file, " ");
+ print_generic_expr (file, arg, dump_flags);
+ if (flags & TDF_VERBOSE)
+ print_node (file, "", arg, 4);
+ if (DECL_CHAIN (arg))
+ fprintf (file, ", ");
+ arg = DECL_CHAIN (arg);
+ }
+ fprintf (file, ")\n");
+
+ if (flags & TDF_VERBOSE)
+ print_node (file, "", fndecl, 2);
+
+ dsf = DECL_STRUCT_FUNCTION (fndecl);
+ if (dsf && (flags & TDF_EH))
+ dump_eh_tree (file, dsf);
+
+ if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
+ {
+ dump_node (fndecl, TDF_SLIM | flags, file);
+ current_function_decl = old_current_fndecl;
+ return;
+ }
+
+ /* When GIMPLE is lowered, the variables are no longer available in
+ BIND_EXPRs, so display them separately. */
+ if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
+ {
+ unsigned ix;
+ ignore_topmost_bind = true;
+
+ fprintf (file, "{\n");
+ if (!vec_safe_is_empty (fun->local_decls))
+ FOR_EACH_LOCAL_DECL (fun, ix, var)
+ {
+ print_generic_decl (file, var, flags);
+ if (flags & TDF_VERBOSE)
+ print_node (file, "", var, 4);
+ fprintf (file, "\n");
+
+ any_var = true;
+ }
+ if (gimple_in_ssa_p (cfun))
+ for (ix = 1; ix < num_ssa_names; ++ix)
+ {
+ tree name = ssa_name (ix);
+ if (name && !SSA_NAME_VAR (name))
+ {
+ fprintf (file, " ");
+ print_generic_expr (file, TREE_TYPE (name), flags);
+ fprintf (file, " ");
+ print_generic_expr (file, name, flags);
+ fprintf (file, ";\n");
+
+ any_var = true;
+ }
+ }
+ }
+
+ if (fun && fun->decl == fndecl
+ && fun->cfg
+ && basic_block_info_for_fn (fun))
+ {
+ /* If the CFG has been built, emit a CFG-based dump. */
+ if (!ignore_topmost_bind)
+ fprintf (file, "{\n");
+
+ if (any_var && n_basic_blocks_for_fn (fun))
+ fprintf (file, "\n");
+
+ FOR_EACH_BB_FN (bb, fun)
+ dump_bb (file, bb, 2, flags | TDF_COMMENT);
+
+ fprintf (file, "}\n");
+ }
+ else if (DECL_SAVED_TREE (fndecl) == NULL)
+ {
+ /* The function is now in GIMPLE form but the CFG has not been
+ built yet. Emit the single sequence of GIMPLE statements
+ that make up its body. */
+ gimple_seq body = gimple_body (fndecl);
+
+ if (gimple_seq_first_stmt (body)
+ && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
+ && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
+ print_gimple_seq (file, body, 0, flags);
+ else
+ {
+ if (!ignore_topmost_bind)
+ fprintf (file, "{\n");
+
+ if (any_var)
+ fprintf (file, "\n");
+
+ print_gimple_seq (file, body, 2, flags);
+ fprintf (file, "}\n");
+ }
+ }
+ else
+ {
+ int indent;
+
+ /* Make a tree based dump. */
+ chain = DECL_SAVED_TREE (fndecl);
+ if (chain && TREE_CODE (chain) == BIND_EXPR)
+ {
+ if (ignore_topmost_bind)
+ {
+ chain = BIND_EXPR_BODY (chain);
+ indent = 2;
+ }
+ else
+ indent = 0;
+ }
+ else
+ {
+ if (!ignore_topmost_bind)
+ fprintf (file, "{\n");
+ indent = 2;
+ }
+
+ if (any_var)
+ fprintf (file, "\n");
+
+ print_generic_stmt_indented (file, chain, flags, indent);
+ if (ignore_topmost_bind)
+ fprintf (file, "}\n");
+ }
+
+ if (flags & TDF_ENUMERATE_LOCALS)
+ dump_enumerated_decls (file, flags);
+ fprintf (file, "\n\n");
+
+ current_function_decl = old_current_fndecl;
+}
+
+/* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
+
+DEBUG_FUNCTION void
+debug_function (tree fn, int flags)
+{
+ dump_function_to_file (fn, stderr, flags);
+}
+
+
+/* Print on FILE the indexes for the predecessors of basic_block BB. */
+
+static void
+print_pred_bbs (FILE *file, basic_block bb)
+{
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ fprintf (file, "bb_%d ", e->src->index);
+}
+
+
+/* Print on FILE the indexes for the successors of basic_block BB. */
+
+static void
+print_succ_bbs (FILE *file, basic_block bb)
+{
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ fprintf (file, "bb_%d ", e->dest->index);
+}
+
+/* Print to FILE the basic block BB following the VERBOSITY level. */
+
+void
+print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
+{
+ char *s_indent = (char *) alloca ((size_t) indent + 1);
+ memset ((void *) s_indent, ' ', (size_t) indent);
+ s_indent[indent] = '\0';
+
+ /* Print basic_block's header. */
+ if (verbosity >= 2)
+ {
+ fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
+ print_pred_bbs (file, bb);
+ fprintf (file, "}, succs = {");
+ print_succ_bbs (file, bb);
+ fprintf (file, "})\n");
+ }
+
+ /* Print basic_block's body. */
+ if (verbosity >= 3)
+ {
+ fprintf (file, "%s {\n", s_indent);
+ dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
+ fprintf (file, "%s }\n", s_indent);
+ }
+}
+
+static void print_loop_and_siblings (FILE *, struct loop *, int, int);
+
+/* Pretty print LOOP on FILE, indented INDENT spaces. Following
+ VERBOSITY level this outputs the contents of the loop, or just its
+ structure. */
+
+static void
+print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
+{
+ char *s_indent;
+ basic_block bb;
+
+ if (loop == NULL)
+ return;
+
+ s_indent = (char *) alloca ((size_t) indent + 1);
+ memset ((void *) s_indent, ' ', (size_t) indent);
+ s_indent[indent] = '\0';
+
+ /* Print loop's header. */
+ fprintf (file, "%sloop_%d (", s_indent, loop->num);
+ if (loop->header)
+ fprintf (file, "header = %d", loop->header->index);
+ else
+ {
+ fprintf (file, "deleted)\n");
+ return;
+ }
+ if (loop->latch)
+ fprintf (file, ", latch = %d", loop->latch->index);
+ else
+ fprintf (file, ", multiple latches");
+ fprintf (file, ", niter = ");
+ print_generic_expr (file, loop->nb_iterations, 0);
+
+ if (loop->any_upper_bound)
+ {
+ fprintf (file, ", upper_bound = ");
+ dump_double_int (file, loop->nb_iterations_upper_bound, true);
+ }
+
+ if (loop->any_estimate)
+ {
+ fprintf (file, ", estimate = ");
+ dump_double_int (file, loop->nb_iterations_estimate, true);
+ }
+ fprintf (file, ")\n");
+
+ /* Print loop's body. */
+ if (verbosity >= 1)
+ {
+ fprintf (file, "%s{\n", s_indent);
+ FOR_EACH_BB_FN (bb, cfun)
+ if (bb->loop_father == loop)
+ print_loops_bb (file, bb, indent, verbosity);
+
+ print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
+ fprintf (file, "%s}\n", s_indent);
+ }
+}
+
+/* Print the LOOP and its sibling loops on FILE, indented INDENT
+ spaces. Following VERBOSITY level this outputs the contents of the
+ loop, or just its structure. */
+
+static void
+print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
+ int verbosity)
+{
+ if (loop == NULL)
+ return;
+
+ print_loop (file, loop, indent, verbosity);
+ print_loop_and_siblings (file, loop->next, indent, verbosity);
+}
+
+/* Follow a CFG edge from the entry point of the program, and on entry
+ of a loop, pretty print the loop structure on FILE. */
+
+void
+print_loops (FILE *file, int verbosity)
+{
+ basic_block bb;
+
+ bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
+ if (bb && bb->loop_father)
+ print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
+}
+
+/* Dump a loop. */
+
+DEBUG_FUNCTION void
+debug (struct loop &ref)
+{
+ print_loop (stderr, &ref, 0, /*verbosity*/0);
+}
+
+DEBUG_FUNCTION void
+debug (struct loop *ptr)
+{
+ if (ptr)
+ debug (*ptr);
+ else
+ fprintf (stderr, "<nil>\n");
+}
+
+/* Dump a loop verbosely. */
+
+DEBUG_FUNCTION void
+debug_verbose (struct loop &ref)
+{
+ print_loop (stderr, &ref, 0, /*verbosity*/3);
+}
+
+DEBUG_FUNCTION void
+debug_verbose (struct loop *ptr)
+{
+ if (ptr)
+ debug (*ptr);
+ else
+ fprintf (stderr, "<nil>\n");
+}
+
+
+/* Debugging loops structure at tree level, at some VERBOSITY level. */
+
+DEBUG_FUNCTION void
+debug_loops (int verbosity)
+{
+ print_loops (stderr, verbosity);
+}
+
+/* Print on stderr the code of LOOP, at some VERBOSITY level. */
+
+DEBUG_FUNCTION void
+debug_loop (struct loop *loop, int verbosity)
+{
+ print_loop (stderr, loop, 0, verbosity);
+}
+
+/* Print on stderr the code of loop number NUM, at some VERBOSITY
+ level. */
+
+DEBUG_FUNCTION void
+debug_loop_num (unsigned num, int verbosity)
+{
+ debug_loop (get_loop (cfun, num), verbosity);
+}
+
+/* Return true if BB ends with a call, possibly followed by some
+ instructions that must stay with the call. Return false,
+ otherwise. */
+
+static bool
+gimple_block_ends_with_call_p (basic_block bb)
+{
+ gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
+ return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
+}
+
+
+/* Return true if BB ends with a conditional branch. Return false,
+ otherwise. */
+
+static bool
+gimple_block_ends_with_condjump_p (const_basic_block bb)
+{
+ gimple stmt = last_stmt (CONST_CAST_BB (bb));
+ return (stmt && gimple_code (stmt) == GIMPLE_COND);
+}
+
+
+/* Return true if we need to add fake edge to exit at statement T.
+ Helper function for gimple_flow_call_edges_add. */
+
+static bool
+need_fake_edge_p (gimple t)
+{
+ tree fndecl = NULL_TREE;
+ int call_flags = 0;
+
+ /* NORETURN and LONGJMP calls already have an edge to exit.
+ CONST and PURE calls do not need one.
+ We don't currently check for CONST and PURE here, although
+ it would be a good idea, because those attributes are
+ figured out from the RTL in mark_constant_function, and
+ the counter incrementation code from -fprofile-arcs
+ leads to different results from -fbranch-probabilities. */
+ if (is_gimple_call (t))
+ {
+ fndecl = gimple_call_fndecl (t);
+ call_flags = gimple_call_flags (t);
+ }
+
+ if (is_gimple_call (t)
+ && fndecl
+ && DECL_BUILT_IN (fndecl)
+ && (call_flags & ECF_NOTHROW)
+ && !(call_flags & ECF_RETURNS_TWICE)
+ /* fork() doesn't really return twice, but the effect of
+ wrapping it in __gcov_fork() which calls __gcov_flush()
+ and clears the counters before forking has the same
+ effect as returning twice. Force a fake edge. */
+ && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
+ && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
+ return false;
+
+ if (is_gimple_call (t))
+ {
+ edge_iterator ei;
+ edge e;
+ basic_block bb;
+
+ if (!(call_flags & ECF_NORETURN))
+ return true;
+
+ bb = gimple_bb (t);
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if ((e->flags & EDGE_FAKE) == 0)
+ return true;
+ }
+
+ if (gimple_code (t) == GIMPLE_ASM
+ && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
+ return true;
+
+ return false;
+}
+
+
+/* Add fake edges to the function exit for any non constant and non
+ noreturn calls (or noreturn calls with EH/abnormal edges),
+ volatile inline assembly in the bitmap of blocks specified by BLOCKS
+ or to the whole CFG if BLOCKS is zero. Return the number of blocks
+ that were split.
+
+ The goal is to expose cases in which entering a basic block does
+ not imply that all subsequent instructions must be executed. */
+
+static int
+gimple_flow_call_edges_add (sbitmap blocks)
+{
+ int i;
+ int blocks_split = 0;
+ int last_bb = last_basic_block_for_fn (cfun);
+ bool check_last_block = false;
+
+ if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
+ return 0;
+
+ if (! blocks)
+ check_last_block = true;
+ else
+ check_last_block = bitmap_bit_p (blocks,
+ EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
+
+ /* In the last basic block, before epilogue generation, there will be
+ a fallthru edge to EXIT. Special care is required if the last insn
+ of the last basic block is a call because make_edge folds duplicate
+ edges, which would result in the fallthru edge also being marked
+ fake, which would result in the fallthru edge being removed by
+ remove_fake_edges, which would result in an invalid CFG.
+
+ Moreover, we can't elide the outgoing fake edge, since the block
+ profiler needs to take this into account in order to solve the minimal
+ spanning tree in the case that the call doesn't return.
+
+ Handle this by adding a dummy instruction in a new last basic block. */
+ if (check_last_block)
+ {
+ basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
+ gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
+ gimple t = NULL;
+
+ if (!gsi_end_p (gsi))
+ t = gsi_stmt (gsi);
+
+ if (t && need_fake_edge_p (t))
+ {
+ edge e;
+
+ e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
+ if (e)
+ {
+ gsi_insert_on_edge (e, gimple_build_nop ());
+ gsi_commit_edge_inserts ();
+ }
+ }
+ }
+
+ /* Now add fake edges to the function exit for any non constant
+ calls since there is no way that we can determine if they will
+ return or not... */
+ for (i = 0; i < last_bb; i++)
+ {
+ basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
+ gimple_stmt_iterator gsi;
+ gimple stmt, last_stmt;
+
+ if (!bb)
+ continue;
+
+ if (blocks && !bitmap_bit_p (blocks, i))
+ continue;
+
+ gsi = gsi_last_nondebug_bb (bb);
+ if (!gsi_end_p (gsi))
+ {
+ last_stmt = gsi_stmt (gsi);
+ do
+ {
+ stmt = gsi_stmt (gsi);
+ if (need_fake_edge_p (stmt))
+ {
+ edge e;
+
+ /* The handling above of the final block before the
+ epilogue should be enough to verify that there is
+ no edge to the exit block in CFG already.
+ Calling make_edge in such case would cause us to
+ mark that edge as fake and remove it later. */
+#ifdef ENABLE_CHECKING
+ if (stmt == last_stmt)
+ {
+ e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
+ gcc_assert (e == NULL);
+ }
+#endif
+
+ /* Note that the following may create a new basic block
+ and renumber the existing basic blocks. */
+ if (stmt != last_stmt)
+ {
+ e = split_block (bb, stmt);
+ if (e)
+ blocks_split++;
+ }
+ make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
+ }
+ gsi_prev (&gsi);
+ }
+ while (!gsi_end_p (gsi));
+ }
+ }
+
+ if (blocks_split)
+ verify_flow_info ();
+
+ return blocks_split;
+}
+
+/* Removes edge E and all the blocks dominated by it, and updates dominance
+ information. The IL in E->src needs to be updated separately.
+ If dominance info is not available, only the edge E is removed.*/
+
+void
+remove_edge_and_dominated_blocks (edge e)
+{
+ vec<basic_block> bbs_to_remove = vNULL;
+ vec<basic_block> bbs_to_fix_dom = vNULL;
+ bitmap df, df_idom;
+ edge f;
+ edge_iterator ei;
+ bool none_removed = false;
+ unsigned i;
+ basic_block bb, dbb;
+ bitmap_iterator bi;
+
+ if (!dom_info_available_p (CDI_DOMINATORS))
+ {
+ remove_edge (e);
+ return;
+ }
+
+ /* No updating is needed for edges to exit. */
+ if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
+ {
+ if (cfgcleanup_altered_bbs)
+ bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
+ remove_edge (e);
+ return;
+ }
+
+ /* First, we find the basic blocks to remove. If E->dest has a predecessor
+ that is not dominated by E->dest, then this set is empty. Otherwise,
+ all the basic blocks dominated by E->dest are removed.
+
+ Also, to DF_IDOM we store the immediate dominators of the blocks in
+ the dominance frontier of E (i.e., of the successors of the
+ removed blocks, if there are any, and of E->dest otherwise). */
+ FOR_EACH_EDGE (f, ei, e->dest->preds)
+ {
+ if (f == e)
+ continue;
+
+ if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
+ {
+ none_removed = true;
+ break;
+ }
+ }
+
+ df = BITMAP_ALLOC (NULL);
+ df_idom = BITMAP_ALLOC (NULL);
+
+ if (none_removed)
+ bitmap_set_bit (df_idom,
+ get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
+ else
+ {
+ bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
+ FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
+ {
+ FOR_EACH_EDGE (f, ei, bb->succs)
+ {
+ if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
+ bitmap_set_bit (df, f->dest->index);
+ }
+ }
+ FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
+ bitmap_clear_bit (df, bb->index);
+
+ EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
+ {
+ bb = BASIC_BLOCK_FOR_FN (cfun, i);
+ bitmap_set_bit (df_idom,
+ get_immediate_dominator (CDI_DOMINATORS, bb)->index);
+ }
+ }
+
+ if (cfgcleanup_altered_bbs)
+ {
+ /* Record the set of the altered basic blocks. */
+ bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
+ bitmap_ior_into (cfgcleanup_altered_bbs, df);
+ }
+
+ /* Remove E and the cancelled blocks. */
+ if (none_removed)
+ remove_edge (e);
+ else
+ {
+ /* Walk backwards so as to get a chance to substitute all
+ released DEFs into debug stmts. See
+ eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
+ details. */
+ for (i = bbs_to_remove.length (); i-- > 0; )
+ delete_basic_block (bbs_to_remove[i]);
+ }
+
+ /* Update the dominance information. The immediate dominator may change only
+ for blocks whose immediate dominator belongs to DF_IDOM:
+
+ Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
+ removal. Let Z the arbitrary block such that idom(Z) = Y and
+ Z dominates X after the removal. Before removal, there exists a path P
+ from Y to X that avoids Z. Let F be the last edge on P that is
+ removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
+ dominates W, and because of P, Z does not dominate W), and W belongs to
+ the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
+ EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
+ {
+ bb = BASIC_BLOCK_FOR_FN (cfun, i);
+ for (dbb = first_dom_son (CDI_DOMINATORS, bb);
+ dbb;
+ dbb = next_dom_son (CDI_DOMINATORS, dbb))
+ bbs_to_fix_dom.safe_push (dbb);
+ }
+
+ iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
+
+ BITMAP_FREE (df);
+ BITMAP_FREE (df_idom);
+ bbs_to_remove.release ();
+ bbs_to_fix_dom.release ();
+}
+
+/* Purge dead EH edges from basic block BB. */
+
+bool
+gimple_purge_dead_eh_edges (basic_block bb)
+{
+ bool changed = false;
+ edge e;
+ edge_iterator ei;
+ gimple stmt = last_stmt (bb);
+
+ if (stmt && stmt_can_throw_internal (stmt))
+ return false;
+
+ for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
+ {
+ if (e->flags & EDGE_EH)
+ {
+ remove_edge_and_dominated_blocks (e);
+ changed = true;
+ }
+ else
+ ei_next (&ei);
+ }
+
+ return changed;
+}
+
+/* Purge dead EH edges from basic block listed in BLOCKS. */
+
+bool
+gimple_purge_all_dead_eh_edges (const_bitmap blocks)
+{
+ bool changed = false;
+ unsigned i;
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
+ {
+ basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
+
+ /* Earlier gimple_purge_dead_eh_edges could have removed
+ this basic block already. */
+ gcc_assert (bb || changed);
+ if (bb != NULL)
+ changed |= gimple_purge_dead_eh_edges (bb);
+ }
+
+ return changed;
+}
+
+/* Purge dead abnormal call edges from basic block BB. */
+
+bool
+gimple_purge_dead_abnormal_call_edges (basic_block bb)
+{
+ bool changed = false;
+ edge e;
+ edge_iterator ei;
+ gimple stmt = last_stmt (bb);
+
+ if (!cfun->has_nonlocal_label
+ && !cfun->calls_setjmp)
+ return false;
+
+ if (stmt && stmt_can_make_abnormal_goto (stmt))
+ return false;
+
+ for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
+ {
+ if (e->flags & EDGE_ABNORMAL)
+ {
+ if (e->flags & EDGE_FALLTHRU)
+ e->flags &= ~EDGE_ABNORMAL;
+ else
+ remove_edge_and_dominated_blocks (e);
+ changed = true;
+ }
+ else
+ ei_next (&ei);
+ }
+
+ return changed;
+}
+
+/* Purge dead abnormal call edges from basic block listed in BLOCKS. */
+
+bool
+gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
+{
+ bool changed = false;
+ unsigned i;
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
+ {
+ basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
+
+ /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
+ this basic block already. */
+ gcc_assert (bb || changed);
+ if (bb != NULL)
+ changed |= gimple_purge_dead_abnormal_call_edges (bb);
+ }
+
+ return changed;
+}
+
+/* This function is called whenever a new edge is created or
+ redirected. */
+
+static void
+gimple_execute_on_growing_pred (edge e)
+{
+ basic_block bb = e->dest;
+
+ if (!gimple_seq_empty_p (phi_nodes (bb)))
+ reserve_phi_args_for_new_edge (bb);
+}
+
+/* This function is called immediately before edge E is removed from
+ the edge vector E->dest->preds. */
+
+static void
+gimple_execute_on_shrinking_pred (edge e)
+{
+ if (!gimple_seq_empty_p (phi_nodes (e->dest)))
+ remove_phi_args (e);
+}
+
+/*---------------------------------------------------------------------------
+ Helper functions for Loop versioning
+ ---------------------------------------------------------------------------*/
+
+/* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
+ of 'first'. Both of them are dominated by 'new_head' basic block. When
+ 'new_head' was created by 'second's incoming edge it received phi arguments
+ on the edge by split_edge(). Later, additional edge 'e' was created to
+ connect 'new_head' and 'first'. Now this routine adds phi args on this
+ additional edge 'e' that new_head to second edge received as part of edge
+ splitting. */
+
+static void
+gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
+ basic_block new_head, edge e)
+{
+ gimple phi1, phi2;
+ gimple_stmt_iterator psi1, psi2;
+ tree def;
+ edge e2 = find_edge (new_head, second);
+
+ /* Because NEW_HEAD has been created by splitting SECOND's incoming
+ edge, we should always have an edge from NEW_HEAD to SECOND. */
+ gcc_assert (e2 != NULL);
+
+ /* Browse all 'second' basic block phi nodes and add phi args to
+ edge 'e' for 'first' head. PHI args are always in correct order. */
+
+ for (psi2 = gsi_start_phis (second),
+ psi1 = gsi_start_phis (first);
+ !gsi_end_p (psi2) && !gsi_end_p (psi1);
+ gsi_next (&psi2), gsi_next (&psi1))
+ {
+ phi1 = gsi_stmt (psi1);
+ phi2 = gsi_stmt (psi2);
+ def = PHI_ARG_DEF (phi2, e2->dest_idx);
+ add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
+ }
+}
+
+
+/* Adds a if else statement to COND_BB with condition COND_EXPR.
+ SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
+ the destination of the ELSE part. */
+
+static void
+gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
+ basic_block second_head ATTRIBUTE_UNUSED,
+ basic_block cond_bb, void *cond_e)
+{
+ gimple_stmt_iterator gsi;
+ gimple new_cond_expr;
+ tree cond_expr = (tree) cond_e;
+ edge e0;
+
+ /* Build new conditional expr */
+ new_cond_expr = gimple_build_cond_from_tree (cond_expr,
+ NULL_TREE, NULL_TREE);
+
+ /* Add new cond in cond_bb. */
+ gsi = gsi_last_bb (cond_bb);
+ gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
+
+ /* Adjust edges appropriately to connect new head with first head
+ as well as second head. */
+ e0 = single_succ_edge (cond_bb);
+ e0->flags &= ~EDGE_FALLTHRU;
+ e0->flags |= EDGE_FALSE_VALUE;
+}
+
+
+/* Do book-keeping of basic block BB for the profile consistency checker.
+ If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
+ then do post-pass accounting. Store the counting in RECORD. */
+static void
+gimple_account_profile_record (basic_block bb, int after_pass,
+ struct profile_record *record)
+{
+ gimple_stmt_iterator i;
+ for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
+ {
+ record->size[after_pass]
+ += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
+ if (profile_status_for_fn (cfun) == PROFILE_READ)
+ record->time[after_pass]
+ += estimate_num_insns (gsi_stmt (i),
+ &eni_time_weights) * bb->count;
+ else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
+ record->time[after_pass]
+ += estimate_num_insns (gsi_stmt (i),
+ &eni_time_weights) * bb->frequency;
+ }
+}
+
+struct cfg_hooks gimple_cfg_hooks = {
+ "gimple",
+ gimple_verify_flow_info,
+ gimple_dump_bb, /* dump_bb */
+ gimple_dump_bb_for_graph, /* dump_bb_for_graph */
+ create_bb, /* create_basic_block */
+ gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
+ gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
+ gimple_can_remove_branch_p, /* can_remove_branch_p */
+ remove_bb, /* delete_basic_block */
+ gimple_split_block, /* split_block */
+ gimple_move_block_after, /* move_block_after */
+ gimple_can_merge_blocks_p, /* can_merge_blocks_p */
+ gimple_merge_blocks, /* merge_blocks */
+ gimple_predict_edge, /* predict_edge */
+ gimple_predicted_by_p, /* predicted_by_p */
+ gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
+ gimple_duplicate_bb, /* duplicate_block */
+ gimple_split_edge, /* split_edge */
+ gimple_make_forwarder_block, /* make_forward_block */
+ NULL, /* tidy_fallthru_edge */
+ NULL, /* force_nonfallthru */
+ gimple_block_ends_with_call_p,/* block_ends_with_call_p */
+ gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
+ gimple_flow_call_edges_add, /* flow_call_edges_add */
+ gimple_execute_on_growing_pred, /* execute_on_growing_pred */
+ gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
+ gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
+ gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
+ gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
+ extract_true_false_edges_from_block, /* extract_cond_bb_edges */
+ flush_pending_stmts, /* flush_pending_stmts */
+ gimple_empty_block_p, /* block_empty_p */
+ gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
+ gimple_account_profile_record,
+};
+
+
+/* Split all critical edges. */
+
+unsigned int
+split_critical_edges (void)
+{
+ basic_block bb;
+ edge e;
+ edge_iterator ei;
+
+ /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
+ expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
+ mappings around the calls to split_edge. */
+ start_recording_case_labels ();
+ FOR_ALL_BB_FN (bb, cfun)
+ {
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
+ split_edge (e);
+ /* PRE inserts statements to edges and expects that
+ since split_critical_edges was done beforehand, committing edge
+ insertions will not split more edges. In addition to critical
+ edges we must split edges that have multiple successors and
+ end by control flow statements, such as RESX.
+ Go ahead and split them too. This matches the logic in
+ gimple_find_edge_insert_loc. */
+ else if ((!single_pred_p (e->dest)
+ || !gimple_seq_empty_p (phi_nodes (e->dest))
+ || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
+ && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
+ && !(e->flags & EDGE_ABNORMAL))
+ {
+ gimple_stmt_iterator gsi;
+
+ gsi = gsi_last_bb (e->src);
+ if (!gsi_end_p (gsi)
+ && stmt_ends_bb_p (gsi_stmt (gsi))
+ && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
+ && !gimple_call_builtin_p (gsi_stmt (gsi),
+ BUILT_IN_RETURN)))
+ split_edge (e);
+ }
+ }
+ }
+ end_recording_case_labels ();
+ return 0;
+}
+
+namespace {
+
+const pass_data pass_data_split_crit_edges =
+{
+ GIMPLE_PASS, /* type */
+ "crited", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ false, /* has_gate */
+ true, /* has_execute */
+ TV_TREE_SPLIT_EDGES, /* tv_id */
+ PROP_cfg, /* properties_required */
+ PROP_no_crit_edges, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_verify_flow, /* todo_flags_finish */
+};
+
+class pass_split_crit_edges : public gimple_opt_pass
+{
+public:
+ pass_split_crit_edges (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ unsigned int execute () { return split_critical_edges (); }
+
+ opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
+}; // class pass_split_crit_edges
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_split_crit_edges (gcc::context *ctxt)
+{
+ return new pass_split_crit_edges (ctxt);
+}
+
+
+/* Build a ternary operation and gimplify it. Emit code before GSI.
+ Return the gimple_val holding the result. */
+
+tree
+gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
+ tree type, tree a, tree b, tree c)
+{
+ tree ret;
+ location_t loc = gimple_location (gsi_stmt (*gsi));
+
+ ret = fold_build3_loc (loc, code, type, a, b, c);
+ STRIP_NOPS (ret);
+
+ return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
+ GSI_SAME_STMT);
+}
+
+/* Build a binary operation and gimplify it. Emit code before GSI.
+ Return the gimple_val holding the result. */
+
+tree
+gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
+ tree type, tree a, tree b)
+{
+ tree ret;
+
+ ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
+ STRIP_NOPS (ret);
+
+ return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
+ GSI_SAME_STMT);
+}
+
+/* Build a unary operation and gimplify it. Emit code before GSI.
+ Return the gimple_val holding the result. */
+
+tree
+gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
+ tree a)
+{
+ tree ret;
+
+ ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
+ STRIP_NOPS (ret);
+
+ return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
+ GSI_SAME_STMT);
+}
+
+
+
+/* Emit return warnings. */
+
+static unsigned int
+execute_warn_function_return (void)
+{
+ source_location location;
+ gimple last;
+ edge e;
+ edge_iterator ei;
+
+ if (!targetm.warn_func_return (cfun->decl))
+ return 0;
+
+ /* If we have a path to EXIT, then we do return. */
+ if (TREE_THIS_VOLATILE (cfun->decl)
+ && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0)
+ {
+ location = UNKNOWN_LOCATION;
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
+ {
+ last = last_stmt (e->src);
+ if ((gimple_code (last) == GIMPLE_RETURN
+ || gimple_call_builtin_p (last, BUILT_IN_RETURN))
+ && (location = gimple_location (last)) != UNKNOWN_LOCATION)
+ break;
+ }
+ if (location == UNKNOWN_LOCATION)
+ location = cfun->function_end_locus;
+ warning_at (location, 0, "%<noreturn%> function does return");
+ }
+
+ /* If we see "return;" in some basic block, then we do reach the end
+ without returning a value. */
+ else if (warn_return_type
+ && !TREE_NO_WARNING (cfun->decl)
+ && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0
+ && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
+ {
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
+ {
+ gimple last = last_stmt (e->src);
+ if (gimple_code (last) == GIMPLE_RETURN
+ && gimple_return_retval (last) == NULL
+ && !gimple_no_warning_p (last))
+ {
+ location = gimple_location (last);
+ if (location == UNKNOWN_LOCATION)
+ location = cfun->function_end_locus;
+ warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
+ TREE_NO_WARNING (cfun->decl) = 1;
+ break;
+ }
+ }
+ }
+ return 0;
+}
+
+
+/* Given a basic block B which ends with a conditional and has
+ precisely two successors, determine which of the edges is taken if
+ the conditional is true and which is taken if the conditional is
+ false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
+
+void
+extract_true_false_edges_from_block (basic_block b,
+ edge *true_edge,
+ edge *false_edge)
+{
+ edge e = EDGE_SUCC (b, 0);
+
+ if (e->flags & EDGE_TRUE_VALUE)
+ {
+ *true_edge = e;
+ *false_edge = EDGE_SUCC (b, 1);
+ }
+ else
+ {
+ *false_edge = e;
+ *true_edge = EDGE_SUCC (b, 1);
+ }
+}
+
+namespace {
+
+const pass_data pass_data_warn_function_return =
+{
+ GIMPLE_PASS, /* type */
+ "*warn_function_return", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ false, /* has_gate */
+ true, /* has_execute */
+ TV_NONE, /* tv_id */
+ PROP_cfg, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+};
+
+class pass_warn_function_return : public gimple_opt_pass
+{
+public:
+ pass_warn_function_return (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_warn_function_return, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ unsigned int execute () { return execute_warn_function_return (); }
+
+}; // class pass_warn_function_return
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_warn_function_return (gcc::context *ctxt)
+{
+ return new pass_warn_function_return (ctxt);
+}
+
+/* Walk a gimplified function and warn for functions whose return value is
+ ignored and attribute((warn_unused_result)) is set. This is done before
+ inlining, so we don't have to worry about that. */
+
+static void
+do_warn_unused_result (gimple_seq seq)
+{
+ tree fdecl, ftype;
+ gimple_stmt_iterator i;
+
+ for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
+ {
+ gimple g = gsi_stmt (i);
+
+ switch (gimple_code (g))
+ {
+ case GIMPLE_BIND:
+ do_warn_unused_result (gimple_bind_body (g));
+ break;
+ case GIMPLE_TRY:
+ do_warn_unused_result (gimple_try_eval (g));
+ do_warn_unused_result (gimple_try_cleanup (g));
+ break;
+ case GIMPLE_CATCH:
+ do_warn_unused_result (gimple_catch_handler (g));
+ break;
+ case GIMPLE_EH_FILTER:
+ do_warn_unused_result (gimple_eh_filter_failure (g));
+ break;
+
+ case GIMPLE_CALL:
+ if (gimple_call_lhs (g))
+ break;
+ if (gimple_call_internal_p (g))
+ break;
+
+ /* This is a naked call, as opposed to a GIMPLE_CALL with an
+ LHS. All calls whose value is ignored should be
+ represented like this. Look for the attribute. */
+ fdecl = gimple_call_fndecl (g);
+ ftype = gimple_call_fntype (g);
+
+ if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
+ {
+ location_t loc = gimple_location (g);
+
+ if (fdecl)
+ warning_at (loc, OPT_Wunused_result,
+ "ignoring return value of %qD, "
+ "declared with attribute warn_unused_result",
+ fdecl);
+ else
+ warning_at (loc, OPT_Wunused_result,
+ "ignoring return value of function "
+ "declared with attribute warn_unused_result");
+ }
+ break;
+
+ default:
+ /* Not a container, not a call, or a call whose value is used. */
+ break;
+ }
+ }
+}
+
+static unsigned int
+run_warn_unused_result (void)
+{
+ do_warn_unused_result (gimple_body (current_function_decl));
+ return 0;
+}
+
+static bool
+gate_warn_unused_result (void)
+{
+ return flag_warn_unused_result;
+}
+
+namespace {
+
+const pass_data pass_data_warn_unused_result =
+{
+ GIMPLE_PASS, /* type */
+ "*warn_unused_result", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ true, /* has_gate */
+ true, /* has_execute */
+ TV_NONE, /* tv_id */
+ PROP_gimple_any, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+};
+
+class pass_warn_unused_result : public gimple_opt_pass
+{
+public:
+ pass_warn_unused_result (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ bool gate () { return gate_warn_unused_result (); }
+ unsigned int execute () { return run_warn_unused_result (); }
+
+}; // class pass_warn_unused_result
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_warn_unused_result (gcc::context *ctxt)
+{
+ return new pass_warn_unused_result (ctxt);
+}
+
+/* IPA passes, compilation of earlier functions or inlining
+ might have changed some properties, such as marked functions nothrow,
+ pure, const or noreturn.
+ Remove redundant edges and basic blocks, and create new ones if necessary.
+
+ This pass can't be executed as stand alone pass from pass manager, because
+ in between inlining and this fixup the verify_flow_info would fail. */
+
+unsigned int
+execute_fixup_cfg (void)
+{
+ basic_block bb;
+ gimple_stmt_iterator gsi;
+ int todo = gimple_in_ssa_p (cfun) ? TODO_verify_ssa : 0;
+ gcov_type count_scale;
+ edge e;
+ edge_iterator ei;
+
+ count_scale
+ = GCOV_COMPUTE_SCALE (cgraph_get_node (current_function_decl)->count,
+ ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
+
+ ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
+ cgraph_get_node (current_function_decl)->count;
+ EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
+ apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
+ count_scale);
+
+ FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
+ e->count = apply_scale (e->count, count_scale);
+
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ bb->count = apply_scale (bb->count, count_scale);
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ tree decl = is_gimple_call (stmt)
+ ? gimple_call_fndecl (stmt)
+ : NULL;
+ if (decl)
+ {
+ int flags = gimple_call_flags (stmt);
+ if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
+ {
+ if (gimple_purge_dead_abnormal_call_edges (bb))
+ todo |= TODO_cleanup_cfg;
+
+ if (gimple_in_ssa_p (cfun))
+ {
+ todo |= TODO_update_ssa | TODO_cleanup_cfg;
+ update_stmt (stmt);
+ }
+ }
+
+ if (flags & ECF_NORETURN
+ && fixup_noreturn_call (stmt))
+ todo |= TODO_cleanup_cfg;
+ }
+
+ if (maybe_clean_eh_stmt (stmt)
+ && gimple_purge_dead_eh_edges (bb))
+ todo |= TODO_cleanup_cfg;
+ }
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ e->count = apply_scale (e->count, count_scale);
+
+ /* If we have a basic block with no successors that does not
+ end with a control statement or a noreturn call end it with
+ a call to __builtin_unreachable. This situation can occur
+ when inlining a noreturn call that does in fact return. */
+ if (EDGE_COUNT (bb->succs) == 0)
+ {
+ gimple stmt = last_stmt (bb);
+ if (!stmt
+ || (!is_ctrl_stmt (stmt)
+ && (!is_gimple_call (stmt)
+ || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
+ {
+ stmt = gimple_build_call
+ (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
+ gimple_stmt_iterator gsi = gsi_last_bb (bb);
+ gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
+ }
+ }
+ }
+ if (count_scale != REG_BR_PROB_BASE)
+ compute_function_frequency ();
+
+ /* We just processed all calls. */
+ if (cfun->gimple_df)
+ vec_free (MODIFIED_NORETURN_CALLS (cfun));
+
+ /* Dump a textual representation of the flowgraph. */
+ if (dump_file)
+ gimple_dump_cfg (dump_file, dump_flags);
+
+ if (current_loops
+ && (todo & TODO_cleanup_cfg))
+ loops_state_set (LOOPS_NEED_FIXUP);
+
+ return todo;
+}
+
+namespace {
+
+const pass_data pass_data_fixup_cfg =
+{
+ GIMPLE_PASS, /* type */
+ "*free_cfg_annotations", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ false, /* has_gate */
+ true, /* has_execute */
+ TV_NONE, /* tv_id */
+ PROP_cfg, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+};
+
+class pass_fixup_cfg : public gimple_opt_pass
+{
+public:
+ pass_fixup_cfg (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
+ unsigned int execute () { return execute_fixup_cfg (); }
+
+}; // class pass_fixup_cfg
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_fixup_cfg (gcc::context *ctxt)
+{
+ return new pass_fixup_cfg (ctxt);
+}
+
+/* Garbage collection support for edge_def. */
+
+extern void gt_ggc_mx (tree&);
+extern void gt_ggc_mx (gimple&);
+extern void gt_ggc_mx (rtx&);
+extern void gt_ggc_mx (basic_block&);
+
+void
+gt_ggc_mx (edge_def *e)
+{
+ tree block = LOCATION_BLOCK (e->goto_locus);
+ gt_ggc_mx (e->src);
+ gt_ggc_mx (e->dest);
+ if (current_ir_type () == IR_GIMPLE)
+ gt_ggc_mx (e->insns.g);
+ else
+ gt_ggc_mx (e->insns.r);
+ gt_ggc_mx (block);
+}
+
+/* PCH support for edge_def. */
+
+extern void gt_pch_nx (tree&);
+extern void gt_pch_nx (gimple&);
+extern void gt_pch_nx (rtx&);
+extern void gt_pch_nx (basic_block&);
+
+void
+gt_pch_nx (edge_def *e)
+{
+ tree block = LOCATION_BLOCK (e->goto_locus);
+ gt_pch_nx (e->src);
+ gt_pch_nx (e->dest);
+ if (current_ir_type () == IR_GIMPLE)
+ gt_pch_nx (e->insns.g);
+ else
+ gt_pch_nx (e->insns.r);
+ gt_pch_nx (block);
+}
+
+void
+gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
+{
+ tree block = LOCATION_BLOCK (e->goto_locus);
+ op (&(e->src), cookie);
+ op (&(e->dest), cookie);
+ if (current_ir_type () == IR_GIMPLE)
+ op (&(e->insns.g), cookie);
+ else
+ op (&(e->insns.r), cookie);
+ op (&(block), cookie);
+}