aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/config/spu/spu.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/config/spu/spu.c')
-rw-r--r--gcc-4.9/gcc/config/spu/spu.c7349
1 files changed, 7349 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/config/spu/spu.c b/gcc-4.9/gcc/config/spu/spu.c
new file mode 100644
index 000000000..302d7e06b
--- /dev/null
+++ b/gcc-4.9/gcc/config/spu/spu.c
@@ -0,0 +1,7349 @@
+/* Copyright (C) 2006-2014 Free Software Foundation, Inc.
+
+ This file is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 3 of the License, or (at your option)
+ any later version.
+
+ This file is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING3. If not see
+ <http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "insn-config.h"
+#include "conditions.h"
+#include "insn-attr.h"
+#include "flags.h"
+#include "recog.h"
+#include "obstack.h"
+#include "tree.h"
+#include "stringpool.h"
+#include "stor-layout.h"
+#include "calls.h"
+#include "varasm.h"
+#include "expr.h"
+#include "optabs.h"
+#include "except.h"
+#include "function.h"
+#include "output.h"
+#include "basic-block.h"
+#include "diagnostic-core.h"
+#include "ggc.h"
+#include "hashtab.h"
+#include "tm_p.h"
+#include "target.h"
+#include "target-def.h"
+#include "langhooks.h"
+#include "reload.h"
+#include "sched-int.h"
+#include "params.h"
+#include "machmode.h"
+#include "pointer-set.h"
+#include "hash-table.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-fold.h"
+#include "tree-eh.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimplify.h"
+#include "tm-constrs.h"
+#include "ddg.h"
+#include "sbitmap.h"
+#include "timevar.h"
+#include "df.h"
+#include "dumpfile.h"
+#include "cfgloop.h"
+
+/* Builtin types, data and prototypes. */
+
+enum spu_builtin_type_index
+{
+ SPU_BTI_END_OF_PARAMS,
+
+ /* We create new type nodes for these. */
+ SPU_BTI_V16QI,
+ SPU_BTI_V8HI,
+ SPU_BTI_V4SI,
+ SPU_BTI_V2DI,
+ SPU_BTI_V4SF,
+ SPU_BTI_V2DF,
+ SPU_BTI_UV16QI,
+ SPU_BTI_UV8HI,
+ SPU_BTI_UV4SI,
+ SPU_BTI_UV2DI,
+
+ /* A 16-byte type. (Implemented with V16QI_type_node) */
+ SPU_BTI_QUADWORD,
+
+ /* These all correspond to intSI_type_node */
+ SPU_BTI_7,
+ SPU_BTI_S7,
+ SPU_BTI_U7,
+ SPU_BTI_S10,
+ SPU_BTI_S10_4,
+ SPU_BTI_U14,
+ SPU_BTI_16,
+ SPU_BTI_S16,
+ SPU_BTI_S16_2,
+ SPU_BTI_U16,
+ SPU_BTI_U16_2,
+ SPU_BTI_U18,
+
+ /* These correspond to the standard types */
+ SPU_BTI_INTQI,
+ SPU_BTI_INTHI,
+ SPU_BTI_INTSI,
+ SPU_BTI_INTDI,
+
+ SPU_BTI_UINTQI,
+ SPU_BTI_UINTHI,
+ SPU_BTI_UINTSI,
+ SPU_BTI_UINTDI,
+
+ SPU_BTI_FLOAT,
+ SPU_BTI_DOUBLE,
+
+ SPU_BTI_VOID,
+ SPU_BTI_PTR,
+
+ SPU_BTI_MAX
+};
+
+#define V16QI_type_node (spu_builtin_types[SPU_BTI_V16QI])
+#define V8HI_type_node (spu_builtin_types[SPU_BTI_V8HI])
+#define V4SI_type_node (spu_builtin_types[SPU_BTI_V4SI])
+#define V2DI_type_node (spu_builtin_types[SPU_BTI_V2DI])
+#define V4SF_type_node (spu_builtin_types[SPU_BTI_V4SF])
+#define V2DF_type_node (spu_builtin_types[SPU_BTI_V2DF])
+#define unsigned_V16QI_type_node (spu_builtin_types[SPU_BTI_UV16QI])
+#define unsigned_V8HI_type_node (spu_builtin_types[SPU_BTI_UV8HI])
+#define unsigned_V4SI_type_node (spu_builtin_types[SPU_BTI_UV4SI])
+#define unsigned_V2DI_type_node (spu_builtin_types[SPU_BTI_UV2DI])
+
+static GTY(()) tree spu_builtin_types[SPU_BTI_MAX];
+
+struct spu_builtin_range
+{
+ int low, high;
+};
+
+static struct spu_builtin_range spu_builtin_range[] = {
+ {-0x40ll, 0x7fll}, /* SPU_BTI_7 */
+ {-0x40ll, 0x3fll}, /* SPU_BTI_S7 */
+ {0ll, 0x7fll}, /* SPU_BTI_U7 */
+ {-0x200ll, 0x1ffll}, /* SPU_BTI_S10 */
+ {-0x2000ll, 0x1fffll}, /* SPU_BTI_S10_4 */
+ {0ll, 0x3fffll}, /* SPU_BTI_U14 */
+ {-0x8000ll, 0xffffll}, /* SPU_BTI_16 */
+ {-0x8000ll, 0x7fffll}, /* SPU_BTI_S16 */
+ {-0x20000ll, 0x1ffffll}, /* SPU_BTI_S16_2 */
+ {0ll, 0xffffll}, /* SPU_BTI_U16 */
+ {0ll, 0x3ffffll}, /* SPU_BTI_U16_2 */
+ {0ll, 0x3ffffll}, /* SPU_BTI_U18 */
+};
+
+
+/* Target specific attribute specifications. */
+char regs_ever_allocated[FIRST_PSEUDO_REGISTER];
+
+/* Prototypes and external defs. */
+static int get_pipe (rtx insn);
+static int spu_naked_function_p (tree func);
+static int mem_is_padded_component_ref (rtx x);
+static void fix_range (const char *);
+static rtx spu_expand_load (rtx, rtx, rtx, int);
+
+/* Which instruction set architecture to use. */
+int spu_arch;
+/* Which cpu are we tuning for. */
+int spu_tune;
+
+/* The hardware requires 8 insns between a hint and the branch it
+ effects. This variable describes how many rtl instructions the
+ compiler needs to see before inserting a hint, and then the compiler
+ will insert enough nops to make it at least 8 insns. The default is
+ for the compiler to allow up to 2 nops be emitted. The nops are
+ inserted in pairs, so we round down. */
+int spu_hint_dist = (8*4) - (2*4);
+
+enum spu_immediate {
+ SPU_NONE,
+ SPU_IL,
+ SPU_ILA,
+ SPU_ILH,
+ SPU_ILHU,
+ SPU_ORI,
+ SPU_ORHI,
+ SPU_ORBI,
+ SPU_IOHL
+};
+enum immediate_class
+{
+ IC_POOL, /* constant pool */
+ IC_IL1, /* one il* instruction */
+ IC_IL2, /* both ilhu and iohl instructions */
+ IC_IL1s, /* one il* instruction */
+ IC_IL2s, /* both ilhu and iohl instructions */
+ IC_FSMBI, /* the fsmbi instruction */
+ IC_CPAT, /* one of the c*d instructions */
+ IC_FSMBI2 /* fsmbi plus 1 other instruction */
+};
+
+static enum spu_immediate which_immediate_load (HOST_WIDE_INT val);
+static enum spu_immediate which_logical_immediate (HOST_WIDE_INT val);
+static int cpat_info(unsigned char *arr, int size, int *prun, int *pstart);
+static enum immediate_class classify_immediate (rtx op,
+ enum machine_mode mode);
+
+/* Pointer mode for __ea references. */
+#define EAmode (spu_ea_model != 32 ? DImode : SImode)
+
+
+/* Define the structure for the machine field in struct function. */
+struct GTY(()) machine_function
+{
+ /* Register to use for PIC accesses. */
+ rtx pic_reg;
+};
+
+/* How to allocate a 'struct machine_function'. */
+static struct machine_function *
+spu_init_machine_status (void)
+{
+ return ggc_alloc_cleared_machine_function ();
+}
+
+/* Implement TARGET_OPTION_OVERRIDE. */
+static void
+spu_option_override (void)
+{
+ /* Set up function hooks. */
+ init_machine_status = spu_init_machine_status;
+
+ /* Small loops will be unpeeled at -O3. For SPU it is more important
+ to keep code small by default. */
+ if (!flag_unroll_loops && !flag_peel_loops)
+ maybe_set_param_value (PARAM_MAX_COMPLETELY_PEEL_TIMES, 4,
+ global_options.x_param_values,
+ global_options_set.x_param_values);
+
+ flag_omit_frame_pointer = 1;
+
+ /* Functions must be 8 byte aligned so we correctly handle dual issue */
+ if (align_functions < 8)
+ align_functions = 8;
+
+ spu_hint_dist = 8*4 - spu_max_nops*4;
+ if (spu_hint_dist < 0)
+ spu_hint_dist = 0;
+
+ if (spu_fixed_range_string)
+ fix_range (spu_fixed_range_string);
+
+ /* Determine processor architectural level. */
+ if (spu_arch_string)
+ {
+ if (strcmp (&spu_arch_string[0], "cell") == 0)
+ spu_arch = PROCESSOR_CELL;
+ else if (strcmp (&spu_arch_string[0], "celledp") == 0)
+ spu_arch = PROCESSOR_CELLEDP;
+ else
+ error ("bad value (%s) for -march= switch", spu_arch_string);
+ }
+
+ /* Determine processor to tune for. */
+ if (spu_tune_string)
+ {
+ if (strcmp (&spu_tune_string[0], "cell") == 0)
+ spu_tune = PROCESSOR_CELL;
+ else if (strcmp (&spu_tune_string[0], "celledp") == 0)
+ spu_tune = PROCESSOR_CELLEDP;
+ else
+ error ("bad value (%s) for -mtune= switch", spu_tune_string);
+ }
+
+ /* Change defaults according to the processor architecture. */
+ if (spu_arch == PROCESSOR_CELLEDP)
+ {
+ /* If no command line option has been otherwise specified, change
+ the default to -mno-safe-hints on celledp -- only the original
+ Cell/B.E. processors require this workaround. */
+ if (!(target_flags_explicit & MASK_SAFE_HINTS))
+ target_flags &= ~MASK_SAFE_HINTS;
+ }
+
+ REAL_MODE_FORMAT (SFmode) = &spu_single_format;
+}
+
+/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
+ struct attribute_spec.handler. */
+
+/* True if MODE is valid for the target. By "valid", we mean able to
+ be manipulated in non-trivial ways. In particular, this means all
+ the arithmetic is supported. */
+static bool
+spu_scalar_mode_supported_p (enum machine_mode mode)
+{
+ switch (mode)
+ {
+ case QImode:
+ case HImode:
+ case SImode:
+ case SFmode:
+ case DImode:
+ case TImode:
+ case DFmode:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/* Similarly for vector modes. "Supported" here is less strict. At
+ least some operations are supported; need to check optabs or builtins
+ for further details. */
+static bool
+spu_vector_mode_supported_p (enum machine_mode mode)
+{
+ switch (mode)
+ {
+ case V16QImode:
+ case V8HImode:
+ case V4SImode:
+ case V2DImode:
+ case V4SFmode:
+ case V2DFmode:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/* GCC assumes that in a paradoxical SUBREG the inner mode occupies the
+ least significant bytes of the outer mode. This function returns
+ TRUE for the SUBREG's where this is correct. */
+int
+valid_subreg (rtx op)
+{
+ enum machine_mode om = GET_MODE (op);
+ enum machine_mode im = GET_MODE (SUBREG_REG (op));
+ return om != VOIDmode && im != VOIDmode
+ && (GET_MODE_SIZE (im) == GET_MODE_SIZE (om)
+ || (GET_MODE_SIZE (im) <= 4 && GET_MODE_SIZE (om) <= 4)
+ || (GET_MODE_SIZE (im) >= 16 && GET_MODE_SIZE (om) >= 16));
+}
+
+/* When insv and ext[sz]v ar passed a TI SUBREG, we want to strip it off
+ and adjust the start offset. */
+static rtx
+adjust_operand (rtx op, HOST_WIDE_INT * start)
+{
+ enum machine_mode mode;
+ int op_size;
+ /* Strip any paradoxical SUBREG. */
+ if (GET_CODE (op) == SUBREG
+ && (GET_MODE_BITSIZE (GET_MODE (op))
+ > GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op)))))
+ {
+ if (start)
+ *start -=
+ GET_MODE_BITSIZE (GET_MODE (op)) -
+ GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op)));
+ op = SUBREG_REG (op);
+ }
+ /* If it is smaller than SI, assure a SUBREG */
+ op_size = GET_MODE_BITSIZE (GET_MODE (op));
+ if (op_size < 32)
+ {
+ if (start)
+ *start += 32 - op_size;
+ op_size = 32;
+ }
+ /* If it is not a MODE_INT (and/or it is smaller than SI) add a SUBREG. */
+ mode = mode_for_size (op_size, MODE_INT, 0);
+ if (mode != GET_MODE (op))
+ op = gen_rtx_SUBREG (mode, op, 0);
+ return op;
+}
+
+void
+spu_expand_extv (rtx ops[], int unsignedp)
+{
+ rtx dst = ops[0], src = ops[1];
+ HOST_WIDE_INT width = INTVAL (ops[2]);
+ HOST_WIDE_INT start = INTVAL (ops[3]);
+ HOST_WIDE_INT align_mask;
+ rtx s0, s1, mask, r0;
+
+ gcc_assert (REG_P (dst) && GET_MODE (dst) == TImode);
+
+ if (MEM_P (src))
+ {
+ /* First, determine if we need 1 TImode load or 2. We need only 1
+ if the bits being extracted do not cross the alignment boundary
+ as determined by the MEM and its address. */
+
+ align_mask = -MEM_ALIGN (src);
+ if ((start & align_mask) == ((start + width - 1) & align_mask))
+ {
+ /* Alignment is sufficient for 1 load. */
+ s0 = gen_reg_rtx (TImode);
+ r0 = spu_expand_load (s0, 0, src, start / 8);
+ start &= 7;
+ if (r0)
+ emit_insn (gen_rotqby_ti (s0, s0, r0));
+ }
+ else
+ {
+ /* Need 2 loads. */
+ s0 = gen_reg_rtx (TImode);
+ s1 = gen_reg_rtx (TImode);
+ r0 = spu_expand_load (s0, s1, src, start / 8);
+ start &= 7;
+
+ gcc_assert (start + width <= 128);
+ if (r0)
+ {
+ rtx r1 = gen_reg_rtx (SImode);
+ mask = gen_reg_rtx (TImode);
+ emit_move_insn (mask, GEN_INT (-1));
+ emit_insn (gen_rotqby_ti (s0, s0, r0));
+ emit_insn (gen_rotqby_ti (s1, s1, r0));
+ if (GET_CODE (r0) == CONST_INT)
+ r1 = GEN_INT (INTVAL (r0) & 15);
+ else
+ emit_insn (gen_andsi3 (r1, r0, GEN_INT (15)));
+ emit_insn (gen_shlqby_ti (mask, mask, r1));
+ emit_insn (gen_selb (s0, s1, s0, mask));
+ }
+ }
+
+ }
+ else if (GET_CODE (src) == SUBREG)
+ {
+ rtx r = SUBREG_REG (src);
+ gcc_assert (REG_P (r) && SCALAR_INT_MODE_P (GET_MODE (r)));
+ s0 = gen_reg_rtx (TImode);
+ if (GET_MODE_SIZE (GET_MODE (r)) < GET_MODE_SIZE (TImode))
+ emit_insn (gen_rtx_SET (VOIDmode, s0, gen_rtx_ZERO_EXTEND (TImode, r)));
+ else
+ emit_move_insn (s0, src);
+ }
+ else
+ {
+ gcc_assert (REG_P (src) && GET_MODE (src) == TImode);
+ s0 = gen_reg_rtx (TImode);
+ emit_move_insn (s0, src);
+ }
+
+ /* Now s0 is TImode and contains the bits to extract at start. */
+
+ if (start)
+ emit_insn (gen_rotlti3 (s0, s0, GEN_INT (start)));
+
+ if (128 - width)
+ s0 = expand_shift (RSHIFT_EXPR, TImode, s0, 128 - width, s0, unsignedp);
+
+ emit_move_insn (dst, s0);
+}
+
+void
+spu_expand_insv (rtx ops[])
+{
+ HOST_WIDE_INT width = INTVAL (ops[1]);
+ HOST_WIDE_INT start = INTVAL (ops[2]);
+ HOST_WIDE_INT maskbits;
+ enum machine_mode dst_mode;
+ rtx dst = ops[0], src = ops[3];
+ int dst_size;
+ rtx mask;
+ rtx shift_reg;
+ int shift;
+
+
+ if (GET_CODE (ops[0]) == MEM)
+ dst = gen_reg_rtx (TImode);
+ else
+ dst = adjust_operand (dst, &start);
+ dst_mode = GET_MODE (dst);
+ dst_size = GET_MODE_BITSIZE (GET_MODE (dst));
+
+ if (CONSTANT_P (src))
+ {
+ enum machine_mode m =
+ (width <= 32 ? SImode : width <= 64 ? DImode : TImode);
+ src = force_reg (m, convert_to_mode (m, src, 0));
+ }
+ src = adjust_operand (src, 0);
+
+ mask = gen_reg_rtx (dst_mode);
+ shift_reg = gen_reg_rtx (dst_mode);
+ shift = dst_size - start - width;
+
+ /* It's not safe to use subreg here because the compiler assumes
+ that the SUBREG_REG is right justified in the SUBREG. */
+ convert_move (shift_reg, src, 1);
+
+ if (shift > 0)
+ {
+ switch (dst_mode)
+ {
+ case SImode:
+ emit_insn (gen_ashlsi3 (shift_reg, shift_reg, GEN_INT (shift)));
+ break;
+ case DImode:
+ emit_insn (gen_ashldi3 (shift_reg, shift_reg, GEN_INT (shift)));
+ break;
+ case TImode:
+ emit_insn (gen_ashlti3 (shift_reg, shift_reg, GEN_INT (shift)));
+ break;
+ default:
+ abort ();
+ }
+ }
+ else if (shift < 0)
+ abort ();
+
+ switch (dst_size)
+ {
+ case 32:
+ maskbits = (-1ll << (32 - width - start));
+ if (start)
+ maskbits += (1ll << (32 - start));
+ emit_move_insn (mask, GEN_INT (maskbits));
+ break;
+ case 64:
+ maskbits = (-1ll << (64 - width - start));
+ if (start)
+ maskbits += (1ll << (64 - start));
+ emit_move_insn (mask, GEN_INT (maskbits));
+ break;
+ case 128:
+ {
+ unsigned char arr[16];
+ int i = start / 8;
+ memset (arr, 0, sizeof (arr));
+ arr[i] = 0xff >> (start & 7);
+ for (i++; i <= (start + width - 1) / 8; i++)
+ arr[i] = 0xff;
+ arr[i - 1] &= 0xff << (7 - ((start + width - 1) & 7));
+ emit_move_insn (mask, array_to_constant (TImode, arr));
+ }
+ break;
+ default:
+ abort ();
+ }
+ if (GET_CODE (ops[0]) == MEM)
+ {
+ rtx low = gen_reg_rtx (SImode);
+ rtx rotl = gen_reg_rtx (SImode);
+ rtx mask0 = gen_reg_rtx (TImode);
+ rtx addr;
+ rtx addr0;
+ rtx addr1;
+ rtx mem;
+
+ addr = force_reg (Pmode, XEXP (ops[0], 0));
+ addr0 = gen_rtx_AND (Pmode, addr, GEN_INT (-16));
+ emit_insn (gen_andsi3 (low, addr, GEN_INT (15)));
+ emit_insn (gen_negsi2 (rotl, low));
+ emit_insn (gen_rotqby_ti (shift_reg, shift_reg, rotl));
+ emit_insn (gen_rotqmby_ti (mask0, mask, rotl));
+ mem = change_address (ops[0], TImode, addr0);
+ set_mem_alias_set (mem, 0);
+ emit_move_insn (dst, mem);
+ emit_insn (gen_selb (dst, dst, shift_reg, mask0));
+ if (start + width > MEM_ALIGN (ops[0]))
+ {
+ rtx shl = gen_reg_rtx (SImode);
+ rtx mask1 = gen_reg_rtx (TImode);
+ rtx dst1 = gen_reg_rtx (TImode);
+ rtx mem1;
+ addr1 = plus_constant (Pmode, addr, 16);
+ addr1 = gen_rtx_AND (Pmode, addr1, GEN_INT (-16));
+ emit_insn (gen_subsi3 (shl, GEN_INT (16), low));
+ emit_insn (gen_shlqby_ti (mask1, mask, shl));
+ mem1 = change_address (ops[0], TImode, addr1);
+ set_mem_alias_set (mem1, 0);
+ emit_move_insn (dst1, mem1);
+ emit_insn (gen_selb (dst1, dst1, shift_reg, mask1));
+ emit_move_insn (mem1, dst1);
+ }
+ emit_move_insn (mem, dst);
+ }
+ else
+ emit_insn (gen_selb (dst, copy_rtx (dst), shift_reg, mask));
+}
+
+
+int
+spu_expand_block_move (rtx ops[])
+{
+ HOST_WIDE_INT bytes, align, offset;
+ rtx src, dst, sreg, dreg, target;
+ int i;
+ if (GET_CODE (ops[2]) != CONST_INT
+ || GET_CODE (ops[3]) != CONST_INT
+ || INTVAL (ops[2]) > (HOST_WIDE_INT) (MOVE_RATIO (optimize_insn_for_speed_p ()) * 8))
+ return 0;
+
+ bytes = INTVAL (ops[2]);
+ align = INTVAL (ops[3]);
+
+ if (bytes <= 0)
+ return 1;
+
+ dst = ops[0];
+ src = ops[1];
+
+ if (align == 16)
+ {
+ for (offset = 0; offset + 16 <= bytes; offset += 16)
+ {
+ dst = adjust_address (ops[0], V16QImode, offset);
+ src = adjust_address (ops[1], V16QImode, offset);
+ emit_move_insn (dst, src);
+ }
+ if (offset < bytes)
+ {
+ rtx mask;
+ unsigned char arr[16] = { 0 };
+ for (i = 0; i < bytes - offset; i++)
+ arr[i] = 0xff;
+ dst = adjust_address (ops[0], V16QImode, offset);
+ src = adjust_address (ops[1], V16QImode, offset);
+ mask = gen_reg_rtx (V16QImode);
+ sreg = gen_reg_rtx (V16QImode);
+ dreg = gen_reg_rtx (V16QImode);
+ target = gen_reg_rtx (V16QImode);
+ emit_move_insn (mask, array_to_constant (V16QImode, arr));
+ emit_move_insn (dreg, dst);
+ emit_move_insn (sreg, src);
+ emit_insn (gen_selb (target, dreg, sreg, mask));
+ emit_move_insn (dst, target);
+ }
+ return 1;
+ }
+ return 0;
+}
+
+enum spu_comp_code
+{ SPU_EQ, SPU_GT, SPU_GTU };
+
+int spu_comp_icode[12][3] = {
+ {CODE_FOR_ceq_qi, CODE_FOR_cgt_qi, CODE_FOR_clgt_qi},
+ {CODE_FOR_ceq_hi, CODE_FOR_cgt_hi, CODE_FOR_clgt_hi},
+ {CODE_FOR_ceq_si, CODE_FOR_cgt_si, CODE_FOR_clgt_si},
+ {CODE_FOR_ceq_di, CODE_FOR_cgt_di, CODE_FOR_clgt_di},
+ {CODE_FOR_ceq_ti, CODE_FOR_cgt_ti, CODE_FOR_clgt_ti},
+ {CODE_FOR_ceq_sf, CODE_FOR_cgt_sf, 0},
+ {CODE_FOR_ceq_df, CODE_FOR_cgt_df, 0},
+ {CODE_FOR_ceq_v16qi, CODE_FOR_cgt_v16qi, CODE_FOR_clgt_v16qi},
+ {CODE_FOR_ceq_v8hi, CODE_FOR_cgt_v8hi, CODE_FOR_clgt_v8hi},
+ {CODE_FOR_ceq_v4si, CODE_FOR_cgt_v4si, CODE_FOR_clgt_v4si},
+ {CODE_FOR_ceq_v4sf, CODE_FOR_cgt_v4sf, 0},
+ {CODE_FOR_ceq_v2df, CODE_FOR_cgt_v2df, 0},
+};
+
+/* Generate a compare for CODE. Return a brand-new rtx that represents
+ the result of the compare. GCC can figure this out too if we don't
+ provide all variations of compares, but GCC always wants to use
+ WORD_MODE, we can generate better code in most cases if we do it
+ ourselves. */
+void
+spu_emit_branch_or_set (int is_set, rtx cmp, rtx operands[])
+{
+ int reverse_compare = 0;
+ int reverse_test = 0;
+ rtx compare_result, eq_result;
+ rtx comp_rtx, eq_rtx;
+ enum machine_mode comp_mode;
+ enum machine_mode op_mode;
+ enum spu_comp_code scode, eq_code;
+ enum insn_code ior_code;
+ enum rtx_code code = GET_CODE (cmp);
+ rtx op0 = XEXP (cmp, 0);
+ rtx op1 = XEXP (cmp, 1);
+ int index;
+ int eq_test = 0;
+
+ /* When op1 is a CONST_INT change (X >= C) to (X > C-1),
+ and so on, to keep the constant in operand 1. */
+ if (GET_CODE (op1) == CONST_INT)
+ {
+ HOST_WIDE_INT val = INTVAL (op1) - 1;
+ if (trunc_int_for_mode (val, GET_MODE (op0)) == val)
+ switch (code)
+ {
+ case GE:
+ op1 = GEN_INT (val);
+ code = GT;
+ break;
+ case LT:
+ op1 = GEN_INT (val);
+ code = LE;
+ break;
+ case GEU:
+ op1 = GEN_INT (val);
+ code = GTU;
+ break;
+ case LTU:
+ op1 = GEN_INT (val);
+ code = LEU;
+ break;
+ default:
+ break;
+ }
+ }
+
+ /* However, if we generate an integer result, performing a reverse test
+ would require an extra negation, so avoid that where possible. */
+ if (GET_CODE (op1) == CONST_INT && is_set == 1)
+ {
+ HOST_WIDE_INT val = INTVAL (op1) + 1;
+ if (trunc_int_for_mode (val, GET_MODE (op0)) == val)
+ switch (code)
+ {
+ case LE:
+ op1 = GEN_INT (val);
+ code = LT;
+ break;
+ case LEU:
+ op1 = GEN_INT (val);
+ code = LTU;
+ break;
+ default:
+ break;
+ }
+ }
+
+ comp_mode = SImode;
+ op_mode = GET_MODE (op0);
+
+ switch (code)
+ {
+ case GE:
+ scode = SPU_GT;
+ if (HONOR_NANS (op_mode))
+ {
+ reverse_compare = 0;
+ reverse_test = 0;
+ eq_test = 1;
+ eq_code = SPU_EQ;
+ }
+ else
+ {
+ reverse_compare = 1;
+ reverse_test = 1;
+ }
+ break;
+ case LE:
+ scode = SPU_GT;
+ if (HONOR_NANS (op_mode))
+ {
+ reverse_compare = 1;
+ reverse_test = 0;
+ eq_test = 1;
+ eq_code = SPU_EQ;
+ }
+ else
+ {
+ reverse_compare = 0;
+ reverse_test = 1;
+ }
+ break;
+ case LT:
+ reverse_compare = 1;
+ reverse_test = 0;
+ scode = SPU_GT;
+ break;
+ case GEU:
+ reverse_compare = 1;
+ reverse_test = 1;
+ scode = SPU_GTU;
+ break;
+ case LEU:
+ reverse_compare = 0;
+ reverse_test = 1;
+ scode = SPU_GTU;
+ break;
+ case LTU:
+ reverse_compare = 1;
+ reverse_test = 0;
+ scode = SPU_GTU;
+ break;
+ case NE:
+ reverse_compare = 0;
+ reverse_test = 1;
+ scode = SPU_EQ;
+ break;
+
+ case EQ:
+ scode = SPU_EQ;
+ break;
+ case GT:
+ scode = SPU_GT;
+ break;
+ case GTU:
+ scode = SPU_GTU;
+ break;
+ default:
+ scode = SPU_EQ;
+ break;
+ }
+
+ switch (op_mode)
+ {
+ case QImode:
+ index = 0;
+ comp_mode = QImode;
+ break;
+ case HImode:
+ index = 1;
+ comp_mode = HImode;
+ break;
+ case SImode:
+ index = 2;
+ break;
+ case DImode:
+ index = 3;
+ break;
+ case TImode:
+ index = 4;
+ break;
+ case SFmode:
+ index = 5;
+ break;
+ case DFmode:
+ index = 6;
+ break;
+ case V16QImode:
+ index = 7;
+ comp_mode = op_mode;
+ break;
+ case V8HImode:
+ index = 8;
+ comp_mode = op_mode;
+ break;
+ case V4SImode:
+ index = 9;
+ comp_mode = op_mode;
+ break;
+ case V4SFmode:
+ index = 10;
+ comp_mode = V4SImode;
+ break;
+ case V2DFmode:
+ index = 11;
+ comp_mode = V2DImode;
+ break;
+ case V2DImode:
+ default:
+ abort ();
+ }
+
+ if (GET_MODE (op1) == DFmode
+ && (scode != SPU_GT && scode != SPU_EQ))
+ abort ();
+
+ if (is_set == 0 && op1 == const0_rtx
+ && (GET_MODE (op0) == SImode
+ || GET_MODE (op0) == HImode
+ || GET_MODE (op0) == QImode) && scode == SPU_EQ)
+ {
+ /* Don't need to set a register with the result when we are
+ comparing against zero and branching. */
+ reverse_test = !reverse_test;
+ compare_result = op0;
+ }
+ else
+ {
+ compare_result = gen_reg_rtx (comp_mode);
+
+ if (reverse_compare)
+ {
+ rtx t = op1;
+ op1 = op0;
+ op0 = t;
+ }
+
+ if (spu_comp_icode[index][scode] == 0)
+ abort ();
+
+ if (!(*insn_data[spu_comp_icode[index][scode]].operand[1].predicate)
+ (op0, op_mode))
+ op0 = force_reg (op_mode, op0);
+ if (!(*insn_data[spu_comp_icode[index][scode]].operand[2].predicate)
+ (op1, op_mode))
+ op1 = force_reg (op_mode, op1);
+ comp_rtx = GEN_FCN (spu_comp_icode[index][scode]) (compare_result,
+ op0, op1);
+ if (comp_rtx == 0)
+ abort ();
+ emit_insn (comp_rtx);
+
+ if (eq_test)
+ {
+ eq_result = gen_reg_rtx (comp_mode);
+ eq_rtx = GEN_FCN (spu_comp_icode[index][eq_code]) (eq_result,
+ op0, op1);
+ if (eq_rtx == 0)
+ abort ();
+ emit_insn (eq_rtx);
+ ior_code = optab_handler (ior_optab, comp_mode);
+ gcc_assert (ior_code != CODE_FOR_nothing);
+ emit_insn (GEN_FCN (ior_code)
+ (compare_result, compare_result, eq_result));
+ }
+ }
+
+ if (is_set == 0)
+ {
+ rtx bcomp;
+ rtx loc_ref;
+
+ /* We don't have branch on QI compare insns, so we convert the
+ QI compare result to a HI result. */
+ if (comp_mode == QImode)
+ {
+ rtx old_res = compare_result;
+ compare_result = gen_reg_rtx (HImode);
+ comp_mode = HImode;
+ emit_insn (gen_extendqihi2 (compare_result, old_res));
+ }
+
+ if (reverse_test)
+ bcomp = gen_rtx_EQ (comp_mode, compare_result, const0_rtx);
+ else
+ bcomp = gen_rtx_NE (comp_mode, compare_result, const0_rtx);
+
+ loc_ref = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
+ emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
+ gen_rtx_IF_THEN_ELSE (VOIDmode, bcomp,
+ loc_ref, pc_rtx)));
+ }
+ else if (is_set == 2)
+ {
+ rtx target = operands[0];
+ int compare_size = GET_MODE_BITSIZE (comp_mode);
+ int target_size = GET_MODE_BITSIZE (GET_MODE (target));
+ enum machine_mode mode = mode_for_size (target_size, MODE_INT, 0);
+ rtx select_mask;
+ rtx op_t = operands[2];
+ rtx op_f = operands[3];
+
+ /* The result of the comparison can be SI, HI or QI mode. Create a
+ mask based on that result. */
+ if (target_size > compare_size)
+ {
+ select_mask = gen_reg_rtx (mode);
+ emit_insn (gen_extend_compare (select_mask, compare_result));
+ }
+ else if (target_size < compare_size)
+ select_mask =
+ gen_rtx_SUBREG (mode, compare_result,
+ (compare_size - target_size) / BITS_PER_UNIT);
+ else if (comp_mode != mode)
+ select_mask = gen_rtx_SUBREG (mode, compare_result, 0);
+ else
+ select_mask = compare_result;
+
+ if (GET_MODE (target) != GET_MODE (op_t)
+ || GET_MODE (target) != GET_MODE (op_f))
+ abort ();
+
+ if (reverse_test)
+ emit_insn (gen_selb (target, op_t, op_f, select_mask));
+ else
+ emit_insn (gen_selb (target, op_f, op_t, select_mask));
+ }
+ else
+ {
+ rtx target = operands[0];
+ if (reverse_test)
+ emit_insn (gen_rtx_SET (VOIDmode, compare_result,
+ gen_rtx_NOT (comp_mode, compare_result)));
+ if (GET_MODE (target) == SImode && GET_MODE (compare_result) == HImode)
+ emit_insn (gen_extendhisi2 (target, compare_result));
+ else if (GET_MODE (target) == SImode
+ && GET_MODE (compare_result) == QImode)
+ emit_insn (gen_extend_compare (target, compare_result));
+ else
+ emit_move_insn (target, compare_result);
+ }
+}
+
+HOST_WIDE_INT
+const_double_to_hwint (rtx x)
+{
+ HOST_WIDE_INT val;
+ REAL_VALUE_TYPE rv;
+ if (GET_MODE (x) == SFmode)
+ {
+ REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
+ REAL_VALUE_TO_TARGET_SINGLE (rv, val);
+ }
+ else if (GET_MODE (x) == DFmode)
+ {
+ long l[2];
+ REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
+ REAL_VALUE_TO_TARGET_DOUBLE (rv, l);
+ val = l[0];
+ val = (val << 32) | (l[1] & 0xffffffff);
+ }
+ else
+ abort ();
+ return val;
+}
+
+rtx
+hwint_to_const_double (enum machine_mode mode, HOST_WIDE_INT v)
+{
+ long tv[2];
+ REAL_VALUE_TYPE rv;
+ gcc_assert (mode == SFmode || mode == DFmode);
+
+ if (mode == SFmode)
+ tv[0] = (v << 32) >> 32;
+ else if (mode == DFmode)
+ {
+ tv[1] = (v << 32) >> 32;
+ tv[0] = v >> 32;
+ }
+ real_from_target (&rv, tv, mode);
+ return CONST_DOUBLE_FROM_REAL_VALUE (rv, mode);
+}
+
+void
+print_operand_address (FILE * file, register rtx addr)
+{
+ rtx reg;
+ rtx offset;
+
+ if (GET_CODE (addr) == AND
+ && GET_CODE (XEXP (addr, 1)) == CONST_INT
+ && INTVAL (XEXP (addr, 1)) == -16)
+ addr = XEXP (addr, 0);
+
+ switch (GET_CODE (addr))
+ {
+ case REG:
+ fprintf (file, "0(%s)", reg_names[REGNO (addr)]);
+ break;
+
+ case PLUS:
+ reg = XEXP (addr, 0);
+ offset = XEXP (addr, 1);
+ if (GET_CODE (offset) == REG)
+ {
+ fprintf (file, "%s,%s", reg_names[REGNO (reg)],
+ reg_names[REGNO (offset)]);
+ }
+ else if (GET_CODE (offset) == CONST_INT)
+ {
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%s)",
+ INTVAL (offset), reg_names[REGNO (reg)]);
+ }
+ else
+ abort ();
+ break;
+
+ case CONST:
+ case LABEL_REF:
+ case SYMBOL_REF:
+ case CONST_INT:
+ output_addr_const (file, addr);
+ break;
+
+ default:
+ debug_rtx (addr);
+ abort ();
+ }
+}
+
+void
+print_operand (FILE * file, rtx x, int code)
+{
+ enum machine_mode mode = GET_MODE (x);
+ HOST_WIDE_INT val;
+ unsigned char arr[16];
+ int xcode = GET_CODE (x);
+ int i, info;
+ if (GET_MODE (x) == VOIDmode)
+ switch (code)
+ {
+ case 'L': /* 128 bits, signed */
+ case 'm': /* 128 bits, signed */
+ case 'T': /* 128 bits, signed */
+ case 't': /* 128 bits, signed */
+ mode = TImode;
+ break;
+ case 'K': /* 64 bits, signed */
+ case 'k': /* 64 bits, signed */
+ case 'D': /* 64 bits, signed */
+ case 'd': /* 64 bits, signed */
+ mode = DImode;
+ break;
+ case 'J': /* 32 bits, signed */
+ case 'j': /* 32 bits, signed */
+ case 's': /* 32 bits, signed */
+ case 'S': /* 32 bits, signed */
+ mode = SImode;
+ break;
+ }
+ switch (code)
+ {
+
+ case 'j': /* 32 bits, signed */
+ case 'k': /* 64 bits, signed */
+ case 'm': /* 128 bits, signed */
+ if (xcode == CONST_INT
+ || xcode == CONST_DOUBLE || xcode == CONST_VECTOR)
+ {
+ gcc_assert (logical_immediate_p (x, mode));
+ constant_to_array (mode, x, arr);
+ val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
+ val = trunc_int_for_mode (val, SImode);
+ switch (which_logical_immediate (val))
+ {
+ case SPU_ORI:
+ break;
+ case SPU_ORHI:
+ fprintf (file, "h");
+ break;
+ case SPU_ORBI:
+ fprintf (file, "b");
+ break;
+ default:
+ gcc_unreachable();
+ }
+ }
+ else
+ gcc_unreachable();
+ return;
+
+ case 'J': /* 32 bits, signed */
+ case 'K': /* 64 bits, signed */
+ case 'L': /* 128 bits, signed */
+ if (xcode == CONST_INT
+ || xcode == CONST_DOUBLE || xcode == CONST_VECTOR)
+ {
+ gcc_assert (logical_immediate_p (x, mode)
+ || iohl_immediate_p (x, mode));
+ constant_to_array (mode, x, arr);
+ val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
+ val = trunc_int_for_mode (val, SImode);
+ switch (which_logical_immediate (val))
+ {
+ case SPU_ORI:
+ case SPU_IOHL:
+ break;
+ case SPU_ORHI:
+ val = trunc_int_for_mode (val, HImode);
+ break;
+ case SPU_ORBI:
+ val = trunc_int_for_mode (val, QImode);
+ break;
+ default:
+ gcc_unreachable();
+ }
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, val);
+ }
+ else
+ gcc_unreachable();
+ return;
+
+ case 't': /* 128 bits, signed */
+ case 'd': /* 64 bits, signed */
+ case 's': /* 32 bits, signed */
+ if (CONSTANT_P (x))
+ {
+ enum immediate_class c = classify_immediate (x, mode);
+ switch (c)
+ {
+ case IC_IL1:
+ constant_to_array (mode, x, arr);
+ val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
+ val = trunc_int_for_mode (val, SImode);
+ switch (which_immediate_load (val))
+ {
+ case SPU_IL:
+ break;
+ case SPU_ILA:
+ fprintf (file, "a");
+ break;
+ case SPU_ILH:
+ fprintf (file, "h");
+ break;
+ case SPU_ILHU:
+ fprintf (file, "hu");
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ break;
+ case IC_CPAT:
+ constant_to_array (mode, x, arr);
+ cpat_info (arr, GET_MODE_SIZE (mode), &info, 0);
+ if (info == 1)
+ fprintf (file, "b");
+ else if (info == 2)
+ fprintf (file, "h");
+ else if (info == 4)
+ fprintf (file, "w");
+ else if (info == 8)
+ fprintf (file, "d");
+ break;
+ case IC_IL1s:
+ if (xcode == CONST_VECTOR)
+ {
+ x = CONST_VECTOR_ELT (x, 0);
+ xcode = GET_CODE (x);
+ }
+ if (xcode == SYMBOL_REF || xcode == LABEL_REF || xcode == CONST)
+ fprintf (file, "a");
+ else if (xcode == HIGH)
+ fprintf (file, "hu");
+ break;
+ case IC_FSMBI:
+ case IC_FSMBI2:
+ case IC_IL2:
+ case IC_IL2s:
+ case IC_POOL:
+ abort ();
+ }
+ }
+ else
+ gcc_unreachable ();
+ return;
+
+ case 'T': /* 128 bits, signed */
+ case 'D': /* 64 bits, signed */
+ case 'S': /* 32 bits, signed */
+ if (CONSTANT_P (x))
+ {
+ enum immediate_class c = classify_immediate (x, mode);
+ switch (c)
+ {
+ case IC_IL1:
+ constant_to_array (mode, x, arr);
+ val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
+ val = trunc_int_for_mode (val, SImode);
+ switch (which_immediate_load (val))
+ {
+ case SPU_IL:
+ case SPU_ILA:
+ break;
+ case SPU_ILH:
+ case SPU_ILHU:
+ val = trunc_int_for_mode (((arr[0] << 8) | arr[1]), HImode);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, val);
+ break;
+ case IC_FSMBI:
+ constant_to_array (mode, x, arr);
+ val = 0;
+ for (i = 0; i < 16; i++)
+ {
+ val <<= 1;
+ val |= arr[i] & 1;
+ }
+ print_operand (file, GEN_INT (val), 0);
+ break;
+ case IC_CPAT:
+ constant_to_array (mode, x, arr);
+ cpat_info (arr, GET_MODE_SIZE (mode), 0, &info);
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)info);
+ break;
+ case IC_IL1s:
+ if (xcode == HIGH)
+ x = XEXP (x, 0);
+ if (GET_CODE (x) == CONST_VECTOR)
+ x = CONST_VECTOR_ELT (x, 0);
+ output_addr_const (file, x);
+ if (xcode == HIGH)
+ fprintf (file, "@h");
+ break;
+ case IC_IL2:
+ case IC_IL2s:
+ case IC_FSMBI2:
+ case IC_POOL:
+ abort ();
+ }
+ }
+ else
+ gcc_unreachable ();
+ return;
+
+ case 'C':
+ if (xcode == CONST_INT)
+ {
+ /* Only 4 least significant bits are relevant for generate
+ control word instructions. */
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 15);
+ return;
+ }
+ break;
+
+ case 'M': /* print code for c*d */
+ if (GET_CODE (x) == CONST_INT)
+ switch (INTVAL (x))
+ {
+ case 1:
+ fprintf (file, "b");
+ break;
+ case 2:
+ fprintf (file, "h");
+ break;
+ case 4:
+ fprintf (file, "w");
+ break;
+ case 8:
+ fprintf (file, "d");
+ break;
+ default:
+ gcc_unreachable();
+ }
+ else
+ gcc_unreachable();
+ return;
+
+ case 'N': /* Negate the operand */
+ if (xcode == CONST_INT)
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, -INTVAL (x));
+ else if (xcode == CONST_VECTOR)
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC,
+ -INTVAL (CONST_VECTOR_ELT (x, 0)));
+ return;
+
+ case 'I': /* enable/disable interrupts */
+ if (xcode == CONST_INT)
+ fprintf (file, "%s", INTVAL (x) == 0 ? "d" : "e");
+ return;
+
+ case 'b': /* branch modifiers */
+ if (xcode == REG)
+ fprintf (file, "%s", GET_MODE (x) == HImode ? "h" : "");
+ else if (COMPARISON_P (x))
+ fprintf (file, "%s", xcode == NE ? "n" : "");
+ return;
+
+ case 'i': /* indirect call */
+ if (xcode == MEM)
+ {
+ if (GET_CODE (XEXP (x, 0)) == REG)
+ /* Used in indirect function calls. */
+ fprintf (file, "%s", reg_names[REGNO (XEXP (x, 0))]);
+ else
+ output_address (XEXP (x, 0));
+ }
+ return;
+
+ case 'p': /* load/store */
+ if (xcode == MEM)
+ {
+ x = XEXP (x, 0);
+ xcode = GET_CODE (x);
+ }
+ if (xcode == AND)
+ {
+ x = XEXP (x, 0);
+ xcode = GET_CODE (x);
+ }
+ if (xcode == REG)
+ fprintf (file, "d");
+ else if (xcode == CONST_INT)
+ fprintf (file, "a");
+ else if (xcode == CONST || xcode == SYMBOL_REF || xcode == LABEL_REF)
+ fprintf (file, "r");
+ else if (xcode == PLUS || xcode == LO_SUM)
+ {
+ if (GET_CODE (XEXP (x, 1)) == REG)
+ fprintf (file, "x");
+ else
+ fprintf (file, "d");
+ }
+ return;
+
+ case 'e':
+ val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
+ val &= 0x7;
+ output_addr_const (file, GEN_INT (val));
+ return;
+
+ case 'f':
+ val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
+ val &= 0x1f;
+ output_addr_const (file, GEN_INT (val));
+ return;
+
+ case 'g':
+ val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
+ val &= 0x3f;
+ output_addr_const (file, GEN_INT (val));
+ return;
+
+ case 'h':
+ val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
+ val = (val >> 3) & 0x1f;
+ output_addr_const (file, GEN_INT (val));
+ return;
+
+ case 'E':
+ val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
+ val = -val;
+ val &= 0x7;
+ output_addr_const (file, GEN_INT (val));
+ return;
+
+ case 'F':
+ val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
+ val = -val;
+ val &= 0x1f;
+ output_addr_const (file, GEN_INT (val));
+ return;
+
+ case 'G':
+ val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
+ val = -val;
+ val &= 0x3f;
+ output_addr_const (file, GEN_INT (val));
+ return;
+
+ case 'H':
+ val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
+ val = -(val & -8ll);
+ val = (val >> 3) & 0x1f;
+ output_addr_const (file, GEN_INT (val));
+ return;
+
+ case 'v':
+ case 'w':
+ constant_to_array (mode, x, arr);
+ val = (((arr[0] << 1) + (arr[1] >> 7)) & 0xff) - 127;
+ output_addr_const (file, GEN_INT (code == 'w' ? -val : val));
+ return;
+
+ case 0:
+ if (xcode == REG)
+ fprintf (file, "%s", reg_names[REGNO (x)]);
+ else if (xcode == MEM)
+ output_address (XEXP (x, 0));
+ else if (xcode == CONST_VECTOR)
+ print_operand (file, CONST_VECTOR_ELT (x, 0), 0);
+ else
+ output_addr_const (file, x);
+ return;
+
+ /* unused letters
+ o qr u yz
+ AB OPQR UVWXYZ */
+ default:
+ output_operand_lossage ("invalid %%xn code");
+ }
+ gcc_unreachable ();
+}
+
+/* For PIC mode we've reserved PIC_OFFSET_TABLE_REGNUM, which is a
+ caller saved register. For leaf functions it is more efficient to
+ use a volatile register because we won't need to save and restore the
+ pic register. This routine is only valid after register allocation
+ is completed, so we can pick an unused register. */
+static rtx
+get_pic_reg (void)
+{
+ if (!reload_completed && !reload_in_progress)
+ abort ();
+
+ /* If we've already made the decision, we need to keep with it. Once we've
+ decided to use LAST_ARG_REGNUM, future calls to df_regs_ever_live_p may
+ return true since the register is now live; this should not cause us to
+ "switch back" to using pic_offset_table_rtx. */
+ if (!cfun->machine->pic_reg)
+ {
+ if (crtl->is_leaf && !df_regs_ever_live_p (LAST_ARG_REGNUM))
+ cfun->machine->pic_reg = gen_rtx_REG (SImode, LAST_ARG_REGNUM);
+ else
+ cfun->machine->pic_reg = pic_offset_table_rtx;
+ }
+
+ return cfun->machine->pic_reg;
+}
+
+/* Split constant addresses to handle cases that are too large.
+ Add in the pic register when in PIC mode.
+ Split immediates that require more than 1 instruction. */
+int
+spu_split_immediate (rtx * ops)
+{
+ enum machine_mode mode = GET_MODE (ops[0]);
+ enum immediate_class c = classify_immediate (ops[1], mode);
+
+ switch (c)
+ {
+ case IC_IL2:
+ {
+ unsigned char arrhi[16];
+ unsigned char arrlo[16];
+ rtx to, temp, hi, lo;
+ int i;
+ enum machine_mode imode = mode;
+ /* We need to do reals as ints because the constant used in the
+ IOR might not be a legitimate real constant. */
+ imode = int_mode_for_mode (mode);
+ constant_to_array (mode, ops[1], arrhi);
+ if (imode != mode)
+ to = simplify_gen_subreg (imode, ops[0], mode, 0);
+ else
+ to = ops[0];
+ temp = !can_create_pseudo_p () ? to : gen_reg_rtx (imode);
+ for (i = 0; i < 16; i += 4)
+ {
+ arrlo[i + 2] = arrhi[i + 2];
+ arrlo[i + 3] = arrhi[i + 3];
+ arrlo[i + 0] = arrlo[i + 1] = 0;
+ arrhi[i + 2] = arrhi[i + 3] = 0;
+ }
+ hi = array_to_constant (imode, arrhi);
+ lo = array_to_constant (imode, arrlo);
+ emit_move_insn (temp, hi);
+ emit_insn (gen_rtx_SET
+ (VOIDmode, to, gen_rtx_IOR (imode, temp, lo)));
+ return 1;
+ }
+ case IC_FSMBI2:
+ {
+ unsigned char arr_fsmbi[16];
+ unsigned char arr_andbi[16];
+ rtx to, reg_fsmbi, reg_and;
+ int i;
+ enum machine_mode imode = mode;
+ /* We need to do reals as ints because the constant used in the
+ * AND might not be a legitimate real constant. */
+ imode = int_mode_for_mode (mode);
+ constant_to_array (mode, ops[1], arr_fsmbi);
+ if (imode != mode)
+ to = simplify_gen_subreg(imode, ops[0], GET_MODE (ops[0]), 0);
+ else
+ to = ops[0];
+ for (i = 0; i < 16; i++)
+ if (arr_fsmbi[i] != 0)
+ {
+ arr_andbi[0] = arr_fsmbi[i];
+ arr_fsmbi[i] = 0xff;
+ }
+ for (i = 1; i < 16; i++)
+ arr_andbi[i] = arr_andbi[0];
+ reg_fsmbi = array_to_constant (imode, arr_fsmbi);
+ reg_and = array_to_constant (imode, arr_andbi);
+ emit_move_insn (to, reg_fsmbi);
+ emit_insn (gen_rtx_SET
+ (VOIDmode, to, gen_rtx_AND (imode, to, reg_and)));
+ return 1;
+ }
+ case IC_POOL:
+ if (reload_in_progress || reload_completed)
+ {
+ rtx mem = force_const_mem (mode, ops[1]);
+ if (TARGET_LARGE_MEM)
+ {
+ rtx addr = gen_rtx_REG (Pmode, REGNO (ops[0]));
+ emit_move_insn (addr, XEXP (mem, 0));
+ mem = replace_equiv_address (mem, addr);
+ }
+ emit_move_insn (ops[0], mem);
+ return 1;
+ }
+ break;
+ case IC_IL1s:
+ case IC_IL2s:
+ if (reload_completed && GET_CODE (ops[1]) != HIGH)
+ {
+ if (c == IC_IL2s)
+ {
+ emit_move_insn (ops[0], gen_rtx_HIGH (mode, ops[1]));
+ emit_move_insn (ops[0], gen_rtx_LO_SUM (mode, ops[0], ops[1]));
+ }
+ else if (flag_pic)
+ emit_insn (gen_pic (ops[0], ops[1]));
+ if (flag_pic)
+ {
+ rtx pic_reg = get_pic_reg ();
+ emit_insn (gen_addsi3 (ops[0], ops[0], pic_reg));
+ }
+ return flag_pic || c == IC_IL2s;
+ }
+ break;
+ case IC_IL1:
+ case IC_FSMBI:
+ case IC_CPAT:
+ break;
+ }
+ return 0;
+}
+
+/* SAVING is TRUE when we are generating the actual load and store
+ instructions for REGNO. When determining the size of the stack
+ needed for saving register we must allocate enough space for the
+ worst case, because we don't always have the information early enough
+ to not allocate it. But we can at least eliminate the actual loads
+ and stores during the prologue/epilogue. */
+static int
+need_to_save_reg (int regno, int saving)
+{
+ if (df_regs_ever_live_p (regno) && !call_used_regs[regno])
+ return 1;
+ if (flag_pic
+ && regno == PIC_OFFSET_TABLE_REGNUM
+ && (!saving || cfun->machine->pic_reg == pic_offset_table_rtx))
+ return 1;
+ return 0;
+}
+
+/* This function is only correct starting with local register
+ allocation */
+int
+spu_saved_regs_size (void)
+{
+ int reg_save_size = 0;
+ int regno;
+
+ for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; --regno)
+ if (need_to_save_reg (regno, 0))
+ reg_save_size += 0x10;
+ return reg_save_size;
+}
+
+static rtx
+frame_emit_store (int regno, rtx addr, HOST_WIDE_INT offset)
+{
+ rtx reg = gen_rtx_REG (V4SImode, regno);
+ rtx mem =
+ gen_frame_mem (V4SImode, gen_rtx_PLUS (Pmode, addr, GEN_INT (offset)));
+ return emit_insn (gen_movv4si (mem, reg));
+}
+
+static rtx
+frame_emit_load (int regno, rtx addr, HOST_WIDE_INT offset)
+{
+ rtx reg = gen_rtx_REG (V4SImode, regno);
+ rtx mem =
+ gen_frame_mem (V4SImode, gen_rtx_PLUS (Pmode, addr, GEN_INT (offset)));
+ return emit_insn (gen_movv4si (reg, mem));
+}
+
+/* This happens after reload, so we need to expand it. */
+static rtx
+frame_emit_add_imm (rtx dst, rtx src, HOST_WIDE_INT imm, rtx scratch)
+{
+ rtx insn;
+ if (satisfies_constraint_K (GEN_INT (imm)))
+ {
+ insn = emit_insn (gen_addsi3 (dst, src, GEN_INT (imm)));
+ }
+ else
+ {
+ emit_insn (gen_movsi (scratch, gen_int_mode (imm, SImode)));
+ insn = emit_insn (gen_addsi3 (dst, src, scratch));
+ if (REGNO (src) == REGNO (scratch))
+ abort ();
+ }
+ return insn;
+}
+
+/* Return nonzero if this function is known to have a null epilogue. */
+
+int
+direct_return (void)
+{
+ if (reload_completed)
+ {
+ if (cfun->static_chain_decl == 0
+ && (spu_saved_regs_size ()
+ + get_frame_size ()
+ + crtl->outgoing_args_size
+ + crtl->args.pretend_args_size == 0)
+ && crtl->is_leaf)
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ The stack frame looks like this:
+ +-------------+
+ | incoming |
+ | args |
+ AP -> +-------------+
+ | $lr save |
+ +-------------+
+ prev SP | back chain |
+ +-------------+
+ | var args |
+ | reg save | crtl->args.pretend_args_size bytes
+ +-------------+
+ | ... |
+ | saved regs | spu_saved_regs_size() bytes
+ FP -> +-------------+
+ | ... |
+ | vars | get_frame_size() bytes
+ HFP -> +-------------+
+ | ... |
+ | outgoing |
+ | args | crtl->outgoing_args_size bytes
+ +-------------+
+ | $lr of next |
+ | frame |
+ +-------------+
+ | back chain |
+ SP -> +-------------+
+
+*/
+void
+spu_expand_prologue (void)
+{
+ HOST_WIDE_INT size = get_frame_size (), offset, regno;
+ HOST_WIDE_INT total_size;
+ HOST_WIDE_INT saved_regs_size;
+ rtx sp_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
+ rtx scratch_reg_0, scratch_reg_1;
+ rtx insn, real;
+
+ if (flag_pic && optimize == 0 && !cfun->machine->pic_reg)
+ cfun->machine->pic_reg = pic_offset_table_rtx;
+
+ if (spu_naked_function_p (current_function_decl))
+ return;
+
+ scratch_reg_0 = gen_rtx_REG (SImode, LAST_ARG_REGNUM + 1);
+ scratch_reg_1 = gen_rtx_REG (SImode, LAST_ARG_REGNUM + 2);
+
+ saved_regs_size = spu_saved_regs_size ();
+ total_size = size + saved_regs_size
+ + crtl->outgoing_args_size
+ + crtl->args.pretend_args_size;
+
+ if (!crtl->is_leaf
+ || cfun->calls_alloca || total_size > 0)
+ total_size += STACK_POINTER_OFFSET;
+
+ /* Save this first because code after this might use the link
+ register as a scratch register. */
+ if (!crtl->is_leaf)
+ {
+ insn = frame_emit_store (LINK_REGISTER_REGNUM, sp_reg, 16);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+
+ if (total_size > 0)
+ {
+ offset = -crtl->args.pretend_args_size;
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
+ if (need_to_save_reg (regno, 1))
+ {
+ offset -= 16;
+ insn = frame_emit_store (regno, sp_reg, offset);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ }
+
+ if (flag_pic && cfun->machine->pic_reg)
+ {
+ rtx pic_reg = cfun->machine->pic_reg;
+ insn = emit_insn (gen_load_pic_offset (pic_reg, scratch_reg_0));
+ insn = emit_insn (gen_subsi3 (pic_reg, pic_reg, scratch_reg_0));
+ }
+
+ if (total_size > 0)
+ {
+ if (flag_stack_check)
+ {
+ /* We compare against total_size-1 because
+ ($sp >= total_size) <=> ($sp > total_size-1) */
+ rtx scratch_v4si = gen_rtx_REG (V4SImode, REGNO (scratch_reg_0));
+ rtx sp_v4si = gen_rtx_REG (V4SImode, STACK_POINTER_REGNUM);
+ rtx size_v4si = spu_const (V4SImode, total_size - 1);
+ if (!satisfies_constraint_K (GEN_INT (total_size - 1)))
+ {
+ emit_move_insn (scratch_v4si, size_v4si);
+ size_v4si = scratch_v4si;
+ }
+ emit_insn (gen_cgt_v4si (scratch_v4si, sp_v4si, size_v4si));
+ emit_insn (gen_vec_extractv4si
+ (scratch_reg_0, scratch_v4si, GEN_INT (1)));
+ emit_insn (gen_spu_heq (scratch_reg_0, GEN_INT (0)));
+ }
+
+ /* Adjust the stack pointer, and make sure scratch_reg_0 contains
+ the value of the previous $sp because we save it as the back
+ chain. */
+ if (total_size <= 2000)
+ {
+ /* In this case we save the back chain first. */
+ insn = frame_emit_store (STACK_POINTER_REGNUM, sp_reg, -total_size);
+ insn =
+ frame_emit_add_imm (sp_reg, sp_reg, -total_size, scratch_reg_0);
+ }
+ else
+ {
+ insn = emit_move_insn (scratch_reg_0, sp_reg);
+ insn =
+ frame_emit_add_imm (sp_reg, sp_reg, -total_size, scratch_reg_1);
+ }
+ RTX_FRAME_RELATED_P (insn) = 1;
+ real = gen_addsi3 (sp_reg, sp_reg, GEN_INT (-total_size));
+ add_reg_note (insn, REG_FRAME_RELATED_EXPR, real);
+
+ if (total_size > 2000)
+ {
+ /* Save the back chain ptr */
+ insn = frame_emit_store (REGNO (scratch_reg_0), sp_reg, 0);
+ }
+
+ if (frame_pointer_needed)
+ {
+ rtx fp_reg = gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
+ HOST_WIDE_INT fp_offset = STACK_POINTER_OFFSET
+ + crtl->outgoing_args_size;
+ /* Set the new frame_pointer */
+ insn = frame_emit_add_imm (fp_reg, sp_reg, fp_offset, scratch_reg_0);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ real = gen_addsi3 (fp_reg, sp_reg, GEN_INT (fp_offset));
+ add_reg_note (insn, REG_FRAME_RELATED_EXPR, real);
+ REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
+ }
+ }
+
+ if (flag_stack_usage_info)
+ current_function_static_stack_size = total_size;
+}
+
+void
+spu_expand_epilogue (bool sibcall_p)
+{
+ int size = get_frame_size (), offset, regno;
+ HOST_WIDE_INT saved_regs_size, total_size;
+ rtx sp_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
+ rtx scratch_reg_0;
+
+ if (spu_naked_function_p (current_function_decl))
+ return;
+
+ scratch_reg_0 = gen_rtx_REG (SImode, LAST_ARG_REGNUM + 1);
+
+ saved_regs_size = spu_saved_regs_size ();
+ total_size = size + saved_regs_size
+ + crtl->outgoing_args_size
+ + crtl->args.pretend_args_size;
+
+ if (!crtl->is_leaf
+ || cfun->calls_alloca || total_size > 0)
+ total_size += STACK_POINTER_OFFSET;
+
+ if (total_size > 0)
+ {
+ if (cfun->calls_alloca)
+ frame_emit_load (STACK_POINTER_REGNUM, sp_reg, 0);
+ else
+ frame_emit_add_imm (sp_reg, sp_reg, total_size, scratch_reg_0);
+
+
+ if (saved_regs_size > 0)
+ {
+ offset = -crtl->args.pretend_args_size;
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
+ if (need_to_save_reg (regno, 1))
+ {
+ offset -= 0x10;
+ frame_emit_load (regno, sp_reg, offset);
+ }
+ }
+ }
+
+ if (!crtl->is_leaf)
+ frame_emit_load (LINK_REGISTER_REGNUM, sp_reg, 16);
+
+ if (!sibcall_p)
+ {
+ emit_use (gen_rtx_REG (SImode, LINK_REGISTER_REGNUM));
+ emit_jump_insn (gen__return ());
+ }
+}
+
+rtx
+spu_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
+{
+ if (count != 0)
+ return 0;
+ /* This is inefficient because it ends up copying to a save-register
+ which then gets saved even though $lr has already been saved. But
+ it does generate better code for leaf functions and we don't need
+ to use RETURN_ADDRESS_POINTER_REGNUM to get it working. It's only
+ used for __builtin_return_address anyway, so maybe we don't care if
+ it's inefficient. */
+ return get_hard_reg_initial_val (Pmode, LINK_REGISTER_REGNUM);
+}
+
+
+/* Given VAL, generate a constant appropriate for MODE.
+ If MODE is a vector mode, every element will be VAL.
+ For TImode, VAL will be zero extended to 128 bits. */
+rtx
+spu_const (enum machine_mode mode, HOST_WIDE_INT val)
+{
+ rtx inner;
+ rtvec v;
+ int units, i;
+
+ gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
+ || GET_MODE_CLASS (mode) == MODE_FLOAT
+ || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
+ || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
+
+ if (GET_MODE_CLASS (mode) == MODE_INT)
+ return immed_double_const (val, 0, mode);
+
+ /* val is the bit representation of the float */
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
+ return hwint_to_const_double (mode, val);
+
+ if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
+ inner = immed_double_const (val, 0, GET_MODE_INNER (mode));
+ else
+ inner = hwint_to_const_double (GET_MODE_INNER (mode), val);
+
+ units = GET_MODE_NUNITS (mode);
+
+ v = rtvec_alloc (units);
+
+ for (i = 0; i < units; ++i)
+ RTVEC_ELT (v, i) = inner;
+
+ return gen_rtx_CONST_VECTOR (mode, v);
+}
+
+/* Create a MODE vector constant from 4 ints. */
+rtx
+spu_const_from_ints(enum machine_mode mode, int a, int b, int c, int d)
+{
+ unsigned char arr[16];
+ arr[0] = (a >> 24) & 0xff;
+ arr[1] = (a >> 16) & 0xff;
+ arr[2] = (a >> 8) & 0xff;
+ arr[3] = (a >> 0) & 0xff;
+ arr[4] = (b >> 24) & 0xff;
+ arr[5] = (b >> 16) & 0xff;
+ arr[6] = (b >> 8) & 0xff;
+ arr[7] = (b >> 0) & 0xff;
+ arr[8] = (c >> 24) & 0xff;
+ arr[9] = (c >> 16) & 0xff;
+ arr[10] = (c >> 8) & 0xff;
+ arr[11] = (c >> 0) & 0xff;
+ arr[12] = (d >> 24) & 0xff;
+ arr[13] = (d >> 16) & 0xff;
+ arr[14] = (d >> 8) & 0xff;
+ arr[15] = (d >> 0) & 0xff;
+ return array_to_constant(mode, arr);
+}
+
+/* branch hint stuff */
+
+/* An array of these is used to propagate hints to predecessor blocks. */
+struct spu_bb_info
+{
+ rtx prop_jump; /* propagated from another block */
+ int bb_index; /* the original block. */
+};
+static struct spu_bb_info *spu_bb_info;
+
+#define STOP_HINT_P(INSN) \
+ (CALL_P(INSN) \
+ || INSN_CODE(INSN) == CODE_FOR_divmodsi4 \
+ || INSN_CODE(INSN) == CODE_FOR_udivmodsi4)
+
+/* 1 when RTX is a hinted branch or its target. We keep track of
+ what has been hinted so the safe-hint code can test it easily. */
+#define HINTED_P(RTX) \
+ (RTL_FLAG_CHECK3("HINTED_P", (RTX), CODE_LABEL, JUMP_INSN, CALL_INSN)->unchanging)
+
+/* 1 when RTX is an insn that must be scheduled on an even boundary. */
+#define SCHED_ON_EVEN_P(RTX) \
+ (RTL_FLAG_CHECK2("SCHED_ON_EVEN_P", (RTX), JUMP_INSN, CALL_INSN)->in_struct)
+
+/* Emit a nop for INSN such that the two will dual issue. This assumes
+ INSN is 8-byte aligned. When INSN is inline asm we emit an lnop.
+ We check for TImode to handle a MULTI1 insn which has dual issued its
+ first instruction. get_pipe returns -1 for MULTI0 or inline asm. */
+static void
+emit_nop_for_insn (rtx insn)
+{
+ int p;
+ rtx new_insn;
+
+ /* We need to handle JUMP_TABLE_DATA separately. */
+ if (JUMP_TABLE_DATA_P (insn))
+ {
+ new_insn = emit_insn_after (gen_lnop(), insn);
+ recog_memoized (new_insn);
+ INSN_LOCATION (new_insn) = UNKNOWN_LOCATION;
+ return;
+ }
+
+ p = get_pipe (insn);
+ if ((CALL_P (insn) || JUMP_P (insn)) && SCHED_ON_EVEN_P (insn))
+ new_insn = emit_insn_after (gen_lnop (), insn);
+ else if (p == 1 && GET_MODE (insn) == TImode)
+ {
+ new_insn = emit_insn_before (gen_nopn (GEN_INT (127)), insn);
+ PUT_MODE (new_insn, TImode);
+ PUT_MODE (insn, VOIDmode);
+ }
+ else
+ new_insn = emit_insn_after (gen_lnop (), insn);
+ recog_memoized (new_insn);
+ INSN_LOCATION (new_insn) = INSN_LOCATION (insn);
+}
+
+/* Insert nops in basic blocks to meet dual issue alignment
+ requirements. Also make sure hbrp and hint instructions are at least
+ one cycle apart, possibly inserting a nop. */
+static void
+pad_bb(void)
+{
+ rtx insn, next_insn, prev_insn, hbr_insn = 0;
+ int length;
+ int addr;
+
+ /* This sets up INSN_ADDRESSES. */
+ shorten_branches (get_insns ());
+
+ /* Keep track of length added by nops. */
+ length = 0;
+
+ prev_insn = 0;
+ insn = get_insns ();
+ if (!active_insn_p (insn))
+ insn = next_active_insn (insn);
+ for (; insn; insn = next_insn)
+ {
+ next_insn = next_active_insn (insn);
+ if (INSN_CODE (insn) == CODE_FOR_iprefetch
+ || INSN_CODE (insn) == CODE_FOR_hbr)
+ {
+ if (hbr_insn)
+ {
+ int a0 = INSN_ADDRESSES (INSN_UID (hbr_insn));
+ int a1 = INSN_ADDRESSES (INSN_UID (insn));
+ if ((a1 - a0 == 8 && GET_MODE (insn) != TImode)
+ || (a1 - a0 == 4))
+ {
+ prev_insn = emit_insn_before (gen_lnop (), insn);
+ PUT_MODE (prev_insn, GET_MODE (insn));
+ PUT_MODE (insn, TImode);
+ INSN_LOCATION (prev_insn) = INSN_LOCATION (insn);
+ length += 4;
+ }
+ }
+ hbr_insn = insn;
+ }
+ if (INSN_CODE (insn) == CODE_FOR_blockage)
+ {
+ if (GET_MODE (insn) == TImode)
+ PUT_MODE (next_insn, TImode);
+ insn = next_insn;
+ next_insn = next_active_insn (insn);
+ }
+ addr = INSN_ADDRESSES (INSN_UID (insn));
+ if ((CALL_P (insn) || JUMP_P (insn)) && SCHED_ON_EVEN_P (insn))
+ {
+ if (((addr + length) & 7) != 0)
+ {
+ emit_nop_for_insn (prev_insn);
+ length += 4;
+ }
+ }
+ else if (GET_MODE (insn) == TImode
+ && ((next_insn && GET_MODE (next_insn) != TImode)
+ || get_attr_type (insn) == TYPE_MULTI0)
+ && ((addr + length) & 7) != 0)
+ {
+ /* prev_insn will always be set because the first insn is
+ always 8-byte aligned. */
+ emit_nop_for_insn (prev_insn);
+ length += 4;
+ }
+ prev_insn = insn;
+ }
+}
+
+
+/* Routines for branch hints. */
+
+static void
+spu_emit_branch_hint (rtx before, rtx branch, rtx target,
+ int distance, sbitmap blocks)
+{
+ rtx branch_label = 0;
+ rtx hint;
+ rtx insn;
+ rtx table;
+
+ if (before == 0 || branch == 0 || target == 0)
+ return;
+
+ /* While scheduling we require hints to be no further than 600, so
+ we need to enforce that here too */
+ if (distance > 600)
+ return;
+
+ /* If we have a Basic block note, emit it after the basic block note. */
+ if (NOTE_INSN_BASIC_BLOCK_P (before))
+ before = NEXT_INSN (before);
+
+ branch_label = gen_label_rtx ();
+ LABEL_NUSES (branch_label)++;
+ LABEL_PRESERVE_P (branch_label) = 1;
+ insn = emit_label_before (branch_label, branch);
+ branch_label = gen_rtx_LABEL_REF (VOIDmode, branch_label);
+ bitmap_set_bit (blocks, BLOCK_FOR_INSN (branch)->index);
+
+ hint = emit_insn_before (gen_hbr (branch_label, target), before);
+ recog_memoized (hint);
+ INSN_LOCATION (hint) = INSN_LOCATION (branch);
+ HINTED_P (branch) = 1;
+
+ if (GET_CODE (target) == LABEL_REF)
+ HINTED_P (XEXP (target, 0)) = 1;
+ else if (tablejump_p (branch, 0, &table))
+ {
+ rtvec vec;
+ int j;
+ if (GET_CODE (PATTERN (table)) == ADDR_VEC)
+ vec = XVEC (PATTERN (table), 0);
+ else
+ vec = XVEC (PATTERN (table), 1);
+ for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
+ HINTED_P (XEXP (RTVEC_ELT (vec, j), 0)) = 1;
+ }
+
+ if (distance >= 588)
+ {
+ /* Make sure the hint isn't scheduled any earlier than this point,
+ which could make it too far for the branch offest to fit */
+ insn = emit_insn_before (gen_blockage (), hint);
+ recog_memoized (insn);
+ INSN_LOCATION (insn) = INSN_LOCATION (hint);
+ }
+ else if (distance <= 8 * 4)
+ {
+ /* To guarantee at least 8 insns between the hint and branch we
+ insert nops. */
+ int d;
+ for (d = distance; d < 8 * 4; d += 4)
+ {
+ insn =
+ emit_insn_after (gen_nopn_nv (gen_rtx_REG (SImode, 127)), hint);
+ recog_memoized (insn);
+ INSN_LOCATION (insn) = INSN_LOCATION (hint);
+ }
+
+ /* Make sure any nops inserted aren't scheduled before the hint. */
+ insn = emit_insn_after (gen_blockage (), hint);
+ recog_memoized (insn);
+ INSN_LOCATION (insn) = INSN_LOCATION (hint);
+
+ /* Make sure any nops inserted aren't scheduled after the call. */
+ if (CALL_P (branch) && distance < 8 * 4)
+ {
+ insn = emit_insn_before (gen_blockage (), branch);
+ recog_memoized (insn);
+ INSN_LOCATION (insn) = INSN_LOCATION (branch);
+ }
+ }
+}
+
+/* Returns 0 if we don't want a hint for this branch. Otherwise return
+ the rtx for the branch target. */
+static rtx
+get_branch_target (rtx branch)
+{
+ if (JUMP_P (branch))
+ {
+ rtx set, src;
+
+ /* Return statements */
+ if (GET_CODE (PATTERN (branch)) == RETURN)
+ return gen_rtx_REG (SImode, LINK_REGISTER_REGNUM);
+
+ /* ASM GOTOs. */
+ if (extract_asm_operands (PATTERN (branch)) != NULL)
+ return NULL;
+
+ set = single_set (branch);
+ src = SET_SRC (set);
+ if (GET_CODE (SET_DEST (set)) != PC)
+ abort ();
+
+ if (GET_CODE (src) == IF_THEN_ELSE)
+ {
+ rtx lab = 0;
+ rtx note = find_reg_note (branch, REG_BR_PROB, 0);
+ if (note)
+ {
+ /* If the more probable case is not a fall through, then
+ try a branch hint. */
+ int prob = XINT (note, 0);
+ if (prob > (REG_BR_PROB_BASE * 6 / 10)
+ && GET_CODE (XEXP (src, 1)) != PC)
+ lab = XEXP (src, 1);
+ else if (prob < (REG_BR_PROB_BASE * 4 / 10)
+ && GET_CODE (XEXP (src, 2)) != PC)
+ lab = XEXP (src, 2);
+ }
+ if (lab)
+ {
+ if (GET_CODE (lab) == RETURN)
+ return gen_rtx_REG (SImode, LINK_REGISTER_REGNUM);
+ return lab;
+ }
+ return 0;
+ }
+
+ return src;
+ }
+ else if (CALL_P (branch))
+ {
+ rtx call;
+ /* All of our call patterns are in a PARALLEL and the CALL is
+ the first pattern in the PARALLEL. */
+ if (GET_CODE (PATTERN (branch)) != PARALLEL)
+ abort ();
+ call = XVECEXP (PATTERN (branch), 0, 0);
+ if (GET_CODE (call) == SET)
+ call = SET_SRC (call);
+ if (GET_CODE (call) != CALL)
+ abort ();
+ return XEXP (XEXP (call, 0), 0);
+ }
+ return 0;
+}
+
+/* The special $hbr register is used to prevent the insn scheduler from
+ moving hbr insns across instructions which invalidate them. It
+ should only be used in a clobber, and this function searches for
+ insns which clobber it. */
+static bool
+insn_clobbers_hbr (rtx insn)
+{
+ if (INSN_P (insn)
+ && GET_CODE (PATTERN (insn)) == PARALLEL)
+ {
+ rtx parallel = PATTERN (insn);
+ rtx clobber;
+ int j;
+ for (j = XVECLEN (parallel, 0) - 1; j >= 0; j--)
+ {
+ clobber = XVECEXP (parallel, 0, j);
+ if (GET_CODE (clobber) == CLOBBER
+ && GET_CODE (XEXP (clobber, 0)) == REG
+ && REGNO (XEXP (clobber, 0)) == HBR_REGNUM)
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/* Search up to 32 insns starting at FIRST:
+ - at any kind of hinted branch, just return
+ - at any unconditional branch in the first 15 insns, just return
+ - at a call or indirect branch, after the first 15 insns, force it to
+ an even address and return
+ - at any unconditional branch, after the first 15 insns, force it to
+ an even address.
+ At then end of the search, insert an hbrp within 4 insns of FIRST,
+ and an hbrp within 16 instructions of FIRST.
+ */
+static void
+insert_hbrp_for_ilb_runout (rtx first)
+{
+ rtx insn, before_4 = 0, before_16 = 0;
+ int addr = 0, length, first_addr = -1;
+ int hbrp_addr0 = 128 * 4, hbrp_addr1 = 128 * 4;
+ int insert_lnop_after = 0;
+ for (insn = first; insn; insn = NEXT_INSN (insn))
+ if (INSN_P (insn))
+ {
+ if (first_addr == -1)
+ first_addr = INSN_ADDRESSES (INSN_UID (insn));
+ addr = INSN_ADDRESSES (INSN_UID (insn)) - first_addr;
+ length = get_attr_length (insn);
+
+ if (before_4 == 0 && addr + length >= 4 * 4)
+ before_4 = insn;
+ /* We test for 14 instructions because the first hbrp will add
+ up to 2 instructions. */
+ if (before_16 == 0 && addr + length >= 14 * 4)
+ before_16 = insn;
+
+ if (INSN_CODE (insn) == CODE_FOR_hbr)
+ {
+ /* Make sure an hbrp is at least 2 cycles away from a hint.
+ Insert an lnop after the hbrp when necessary. */
+ if (before_4 == 0 && addr > 0)
+ {
+ before_4 = insn;
+ insert_lnop_after |= 1;
+ }
+ else if (before_4 && addr <= 4 * 4)
+ insert_lnop_after |= 1;
+ if (before_16 == 0 && addr > 10 * 4)
+ {
+ before_16 = insn;
+ insert_lnop_after |= 2;
+ }
+ else if (before_16 && addr <= 14 * 4)
+ insert_lnop_after |= 2;
+ }
+
+ if (INSN_CODE (insn) == CODE_FOR_iprefetch)
+ {
+ if (addr < hbrp_addr0)
+ hbrp_addr0 = addr;
+ else if (addr < hbrp_addr1)
+ hbrp_addr1 = addr;
+ }
+
+ if (CALL_P (insn) || JUMP_P (insn))
+ {
+ if (HINTED_P (insn))
+ return;
+
+ /* Any branch after the first 15 insns should be on an even
+ address to avoid a special case branch. There might be
+ some nops and/or hbrps inserted, so we test after 10
+ insns. */
+ if (addr > 10 * 4)
+ SCHED_ON_EVEN_P (insn) = 1;
+ }
+
+ if (CALL_P (insn) || tablejump_p (insn, 0, 0))
+ return;
+
+
+ if (addr + length >= 32 * 4)
+ {
+ gcc_assert (before_4 && before_16);
+ if (hbrp_addr0 > 4 * 4)
+ {
+ insn =
+ emit_insn_before (gen_iprefetch (GEN_INT (1)), before_4);
+ recog_memoized (insn);
+ INSN_LOCATION (insn) = INSN_LOCATION (before_4);
+ INSN_ADDRESSES_NEW (insn,
+ INSN_ADDRESSES (INSN_UID (before_4)));
+ PUT_MODE (insn, GET_MODE (before_4));
+ PUT_MODE (before_4, TImode);
+ if (insert_lnop_after & 1)
+ {
+ insn = emit_insn_before (gen_lnop (), before_4);
+ recog_memoized (insn);
+ INSN_LOCATION (insn) = INSN_LOCATION (before_4);
+ INSN_ADDRESSES_NEW (insn,
+ INSN_ADDRESSES (INSN_UID (before_4)));
+ PUT_MODE (insn, TImode);
+ }
+ }
+ if ((hbrp_addr0 <= 4 * 4 || hbrp_addr0 > 16 * 4)
+ && hbrp_addr1 > 16 * 4)
+ {
+ insn =
+ emit_insn_before (gen_iprefetch (GEN_INT (2)), before_16);
+ recog_memoized (insn);
+ INSN_LOCATION (insn) = INSN_LOCATION (before_16);
+ INSN_ADDRESSES_NEW (insn,
+ INSN_ADDRESSES (INSN_UID (before_16)));
+ PUT_MODE (insn, GET_MODE (before_16));
+ PUT_MODE (before_16, TImode);
+ if (insert_lnop_after & 2)
+ {
+ insn = emit_insn_before (gen_lnop (), before_16);
+ recog_memoized (insn);
+ INSN_LOCATION (insn) = INSN_LOCATION (before_16);
+ INSN_ADDRESSES_NEW (insn,
+ INSN_ADDRESSES (INSN_UID
+ (before_16)));
+ PUT_MODE (insn, TImode);
+ }
+ }
+ return;
+ }
+ }
+ else if (BARRIER_P (insn))
+ return;
+
+}
+
+/* The SPU might hang when it executes 48 inline instructions after a
+ hinted branch jumps to its hinted target. The beginning of a
+ function and the return from a call might have been hinted, and
+ must be handled as well. To prevent a hang we insert 2 hbrps. The
+ first should be within 6 insns of the branch target. The second
+ should be within 22 insns of the branch target. When determining
+ if hbrps are necessary, we look for only 32 inline instructions,
+ because up to 12 nops and 4 hbrps could be inserted. Similarily,
+ when inserting new hbrps, we insert them within 4 and 16 insns of
+ the target. */
+static void
+insert_hbrp (void)
+{
+ rtx insn;
+ if (TARGET_SAFE_HINTS)
+ {
+ shorten_branches (get_insns ());
+ /* Insert hbrp at beginning of function */
+ insn = next_active_insn (get_insns ());
+ if (insn)
+ insert_hbrp_for_ilb_runout (insn);
+ /* Insert hbrp after hinted targets. */
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ if ((LABEL_P (insn) && HINTED_P (insn)) || CALL_P (insn))
+ insert_hbrp_for_ilb_runout (next_active_insn (insn));
+ }
+}
+
+static int in_spu_reorg;
+
+static void
+spu_var_tracking (void)
+{
+ if (flag_var_tracking)
+ {
+ df_analyze ();
+ timevar_push (TV_VAR_TRACKING);
+ variable_tracking_main ();
+ timevar_pop (TV_VAR_TRACKING);
+ df_finish_pass (false);
+ }
+}
+
+/* Insert branch hints. There are no branch optimizations after this
+ pass, so it's safe to set our branch hints now. */
+static void
+spu_machine_dependent_reorg (void)
+{
+ sbitmap blocks;
+ basic_block bb;
+ rtx branch, insn;
+ rtx branch_target = 0;
+ int branch_addr = 0, insn_addr, required_dist = 0;
+ int i;
+ unsigned int j;
+
+ if (!TARGET_BRANCH_HINTS || optimize == 0)
+ {
+ /* We still do it for unoptimized code because an external
+ function might have hinted a call or return. */
+ compute_bb_for_insn ();
+ insert_hbrp ();
+ pad_bb ();
+ spu_var_tracking ();
+ free_bb_for_insn ();
+ return;
+ }
+
+ blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
+ bitmap_clear (blocks);
+
+ in_spu_reorg = 1;
+ compute_bb_for_insn ();
+
+ /* (Re-)discover loops so that bb->loop_father can be used
+ in the analysis below. */
+ loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
+
+ compact_blocks ();
+
+ spu_bb_info =
+ (struct spu_bb_info *) xcalloc (n_basic_blocks_for_fn (cfun),
+ sizeof (struct spu_bb_info));
+
+ /* We need exact insn addresses and lengths. */
+ shorten_branches (get_insns ());
+
+ for (i = n_basic_blocks_for_fn (cfun) - 1; i >= 0; i--)
+ {
+ bb = BASIC_BLOCK_FOR_FN (cfun, i);
+ branch = 0;
+ if (spu_bb_info[i].prop_jump)
+ {
+ branch = spu_bb_info[i].prop_jump;
+ branch_target = get_branch_target (branch);
+ branch_addr = INSN_ADDRESSES (INSN_UID (branch));
+ required_dist = spu_hint_dist;
+ }
+ /* Search from end of a block to beginning. In this loop, find
+ jumps which need a branch and emit them only when:
+ - it's an indirect branch and we're at the insn which sets
+ the register
+ - we're at an insn that will invalidate the hint. e.g., a
+ call, another hint insn, inline asm that clobbers $hbr, and
+ some inlined operations (divmodsi4). Don't consider jumps
+ because they are only at the end of a block and are
+ considered when we are deciding whether to propagate
+ - we're getting too far away from the branch. The hbr insns
+ only have a signed 10 bit offset
+ We go back as far as possible so the branch will be considered
+ for propagation when we get to the beginning of the block. */
+ for (insn = BB_END (bb); insn; insn = PREV_INSN (insn))
+ {
+ if (INSN_P (insn))
+ {
+ insn_addr = INSN_ADDRESSES (INSN_UID (insn));
+ if (branch
+ && ((GET_CODE (branch_target) == REG
+ && set_of (branch_target, insn) != NULL_RTX)
+ || insn_clobbers_hbr (insn)
+ || branch_addr - insn_addr > 600))
+ {
+ rtx next = NEXT_INSN (insn);
+ int next_addr = INSN_ADDRESSES (INSN_UID (next));
+ if (insn != BB_END (bb)
+ && branch_addr - next_addr >= required_dist)
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "hint for %i in block %i before %i\n",
+ INSN_UID (branch), bb->index,
+ INSN_UID (next));
+ spu_emit_branch_hint (next, branch, branch_target,
+ branch_addr - next_addr, blocks);
+ }
+ branch = 0;
+ }
+
+ /* JUMP_P will only be true at the end of a block. When
+ branch is already set it means we've previously decided
+ to propagate a hint for that branch into this block. */
+ if (CALL_P (insn) || (JUMP_P (insn) && !branch))
+ {
+ branch = 0;
+ if ((branch_target = get_branch_target (insn)))
+ {
+ branch = insn;
+ branch_addr = insn_addr;
+ required_dist = spu_hint_dist;
+ }
+ }
+ }
+ if (insn == BB_HEAD (bb))
+ break;
+ }
+
+ if (branch)
+ {
+ /* If we haven't emitted a hint for this branch yet, it might
+ be profitable to emit it in one of the predecessor blocks,
+ especially for loops. */
+ rtx bbend;
+ basic_block prev = 0, prop = 0, prev2 = 0;
+ int loop_exit = 0, simple_loop = 0;
+ int next_addr = INSN_ADDRESSES (INSN_UID (NEXT_INSN (insn)));
+
+ for (j = 0; j < EDGE_COUNT (bb->preds); j++)
+ if (EDGE_PRED (bb, j)->flags & EDGE_FALLTHRU)
+ prev = EDGE_PRED (bb, j)->src;
+ else
+ prev2 = EDGE_PRED (bb, j)->src;
+
+ for (j = 0; j < EDGE_COUNT (bb->succs); j++)
+ if (EDGE_SUCC (bb, j)->flags & EDGE_LOOP_EXIT)
+ loop_exit = 1;
+ else if (EDGE_SUCC (bb, j)->dest == bb)
+ simple_loop = 1;
+
+ /* If this branch is a loop exit then propagate to previous
+ fallthru block. This catches the cases when it is a simple
+ loop or when there is an initial branch into the loop. */
+ if (prev && (loop_exit || simple_loop)
+ && bb_loop_depth (prev) <= bb_loop_depth (bb))
+ prop = prev;
+
+ /* If there is only one adjacent predecessor. Don't propagate
+ outside this loop. */
+ else if (prev && single_pred_p (bb)
+ && prev->loop_father == bb->loop_father)
+ prop = prev;
+
+ /* If this is the JOIN block of a simple IF-THEN then
+ propagate the hint to the HEADER block. */
+ else if (prev && prev2
+ && EDGE_COUNT (bb->preds) == 2
+ && EDGE_COUNT (prev->preds) == 1
+ && EDGE_PRED (prev, 0)->src == prev2
+ && prev2->loop_father == bb->loop_father
+ && GET_CODE (branch_target) != REG)
+ prop = prev;
+
+ /* Don't propagate when:
+ - this is a simple loop and the hint would be too far
+ - this is not a simple loop and there are 16 insns in
+ this block already
+ - the predecessor block ends in a branch that will be
+ hinted
+ - the predecessor block ends in an insn that invalidates
+ the hint */
+ if (prop
+ && prop->index >= 0
+ && (bbend = BB_END (prop))
+ && branch_addr - INSN_ADDRESSES (INSN_UID (bbend)) <
+ (simple_loop ? 600 : 16 * 4) && get_branch_target (bbend) == 0
+ && (JUMP_P (bbend) || !insn_clobbers_hbr (bbend)))
+ {
+ if (dump_file)
+ fprintf (dump_file, "propagate from %i to %i (loop depth %i) "
+ "for %i (loop_exit %i simple_loop %i dist %i)\n",
+ bb->index, prop->index, bb_loop_depth (bb),
+ INSN_UID (branch), loop_exit, simple_loop,
+ branch_addr - INSN_ADDRESSES (INSN_UID (bbend)));
+
+ spu_bb_info[prop->index].prop_jump = branch;
+ spu_bb_info[prop->index].bb_index = i;
+ }
+ else if (branch_addr - next_addr >= required_dist)
+ {
+ if (dump_file)
+ fprintf (dump_file, "hint for %i in block %i before %i\n",
+ INSN_UID (branch), bb->index,
+ INSN_UID (NEXT_INSN (insn)));
+ spu_emit_branch_hint (NEXT_INSN (insn), branch, branch_target,
+ branch_addr - next_addr, blocks);
+ }
+ branch = 0;
+ }
+ }
+ free (spu_bb_info);
+
+ if (!bitmap_empty_p (blocks))
+ find_many_sub_basic_blocks (blocks);
+
+ /* We have to schedule to make sure alignment is ok. */
+ FOR_EACH_BB_FN (bb, cfun) bb->flags &= ~BB_DISABLE_SCHEDULE;
+
+ /* The hints need to be scheduled, so call it again. */
+ schedule_insns ();
+ df_finish_pass (true);
+
+ insert_hbrp ();
+
+ pad_bb ();
+
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ if (NONJUMP_INSN_P (insn) && INSN_CODE (insn) == CODE_FOR_hbr)
+ {
+ /* Adjust the LABEL_REF in a hint when we have inserted a nop
+ between its branch label and the branch . We don't move the
+ label because GCC expects it at the beginning of the block. */
+ rtx unspec = SET_SRC (XVECEXP (PATTERN (insn), 0, 0));
+ rtx label_ref = XVECEXP (unspec, 0, 0);
+ rtx label = XEXP (label_ref, 0);
+ rtx branch;
+ int offset = 0;
+ for (branch = NEXT_INSN (label);
+ !JUMP_P (branch) && !CALL_P (branch);
+ branch = NEXT_INSN (branch))
+ if (NONJUMP_INSN_P (branch))
+ offset += get_attr_length (branch);
+ if (offset > 0)
+ XVECEXP (unspec, 0, 0) = plus_constant (Pmode, label_ref, offset);
+ }
+
+ spu_var_tracking ();
+
+ loop_optimizer_finalize ();
+
+ free_bb_for_insn ();
+
+ in_spu_reorg = 0;
+}
+
+
+/* Insn scheduling routines, primarily for dual issue. */
+static int
+spu_sched_issue_rate (void)
+{
+ return 2;
+}
+
+static int
+uses_ls_unit(rtx insn)
+{
+ rtx set = single_set (insn);
+ if (set != 0
+ && (GET_CODE (SET_DEST (set)) == MEM
+ || GET_CODE (SET_SRC (set)) == MEM))
+ return 1;
+ return 0;
+}
+
+static int
+get_pipe (rtx insn)
+{
+ enum attr_type t;
+ /* Handle inline asm */
+ if (INSN_CODE (insn) == -1)
+ return -1;
+ t = get_attr_type (insn);
+ switch (t)
+ {
+ case TYPE_CONVERT:
+ return -2;
+ case TYPE_MULTI0:
+ return -1;
+
+ case TYPE_FX2:
+ case TYPE_FX3:
+ case TYPE_SPR:
+ case TYPE_NOP:
+ case TYPE_FXB:
+ case TYPE_FPD:
+ case TYPE_FP6:
+ case TYPE_FP7:
+ return 0;
+
+ case TYPE_LNOP:
+ case TYPE_SHUF:
+ case TYPE_LOAD:
+ case TYPE_STORE:
+ case TYPE_BR:
+ case TYPE_MULTI1:
+ case TYPE_HBR:
+ case TYPE_IPREFETCH:
+ return 1;
+ default:
+ abort ();
+ }
+}
+
+
+/* haifa-sched.c has a static variable that keeps track of the current
+ cycle. It is passed to spu_sched_reorder, and we record it here for
+ use by spu_sched_variable_issue. It won't be accurate if the
+ scheduler updates it's clock_var between the two calls. */
+static int clock_var;
+
+/* This is used to keep track of insn alignment. Set to 0 at the
+ beginning of each block and increased by the "length" attr of each
+ insn scheduled. */
+static int spu_sched_length;
+
+/* Record when we've issued pipe0 and pipe1 insns so we can reorder the
+ ready list appropriately in spu_sched_reorder(). */
+static int pipe0_clock;
+static int pipe1_clock;
+
+static int prev_clock_var;
+
+static int prev_priority;
+
+/* The SPU needs to load the next ilb sometime during the execution of
+ the previous ilb. There is a potential conflict if every cycle has a
+ load or store. To avoid the conflict we make sure the load/store
+ unit is free for at least one cycle during the execution of insns in
+ the previous ilb. */
+static int spu_ls_first;
+static int prev_ls_clock;
+
+static void
+spu_sched_init_global (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
+ int max_ready ATTRIBUTE_UNUSED)
+{
+ spu_sched_length = 0;
+}
+
+static void
+spu_sched_init (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
+ int max_ready ATTRIBUTE_UNUSED)
+{
+ if (align_labels > 4 || align_loops > 4 || align_jumps > 4)
+ {
+ /* When any block might be at least 8-byte aligned, assume they
+ will all be at least 8-byte aligned to make sure dual issue
+ works out correctly. */
+ spu_sched_length = 0;
+ }
+ spu_ls_first = INT_MAX;
+ clock_var = -1;
+ prev_ls_clock = -1;
+ pipe0_clock = -1;
+ pipe1_clock = -1;
+ prev_clock_var = -1;
+ prev_priority = -1;
+}
+
+static int
+spu_sched_variable_issue (FILE *file ATTRIBUTE_UNUSED,
+ int verbose ATTRIBUTE_UNUSED, rtx insn, int more)
+{
+ int len;
+ int p;
+ if (GET_CODE (PATTERN (insn)) == USE
+ || GET_CODE (PATTERN (insn)) == CLOBBER
+ || (len = get_attr_length (insn)) == 0)
+ return more;
+
+ spu_sched_length += len;
+
+ /* Reset on inline asm */
+ if (INSN_CODE (insn) == -1)
+ {
+ spu_ls_first = INT_MAX;
+ pipe0_clock = -1;
+ pipe1_clock = -1;
+ return 0;
+ }
+ p = get_pipe (insn);
+ if (p == 0)
+ pipe0_clock = clock_var;
+ else
+ pipe1_clock = clock_var;
+
+ if (in_spu_reorg)
+ {
+ if (clock_var - prev_ls_clock > 1
+ || INSN_CODE (insn) == CODE_FOR_iprefetch)
+ spu_ls_first = INT_MAX;
+ if (uses_ls_unit (insn))
+ {
+ if (spu_ls_first == INT_MAX)
+ spu_ls_first = spu_sched_length;
+ prev_ls_clock = clock_var;
+ }
+
+ /* The scheduler hasn't inserted the nop, but we will later on.
+ Include those nops in spu_sched_length. */
+ if (prev_clock_var == clock_var && (spu_sched_length & 7))
+ spu_sched_length += 4;
+ prev_clock_var = clock_var;
+
+ /* more is -1 when called from spu_sched_reorder for new insns
+ that don't have INSN_PRIORITY */
+ if (more >= 0)
+ prev_priority = INSN_PRIORITY (insn);
+ }
+
+ /* Always try issuing more insns. spu_sched_reorder will decide
+ when the cycle should be advanced. */
+ return 1;
+}
+
+/* This function is called for both TARGET_SCHED_REORDER and
+ TARGET_SCHED_REORDER2. */
+static int
+spu_sched_reorder (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
+ rtx *ready, int *nreadyp, int clock)
+{
+ int i, nready = *nreadyp;
+ int pipe_0, pipe_1, pipe_hbrp, pipe_ls, schedule_i;
+ rtx insn;
+
+ clock_var = clock;
+
+ if (nready <= 0 || pipe1_clock >= clock)
+ return 0;
+
+ /* Find any rtl insns that don't generate assembly insns and schedule
+ them first. */
+ for (i = nready - 1; i >= 0; i--)
+ {
+ insn = ready[i];
+ if (INSN_CODE (insn) == -1
+ || INSN_CODE (insn) == CODE_FOR_blockage
+ || (INSN_P (insn) && get_attr_length (insn) == 0))
+ {
+ ready[i] = ready[nready - 1];
+ ready[nready - 1] = insn;
+ return 1;
+ }
+ }
+
+ pipe_0 = pipe_1 = pipe_hbrp = pipe_ls = schedule_i = -1;
+ for (i = 0; i < nready; i++)
+ if (INSN_CODE (ready[i]) != -1)
+ {
+ insn = ready[i];
+ switch (get_attr_type (insn))
+ {
+ default:
+ case TYPE_MULTI0:
+ case TYPE_CONVERT:
+ case TYPE_FX2:
+ case TYPE_FX3:
+ case TYPE_SPR:
+ case TYPE_NOP:
+ case TYPE_FXB:
+ case TYPE_FPD:
+ case TYPE_FP6:
+ case TYPE_FP7:
+ pipe_0 = i;
+ break;
+ case TYPE_LOAD:
+ case TYPE_STORE:
+ pipe_ls = i;
+ case TYPE_LNOP:
+ case TYPE_SHUF:
+ case TYPE_BR:
+ case TYPE_MULTI1:
+ case TYPE_HBR:
+ pipe_1 = i;
+ break;
+ case TYPE_IPREFETCH:
+ pipe_hbrp = i;
+ break;
+ }
+ }
+
+ /* In the first scheduling phase, schedule loads and stores together
+ to increase the chance they will get merged during postreload CSE. */
+ if (!reload_completed && pipe_ls >= 0)
+ {
+ insn = ready[pipe_ls];
+ ready[pipe_ls] = ready[nready - 1];
+ ready[nready - 1] = insn;
+ return 1;
+ }
+
+ /* If there is an hbrp ready, prefer it over other pipe 1 insns. */
+ if (pipe_hbrp >= 0)
+ pipe_1 = pipe_hbrp;
+
+ /* When we have loads/stores in every cycle of the last 15 insns and
+ we are about to schedule another load/store, emit an hbrp insn
+ instead. */
+ if (in_spu_reorg
+ && spu_sched_length - spu_ls_first >= 4 * 15
+ && !(pipe0_clock < clock && pipe_0 >= 0) && pipe_1 == pipe_ls)
+ {
+ insn = sched_emit_insn (gen_iprefetch (GEN_INT (3)));
+ recog_memoized (insn);
+ if (pipe0_clock < clock)
+ PUT_MODE (insn, TImode);
+ spu_sched_variable_issue (file, verbose, insn, -1);
+ return 0;
+ }
+
+ /* In general, we want to emit nops to increase dual issue, but dual
+ issue isn't faster when one of the insns could be scheduled later
+ without effecting the critical path. We look at INSN_PRIORITY to
+ make a good guess, but it isn't perfect so -mdual-nops=n can be
+ used to effect it. */
+ if (in_spu_reorg && spu_dual_nops < 10)
+ {
+ /* When we are at an even address and we are not issuing nops to
+ improve scheduling then we need to advance the cycle. */
+ if ((spu_sched_length & 7) == 0 && prev_clock_var == clock
+ && (spu_dual_nops == 0
+ || (pipe_1 != -1
+ && prev_priority >
+ INSN_PRIORITY (ready[pipe_1]) + spu_dual_nops)))
+ return 0;
+
+ /* When at an odd address, schedule the highest priority insn
+ without considering pipeline. */
+ if ((spu_sched_length & 7) == 4 && prev_clock_var != clock
+ && (spu_dual_nops == 0
+ || (prev_priority >
+ INSN_PRIORITY (ready[nready - 1]) + spu_dual_nops)))
+ return 1;
+ }
+
+
+ /* We haven't issued a pipe0 insn yet this cycle, if there is a
+ pipe0 insn in the ready list, schedule it. */
+ if (pipe0_clock < clock && pipe_0 >= 0)
+ schedule_i = pipe_0;
+
+ /* Either we've scheduled a pipe0 insn already or there is no pipe0
+ insn to schedule. Put a pipe1 insn at the front of the ready list. */
+ else
+ schedule_i = pipe_1;
+
+ if (schedule_i > -1)
+ {
+ insn = ready[schedule_i];
+ ready[schedule_i] = ready[nready - 1];
+ ready[nready - 1] = insn;
+ return 1;
+ }
+ return 0;
+}
+
+/* INSN is dependent on DEP_INSN. */
+static int
+spu_sched_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
+{
+ rtx set;
+
+ /* The blockage pattern is used to prevent instructions from being
+ moved across it and has no cost. */
+ if (INSN_CODE (insn) == CODE_FOR_blockage
+ || INSN_CODE (dep_insn) == CODE_FOR_blockage)
+ return 0;
+
+ if ((INSN_P (insn) && get_attr_length (insn) == 0)
+ || (INSN_P (dep_insn) && get_attr_length (dep_insn) == 0))
+ return 0;
+
+ /* Make sure hbrps are spread out. */
+ if (INSN_CODE (insn) == CODE_FOR_iprefetch
+ && INSN_CODE (dep_insn) == CODE_FOR_iprefetch)
+ return 8;
+
+ /* Make sure hints and hbrps are 2 cycles apart. */
+ if ((INSN_CODE (insn) == CODE_FOR_iprefetch
+ || INSN_CODE (insn) == CODE_FOR_hbr)
+ && (INSN_CODE (dep_insn) == CODE_FOR_iprefetch
+ || INSN_CODE (dep_insn) == CODE_FOR_hbr))
+ return 2;
+
+ /* An hbrp has no real dependency on other insns. */
+ if (INSN_CODE (insn) == CODE_FOR_iprefetch
+ || INSN_CODE (dep_insn) == CODE_FOR_iprefetch)
+ return 0;
+
+ /* Assuming that it is unlikely an argument register will be used in
+ the first cycle of the called function, we reduce the cost for
+ slightly better scheduling of dep_insn. When not hinted, the
+ mispredicted branch would hide the cost as well. */
+ if (CALL_P (insn))
+ {
+ rtx target = get_branch_target (insn);
+ if (GET_CODE (target) != REG || !set_of (target, insn))
+ return cost - 2;
+ return cost;
+ }
+
+ /* And when returning from a function, let's assume the return values
+ are completed sooner too. */
+ if (CALL_P (dep_insn))
+ return cost - 2;
+
+ /* Make sure an instruction that loads from the back chain is schedule
+ away from the return instruction so a hint is more likely to get
+ issued. */
+ if (INSN_CODE (insn) == CODE_FOR__return
+ && (set = single_set (dep_insn))
+ && GET_CODE (SET_DEST (set)) == REG
+ && REGNO (SET_DEST (set)) == LINK_REGISTER_REGNUM)
+ return 20;
+
+ /* The dfa scheduler sets cost to 0 for all anti-dependencies and the
+ scheduler makes every insn in a block anti-dependent on the final
+ jump_insn. We adjust here so higher cost insns will get scheduled
+ earlier. */
+ if (JUMP_P (insn) && REG_NOTE_KIND (link) == REG_DEP_ANTI)
+ return insn_cost (dep_insn) - 3;
+
+ return cost;
+}
+
+/* Create a CONST_DOUBLE from a string. */
+rtx
+spu_float_const (const char *string, enum machine_mode mode)
+{
+ REAL_VALUE_TYPE value;
+ value = REAL_VALUE_ATOF (string, mode);
+ return CONST_DOUBLE_FROM_REAL_VALUE (value, mode);
+}
+
+int
+spu_constant_address_p (rtx x)
+{
+ return (GET_CODE (x) == LABEL_REF || GET_CODE (x) == SYMBOL_REF
+ || GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST
+ || GET_CODE (x) == HIGH);
+}
+
+static enum spu_immediate
+which_immediate_load (HOST_WIDE_INT val)
+{
+ gcc_assert (val == trunc_int_for_mode (val, SImode));
+
+ if (val >= -0x8000 && val <= 0x7fff)
+ return SPU_IL;
+ if (val >= 0 && val <= 0x3ffff)
+ return SPU_ILA;
+ if ((val & 0xffff) == ((val >> 16) & 0xffff))
+ return SPU_ILH;
+ if ((val & 0xffff) == 0)
+ return SPU_ILHU;
+
+ return SPU_NONE;
+}
+
+/* Return true when OP can be loaded by one of the il instructions, or
+ when flow2 is not completed and OP can be loaded using ilhu and iohl. */
+int
+immediate_load_p (rtx op, enum machine_mode mode)
+{
+ if (CONSTANT_P (op))
+ {
+ enum immediate_class c = classify_immediate (op, mode);
+ return c == IC_IL1 || c == IC_IL1s
+ || (!epilogue_completed && (c == IC_IL2 || c == IC_IL2s));
+ }
+ return 0;
+}
+
+/* Return true if the first SIZE bytes of arr is a constant that can be
+ generated with cbd, chd, cwd or cdd. When non-NULL, PRUN and PSTART
+ represent the size and offset of the instruction to use. */
+static int
+cpat_info(unsigned char *arr, int size, int *prun, int *pstart)
+{
+ int cpat, run, i, start;
+ cpat = 1;
+ run = 0;
+ start = -1;
+ for (i = 0; i < size && cpat; i++)
+ if (arr[i] != i+16)
+ {
+ if (!run)
+ {
+ start = i;
+ if (arr[i] == 3)
+ run = 1;
+ else if (arr[i] == 2 && arr[i+1] == 3)
+ run = 2;
+ else if (arr[i] == 0)
+ {
+ while (arr[i+run] == run && i+run < 16)
+ run++;
+ if (run != 4 && run != 8)
+ cpat = 0;
+ }
+ else
+ cpat = 0;
+ if ((i & (run-1)) != 0)
+ cpat = 0;
+ i += run;
+ }
+ else
+ cpat = 0;
+ }
+ if (cpat && (run || size < 16))
+ {
+ if (run == 0)
+ run = 1;
+ if (prun)
+ *prun = run;
+ if (pstart)
+ *pstart = start == -1 ? 16-run : start;
+ return 1;
+ }
+ return 0;
+}
+
+/* OP is a CONSTANT_P. Determine what instructions can be used to load
+ it into a register. MODE is only valid when OP is a CONST_INT. */
+static enum immediate_class
+classify_immediate (rtx op, enum machine_mode mode)
+{
+ HOST_WIDE_INT val;
+ unsigned char arr[16];
+ int i, j, repeated, fsmbi, repeat;
+
+ gcc_assert (CONSTANT_P (op));
+
+ if (GET_MODE (op) != VOIDmode)
+ mode = GET_MODE (op);
+
+ /* A V4SI const_vector with all identical symbols is ok. */
+ if (!flag_pic
+ && mode == V4SImode
+ && GET_CODE (op) == CONST_VECTOR
+ && GET_CODE (CONST_VECTOR_ELT (op, 0)) != CONST_INT
+ && GET_CODE (CONST_VECTOR_ELT (op, 0)) != CONST_DOUBLE
+ && CONST_VECTOR_ELT (op, 0) == CONST_VECTOR_ELT (op, 1)
+ && CONST_VECTOR_ELT (op, 1) == CONST_VECTOR_ELT (op, 2)
+ && CONST_VECTOR_ELT (op, 2) == CONST_VECTOR_ELT (op, 3))
+ op = CONST_VECTOR_ELT (op, 0);
+
+ switch (GET_CODE (op))
+ {
+ case SYMBOL_REF:
+ case LABEL_REF:
+ return TARGET_LARGE_MEM ? IC_IL2s : IC_IL1s;
+
+ case CONST:
+ /* We can never know if the resulting address fits in 18 bits and can be
+ loaded with ila. For now, assume the address will not overflow if
+ the displacement is "small" (fits 'K' constraint). */
+ if (!TARGET_LARGE_MEM && GET_CODE (XEXP (op, 0)) == PLUS)
+ {
+ rtx sym = XEXP (XEXP (op, 0), 0);
+ rtx cst = XEXP (XEXP (op, 0), 1);
+
+ if (GET_CODE (sym) == SYMBOL_REF
+ && GET_CODE (cst) == CONST_INT
+ && satisfies_constraint_K (cst))
+ return IC_IL1s;
+ }
+ return IC_IL2s;
+
+ case HIGH:
+ return IC_IL1s;
+
+ case CONST_VECTOR:
+ for (i = 0; i < GET_MODE_NUNITS (mode); i++)
+ if (GET_CODE (CONST_VECTOR_ELT (op, i)) != CONST_INT
+ && GET_CODE (CONST_VECTOR_ELT (op, i)) != CONST_DOUBLE)
+ return IC_POOL;
+ /* Fall through. */
+
+ case CONST_INT:
+ case CONST_DOUBLE:
+ constant_to_array (mode, op, arr);
+
+ /* Check that each 4-byte slot is identical. */
+ repeated = 1;
+ for (i = 4; i < 16; i += 4)
+ for (j = 0; j < 4; j++)
+ if (arr[j] != arr[i + j])
+ repeated = 0;
+
+ if (repeated)
+ {
+ val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
+ val = trunc_int_for_mode (val, SImode);
+
+ if (which_immediate_load (val) != SPU_NONE)
+ return IC_IL1;
+ }
+
+ /* Any mode of 2 bytes or smaller can be loaded with an il
+ instruction. */
+ gcc_assert (GET_MODE_SIZE (mode) > 2);
+
+ fsmbi = 1;
+ repeat = 0;
+ for (i = 0; i < 16 && fsmbi; i++)
+ if (arr[i] != 0 && repeat == 0)
+ repeat = arr[i];
+ else if (arr[i] != 0 && arr[i] != repeat)
+ fsmbi = 0;
+ if (fsmbi)
+ return repeat == 0xff ? IC_FSMBI : IC_FSMBI2;
+
+ if (cpat_info (arr, GET_MODE_SIZE (mode), 0, 0))
+ return IC_CPAT;
+
+ if (repeated)
+ return IC_IL2;
+
+ return IC_POOL;
+ default:
+ break;
+ }
+ gcc_unreachable ();
+}
+
+static enum spu_immediate
+which_logical_immediate (HOST_WIDE_INT val)
+{
+ gcc_assert (val == trunc_int_for_mode (val, SImode));
+
+ if (val >= -0x200 && val <= 0x1ff)
+ return SPU_ORI;
+ if (val >= 0 && val <= 0xffff)
+ return SPU_IOHL;
+ if ((val & 0xffff) == ((val >> 16) & 0xffff))
+ {
+ val = trunc_int_for_mode (val, HImode);
+ if (val >= -0x200 && val <= 0x1ff)
+ return SPU_ORHI;
+ if ((val & 0xff) == ((val >> 8) & 0xff))
+ {
+ val = trunc_int_for_mode (val, QImode);
+ if (val >= -0x200 && val <= 0x1ff)
+ return SPU_ORBI;
+ }
+ }
+ return SPU_NONE;
+}
+
+/* Return TRUE when X, a CONST_VECTOR, only contains CONST_INTs or
+ CONST_DOUBLEs. */
+static int
+const_vector_immediate_p (rtx x)
+{
+ int i;
+ gcc_assert (GET_CODE (x) == CONST_VECTOR);
+ for (i = 0; i < GET_MODE_NUNITS (GET_MODE (x)); i++)
+ if (GET_CODE (CONST_VECTOR_ELT (x, i)) != CONST_INT
+ && GET_CODE (CONST_VECTOR_ELT (x, i)) != CONST_DOUBLE)
+ return 0;
+ return 1;
+}
+
+int
+logical_immediate_p (rtx op, enum machine_mode mode)
+{
+ HOST_WIDE_INT val;
+ unsigned char arr[16];
+ int i, j;
+
+ gcc_assert (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
+ || GET_CODE (op) == CONST_VECTOR);
+
+ if (GET_CODE (op) == CONST_VECTOR
+ && !const_vector_immediate_p (op))
+ return 0;
+
+ if (GET_MODE (op) != VOIDmode)
+ mode = GET_MODE (op);
+
+ constant_to_array (mode, op, arr);
+
+ /* Check that bytes are repeated. */
+ for (i = 4; i < 16; i += 4)
+ for (j = 0; j < 4; j++)
+ if (arr[j] != arr[i + j])
+ return 0;
+
+ val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
+ val = trunc_int_for_mode (val, SImode);
+
+ i = which_logical_immediate (val);
+ return i != SPU_NONE && i != SPU_IOHL;
+}
+
+int
+iohl_immediate_p (rtx op, enum machine_mode mode)
+{
+ HOST_WIDE_INT val;
+ unsigned char arr[16];
+ int i, j;
+
+ gcc_assert (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
+ || GET_CODE (op) == CONST_VECTOR);
+
+ if (GET_CODE (op) == CONST_VECTOR
+ && !const_vector_immediate_p (op))
+ return 0;
+
+ if (GET_MODE (op) != VOIDmode)
+ mode = GET_MODE (op);
+
+ constant_to_array (mode, op, arr);
+
+ /* Check that bytes are repeated. */
+ for (i = 4; i < 16; i += 4)
+ for (j = 0; j < 4; j++)
+ if (arr[j] != arr[i + j])
+ return 0;
+
+ val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
+ val = trunc_int_for_mode (val, SImode);
+
+ return val >= 0 && val <= 0xffff;
+}
+
+int
+arith_immediate_p (rtx op, enum machine_mode mode,
+ HOST_WIDE_INT low, HOST_WIDE_INT high)
+{
+ HOST_WIDE_INT val;
+ unsigned char arr[16];
+ int bytes, i, j;
+
+ gcc_assert (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
+ || GET_CODE (op) == CONST_VECTOR);
+
+ if (GET_CODE (op) == CONST_VECTOR
+ && !const_vector_immediate_p (op))
+ return 0;
+
+ if (GET_MODE (op) != VOIDmode)
+ mode = GET_MODE (op);
+
+ constant_to_array (mode, op, arr);
+
+ if (VECTOR_MODE_P (mode))
+ mode = GET_MODE_INNER (mode);
+
+ bytes = GET_MODE_SIZE (mode);
+ mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
+
+ /* Check that bytes are repeated. */
+ for (i = bytes; i < 16; i += bytes)
+ for (j = 0; j < bytes; j++)
+ if (arr[j] != arr[i + j])
+ return 0;
+
+ val = arr[0];
+ for (j = 1; j < bytes; j++)
+ val = (val << 8) | arr[j];
+
+ val = trunc_int_for_mode (val, mode);
+
+ return val >= low && val <= high;
+}
+
+/* TRUE when op is an immediate and an exact power of 2, and given that
+ OP is 2^scale, scale >= LOW && scale <= HIGH. When OP is a vector,
+ all entries must be the same. */
+bool
+exp2_immediate_p (rtx op, enum machine_mode mode, int low, int high)
+{
+ enum machine_mode int_mode;
+ HOST_WIDE_INT val;
+ unsigned char arr[16];
+ int bytes, i, j;
+
+ gcc_assert (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
+ || GET_CODE (op) == CONST_VECTOR);
+
+ if (GET_CODE (op) == CONST_VECTOR
+ && !const_vector_immediate_p (op))
+ return 0;
+
+ if (GET_MODE (op) != VOIDmode)
+ mode = GET_MODE (op);
+
+ constant_to_array (mode, op, arr);
+
+ if (VECTOR_MODE_P (mode))
+ mode = GET_MODE_INNER (mode);
+
+ bytes = GET_MODE_SIZE (mode);
+ int_mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
+
+ /* Check that bytes are repeated. */
+ for (i = bytes; i < 16; i += bytes)
+ for (j = 0; j < bytes; j++)
+ if (arr[j] != arr[i + j])
+ return 0;
+
+ val = arr[0];
+ for (j = 1; j < bytes; j++)
+ val = (val << 8) | arr[j];
+
+ val = trunc_int_for_mode (val, int_mode);
+
+ /* Currently, we only handle SFmode */
+ gcc_assert (mode == SFmode);
+ if (mode == SFmode)
+ {
+ int exp = (val >> 23) - 127;
+ return val > 0 && (val & 0x007fffff) == 0
+ && exp >= low && exp <= high;
+ }
+ return FALSE;
+}
+
+/* Return true if X is a SYMBOL_REF to an __ea qualified variable. */
+
+static int
+ea_symbol_ref (rtx *px, void *data ATTRIBUTE_UNUSED)
+{
+ rtx x = *px;
+ tree decl;
+
+ if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS)
+ {
+ rtx plus = XEXP (x, 0);
+ rtx op0 = XEXP (plus, 0);
+ rtx op1 = XEXP (plus, 1);
+ if (GET_CODE (op1) == CONST_INT)
+ x = op0;
+ }
+
+ return (GET_CODE (x) == SYMBOL_REF
+ && (decl = SYMBOL_REF_DECL (x)) != 0
+ && TREE_CODE (decl) == VAR_DECL
+ && TYPE_ADDR_SPACE (TREE_TYPE (decl)));
+}
+
+/* We accept:
+ - any 32-bit constant (SImode, SFmode)
+ - any constant that can be generated with fsmbi (any mode)
+ - a 64-bit constant where the high and low bits are identical
+ (DImode, DFmode)
+ - a 128-bit constant where the four 32-bit words match. */
+bool
+spu_legitimate_constant_p (enum machine_mode mode, rtx x)
+{
+ if (GET_CODE (x) == HIGH)
+ x = XEXP (x, 0);
+
+ /* Reject any __ea qualified reference. These can't appear in
+ instructions but must be forced to the constant pool. */
+ if (for_each_rtx (&x, ea_symbol_ref, 0))
+ return 0;
+
+ /* V4SI with all identical symbols is valid. */
+ if (!flag_pic
+ && mode == V4SImode
+ && (GET_CODE (CONST_VECTOR_ELT (x, 0)) == SYMBOL_REF
+ || GET_CODE (CONST_VECTOR_ELT (x, 0)) == LABEL_REF
+ || GET_CODE (CONST_VECTOR_ELT (x, 0)) == CONST))
+ return CONST_VECTOR_ELT (x, 0) == CONST_VECTOR_ELT (x, 1)
+ && CONST_VECTOR_ELT (x, 1) == CONST_VECTOR_ELT (x, 2)
+ && CONST_VECTOR_ELT (x, 2) == CONST_VECTOR_ELT (x, 3);
+
+ if (GET_CODE (x) == CONST_VECTOR
+ && !const_vector_immediate_p (x))
+ return 0;
+ return 1;
+}
+
+/* Valid address are:
+ - symbol_ref, label_ref, const
+ - reg
+ - reg + const_int, where const_int is 16 byte aligned
+ - reg + reg, alignment doesn't matter
+ The alignment matters in the reg+const case because lqd and stqd
+ ignore the 4 least significant bits of the const. We only care about
+ 16 byte modes because the expand phase will change all smaller MEM
+ references to TImode. */
+static bool
+spu_legitimate_address_p (enum machine_mode mode,
+ rtx x, bool reg_ok_strict)
+{
+ int aligned = GET_MODE_SIZE (mode) >= 16;
+ if (aligned
+ && GET_CODE (x) == AND
+ && GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) == (HOST_WIDE_INT) - 16)
+ x = XEXP (x, 0);
+ switch (GET_CODE (x))
+ {
+ case LABEL_REF:
+ return !TARGET_LARGE_MEM;
+
+ case SYMBOL_REF:
+ case CONST:
+ /* Keep __ea references until reload so that spu_expand_mov can see them
+ in MEMs. */
+ if (ea_symbol_ref (&x, 0))
+ return !reload_in_progress && !reload_completed;
+ return !TARGET_LARGE_MEM;
+
+ case CONST_INT:
+ return INTVAL (x) >= 0 && INTVAL (x) <= 0x3ffff;
+
+ case SUBREG:
+ x = XEXP (x, 0);
+ if (REG_P (x))
+ return 0;
+
+ case REG:
+ return INT_REG_OK_FOR_BASE_P (x, reg_ok_strict);
+
+ case PLUS:
+ case LO_SUM:
+ {
+ rtx op0 = XEXP (x, 0);
+ rtx op1 = XEXP (x, 1);
+ if (GET_CODE (op0) == SUBREG)
+ op0 = XEXP (op0, 0);
+ if (GET_CODE (op1) == SUBREG)
+ op1 = XEXP (op1, 0);
+ if (GET_CODE (op0) == REG
+ && INT_REG_OK_FOR_BASE_P (op0, reg_ok_strict)
+ && GET_CODE (op1) == CONST_INT
+ && ((INTVAL (op1) >= -0x2000 && INTVAL (op1) <= 0x1fff)
+ /* If virtual registers are involved, the displacement will
+ change later on anyway, so checking would be premature.
+ Reload will make sure the final displacement after
+ register elimination is OK. */
+ || op0 == arg_pointer_rtx
+ || op0 == frame_pointer_rtx
+ || op0 == virtual_stack_vars_rtx)
+ && (!aligned || (INTVAL (op1) & 15) == 0))
+ return TRUE;
+ if (GET_CODE (op0) == REG
+ && INT_REG_OK_FOR_BASE_P (op0, reg_ok_strict)
+ && GET_CODE (op1) == REG
+ && INT_REG_OK_FOR_INDEX_P (op1, reg_ok_strict))
+ return TRUE;
+ }
+ break;
+
+ default:
+ break;
+ }
+ return FALSE;
+}
+
+/* Like spu_legitimate_address_p, except with named addresses. */
+static bool
+spu_addr_space_legitimate_address_p (enum machine_mode mode, rtx x,
+ bool reg_ok_strict, addr_space_t as)
+{
+ if (as == ADDR_SPACE_EA)
+ return (REG_P (x) && (GET_MODE (x) == EAmode));
+
+ else if (as != ADDR_SPACE_GENERIC)
+ gcc_unreachable ();
+
+ return spu_legitimate_address_p (mode, x, reg_ok_strict);
+}
+
+/* When the address is reg + const_int, force the const_int into a
+ register. */
+static rtx
+spu_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
+ enum machine_mode mode ATTRIBUTE_UNUSED)
+{
+ rtx op0, op1;
+ /* Make sure both operands are registers. */
+ if (GET_CODE (x) == PLUS)
+ {
+ op0 = XEXP (x, 0);
+ op1 = XEXP (x, 1);
+ if (ALIGNED_SYMBOL_REF_P (op0))
+ {
+ op0 = force_reg (Pmode, op0);
+ mark_reg_pointer (op0, 128);
+ }
+ else if (GET_CODE (op0) != REG)
+ op0 = force_reg (Pmode, op0);
+ if (ALIGNED_SYMBOL_REF_P (op1))
+ {
+ op1 = force_reg (Pmode, op1);
+ mark_reg_pointer (op1, 128);
+ }
+ else if (GET_CODE (op1) != REG)
+ op1 = force_reg (Pmode, op1);
+ x = gen_rtx_PLUS (Pmode, op0, op1);
+ }
+ return x;
+}
+
+/* Like spu_legitimate_address, except with named address support. */
+static rtx
+spu_addr_space_legitimize_address (rtx x, rtx oldx, enum machine_mode mode,
+ addr_space_t as)
+{
+ if (as != ADDR_SPACE_GENERIC)
+ return x;
+
+ return spu_legitimize_address (x, oldx, mode);
+}
+
+/* Reload reg + const_int for out-of-range displacements. */
+rtx
+spu_legitimize_reload_address (rtx ad, enum machine_mode mode ATTRIBUTE_UNUSED,
+ int opnum, int type)
+{
+ bool removed_and = false;
+
+ if (GET_CODE (ad) == AND
+ && CONST_INT_P (XEXP (ad, 1))
+ && INTVAL (XEXP (ad, 1)) == (HOST_WIDE_INT) - 16)
+ {
+ ad = XEXP (ad, 0);
+ removed_and = true;
+ }
+
+ if (GET_CODE (ad) == PLUS
+ && REG_P (XEXP (ad, 0))
+ && CONST_INT_P (XEXP (ad, 1))
+ && !(INTVAL (XEXP (ad, 1)) >= -0x2000
+ && INTVAL (XEXP (ad, 1)) <= 0x1fff))
+ {
+ /* Unshare the sum. */
+ ad = copy_rtx (ad);
+
+ /* Reload the displacement. */
+ push_reload (XEXP (ad, 1), NULL_RTX, &XEXP (ad, 1), NULL,
+ BASE_REG_CLASS, GET_MODE (ad), VOIDmode, 0, 0,
+ opnum, (enum reload_type) type);
+
+ /* Add back AND for alignment if we stripped it. */
+ if (removed_and)
+ ad = gen_rtx_AND (GET_MODE (ad), ad, GEN_INT (-16));
+
+ return ad;
+ }
+
+ return NULL_RTX;
+}
+
+/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
+ struct attribute_spec.handler. */
+static tree
+spu_handle_fndecl_attribute (tree * node,
+ tree name,
+ tree args ATTRIBUTE_UNUSED,
+ int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (0, "%qE attribute only applies to functions",
+ name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle the "vector" attribute. */
+static tree
+spu_handle_vector_attribute (tree * node, tree name,
+ tree args ATTRIBUTE_UNUSED,
+ int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
+{
+ tree type = *node, result = NULL_TREE;
+ enum machine_mode mode;
+ int unsigned_p;
+
+ while (POINTER_TYPE_P (type)
+ || TREE_CODE (type) == FUNCTION_TYPE
+ || TREE_CODE (type) == METHOD_TYPE || TREE_CODE (type) == ARRAY_TYPE)
+ type = TREE_TYPE (type);
+
+ mode = TYPE_MODE (type);
+
+ unsigned_p = TYPE_UNSIGNED (type);
+ switch (mode)
+ {
+ case DImode:
+ result = (unsigned_p ? unsigned_V2DI_type_node : V2DI_type_node);
+ break;
+ case SImode:
+ result = (unsigned_p ? unsigned_V4SI_type_node : V4SI_type_node);
+ break;
+ case HImode:
+ result = (unsigned_p ? unsigned_V8HI_type_node : V8HI_type_node);
+ break;
+ case QImode:
+ result = (unsigned_p ? unsigned_V16QI_type_node : V16QI_type_node);
+ break;
+ case SFmode:
+ result = V4SF_type_node;
+ break;
+ case DFmode:
+ result = V2DF_type_node;
+ break;
+ default:
+ break;
+ }
+
+ /* Propagate qualifiers attached to the element type
+ onto the vector type. */
+ if (result && result != type && TYPE_QUALS (type))
+ result = build_qualified_type (result, TYPE_QUALS (type));
+
+ *no_add_attrs = true; /* No need to hang on to the attribute. */
+
+ if (!result)
+ warning (0, "%qE attribute ignored", name);
+ else
+ *node = lang_hooks.types.reconstruct_complex_type (*node, result);
+
+ return NULL_TREE;
+}
+
+/* Return nonzero if FUNC is a naked function. */
+static int
+spu_naked_function_p (tree func)
+{
+ tree a;
+
+ if (TREE_CODE (func) != FUNCTION_DECL)
+ abort ();
+
+ a = lookup_attribute ("naked", DECL_ATTRIBUTES (func));
+ return a != NULL_TREE;
+}
+
+int
+spu_initial_elimination_offset (int from, int to)
+{
+ int saved_regs_size = spu_saved_regs_size ();
+ int sp_offset = 0;
+ if (!crtl->is_leaf || crtl->outgoing_args_size
+ || get_frame_size () || saved_regs_size)
+ sp_offset = STACK_POINTER_OFFSET;
+ if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
+ return get_frame_size () + crtl->outgoing_args_size + sp_offset;
+ else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
+ return get_frame_size ();
+ else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
+ return sp_offset + crtl->outgoing_args_size
+ + get_frame_size () + saved_regs_size + STACK_POINTER_OFFSET;
+ else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
+ return get_frame_size () + saved_regs_size + sp_offset;
+ else
+ gcc_unreachable ();
+}
+
+rtx
+spu_function_value (const_tree type, const_tree func ATTRIBUTE_UNUSED)
+{
+ enum machine_mode mode = TYPE_MODE (type);
+ int byte_size = ((mode == BLKmode)
+ ? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
+
+ /* Make sure small structs are left justified in a register. */
+ if ((mode == BLKmode || (type && AGGREGATE_TYPE_P (type)))
+ && byte_size <= UNITS_PER_WORD * MAX_REGISTER_RETURN && byte_size > 0)
+ {
+ enum machine_mode smode;
+ rtvec v;
+ int i;
+ int nregs = (byte_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+ int n = byte_size / UNITS_PER_WORD;
+ v = rtvec_alloc (nregs);
+ for (i = 0; i < n; i++)
+ {
+ RTVEC_ELT (v, i) = gen_rtx_EXPR_LIST (VOIDmode,
+ gen_rtx_REG (TImode,
+ FIRST_RETURN_REGNUM
+ + i),
+ GEN_INT (UNITS_PER_WORD * i));
+ byte_size -= UNITS_PER_WORD;
+ }
+
+ if (n < nregs)
+ {
+ if (byte_size < 4)
+ byte_size = 4;
+ smode =
+ smallest_mode_for_size (byte_size * BITS_PER_UNIT, MODE_INT);
+ RTVEC_ELT (v, n) =
+ gen_rtx_EXPR_LIST (VOIDmode,
+ gen_rtx_REG (smode, FIRST_RETURN_REGNUM + n),
+ GEN_INT (UNITS_PER_WORD * n));
+ }
+ return gen_rtx_PARALLEL (mode, v);
+ }
+ return gen_rtx_REG (mode, FIRST_RETURN_REGNUM);
+}
+
+static rtx
+spu_function_arg (cumulative_args_t cum_v,
+ enum machine_mode mode,
+ const_tree type, bool named ATTRIBUTE_UNUSED)
+{
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+ int byte_size;
+
+ if (*cum >= MAX_REGISTER_ARGS)
+ return 0;
+
+ byte_size = ((mode == BLKmode)
+ ? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
+
+ /* The ABI does not allow parameters to be passed partially in
+ reg and partially in stack. */
+ if ((*cum + (byte_size + 15) / 16) > MAX_REGISTER_ARGS)
+ return 0;
+
+ /* Make sure small structs are left justified in a register. */
+ if ((mode == BLKmode || (type && AGGREGATE_TYPE_P (type)))
+ && byte_size < UNITS_PER_WORD && byte_size > 0)
+ {
+ enum machine_mode smode;
+ rtx gr_reg;
+ if (byte_size < 4)
+ byte_size = 4;
+ smode = smallest_mode_for_size (byte_size * BITS_PER_UNIT, MODE_INT);
+ gr_reg = gen_rtx_EXPR_LIST (VOIDmode,
+ gen_rtx_REG (smode, FIRST_ARG_REGNUM + *cum),
+ const0_rtx);
+ return gen_rtx_PARALLEL (mode, gen_rtvec (1, gr_reg));
+ }
+ else
+ return gen_rtx_REG (mode, FIRST_ARG_REGNUM + *cum);
+}
+
+static void
+spu_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
+ const_tree type, bool named ATTRIBUTE_UNUSED)
+{
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+
+ *cum += (type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
+ ? 1
+ : mode == BLKmode
+ ? ((int_size_in_bytes (type) + 15) / 16)
+ : mode == VOIDmode
+ ? 1
+ : HARD_REGNO_NREGS (cum, mode));
+}
+
+/* Variable sized types are passed by reference. */
+static bool
+spu_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
+ enum machine_mode mode ATTRIBUTE_UNUSED,
+ const_tree type, bool named ATTRIBUTE_UNUSED)
+{
+ return type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST;
+}
+
+
+/* Var args. */
+
+/* Create and return the va_list datatype.
+
+ On SPU, va_list is an array type equivalent to
+
+ typedef struct __va_list_tag
+ {
+ void *__args __attribute__((__aligned(16)));
+ void *__skip __attribute__((__aligned(16)));
+
+ } va_list[1];
+
+ where __args points to the arg that will be returned by the next
+ va_arg(), and __skip points to the previous stack frame such that
+ when __args == __skip we should advance __args by 32 bytes. */
+static tree
+spu_build_builtin_va_list (void)
+{
+ tree f_args, f_skip, record, type_decl;
+ bool owp;
+
+ record = (*lang_hooks.types.make_type) (RECORD_TYPE);
+
+ type_decl =
+ build_decl (BUILTINS_LOCATION,
+ TYPE_DECL, get_identifier ("__va_list_tag"), record);
+
+ f_args = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL, get_identifier ("__args"), ptr_type_node);
+ f_skip = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL, get_identifier ("__skip"), ptr_type_node);
+
+ DECL_FIELD_CONTEXT (f_args) = record;
+ DECL_ALIGN (f_args) = 128;
+ DECL_USER_ALIGN (f_args) = 1;
+
+ DECL_FIELD_CONTEXT (f_skip) = record;
+ DECL_ALIGN (f_skip) = 128;
+ DECL_USER_ALIGN (f_skip) = 1;
+
+ TYPE_STUB_DECL (record) = type_decl;
+ TYPE_NAME (record) = type_decl;
+ TYPE_FIELDS (record) = f_args;
+ DECL_CHAIN (f_args) = f_skip;
+
+ /* We know this is being padded and we want it too. It is an internal
+ type so hide the warnings from the user. */
+ owp = warn_padded;
+ warn_padded = false;
+
+ layout_type (record);
+
+ warn_padded = owp;
+
+ /* The correct type is an array type of one element. */
+ return build_array_type (record, build_index_type (size_zero_node));
+}
+
+/* Implement va_start by filling the va_list structure VALIST.
+ NEXTARG points to the first anonymous stack argument.
+
+ The following global variables are used to initialize
+ the va_list structure:
+
+ crtl->args.info;
+ the CUMULATIVE_ARGS for this function
+
+ crtl->args.arg_offset_rtx:
+ holds the offset of the first anonymous stack argument
+ (relative to the virtual arg pointer). */
+
+static void
+spu_va_start (tree valist, rtx nextarg)
+{
+ tree f_args, f_skip;
+ tree args, skip, t;
+
+ f_args = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
+ f_skip = DECL_CHAIN (f_args);
+
+ valist = build_simple_mem_ref (valist);
+ args =
+ build3 (COMPONENT_REF, TREE_TYPE (f_args), valist, f_args, NULL_TREE);
+ skip =
+ build3 (COMPONENT_REF, TREE_TYPE (f_skip), valist, f_skip, NULL_TREE);
+
+ /* Find the __args area. */
+ t = make_tree (TREE_TYPE (args), nextarg);
+ if (crtl->args.pretend_args_size > 0)
+ t = fold_build_pointer_plus_hwi (t, -STACK_POINTER_OFFSET);
+ t = build2 (MODIFY_EXPR, TREE_TYPE (args), args, t);
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+
+ /* Find the __skip area. */
+ t = make_tree (TREE_TYPE (skip), virtual_incoming_args_rtx);
+ t = fold_build_pointer_plus_hwi (t, (crtl->args.pretend_args_size
+ - STACK_POINTER_OFFSET));
+ t = build2 (MODIFY_EXPR, TREE_TYPE (skip), skip, t);
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+}
+
+/* Gimplify va_arg by updating the va_list structure
+ VALIST as required to retrieve an argument of type
+ TYPE, and returning that argument.
+
+ ret = va_arg(VALIST, TYPE);
+
+ generates code equivalent to:
+
+ paddedsize = (sizeof(TYPE) + 15) & -16;
+ if (VALIST.__args + paddedsize > VALIST.__skip
+ && VALIST.__args <= VALIST.__skip)
+ addr = VALIST.__skip + 32;
+ else
+ addr = VALIST.__args;
+ VALIST.__args = addr + paddedsize;
+ ret = *(TYPE *)addr;
+ */
+static tree
+spu_gimplify_va_arg_expr (tree valist, tree type, gimple_seq * pre_p,
+ gimple_seq * post_p ATTRIBUTE_UNUSED)
+{
+ tree f_args, f_skip;
+ tree args, skip;
+ HOST_WIDE_INT size, rsize;
+ tree addr, tmp;
+ bool pass_by_reference_p;
+
+ f_args = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
+ f_skip = DECL_CHAIN (f_args);
+
+ valist = build_simple_mem_ref (valist);
+ args =
+ build3 (COMPONENT_REF, TREE_TYPE (f_args), valist, f_args, NULL_TREE);
+ skip =
+ build3 (COMPONENT_REF, TREE_TYPE (f_skip), valist, f_skip, NULL_TREE);
+
+ addr = create_tmp_var (ptr_type_node, "va_arg");
+
+ /* if an object is dynamically sized, a pointer to it is passed
+ instead of the object itself. */
+ pass_by_reference_p = pass_by_reference (NULL, TYPE_MODE (type), type,
+ false);
+ if (pass_by_reference_p)
+ type = build_pointer_type (type);
+ size = int_size_in_bytes (type);
+ rsize = ((size + UNITS_PER_WORD - 1) / UNITS_PER_WORD) * UNITS_PER_WORD;
+
+ /* build conditional expression to calculate addr. The expression
+ will be gimplified later. */
+ tmp = fold_build_pointer_plus_hwi (unshare_expr (args), rsize);
+ tmp = build2 (TRUTH_AND_EXPR, boolean_type_node,
+ build2 (GT_EXPR, boolean_type_node, tmp, unshare_expr (skip)),
+ build2 (LE_EXPR, boolean_type_node, unshare_expr (args),
+ unshare_expr (skip)));
+
+ tmp = build3 (COND_EXPR, ptr_type_node, tmp,
+ fold_build_pointer_plus_hwi (unshare_expr (skip), 32),
+ unshare_expr (args));
+
+ gimplify_assign (addr, tmp, pre_p);
+
+ /* update VALIST.__args */
+ tmp = fold_build_pointer_plus_hwi (addr, rsize);
+ gimplify_assign (unshare_expr (args), tmp, pre_p);
+
+ addr = fold_convert (build_pointer_type_for_mode (type, ptr_mode, true),
+ addr);
+
+ if (pass_by_reference_p)
+ addr = build_va_arg_indirect_ref (addr);
+
+ return build_va_arg_indirect_ref (addr);
+}
+
+/* Save parameter registers starting with the register that corresponds
+ to the first unnamed parameters. If the first unnamed parameter is
+ in the stack then save no registers. Set pretend_args_size to the
+ amount of space needed to save the registers. */
+static void
+spu_setup_incoming_varargs (cumulative_args_t cum, enum machine_mode mode,
+ tree type, int *pretend_size, int no_rtl)
+{
+ if (!no_rtl)
+ {
+ rtx tmp;
+ int regno;
+ int offset;
+ int ncum = *get_cumulative_args (cum);
+
+ /* cum currently points to the last named argument, we want to
+ start at the next argument. */
+ spu_function_arg_advance (pack_cumulative_args (&ncum), mode, type, true);
+
+ offset = -STACK_POINTER_OFFSET;
+ for (regno = ncum; regno < MAX_REGISTER_ARGS; regno++)
+ {
+ tmp = gen_frame_mem (V4SImode,
+ plus_constant (Pmode, virtual_incoming_args_rtx,
+ offset));
+ emit_move_insn (tmp,
+ gen_rtx_REG (V4SImode, FIRST_ARG_REGNUM + regno));
+ offset += 16;
+ }
+ *pretend_size = offset + STACK_POINTER_OFFSET;
+ }
+}
+
+static void
+spu_conditional_register_usage (void)
+{
+ if (flag_pic)
+ {
+ fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
+ call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
+ }
+}
+
+/* This is called any time we inspect the alignment of a register for
+ addresses. */
+static int
+reg_aligned_for_addr (rtx x)
+{
+ int regno =
+ REGNO (x) < FIRST_PSEUDO_REGISTER ? ORIGINAL_REGNO (x) : REGNO (x);
+ return REGNO_POINTER_ALIGN (regno) >= 128;
+}
+
+/* Encode symbol attributes (local vs. global, tls model) of a SYMBOL_REF
+ into its SYMBOL_REF_FLAGS. */
+static void
+spu_encode_section_info (tree decl, rtx rtl, int first)
+{
+ default_encode_section_info (decl, rtl, first);
+
+ /* If a variable has a forced alignment to < 16 bytes, mark it with
+ SYMBOL_FLAG_ALIGN1. */
+ if (TREE_CODE (decl) == VAR_DECL
+ && DECL_USER_ALIGN (decl) && DECL_ALIGN (decl) < 128)
+ SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_ALIGN1;
+}
+
+/* Return TRUE if we are certain the mem refers to a complete object
+ which is both 16-byte aligned and padded to a 16-byte boundary. This
+ would make it safe to store with a single instruction.
+ We guarantee the alignment and padding for static objects by aligning
+ all of them to 16-bytes. (DATA_ALIGNMENT and CONSTANT_ALIGNMENT.)
+ FIXME: We currently cannot guarantee this for objects on the stack
+ because assign_parm_setup_stack calls assign_stack_local with the
+ alignment of the parameter mode and in that case the alignment never
+ gets adjusted by LOCAL_ALIGNMENT. */
+static int
+store_with_one_insn_p (rtx mem)
+{
+ enum machine_mode mode = GET_MODE (mem);
+ rtx addr = XEXP (mem, 0);
+ if (mode == BLKmode)
+ return 0;
+ if (GET_MODE_SIZE (mode) >= 16)
+ return 1;
+ /* Only static objects. */
+ if (GET_CODE (addr) == SYMBOL_REF)
+ {
+ /* We use the associated declaration to make sure the access is
+ referring to the whole object.
+ We check both MEM_EXPR and SYMBOL_REF_DECL. I'm not sure
+ if it is necessary. Will there be cases where one exists, and
+ the other does not? Will there be cases where both exist, but
+ have different types? */
+ tree decl = MEM_EXPR (mem);
+ if (decl
+ && TREE_CODE (decl) == VAR_DECL
+ && GET_MODE (mem) == TYPE_MODE (TREE_TYPE (decl)))
+ return 1;
+ decl = SYMBOL_REF_DECL (addr);
+ if (decl
+ && TREE_CODE (decl) == VAR_DECL
+ && GET_MODE (mem) == TYPE_MODE (TREE_TYPE (decl)))
+ return 1;
+ }
+ return 0;
+}
+
+/* Return 1 when the address is not valid for a simple load and store as
+ required by the '_mov*' patterns. We could make this less strict
+ for loads, but we prefer mem's to look the same so they are more
+ likely to be merged. */
+static int
+address_needs_split (rtx mem)
+{
+ if (GET_MODE_SIZE (GET_MODE (mem)) < 16
+ && (GET_MODE_SIZE (GET_MODE (mem)) < 4
+ || !(store_with_one_insn_p (mem)
+ || mem_is_padded_component_ref (mem))))
+ return 1;
+
+ return 0;
+}
+
+static GTY(()) rtx cache_fetch; /* __cache_fetch function */
+static GTY(()) rtx cache_fetch_dirty; /* __cache_fetch_dirty function */
+static alias_set_type ea_alias_set = -1; /* alias set for __ea memory */
+
+/* MEM is known to be an __ea qualified memory access. Emit a call to
+ fetch the ppu memory to local store, and return its address in local
+ store. */
+
+static void
+ea_load_store (rtx mem, bool is_store, rtx ea_addr, rtx data_addr)
+{
+ if (is_store)
+ {
+ rtx ndirty = GEN_INT (GET_MODE_SIZE (GET_MODE (mem)));
+ if (!cache_fetch_dirty)
+ cache_fetch_dirty = init_one_libfunc ("__cache_fetch_dirty");
+ emit_library_call_value (cache_fetch_dirty, data_addr, LCT_NORMAL, Pmode,
+ 2, ea_addr, EAmode, ndirty, SImode);
+ }
+ else
+ {
+ if (!cache_fetch)
+ cache_fetch = init_one_libfunc ("__cache_fetch");
+ emit_library_call_value (cache_fetch, data_addr, LCT_NORMAL, Pmode,
+ 1, ea_addr, EAmode);
+ }
+}
+
+/* Like ea_load_store, but do the cache tag comparison and, for stores,
+ dirty bit marking, inline.
+
+ The cache control data structure is an array of
+
+ struct __cache_tag_array
+ {
+ unsigned int tag_lo[4];
+ unsigned int tag_hi[4];
+ void *data_pointer[4];
+ int reserved[4];
+ vector unsigned short dirty_bits[4];
+ } */
+
+static void
+ea_load_store_inline (rtx mem, bool is_store, rtx ea_addr, rtx data_addr)
+{
+ rtx ea_addr_si;
+ HOST_WIDE_INT v;
+ rtx tag_size_sym = gen_rtx_SYMBOL_REF (Pmode, "__cache_tag_array_size");
+ rtx tag_arr_sym = gen_rtx_SYMBOL_REF (Pmode, "__cache_tag_array");
+ rtx index_mask = gen_reg_rtx (SImode);
+ rtx tag_arr = gen_reg_rtx (Pmode);
+ rtx splat_mask = gen_reg_rtx (TImode);
+ rtx splat = gen_reg_rtx (V4SImode);
+ rtx splat_hi = NULL_RTX;
+ rtx tag_index = gen_reg_rtx (Pmode);
+ rtx block_off = gen_reg_rtx (SImode);
+ rtx tag_addr = gen_reg_rtx (Pmode);
+ rtx tag = gen_reg_rtx (V4SImode);
+ rtx cache_tag = gen_reg_rtx (V4SImode);
+ rtx cache_tag_hi = NULL_RTX;
+ rtx cache_ptrs = gen_reg_rtx (TImode);
+ rtx cache_ptrs_si = gen_reg_rtx (SImode);
+ rtx tag_equal = gen_reg_rtx (V4SImode);
+ rtx tag_equal_hi = NULL_RTX;
+ rtx tag_eq_pack = gen_reg_rtx (V4SImode);
+ rtx tag_eq_pack_si = gen_reg_rtx (SImode);
+ rtx eq_index = gen_reg_rtx (SImode);
+ rtx bcomp, hit_label, hit_ref, cont_label, insn;
+
+ if (spu_ea_model != 32)
+ {
+ splat_hi = gen_reg_rtx (V4SImode);
+ cache_tag_hi = gen_reg_rtx (V4SImode);
+ tag_equal_hi = gen_reg_rtx (V4SImode);
+ }
+
+ emit_move_insn (index_mask, plus_constant (Pmode, tag_size_sym, -128));
+ emit_move_insn (tag_arr, tag_arr_sym);
+ v = 0x0001020300010203LL;
+ emit_move_insn (splat_mask, immed_double_const (v, v, TImode));
+ ea_addr_si = ea_addr;
+ if (spu_ea_model != 32)
+ ea_addr_si = convert_to_mode (SImode, ea_addr, 1);
+
+ /* tag_index = ea_addr & (tag_array_size - 128) */
+ emit_insn (gen_andsi3 (tag_index, ea_addr_si, index_mask));
+
+ /* splat ea_addr to all 4 slots. */
+ emit_insn (gen_shufb (splat, ea_addr_si, ea_addr_si, splat_mask));
+ /* Similarly for high 32 bits of ea_addr. */
+ if (spu_ea_model != 32)
+ emit_insn (gen_shufb (splat_hi, ea_addr, ea_addr, splat_mask));
+
+ /* block_off = ea_addr & 127 */
+ emit_insn (gen_andsi3 (block_off, ea_addr_si, spu_const (SImode, 127)));
+
+ /* tag_addr = tag_arr + tag_index */
+ emit_insn (gen_addsi3 (tag_addr, tag_arr, tag_index));
+
+ /* Read cache tags. */
+ emit_move_insn (cache_tag, gen_rtx_MEM (V4SImode, tag_addr));
+ if (spu_ea_model != 32)
+ emit_move_insn (cache_tag_hi, gen_rtx_MEM (V4SImode,
+ plus_constant (Pmode,
+ tag_addr, 16)));
+
+ /* tag = ea_addr & -128 */
+ emit_insn (gen_andv4si3 (tag, splat, spu_const (V4SImode, -128)));
+
+ /* Read all four cache data pointers. */
+ emit_move_insn (cache_ptrs, gen_rtx_MEM (TImode,
+ plus_constant (Pmode,
+ tag_addr, 32)));
+
+ /* Compare tags. */
+ emit_insn (gen_ceq_v4si (tag_equal, tag, cache_tag));
+ if (spu_ea_model != 32)
+ {
+ emit_insn (gen_ceq_v4si (tag_equal_hi, splat_hi, cache_tag_hi));
+ emit_insn (gen_andv4si3 (tag_equal, tag_equal, tag_equal_hi));
+ }
+
+ /* At most one of the tags compare equal, so tag_equal has one
+ 32-bit slot set to all 1's, with the other slots all zero.
+ gbb picks off low bit from each byte in the 128-bit registers,
+ so tag_eq_pack is one of 0xf000, 0x0f00, 0x00f0, 0x000f, assuming
+ we have a hit. */
+ emit_insn (gen_spu_gbb (tag_eq_pack, spu_gen_subreg (V16QImode, tag_equal)));
+ emit_insn (gen_spu_convert (tag_eq_pack_si, tag_eq_pack));
+
+ /* So counting leading zeros will set eq_index to 16, 20, 24 or 28. */
+ emit_insn (gen_clzsi2 (eq_index, tag_eq_pack_si));
+
+ /* Allowing us to rotate the corresponding cache data pointer to slot0.
+ (rotating eq_index mod 16 bytes). */
+ emit_insn (gen_rotqby_ti (cache_ptrs, cache_ptrs, eq_index));
+ emit_insn (gen_spu_convert (cache_ptrs_si, cache_ptrs));
+
+ /* Add block offset to form final data address. */
+ emit_insn (gen_addsi3 (data_addr, cache_ptrs_si, block_off));
+
+ /* Check that we did hit. */
+ hit_label = gen_label_rtx ();
+ hit_ref = gen_rtx_LABEL_REF (VOIDmode, hit_label);
+ bcomp = gen_rtx_NE (SImode, tag_eq_pack_si, const0_rtx);
+ insn = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
+ gen_rtx_IF_THEN_ELSE (VOIDmode, bcomp,
+ hit_ref, pc_rtx)));
+ /* Say that this branch is very likely to happen. */
+ v = REG_BR_PROB_BASE - REG_BR_PROB_BASE / 100 - 1;
+ add_int_reg_note (insn, REG_BR_PROB, v);
+
+ ea_load_store (mem, is_store, ea_addr, data_addr);
+ cont_label = gen_label_rtx ();
+ emit_jump_insn (gen_jump (cont_label));
+ emit_barrier ();
+
+ emit_label (hit_label);
+
+ if (is_store)
+ {
+ HOST_WIDE_INT v_hi;
+ rtx dirty_bits = gen_reg_rtx (TImode);
+ rtx dirty_off = gen_reg_rtx (SImode);
+ rtx dirty_128 = gen_reg_rtx (TImode);
+ rtx neg_block_off = gen_reg_rtx (SImode);
+
+ /* Set up mask with one dirty bit per byte of the mem we are
+ writing, starting from top bit. */
+ v_hi = v = -1;
+ v <<= (128 - GET_MODE_SIZE (GET_MODE (mem))) & 63;
+ if ((128 - GET_MODE_SIZE (GET_MODE (mem))) >= 64)
+ {
+ v_hi = v;
+ v = 0;
+ }
+ emit_move_insn (dirty_bits, immed_double_const (v, v_hi, TImode));
+
+ /* Form index into cache dirty_bits. eq_index is one of
+ 0x10, 0x14, 0x18 or 0x1c. Multiplying by 4 gives us
+ 0x40, 0x50, 0x60 or 0x70 which just happens to be the
+ offset to each of the four dirty_bits elements. */
+ emit_insn (gen_ashlsi3 (dirty_off, eq_index, spu_const (SImode, 2)));
+
+ emit_insn (gen_spu_lqx (dirty_128, tag_addr, dirty_off));
+
+ /* Rotate bit mask to proper bit. */
+ emit_insn (gen_negsi2 (neg_block_off, block_off));
+ emit_insn (gen_rotqbybi_ti (dirty_bits, dirty_bits, neg_block_off));
+ emit_insn (gen_rotqbi_ti (dirty_bits, dirty_bits, neg_block_off));
+
+ /* Or in the new dirty bits. */
+ emit_insn (gen_iorti3 (dirty_128, dirty_bits, dirty_128));
+
+ /* Store. */
+ emit_insn (gen_spu_stqx (dirty_128, tag_addr, dirty_off));
+ }
+
+ emit_label (cont_label);
+}
+
+static rtx
+expand_ea_mem (rtx mem, bool is_store)
+{
+ rtx ea_addr;
+ rtx data_addr = gen_reg_rtx (Pmode);
+ rtx new_mem;
+
+ ea_addr = force_reg (EAmode, XEXP (mem, 0));
+ if (optimize_size || optimize == 0)
+ ea_load_store (mem, is_store, ea_addr, data_addr);
+ else
+ ea_load_store_inline (mem, is_store, ea_addr, data_addr);
+
+ if (ea_alias_set == -1)
+ ea_alias_set = new_alias_set ();
+
+ /* We generate a new MEM RTX to refer to the copy of the data
+ in the cache. We do not copy memory attributes (except the
+ alignment) from the original MEM, as they may no longer apply
+ to the cache copy. */
+ new_mem = gen_rtx_MEM (GET_MODE (mem), data_addr);
+ set_mem_alias_set (new_mem, ea_alias_set);
+ set_mem_align (new_mem, MIN (MEM_ALIGN (mem), 128 * 8));
+
+ return new_mem;
+}
+
+int
+spu_expand_mov (rtx * ops, enum machine_mode mode)
+{
+ if (GET_CODE (ops[0]) == SUBREG && !valid_subreg (ops[0]))
+ {
+ /* Perform the move in the destination SUBREG's inner mode. */
+ ops[0] = SUBREG_REG (ops[0]);
+ mode = GET_MODE (ops[0]);
+ ops[1] = gen_lowpart_common (mode, ops[1]);
+ gcc_assert (ops[1]);
+ }
+
+ if (GET_CODE (ops[1]) == SUBREG && !valid_subreg (ops[1]))
+ {
+ rtx from = SUBREG_REG (ops[1]);
+ enum machine_mode imode = int_mode_for_mode (GET_MODE (from));
+
+ gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
+ && GET_MODE_CLASS (imode) == MODE_INT
+ && subreg_lowpart_p (ops[1]));
+
+ if (GET_MODE_SIZE (imode) < 4)
+ imode = SImode;
+ if (imode != GET_MODE (from))
+ from = gen_rtx_SUBREG (imode, from, 0);
+
+ if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (imode))
+ {
+ enum insn_code icode = convert_optab_handler (trunc_optab,
+ mode, imode);
+ emit_insn (GEN_FCN (icode) (ops[0], from));
+ }
+ else
+ emit_insn (gen_extend_insn (ops[0], from, mode, imode, 1));
+ return 1;
+ }
+
+ /* At least one of the operands needs to be a register. */
+ if ((reload_in_progress | reload_completed) == 0
+ && !register_operand (ops[0], mode) && !register_operand (ops[1], mode))
+ {
+ rtx temp = force_reg (mode, ops[1]);
+ emit_move_insn (ops[0], temp);
+ return 1;
+ }
+ if (reload_in_progress || reload_completed)
+ {
+ if (CONSTANT_P (ops[1]))
+ return spu_split_immediate (ops);
+ return 0;
+ }
+
+ /* Catch the SImode immediates greater than 0x7fffffff, and sign
+ extend them. */
+ if (GET_CODE (ops[1]) == CONST_INT)
+ {
+ HOST_WIDE_INT val = trunc_int_for_mode (INTVAL (ops[1]), mode);
+ if (val != INTVAL (ops[1]))
+ {
+ emit_move_insn (ops[0], GEN_INT (val));
+ return 1;
+ }
+ }
+ if (MEM_P (ops[0]))
+ {
+ if (MEM_ADDR_SPACE (ops[0]))
+ ops[0] = expand_ea_mem (ops[0], true);
+ return spu_split_store (ops);
+ }
+ if (MEM_P (ops[1]))
+ {
+ if (MEM_ADDR_SPACE (ops[1]))
+ ops[1] = expand_ea_mem (ops[1], false);
+ return spu_split_load (ops);
+ }
+
+ return 0;
+}
+
+static void
+spu_convert_move (rtx dst, rtx src)
+{
+ enum machine_mode mode = GET_MODE (dst);
+ enum machine_mode int_mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
+ rtx reg;
+ gcc_assert (GET_MODE (src) == TImode);
+ reg = int_mode != mode ? gen_reg_rtx (int_mode) : dst;
+ emit_insn (gen_rtx_SET (VOIDmode, reg,
+ gen_rtx_TRUNCATE (int_mode,
+ gen_rtx_LSHIFTRT (TImode, src,
+ GEN_INT (int_mode == DImode ? 64 : 96)))));
+ if (int_mode != mode)
+ {
+ reg = simplify_gen_subreg (mode, reg, int_mode, 0);
+ emit_move_insn (dst, reg);
+ }
+}
+
+/* Load TImode values into DST0 and DST1 (when it is non-NULL) using
+ the address from SRC and SRC+16. Return a REG or CONST_INT that
+ specifies how many bytes to rotate the loaded registers, plus any
+ extra from EXTRA_ROTQBY. The address and rotate amounts are
+ normalized to improve merging of loads and rotate computations. */
+static rtx
+spu_expand_load (rtx dst0, rtx dst1, rtx src, int extra_rotby)
+{
+ rtx addr = XEXP (src, 0);
+ rtx p0, p1, rot, addr0, addr1;
+ int rot_amt;
+
+ rot = 0;
+ rot_amt = 0;
+
+ if (MEM_ALIGN (src) >= 128)
+ /* Address is already aligned; simply perform a TImode load. */ ;
+ else if (GET_CODE (addr) == PLUS)
+ {
+ /* 8 cases:
+ aligned reg + aligned reg => lqx
+ aligned reg + unaligned reg => lqx, rotqby
+ aligned reg + aligned const => lqd
+ aligned reg + unaligned const => lqd, rotqbyi
+ unaligned reg + aligned reg => lqx, rotqby
+ unaligned reg + unaligned reg => lqx, a, rotqby (1 scratch)
+ unaligned reg + aligned const => lqd, rotqby
+ unaligned reg + unaligned const -> not allowed by legitimate address
+ */
+ p0 = XEXP (addr, 0);
+ p1 = XEXP (addr, 1);
+ if (!reg_aligned_for_addr (p0))
+ {
+ if (REG_P (p1) && !reg_aligned_for_addr (p1))
+ {
+ rot = gen_reg_rtx (SImode);
+ emit_insn (gen_addsi3 (rot, p0, p1));
+ }
+ else if (GET_CODE (p1) == CONST_INT && (INTVAL (p1) & 15))
+ {
+ if (INTVAL (p1) > 0
+ && REG_POINTER (p0)
+ && INTVAL (p1) * BITS_PER_UNIT
+ < REGNO_POINTER_ALIGN (REGNO (p0)))
+ {
+ rot = gen_reg_rtx (SImode);
+ emit_insn (gen_addsi3 (rot, p0, p1));
+ addr = p0;
+ }
+ else
+ {
+ rtx x = gen_reg_rtx (SImode);
+ emit_move_insn (x, p1);
+ if (!spu_arith_operand (p1, SImode))
+ p1 = x;
+ rot = gen_reg_rtx (SImode);
+ emit_insn (gen_addsi3 (rot, p0, p1));
+ addr = gen_rtx_PLUS (Pmode, p0, x);
+ }
+ }
+ else
+ rot = p0;
+ }
+ else
+ {
+ if (GET_CODE (p1) == CONST_INT && (INTVAL (p1) & 15))
+ {
+ rot_amt = INTVAL (p1) & 15;
+ if (INTVAL (p1) & -16)
+ {
+ p1 = GEN_INT (INTVAL (p1) & -16);
+ addr = gen_rtx_PLUS (SImode, p0, p1);
+ }
+ else
+ addr = p0;
+ }
+ else if (REG_P (p1) && !reg_aligned_for_addr (p1))
+ rot = p1;
+ }
+ }
+ else if (REG_P (addr))
+ {
+ if (!reg_aligned_for_addr (addr))
+ rot = addr;
+ }
+ else if (GET_CODE (addr) == CONST)
+ {
+ if (GET_CODE (XEXP (addr, 0)) == PLUS
+ && ALIGNED_SYMBOL_REF_P (XEXP (XEXP (addr, 0), 0))
+ && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
+ {
+ rot_amt = INTVAL (XEXP (XEXP (addr, 0), 1));
+ if (rot_amt & -16)
+ addr = gen_rtx_CONST (Pmode,
+ gen_rtx_PLUS (Pmode,
+ XEXP (XEXP (addr, 0), 0),
+ GEN_INT (rot_amt & -16)));
+ else
+ addr = XEXP (XEXP (addr, 0), 0);
+ }
+ else
+ {
+ rot = gen_reg_rtx (Pmode);
+ emit_move_insn (rot, addr);
+ }
+ }
+ else if (GET_CODE (addr) == CONST_INT)
+ {
+ rot_amt = INTVAL (addr);
+ addr = GEN_INT (rot_amt & -16);
+ }
+ else if (!ALIGNED_SYMBOL_REF_P (addr))
+ {
+ rot = gen_reg_rtx (Pmode);
+ emit_move_insn (rot, addr);
+ }
+
+ rot_amt += extra_rotby;
+
+ rot_amt &= 15;
+
+ if (rot && rot_amt)
+ {
+ rtx x = gen_reg_rtx (SImode);
+ emit_insn (gen_addsi3 (x, rot, GEN_INT (rot_amt)));
+ rot = x;
+ rot_amt = 0;
+ }
+ if (!rot && rot_amt)
+ rot = GEN_INT (rot_amt);
+
+ addr0 = copy_rtx (addr);
+ addr0 = gen_rtx_AND (SImode, copy_rtx (addr), GEN_INT (-16));
+ emit_insn (gen__movti (dst0, change_address (src, TImode, addr0)));
+
+ if (dst1)
+ {
+ addr1 = plus_constant (SImode, copy_rtx (addr), 16);
+ addr1 = gen_rtx_AND (SImode, addr1, GEN_INT (-16));
+ emit_insn (gen__movti (dst1, change_address (src, TImode, addr1)));
+ }
+
+ return rot;
+}
+
+int
+spu_split_load (rtx * ops)
+{
+ enum machine_mode mode = GET_MODE (ops[0]);
+ rtx addr, load, rot;
+ int rot_amt;
+
+ if (GET_MODE_SIZE (mode) >= 16)
+ return 0;
+
+ addr = XEXP (ops[1], 0);
+ gcc_assert (GET_CODE (addr) != AND);
+
+ if (!address_needs_split (ops[1]))
+ {
+ ops[1] = change_address (ops[1], TImode, addr);
+ load = gen_reg_rtx (TImode);
+ emit_insn (gen__movti (load, ops[1]));
+ spu_convert_move (ops[0], load);
+ return 1;
+ }
+
+ rot_amt = GET_MODE_SIZE (mode) < 4 ? GET_MODE_SIZE (mode) - 4 : 0;
+
+ load = gen_reg_rtx (TImode);
+ rot = spu_expand_load (load, 0, ops[1], rot_amt);
+
+ if (rot)
+ emit_insn (gen_rotqby_ti (load, load, rot));
+
+ spu_convert_move (ops[0], load);
+ return 1;
+}
+
+int
+spu_split_store (rtx * ops)
+{
+ enum machine_mode mode = GET_MODE (ops[0]);
+ rtx reg;
+ rtx addr, p0, p1, p1_lo, smem;
+ int aform;
+ int scalar;
+
+ if (GET_MODE_SIZE (mode) >= 16)
+ return 0;
+
+ addr = XEXP (ops[0], 0);
+ gcc_assert (GET_CODE (addr) != AND);
+
+ if (!address_needs_split (ops[0]))
+ {
+ reg = gen_reg_rtx (TImode);
+ emit_insn (gen_spu_convert (reg, ops[1]));
+ ops[0] = change_address (ops[0], TImode, addr);
+ emit_move_insn (ops[0], reg);
+ return 1;
+ }
+
+ if (GET_CODE (addr) == PLUS)
+ {
+ /* 8 cases:
+ aligned reg + aligned reg => lqx, c?x, shuf, stqx
+ aligned reg + unaligned reg => lqx, c?x, shuf, stqx
+ aligned reg + aligned const => lqd, c?d, shuf, stqx
+ aligned reg + unaligned const => lqd, c?d, shuf, stqx
+ unaligned reg + aligned reg => lqx, c?x, shuf, stqx
+ unaligned reg + unaligned reg => lqx, c?x, shuf, stqx
+ unaligned reg + aligned const => lqd, c?d, shuf, stqx
+ unaligned reg + unaligned const -> lqx, c?d, shuf, stqx
+ */
+ aform = 0;
+ p0 = XEXP (addr, 0);
+ p1 = p1_lo = XEXP (addr, 1);
+ if (REG_P (p0) && GET_CODE (p1) == CONST_INT)
+ {
+ p1_lo = GEN_INT (INTVAL (p1) & 15);
+ if (reg_aligned_for_addr (p0))
+ {
+ p1 = GEN_INT (INTVAL (p1) & -16);
+ if (p1 == const0_rtx)
+ addr = p0;
+ else
+ addr = gen_rtx_PLUS (SImode, p0, p1);
+ }
+ else
+ {
+ rtx x = gen_reg_rtx (SImode);
+ emit_move_insn (x, p1);
+ addr = gen_rtx_PLUS (SImode, p0, x);
+ }
+ }
+ }
+ else if (REG_P (addr))
+ {
+ aform = 0;
+ p0 = addr;
+ p1 = p1_lo = const0_rtx;
+ }
+ else
+ {
+ aform = 1;
+ p0 = gen_rtx_REG (SImode, STACK_POINTER_REGNUM);
+ p1 = 0; /* aform doesn't use p1 */
+ p1_lo = addr;
+ if (ALIGNED_SYMBOL_REF_P (addr))
+ p1_lo = const0_rtx;
+ else if (GET_CODE (addr) == CONST
+ && GET_CODE (XEXP (addr, 0)) == PLUS
+ && ALIGNED_SYMBOL_REF_P (XEXP (XEXP (addr, 0), 0))
+ && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
+ {
+ HOST_WIDE_INT v = INTVAL (XEXP (XEXP (addr, 0), 1));
+ if ((v & -16) != 0)
+ addr = gen_rtx_CONST (Pmode,
+ gen_rtx_PLUS (Pmode,
+ XEXP (XEXP (addr, 0), 0),
+ GEN_INT (v & -16)));
+ else
+ addr = XEXP (XEXP (addr, 0), 0);
+ p1_lo = GEN_INT (v & 15);
+ }
+ else if (GET_CODE (addr) == CONST_INT)
+ {
+ p1_lo = GEN_INT (INTVAL (addr) & 15);
+ addr = GEN_INT (INTVAL (addr) & -16);
+ }
+ else
+ {
+ p1_lo = gen_reg_rtx (SImode);
+ emit_move_insn (p1_lo, addr);
+ }
+ }
+
+ gcc_assert (aform == 0 || aform == 1);
+ reg = gen_reg_rtx (TImode);
+
+ scalar = store_with_one_insn_p (ops[0]);
+ if (!scalar)
+ {
+ /* We could copy the flags from the ops[0] MEM to mem here,
+ We don't because we want this load to be optimized away if
+ possible, and copying the flags will prevent that in certain
+ cases, e.g. consider the volatile flag. */
+
+ rtx pat = gen_reg_rtx (TImode);
+ rtx lmem = change_address (ops[0], TImode, copy_rtx (addr));
+ set_mem_alias_set (lmem, 0);
+ emit_insn (gen_movti (reg, lmem));
+
+ if (!p0 || reg_aligned_for_addr (p0))
+ p0 = stack_pointer_rtx;
+ if (!p1_lo)
+ p1_lo = const0_rtx;
+
+ emit_insn (gen_cpat (pat, p0, p1_lo, GEN_INT (GET_MODE_SIZE (mode))));
+ emit_insn (gen_shufb (reg, ops[1], reg, pat));
+ }
+ else
+ {
+ if (GET_CODE (ops[1]) == REG)
+ emit_insn (gen_spu_convert (reg, ops[1]));
+ else if (GET_CODE (ops[1]) == SUBREG)
+ emit_insn (gen_spu_convert (reg, SUBREG_REG (ops[1])));
+ else
+ abort ();
+ }
+
+ if (GET_MODE_SIZE (mode) < 4 && scalar)
+ emit_insn (gen_ashlti3
+ (reg, reg, GEN_INT (32 - GET_MODE_BITSIZE (mode))));
+
+ smem = change_address (ops[0], TImode, copy_rtx (addr));
+ /* We can't use the previous alias set because the memory has changed
+ size and can potentially overlap objects of other types. */
+ set_mem_alias_set (smem, 0);
+
+ emit_insn (gen_movti (smem, reg));
+ return 1;
+}
+
+/* Return TRUE if X is MEM which is a struct member reference
+ and the member can safely be loaded and stored with a single
+ instruction because it is padded. */
+static int
+mem_is_padded_component_ref (rtx x)
+{
+ tree t = MEM_EXPR (x);
+ tree r;
+ if (!t || TREE_CODE (t) != COMPONENT_REF)
+ return 0;
+ t = TREE_OPERAND (t, 1);
+ if (!t || TREE_CODE (t) != FIELD_DECL
+ || DECL_ALIGN (t) < 128 || AGGREGATE_TYPE_P (TREE_TYPE (t)))
+ return 0;
+ /* Only do this for RECORD_TYPEs, not UNION_TYPEs. */
+ r = DECL_FIELD_CONTEXT (t);
+ if (!r || TREE_CODE (r) != RECORD_TYPE)
+ return 0;
+ /* Make sure they are the same mode */
+ if (GET_MODE (x) != TYPE_MODE (TREE_TYPE (t)))
+ return 0;
+ /* If there are no following fields then the field alignment assures
+ the structure is padded to the alignment which means this field is
+ padded too. */
+ if (TREE_CHAIN (t) == 0)
+ return 1;
+ /* If the following field is also aligned then this field will be
+ padded. */
+ t = TREE_CHAIN (t);
+ if (TREE_CODE (t) == FIELD_DECL && DECL_ALIGN (t) >= 128)
+ return 1;
+ return 0;
+}
+
+/* Parse the -mfixed-range= option string. */
+static void
+fix_range (const char *const_str)
+{
+ int i, first, last;
+ char *str, *dash, *comma;
+
+ /* str must be of the form REG1'-'REG2{,REG1'-'REG} where REG1 and
+ REG2 are either register names or register numbers. The effect
+ of this option is to mark the registers in the range from REG1 to
+ REG2 as ``fixed'' so they won't be used by the compiler. */
+
+ i = strlen (const_str);
+ str = (char *) alloca (i + 1);
+ memcpy (str, const_str, i + 1);
+
+ while (1)
+ {
+ dash = strchr (str, '-');
+ if (!dash)
+ {
+ warning (0, "value of -mfixed-range must have form REG1-REG2");
+ return;
+ }
+ *dash = '\0';
+ comma = strchr (dash + 1, ',');
+ if (comma)
+ *comma = '\0';
+
+ first = decode_reg_name (str);
+ if (first < 0)
+ {
+ warning (0, "unknown register name: %s", str);
+ return;
+ }
+
+ last = decode_reg_name (dash + 1);
+ if (last < 0)
+ {
+ warning (0, "unknown register name: %s", dash + 1);
+ return;
+ }
+
+ *dash = '-';
+
+ if (first > last)
+ {
+ warning (0, "%s-%s is an empty range", str, dash + 1);
+ return;
+ }
+
+ for (i = first; i <= last; ++i)
+ fixed_regs[i] = call_used_regs[i] = 1;
+
+ if (!comma)
+ break;
+
+ *comma = ',';
+ str = comma + 1;
+ }
+}
+
+/* Return TRUE if x is a CONST_INT, CONST_DOUBLE or CONST_VECTOR that
+ can be generated using the fsmbi instruction. */
+int
+fsmbi_const_p (rtx x)
+{
+ if (CONSTANT_P (x))
+ {
+ /* We can always choose TImode for CONST_INT because the high bits
+ of an SImode will always be all 1s, i.e., valid for fsmbi. */
+ enum immediate_class c = classify_immediate (x, TImode);
+ return c == IC_FSMBI || (!epilogue_completed && c == IC_FSMBI2);
+ }
+ return 0;
+}
+
+/* Return TRUE if x is a CONST_INT, CONST_DOUBLE or CONST_VECTOR that
+ can be generated using the cbd, chd, cwd or cdd instruction. */
+int
+cpat_const_p (rtx x, enum machine_mode mode)
+{
+ if (CONSTANT_P (x))
+ {
+ enum immediate_class c = classify_immediate (x, mode);
+ return c == IC_CPAT;
+ }
+ return 0;
+}
+
+rtx
+gen_cpat_const (rtx * ops)
+{
+ unsigned char dst[16];
+ int i, offset, shift, isize;
+ if (GET_CODE (ops[3]) != CONST_INT
+ || GET_CODE (ops[2]) != CONST_INT
+ || (GET_CODE (ops[1]) != CONST_INT
+ && GET_CODE (ops[1]) != REG))
+ return 0;
+ if (GET_CODE (ops[1]) == REG
+ && (!REG_POINTER (ops[1])
+ || REGNO_POINTER_ALIGN (ORIGINAL_REGNO (ops[1])) < 128))
+ return 0;
+
+ for (i = 0; i < 16; i++)
+ dst[i] = i + 16;
+ isize = INTVAL (ops[3]);
+ if (isize == 1)
+ shift = 3;
+ else if (isize == 2)
+ shift = 2;
+ else
+ shift = 0;
+ offset = (INTVAL (ops[2]) +
+ (GET_CODE (ops[1]) ==
+ CONST_INT ? INTVAL (ops[1]) : 0)) & 15;
+ for (i = 0; i < isize; i++)
+ dst[offset + i] = i + shift;
+ return array_to_constant (TImode, dst);
+}
+
+/* Convert a CONST_INT, CONST_DOUBLE, or CONST_VECTOR into a 16 byte
+ array. Use MODE for CONST_INT's. When the constant's mode is smaller
+ than 16 bytes, the value is repeated across the rest of the array. */
+void
+constant_to_array (enum machine_mode mode, rtx x, unsigned char arr[16])
+{
+ HOST_WIDE_INT val;
+ int i, j, first;
+
+ memset (arr, 0, 16);
+ mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : mode;
+ if (GET_CODE (x) == CONST_INT
+ || (GET_CODE (x) == CONST_DOUBLE
+ && (mode == SFmode || mode == DFmode)))
+ {
+ gcc_assert (mode != VOIDmode && mode != BLKmode);
+
+ if (GET_CODE (x) == CONST_DOUBLE)
+ val = const_double_to_hwint (x);
+ else
+ val = INTVAL (x);
+ first = GET_MODE_SIZE (mode) - 1;
+ for (i = first; i >= 0; i--)
+ {
+ arr[i] = val & 0xff;
+ val >>= 8;
+ }
+ /* Splat the constant across the whole array. */
+ for (j = 0, i = first + 1; i < 16; i++)
+ {
+ arr[i] = arr[j];
+ j = (j == first) ? 0 : j + 1;
+ }
+ }
+ else if (GET_CODE (x) == CONST_DOUBLE)
+ {
+ val = CONST_DOUBLE_LOW (x);
+ for (i = 15; i >= 8; i--)
+ {
+ arr[i] = val & 0xff;
+ val >>= 8;
+ }
+ val = CONST_DOUBLE_HIGH (x);
+ for (i = 7; i >= 0; i--)
+ {
+ arr[i] = val & 0xff;
+ val >>= 8;
+ }
+ }
+ else if (GET_CODE (x) == CONST_VECTOR)
+ {
+ int units;
+ rtx elt;
+ mode = GET_MODE_INNER (mode);
+ units = CONST_VECTOR_NUNITS (x);
+ for (i = 0; i < units; i++)
+ {
+ elt = CONST_VECTOR_ELT (x, i);
+ if (GET_CODE (elt) == CONST_INT || GET_CODE (elt) == CONST_DOUBLE)
+ {
+ if (GET_CODE (elt) == CONST_DOUBLE)
+ val = const_double_to_hwint (elt);
+ else
+ val = INTVAL (elt);
+ first = GET_MODE_SIZE (mode) - 1;
+ if (first + i * GET_MODE_SIZE (mode) > 16)
+ abort ();
+ for (j = first; j >= 0; j--)
+ {
+ arr[j + i * GET_MODE_SIZE (mode)] = val & 0xff;
+ val >>= 8;
+ }
+ }
+ }
+ }
+ else
+ gcc_unreachable();
+}
+
+/* Convert a 16 byte array to a constant of mode MODE. When MODE is
+ smaller than 16 bytes, use the bytes that would represent that value
+ in a register, e.g., for QImode return the value of arr[3]. */
+rtx
+array_to_constant (enum machine_mode mode, const unsigned char arr[16])
+{
+ enum machine_mode inner_mode;
+ rtvec v;
+ int units, size, i, j, k;
+ HOST_WIDE_INT val;
+
+ if (GET_MODE_CLASS (mode) == MODE_INT
+ && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
+ {
+ j = GET_MODE_SIZE (mode);
+ i = j < 4 ? 4 - j : 0;
+ for (val = 0; i < j; i++)
+ val = (val << 8) | arr[i];
+ val = trunc_int_for_mode (val, mode);
+ return GEN_INT (val);
+ }
+
+ if (mode == TImode)
+ {
+ HOST_WIDE_INT high;
+ for (i = high = 0; i < 8; i++)
+ high = (high << 8) | arr[i];
+ for (i = 8, val = 0; i < 16; i++)
+ val = (val << 8) | arr[i];
+ return immed_double_const (val, high, TImode);
+ }
+ if (mode == SFmode)
+ {
+ val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
+ val = trunc_int_for_mode (val, SImode);
+ return hwint_to_const_double (SFmode, val);
+ }
+ if (mode == DFmode)
+ {
+ for (i = 0, val = 0; i < 8; i++)
+ val = (val << 8) | arr[i];
+ return hwint_to_const_double (DFmode, val);
+ }
+
+ if (!VECTOR_MODE_P (mode))
+ abort ();
+
+ units = GET_MODE_NUNITS (mode);
+ size = GET_MODE_UNIT_SIZE (mode);
+ inner_mode = GET_MODE_INNER (mode);
+ v = rtvec_alloc (units);
+
+ for (k = i = 0; i < units; ++i)
+ {
+ val = 0;
+ for (j = 0; j < size; j++, k++)
+ val = (val << 8) | arr[k];
+
+ if (GET_MODE_CLASS (inner_mode) == MODE_FLOAT)
+ RTVEC_ELT (v, i) = hwint_to_const_double (inner_mode, val);
+ else
+ RTVEC_ELT (v, i) = GEN_INT (trunc_int_for_mode (val, inner_mode));
+ }
+ if (k > 16)
+ abort ();
+
+ return gen_rtx_CONST_VECTOR (mode, v);
+}
+
+static void
+reloc_diagnostic (rtx x)
+{
+ tree decl = 0;
+ if (!flag_pic || !(TARGET_WARN_RELOC || TARGET_ERROR_RELOC))
+ return;
+
+ if (GET_CODE (x) == SYMBOL_REF)
+ decl = SYMBOL_REF_DECL (x);
+ else if (GET_CODE (x) == CONST
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)
+ decl = SYMBOL_REF_DECL (XEXP (XEXP (x, 0), 0));
+
+ /* SYMBOL_REF_DECL is not necessarily a DECL. */
+ if (decl && !DECL_P (decl))
+ decl = 0;
+
+ /* The decl could be a string constant. */
+ if (decl && DECL_P (decl))
+ {
+ location_t loc;
+ /* We use last_assemble_variable_decl to get line information. It's
+ not always going to be right and might not even be close, but will
+ be right for the more common cases. */
+ if (!last_assemble_variable_decl || in_section == ctors_section)
+ loc = DECL_SOURCE_LOCATION (decl);
+ else
+ loc = DECL_SOURCE_LOCATION (last_assemble_variable_decl);
+
+ if (TARGET_WARN_RELOC)
+ warning_at (loc, 0,
+ "creating run-time relocation for %qD", decl);
+ else
+ error_at (loc,
+ "creating run-time relocation for %qD", decl);
+ }
+ else
+ {
+ if (TARGET_WARN_RELOC)
+ warning_at (input_location, 0, "creating run-time relocation");
+ else
+ error_at (input_location, "creating run-time relocation");
+ }
+}
+
+/* Hook into assemble_integer so we can generate an error for run-time
+ relocations. The SPU ABI disallows them. */
+static bool
+spu_assemble_integer (rtx x, unsigned int size, int aligned_p)
+{
+ /* By default run-time relocations aren't supported, but we allow them
+ in case users support it in their own run-time loader. And we provide
+ a warning for those users that don't. */
+ if ((GET_CODE (x) == SYMBOL_REF)
+ || GET_CODE (x) == LABEL_REF || GET_CODE (x) == CONST)
+ reloc_diagnostic (x);
+
+ return default_assemble_integer (x, size, aligned_p);
+}
+
+static void
+spu_asm_globalize_label (FILE * file, const char *name)
+{
+ fputs ("\t.global\t", file);
+ assemble_name (file, name);
+ fputs ("\n", file);
+}
+
+static bool
+spu_rtx_costs (rtx x, int code, int outer_code ATTRIBUTE_UNUSED,
+ int opno ATTRIBUTE_UNUSED, int *total,
+ bool speed ATTRIBUTE_UNUSED)
+{
+ enum machine_mode mode = GET_MODE (x);
+ int cost = COSTS_N_INSNS (2);
+
+ /* Folding to a CONST_VECTOR will use extra space but there might
+ be only a small savings in cycles. We'd like to use a CONST_VECTOR
+ only if it allows us to fold away multiple insns. Changing the cost
+ of a CONST_VECTOR here (or in CONST_COSTS) doesn't help though
+ because this cost will only be compared against a single insn.
+ if (code == CONST_VECTOR)
+ return spu_legitimate_constant_p (mode, x) ? cost : COSTS_N_INSNS (6);
+ */
+
+ /* Use defaults for float operations. Not accurate but good enough. */
+ if (mode == DFmode)
+ {
+ *total = COSTS_N_INSNS (13);
+ return true;
+ }
+ if (mode == SFmode)
+ {
+ *total = COSTS_N_INSNS (6);
+ return true;
+ }
+ switch (code)
+ {
+ case CONST_INT:
+ if (satisfies_constraint_K (x))
+ *total = 0;
+ else if (INTVAL (x) >= -0x80000000ll && INTVAL (x) <= 0xffffffffll)
+ *total = COSTS_N_INSNS (1);
+ else
+ *total = COSTS_N_INSNS (3);
+ return true;
+
+ case CONST:
+ *total = COSTS_N_INSNS (3);
+ return true;
+
+ case LABEL_REF:
+ case SYMBOL_REF:
+ *total = COSTS_N_INSNS (0);
+ return true;
+
+ case CONST_DOUBLE:
+ *total = COSTS_N_INSNS (5);
+ return true;
+
+ case FLOAT_EXTEND:
+ case FLOAT_TRUNCATE:
+ case FLOAT:
+ case UNSIGNED_FLOAT:
+ case FIX:
+ case UNSIGNED_FIX:
+ *total = COSTS_N_INSNS (7);
+ return true;
+
+ case PLUS:
+ if (mode == TImode)
+ {
+ *total = COSTS_N_INSNS (9);
+ return true;
+ }
+ break;
+
+ case MULT:
+ cost =
+ GET_CODE (XEXP (x, 0)) ==
+ REG ? COSTS_N_INSNS (12) : COSTS_N_INSNS (7);
+ if (mode == SImode && GET_CODE (XEXP (x, 0)) == REG)
+ {
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT)
+ {
+ HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
+ cost = COSTS_N_INSNS (14);
+ if ((val & 0xffff) == 0)
+ cost = COSTS_N_INSNS (9);
+ else if (val > 0 && val < 0x10000)
+ cost = COSTS_N_INSNS (11);
+ }
+ }
+ *total = cost;
+ return true;
+ case DIV:
+ case UDIV:
+ case MOD:
+ case UMOD:
+ *total = COSTS_N_INSNS (20);
+ return true;
+ case ROTATE:
+ case ROTATERT:
+ case ASHIFT:
+ case ASHIFTRT:
+ case LSHIFTRT:
+ *total = COSTS_N_INSNS (4);
+ return true;
+ case UNSPEC:
+ if (XINT (x, 1) == UNSPEC_CONVERT)
+ *total = COSTS_N_INSNS (0);
+ else
+ *total = COSTS_N_INSNS (4);
+ return true;
+ }
+ /* Scale cost by mode size. Except when initializing (cfun->decl == 0). */
+ if (GET_MODE_CLASS (mode) == MODE_INT
+ && GET_MODE_SIZE (mode) > GET_MODE_SIZE (SImode) && cfun && cfun->decl)
+ cost = cost * (GET_MODE_SIZE (mode) / GET_MODE_SIZE (SImode))
+ * (GET_MODE_SIZE (mode) / GET_MODE_SIZE (SImode));
+ *total = cost;
+ return true;
+}
+
+static enum machine_mode
+spu_unwind_word_mode (void)
+{
+ return SImode;
+}
+
+/* Decide whether we can make a sibling call to a function. DECL is the
+ declaration of the function being targeted by the call and EXP is the
+ CALL_EXPR representing the call. */
+static bool
+spu_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
+{
+ return decl && !TARGET_LARGE_MEM;
+}
+
+/* We need to correctly update the back chain pointer and the Available
+ Stack Size (which is in the second slot of the sp register.) */
+void
+spu_allocate_stack (rtx op0, rtx op1)
+{
+ HOST_WIDE_INT v;
+ rtx chain = gen_reg_rtx (V4SImode);
+ rtx stack_bot = gen_frame_mem (V4SImode, stack_pointer_rtx);
+ rtx sp = gen_reg_rtx (V4SImode);
+ rtx splatted = gen_reg_rtx (V4SImode);
+ rtx pat = gen_reg_rtx (TImode);
+
+ /* copy the back chain so we can save it back again. */
+ emit_move_insn (chain, stack_bot);
+
+ op1 = force_reg (SImode, op1);
+
+ v = 0x1020300010203ll;
+ emit_move_insn (pat, immed_double_const (v, v, TImode));
+ emit_insn (gen_shufb (splatted, op1, op1, pat));
+
+ emit_insn (gen_spu_convert (sp, stack_pointer_rtx));
+ emit_insn (gen_subv4si3 (sp, sp, splatted));
+
+ if (flag_stack_check)
+ {
+ rtx avail = gen_reg_rtx(SImode);
+ rtx result = gen_reg_rtx(SImode);
+ emit_insn (gen_vec_extractv4si (avail, sp, GEN_INT (1)));
+ emit_insn (gen_cgt_si(result, avail, GEN_INT (-1)));
+ emit_insn (gen_spu_heq (result, GEN_INT(0) ));
+ }
+
+ emit_insn (gen_spu_convert (stack_pointer_rtx, sp));
+
+ emit_move_insn (stack_bot, chain);
+
+ emit_move_insn (op0, virtual_stack_dynamic_rtx);
+}
+
+void
+spu_restore_stack_nonlocal (rtx op0 ATTRIBUTE_UNUSED, rtx op1)
+{
+ static unsigned char arr[16] =
+ { 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 };
+ rtx temp = gen_reg_rtx (SImode);
+ rtx temp2 = gen_reg_rtx (SImode);
+ rtx temp3 = gen_reg_rtx (V4SImode);
+ rtx temp4 = gen_reg_rtx (V4SImode);
+ rtx pat = gen_reg_rtx (TImode);
+ rtx sp = gen_rtx_REG (V4SImode, STACK_POINTER_REGNUM);
+
+ /* Restore the backchain from the first word, sp from the second. */
+ emit_move_insn (temp2, adjust_address_nv (op1, SImode, 0));
+ emit_move_insn (temp, adjust_address_nv (op1, SImode, 4));
+
+ emit_move_insn (pat, array_to_constant (TImode, arr));
+
+ /* Compute Available Stack Size for sp */
+ emit_insn (gen_subsi3 (temp, temp, stack_pointer_rtx));
+ emit_insn (gen_shufb (temp3, temp, temp, pat));
+
+ /* Compute Available Stack Size for back chain */
+ emit_insn (gen_subsi3 (temp2, temp2, stack_pointer_rtx));
+ emit_insn (gen_shufb (temp4, temp2, temp2, pat));
+ emit_insn (gen_addv4si3 (temp4, sp, temp4));
+
+ emit_insn (gen_addv4si3 (sp, sp, temp3));
+ emit_move_insn (gen_frame_mem (V4SImode, stack_pointer_rtx), temp4);
+}
+
+static void
+spu_init_libfuncs (void)
+{
+ set_optab_libfunc (smul_optab, DImode, "__muldi3");
+ set_optab_libfunc (sdiv_optab, DImode, "__divdi3");
+ set_optab_libfunc (smod_optab, DImode, "__moddi3");
+ set_optab_libfunc (udiv_optab, DImode, "__udivdi3");
+ set_optab_libfunc (umod_optab, DImode, "__umoddi3");
+ set_optab_libfunc (udivmod_optab, DImode, "__udivmoddi4");
+ set_optab_libfunc (ffs_optab, DImode, "__ffsdi2");
+ set_optab_libfunc (clz_optab, DImode, "__clzdi2");
+ set_optab_libfunc (ctz_optab, DImode, "__ctzdi2");
+ set_optab_libfunc (clrsb_optab, DImode, "__clrsbdi2");
+ set_optab_libfunc (popcount_optab, DImode, "__popcountdi2");
+ set_optab_libfunc (parity_optab, DImode, "__paritydi2");
+
+ set_conv_libfunc (ufloat_optab, DFmode, SImode, "__float_unssidf");
+ set_conv_libfunc (ufloat_optab, DFmode, DImode, "__float_unsdidf");
+
+ set_optab_libfunc (addv_optab, SImode, "__addvsi3");
+ set_optab_libfunc (subv_optab, SImode, "__subvsi3");
+ set_optab_libfunc (smulv_optab, SImode, "__mulvsi3");
+ set_optab_libfunc (sdivv_optab, SImode, "__divvsi3");
+ set_optab_libfunc (negv_optab, SImode, "__negvsi2");
+ set_optab_libfunc (absv_optab, SImode, "__absvsi2");
+ set_optab_libfunc (addv_optab, DImode, "__addvdi3");
+ set_optab_libfunc (subv_optab, DImode, "__subvdi3");
+ set_optab_libfunc (smulv_optab, DImode, "__mulvdi3");
+ set_optab_libfunc (sdivv_optab, DImode, "__divvdi3");
+ set_optab_libfunc (negv_optab, DImode, "__negvdi2");
+ set_optab_libfunc (absv_optab, DImode, "__absvdi2");
+
+ set_optab_libfunc (smul_optab, TImode, "__multi3");
+ set_optab_libfunc (sdiv_optab, TImode, "__divti3");
+ set_optab_libfunc (smod_optab, TImode, "__modti3");
+ set_optab_libfunc (udiv_optab, TImode, "__udivti3");
+ set_optab_libfunc (umod_optab, TImode, "__umodti3");
+ set_optab_libfunc (udivmod_optab, TImode, "__udivmodti4");
+}
+
+/* Make a subreg, stripping any existing subreg. We could possibly just
+ call simplify_subreg, but in this case we know what we want. */
+rtx
+spu_gen_subreg (enum machine_mode mode, rtx x)
+{
+ if (GET_CODE (x) == SUBREG)
+ x = SUBREG_REG (x);
+ if (GET_MODE (x) == mode)
+ return x;
+ return gen_rtx_SUBREG (mode, x, 0);
+}
+
+static bool
+spu_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
+{
+ return (TYPE_MODE (type) == BLKmode
+ && ((type) == 0
+ || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
+ || int_size_in_bytes (type) >
+ (MAX_REGISTER_RETURN * UNITS_PER_WORD)));
+}
+
+/* Create the built-in types and functions */
+
+enum spu_function_code
+{
+#define DEF_BUILTIN(fcode, icode, name, type, params) fcode,
+#include "spu-builtins.def"
+#undef DEF_BUILTIN
+ NUM_SPU_BUILTINS
+};
+
+extern GTY(()) struct spu_builtin_description spu_builtins[NUM_SPU_BUILTINS];
+
+struct spu_builtin_description spu_builtins[] = {
+#define DEF_BUILTIN(fcode, icode, name, type, params) \
+ {fcode, icode, name, type, params},
+#include "spu-builtins.def"
+#undef DEF_BUILTIN
+};
+
+static GTY(()) tree spu_builtin_decls[NUM_SPU_BUILTINS];
+
+/* Returns the spu builtin decl for CODE. */
+
+static tree
+spu_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
+{
+ if (code >= NUM_SPU_BUILTINS)
+ return error_mark_node;
+
+ return spu_builtin_decls[code];
+}
+
+
+static void
+spu_init_builtins (void)
+{
+ struct spu_builtin_description *d;
+ unsigned int i;
+
+ V16QI_type_node = build_vector_type (intQI_type_node, 16);
+ V8HI_type_node = build_vector_type (intHI_type_node, 8);
+ V4SI_type_node = build_vector_type (intSI_type_node, 4);
+ V2DI_type_node = build_vector_type (intDI_type_node, 2);
+ V4SF_type_node = build_vector_type (float_type_node, 4);
+ V2DF_type_node = build_vector_type (double_type_node, 2);
+
+ unsigned_V16QI_type_node = build_vector_type (unsigned_intQI_type_node, 16);
+ unsigned_V8HI_type_node = build_vector_type (unsigned_intHI_type_node, 8);
+ unsigned_V4SI_type_node = build_vector_type (unsigned_intSI_type_node, 4);
+ unsigned_V2DI_type_node = build_vector_type (unsigned_intDI_type_node, 2);
+
+ spu_builtin_types[SPU_BTI_QUADWORD] = V16QI_type_node;
+
+ spu_builtin_types[SPU_BTI_7] = global_trees[TI_INTSI_TYPE];
+ spu_builtin_types[SPU_BTI_S7] = global_trees[TI_INTSI_TYPE];
+ spu_builtin_types[SPU_BTI_U7] = global_trees[TI_INTSI_TYPE];
+ spu_builtin_types[SPU_BTI_S10] = global_trees[TI_INTSI_TYPE];
+ spu_builtin_types[SPU_BTI_S10_4] = global_trees[TI_INTSI_TYPE];
+ spu_builtin_types[SPU_BTI_U14] = global_trees[TI_INTSI_TYPE];
+ spu_builtin_types[SPU_BTI_16] = global_trees[TI_INTSI_TYPE];
+ spu_builtin_types[SPU_BTI_S16] = global_trees[TI_INTSI_TYPE];
+ spu_builtin_types[SPU_BTI_S16_2] = global_trees[TI_INTSI_TYPE];
+ spu_builtin_types[SPU_BTI_U16] = global_trees[TI_INTSI_TYPE];
+ spu_builtin_types[SPU_BTI_U16_2] = global_trees[TI_INTSI_TYPE];
+ spu_builtin_types[SPU_BTI_U18] = global_trees[TI_INTSI_TYPE];
+
+ spu_builtin_types[SPU_BTI_INTQI] = global_trees[TI_INTQI_TYPE];
+ spu_builtin_types[SPU_BTI_INTHI] = global_trees[TI_INTHI_TYPE];
+ spu_builtin_types[SPU_BTI_INTSI] = global_trees[TI_INTSI_TYPE];
+ spu_builtin_types[SPU_BTI_INTDI] = global_trees[TI_INTDI_TYPE];
+ spu_builtin_types[SPU_BTI_UINTQI] = global_trees[TI_UINTQI_TYPE];
+ spu_builtin_types[SPU_BTI_UINTHI] = global_trees[TI_UINTHI_TYPE];
+ spu_builtin_types[SPU_BTI_UINTSI] = global_trees[TI_UINTSI_TYPE];
+ spu_builtin_types[SPU_BTI_UINTDI] = global_trees[TI_UINTDI_TYPE];
+
+ spu_builtin_types[SPU_BTI_FLOAT] = global_trees[TI_FLOAT_TYPE];
+ spu_builtin_types[SPU_BTI_DOUBLE] = global_trees[TI_DOUBLE_TYPE];
+
+ spu_builtin_types[SPU_BTI_VOID] = global_trees[TI_VOID_TYPE];
+
+ spu_builtin_types[SPU_BTI_PTR] =
+ build_pointer_type (build_qualified_type
+ (void_type_node,
+ TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE));
+
+ /* For each builtin we build a new prototype. The tree code will make
+ sure nodes are shared. */
+ for (i = 0, d = spu_builtins; i < NUM_SPU_BUILTINS; i++, d++)
+ {
+ tree p;
+ char name[64]; /* build_function will make a copy. */
+ int parm;
+
+ if (d->name == 0)
+ continue;
+
+ /* Find last parm. */
+ for (parm = 1; d->parm[parm] != SPU_BTI_END_OF_PARAMS; parm++)
+ ;
+
+ p = void_list_node;
+ while (parm > 1)
+ p = tree_cons (NULL_TREE, spu_builtin_types[d->parm[--parm]], p);
+
+ p = build_function_type (spu_builtin_types[d->parm[0]], p);
+
+ sprintf (name, "__builtin_%s", d->name);
+ spu_builtin_decls[i] =
+ add_builtin_function (name, p, i, BUILT_IN_MD, NULL, NULL_TREE);
+ if (d->fcode == SPU_MASK_FOR_LOAD)
+ TREE_READONLY (spu_builtin_decls[i]) = 1;
+
+ /* These builtins don't throw. */
+ TREE_NOTHROW (spu_builtin_decls[i]) = 1;
+ }
+}
+
+void
+spu_restore_stack_block (rtx op0 ATTRIBUTE_UNUSED, rtx op1)
+{
+ static unsigned char arr[16] =
+ { 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 };
+
+ rtx temp = gen_reg_rtx (Pmode);
+ rtx temp2 = gen_reg_rtx (V4SImode);
+ rtx temp3 = gen_reg_rtx (V4SImode);
+ rtx pat = gen_reg_rtx (TImode);
+ rtx sp = gen_rtx_REG (V4SImode, STACK_POINTER_REGNUM);
+
+ emit_move_insn (pat, array_to_constant (TImode, arr));
+
+ /* Restore the sp. */
+ emit_move_insn (temp, op1);
+ emit_move_insn (temp2, gen_frame_mem (V4SImode, stack_pointer_rtx));
+
+ /* Compute available stack size for sp. */
+ emit_insn (gen_subsi3 (temp, temp, stack_pointer_rtx));
+ emit_insn (gen_shufb (temp3, temp, temp, pat));
+
+ emit_insn (gen_addv4si3 (sp, sp, temp3));
+ emit_move_insn (gen_frame_mem (V4SImode, stack_pointer_rtx), temp2);
+}
+
+int
+spu_safe_dma (HOST_WIDE_INT channel)
+{
+ return TARGET_SAFE_DMA && channel >= 21 && channel <= 27;
+}
+
+void
+spu_builtin_splats (rtx ops[])
+{
+ enum machine_mode mode = GET_MODE (ops[0]);
+ if (GET_CODE (ops[1]) == CONST_INT || GET_CODE (ops[1]) == CONST_DOUBLE)
+ {
+ unsigned char arr[16];
+ constant_to_array (GET_MODE_INNER (mode), ops[1], arr);
+ emit_move_insn (ops[0], array_to_constant (mode, arr));
+ }
+ else
+ {
+ rtx reg = gen_reg_rtx (TImode);
+ rtx shuf;
+ if (GET_CODE (ops[1]) != REG
+ && GET_CODE (ops[1]) != SUBREG)
+ ops[1] = force_reg (GET_MODE_INNER (mode), ops[1]);
+ switch (mode)
+ {
+ case V2DImode:
+ case V2DFmode:
+ shuf =
+ immed_double_const (0x0001020304050607ll, 0x1011121314151617ll,
+ TImode);
+ break;
+ case V4SImode:
+ case V4SFmode:
+ shuf =
+ immed_double_const (0x0001020300010203ll, 0x0001020300010203ll,
+ TImode);
+ break;
+ case V8HImode:
+ shuf =
+ immed_double_const (0x0203020302030203ll, 0x0203020302030203ll,
+ TImode);
+ break;
+ case V16QImode:
+ shuf =
+ immed_double_const (0x0303030303030303ll, 0x0303030303030303ll,
+ TImode);
+ break;
+ default:
+ abort ();
+ }
+ emit_move_insn (reg, shuf);
+ emit_insn (gen_shufb (ops[0], ops[1], ops[1], reg));
+ }
+}
+
+void
+spu_builtin_extract (rtx ops[])
+{
+ enum machine_mode mode;
+ rtx rot, from, tmp;
+
+ mode = GET_MODE (ops[1]);
+
+ if (GET_CODE (ops[2]) == CONST_INT)
+ {
+ switch (mode)
+ {
+ case V16QImode:
+ emit_insn (gen_vec_extractv16qi (ops[0], ops[1], ops[2]));
+ break;
+ case V8HImode:
+ emit_insn (gen_vec_extractv8hi (ops[0], ops[1], ops[2]));
+ break;
+ case V4SFmode:
+ emit_insn (gen_vec_extractv4sf (ops[0], ops[1], ops[2]));
+ break;
+ case V4SImode:
+ emit_insn (gen_vec_extractv4si (ops[0], ops[1], ops[2]));
+ break;
+ case V2DImode:
+ emit_insn (gen_vec_extractv2di (ops[0], ops[1], ops[2]));
+ break;
+ case V2DFmode:
+ emit_insn (gen_vec_extractv2df (ops[0], ops[1], ops[2]));
+ break;
+ default:
+ abort ();
+ }
+ return;
+ }
+
+ from = spu_gen_subreg (TImode, ops[1]);
+ rot = gen_reg_rtx (TImode);
+ tmp = gen_reg_rtx (SImode);
+
+ switch (mode)
+ {
+ case V16QImode:
+ emit_insn (gen_addsi3 (tmp, ops[2], GEN_INT (-3)));
+ break;
+ case V8HImode:
+ emit_insn (gen_addsi3 (tmp, ops[2], ops[2]));
+ emit_insn (gen_addsi3 (tmp, tmp, GEN_INT (-2)));
+ break;
+ case V4SFmode:
+ case V4SImode:
+ emit_insn (gen_ashlsi3 (tmp, ops[2], GEN_INT (2)));
+ break;
+ case V2DImode:
+ case V2DFmode:
+ emit_insn (gen_ashlsi3 (tmp, ops[2], GEN_INT (3)));
+ break;
+ default:
+ abort ();
+ }
+ emit_insn (gen_rotqby_ti (rot, from, tmp));
+
+ emit_insn (gen_spu_convert (ops[0], rot));
+}
+
+void
+spu_builtin_insert (rtx ops[])
+{
+ enum machine_mode mode = GET_MODE (ops[0]);
+ enum machine_mode imode = GET_MODE_INNER (mode);
+ rtx mask = gen_reg_rtx (TImode);
+ rtx offset;
+
+ if (GET_CODE (ops[3]) == CONST_INT)
+ offset = GEN_INT (INTVAL (ops[3]) * GET_MODE_SIZE (imode));
+ else
+ {
+ offset = gen_reg_rtx (SImode);
+ emit_insn (gen_mulsi3
+ (offset, ops[3], GEN_INT (GET_MODE_SIZE (imode))));
+ }
+ emit_insn (gen_cpat
+ (mask, stack_pointer_rtx, offset,
+ GEN_INT (GET_MODE_SIZE (imode))));
+ emit_insn (gen_shufb (ops[0], ops[1], ops[2], mask));
+}
+
+void
+spu_builtin_promote (rtx ops[])
+{
+ enum machine_mode mode, imode;
+ rtx rot, from, offset;
+ HOST_WIDE_INT pos;
+
+ mode = GET_MODE (ops[0]);
+ imode = GET_MODE_INNER (mode);
+
+ from = gen_reg_rtx (TImode);
+ rot = spu_gen_subreg (TImode, ops[0]);
+
+ emit_insn (gen_spu_convert (from, ops[1]));
+
+ if (GET_CODE (ops[2]) == CONST_INT)
+ {
+ pos = -GET_MODE_SIZE (imode) * INTVAL (ops[2]);
+ if (GET_MODE_SIZE (imode) < 4)
+ pos += 4 - GET_MODE_SIZE (imode);
+ offset = GEN_INT (pos & 15);
+ }
+ else
+ {
+ offset = gen_reg_rtx (SImode);
+ switch (mode)
+ {
+ case V16QImode:
+ emit_insn (gen_subsi3 (offset, GEN_INT (3), ops[2]));
+ break;
+ case V8HImode:
+ emit_insn (gen_subsi3 (offset, GEN_INT (1), ops[2]));
+ emit_insn (gen_addsi3 (offset, offset, offset));
+ break;
+ case V4SFmode:
+ case V4SImode:
+ emit_insn (gen_subsi3 (offset, GEN_INT (0), ops[2]));
+ emit_insn (gen_ashlsi3 (offset, offset, GEN_INT (2)));
+ break;
+ case V2DImode:
+ case V2DFmode:
+ emit_insn (gen_ashlsi3 (offset, ops[2], GEN_INT (3)));
+ break;
+ default:
+ abort ();
+ }
+ }
+ emit_insn (gen_rotqby_ti (rot, from, offset));
+}
+
+static void
+spu_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt)
+{
+ rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
+ rtx shuf = gen_reg_rtx (V4SImode);
+ rtx insn = gen_reg_rtx (V4SImode);
+ rtx shufc;
+ rtx insnc;
+ rtx mem;
+
+ fnaddr = force_reg (SImode, fnaddr);
+ cxt = force_reg (SImode, cxt);
+
+ if (TARGET_LARGE_MEM)
+ {
+ rtx rotl = gen_reg_rtx (V4SImode);
+ rtx mask = gen_reg_rtx (V4SImode);
+ rtx bi = gen_reg_rtx (SImode);
+ static unsigned char const shufa[16] = {
+ 2, 3, 0, 1, 18, 19, 16, 17,
+ 0, 1, 2, 3, 16, 17, 18, 19
+ };
+ static unsigned char const insna[16] = {
+ 0x41, 0, 0, 79,
+ 0x41, 0, 0, STATIC_CHAIN_REGNUM,
+ 0x60, 0x80, 0, 79,
+ 0x60, 0x80, 0, STATIC_CHAIN_REGNUM
+ };
+
+ shufc = force_reg (TImode, array_to_constant (TImode, shufa));
+ insnc = force_reg (V4SImode, array_to_constant (V4SImode, insna));
+
+ emit_insn (gen_shufb (shuf, fnaddr, cxt, shufc));
+ emit_insn (gen_vrotlv4si3 (rotl, shuf, spu_const (V4SImode, 7)));
+ emit_insn (gen_movv4si (mask, spu_const (V4SImode, 0xffff << 7)));
+ emit_insn (gen_selb (insn, insnc, rotl, mask));
+
+ mem = adjust_address (m_tramp, V4SImode, 0);
+ emit_move_insn (mem, insn);
+
+ emit_move_insn (bi, GEN_INT (0x35000000 + (79 << 7)));
+ mem = adjust_address (m_tramp, Pmode, 16);
+ emit_move_insn (mem, bi);
+ }
+ else
+ {
+ rtx scxt = gen_reg_rtx (SImode);
+ rtx sfnaddr = gen_reg_rtx (SImode);
+ static unsigned char const insna[16] = {
+ 0x42, 0, 0, STATIC_CHAIN_REGNUM,
+ 0x30, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0
+ };
+
+ shufc = gen_reg_rtx (TImode);
+ insnc = force_reg (V4SImode, array_to_constant (V4SImode, insna));
+
+ /* By or'ing all of cxt with the ila opcode we are assuming cxt
+ fits 18 bits and the last 4 are zeros. This will be true if
+ the stack pointer is initialized to 0x3fff0 at program start,
+ otherwise the ila instruction will be garbage. */
+
+ emit_insn (gen_ashlsi3 (scxt, cxt, GEN_INT (7)));
+ emit_insn (gen_ashlsi3 (sfnaddr, fnaddr, GEN_INT (5)));
+ emit_insn (gen_cpat
+ (shufc, stack_pointer_rtx, GEN_INT (4), GEN_INT (4)));
+ emit_insn (gen_shufb (shuf, sfnaddr, scxt, shufc));
+ emit_insn (gen_iorv4si3 (insn, insnc, shuf));
+
+ mem = adjust_address (m_tramp, V4SImode, 0);
+ emit_move_insn (mem, insn);
+ }
+ emit_insn (gen_sync ());
+}
+
+static bool
+spu_warn_func_return (tree decl)
+{
+ /* Naked functions are implemented entirely in assembly, including the
+ return sequence, so suppress warnings about this. */
+ return !spu_naked_function_p (decl);
+}
+
+void
+spu_expand_sign_extend (rtx ops[])
+{
+ unsigned char arr[16];
+ rtx pat = gen_reg_rtx (TImode);
+ rtx sign, c;
+ int i, last;
+ last = GET_MODE (ops[0]) == DImode ? 7 : 15;
+ if (GET_MODE (ops[1]) == QImode)
+ {
+ sign = gen_reg_rtx (HImode);
+ emit_insn (gen_extendqihi2 (sign, ops[1]));
+ for (i = 0; i < 16; i++)
+ arr[i] = 0x12;
+ arr[last] = 0x13;
+ }
+ else
+ {
+ for (i = 0; i < 16; i++)
+ arr[i] = 0x10;
+ switch (GET_MODE (ops[1]))
+ {
+ case HImode:
+ sign = gen_reg_rtx (SImode);
+ emit_insn (gen_extendhisi2 (sign, ops[1]));
+ arr[last] = 0x03;
+ arr[last - 1] = 0x02;
+ break;
+ case SImode:
+ sign = gen_reg_rtx (SImode);
+ emit_insn (gen_ashrsi3 (sign, ops[1], GEN_INT (31)));
+ for (i = 0; i < 4; i++)
+ arr[last - i] = 3 - i;
+ break;
+ case DImode:
+ sign = gen_reg_rtx (SImode);
+ c = gen_reg_rtx (SImode);
+ emit_insn (gen_spu_convert (c, ops[1]));
+ emit_insn (gen_ashrsi3 (sign, c, GEN_INT (31)));
+ for (i = 0; i < 8; i++)
+ arr[last - i] = 7 - i;
+ break;
+ default:
+ abort ();
+ }
+ }
+ emit_move_insn (pat, array_to_constant (TImode, arr));
+ emit_insn (gen_shufb (ops[0], ops[1], sign, pat));
+}
+
+/* expand vector initialization. If there are any constant parts,
+ load constant parts first. Then load any non-constant parts. */
+void
+spu_expand_vector_init (rtx target, rtx vals)
+{
+ enum machine_mode mode = GET_MODE (target);
+ int n_elts = GET_MODE_NUNITS (mode);
+ int n_var = 0;
+ bool all_same = true;
+ rtx first, x = NULL_RTX, first_constant = NULL_RTX;
+ int i;
+
+ first = XVECEXP (vals, 0, 0);
+ for (i = 0; i < n_elts; ++i)
+ {
+ x = XVECEXP (vals, 0, i);
+ if (!(CONST_INT_P (x)
+ || GET_CODE (x) == CONST_DOUBLE
+ || GET_CODE (x) == CONST_FIXED))
+ ++n_var;
+ else
+ {
+ if (first_constant == NULL_RTX)
+ first_constant = x;
+ }
+ if (i > 0 && !rtx_equal_p (x, first))
+ all_same = false;
+ }
+
+ /* if all elements are the same, use splats to repeat elements */
+ if (all_same)
+ {
+ if (!CONSTANT_P (first)
+ && !register_operand (first, GET_MODE (x)))
+ first = force_reg (GET_MODE (first), first);
+ emit_insn (gen_spu_splats (target, first));
+ return;
+ }
+
+ /* load constant parts */
+ if (n_var != n_elts)
+ {
+ if (n_var == 0)
+ {
+ emit_move_insn (target,
+ gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0)));
+ }
+ else
+ {
+ rtx constant_parts_rtx = copy_rtx (vals);
+
+ gcc_assert (first_constant != NULL_RTX);
+ /* fill empty slots with the first constant, this increases
+ our chance of using splats in the recursive call below. */
+ for (i = 0; i < n_elts; ++i)
+ {
+ x = XVECEXP (constant_parts_rtx, 0, i);
+ if (!(CONST_INT_P (x)
+ || GET_CODE (x) == CONST_DOUBLE
+ || GET_CODE (x) == CONST_FIXED))
+ XVECEXP (constant_parts_rtx, 0, i) = first_constant;
+ }
+
+ spu_expand_vector_init (target, constant_parts_rtx);
+ }
+ }
+
+ /* load variable parts */
+ if (n_var != 0)
+ {
+ rtx insert_operands[4];
+
+ insert_operands[0] = target;
+ insert_operands[2] = target;
+ for (i = 0; i < n_elts; ++i)
+ {
+ x = XVECEXP (vals, 0, i);
+ if (!(CONST_INT_P (x)
+ || GET_CODE (x) == CONST_DOUBLE
+ || GET_CODE (x) == CONST_FIXED))
+ {
+ if (!register_operand (x, GET_MODE (x)))
+ x = force_reg (GET_MODE (x), x);
+ insert_operands[1] = x;
+ insert_operands[3] = GEN_INT (i);
+ spu_builtin_insert (insert_operands);
+ }
+ }
+ }
+}
+
+/* Return insn index for the vector compare instruction for given CODE,
+ and DEST_MODE, OP_MODE. Return -1 if valid insn is not available. */
+
+static int
+get_vec_cmp_insn (enum rtx_code code,
+ enum machine_mode dest_mode,
+ enum machine_mode op_mode)
+
+{
+ switch (code)
+ {
+ case EQ:
+ if (dest_mode == V16QImode && op_mode == V16QImode)
+ return CODE_FOR_ceq_v16qi;
+ if (dest_mode == V8HImode && op_mode == V8HImode)
+ return CODE_FOR_ceq_v8hi;
+ if (dest_mode == V4SImode && op_mode == V4SImode)
+ return CODE_FOR_ceq_v4si;
+ if (dest_mode == V4SImode && op_mode == V4SFmode)
+ return CODE_FOR_ceq_v4sf;
+ if (dest_mode == V2DImode && op_mode == V2DFmode)
+ return CODE_FOR_ceq_v2df;
+ break;
+ case GT:
+ if (dest_mode == V16QImode && op_mode == V16QImode)
+ return CODE_FOR_cgt_v16qi;
+ if (dest_mode == V8HImode && op_mode == V8HImode)
+ return CODE_FOR_cgt_v8hi;
+ if (dest_mode == V4SImode && op_mode == V4SImode)
+ return CODE_FOR_cgt_v4si;
+ if (dest_mode == V4SImode && op_mode == V4SFmode)
+ return CODE_FOR_cgt_v4sf;
+ if (dest_mode == V2DImode && op_mode == V2DFmode)
+ return CODE_FOR_cgt_v2df;
+ break;
+ case GTU:
+ if (dest_mode == V16QImode && op_mode == V16QImode)
+ return CODE_FOR_clgt_v16qi;
+ if (dest_mode == V8HImode && op_mode == V8HImode)
+ return CODE_FOR_clgt_v8hi;
+ if (dest_mode == V4SImode && op_mode == V4SImode)
+ return CODE_FOR_clgt_v4si;
+ break;
+ default:
+ break;
+ }
+ return -1;
+}
+
+/* Emit vector compare for operands OP0 and OP1 using code RCODE.
+ DMODE is expected destination mode. This is a recursive function. */
+
+static rtx
+spu_emit_vector_compare (enum rtx_code rcode,
+ rtx op0, rtx op1,
+ enum machine_mode dmode)
+{
+ int vec_cmp_insn;
+ rtx mask;
+ enum machine_mode dest_mode;
+ enum machine_mode op_mode = GET_MODE (op1);
+
+ gcc_assert (GET_MODE (op0) == GET_MODE (op1));
+
+ /* Floating point vector compare instructions uses destination V4SImode.
+ Double floating point vector compare instructions uses destination V2DImode.
+ Move destination to appropriate mode later. */
+ if (dmode == V4SFmode)
+ dest_mode = V4SImode;
+ else if (dmode == V2DFmode)
+ dest_mode = V2DImode;
+ else
+ dest_mode = dmode;
+
+ mask = gen_reg_rtx (dest_mode);
+ vec_cmp_insn = get_vec_cmp_insn (rcode, dest_mode, op_mode);
+
+ if (vec_cmp_insn == -1)
+ {
+ bool swap_operands = false;
+ bool try_again = false;
+ switch (rcode)
+ {
+ case LT:
+ rcode = GT;
+ swap_operands = true;
+ try_again = true;
+ break;
+ case LTU:
+ rcode = GTU;
+ swap_operands = true;
+ try_again = true;
+ break;
+ case NE:
+ case UNEQ:
+ case UNLE:
+ case UNLT:
+ case UNGE:
+ case UNGT:
+ case UNORDERED:
+ /* Treat A != B as ~(A==B). */
+ {
+ enum rtx_code rev_code;
+ enum insn_code nor_code;
+ rtx rev_mask;
+
+ rev_code = reverse_condition_maybe_unordered (rcode);
+ rev_mask = spu_emit_vector_compare (rev_code, op0, op1, dest_mode);
+
+ nor_code = optab_handler (one_cmpl_optab, dest_mode);
+ gcc_assert (nor_code != CODE_FOR_nothing);
+ emit_insn (GEN_FCN (nor_code) (mask, rev_mask));
+ if (dmode != dest_mode)
+ {
+ rtx temp = gen_reg_rtx (dest_mode);
+ convert_move (temp, mask, 0);
+ return temp;
+ }
+ return mask;
+ }
+ break;
+ case GE:
+ case GEU:
+ case LE:
+ case LEU:
+ /* Try GT/GTU/LT/LTU OR EQ */
+ {
+ rtx c_rtx, eq_rtx;
+ enum insn_code ior_code;
+ enum rtx_code new_code;
+
+ switch (rcode)
+ {
+ case GE: new_code = GT; break;
+ case GEU: new_code = GTU; break;
+ case LE: new_code = LT; break;
+ case LEU: new_code = LTU; break;
+ default:
+ gcc_unreachable ();
+ }
+
+ c_rtx = spu_emit_vector_compare (new_code, op0, op1, dest_mode);
+ eq_rtx = spu_emit_vector_compare (EQ, op0, op1, dest_mode);
+
+ ior_code = optab_handler (ior_optab, dest_mode);
+ gcc_assert (ior_code != CODE_FOR_nothing);
+ emit_insn (GEN_FCN (ior_code) (mask, c_rtx, eq_rtx));
+ if (dmode != dest_mode)
+ {
+ rtx temp = gen_reg_rtx (dest_mode);
+ convert_move (temp, mask, 0);
+ return temp;
+ }
+ return mask;
+ }
+ break;
+ case LTGT:
+ /* Try LT OR GT */
+ {
+ rtx lt_rtx, gt_rtx;
+ enum insn_code ior_code;
+
+ lt_rtx = spu_emit_vector_compare (LT, op0, op1, dest_mode);
+ gt_rtx = spu_emit_vector_compare (GT, op0, op1, dest_mode);
+
+ ior_code = optab_handler (ior_optab, dest_mode);
+ gcc_assert (ior_code != CODE_FOR_nothing);
+ emit_insn (GEN_FCN (ior_code) (mask, lt_rtx, gt_rtx));
+ if (dmode != dest_mode)
+ {
+ rtx temp = gen_reg_rtx (dest_mode);
+ convert_move (temp, mask, 0);
+ return temp;
+ }
+ return mask;
+ }
+ break;
+ case ORDERED:
+ /* Implement as (A==A) & (B==B) */
+ {
+ rtx a_rtx, b_rtx;
+ enum insn_code and_code;
+
+ a_rtx = spu_emit_vector_compare (EQ, op0, op0, dest_mode);
+ b_rtx = spu_emit_vector_compare (EQ, op1, op1, dest_mode);
+
+ and_code = optab_handler (and_optab, dest_mode);
+ gcc_assert (and_code != CODE_FOR_nothing);
+ emit_insn (GEN_FCN (and_code) (mask, a_rtx, b_rtx));
+ if (dmode != dest_mode)
+ {
+ rtx temp = gen_reg_rtx (dest_mode);
+ convert_move (temp, mask, 0);
+ return temp;
+ }
+ return mask;
+ }
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ /* You only get two chances. */
+ if (try_again)
+ vec_cmp_insn = get_vec_cmp_insn (rcode, dest_mode, op_mode);
+
+ gcc_assert (vec_cmp_insn != -1);
+
+ if (swap_operands)
+ {
+ rtx tmp;
+ tmp = op0;
+ op0 = op1;
+ op1 = tmp;
+ }
+ }
+
+ emit_insn (GEN_FCN (vec_cmp_insn) (mask, op0, op1));
+ if (dmode != dest_mode)
+ {
+ rtx temp = gen_reg_rtx (dest_mode);
+ convert_move (temp, mask, 0);
+ return temp;
+ }
+ return mask;
+}
+
+
+/* Emit vector conditional expression.
+ DEST is destination. OP1 and OP2 are two VEC_COND_EXPR operands.
+ CC_OP0 and CC_OP1 are the two operands for the relation operation COND. */
+
+int
+spu_emit_vector_cond_expr (rtx dest, rtx op1, rtx op2,
+ rtx cond, rtx cc_op0, rtx cc_op1)
+{
+ enum machine_mode dest_mode = GET_MODE (dest);
+ enum rtx_code rcode = GET_CODE (cond);
+ rtx mask;
+
+ /* Get the vector mask for the given relational operations. */
+ mask = spu_emit_vector_compare (rcode, cc_op0, cc_op1, dest_mode);
+
+ emit_insn(gen_selb (dest, op2, op1, mask));
+
+ return 1;
+}
+
+static rtx
+spu_force_reg (enum machine_mode mode, rtx op)
+{
+ rtx x, r;
+ if (GET_MODE (op) == VOIDmode || GET_MODE (op) == BLKmode)
+ {
+ if ((SCALAR_INT_MODE_P (mode) && GET_CODE (op) == CONST_INT)
+ || GET_MODE (op) == BLKmode)
+ return force_reg (mode, convert_to_mode (mode, op, 0));
+ abort ();
+ }
+
+ r = force_reg (GET_MODE (op), op);
+ if (GET_MODE_SIZE (GET_MODE (op)) == GET_MODE_SIZE (mode))
+ {
+ x = simplify_gen_subreg (mode, r, GET_MODE (op), 0);
+ if (x)
+ return x;
+ }
+
+ x = gen_reg_rtx (mode);
+ emit_insn (gen_spu_convert (x, r));
+ return x;
+}
+
+static void
+spu_check_builtin_parm (struct spu_builtin_description *d, rtx op, int p)
+{
+ HOST_WIDE_INT v = 0;
+ int lsbits;
+ /* Check the range of immediate operands. */
+ if (p >= SPU_BTI_7 && p <= SPU_BTI_U18)
+ {
+ int range = p - SPU_BTI_7;
+
+ if (!CONSTANT_P (op))
+ error ("%s expects an integer literal in the range [%d, %d]",
+ d->name,
+ spu_builtin_range[range].low, spu_builtin_range[range].high);
+
+ if (GET_CODE (op) == CONST
+ && (GET_CODE (XEXP (op, 0)) == PLUS
+ || GET_CODE (XEXP (op, 0)) == MINUS))
+ {
+ v = INTVAL (XEXP (XEXP (op, 0), 1));
+ op = XEXP (XEXP (op, 0), 0);
+ }
+ else if (GET_CODE (op) == CONST_INT)
+ v = INTVAL (op);
+ else if (GET_CODE (op) == CONST_VECTOR
+ && GET_CODE (CONST_VECTOR_ELT (op, 0)) == CONST_INT)
+ v = INTVAL (CONST_VECTOR_ELT (op, 0));
+
+ /* The default for v is 0 which is valid in every range. */
+ if (v < spu_builtin_range[range].low
+ || v > spu_builtin_range[range].high)
+ error ("%s expects an integer literal in the range [%d, %d]. (%wd)",
+ d->name,
+ spu_builtin_range[range].low, spu_builtin_range[range].high,
+ v);
+
+ switch (p)
+ {
+ case SPU_BTI_S10_4:
+ lsbits = 4;
+ break;
+ case SPU_BTI_U16_2:
+ /* This is only used in lqa, and stqa. Even though the insns
+ encode 16 bits of the address (all but the 2 least
+ significant), only 14 bits are used because it is masked to
+ be 16 byte aligned. */
+ lsbits = 4;
+ break;
+ case SPU_BTI_S16_2:
+ /* This is used for lqr and stqr. */
+ lsbits = 2;
+ break;
+ default:
+ lsbits = 0;
+ }
+
+ if (GET_CODE (op) == LABEL_REF
+ || (GET_CODE (op) == SYMBOL_REF
+ && SYMBOL_REF_FUNCTION_P (op))
+ || (v & ((1 << lsbits) - 1)) != 0)
+ warning (0, "%d least significant bits of %s are ignored", lsbits,
+ d->name);
+ }
+}
+
+
+static int
+expand_builtin_args (struct spu_builtin_description *d, tree exp,
+ rtx target, rtx ops[])
+{
+ enum insn_code icode = (enum insn_code) d->icode;
+ int i = 0, a;
+
+ /* Expand the arguments into rtl. */
+
+ if (d->parm[0] != SPU_BTI_VOID)
+ ops[i++] = target;
+
+ for (a = 0; d->parm[a+1] != SPU_BTI_END_OF_PARAMS; i++, a++)
+ {
+ tree arg = CALL_EXPR_ARG (exp, a);
+ if (arg == 0)
+ abort ();
+ ops[i] = expand_expr (arg, NULL_RTX, VOIDmode, EXPAND_NORMAL);
+ }
+
+ gcc_assert (i == insn_data[icode].n_generator_args);
+ return i;
+}
+
+static rtx
+spu_expand_builtin_1 (struct spu_builtin_description *d,
+ tree exp, rtx target)
+{
+ rtx pat;
+ rtx ops[8];
+ enum insn_code icode = (enum insn_code) d->icode;
+ enum machine_mode mode, tmode;
+ int i, p;
+ int n_operands;
+ tree return_type;
+
+ /* Set up ops[] with values from arglist. */
+ n_operands = expand_builtin_args (d, exp, target, ops);
+
+ /* Handle the target operand which must be operand 0. */
+ i = 0;
+ if (d->parm[0] != SPU_BTI_VOID)
+ {
+
+ /* We prefer the mode specified for the match_operand otherwise
+ use the mode from the builtin function prototype. */
+ tmode = insn_data[d->icode].operand[0].mode;
+ if (tmode == VOIDmode)
+ tmode = TYPE_MODE (spu_builtin_types[d->parm[0]]);
+
+ /* Try to use target because not using it can lead to extra copies
+ and when we are using all of the registers extra copies leads
+ to extra spills. */
+ if (target && GET_CODE (target) == REG && GET_MODE (target) == tmode)
+ ops[0] = target;
+ else
+ target = ops[0] = gen_reg_rtx (tmode);
+
+ if (!(*insn_data[icode].operand[0].predicate) (ops[0], tmode))
+ abort ();
+
+ i++;
+ }
+
+ if (d->fcode == SPU_MASK_FOR_LOAD)
+ {
+ enum machine_mode mode = insn_data[icode].operand[1].mode;
+ tree arg;
+ rtx addr, op, pat;
+
+ /* get addr */
+ arg = CALL_EXPR_ARG (exp, 0);
+ gcc_assert (POINTER_TYPE_P (TREE_TYPE (arg)));
+ op = expand_expr (arg, NULL_RTX, Pmode, EXPAND_NORMAL);
+ addr = memory_address (mode, op);
+
+ /* negate addr */
+ op = gen_reg_rtx (GET_MODE (addr));
+ emit_insn (gen_rtx_SET (VOIDmode, op,
+ gen_rtx_NEG (GET_MODE (addr), addr)));
+ op = gen_rtx_MEM (mode, op);
+
+ pat = GEN_FCN (icode) (target, op);
+ if (!pat)
+ return 0;
+ emit_insn (pat);
+ return target;
+ }
+
+ /* Ignore align_hint, but still expand it's args in case they have
+ side effects. */
+ if (icode == CODE_FOR_spu_align_hint)
+ return 0;
+
+ /* Handle the rest of the operands. */
+ for (p = 1; i < n_operands; i++, p++)
+ {
+ if (insn_data[d->icode].operand[i].mode != VOIDmode)
+ mode = insn_data[d->icode].operand[i].mode;
+ else
+ mode = TYPE_MODE (spu_builtin_types[d->parm[i]]);
+
+ /* mode can be VOIDmode here for labels */
+
+ /* For specific intrinsics with an immediate operand, e.g.,
+ si_ai(), we sometimes need to convert the scalar argument to a
+ vector argument by splatting the scalar. */
+ if (VECTOR_MODE_P (mode)
+ && (GET_CODE (ops[i]) == CONST_INT
+ || GET_MODE_CLASS (GET_MODE (ops[i])) == MODE_INT
+ || GET_MODE_CLASS (GET_MODE (ops[i])) == MODE_FLOAT))
+ {
+ if (GET_CODE (ops[i]) == CONST_INT)
+ ops[i] = spu_const (mode, INTVAL (ops[i]));
+ else
+ {
+ rtx reg = gen_reg_rtx (mode);
+ enum machine_mode imode = GET_MODE_INNER (mode);
+ if (!spu_nonmem_operand (ops[i], GET_MODE (ops[i])))
+ ops[i] = force_reg (GET_MODE (ops[i]), ops[i]);
+ if (imode != GET_MODE (ops[i]))
+ ops[i] = convert_to_mode (imode, ops[i],
+ TYPE_UNSIGNED (spu_builtin_types
+ [d->parm[i]]));
+ emit_insn (gen_spu_splats (reg, ops[i]));
+ ops[i] = reg;
+ }
+ }
+
+ spu_check_builtin_parm (d, ops[i], d->parm[p]);
+
+ if (!(*insn_data[icode].operand[i].predicate) (ops[i], mode))
+ ops[i] = spu_force_reg (mode, ops[i]);
+ }
+
+ switch (n_operands)
+ {
+ case 0:
+ pat = GEN_FCN (icode) (0);
+ break;
+ case 1:
+ pat = GEN_FCN (icode) (ops[0]);
+ break;
+ case 2:
+ pat = GEN_FCN (icode) (ops[0], ops[1]);
+ break;
+ case 3:
+ pat = GEN_FCN (icode) (ops[0], ops[1], ops[2]);
+ break;
+ case 4:
+ pat = GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3]);
+ break;
+ case 5:
+ pat = GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3], ops[4]);
+ break;
+ case 6:
+ pat = GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3], ops[4], ops[5]);
+ break;
+ default:
+ abort ();
+ }
+
+ if (!pat)
+ abort ();
+
+ if (d->type == B_CALL || d->type == B_BISLED)
+ emit_call_insn (pat);
+ else if (d->type == B_JUMP)
+ {
+ emit_jump_insn (pat);
+ emit_barrier ();
+ }
+ else
+ emit_insn (pat);
+
+ return_type = spu_builtin_types[d->parm[0]];
+ if (d->parm[0] != SPU_BTI_VOID
+ && GET_MODE (target) != TYPE_MODE (return_type))
+ {
+ /* target is the return value. It should always be the mode of
+ the builtin function prototype. */
+ target = spu_force_reg (TYPE_MODE (return_type), target);
+ }
+
+ return target;
+}
+
+rtx
+spu_expand_builtin (tree exp,
+ rtx target,
+ rtx subtarget ATTRIBUTE_UNUSED,
+ enum machine_mode mode ATTRIBUTE_UNUSED,
+ int ignore ATTRIBUTE_UNUSED)
+{
+ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
+ unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
+ struct spu_builtin_description *d;
+
+ if (fcode < NUM_SPU_BUILTINS)
+ {
+ d = &spu_builtins[fcode];
+
+ return spu_expand_builtin_1 (d, exp, target);
+ }
+ abort ();
+}
+
+/* Implement targetm.vectorize.builtin_mask_for_load. */
+static tree
+spu_builtin_mask_for_load (void)
+{
+ return spu_builtin_decls[SPU_MASK_FOR_LOAD];
+}
+
+/* Implement targetm.vectorize.builtin_vectorization_cost. */
+static int
+spu_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
+ tree vectype,
+ int misalign ATTRIBUTE_UNUSED)
+{
+ unsigned elements;
+
+ switch (type_of_cost)
+ {
+ case scalar_stmt:
+ case vector_stmt:
+ case vector_load:
+ case vector_store:
+ case vec_to_scalar:
+ case scalar_to_vec:
+ case cond_branch_not_taken:
+ case vec_perm:
+ case vec_promote_demote:
+ return 1;
+
+ case scalar_store:
+ return 10;
+
+ case scalar_load:
+ /* Load + rotate. */
+ return 2;
+
+ case unaligned_load:
+ return 2;
+
+ case cond_branch_taken:
+ return 6;
+
+ case vec_construct:
+ elements = TYPE_VECTOR_SUBPARTS (vectype);
+ return elements / 2 + 1;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Implement targetm.vectorize.init_cost. */
+
+static void *
+spu_init_cost (struct loop *loop_info ATTRIBUTE_UNUSED)
+{
+ unsigned *cost = XNEWVEC (unsigned, 3);
+ cost[vect_prologue] = cost[vect_body] = cost[vect_epilogue] = 0;
+ return cost;
+}
+
+/* Implement targetm.vectorize.add_stmt_cost. */
+
+static unsigned
+spu_add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
+ struct _stmt_vec_info *stmt_info, int misalign,
+ enum vect_cost_model_location where)
+{
+ unsigned *cost = (unsigned *) data;
+ unsigned retval = 0;
+
+ if (flag_vect_cost_model)
+ {
+ tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
+ int stmt_cost = spu_builtin_vectorization_cost (kind, vectype, misalign);
+
+ /* Statements in an inner loop relative to the loop being
+ vectorized are weighted more heavily. The value here is
+ arbitrary and could potentially be improved with analysis. */
+ if (where == vect_body && stmt_info && stmt_in_inner_loop_p (stmt_info))
+ count *= 50; /* FIXME. */
+
+ retval = (unsigned) (count * stmt_cost);
+ cost[where] += retval;
+ }
+
+ return retval;
+}
+
+/* Implement targetm.vectorize.finish_cost. */
+
+static void
+spu_finish_cost (void *data, unsigned *prologue_cost,
+ unsigned *body_cost, unsigned *epilogue_cost)
+{
+ unsigned *cost = (unsigned *) data;
+ *prologue_cost = cost[vect_prologue];
+ *body_cost = cost[vect_body];
+ *epilogue_cost = cost[vect_epilogue];
+}
+
+/* Implement targetm.vectorize.destroy_cost_data. */
+
+static void
+spu_destroy_cost_data (void *data)
+{
+ free (data);
+}
+
+/* Return true iff, data reference of TYPE can reach vector alignment (16)
+ after applying N number of iterations. This routine does not determine
+ how may iterations are required to reach desired alignment. */
+
+static bool
+spu_vector_alignment_reachable (const_tree type ATTRIBUTE_UNUSED, bool is_packed)
+{
+ if (is_packed)
+ return false;
+
+ /* All other types are naturally aligned. */
+ return true;
+}
+
+/* Return the appropriate mode for a named address pointer. */
+static enum machine_mode
+spu_addr_space_pointer_mode (addr_space_t addrspace)
+{
+ switch (addrspace)
+ {
+ case ADDR_SPACE_GENERIC:
+ return ptr_mode;
+ case ADDR_SPACE_EA:
+ return EAmode;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Return the appropriate mode for a named address address. */
+static enum machine_mode
+spu_addr_space_address_mode (addr_space_t addrspace)
+{
+ switch (addrspace)
+ {
+ case ADDR_SPACE_GENERIC:
+ return Pmode;
+ case ADDR_SPACE_EA:
+ return EAmode;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Determine if one named address space is a subset of another. */
+
+static bool
+spu_addr_space_subset_p (addr_space_t subset, addr_space_t superset)
+{
+ gcc_assert (subset == ADDR_SPACE_GENERIC || subset == ADDR_SPACE_EA);
+ gcc_assert (superset == ADDR_SPACE_GENERIC || superset == ADDR_SPACE_EA);
+
+ if (subset == superset)
+ return true;
+
+ /* If we have -mno-address-space-conversion, treat __ea and generic as not
+ being subsets but instead as disjoint address spaces. */
+ else if (!TARGET_ADDRESS_SPACE_CONVERSION)
+ return false;
+
+ else
+ return (subset == ADDR_SPACE_GENERIC && superset == ADDR_SPACE_EA);
+}
+
+/* Convert from one address space to another. */
+static rtx
+spu_addr_space_convert (rtx op, tree from_type, tree to_type)
+{
+ addr_space_t from_as = TYPE_ADDR_SPACE (TREE_TYPE (from_type));
+ addr_space_t to_as = TYPE_ADDR_SPACE (TREE_TYPE (to_type));
+
+ gcc_assert (from_as == ADDR_SPACE_GENERIC || from_as == ADDR_SPACE_EA);
+ gcc_assert (to_as == ADDR_SPACE_GENERIC || to_as == ADDR_SPACE_EA);
+
+ if (to_as == ADDR_SPACE_GENERIC && from_as == ADDR_SPACE_EA)
+ {
+ rtx result, ls;
+
+ ls = gen_const_mem (DImode,
+ gen_rtx_SYMBOL_REF (Pmode, "__ea_local_store"));
+ set_mem_align (ls, 128);
+
+ result = gen_reg_rtx (Pmode);
+ ls = force_reg (Pmode, convert_modes (Pmode, DImode, ls, 1));
+ op = force_reg (Pmode, convert_modes (Pmode, EAmode, op, 1));
+ ls = emit_conditional_move (ls, NE, op, const0_rtx, Pmode,
+ ls, const0_rtx, Pmode, 1);
+
+ emit_insn (gen_subsi3 (result, op, ls));
+
+ return result;
+ }
+
+ else if (to_as == ADDR_SPACE_EA && from_as == ADDR_SPACE_GENERIC)
+ {
+ rtx result, ls;
+
+ ls = gen_const_mem (DImode,
+ gen_rtx_SYMBOL_REF (Pmode, "__ea_local_store"));
+ set_mem_align (ls, 128);
+
+ result = gen_reg_rtx (EAmode);
+ ls = force_reg (EAmode, convert_modes (EAmode, DImode, ls, 1));
+ op = force_reg (Pmode, op);
+ ls = emit_conditional_move (ls, NE, op, const0_rtx, Pmode,
+ ls, const0_rtx, EAmode, 1);
+ op = force_reg (EAmode, convert_modes (EAmode, Pmode, op, 1));
+
+ if (EAmode == SImode)
+ emit_insn (gen_addsi3 (result, op, ls));
+ else
+ emit_insn (gen_adddi3 (result, op, ls));
+
+ return result;
+ }
+
+ else
+ gcc_unreachable ();
+}
+
+
+/* Count the total number of instructions in each pipe and return the
+ maximum, which is used as the Minimum Iteration Interval (MII)
+ in the modulo scheduler. get_pipe() will return -2, -1, 0, or 1.
+ -2 are instructions that can go in pipe0 or pipe1. */
+static int
+spu_sms_res_mii (struct ddg *g)
+{
+ int i;
+ unsigned t[4] = {0, 0, 0, 0};
+
+ for (i = 0; i < g->num_nodes; i++)
+ {
+ rtx insn = g->nodes[i].insn;
+ int p = get_pipe (insn) + 2;
+
+ gcc_assert (p >= 0);
+ gcc_assert (p < 4);
+
+ t[p]++;
+ if (dump_file && INSN_P (insn))
+ fprintf (dump_file, "i%d %s %d %d\n",
+ INSN_UID (insn),
+ insn_data[INSN_CODE(insn)].name,
+ p, t[p]);
+ }
+ if (dump_file)
+ fprintf (dump_file, "%d %d %d %d\n", t[0], t[1], t[2], t[3]);
+
+ return MAX ((t[0] + t[2] + t[3] + 1) / 2, MAX (t[2], t[3]));
+}
+
+
+void
+spu_init_expanders (void)
+{
+ if (cfun)
+ {
+ rtx r0, r1;
+ /* HARD_FRAME_REGISTER is only 128 bit aligned when
+ frame_pointer_needed is true. We don't know that until we're
+ expanding the prologue. */
+ REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = 8;
+
+ /* A number of passes use LAST_VIRTUAL_REGISTER+1 and
+ LAST_VIRTUAL_REGISTER+2 to test the back-end. We want them
+ to be treated as aligned, so generate them here. */
+ r0 = gen_reg_rtx (SImode);
+ r1 = gen_reg_rtx (SImode);
+ mark_reg_pointer (r0, 128);
+ mark_reg_pointer (r1, 128);
+ gcc_assert (REGNO (r0) == LAST_VIRTUAL_REGISTER + 1
+ && REGNO (r1) == LAST_VIRTUAL_REGISTER + 2);
+ }
+}
+
+static enum machine_mode
+spu_libgcc_cmp_return_mode (void)
+{
+
+/* For SPU word mode is TI mode so it is better to use SImode
+ for compare returns. */
+ return SImode;
+}
+
+static enum machine_mode
+spu_libgcc_shift_count_mode (void)
+{
+/* For SPU word mode is TI mode so it is better to use SImode
+ for shift counts. */
+ return SImode;
+}
+
+/* Implement targetm.section_type_flags. */
+static unsigned int
+spu_section_type_flags (tree decl, const char *name, int reloc)
+{
+ /* .toe needs to have type @nobits. */
+ if (strcmp (name, ".toe") == 0)
+ return SECTION_BSS;
+ /* Don't load _ea into the current address space. */
+ if (strcmp (name, "._ea") == 0)
+ return SECTION_WRITE | SECTION_DEBUG;
+ return default_section_type_flags (decl, name, reloc);
+}
+
+/* Implement targetm.select_section. */
+static section *
+spu_select_section (tree decl, int reloc, unsigned HOST_WIDE_INT align)
+{
+ /* Variables and constants defined in the __ea address space
+ go into a special section named "._ea". */
+ if (TREE_TYPE (decl) != error_mark_node
+ && TYPE_ADDR_SPACE (TREE_TYPE (decl)) == ADDR_SPACE_EA)
+ {
+ /* We might get called with string constants, but get_named_section
+ doesn't like them as they are not DECLs. Also, we need to set
+ flags in that case. */
+ if (!DECL_P (decl))
+ return get_section ("._ea", SECTION_WRITE | SECTION_DEBUG, NULL);
+
+ return get_named_section (decl, "._ea", reloc);
+ }
+
+ return default_elf_select_section (decl, reloc, align);
+}
+
+/* Implement targetm.unique_section. */
+static void
+spu_unique_section (tree decl, int reloc)
+{
+ /* We don't support unique section names in the __ea address
+ space for now. */
+ if (TREE_TYPE (decl) != error_mark_node
+ && TYPE_ADDR_SPACE (TREE_TYPE (decl)) != 0)
+ return;
+
+ default_unique_section (decl, reloc);
+}
+
+/* Generate a constant or register which contains 2^SCALE. We assume
+ the result is valid for MODE. Currently, MODE must be V4SFmode and
+ SCALE must be SImode. */
+rtx
+spu_gen_exp2 (enum machine_mode mode, rtx scale)
+{
+ gcc_assert (mode == V4SFmode);
+ gcc_assert (GET_MODE (scale) == SImode || GET_CODE (scale) == CONST_INT);
+ if (GET_CODE (scale) != CONST_INT)
+ {
+ /* unsigned int exp = (127 + scale) << 23;
+ __vector float m = (__vector float) spu_splats (exp); */
+ rtx reg = force_reg (SImode, scale);
+ rtx exp = gen_reg_rtx (SImode);
+ rtx mul = gen_reg_rtx (mode);
+ emit_insn (gen_addsi3 (exp, reg, GEN_INT (127)));
+ emit_insn (gen_ashlsi3 (exp, exp, GEN_INT (23)));
+ emit_insn (gen_spu_splats (mul, gen_rtx_SUBREG (GET_MODE_INNER (mode), exp, 0)));
+ return mul;
+ }
+ else
+ {
+ HOST_WIDE_INT exp = 127 + INTVAL (scale);
+ unsigned char arr[16];
+ arr[0] = arr[4] = arr[8] = arr[12] = exp >> 1;
+ arr[1] = arr[5] = arr[9] = arr[13] = exp << 7;
+ arr[2] = arr[6] = arr[10] = arr[14] = 0;
+ arr[3] = arr[7] = arr[11] = arr[15] = 0;
+ return array_to_constant (mode, arr);
+ }
+}
+
+/* After reload, just change the convert into a move instruction
+ or a dead instruction. */
+void
+spu_split_convert (rtx ops[])
+{
+ if (REGNO (ops[0]) == REGNO (ops[1]))
+ emit_note (NOTE_INSN_DELETED);
+ else
+ {
+ /* Use TImode always as this might help hard reg copyprop. */
+ rtx op0 = gen_rtx_REG (TImode, REGNO (ops[0]));
+ rtx op1 = gen_rtx_REG (TImode, REGNO (ops[1]));
+ emit_insn (gen_move_insn (op0, op1));
+ }
+}
+
+void
+spu_function_profiler (FILE * file, int labelno ATTRIBUTE_UNUSED)
+{
+ fprintf (file, "# profile\n");
+ fprintf (file, "brsl $75, _mcount\n");
+}
+
+/* Implement targetm.ref_may_alias_errno. */
+static bool
+spu_ref_may_alias_errno (ao_ref *ref)
+{
+ tree base = ao_ref_base (ref);
+
+ /* With SPU newlib, errno is defined as something like
+ _impure_data._errno
+ The default implementation of this target macro does not
+ recognize such expressions, so special-code for it here. */
+
+ if (TREE_CODE (base) == VAR_DECL
+ && !TREE_STATIC (base)
+ && DECL_EXTERNAL (base)
+ && TREE_CODE (TREE_TYPE (base)) == RECORD_TYPE
+ && strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (base)),
+ "_impure_data") == 0
+ /* _errno is the first member of _impure_data. */
+ && ref->offset == 0)
+ return true;
+
+ return default_ref_may_alias_errno (ref);
+}
+
+/* Output thunk to FILE that implements a C++ virtual function call (with
+ multiple inheritance) to FUNCTION. The thunk adjusts the this pointer
+ by DELTA, and unless VCALL_OFFSET is zero, applies an additional adjustment
+ stored at VCALL_OFFSET in the vtable whose address is located at offset 0
+ relative to the resulting this pointer. */
+
+static void
+spu_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
+ HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
+ tree function)
+{
+ rtx op[8];
+
+ /* Make sure unwind info is emitted for the thunk if needed. */
+ final_start_function (emit_barrier (), file, 1);
+
+ /* Operand 0 is the target function. */
+ op[0] = XEXP (DECL_RTL (function), 0);
+
+ /* Operand 1 is the 'this' pointer. */
+ if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
+ op[1] = gen_rtx_REG (Pmode, FIRST_ARG_REGNUM + 1);
+ else
+ op[1] = gen_rtx_REG (Pmode, FIRST_ARG_REGNUM);
+
+ /* Operands 2/3 are the low/high halfwords of delta. */
+ op[2] = GEN_INT (trunc_int_for_mode (delta, HImode));
+ op[3] = GEN_INT (trunc_int_for_mode (delta >> 16, HImode));
+
+ /* Operands 4/5 are the low/high halfwords of vcall_offset. */
+ op[4] = GEN_INT (trunc_int_for_mode (vcall_offset, HImode));
+ op[5] = GEN_INT (trunc_int_for_mode (vcall_offset >> 16, HImode));
+
+ /* Operands 6/7 are temporary registers. */
+ op[6] = gen_rtx_REG (Pmode, 79);
+ op[7] = gen_rtx_REG (Pmode, 78);
+
+ /* Add DELTA to this pointer. */
+ if (delta)
+ {
+ if (delta >= -0x200 && delta < 0x200)
+ output_asm_insn ("ai\t%1,%1,%2", op);
+ else if (delta >= -0x8000 && delta < 0x8000)
+ {
+ output_asm_insn ("il\t%6,%2", op);
+ output_asm_insn ("a\t%1,%1,%6", op);
+ }
+ else
+ {
+ output_asm_insn ("ilhu\t%6,%3", op);
+ output_asm_insn ("iohl\t%6,%2", op);
+ output_asm_insn ("a\t%1,%1,%6", op);
+ }
+ }
+
+ /* Perform vcall adjustment. */
+ if (vcall_offset)
+ {
+ output_asm_insn ("lqd\t%7,0(%1)", op);
+ output_asm_insn ("rotqby\t%7,%7,%1", op);
+
+ if (vcall_offset >= -0x200 && vcall_offset < 0x200)
+ output_asm_insn ("ai\t%7,%7,%4", op);
+ else if (vcall_offset >= -0x8000 && vcall_offset < 0x8000)
+ {
+ output_asm_insn ("il\t%6,%4", op);
+ output_asm_insn ("a\t%7,%7,%6", op);
+ }
+ else
+ {
+ output_asm_insn ("ilhu\t%6,%5", op);
+ output_asm_insn ("iohl\t%6,%4", op);
+ output_asm_insn ("a\t%7,%7,%6", op);
+ }
+
+ output_asm_insn ("lqd\t%6,0(%7)", op);
+ output_asm_insn ("rotqby\t%6,%6,%7", op);
+ output_asm_insn ("a\t%1,%1,%6", op);
+ }
+
+ /* Jump to target. */
+ output_asm_insn ("br\t%0", op);
+
+ final_end_function ();
+}
+
+/* Canonicalize a comparison from one we don't have to one we do have. */
+static void
+spu_canonicalize_comparison (int *code, rtx *op0, rtx *op1,
+ bool op0_preserve_value)
+{
+ if (!op0_preserve_value
+ && (*code == LE || *code == LT || *code == LEU || *code == LTU))
+ {
+ rtx tem = *op0;
+ *op0 = *op1;
+ *op1 = tem;
+ *code = (int)swap_condition ((enum rtx_code)*code);
+ }
+}
+
+/* Table of machine attributes. */
+static const struct attribute_spec spu_attribute_table[] =
+{
+ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
+ affects_type_identity } */
+ { "naked", 0, 0, true, false, false, spu_handle_fndecl_attribute,
+ false },
+ { "spu_vector", 0, 0, false, true, false, spu_handle_vector_attribute,
+ false },
+ { NULL, 0, 0, false, false, false, NULL, false }
+};
+
+/* TARGET overrides. */
+
+#undef TARGET_ADDR_SPACE_POINTER_MODE
+#define TARGET_ADDR_SPACE_POINTER_MODE spu_addr_space_pointer_mode
+
+#undef TARGET_ADDR_SPACE_ADDRESS_MODE
+#define TARGET_ADDR_SPACE_ADDRESS_MODE spu_addr_space_address_mode
+
+#undef TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P
+#define TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P \
+ spu_addr_space_legitimate_address_p
+
+#undef TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS
+#define TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS spu_addr_space_legitimize_address
+
+#undef TARGET_ADDR_SPACE_SUBSET_P
+#define TARGET_ADDR_SPACE_SUBSET_P spu_addr_space_subset_p
+
+#undef TARGET_ADDR_SPACE_CONVERT
+#define TARGET_ADDR_SPACE_CONVERT spu_addr_space_convert
+
+#undef TARGET_INIT_BUILTINS
+#define TARGET_INIT_BUILTINS spu_init_builtins
+#undef TARGET_BUILTIN_DECL
+#define TARGET_BUILTIN_DECL spu_builtin_decl
+
+#undef TARGET_EXPAND_BUILTIN
+#define TARGET_EXPAND_BUILTIN spu_expand_builtin
+
+#undef TARGET_UNWIND_WORD_MODE
+#define TARGET_UNWIND_WORD_MODE spu_unwind_word_mode
+
+#undef TARGET_LEGITIMIZE_ADDRESS
+#define TARGET_LEGITIMIZE_ADDRESS spu_legitimize_address
+
+/* The current assembler doesn't like .4byte foo@ppu, so use the normal .long
+ and .quad for the debugger. When it is known that the assembler is fixed,
+ these can be removed. */
+#undef TARGET_ASM_UNALIGNED_SI_OP
+#define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
+
+#undef TARGET_ASM_ALIGNED_DI_OP
+#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
+
+/* The .8byte directive doesn't seem to work well for a 32 bit
+ architecture. */
+#undef TARGET_ASM_UNALIGNED_DI_OP
+#define TARGET_ASM_UNALIGNED_DI_OP NULL
+
+#undef TARGET_RTX_COSTS
+#define TARGET_RTX_COSTS spu_rtx_costs
+
+#undef TARGET_ADDRESS_COST
+#define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
+
+#undef TARGET_SCHED_ISSUE_RATE
+#define TARGET_SCHED_ISSUE_RATE spu_sched_issue_rate
+
+#undef TARGET_SCHED_INIT_GLOBAL
+#define TARGET_SCHED_INIT_GLOBAL spu_sched_init_global
+
+#undef TARGET_SCHED_INIT
+#define TARGET_SCHED_INIT spu_sched_init
+
+#undef TARGET_SCHED_VARIABLE_ISSUE
+#define TARGET_SCHED_VARIABLE_ISSUE spu_sched_variable_issue
+
+#undef TARGET_SCHED_REORDER
+#define TARGET_SCHED_REORDER spu_sched_reorder
+
+#undef TARGET_SCHED_REORDER2
+#define TARGET_SCHED_REORDER2 spu_sched_reorder
+
+#undef TARGET_SCHED_ADJUST_COST
+#define TARGET_SCHED_ADJUST_COST spu_sched_adjust_cost
+
+#undef TARGET_ATTRIBUTE_TABLE
+#define TARGET_ATTRIBUTE_TABLE spu_attribute_table
+
+#undef TARGET_ASM_INTEGER
+#define TARGET_ASM_INTEGER spu_assemble_integer
+
+#undef TARGET_SCALAR_MODE_SUPPORTED_P
+#define TARGET_SCALAR_MODE_SUPPORTED_P spu_scalar_mode_supported_p
+
+#undef TARGET_VECTOR_MODE_SUPPORTED_P
+#define TARGET_VECTOR_MODE_SUPPORTED_P spu_vector_mode_supported_p
+
+#undef TARGET_FUNCTION_OK_FOR_SIBCALL
+#define TARGET_FUNCTION_OK_FOR_SIBCALL spu_function_ok_for_sibcall
+
+#undef TARGET_ASM_GLOBALIZE_LABEL
+#define TARGET_ASM_GLOBALIZE_LABEL spu_asm_globalize_label
+
+#undef TARGET_PASS_BY_REFERENCE
+#define TARGET_PASS_BY_REFERENCE spu_pass_by_reference
+
+#undef TARGET_FUNCTION_ARG
+#define TARGET_FUNCTION_ARG spu_function_arg
+
+#undef TARGET_FUNCTION_ARG_ADVANCE
+#define TARGET_FUNCTION_ARG_ADVANCE spu_function_arg_advance
+
+#undef TARGET_MUST_PASS_IN_STACK
+#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
+
+#undef TARGET_BUILD_BUILTIN_VA_LIST
+#define TARGET_BUILD_BUILTIN_VA_LIST spu_build_builtin_va_list
+
+#undef TARGET_EXPAND_BUILTIN_VA_START
+#define TARGET_EXPAND_BUILTIN_VA_START spu_va_start
+
+#undef TARGET_SETUP_INCOMING_VARARGS
+#define TARGET_SETUP_INCOMING_VARARGS spu_setup_incoming_varargs
+
+#undef TARGET_MACHINE_DEPENDENT_REORG
+#define TARGET_MACHINE_DEPENDENT_REORG spu_machine_dependent_reorg
+
+#undef TARGET_GIMPLIFY_VA_ARG_EXPR
+#define TARGET_GIMPLIFY_VA_ARG_EXPR spu_gimplify_va_arg_expr
+
+#undef TARGET_INIT_LIBFUNCS
+#define TARGET_INIT_LIBFUNCS spu_init_libfuncs
+
+#undef TARGET_RETURN_IN_MEMORY
+#define TARGET_RETURN_IN_MEMORY spu_return_in_memory
+
+#undef TARGET_ENCODE_SECTION_INFO
+#define TARGET_ENCODE_SECTION_INFO spu_encode_section_info
+
+#undef TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD
+#define TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD spu_builtin_mask_for_load
+
+#undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
+#define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST spu_builtin_vectorization_cost
+
+#undef TARGET_VECTORIZE_INIT_COST
+#define TARGET_VECTORIZE_INIT_COST spu_init_cost
+
+#undef TARGET_VECTORIZE_ADD_STMT_COST
+#define TARGET_VECTORIZE_ADD_STMT_COST spu_add_stmt_cost
+
+#undef TARGET_VECTORIZE_FINISH_COST
+#define TARGET_VECTORIZE_FINISH_COST spu_finish_cost
+
+#undef TARGET_VECTORIZE_DESTROY_COST_DATA
+#define TARGET_VECTORIZE_DESTROY_COST_DATA spu_destroy_cost_data
+
+#undef TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
+#define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE spu_vector_alignment_reachable
+
+#undef TARGET_LIBGCC_CMP_RETURN_MODE
+#define TARGET_LIBGCC_CMP_RETURN_MODE spu_libgcc_cmp_return_mode
+
+#undef TARGET_LIBGCC_SHIFT_COUNT_MODE
+#define TARGET_LIBGCC_SHIFT_COUNT_MODE spu_libgcc_shift_count_mode
+
+#undef TARGET_SCHED_SMS_RES_MII
+#define TARGET_SCHED_SMS_RES_MII spu_sms_res_mii
+
+#undef TARGET_SECTION_TYPE_FLAGS
+#define TARGET_SECTION_TYPE_FLAGS spu_section_type_flags
+
+#undef TARGET_ASM_SELECT_SECTION
+#define TARGET_ASM_SELECT_SECTION spu_select_section
+
+#undef TARGET_ASM_UNIQUE_SECTION
+#define TARGET_ASM_UNIQUE_SECTION spu_unique_section
+
+#undef TARGET_LEGITIMATE_ADDRESS_P
+#define TARGET_LEGITIMATE_ADDRESS_P spu_legitimate_address_p
+
+#undef TARGET_LEGITIMATE_CONSTANT_P
+#define TARGET_LEGITIMATE_CONSTANT_P spu_legitimate_constant_p
+
+#undef TARGET_TRAMPOLINE_INIT
+#define TARGET_TRAMPOLINE_INIT spu_trampoline_init
+
+#undef TARGET_WARN_FUNC_RETURN
+#define TARGET_WARN_FUNC_RETURN spu_warn_func_return
+
+#undef TARGET_OPTION_OVERRIDE
+#define TARGET_OPTION_OVERRIDE spu_option_override
+
+#undef TARGET_CONDITIONAL_REGISTER_USAGE
+#define TARGET_CONDITIONAL_REGISTER_USAGE spu_conditional_register_usage
+
+#undef TARGET_REF_MAY_ALIAS_ERRNO
+#define TARGET_REF_MAY_ALIAS_ERRNO spu_ref_may_alias_errno
+
+#undef TARGET_ASM_OUTPUT_MI_THUNK
+#define TARGET_ASM_OUTPUT_MI_THUNK spu_output_mi_thunk
+#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
+#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
+
+/* Variable tracking should be run after all optimizations which
+ change order of insns. It also needs a valid CFG. */
+#undef TARGET_DELAY_VARTRACK
+#define TARGET_DELAY_VARTRACK true
+
+#undef TARGET_CANONICALIZE_COMPARISON
+#define TARGET_CANONICALIZE_COMPARISON spu_canonicalize_comparison
+
+#undef TARGET_CAN_USE_DOLOOP_P
+#define TARGET_CAN_USE_DOLOOP_P can_use_doloop_if_innermost
+
+struct gcc_target targetm = TARGET_INITIALIZER;
+
+#include "gt-spu.h"