aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/config/sh/sh.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/config/sh/sh.c')
-rw-r--r--gcc-4.9/gcc/config/sh/sh.c13504
1 files changed, 13504 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/config/sh/sh.c b/gcc-4.9/gcc/config/sh/sh.c
new file mode 100644
index 000000000..6d909c79e
--- /dev/null
+++ b/gcc-4.9/gcc/config/sh/sh.c
@@ -0,0 +1,13504 @@
+/* Output routines for GCC for Renesas / SuperH SH.
+ Copyright (C) 1993-2014 Free Software Foundation, Inc.
+ Contributed by Steve Chamberlain (sac@cygnus.com).
+ Improved by Jim Wilson (wilson@cygnus.com).
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "insn-config.h"
+#include "rtl.h"
+#include "tree.h"
+#include "stringpool.h"
+#include "stor-layout.h"
+#include "calls.h"
+#include "varasm.h"
+#include "flags.h"
+#include "expr.h"
+#include "optabs.h"
+#include "reload.h"
+#include "function.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "output.h"
+#include "insn-attr.h"
+#include "diagnostic-core.h"
+#include "recog.h"
+#include "dwarf2.h"
+#include "tm_p.h"
+#include "target.h"
+#include "target-def.h"
+#include "langhooks.h"
+#include "basic-block.h"
+#include "df.h"
+#include "intl.h"
+#include "sched-int.h"
+#include "params.h"
+#include "ggc.h"
+#include "pointer-set.h"
+#include "hash-table.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-fold.h"
+#include "tree-eh.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimplify.h"
+#include "cfgloop.h"
+#include "alloc-pool.h"
+#include "tm-constrs.h"
+#include "opts.h"
+#include "tree-pass.h"
+#include "pass_manager.h"
+#include "context.h"
+
+#include <sstream>
+#include <vector>
+#include <algorithm>
+
+int code_for_indirect_jump_scratch = CODE_FOR_indirect_jump_scratch;
+
+/* These are some macros to abstract register modes. */
+#define CONST_OK_FOR_I10(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -512 \
+ && ((HOST_WIDE_INT)(VALUE)) <= 511)
+
+#define CONST_OK_FOR_ADD(size) \
+ (TARGET_SHMEDIA ? CONST_OK_FOR_I10 (size) : CONST_OK_FOR_I08 (size))
+#define GEN_MOV (*(TARGET_SHMEDIA64 ? gen_movdi : gen_movsi))
+#define GEN_ADD3 (*(TARGET_SHMEDIA64 ? gen_adddi3 : gen_addsi3))
+#define GEN_SUB3 (*(TARGET_SHMEDIA64 ? gen_subdi3 : gen_subsi3))
+
+/* Used to simplify the logic below. Find the attributes wherever
+ they may be. */
+#define SH_ATTRIBUTES(decl) \
+ (TYPE_P (decl)) ? TYPE_ATTRIBUTES (decl) \
+ : DECL_ATTRIBUTES (decl) \
+ ? (DECL_ATTRIBUTES (decl)) \
+ : TYPE_ATTRIBUTES (TREE_TYPE (decl))
+
+/* Set to 1 by expand_prologue() when the function is an interrupt handler. */
+int current_function_interrupt;
+
+tree sh_deferred_function_attributes;
+tree *sh_deferred_function_attributes_tail = &sh_deferred_function_attributes;
+
+/* Global variables for machine-dependent things. */
+
+/* Which cpu are we scheduling for. */
+enum processor_type sh_cpu;
+
+/* Definitions used in ready queue reordering for first scheduling pass. */
+
+/* Reg weights arrays for modes SFmode and SImode, indexed by insn LUID. */
+static short *regmode_weight[2];
+
+/* Total SFmode and SImode weights of scheduled insns. */
+static int curr_regmode_pressure[2];
+
+/* Number of r0 life regions. */
+static int r0_life_regions;
+
+/* If true, skip cycles for Q -> R movement. */
+static int skip_cycles = 0;
+
+/* Cached value of can_issue_more. This is cached in sh_variable_issue hook
+ and returned from sh_reorder2. */
+static short cached_can_issue_more;
+
+/* Unique number for UNSPEC_BBR pattern. */
+static unsigned int unspec_bbr_uid = 1;
+
+/* Provides the class number of the smallest class containing
+ reg number. */
+enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER] =
+{
+ R0_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
+ GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
+ GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
+ GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
+ GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
+ GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
+ GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
+ GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
+ GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
+ GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
+ GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
+ GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
+ GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
+ GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
+ GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
+ GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
+ FP0_REGS,FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ TARGET_REGS, TARGET_REGS, TARGET_REGS, TARGET_REGS,
+ TARGET_REGS, TARGET_REGS, TARGET_REGS, TARGET_REGS,
+ DF_REGS, DF_REGS, DF_REGS, DF_REGS,
+ DF_REGS, DF_REGS, DF_REGS, DF_REGS,
+ NO_REGS, GENERAL_REGS, PR_REGS, T_REGS,
+ MAC_REGS, MAC_REGS, FPUL_REGS, FPSCR_REGS,
+ GENERAL_REGS, GENERAL_REGS,
+};
+
+char sh_register_names[FIRST_PSEUDO_REGISTER] \
+ [MAX_REGISTER_NAME_LENGTH + 1] = SH_REGISTER_NAMES_INITIALIZER;
+
+char sh_additional_register_names[ADDREGNAMES_SIZE] \
+ [MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1]
+ = SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER;
+
+int assembler_dialect;
+
+static bool shmedia_space_reserved_for_target_registers;
+
+static void split_branches (rtx);
+static int branch_dest (rtx);
+static void print_slot (rtx);
+static rtx add_constant (rtx, enum machine_mode, rtx);
+static void dump_table (rtx, rtx);
+static bool broken_move (rtx);
+static bool mova_p (rtx);
+static rtx find_barrier (int, rtx, rtx);
+static bool noncall_uses_reg (rtx, rtx, rtx *);
+static rtx gen_block_redirect (rtx, int, int);
+static void sh_reorg (void);
+static void sh_option_override (void);
+static void output_stack_adjust (int, rtx, int, HARD_REG_SET *, bool);
+static rtx frame_insn (rtx);
+static rtx push (int);
+static void pop (int);
+static void push_regs (HARD_REG_SET *, int);
+static int calc_live_regs (HARD_REG_SET *);
+static HOST_WIDE_INT rounded_frame_size (int);
+static bool sh_frame_pointer_required (void);
+static rtx mark_constant_pool_use (rtx);
+static tree sh_handle_interrupt_handler_attribute (tree *, tree, tree,
+ int, bool *);
+static tree sh_handle_resbank_handler_attribute (tree *, tree,
+ tree, int, bool *);
+static tree sh2a_handle_function_vector_handler_attribute (tree *, tree,
+ tree, int, bool *);
+static tree sh_handle_sp_switch_attribute (tree *, tree, tree, int, bool *);
+static tree sh_handle_trap_exit_attribute (tree *, tree, tree, int, bool *);
+static tree sh_handle_renesas_attribute (tree *, tree, tree, int, bool *);
+static void sh_print_operand (FILE *, rtx, int);
+static void sh_print_operand_address (FILE *, rtx);
+static bool sh_print_operand_punct_valid_p (unsigned char code);
+static bool sh_asm_output_addr_const_extra (FILE *file, rtx x);
+static void sh_output_function_epilogue (FILE *, HOST_WIDE_INT);
+static void sh_insert_attributes (tree, tree *);
+static const char *sh_check_pch_target_flags (int);
+static int sh_register_move_cost (enum machine_mode, reg_class_t, reg_class_t);
+static int sh_adjust_cost (rtx, rtx, rtx, int);
+static int sh_issue_rate (void);
+static int sh_dfa_new_cycle (FILE *, int, rtx, int, int, int *sort_p);
+static short find_set_regmode_weight (rtx, enum machine_mode);
+static short find_insn_regmode_weight (rtx, enum machine_mode);
+static void find_regmode_weight (basic_block, enum machine_mode);
+static int find_r0_life_regions (basic_block);
+static void sh_md_init_global (FILE *, int, int);
+static void sh_md_finish_global (FILE *, int);
+static int rank_for_reorder (const void *, const void *);
+static void swap_reorder (rtx *, int);
+static void ready_reorder (rtx *, int);
+static bool high_pressure (enum machine_mode);
+static int sh_reorder (FILE *, int, rtx *, int *, int);
+static int sh_reorder2 (FILE *, int, rtx *, int *, int);
+static void sh_md_init (FILE *, int, int);
+static int sh_variable_issue (FILE *, int, rtx, int);
+
+static bool sh_function_ok_for_sibcall (tree, tree);
+
+static bool sh_cannot_modify_jumps_p (void);
+static reg_class_t sh_target_reg_class (void);
+static bool sh_optimize_target_register_callee_saved (bool);
+static bool sh_ms_bitfield_layout_p (const_tree);
+
+static void sh_init_builtins (void);
+static tree sh_builtin_decl (unsigned, bool);
+static rtx sh_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
+static void sh_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
+ HOST_WIDE_INT, tree);
+static void sh_file_start (void);
+static bool flow_dependent_p (rtx, rtx);
+static void flow_dependent_p_1 (rtx, const_rtx, void *);
+static int shiftcosts (rtx);
+static int and_xor_ior_costs (rtx, int);
+static int addsubcosts (rtx);
+static int multcosts (rtx);
+static bool unspec_caller_rtx_p (rtx);
+static bool sh_cannot_copy_insn_p (rtx);
+static bool sh_rtx_costs (rtx, int, int, int, int *, bool);
+static int sh_address_cost (rtx, enum machine_mode, addr_space_t, bool);
+static int sh_pr_n_sets (void);
+static rtx sh_allocate_initial_value (rtx);
+static reg_class_t sh_preferred_reload_class (rtx, reg_class_t);
+static reg_class_t sh_secondary_reload (bool, rtx, reg_class_t,
+ enum machine_mode,
+ struct secondary_reload_info *);
+static bool sh_legitimate_address_p (enum machine_mode, rtx, bool);
+static rtx sh_legitimize_address (rtx, rtx, enum machine_mode);
+static rtx sh_delegitimize_address (rtx);
+static int shmedia_target_regs_stack_space (HARD_REG_SET *);
+static int shmedia_reserve_space_for_target_registers_p (int, HARD_REG_SET *);
+static int shmedia_target_regs_stack_adjust (HARD_REG_SET *);
+static int scavenge_reg (HARD_REG_SET *s);
+struct save_schedule_s;
+static struct save_entry_s *sh5_schedule_saves (HARD_REG_SET *,
+ struct save_schedule_s *, int);
+
+static rtx sh_struct_value_rtx (tree, int);
+static rtx sh_function_value (const_tree, const_tree, bool);
+static bool sh_function_value_regno_p (const unsigned int);
+static rtx sh_libcall_value (enum machine_mode, const_rtx);
+static bool sh_return_in_memory (const_tree, const_tree);
+static rtx sh_builtin_saveregs (void);
+static void sh_setup_incoming_varargs (cumulative_args_t, enum machine_mode,
+ tree, int *, int);
+static bool sh_strict_argument_naming (cumulative_args_t);
+static bool sh_pretend_outgoing_varargs_named (cumulative_args_t);
+static tree sh_build_builtin_va_list (void);
+static void sh_va_start (tree, rtx);
+static tree sh_gimplify_va_arg_expr (tree, tree, gimple_seq *, gimple_seq *);
+static bool sh_promote_prototypes (const_tree);
+static enum machine_mode sh_promote_function_mode (const_tree type,
+ enum machine_mode,
+ int *punsignedp,
+ const_tree funtype,
+ int for_return);
+static bool sh_pass_by_reference (cumulative_args_t, enum machine_mode,
+ const_tree, bool);
+static bool sh_callee_copies (cumulative_args_t, enum machine_mode,
+ const_tree, bool);
+static int sh_arg_partial_bytes (cumulative_args_t, enum machine_mode,
+ tree, bool);
+static void sh_function_arg_advance (cumulative_args_t, enum machine_mode,
+ const_tree, bool);
+static rtx sh_function_arg (cumulative_args_t, enum machine_mode,
+ const_tree, bool);
+static bool sh_scalar_mode_supported_p (enum machine_mode);
+static int sh_dwarf_calling_convention (const_tree);
+static void sh_encode_section_info (tree, rtx, int);
+static bool sh2a_function_vector_p (tree);
+static void sh_trampoline_init (rtx, tree, rtx);
+static rtx sh_trampoline_adjust_address (rtx);
+static void sh_conditional_register_usage (void);
+static bool sh_legitimate_constant_p (enum machine_mode, rtx);
+static int mov_insn_size (enum machine_mode, bool);
+static int mov_insn_alignment_mask (enum machine_mode, bool);
+static bool sequence_insn_p (rtx);
+static void sh_canonicalize_comparison (int *, rtx *, rtx *, bool);
+static void sh_canonicalize_comparison (enum rtx_code&, rtx&, rtx&,
+ enum machine_mode, bool);
+static bool sh_fixed_condition_code_regs (unsigned int* p1, unsigned int* p2);
+
+static void sh_init_sync_libfuncs (void) ATTRIBUTE_UNUSED;
+
+static const struct attribute_spec sh_attribute_table[] =
+{
+ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
+ affects_type_identity } */
+ { "interrupt_handler", 0, 0, true, false, false,
+ sh_handle_interrupt_handler_attribute, false },
+ { "sp_switch", 1, 1, true, false, false,
+ sh_handle_sp_switch_attribute, false },
+ { "trap_exit", 1, 1, true, false, false,
+ sh_handle_trap_exit_attribute, false },
+ { "renesas", 0, 0, false, true, false,
+ sh_handle_renesas_attribute, false },
+ { "trapa_handler", 0, 0, true, false, false,
+ sh_handle_interrupt_handler_attribute, false },
+ { "nosave_low_regs", 0, 0, true, false, false,
+ sh_handle_interrupt_handler_attribute, false },
+ { "resbank", 0, 0, true, false, false,
+ sh_handle_resbank_handler_attribute, false },
+ { "function_vector", 1, 1, true, false, false,
+ sh2a_handle_function_vector_handler_attribute, false },
+ { NULL, 0, 0, false, false, false, NULL, false }
+};
+
+/* Initialize the GCC target structure. */
+#undef TARGET_ATTRIBUTE_TABLE
+#define TARGET_ATTRIBUTE_TABLE sh_attribute_table
+
+/* The next two are used for debug info when compiling with -gdwarf. */
+#undef TARGET_ASM_UNALIGNED_HI_OP
+#define TARGET_ASM_UNALIGNED_HI_OP "\t.uaword\t"
+#undef TARGET_ASM_UNALIGNED_SI_OP
+#define TARGET_ASM_UNALIGNED_SI_OP "\t.ualong\t"
+
+/* These are NULLed out on non-SH5 in TARGET_OPTION_OVERRIDE. */
+#undef TARGET_ASM_UNALIGNED_DI_OP
+#define TARGET_ASM_UNALIGNED_DI_OP "\t.uaquad\t"
+#undef TARGET_ASM_ALIGNED_DI_OP
+#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
+
+#undef TARGET_OPTION_OVERRIDE
+#define TARGET_OPTION_OVERRIDE sh_option_override
+
+#undef TARGET_PRINT_OPERAND
+#define TARGET_PRINT_OPERAND sh_print_operand
+#undef TARGET_PRINT_OPERAND_ADDRESS
+#define TARGET_PRINT_OPERAND_ADDRESS sh_print_operand_address
+#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
+#define TARGET_PRINT_OPERAND_PUNCT_VALID_P sh_print_operand_punct_valid_p
+#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
+#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA sh_asm_output_addr_const_extra
+
+#undef TARGET_ASM_FUNCTION_EPILOGUE
+#define TARGET_ASM_FUNCTION_EPILOGUE sh_output_function_epilogue
+
+#undef TARGET_ASM_OUTPUT_MI_THUNK
+#define TARGET_ASM_OUTPUT_MI_THUNK sh_output_mi_thunk
+
+#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
+#define TARGET_ASM_CAN_OUTPUT_MI_THUNK \
+ hook_bool_const_tree_hwi_hwi_const_tree_true
+
+#undef TARGET_ASM_FILE_START
+#define TARGET_ASM_FILE_START sh_file_start
+#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
+#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
+
+#undef TARGET_REGISTER_MOVE_COST
+#define TARGET_REGISTER_MOVE_COST sh_register_move_cost
+
+#undef TARGET_INSERT_ATTRIBUTES
+#define TARGET_INSERT_ATTRIBUTES sh_insert_attributes
+
+#undef TARGET_SCHED_ADJUST_COST
+#define TARGET_SCHED_ADJUST_COST sh_adjust_cost
+
+#undef TARGET_SCHED_ISSUE_RATE
+#define TARGET_SCHED_ISSUE_RATE sh_issue_rate
+
+/* The next 5 hooks have been implemented for reenabling sched1. With the
+ help of these macros we are limiting the movement of insns in sched1 to
+ reduce the register pressure. The overall idea is to keep count of SImode
+ and SFmode regs required by already scheduled insns. When these counts
+ cross some threshold values; give priority to insns that free registers.
+ The insn that frees registers is most likely to be the insn with lowest
+ LUID (original insn order); but such an insn might be there in the stalled
+ queue (Q) instead of the ready queue (R). To solve this, we skip cycles
+ up to a max of 8 cycles so that such insns may move from Q -> R.
+
+ The description of the hooks are as below:
+
+ TARGET_SCHED_INIT_GLOBAL: Added a new target hook in the generic
+ scheduler; it is called inside the sched_init function just after
+ find_insn_reg_weights function call. It is used to calculate the SImode
+ and SFmode weights of insns of basic blocks; much similar to what
+ find_insn_reg_weights does.
+ TARGET_SCHED_FINISH_GLOBAL: Corresponding cleanup hook.
+
+ TARGET_SCHED_DFA_NEW_CYCLE: Skip cycles if high register pressure is
+ indicated by TARGET_SCHED_REORDER2; doing this may move insns from
+ (Q)->(R).
+
+ TARGET_SCHED_REORDER: If the register pressure for SImode or SFmode is
+ high; reorder the ready queue so that the insn with lowest LUID will be
+ issued next.
+
+ TARGET_SCHED_REORDER2: If the register pressure is high, indicate to
+ TARGET_SCHED_DFA_NEW_CYCLE to skip cycles.
+
+ TARGET_SCHED_VARIABLE_ISSUE: Cache the value of can_issue_more so that it
+ can be returned from TARGET_SCHED_REORDER2.
+
+ TARGET_SCHED_INIT: Reset the register pressure counting variables. */
+
+#undef TARGET_SCHED_DFA_NEW_CYCLE
+#define TARGET_SCHED_DFA_NEW_CYCLE sh_dfa_new_cycle
+
+#undef TARGET_SCHED_INIT_GLOBAL
+#define TARGET_SCHED_INIT_GLOBAL sh_md_init_global
+
+#undef TARGET_SCHED_FINISH_GLOBAL
+#define TARGET_SCHED_FINISH_GLOBAL sh_md_finish_global
+
+#undef TARGET_SCHED_VARIABLE_ISSUE
+#define TARGET_SCHED_VARIABLE_ISSUE sh_variable_issue
+
+#undef TARGET_SCHED_REORDER
+#define TARGET_SCHED_REORDER sh_reorder
+
+#undef TARGET_SCHED_REORDER2
+#define TARGET_SCHED_REORDER2 sh_reorder2
+
+#undef TARGET_SCHED_INIT
+#define TARGET_SCHED_INIT sh_md_init
+
+#undef TARGET_DELEGITIMIZE_ADDRESS
+#define TARGET_DELEGITIMIZE_ADDRESS sh_delegitimize_address
+
+#undef TARGET_LEGITIMIZE_ADDRESS
+#define TARGET_LEGITIMIZE_ADDRESS sh_legitimize_address
+
+#undef TARGET_CANNOT_MODIFY_JUMPS_P
+#define TARGET_CANNOT_MODIFY_JUMPS_P sh_cannot_modify_jumps_p
+#undef TARGET_BRANCH_TARGET_REGISTER_CLASS
+#define TARGET_BRANCH_TARGET_REGISTER_CLASS sh_target_reg_class
+#undef TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED
+#define TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED \
+ sh_optimize_target_register_callee_saved
+
+#undef TARGET_MS_BITFIELD_LAYOUT_P
+#define TARGET_MS_BITFIELD_LAYOUT_P sh_ms_bitfield_layout_p
+
+#undef TARGET_INIT_BUILTINS
+#define TARGET_INIT_BUILTINS sh_init_builtins
+#undef TARGET_BUILTIN_DECL
+#define TARGET_BUILTIN_DECL sh_builtin_decl
+#undef TARGET_EXPAND_BUILTIN
+#define TARGET_EXPAND_BUILTIN sh_expand_builtin
+
+#undef TARGET_FUNCTION_OK_FOR_SIBCALL
+#define TARGET_FUNCTION_OK_FOR_SIBCALL sh_function_ok_for_sibcall
+
+#undef TARGET_CANNOT_COPY_INSN_P
+#define TARGET_CANNOT_COPY_INSN_P sh_cannot_copy_insn_p
+#undef TARGET_RTX_COSTS
+#define TARGET_RTX_COSTS sh_rtx_costs
+#undef TARGET_ADDRESS_COST
+#define TARGET_ADDRESS_COST sh_address_cost
+#undef TARGET_ALLOCATE_INITIAL_VALUE
+#define TARGET_ALLOCATE_INITIAL_VALUE sh_allocate_initial_value
+
+#undef TARGET_MACHINE_DEPENDENT_REORG
+#define TARGET_MACHINE_DEPENDENT_REORG sh_reorg
+
+#undef TARGET_DWARF_REGISTER_SPAN
+#define TARGET_DWARF_REGISTER_SPAN sh_dwarf_register_span
+
+#ifdef HAVE_AS_TLS
+#undef TARGET_HAVE_TLS
+#define TARGET_HAVE_TLS true
+#endif
+
+#undef TARGET_PROMOTE_PROTOTYPES
+#define TARGET_PROMOTE_PROTOTYPES sh_promote_prototypes
+#undef TARGET_PROMOTE_FUNCTION_MODE
+#define TARGET_PROMOTE_FUNCTION_MODE sh_promote_function_mode
+
+#undef TARGET_FUNCTION_VALUE
+#define TARGET_FUNCTION_VALUE sh_function_value
+#undef TARGET_FUNCTION_VALUE_REGNO_P
+#define TARGET_FUNCTION_VALUE_REGNO_P sh_function_value_regno_p
+#undef TARGET_LIBCALL_VALUE
+#define TARGET_LIBCALL_VALUE sh_libcall_value
+#undef TARGET_STRUCT_VALUE_RTX
+#define TARGET_STRUCT_VALUE_RTX sh_struct_value_rtx
+#undef TARGET_RETURN_IN_MEMORY
+#define TARGET_RETURN_IN_MEMORY sh_return_in_memory
+
+#undef TARGET_EXPAND_BUILTIN_SAVEREGS
+#define TARGET_EXPAND_BUILTIN_SAVEREGS sh_builtin_saveregs
+#undef TARGET_SETUP_INCOMING_VARARGS
+#define TARGET_SETUP_INCOMING_VARARGS sh_setup_incoming_varargs
+#undef TARGET_STRICT_ARGUMENT_NAMING
+#define TARGET_STRICT_ARGUMENT_NAMING sh_strict_argument_naming
+#undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
+#define TARGET_PRETEND_OUTGOING_VARARGS_NAMED sh_pretend_outgoing_varargs_named
+#undef TARGET_MUST_PASS_IN_STACK
+#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
+#undef TARGET_PASS_BY_REFERENCE
+#define TARGET_PASS_BY_REFERENCE sh_pass_by_reference
+#undef TARGET_CALLEE_COPIES
+#define TARGET_CALLEE_COPIES sh_callee_copies
+#undef TARGET_ARG_PARTIAL_BYTES
+#define TARGET_ARG_PARTIAL_BYTES sh_arg_partial_bytes
+#undef TARGET_FUNCTION_ARG
+#define TARGET_FUNCTION_ARG sh_function_arg
+#undef TARGET_FUNCTION_ARG_ADVANCE
+#define TARGET_FUNCTION_ARG_ADVANCE sh_function_arg_advance
+
+#undef TARGET_BUILD_BUILTIN_VA_LIST
+#define TARGET_BUILD_BUILTIN_VA_LIST sh_build_builtin_va_list
+#undef TARGET_EXPAND_BUILTIN_VA_START
+#define TARGET_EXPAND_BUILTIN_VA_START sh_va_start
+#undef TARGET_GIMPLIFY_VA_ARG_EXPR
+#define TARGET_GIMPLIFY_VA_ARG_EXPR sh_gimplify_va_arg_expr
+
+#undef TARGET_SCALAR_MODE_SUPPORTED_P
+#define TARGET_SCALAR_MODE_SUPPORTED_P sh_scalar_mode_supported_p
+#undef TARGET_VECTOR_MODE_SUPPORTED_P
+#define TARGET_VECTOR_MODE_SUPPORTED_P sh_vector_mode_supported_p
+
+#undef TARGET_CHECK_PCH_TARGET_FLAGS
+#define TARGET_CHECK_PCH_TARGET_FLAGS sh_check_pch_target_flags
+
+#undef TARGET_DWARF_CALLING_CONVENTION
+#define TARGET_DWARF_CALLING_CONVENTION sh_dwarf_calling_convention
+
+#undef TARGET_FRAME_POINTER_REQUIRED
+#define TARGET_FRAME_POINTER_REQUIRED sh_frame_pointer_required
+
+/* Return regmode weight for insn. */
+#define INSN_REGMODE_WEIGHT(INSN, MODE)\
+ regmode_weight[((MODE) == SImode) ? 0 : 1][INSN_UID (INSN)]
+
+/* Return current register pressure for regmode. */
+#define CURR_REGMODE_PRESSURE(MODE)\
+ curr_regmode_pressure[((MODE) == SImode) ? 0 : 1]
+
+#undef TARGET_ENCODE_SECTION_INFO
+#define TARGET_ENCODE_SECTION_INFO sh_encode_section_info
+
+#undef TARGET_SECONDARY_RELOAD
+#define TARGET_SECONDARY_RELOAD sh_secondary_reload
+
+#undef TARGET_PREFERRED_RELOAD_CLASS
+#define TARGET_PREFERRED_RELOAD_CLASS sh_preferred_reload_class
+
+#undef TARGET_CONDITIONAL_REGISTER_USAGE
+#define TARGET_CONDITIONAL_REGISTER_USAGE sh_conditional_register_usage
+
+#undef TARGET_LEGITIMATE_ADDRESS_P
+#define TARGET_LEGITIMATE_ADDRESS_P sh_legitimate_address_p
+
+#undef TARGET_TRAMPOLINE_INIT
+#define TARGET_TRAMPOLINE_INIT sh_trampoline_init
+#undef TARGET_TRAMPOLINE_ADJUST_ADDRESS
+#define TARGET_TRAMPOLINE_ADJUST_ADDRESS sh_trampoline_adjust_address
+
+#undef TARGET_LEGITIMATE_CONSTANT_P
+#define TARGET_LEGITIMATE_CONSTANT_P sh_legitimate_constant_p
+
+#undef TARGET_CANONICALIZE_COMPARISON
+#define TARGET_CANONICALIZE_COMPARISON sh_canonicalize_comparison
+
+#undef TARGET_FIXED_CONDITION_CODE_REGS
+#define TARGET_FIXED_CONDITION_CODE_REGS sh_fixed_condition_code_regs
+
+/* Machine-specific symbol_ref flags. */
+#define SYMBOL_FLAG_FUNCVEC_FUNCTION (SYMBOL_FLAG_MACH_DEP << 0)
+
+/* The tas.b instruction sets the 7th bit in the byte, i.e. 0x80. This value
+ is used by optabs.c atomic op expansion code as well as in sync.md. */
+#undef TARGET_ATOMIC_TEST_AND_SET_TRUEVAL
+#define TARGET_ATOMIC_TEST_AND_SET_TRUEVAL 0x80
+
+struct gcc_target targetm = TARGET_INITIALIZER;
+
+
+/* Information on the currently selected atomic model.
+ This is initialized in sh_option_override. */
+static sh_atomic_model selected_atomic_model_;
+
+const sh_atomic_model&
+selected_atomic_model (void)
+{
+ return selected_atomic_model_;
+}
+
+static sh_atomic_model
+parse_validate_atomic_model_option (const char* str)
+{
+ const char* model_names[sh_atomic_model::num_models];
+ model_names[sh_atomic_model::none] = "none";
+ model_names[sh_atomic_model::soft_gusa] = "soft-gusa";
+ model_names[sh_atomic_model::hard_llcs] = "hard-llcs";
+ model_names[sh_atomic_model::soft_tcb] = "soft-tcb";
+ model_names[sh_atomic_model::soft_imask] = "soft-imask";
+
+ const char* model_cdef_names[sh_atomic_model::num_models];
+ model_cdef_names[sh_atomic_model::none] = "NONE";
+ model_cdef_names[sh_atomic_model::soft_gusa] = "SOFT_GUSA";
+ model_cdef_names[sh_atomic_model::hard_llcs] = "HARD_LLCS";
+ model_cdef_names[sh_atomic_model::soft_tcb] = "SOFT_TCB";
+ model_cdef_names[sh_atomic_model::soft_imask] = "SOFT_IMASK";
+
+ sh_atomic_model ret;
+ ret.type = sh_atomic_model::none;
+ ret.name = model_names[sh_atomic_model::none];
+ ret.cdef_name = model_cdef_names[sh_atomic_model::none];
+ ret.strict = false;
+ ret.tcb_gbr_offset = -1;
+
+ /* Handle empty string as 'none'. */
+ if (str == NULL || *str == '\0')
+ return ret;
+
+#define err_ret(...) do { error (__VA_ARGS__); return ret; } while (0)
+
+ std::vector<std::string> tokens;
+ for (std::stringstream ss (str); ss.good (); )
+ {
+ tokens.push_back (std::string ());
+ std::getline (ss, tokens.back (), ',');
+ }
+
+ if (tokens.empty ())
+ err_ret ("invalid atomic model option");
+
+ /* The first token must be the atomic model name. */
+ {
+ for (size_t i = 0; i < sh_atomic_model::num_models; ++i)
+ if (tokens.front () == model_names[i])
+ {
+ ret.type = (sh_atomic_model::enum_type)i;
+ ret.name = model_names[i];
+ ret.cdef_name = model_cdef_names[i];
+ goto got_mode_name;
+ }
+
+ err_ret ("invalid atomic model name \"%s\"", tokens.front ().c_str ());
+got_mode_name:;
+ }
+
+ /* Go through the remaining tokens. */
+ for (size_t i = 1; i < tokens.size (); ++i)
+ {
+ if (tokens[i] == "strict")
+ ret.strict = true;
+ else if (tokens[i].find ("gbr-offset=") == 0)
+ {
+ std::string offset_str = tokens[i].substr (strlen ("gbr-offset="));
+ ret.tcb_gbr_offset = integral_argument (offset_str.c_str ());
+ if (offset_str.empty () || ret.tcb_gbr_offset == -1)
+ err_ret ("could not parse gbr-offset value \"%s\" in atomic model "
+ "option", offset_str.c_str ());
+ }
+ else
+ err_ret ("unknown parameter \"%s\" in atomic model option",
+ tokens[i].c_str ());
+ }
+
+ /* Check that the selection makes sense. */
+ if (TARGET_SHMEDIA && ret.type != sh_atomic_model::none)
+ err_ret ("atomic operations are not supported on SHmedia");
+
+ if (ret.type == sh_atomic_model::soft_gusa && !TARGET_SH3)
+ err_ret ("atomic model %s is only available on SH3 and SH4 targets",
+ ret.name);
+
+ if (ret.type == sh_atomic_model::hard_llcs && !TARGET_SH4A)
+ err_ret ("atomic model %s is only available on SH4A targets", ret.name);
+
+ if (ret.type == sh_atomic_model::soft_tcb && ret.tcb_gbr_offset == -1)
+ err_ret ("atomic model %s requires gbr-offset parameter", ret.name);
+
+ if (ret.type == sh_atomic_model::soft_tcb
+ && (ret.tcb_gbr_offset < 0 || ret.tcb_gbr_offset > 1020
+ || (ret.tcb_gbr_offset & 3) != 0))
+ err_ret ("invalid gbr-offset value \"%d\" for atomic model %s; it must be "
+ "a multiple of 4 in the range 0-1020", ret.tcb_gbr_offset,
+ ret.name);
+
+ if (ret.type == sh_atomic_model::soft_imask && TARGET_USERMODE)
+ err_ret ("cannot use atomic model %s in user mode", ret.name);
+
+ return ret;
+
+#undef err_ret
+}
+
+/* Register SH specific RTL passes. */
+extern opt_pass* make_pass_sh_treg_combine (gcc::context* ctx, bool split_insns,
+ const char* name);
+extern opt_pass* make_pass_sh_optimize_sett_clrt (gcc::context* ctx,
+ const char* name);
+static void
+register_sh_passes (void)
+{
+ if (!TARGET_SH1)
+ return;
+
+/* Running the sh_treg_combine pass after ce1 generates better code when
+ comparisons are combined and reg-reg moves are introduced, because
+ reg-reg moves will be eliminated afterwards. However, there are quite
+ some cases where combine will be unable to fold comparison related insns,
+ thus for now don't do it.
+ register_pass (make_pass_sh_treg_combine (g, false, "sh_treg_combine1"),
+ PASS_POS_INSERT_AFTER, "ce1", 1);
+*/
+
+ /* Run sh_treg_combine pass after combine but before register allocation. */
+ register_pass (make_pass_sh_treg_combine (g, true, "sh_treg_combine2"),
+ PASS_POS_INSERT_AFTER, "split1", 1);
+
+ /* Run sh_treg_combine pass after register allocation and basic block
+ reordering as this sometimes creates new opportunities. */
+ register_pass (make_pass_sh_treg_combine (g, true, "sh_treg_combine3"),
+ PASS_POS_INSERT_AFTER, "split4", 1);
+
+ /* Optimize sett and clrt insns, by e.g. removing them if the T bit value
+ is known after a conditional branch.
+ This must be done after basic blocks and branch conditions have
+ stabilized and won't be changed by further passes. */
+ register_pass (make_pass_sh_optimize_sett_clrt (g, "sh_optimize_sett_clrt"),
+ PASS_POS_INSERT_BEFORE, "sched2", 1);
+}
+
+/* Implement TARGET_OPTION_OVERRIDE macro. Validate and override
+ various options, and do some machine dependent initialization. */
+static void
+sh_option_override (void)
+{
+ int regno;
+
+ SUBTARGET_OVERRIDE_OPTIONS;
+ if (optimize > 1 && !optimize_size)
+ target_flags |= MASK_SAVE_ALL_TARGET_REGS;
+
+ /* Set default values of TARGET_CBRANCHDI4 and TARGET_CMPEQDI_T. */
+ TARGET_CBRANCHDI4 = 1;
+ TARGET_CMPEQDI_T = 0;
+
+ sh_cpu = PROCESSOR_SH1;
+ assembler_dialect = 0;
+ if (TARGET_SH2)
+ sh_cpu = PROCESSOR_SH2;
+ if (TARGET_SH2E)
+ sh_cpu = PROCESSOR_SH2E;
+ if (TARGET_SH2A)
+ sh_cpu = PROCESSOR_SH2A;
+ if (TARGET_SH3)
+ sh_cpu = PROCESSOR_SH3;
+ if (TARGET_SH3E)
+ sh_cpu = PROCESSOR_SH3E;
+ if (TARGET_SH4)
+ {
+ assembler_dialect = 1;
+ sh_cpu = PROCESSOR_SH4;
+ }
+ if (TARGET_SH4A_ARCH)
+ {
+ assembler_dialect = 1;
+ sh_cpu = PROCESSOR_SH4A;
+ }
+ if (TARGET_SH5)
+ {
+ sh_cpu = PROCESSOR_SH5;
+ target_flags |= MASK_ALIGN_DOUBLE;
+ if (TARGET_SHMEDIA_FPU)
+ target_flags |= MASK_FMOVD;
+ if (TARGET_SHMEDIA)
+ {
+ /* There are no delay slots on SHmedia. */
+ flag_delayed_branch = 0;
+ /* Relaxation isn't yet supported for SHmedia */
+ target_flags &= ~MASK_RELAX;
+ /* After reload, if conversion does little good but can cause
+ ICEs:
+ - find_if_block doesn't do anything for SH because we don't
+ have conditional execution patterns. (We use conditional
+ move patterns, which are handled differently, and only
+ before reload).
+ - find_cond_trap doesn't do anything for the SH because we
+ don't have conditional traps.
+ - find_if_case_1 uses redirect_edge_and_branch_force in
+ the only path that does an optimization, and this causes
+ an ICE when branch targets are in registers.
+ - find_if_case_2 doesn't do anything for the SHmedia after
+ reload except when it can redirect a tablejump - and
+ that's rather rare. */
+ flag_if_conversion2 = 0;
+ if (! strcmp (sh_div_str, "call"))
+ sh_div_strategy = SH_DIV_CALL;
+ else if (! strcmp (sh_div_str, "call2"))
+ sh_div_strategy = SH_DIV_CALL2;
+ if (! strcmp (sh_div_str, "fp") && TARGET_FPU_ANY)
+ sh_div_strategy = SH_DIV_FP;
+ else if (! strcmp (sh_div_str, "inv"))
+ sh_div_strategy = SH_DIV_INV;
+ else if (! strcmp (sh_div_str, "inv:minlat"))
+ sh_div_strategy = SH_DIV_INV_MINLAT;
+ else if (! strcmp (sh_div_str, "inv20u"))
+ sh_div_strategy = SH_DIV_INV20U;
+ else if (! strcmp (sh_div_str, "inv20l"))
+ sh_div_strategy = SH_DIV_INV20L;
+ else if (! strcmp (sh_div_str, "inv:call2"))
+ sh_div_strategy = SH_DIV_INV_CALL2;
+ else if (! strcmp (sh_div_str, "inv:call"))
+ sh_div_strategy = SH_DIV_INV_CALL;
+ else if (! strcmp (sh_div_str, "inv:fp"))
+ {
+ if (TARGET_FPU_ANY)
+ sh_div_strategy = SH_DIV_INV_FP;
+ else
+ sh_div_strategy = SH_DIV_INV;
+ }
+ TARGET_CBRANCHDI4 = 0;
+ /* Assembler CFI isn't yet fully supported for SHmedia. */
+ flag_dwarf2_cfi_asm = 0;
+ }
+ }
+ else
+ {
+ /* Only the sh64-elf assembler fully supports .quad properly. */
+ targetm.asm_out.aligned_op.di = NULL;
+ targetm.asm_out.unaligned_op.di = NULL;
+ }
+ if (TARGET_SH1)
+ {
+ if (! strcmp (sh_div_str, "call-div1"))
+ sh_div_strategy = SH_DIV_CALL_DIV1;
+ else if (! strcmp (sh_div_str, "call-fp")
+ && (TARGET_FPU_DOUBLE || TARGET_FPU_SINGLE_ONLY
+ || (TARGET_SHCOMPACT && TARGET_FPU_ANY)))
+ sh_div_strategy = SH_DIV_CALL_FP;
+ else if (! strcmp (sh_div_str, "call-table") && TARGET_DYNSHIFT)
+ sh_div_strategy = SH_DIV_CALL_TABLE;
+ else
+ /* Pick one that makes most sense for the target in general.
+ It is not much good to use different functions depending
+ on -Os, since then we'll end up with two different functions
+ when some of the code is compiled for size, and some for
+ speed. */
+
+ /* SH4 tends to emphasize speed. */
+ if (TARGET_HARD_SH4)
+ sh_div_strategy = SH_DIV_CALL_TABLE;
+ /* These have their own way of doing things. */
+ else if (TARGET_SH2A)
+ sh_div_strategy = SH_DIV_INTRINSIC;
+ /* ??? Should we use the integer SHmedia function instead? */
+ else if (TARGET_SHCOMPACT && TARGET_FPU_ANY)
+ sh_div_strategy = SH_DIV_CALL_FP;
+ /* SH1 .. SH3 cores often go into small-footprint systems, so
+ default to the smallest implementation available. */
+ else
+ sh_div_strategy = SH_DIV_CALL_DIV1;
+ }
+ if (!TARGET_SH1)
+ TARGET_PRETEND_CMOVE = 0;
+ if (sh_divsi3_libfunc[0])
+ ; /* User supplied - leave it alone. */
+ else if (TARGET_DIVIDE_CALL_FP)
+ sh_divsi3_libfunc = "__sdivsi3_i4";
+ else if (TARGET_DIVIDE_CALL_TABLE)
+ sh_divsi3_libfunc = "__sdivsi3_i4i";
+ else if (TARGET_SH5)
+ sh_divsi3_libfunc = "__sdivsi3_1";
+ else
+ sh_divsi3_libfunc = "__sdivsi3";
+ if (sh_branch_cost == -1)
+ {
+ sh_branch_cost = 1;
+
+ /* The SH1 does not have delay slots, hence we get a pipeline stall
+ at every branch. The SH4 is superscalar, so the single delay slot
+ is not sufficient to keep both pipelines filled. */
+ if (! TARGET_SH2 || TARGET_HARD_SH4)
+ sh_branch_cost = 2;
+ }
+
+ /* Set -mzdcbranch for SH4 / SH4A if not otherwise specified by the user. */
+ if (! global_options_set.x_TARGET_ZDCBRANCH && TARGET_HARD_SH4)
+ TARGET_ZDCBRANCH = 1;
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (! VALID_REGISTER_P (regno))
+ sh_register_names[regno][0] = '\0';
+
+ for (regno = 0; regno < ADDREGNAMES_SIZE; regno++)
+ if (! VALID_REGISTER_P (ADDREGNAMES_REGNO (regno)))
+ sh_additional_register_names[regno][0] = '\0';
+
+ if ((flag_pic && ! TARGET_PREFERGOT)
+ || (TARGET_SHMEDIA && !TARGET_PT_FIXED))
+ flag_no_function_cse = 1;
+
+ if (targetm.small_register_classes_for_mode_p (VOIDmode))
+ {
+ /* Never run scheduling before reload, since that can
+ break global alloc, and generates slower code anyway due
+ to the pressure on R0. */
+ /* Enable sched1 for SH4 if the user explicitly requests.
+ When sched1 is enabled, the ready queue will be reordered by
+ the target hooks if pressure is high. We can not do this for
+ PIC, SH3 and lower as they give spill failures for R0. */
+ if (!TARGET_HARD_SH4 || flag_pic)
+ flag_schedule_insns = 0;
+ /* ??? Current exception handling places basic block boundaries
+ after call_insns. It causes the high pressure on R0 and gives
+ spill failures for R0 in reload. See PR 22553 and the thread
+ on gcc-patches
+ <http://gcc.gnu.org/ml/gcc-patches/2005-10/msg00816.html>. */
+ else if (flag_exceptions)
+ {
+ if (flag_schedule_insns && global_options_set.x_flag_schedule_insns)
+ warning (0, "ignoring -fschedule-insns because of exception "
+ "handling bug");
+ flag_schedule_insns = 0;
+ }
+ else if (flag_schedule_insns
+ && !global_options_set.x_flag_schedule_insns)
+ flag_schedule_insns = 0;
+ }
+
+ /* Unwind info is not correct around the CFG unless either a frame
+ pointer is present or M_A_O_A is set. Fixing this requires rewriting
+ unwind info generation to be aware of the CFG and propagating states
+ around edges. */
+ if ((flag_unwind_tables || flag_asynchronous_unwind_tables
+ || flag_exceptions || flag_non_call_exceptions)
+ && flag_omit_frame_pointer && !TARGET_ACCUMULATE_OUTGOING_ARGS)
+ {
+ warning (0, "unwind tables currently require either a frame pointer "
+ "or -maccumulate-outgoing-args for correctness");
+ TARGET_ACCUMULATE_OUTGOING_ARGS = 1;
+ }
+
+ /* Unwinding with -freorder-blocks-and-partition does not work on this
+ architecture, because it requires far jumps to label crossing between
+ hot/cold sections which are rejected on this architecture. */
+ if (flag_reorder_blocks_and_partition)
+ {
+ if (flag_exceptions)
+ {
+ inform (input_location,
+ "-freorder-blocks-and-partition does not work with "
+ "exceptions on this architecture");
+ flag_reorder_blocks_and_partition = 0;
+ flag_reorder_blocks = 1;
+ }
+ else if (flag_unwind_tables)
+ {
+ inform (input_location,
+ "-freorder-blocks-and-partition does not support unwind "
+ "info on this architecture");
+ flag_reorder_blocks_and_partition = 0;
+ flag_reorder_blocks = 1;
+ }
+ }
+
+ /* Adjust loop, jump and function alignment values (in bytes), if those
+ were not specified by the user using -falign-loops, -falign-jumps
+ and -falign-functions options.
+ 32 bit alignment is better for speed, because instructions can be
+ fetched as a pair from a longword boundary. For size use 16 bit
+ alignment to get more compact code.
+ Aligning all jumps increases the code size, even if it might
+ result in slightly faster code. Thus, it is set to the smallest
+ alignment possible if not specified by the user. */
+ if (align_loops == 0)
+ {
+ if (TARGET_SH5)
+ align_loops = 8;
+ else
+ align_loops = optimize_size ? 2 : 4;
+ }
+
+ if (align_jumps == 0)
+ {
+ if (TARGET_SHMEDIA)
+ align_jumps = 1 << CACHE_LOG;
+ else
+ align_jumps = 2;
+ }
+ else if (align_jumps < (TARGET_SHMEDIA ? 4 : 2))
+ align_jumps = TARGET_SHMEDIA ? 4 : 2;
+
+ if (align_functions == 0)
+ {
+ if (TARGET_SHMEDIA)
+ align_functions = optimize_size
+ ? FUNCTION_BOUNDARY/8 : (1 << CACHE_LOG);
+ else
+ align_functions = optimize_size ? 2 : 4;
+ }
+
+ /* The linker relaxation code breaks when a function contains
+ alignments that are larger than that at the start of a
+ compilation unit. */
+ if (TARGET_RELAX)
+ {
+ int min_align = align_loops > align_jumps ? align_loops : align_jumps;
+
+ /* Also take possible .long constants / mova tables into account. */
+ if (min_align < 4)
+ min_align = 4;
+ if (align_functions < min_align)
+ align_functions = min_align;
+ }
+
+ if (flag_unsafe_math_optimizations)
+ {
+ /* Enable fsca insn for SH4A if not otherwise specified by the user. */
+ if (global_options_set.x_TARGET_FSCA == 0 && TARGET_SH4A_FP)
+ TARGET_FSCA = 1;
+
+ /* Enable fsrra insn for SH4A if not otherwise specified by the user. */
+ if (global_options_set.x_TARGET_FSRRA == 0 && TARGET_SH4A_FP)
+ TARGET_FSRRA = 1;
+ }
+
+ /* Allow fsrra insn only if -funsafe-math-optimizations and
+ -ffinite-math-only is enabled. */
+ TARGET_FSRRA = TARGET_FSRRA
+ && flag_unsafe_math_optimizations
+ && flag_finite_math_only;
+
+ /* If the -mieee option was not explicitly set by the user, turn it on
+ unless -ffinite-math-only was specified. See also PR 33135. */
+ if (! global_options_set.x_TARGET_IEEE)
+ TARGET_IEEE = ! flag_finite_math_only;
+
+ if (sh_fixed_range_str)
+ sh_fix_range (sh_fixed_range_str);
+
+ /* This target defaults to strict volatile bitfields. */
+ if (flag_strict_volatile_bitfields < 0 && abi_version_at_least(2))
+ flag_strict_volatile_bitfields = 1;
+
+ /* Parse atomic model option and make sure it is valid for the current
+ target CPU. */
+ selected_atomic_model_
+ = parse_validate_atomic_model_option (sh_atomic_model_str);
+
+ register_sh_passes ();
+}
+
+/* Print the operand address in x to the stream. */
+static void
+sh_print_operand_address (FILE *stream, rtx x)
+{
+ switch (GET_CODE (x))
+ {
+ case REG:
+ case SUBREG:
+ fprintf (stream, "@%s", reg_names[true_regnum (x)]);
+ break;
+
+ case PLUS:
+ {
+ rtx base = XEXP (x, 0);
+ rtx index = XEXP (x, 1);
+
+ switch (GET_CODE (index))
+ {
+ case CONST_INT:
+ fprintf (stream, "@(%d,%s)", (int) INTVAL (index),
+ reg_names[true_regnum (base)]);
+ break;
+
+ case REG:
+ case SUBREG:
+ {
+ int base_num = true_regnum (base);
+ int index_num = true_regnum (index);
+
+ fprintf (stream, "@(r0,%s)",
+ reg_names[MAX (base_num, index_num)]);
+ break;
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+ break;
+
+ case PRE_DEC:
+ fprintf (stream, "@-%s", reg_names[true_regnum (XEXP (x, 0))]);
+ break;
+
+ case POST_INC:
+ fprintf (stream, "@%s+", reg_names[true_regnum (XEXP (x, 0))]);
+ break;
+
+ default:
+ x = mark_constant_pool_use (x);
+ output_addr_const (stream, x);
+ break;
+ }
+}
+
+/* Print operand x (an rtx) in assembler syntax to file stream
+ according to modifier code.
+
+ '.' print a .s if insn needs delay slot
+ ',' print LOCAL_LABEL_PREFIX
+ '@' print trap, rte or rts depending upon pragma interruptness
+ '#' output a nop if there is nothing to put in the delay slot
+ ''' print likelihood suffix (/u for unlikely).
+ '>' print branch target if -fverbose-asm
+ 'O' print a constant without the #
+ 'R' print the LSW of a dp value - changes if in little endian
+ 'S' print the MSW of a dp value - changes if in little endian
+ 'T' print the next word of a dp value - same as 'R' in big endian mode.
+ 'M' SHMEDIA: print an `x' if `m' will print `base,index'.
+ otherwise: print .b / .w / .l / .s / .d suffix if operand is a MEM.
+ 'N' print 'r63' if the operand is (const_int 0).
+ 'd' print a V2SF reg as dN instead of fpN.
+ 'm' print a pair `base,offset' or `base,index', for LD and ST.
+ 'U' Likewise for {LD,ST}{HI,LO}.
+ 'V' print the position of a single bit set.
+ 'W' print the position of a single bit cleared.
+ 't' print a memory address which is a register.
+ 'u' prints the lowest 16 bits of CONST_INT, as an unsigned value.
+ 'o' output an operator. */
+static void
+sh_print_operand (FILE *stream, rtx x, int code)
+{
+ int regno;
+ enum machine_mode mode;
+
+ switch (code)
+ {
+ tree trapa_attr;
+
+ case '.':
+ if (final_sequence
+ && ! INSN_ANNULLED_BRANCH_P (XVECEXP (final_sequence, 0, 0))
+ && get_attr_length (XVECEXP (final_sequence, 0, 1)))
+ fprintf (stream, ASSEMBLER_DIALECT ? "/s" : ".s");
+ break;
+ case ',':
+ fprintf (stream, "%s", LOCAL_LABEL_PREFIX);
+ break;
+ case '@':
+ trapa_attr = lookup_attribute ("trap_exit",
+ DECL_ATTRIBUTES (current_function_decl));
+ if (trapa_attr)
+ fprintf (stream, "trapa #%ld",
+ (long) TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (trapa_attr))));
+ else if (sh_cfun_interrupt_handler_p ())
+ {
+ if (sh_cfun_resbank_handler_p ())
+ fprintf (stream, "resbank\n");
+ fprintf (stream, "rte");
+ }
+ else
+ fprintf (stream, "rts");
+ break;
+ case '#':
+ /* Output a nop if there's nothing in the delay slot. */
+ if (dbr_sequence_length () == 0)
+ fprintf (stream, "\n\tnop");
+ break;
+ case '\'':
+ {
+ rtx note = find_reg_note (current_output_insn, REG_BR_PROB, 0);
+
+ if (note && XINT (note, 0) * 2 < REG_BR_PROB_BASE)
+ fputs ("/u", stream);
+ break;
+ }
+ case '>':
+ if (flag_verbose_asm && JUMP_LABEL (current_output_insn))
+ {
+ fputs ("\t! target: ", stream);
+ output_addr_const (stream, JUMP_LABEL (current_output_insn));
+ }
+ break;
+ case 'O':
+ x = mark_constant_pool_use (x);
+ output_addr_const (stream, x);
+ break;
+ /* N.B.: %R / %S / %T adjust memory addresses by four.
+ For SHMEDIA, that means they can be used to access the first and
+ second 32 bit part of a 64 bit (or larger) value that
+ might be held in floating point registers or memory.
+ While they can be used to access 64 bit parts of a larger value
+ held in general purpose registers, that won't work with memory -
+ neither for fp registers, since the frxx names are used. */
+ case 'R':
+ if (REG_P (x) || GET_CODE (x) == SUBREG)
+ {
+ regno = true_regnum (x);
+ regno += FP_REGISTER_P (regno) ? 1 : SH_REG_LSW_OFFSET;
+ fputs (reg_names[regno], (stream));
+ }
+ else if (MEM_P (x))
+ {
+ x = adjust_address (x, SImode, 4 * SH_REG_LSW_OFFSET);
+ sh_print_operand_address (stream, XEXP (x, 0));
+ }
+ else
+ {
+ rtx sub = NULL_RTX;
+
+ mode = GET_MODE (x);
+ if (mode == VOIDmode)
+ mode = DImode;
+ if (GET_MODE_SIZE (mode) >= 8)
+ sub = simplify_subreg (SImode, x, mode, 4 * SH_REG_LSW_OFFSET);
+ if (sub)
+ sh_print_operand (stream, sub, 0);
+ else
+ output_operand_lossage ("invalid operand to %%R");
+ }
+ break;
+ case 'S':
+ if (REG_P (x) || GET_CODE (x) == SUBREG)
+ {
+ regno = true_regnum (x);
+ regno += FP_REGISTER_P (regno) ? 0 : SH_REG_MSW_OFFSET;
+ fputs (reg_names[regno], (stream));
+ }
+ else if (MEM_P (x))
+ {
+ x = adjust_address (x, SImode, 4 * SH_REG_MSW_OFFSET);
+ sh_print_operand_address (stream, XEXP (x, 0));
+ }
+ else
+ {
+ rtx sub = NULL_RTX;
+
+ mode = GET_MODE (x);
+ if (mode == VOIDmode)
+ mode = DImode;
+ if (GET_MODE_SIZE (mode) >= 8)
+ sub = simplify_subreg (SImode, x, mode, 4 * SH_REG_MSW_OFFSET);
+ if (sub)
+ sh_print_operand (stream, sub, 0);
+ else
+ output_operand_lossage ("invalid operand to %%S");
+ }
+ break;
+ case 'T':
+ /* Next word of a double. */
+ switch (GET_CODE (x))
+ {
+ case REG:
+ fputs (reg_names[REGNO (x) + 1], (stream));
+ break;
+ case MEM:
+ if (GET_CODE (XEXP (x, 0)) != PRE_DEC
+ && GET_CODE (XEXP (x, 0)) != POST_INC)
+ x = adjust_address (x, SImode, 4);
+ sh_print_operand_address (stream, XEXP (x, 0));
+ break;
+ default:
+ break;
+ }
+ break;
+
+ case 't':
+ gcc_assert (MEM_P (x));
+ x = XEXP (x, 0);
+ switch (GET_CODE (x))
+ {
+ case REG:
+ case SUBREG:
+ sh_print_operand (stream, x, 0);
+ break;
+ default:
+ break;
+ }
+ break;
+
+ case 'o':
+ switch (GET_CODE (x))
+ {
+ case PLUS: fputs ("add", stream); break;
+ case MINUS: fputs ("sub", stream); break;
+ case MULT: fputs ("mul", stream); break;
+ case DIV: fputs ("div", stream); break;
+ case EQ: fputs ("eq", stream); break;
+ case NE: fputs ("ne", stream); break;
+ case GT: case LT: fputs ("gt", stream); break;
+ case GE: case LE: fputs ("ge", stream); break;
+ case GTU: case LTU: fputs ("gtu", stream); break;
+ case GEU: case LEU: fputs ("geu", stream); break;
+ default:
+ break;
+ }
+ break;
+ case 'M':
+ if (TARGET_SHMEDIA)
+ {
+ if (MEM_P (x)
+ && GET_CODE (XEXP (x, 0)) == PLUS
+ && (REG_P (XEXP (XEXP (x, 0), 1))
+ || GET_CODE (XEXP (XEXP (x, 0), 1)) == SUBREG))
+ fputc ('x', stream);
+ }
+ else
+ {
+ if (MEM_P (x))
+ {
+ switch (GET_MODE (x))
+ {
+ case QImode: fputs (".b", stream); break;
+ case HImode: fputs (".w", stream); break;
+ case SImode: fputs (".l", stream); break;
+ case SFmode: fputs (".s", stream); break;
+ case DFmode: fputs (".d", stream); break;
+ default: gcc_unreachable ();
+ }
+ }
+ }
+ break;
+
+ case 'm':
+ gcc_assert (MEM_P (x));
+ x = XEXP (x, 0);
+ /* Fall through. */
+ case 'U':
+ switch (GET_CODE (x))
+ {
+ case REG:
+ case SUBREG:
+ sh_print_operand (stream, x, 0);
+ fputs (", 0", stream);
+ break;
+
+ case PLUS:
+ sh_print_operand (stream, XEXP (x, 0), 0);
+ fputs (", ", stream);
+ sh_print_operand (stream, XEXP (x, 1), 0);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+
+ case 'V':
+ {
+ int num = exact_log2 (INTVAL (x));
+ gcc_assert (num >= 0);
+ fprintf (stream, "#%d", num);
+ }
+ break;
+
+ case 'W':
+ {
+ int num = exact_log2 (~INTVAL (x));
+ gcc_assert (num >= 0);
+ fprintf (stream, "#%d", num);
+ }
+ break;
+
+ case 'd':
+ gcc_assert (REG_P (x) && GET_MODE (x) == V2SFmode);
+
+ fprintf ((stream), "d%s", reg_names[REGNO (x)] + 1);
+ break;
+
+ case 'N':
+ if (x == CONST0_RTX (GET_MODE (x)))
+ {
+ fprintf ((stream), "r63");
+ break;
+ }
+ goto default_output;
+ case 'u':
+ if (CONST_INT_P (x))
+ {
+ fprintf ((stream), "%u", (unsigned) INTVAL (x) & (0x10000 - 1));
+ break;
+ }
+ /* Fall through. */
+
+ default_output:
+ default:
+ regno = 0;
+ mode = GET_MODE (x);
+
+ switch (GET_CODE (x))
+ {
+ case TRUNCATE:
+ {
+ rtx inner = XEXP (x, 0);
+ int offset = 0;
+ enum machine_mode inner_mode;
+
+ /* We might see SUBREGs with vector mode registers inside. */
+ if (GET_CODE (inner) == SUBREG
+ && (GET_MODE_SIZE (GET_MODE (inner))
+ == GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner))))
+ && subreg_lowpart_p (inner))
+ inner = SUBREG_REG (inner);
+ if (CONST_INT_P (inner))
+ {
+ x = GEN_INT (trunc_int_for_mode (INTVAL (inner), GET_MODE (x)));
+ goto default_output;
+ }
+ inner_mode = GET_MODE (inner);
+ if (GET_CODE (inner) == SUBREG
+ && (GET_MODE_SIZE (GET_MODE (inner))
+ < GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner))))
+ && REG_P (SUBREG_REG (inner)))
+ {
+ offset = subreg_regno_offset (REGNO (SUBREG_REG (inner)),
+ GET_MODE (SUBREG_REG (inner)),
+ SUBREG_BYTE (inner),
+ GET_MODE (inner));
+ inner = SUBREG_REG (inner);
+ }
+ if (!REG_P (inner) || GET_MODE_SIZE (inner_mode) > 8)
+ abort ();
+ /* Floating point register pairs are always big endian;
+ general purpose registers are 64 bit wide. */
+ regno = REGNO (inner);
+ regno = (HARD_REGNO_NREGS (regno, inner_mode)
+ - HARD_REGNO_NREGS (regno, mode))
+ + offset;
+ x = inner;
+ goto reg;
+ }
+ case SIGN_EXTEND:
+ x = XEXP (x, 0);
+ goto reg;
+ /* FIXME: We need this on SHmedia32 because reload generates
+ some sign-extended HI or QI loads into DImode registers
+ but, because Pmode is SImode, the address ends up with a
+ subreg:SI of the DImode register. Maybe reload should be
+ fixed so as to apply alter_subreg to such loads? */
+ case IF_THEN_ELSE:
+ gcc_assert (trapping_target_operand (x, VOIDmode));
+ x = XEXP (XEXP (x, 2), 0);
+ goto default_output;
+ case SUBREG:
+ gcc_assert (SUBREG_BYTE (x) == 0
+ && REG_P (SUBREG_REG (x)));
+
+ x = SUBREG_REG (x);
+ /* Fall through. */
+
+ reg:
+ case REG:
+ regno += REGNO (x);
+ if (FP_REGISTER_P (regno)
+ && mode == V16SFmode)
+ fprintf ((stream), "mtrx%s", reg_names[regno] + 2);
+ else if (FP_REGISTER_P (REGNO (x))
+ && mode == V4SFmode)
+ fprintf ((stream), "fv%s", reg_names[regno] + 2);
+ else if (REG_P (x)
+ && mode == V2SFmode)
+ fprintf ((stream), "fp%s", reg_names[regno] + 2);
+ else if (FP_REGISTER_P (REGNO (x))
+ && GET_MODE_SIZE (mode) > 4)
+ fprintf ((stream), "d%s", reg_names[regno] + 1);
+ else
+ fputs (reg_names[regno], (stream));
+ break;
+
+ case MEM:
+ output_address (XEXP (x, 0));
+ break;
+
+ default:
+ if (TARGET_SH1)
+ fputc ('#', stream);
+ output_addr_const (stream, x);
+ break;
+ }
+ break;
+ }
+}
+
+static bool
+sh_print_operand_punct_valid_p (unsigned char code)
+{
+ return (code == '.' || code == '#' || code == '@' || code == ','
+ || code == '$' || code == '\'' || code == '>');
+}
+
+/* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA. */
+static bool
+sh_asm_output_addr_const_extra (FILE *file, rtx x)
+{
+ if (GET_CODE (x) == UNSPEC)
+ {
+ switch (XINT (x, 1))
+ {
+ case UNSPEC_DATALABEL:
+ fputs ("datalabel ", file);
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ break;
+ case UNSPEC_PIC:
+ /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ break;
+ case UNSPEC_GOT:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fputs ("@GOT", file);
+ break;
+ case UNSPEC_GOTOFF:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fputs ("@GOTOFF", file);
+ break;
+ case UNSPEC_PLT:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fputs ("@PLT", file);
+ break;
+ case UNSPEC_GOTPLT:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fputs ("@GOTPLT", file);
+ break;
+ case UNSPEC_DTPOFF:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fputs ("@DTPOFF", file);
+ break;
+ case UNSPEC_GOTTPOFF:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fputs ("@GOTTPOFF", file);
+ break;
+ case UNSPEC_TPOFF:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fputs ("@TPOFF", file);
+ break;
+ case UNSPEC_CALLER:
+ {
+ char name[32];
+ /* LPCS stands for Label for PIC Call Site. */
+ targetm.asm_out.generate_internal_label (name, "LPCS",
+ INTVAL (XVECEXP (x, 0, 0)));
+ assemble_name (file, name);
+ }
+ break;
+ case UNSPEC_EXTRACT_S16:
+ case UNSPEC_EXTRACT_U16:
+ {
+ rtx val, shift;
+
+ val = XVECEXP (x, 0, 0);
+ shift = XVECEXP (x, 0, 1);
+ fputc ('(', file);
+ if (shift != const0_rtx)
+ fputc ('(', file);
+ if (GET_CODE (val) == CONST
+ || GET_RTX_CLASS (GET_CODE (val)) != RTX_OBJ)
+ {
+ fputc ('(', file);
+ output_addr_const (file, val);
+ fputc (')', file);
+ }
+ else
+ output_addr_const (file, val);
+ if (shift != const0_rtx)
+ {
+ fputs (" >> ", file);
+ output_addr_const (file, shift);
+ fputc (')', file);
+ }
+ fputs (" & 65535)", file);
+ }
+ break;
+ case UNSPEC_SYMOFF:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fputc ('-', file);
+ if (GET_CODE (XVECEXP (x, 0, 1)) == CONST)
+ {
+ fputc ('(', file);
+ output_addr_const (file, XVECEXP (x, 0, 1));
+ fputc (')', file);
+ }
+ else
+ output_addr_const (file, XVECEXP (x, 0, 1));
+ break;
+ case UNSPEC_PCREL_SYMOFF:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fputs ("-(", file);
+ output_addr_const (file, XVECEXP (x, 0, 1));
+ fputs ("-.)", file);
+ break;
+ default:
+ return false;
+ }
+ return true;
+ }
+ else
+ return false;
+}
+
+/* Encode symbol attributes of a SYMBOL_REF into its
+ SYMBOL_REF_FLAGS. */
+static void
+sh_encode_section_info (tree decl, rtx rtl, int first)
+{
+ default_encode_section_info (decl, rtl, first);
+
+ if (TREE_CODE (decl) == FUNCTION_DECL
+ && sh2a_function_vector_p (decl) && TARGET_SH2A)
+ SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_FUNCVEC_FUNCTION;
+}
+
+/* Prepare operands for a move define_expand; specifically, one of the
+ operands must be in a register. */
+void
+prepare_move_operands (rtx operands[], enum machine_mode mode)
+{
+ if ((mode == SImode || mode == DImode)
+ && flag_pic
+ && ! ((mode == Pmode || mode == ptr_mode)
+ && tls_symbolic_operand (operands[1], Pmode) != TLS_MODEL_NONE))
+ {
+ rtx temp;
+ if (SYMBOLIC_CONST_P (operands[1]))
+ {
+ if (MEM_P (operands[0]))
+ operands[1] = force_reg (Pmode, operands[1]);
+ else if (TARGET_SHMEDIA
+ && GET_CODE (operands[1]) == LABEL_REF
+ && target_reg_operand (operands[0], mode))
+ /* It's ok. */;
+ else
+ {
+ temp = (!can_create_pseudo_p ()
+ ? operands[0]
+ : gen_reg_rtx (Pmode));
+ operands[1] = legitimize_pic_address (operands[1], mode, temp);
+ }
+ }
+ else if (GET_CODE (operands[1]) == CONST
+ && GET_CODE (XEXP (operands[1], 0)) == PLUS
+ && SYMBOLIC_CONST_P (XEXP (XEXP (operands[1], 0), 0)))
+ {
+ temp = !can_create_pseudo_p () ? operands[0] : gen_reg_rtx (Pmode);
+ temp = legitimize_pic_address (XEXP (XEXP (operands[1], 0), 0),
+ mode, temp);
+ operands[1] = expand_binop (mode, add_optab, temp,
+ XEXP (XEXP (operands[1], 0), 1),
+ (!can_create_pseudo_p ()
+ ? temp
+ : gen_reg_rtx (Pmode)),
+ 0, OPTAB_LIB_WIDEN);
+ }
+ }
+
+ if (! reload_in_progress && ! reload_completed)
+ {
+ /* Copy the source to a register if both operands aren't registers. */
+ if (! register_operand (operands[0], mode)
+ && ! sh_register_operand (operands[1], mode))
+ operands[1] = copy_to_mode_reg (mode, operands[1]);
+
+ if (MEM_P (operands[0]) && ! memory_operand (operands[0], mode))
+ {
+ /* This is like change_address_1 (operands[0], mode, 0, 1) ,
+ except that we can't use that function because it is static. */
+ rtx new_rtx = change_address (operands[0], mode, 0);
+ MEM_COPY_ATTRIBUTES (new_rtx, operands[0]);
+ operands[0] = new_rtx;
+ }
+
+ /* This case can happen while generating code to move the result
+ of a library call to the target. Reject `st r0,@(rX,rY)' because
+ reload will fail to find a spill register for rX, since r0 is already
+ being used for the source. */
+ else if (TARGET_SH1
+ && refers_to_regno_p (R0_REG, R0_REG + 1, operands[1], (rtx *)0)
+ && MEM_P (operands[0])
+ && GET_CODE (XEXP (operands[0], 0)) == PLUS
+ && REG_P (XEXP (XEXP (operands[0], 0), 1)))
+ operands[1] = copy_to_mode_reg (mode, operands[1]);
+ }
+
+ if (mode == Pmode || mode == ptr_mode)
+ {
+ rtx op0, op1, opc;
+ enum tls_model tls_kind;
+
+ op0 = operands[0];
+ op1 = operands[1];
+ if (GET_CODE (op1) == CONST
+ && GET_CODE (XEXP (op1, 0)) == PLUS
+ && (tls_symbolic_operand (XEXP (XEXP (op1, 0), 0), Pmode)
+ != TLS_MODEL_NONE))
+ {
+ opc = XEXP (XEXP (op1, 0), 1);
+ op1 = XEXP (XEXP (op1, 0), 0);
+ }
+ else
+ opc = NULL_RTX;
+
+ if ((tls_kind = tls_symbolic_operand (op1, Pmode)) != TLS_MODEL_NONE)
+ {
+ rtx tga_op1, tga_ret, tmp, tmp2;
+
+ if (! flag_pic
+ && (tls_kind == TLS_MODEL_GLOBAL_DYNAMIC
+ || tls_kind == TLS_MODEL_LOCAL_DYNAMIC
+ || tls_kind == TLS_MODEL_INITIAL_EXEC))
+ {
+ /* Don't schedule insns for getting GOT address when
+ the first scheduling is enabled, to avoid spill
+ failures for R0. */
+ if (flag_schedule_insns)
+ emit_insn (gen_blockage ());
+ emit_insn (gen_GOTaddr2picreg ());
+ emit_use (gen_rtx_REG (SImode, PIC_REG));
+ if (flag_schedule_insns)
+ emit_insn (gen_blockage ());
+ }
+
+ switch (tls_kind)
+ {
+ case TLS_MODEL_GLOBAL_DYNAMIC:
+ tga_ret = gen_rtx_REG (Pmode, R0_REG);
+ emit_call_insn (gen_tls_global_dynamic (tga_ret, op1));
+ tmp = gen_reg_rtx (Pmode);
+ emit_move_insn (tmp, tga_ret);
+ op1 = tmp;
+ break;
+
+ case TLS_MODEL_LOCAL_DYNAMIC:
+ tga_ret = gen_rtx_REG (Pmode, R0_REG);
+ emit_call_insn (gen_tls_local_dynamic (tga_ret, op1));
+
+ tmp = gen_reg_rtx (Pmode);
+ emit_move_insn (tmp, tga_ret);
+
+ if (register_operand (op0, Pmode))
+ tmp2 = op0;
+ else
+ tmp2 = gen_reg_rtx (Pmode);
+
+ emit_insn (gen_symDTPOFF2reg (tmp2, op1, tmp));
+ op1 = tmp2;
+ break;
+
+ case TLS_MODEL_INITIAL_EXEC:
+ tga_op1 = !can_create_pseudo_p () ? op0 : gen_reg_rtx (Pmode);
+ tmp = gen_sym2GOTTPOFF (op1);
+ emit_insn (gen_tls_initial_exec (tga_op1, tmp));
+ op1 = tga_op1;
+ break;
+
+ case TLS_MODEL_LOCAL_EXEC:
+ tmp2 = gen_reg_rtx (Pmode);
+ emit_insn (gen_store_gbr (tmp2));
+ tmp = gen_reg_rtx (Pmode);
+ emit_insn (gen_symTPOFF2reg (tmp, op1));
+
+ if (register_operand (op0, Pmode))
+ op1 = op0;
+ else
+ op1 = gen_reg_rtx (Pmode);
+
+ emit_insn (gen_addsi3 (op1, tmp, tmp2));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ if (opc)
+ emit_insn (gen_addsi3 (op1, op1, force_reg (SImode, opc)));
+ operands[1] = op1;
+ }
+ }
+}
+
+/* Implement the canonicalize_comparison target hook for the combine
+ pass. For the target hook this function is invoked via
+ sh_canonicalize_comparison. This function is also re-used to
+ canonicalize comparisons in cbranch pattern expanders. */
+static void
+sh_canonicalize_comparison (enum rtx_code& cmp, rtx& op0, rtx& op1,
+ enum machine_mode mode,
+ bool op0_preserve_value)
+{
+ /* When invoked from within the combine pass the mode is not specified,
+ so try to get it from one of the operands. */
+ if (mode == VOIDmode)
+ mode = GET_MODE (op0);
+ if (mode == VOIDmode)
+ mode = GET_MODE (op1);
+
+ // We need to have a mode to do something useful here.
+ if (mode == VOIDmode)
+ return;
+
+ // Currently, we don't deal with floats here.
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
+ return;
+
+ // Make sure that the constant operand is the second operand.
+ if (CONST_INT_P (op0) && !CONST_INT_P (op1))
+ {
+ if (op0_preserve_value)
+ return;
+
+ std::swap (op0, op1);
+ cmp = swap_condition (cmp);
+ }
+
+ if (CONST_INT_P (op1))
+ {
+ /* Try to adjust the constant operand in such a way that available
+ comparison insns can be utilized better and the constant can be
+ loaded with a 'mov #imm,Rm' insn. This avoids a load from the
+ constant pool. */
+ const HOST_WIDE_INT val = INTVAL (op1);
+
+ /* x > -1 --> x >= 0
+ x > 0xFFFFFF7F --> x >= 0xFFFFFF80
+ x <= -1 --> x < 0
+ x <= 0xFFFFFF7F --> x < 0xFFFFFF80 */
+ if ((val == -1 || val == -0x81) && (cmp == GT || cmp == LE))
+ {
+ cmp = cmp == GT ? GE : LT;
+ op1 = gen_int_mode (val + 1, mode);
+ }
+
+ /* x >= 1 --> x > 0
+ x >= 0x80 --> x > 0x7F
+ x < 1 --> x <= 0
+ x < 0x80 --> x <= 0x7F */
+ else if ((val == 1 || val == 0x80) && (cmp == GE || cmp == LT))
+ {
+ cmp = cmp == GE ? GT : LE;
+ op1 = gen_int_mode (val - 1, mode);
+ }
+
+ /* unsigned x >= 1 --> x != 0
+ unsigned x < 1 --> x == 0 */
+ else if (val == 1 && (cmp == GEU || cmp == LTU))
+ {
+ cmp = cmp == GEU ? NE : EQ;
+ op1 = CONST0_RTX (mode);
+ }
+
+ /* unsigned x >= 0x80 --> unsigned x > 0x7F
+ unsigned x < 0x80 --> unsigned x < 0x7F */
+ else if (val == 0x80 && (cmp == GEU || cmp == LTU))
+ {
+ cmp = cmp == GEU ? GTU : LEU;
+ op1 = gen_int_mode (val - 1, mode);
+ }
+
+ /* unsigned x > 0 --> x != 0
+ unsigned x <= 0 --> x == 0 */
+ else if (val == 0 && (cmp == GTU || cmp == LEU))
+ cmp = cmp == GTU ? NE : EQ;
+
+ /* unsigned x > 0x7FFFFFFF --> signed x < 0
+ unsigned x <= 0x7FFFFFFF --> signed x >= 0 */
+ else if (mode == SImode && (cmp == GTU || cmp == LEU)
+ && val == 0x7FFFFFFF)
+ {
+ cmp = cmp == GTU ? LT : GE;
+ op1 = const0_rtx;
+ }
+
+ /* unsigned x >= 0x80000000 --> signed x < 0
+ unsigned x < 0x80000000 --> signed x >= 0 */
+ else if (mode == SImode && (cmp == GEU || cmp == LTU)
+ && (unsigned HOST_WIDE_INT)val
+ == ((unsigned HOST_WIDE_INT)0x7FFFFFFF + 1))
+ {
+ cmp = cmp == GEU ? LT : GE;
+ op1 = const0_rtx;
+ }
+ }
+}
+
+/* This function implements the canonicalize_comparison target hook.
+ This wrapper around the internally used sh_canonicalize_comparison
+ function is needed to do the enum rtx_code <-> int conversion.
+ Target hooks cannot use enum rtx_code in its definition. */
+static void
+sh_canonicalize_comparison (int *code, rtx *op0, rtx *op1,
+ bool op0_preserve_value)
+{
+ enum rtx_code tmp_code = (enum rtx_code)*code;
+ sh_canonicalize_comparison (tmp_code, *op0, *op1,
+ VOIDmode, op0_preserve_value);
+ *code = (int)tmp_code;
+}
+
+bool
+sh_fixed_condition_code_regs (unsigned int* p1, unsigned int* p2)
+{
+ *p1 = T_REG;
+ *p2 = INVALID_REGNUM;
+ return true;
+}
+
+enum rtx_code
+prepare_cbranch_operands (rtx *operands, enum machine_mode mode,
+ enum rtx_code comparison)
+{
+ /* The scratch reg is only available when this is invoked from within
+ the cbranchdi4_i splitter, through expand_cbranchdi4. */
+ rtx scratch = NULL_RTX;
+
+ if (comparison == LAST_AND_UNUSED_RTX_CODE)
+ comparison = GET_CODE (operands[0]);
+ else
+ scratch = operands[4];
+
+ sh_canonicalize_comparison (comparison, operands[1], operands[2],
+ mode, false);
+
+ /* Notice that this function is also invoked after reload by
+ the cbranchdi4_i pattern, through expand_cbranchdi4. */
+ rtx op1 = operands[1];
+
+ if (can_create_pseudo_p ())
+ operands[1] = force_reg (mode, op1);
+ /* When we are handling DImode comparisons, we want to keep constants so
+ that we can optimize the component comparisons; however, memory loads
+ are better issued as a whole so that they can be scheduled well.
+ SImode equality comparisons allow I08 constants, but only when they
+ compare r0. Hence, if operands[1] has to be loaded from somewhere else
+ into a register, that register might as well be r0, and we allow the
+ constant. If it is already in a register, this is likely to be
+ allocated to a different hard register, thus we load the constant into
+ a register unless it is zero. */
+ if (!REG_P (operands[2])
+ && (!CONST_INT_P (operands[2])
+ || (mode == SImode && operands[2] != CONST0_RTX (SImode)
+ && ((comparison != EQ && comparison != NE)
+ || (REG_P (op1) && REGNO (op1) != R0_REG)
+ || !satisfies_constraint_I08 (operands[2])))))
+ {
+ if (scratch && GET_MODE (scratch) == mode)
+ {
+ emit_move_insn (scratch, operands[2]);
+ operands[2] = scratch;
+ }
+ else if (can_create_pseudo_p ())
+ operands[2] = force_reg (mode, operands[2]);
+ }
+ return comparison;
+}
+
+void
+expand_cbranchsi4 (rtx *operands, enum rtx_code comparison, int probability)
+{
+ rtx (*branch_expander) (rtx) = gen_branch_true;
+ comparison = prepare_cbranch_operands (operands, SImode, comparison);
+ switch (comparison)
+ {
+ case NE: case LT: case LE: case LTU: case LEU:
+ comparison = reverse_condition (comparison);
+ branch_expander = gen_branch_false;
+ default: ;
+ }
+ emit_insn (gen_rtx_SET (VOIDmode, get_t_reg_rtx (),
+ gen_rtx_fmt_ee (comparison, SImode,
+ operands[1], operands[2])));
+ rtx jump = emit_jump_insn (branch_expander (operands[3]));
+ if (probability >= 0)
+ add_int_reg_note (jump, REG_BR_PROB, probability);
+}
+
+/* ??? How should we distribute probabilities when more than one branch
+ is generated. So far we only have some ad-hoc observations:
+ - If the operands are random, they are likely to differ in both parts.
+ - If comparing items in a hash chain, the operands are random or equal;
+ operation should be EQ or NE.
+ - If items are searched in an ordered tree from the root, we can expect
+ the highpart to be unequal about half of the time; operation should be
+ an inequality comparison, operands non-constant, and overall probability
+ about 50%. Likewise for quicksort.
+ - Range checks will be often made against constants. Even if we assume for
+ simplicity an even distribution of the non-constant operand over a
+ sub-range here, the same probability could be generated with differently
+ wide sub-ranges - as long as the ratio of the part of the subrange that
+ is before the threshold to the part that comes after the threshold stays
+ the same. Thus, we can't really tell anything here;
+ assuming random distribution is at least simple.
+ */
+bool
+expand_cbranchdi4 (rtx *operands, enum rtx_code comparison)
+{
+ enum rtx_code msw_taken, msw_skip, lsw_taken;
+ rtx skip_label = NULL_RTX;
+ rtx op1h, op1l, op2h, op2l;
+ int num_branches;
+ int prob, rev_prob;
+ int msw_taken_prob = -1, msw_skip_prob = -1, lsw_taken_prob = -1;
+ rtx scratch = operands[4];
+
+ comparison = prepare_cbranch_operands (operands, DImode, comparison);
+ op1h = gen_highpart_mode (SImode, DImode, operands[1]);
+ op2h = gen_highpart_mode (SImode, DImode, operands[2]);
+ op1l = gen_lowpart (SImode, operands[1]);
+ op2l = gen_lowpart (SImode, operands[2]);
+ msw_taken = msw_skip = lsw_taken = LAST_AND_UNUSED_RTX_CODE;
+ prob = split_branch_probability;
+ rev_prob = REG_BR_PROB_BASE - prob;
+ switch (comparison)
+ {
+ /* ??? Should we use the cmpeqdi_t pattern for equality comparisons?
+ That costs 1 cycle more when the first branch can be predicted taken,
+ but saves us mispredicts because only one branch needs prediction.
+ It also enables generating the cmpeqdi_t-1 pattern. */
+ case EQ:
+ if (TARGET_CMPEQDI_T)
+ {
+ emit_insn (gen_cmpeqdi_t (operands[1], operands[2]));
+ emit_jump_insn (gen_branch_true (operands[3]));
+ return true;
+ }
+ msw_skip = NE;
+ lsw_taken = EQ;
+ if (prob >= 0)
+ {
+ // If we had more precision, we'd use rev_prob - (rev_prob >> 32) .
+ msw_skip_prob = rev_prob;
+ if (REG_BR_PROB_BASE <= 65535)
+ lsw_taken_prob = prob ? REG_BR_PROB_BASE : 0;
+ else
+ {
+ gcc_assert (HOST_BITS_PER_WIDEST_INT >= 64);
+ lsw_taken_prob
+ = (prob
+ ? (REG_BR_PROB_BASE
+ - ((HOST_WIDEST_INT) REG_BR_PROB_BASE * rev_prob
+ / ((HOST_WIDEST_INT) prob << 32)))
+ : 0);
+ }
+ }
+ break;
+ case NE:
+ if (TARGET_CMPEQDI_T)
+ {
+ emit_insn (gen_cmpeqdi_t (operands[1], operands[2]));
+ emit_jump_insn (gen_branch_false (operands[3]));
+ return true;
+ }
+ msw_taken = NE;
+ msw_taken_prob = prob;
+ lsw_taken = NE;
+ lsw_taken_prob = 0;
+ break;
+ case GTU: case GT:
+ msw_taken = comparison;
+ if (CONST_INT_P (op2l) && INTVAL (op2l) == -1)
+ break;
+ if (comparison != GTU || op2h != CONST0_RTX (SImode))
+ msw_skip = swap_condition (msw_taken);
+ lsw_taken = GTU;
+ break;
+ case GEU: case GE:
+ if (op2l == CONST0_RTX (SImode))
+ msw_taken = comparison;
+ else
+ {
+ msw_taken = comparison == GE ? GT : GTU;
+ msw_skip = swap_condition (msw_taken);
+ lsw_taken = GEU;
+ }
+ break;
+ case LTU: case LT:
+ msw_taken = comparison;
+ if (op2l == CONST0_RTX (SImode))
+ break;
+ msw_skip = swap_condition (msw_taken);
+ lsw_taken = LTU;
+ break;
+ case LEU: case LE:
+ if (CONST_INT_P (op2l) && INTVAL (op2l) == -1)
+ msw_taken = comparison;
+ else
+ {
+ lsw_taken = LEU;
+ if (comparison == LE)
+ msw_taken = LT;
+ else if (op2h != CONST0_RTX (SImode))
+ msw_taken = LTU;
+ else
+ {
+ msw_skip = swap_condition (LTU);
+ break;
+ }
+ msw_skip = swap_condition (msw_taken);
+ }
+ break;
+ default: return false;
+ }
+ num_branches = ((msw_taken != LAST_AND_UNUSED_RTX_CODE)
+ + (msw_skip != LAST_AND_UNUSED_RTX_CODE)
+ + (lsw_taken != LAST_AND_UNUSED_RTX_CODE));
+ if (comparison != EQ && comparison != NE && num_branches > 1)
+ {
+ if (!CONSTANT_P (operands[2])
+ && prob >= (int) (REG_BR_PROB_BASE * 3 / 8U)
+ && prob <= (int) (REG_BR_PROB_BASE * 5 / 8U))
+ {
+ msw_taken_prob = prob / 2U;
+ msw_skip_prob
+ = REG_BR_PROB_BASE * rev_prob / (REG_BR_PROB_BASE + rev_prob);
+ lsw_taken_prob = prob;
+ }
+ else
+ {
+ msw_taken_prob = prob;
+ msw_skip_prob = REG_BR_PROB_BASE;
+ /* ??? If we have a constant op2h, should we use that when
+ calculating lsw_taken_prob? */
+ lsw_taken_prob = prob;
+ }
+ }
+ operands[1] = op1h;
+ operands[2] = op2h;
+ operands[4] = NULL_RTX;
+ if (reload_completed
+ && ! arith_reg_or_0_operand (op2h, SImode)
+ && (true_regnum (op1h) || (comparison != EQ && comparison != NE))
+ && (msw_taken != LAST_AND_UNUSED_RTX_CODE
+ || msw_skip != LAST_AND_UNUSED_RTX_CODE))
+ {
+ emit_move_insn (scratch, operands[2]);
+ operands[2] = scratch;
+ }
+ if (msw_taken != LAST_AND_UNUSED_RTX_CODE)
+ expand_cbranchsi4 (operands, msw_taken, msw_taken_prob);
+ if (msw_skip != LAST_AND_UNUSED_RTX_CODE)
+ {
+ rtx taken_label = operands[3];
+
+ /* Operands were possibly modified, but msw_skip doesn't expect this.
+ Always use the original ones. */
+ if (msw_taken != LAST_AND_UNUSED_RTX_CODE)
+ {
+ operands[1] = op1h;
+ operands[2] = op2h;
+ if (reload_completed
+ && ! arith_reg_or_0_operand (op2h, SImode)
+ && (true_regnum (op1h) || (comparison != EQ && comparison != NE)))
+ {
+ emit_move_insn (scratch, operands[2]);
+ operands[2] = scratch;
+ }
+ }
+
+ operands[3] = skip_label = gen_label_rtx ();
+ expand_cbranchsi4 (operands, msw_skip, msw_skip_prob);
+ operands[3] = taken_label;
+ }
+ operands[1] = op1l;
+ operands[2] = op2l;
+ if (lsw_taken != LAST_AND_UNUSED_RTX_CODE)
+ {
+ if (reload_completed
+ && ! arith_reg_or_0_operand (op2l, SImode)
+ && (true_regnum (op1l) || (lsw_taken != EQ && lsw_taken != NE)))
+ {
+ emit_move_insn (scratch, operands[2]);
+ operands[2] = scratch;
+ }
+ expand_cbranchsi4 (operands, lsw_taken, lsw_taken_prob);
+ }
+ if (msw_skip != LAST_AND_UNUSED_RTX_CODE)
+ emit_label (skip_label);
+ return true;
+}
+
+/* Given an operand, return 1 if the evaluated operand plugged into an
+ if_then_else will result in a branch_true, 0 if branch_false, or
+ -1 if neither nor applies. The truth table goes like this:
+
+ op | cmpval | code | result
+ ---------+--------+---------+--------------------
+ T (0) | 0 | EQ (1) | 0 = 0 ^ (0 == 1)
+ T (0) | 1 | EQ (1) | 1 = 0 ^ (1 == 1)
+ T (0) | 0 | NE (0) | 1 = 0 ^ (0 == 0)
+ T (0) | 1 | NE (0) | 0 = 0 ^ (1 == 0)
+ !T (1) | 0 | EQ (1) | 1 = 1 ^ (0 == 1)
+ !T (1) | 1 | EQ (1) | 0 = 1 ^ (1 == 1)
+ !T (1) | 0 | NE (0) | 0 = 1 ^ (0 == 0)
+ !T (1) | 1 | NE (0) | 1 = 1 ^ (1 == 0) */
+int
+sh_eval_treg_value (rtx op)
+{
+ enum rtx_code code = GET_CODE (op);
+ if ((code != EQ && code != NE) || !CONST_INT_P (XEXP (op, 1)))
+ return -1;
+
+ int cmpop = code == EQ ? 1 : 0;
+ int cmpval = INTVAL (XEXP (op, 1));
+ if (cmpval != 0 && cmpval != 1)
+ return -1;
+
+ int t;
+ if (t_reg_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0))))
+ t = 0;
+ else if (negt_reg_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0))))
+ t = 1;
+ else
+ return -1;
+
+ return t ^ (cmpval == cmpop);
+}
+
+/* Emit INSN, possibly in a PARALLEL with an USE of fpscr for SH4. */
+
+static void
+sh_emit_set_t_insn (rtx insn, enum machine_mode mode)
+{
+ if ((TARGET_SH4 || TARGET_SH2A) && GET_MODE_CLASS (mode) == MODE_FLOAT)
+ {
+ insn = gen_rtx_PARALLEL (VOIDmode,
+ gen_rtvec (2, insn,
+ gen_rtx_USE (VOIDmode, get_fpscr_rtx ())));
+ (mode == SFmode ? emit_sf_insn : emit_df_insn) (insn);
+ }
+ else
+ emit_insn (insn);
+}
+
+/* Prepare the operands for an scc instruction; make sure that the
+ compare has been done and the result is in T_REG. */
+void
+sh_emit_scc_to_t (enum rtx_code code, rtx op0, rtx op1)
+{
+ rtx t_reg = get_t_reg_rtx ();
+ enum rtx_code oldcode = code;
+ enum machine_mode mode;
+
+ /* First need a compare insn. */
+ switch (code)
+ {
+ case NE:
+ /* It isn't possible to handle this case. */
+ gcc_unreachable ();
+ case LT:
+ code = GT;
+ break;
+ case LE:
+ code = GE;
+ break;
+ case LTU:
+ code = GTU;
+ break;
+ case LEU:
+ code = GEU;
+ break;
+ default:
+ break;
+ }
+ if (code != oldcode)
+ {
+ rtx tmp = op0;
+ op0 = op1;
+ op1 = tmp;
+ }
+
+ mode = GET_MODE (op0);
+ if (mode == VOIDmode)
+ mode = GET_MODE (op1);
+
+ op0 = force_reg (mode, op0);
+ if ((code != EQ && code != NE
+ && (op1 != const0_rtx
+ || code == GTU || code == GEU || code == LTU || code == LEU))
+ || (mode == DImode && op1 != const0_rtx)
+ || (TARGET_SH2E && GET_MODE_CLASS (mode) == MODE_FLOAT))
+ op1 = force_reg (mode, op1);
+
+ sh_emit_set_t_insn (gen_rtx_SET (VOIDmode, t_reg,
+ gen_rtx_fmt_ee (code, SImode, op0, op1)),
+ mode);
+}
+
+rtx
+sh_emit_cheap_store_flag (enum machine_mode mode, enum rtx_code code,
+ rtx op0, rtx op1)
+{
+ rtx target = gen_reg_rtx (SImode);
+ rtx tmp;
+
+ gcc_assert (TARGET_SHMEDIA);
+ switch (code)
+ {
+ case EQ:
+ case GT:
+ case LT:
+ case UNORDERED:
+ case GTU:
+ case LTU:
+ tmp = gen_rtx_fmt_ee (code, SImode, op0, op1);
+ emit_insn (gen_cstore4_media (target, tmp, op0, op1));
+ code = NE;
+ break;
+
+ case NE:
+ case GE:
+ case LE:
+ case ORDERED:
+ case GEU:
+ case LEU:
+ tmp = gen_rtx_fmt_ee (reverse_condition (code), mode, op0, op1);
+ emit_insn (gen_cstore4_media (target, tmp, op0, op1));
+ code = EQ;
+ break;
+
+ case UNEQ:
+ case UNGE:
+ case UNGT:
+ case UNLE:
+ case UNLT:
+ case LTGT:
+ return NULL_RTX;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (mode == DImode)
+ {
+ rtx t2 = gen_reg_rtx (DImode);
+ emit_insn (gen_extendsidi2 (t2, target));
+ target = t2;
+ }
+
+ return gen_rtx_fmt_ee (code, VOIDmode, target, const0_rtx);
+}
+
+/* Called from the md file, set up the operands of a compare instruction. */
+void
+sh_emit_compare_and_branch (rtx *operands, enum machine_mode mode)
+{
+ enum rtx_code code = GET_CODE (operands[0]);
+ enum rtx_code branch_code;
+ rtx op0 = operands[1];
+ rtx op1 = operands[2];
+ rtx insn, tem;
+ bool need_ccmpeq = false;
+
+ if (TARGET_SH2E && GET_MODE_CLASS (mode) == MODE_FLOAT)
+ {
+ op0 = force_reg (mode, op0);
+ op1 = force_reg (mode, op1);
+ }
+ else
+ {
+ if (code != EQ || mode == DImode)
+ {
+ /* Force args into regs, since we can't use constants here. */
+ op0 = force_reg (mode, op0);
+ if (op1 != const0_rtx || code == GTU || code == GEU)
+ op1 = force_reg (mode, op1);
+ }
+ }
+
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
+ {
+ if (code == LT
+ || (code == LE && TARGET_IEEE && TARGET_SH2E)
+ || (code == GE && !(TARGET_IEEE && TARGET_SH2E)))
+ {
+ tem = op0, op0 = op1, op1 = tem;
+ code = swap_condition (code);
+ }
+
+ /* GE becomes fcmp/gt+fcmp/eq, for SH2E and TARGET_IEEE only. */
+ if (code == GE)
+ {
+ gcc_assert (TARGET_IEEE && TARGET_SH2E);
+ need_ccmpeq = true;
+ code = GT;
+ }
+
+ /* Now we can have EQ, NE, GT, LE. NE and LE are then transformed
+ to EQ/GT respectively. */
+ gcc_assert (code == EQ || code == GT || code == NE || code == LE);
+ }
+
+ switch (code)
+ {
+ case EQ:
+ case GT:
+ case GE:
+ case GTU:
+ case GEU:
+ branch_code = code;
+ break;
+ case NE:
+ case LT:
+ case LE:
+ case LTU:
+ case LEU:
+ branch_code = reverse_condition (code);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ insn = gen_rtx_SET (VOIDmode,
+ get_t_reg_rtx (),
+ gen_rtx_fmt_ee (branch_code, SImode, op0, op1));
+
+ sh_emit_set_t_insn (insn, mode);
+ if (need_ccmpeq)
+ sh_emit_set_t_insn (gen_ieee_ccmpeqsf_t (op0, op1), mode);
+
+ if (branch_code == code)
+ emit_jump_insn (gen_branch_true (operands[3]));
+ else
+ emit_jump_insn (gen_branch_false (operands[3]));
+}
+
+void
+sh_emit_compare_and_set (rtx *operands, enum machine_mode mode)
+{
+ enum rtx_code code = GET_CODE (operands[1]);
+ rtx op0 = operands[2];
+ rtx op1 = operands[3];
+ rtx lab = NULL_RTX;
+ bool invert = false;
+ rtx tem;
+
+ op0 = force_reg (mode, op0);
+ if ((code != EQ && code != NE
+ && (op1 != const0_rtx
+ || code == GTU || code == GEU || code == LTU || code == LEU))
+ || (mode == DImode && op1 != const0_rtx)
+ || (TARGET_SH2E && GET_MODE_CLASS (mode) == MODE_FLOAT))
+ op1 = force_reg (mode, op1);
+
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
+ {
+ if (code == LT || code == LE)
+ {
+ code = swap_condition (code);
+ tem = op0, op0 = op1, op1 = tem;
+ }
+ if (code == GE)
+ {
+ if (TARGET_IEEE)
+ {
+ lab = gen_label_rtx ();
+ sh_emit_scc_to_t (EQ, op0, op1);
+ emit_jump_insn (gen_branch_true (lab));
+ code = GT;
+ }
+ else
+ {
+ code = LT;
+ invert = true;
+ }
+ }
+ }
+
+ if (code == NE)
+ {
+ code = EQ;
+ invert = true;
+ }
+
+ sh_emit_scc_to_t (code, op0, op1);
+ if (lab)
+ emit_label (lab);
+ if (invert)
+ emit_insn (gen_movnegt (operands[0], get_t_reg_rtx ()));
+ else
+ emit_move_insn (operands[0], get_t_reg_rtx ());
+}
+
+/* Functions to output assembly code. */
+
+/* Return a sequence of instructions to perform DI or DF move.
+
+ Since the SH cannot move a DI or DF in one instruction, we have
+ to take care when we see overlapping source and dest registers. */
+const char *
+output_movedouble (rtx insn ATTRIBUTE_UNUSED, rtx operands[],
+ enum machine_mode mode)
+{
+ rtx dst = operands[0];
+ rtx src = operands[1];
+
+ if (MEM_P (dst)
+ && GET_CODE (XEXP (dst, 0)) == PRE_DEC)
+ return "mov.l %T1,%0" "\n"
+ " mov.l %1,%0";
+
+ if (register_operand (dst, mode)
+ && register_operand (src, mode))
+ {
+ if (REGNO (src) == MACH_REG)
+ return "sts mach,%S0" "\n"
+ " sts macl,%R0";
+
+ /* When mov.d r1,r2 do r2->r3 then r1->r2;
+ when mov.d r1,r0 do r1->r0 then r2->r1. */
+ if (REGNO (src) + 1 == REGNO (dst))
+ return "mov %T1,%T0" "\n"
+ " mov %1,%0";
+ else
+ return "mov %1,%0" "\n"
+ " mov %T1,%T0";
+ }
+ else if (CONST_INT_P (src))
+ {
+ if (INTVAL (src) < 0)
+ output_asm_insn ("mov #-1,%S0", operands);
+ else
+ output_asm_insn ("mov #0,%S0", operands);
+
+ return "mov %1,%R0";
+ }
+ else if (MEM_P (src))
+ {
+ int ptrreg = -1;
+ int dreg = REGNO (dst);
+ rtx inside = XEXP (src, 0);
+
+ switch (GET_CODE (inside))
+ {
+ case REG:
+ ptrreg = REGNO (inside);
+ break;
+
+ case SUBREG:
+ ptrreg = subreg_regno (inside);
+ break;
+
+ case PLUS:
+ ptrreg = REGNO (XEXP (inside, 0));
+ /* ??? A r0+REG address shouldn't be possible here, because it isn't
+ an offsettable address. Unfortunately, offsettable addresses use
+ QImode to check the offset, and a QImode offsettable address
+ requires r0 for the other operand, which is not currently
+ supported, so we can't use the 'o' constraint.
+ Thus we must check for and handle r0+REG addresses here.
+ We punt for now, since this is likely very rare. */
+ gcc_assert (!REG_P (XEXP (inside, 1)));
+ break;
+
+ case LABEL_REF:
+ return "mov.l %1,%0" "\n"
+ " mov.l %1+4,%T0";
+ case POST_INC:
+ return "mov.l %1,%0" "\n"
+ " mov.l %1,%T0";
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Work out the safe way to copy. Copy into the second half first. */
+ if (dreg == ptrreg)
+ return "mov.l %T1,%T0" "\n"
+ " mov.l %1,%0";
+ }
+
+ return "mov.l %1,%0" "\n"
+ " mov.l %T1,%T0";
+}
+
+/* Print an instruction which would have gone into a delay slot after
+ another instruction, but couldn't because the other instruction expanded
+ into a sequence where putting the slot insn at the end wouldn't work. */
+static void
+print_slot (rtx insn)
+{
+ final_scan_insn (XVECEXP (insn, 0, 1), asm_out_file, optimize, 1, NULL);
+
+ INSN_DELETED_P (XVECEXP (insn, 0, 1)) = 1;
+}
+
+const char *
+output_far_jump (rtx insn, rtx op)
+{
+ struct { rtx lab, reg, op; } this_jmp;
+ rtx braf_base_lab = NULL_RTX;
+ const char *jump;
+ int far;
+ int offset = branch_dest (insn) - INSN_ADDRESSES (INSN_UID (insn));
+ rtx prev;
+
+ this_jmp.lab = gen_label_rtx ();
+
+ if (TARGET_SH2
+ && offset >= -32764
+ && offset - get_attr_length (insn) <= 32766)
+ {
+ far = 0;
+ jump = "mov.w %O0,%1" "\n"
+ " braf %1";
+ }
+ else
+ {
+ far = 1;
+ if (flag_pic)
+ {
+ if (TARGET_SH2)
+ jump = "mov.l %O0,%1" "\n"
+ " braf %1";
+ else
+ jump = "mov.l r0,@-r15" "\n"
+ " mova %O0,r0" "\n"
+ " mov.l @r0,%1" "\n"
+ " add r0,%1" "\n"
+ " mov.l @r15+,r0" "\n"
+ " jmp @%1";
+ }
+ else
+ jump = "mov.l %O0,%1" "\n"
+ " jmp @%1";
+ }
+ /* If we have a scratch register available, use it. */
+ if (NONJUMP_INSN_P ((prev = prev_nonnote_insn (insn)))
+ && INSN_CODE (prev) == CODE_FOR_indirect_jump_scratch)
+ {
+ this_jmp.reg = SET_DEST (XVECEXP (PATTERN (prev), 0, 0));
+ if (REGNO (this_jmp.reg) == R0_REG && flag_pic && ! TARGET_SH2)
+ jump = "mov.l r1,@-r15" "\n"
+ " mova %O0,r0" "\n"
+ " mov.l @r0,r1" "\n"
+ " add r1,r0" "\n"
+ " mov.l @r15+,r1" "\n"
+ " jmp @%1";
+ output_asm_insn (jump, &this_jmp.lab);
+ if (dbr_sequence_length ())
+ print_slot (final_sequence);
+ else
+ output_asm_insn ("nop", 0);
+ }
+ else
+ {
+ /* Output the delay slot insn first if any. */
+ if (dbr_sequence_length ())
+ print_slot (final_sequence);
+
+ this_jmp.reg = gen_rtx_REG (SImode, 13);
+ /* We must keep the stack aligned to 8-byte boundaries on SH5.
+ Fortunately, MACL is fixed and call-clobbered, and we never
+ need its value across jumps, so save r13 in it instead of in
+ the stack. */
+ if (TARGET_SH5)
+ output_asm_insn ("lds r13,macl", 0);
+ else
+ output_asm_insn ("mov.l r13,@-r15", 0);
+ output_asm_insn (jump, &this_jmp.lab);
+ if (TARGET_SH5)
+ output_asm_insn ("sts macl,r13", 0);
+ else
+ output_asm_insn ("mov.l @r15+,r13", 0);
+ }
+ if (far && flag_pic && TARGET_SH2)
+ {
+ braf_base_lab = gen_label_rtx ();
+ (*targetm.asm_out.internal_label) (asm_out_file, "L",
+ CODE_LABEL_NUMBER (braf_base_lab));
+ }
+ if (far)
+ output_asm_insn (".align 2", 0);
+ (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (this_jmp.lab));
+ this_jmp.op = op;
+ if (far && flag_pic)
+ {
+ if (TARGET_SH2)
+ this_jmp.lab = braf_base_lab;
+ output_asm_insn (".long %O2-%O0", &this_jmp.lab);
+ }
+ else
+ output_asm_insn (far ? ".long %O2" : ".word %O2-%O0", &this_jmp.lab);
+ return "";
+}
+
+/* Local label counter, used for constants in the pool and inside
+ pattern branches. */
+static int lf = 100;
+
+/* Output code for ordinary branches. */
+const char *
+output_branch (int logic, rtx insn, rtx *operands)
+{
+ switch (get_attr_length (insn))
+ {
+ case 6:
+ /* This can happen if filling the delay slot has caused a forward
+ branch to exceed its range (we could reverse it, but only
+ when we know we won't overextend other branches; this should
+ best be handled by relaxation).
+ It can also happen when other condbranches hoist delay slot insn
+ from their destination, thus leading to code size increase.
+ But the branch will still be in the range -4092..+4098 bytes. */
+ if (! TARGET_RELAX)
+ {
+ int label = lf++;
+ /* The call to print_slot will clobber the operands. */
+ rtx op0 = operands[0];
+
+ /* If the instruction in the delay slot is annulled (true), then
+ there is no delay slot where we can put it now. The only safe
+ place for it is after the label. final will do that by default. */
+
+ if (final_sequence
+ && ! INSN_ANNULLED_BRANCH_P (XVECEXP (final_sequence, 0, 0))
+ && get_attr_length (XVECEXP (final_sequence, 0, 1)))
+ {
+ asm_fprintf (asm_out_file, "\tb%s%ss\t%LLF%d\n", logic ? "f" : "t",
+ ASSEMBLER_DIALECT ? "/" : ".", label);
+ print_slot (final_sequence);
+ }
+ else
+ asm_fprintf (asm_out_file, "\tb%s\t%LLF%d\n", logic ? "f" : "t", label);
+
+ output_asm_insn ("bra\t%l0", &op0);
+ fprintf (asm_out_file, "\tnop\n");
+ (*targetm.asm_out.internal_label) (asm_out_file, "LF", label);
+
+ return "";
+ }
+ /* When relaxing, handle this like a short branch. The linker
+ will fix it up if it still doesn't fit after relaxation. */
+ case 2:
+ return logic ? "bt%.\t%l0" : "bf%.\t%l0";
+
+ /* These are for SH2e, in which we have to account for the
+ extra nop because of the hardware bug in annulled branches. */
+ case 8:
+ if (! TARGET_RELAX)
+ {
+ int label = lf++;
+
+ gcc_assert (!final_sequence
+ || !(INSN_ANNULLED_BRANCH_P
+ (XVECEXP (final_sequence, 0, 0))));
+ asm_fprintf (asm_out_file, "b%s%ss\t%LLF%d\n",
+ logic ? "f" : "t",
+ ASSEMBLER_DIALECT ? "/" : ".", label);
+ fprintf (asm_out_file, "\tnop\n");
+ output_asm_insn ("bra\t%l0", operands);
+ fprintf (asm_out_file, "\tnop\n");
+ (*targetm.asm_out.internal_label) (asm_out_file, "LF", label);
+
+ return "";
+ }
+ /* When relaxing, fall through. */
+ case 4:
+ {
+ char buffer[10];
+
+ sprintf (buffer, "b%s%ss\t%%l0",
+ logic ? "t" : "f",
+ ASSEMBLER_DIALECT ? "/" : ".");
+ output_asm_insn (buffer, &operands[0]);
+ return "nop";
+ }
+
+ default:
+ /* There should be no longer branches now - that would
+ indicate that something has destroyed the branches set
+ up in machine_dependent_reorg. */
+ gcc_unreachable ();
+ }
+}
+
+/* Output a code sequence for INSN using TEMPL with OPERANDS; but before,
+ fill in operands 9 as a label to the successor insn.
+ We try to use jump threading where possible.
+ IF CODE matches the comparison in the IF_THEN_ELSE of a following jump,
+ we assume the jump is taken. I.e. EQ means follow jmp and bf, NE means
+ follow jmp and bt, if the address is in range. */
+const char *
+output_branchy_insn (enum rtx_code code, const char *templ,
+ rtx insn, rtx *operands)
+{
+ rtx next_insn = NEXT_INSN (insn);
+
+ if (next_insn && JUMP_P (next_insn) && condjump_p (next_insn))
+ {
+ rtx src = SET_SRC (PATTERN (next_insn));
+ if (GET_CODE (src) == IF_THEN_ELSE && GET_CODE (XEXP (src, 0)) != code)
+ {
+ /* Following branch not taken */
+ operands[9] = gen_label_rtx ();
+ emit_label_after (operands[9], next_insn);
+ INSN_ADDRESSES_NEW (operands[9],
+ INSN_ADDRESSES (INSN_UID (next_insn))
+ + get_attr_length (next_insn));
+ return templ;
+ }
+ else
+ {
+ int offset = (branch_dest (next_insn)
+ - INSN_ADDRESSES (INSN_UID (next_insn)) + 4);
+ if (offset >= -252 && offset <= 258)
+ {
+ if (GET_CODE (src) == IF_THEN_ELSE)
+ /* branch_true */
+ src = XEXP (src, 1);
+ operands[9] = src;
+ return templ;
+ }
+ }
+ }
+ operands[9] = gen_label_rtx ();
+ emit_label_after (operands[9], insn);
+ INSN_ADDRESSES_NEW (operands[9],
+ INSN_ADDRESSES (INSN_UID (insn))
+ + get_attr_length (insn));
+ return templ;
+}
+
+const char *
+output_ieee_ccmpeq (rtx insn, rtx *operands)
+{
+ return output_branchy_insn (NE, "bt %l9" "\n"
+ " fcmp/eq %1,%0",
+ insn, operands);
+}
+
+/* Output the start of the assembler file. */
+static void
+sh_file_start (void)
+{
+ default_file_start ();
+
+ if (TARGET_ELF)
+ /* We need to show the text section with the proper
+ attributes as in TEXT_SECTION_ASM_OP, before dwarf2out
+ emits it without attributes in TEXT_SECTION_ASM_OP, else GAS
+ will complain. We can teach GAS specifically about the
+ default attributes for our choice of text section, but
+ then we would have to change GAS again if/when we change
+ the text section name. */
+ fprintf (asm_out_file, "%s\n", TEXT_SECTION_ASM_OP);
+ else
+ /* Switch to the data section so that the coffsem symbol
+ isn't in the text section. */
+ switch_to_section (data_section);
+
+ if (TARGET_LITTLE_ENDIAN)
+ fputs ("\t.little\n", asm_out_file);
+
+ if (!TARGET_ELF)
+ {
+ if (TARGET_SHCOMPACT)
+ fputs ("\t.mode\tSHcompact\n", asm_out_file);
+ else if (TARGET_SHMEDIA)
+ fprintf (asm_out_file, "\t.mode\tSHmedia\n\t.abi\t%i\n",
+ TARGET_SHMEDIA64 ? 64 : 32);
+ }
+}
+
+/* Check if PAT includes UNSPEC_CALLER unspec pattern. */
+static bool
+unspec_caller_rtx_p (rtx pat)
+{
+ rtx base, offset;
+ int i;
+
+ split_const (pat, &base, &offset);
+ if (GET_CODE (base) == UNSPEC)
+ {
+ if (XINT (base, 1) == UNSPEC_CALLER)
+ return true;
+ for (i = 0; i < XVECLEN (base, 0); i++)
+ if (unspec_caller_rtx_p (XVECEXP (base, 0, i)))
+ return true;
+ }
+ return false;
+}
+
+/* Indicate that INSN cannot be duplicated. This is true for insn
+ that generates a unique label. */
+static bool
+sh_cannot_copy_insn_p (rtx insn)
+{
+ rtx pat;
+
+ if (!reload_completed || !flag_pic)
+ return false;
+
+ if (!NONJUMP_INSN_P (insn))
+ return false;
+ if (asm_noperands (insn) >= 0)
+ return false;
+
+ pat = PATTERN (insn);
+ if (GET_CODE (pat) != SET)
+ return false;
+ pat = SET_SRC (pat);
+
+ if (unspec_caller_rtx_p (pat))
+ return true;
+
+ return false;
+}
+
+/* Number of instructions used to make an arithmetic right shift by N. */
+static const char ashiftrt_insns[] =
+ { 0,1,2,3,4,5,8,8,8,8,8,8,8,8,8,8,2,3,4,5,8,8,8,8,8,8,8,8,8,8,8,2};
+
+/* Description of a logical left or right shift, when expanded to a sequence
+ of 1/2/8/16 shifts.
+ Notice that one bit right shifts clobber the T bit. One bit left shifts
+ are done with an 'add Rn,Rm' insn and thus do not clobber the T bit. */
+enum
+{
+ ASHL_CLOBBERS_T = 1 << 0,
+ LSHR_CLOBBERS_T = 1 << 1
+};
+
+struct ashl_lshr_sequence
+{
+ char insn_count;
+ char amount[6];
+ char clobbers_t;
+};
+
+static const struct ashl_lshr_sequence ashl_lshr_seq[32] =
+{
+ { 0, { 0 }, 0 }, // 0
+ { 1, { 1 }, LSHR_CLOBBERS_T },
+ { 1, { 2 }, 0 },
+ { 2, { 2, 1 }, LSHR_CLOBBERS_T },
+ { 2, { 2, 2 }, 0 }, // 4
+ { 3, { 2, 1, 2 }, LSHR_CLOBBERS_T },
+ { 3, { 2, 2, 2 }, 0 },
+ { 4, { 2, 2, 1, 2 }, LSHR_CLOBBERS_T },
+ { 1, { 8 }, 0 }, // 8
+ { 2, { 8, 1 }, LSHR_CLOBBERS_T },
+ { 2, { 8, 2 }, 0 },
+ { 3, { 8, 1, 2 }, LSHR_CLOBBERS_T },
+ { 3, { 8, 2, 2 }, 0 }, // 12
+ { 4, { 8, 2, 1, 2 }, LSHR_CLOBBERS_T },
+ { 3, { 8, -2, 8 }, 0 },
+ { 3, { 8, -1, 8 }, ASHL_CLOBBERS_T },
+ { 1, { 16 }, 0 }, // 16
+ { 2, { 16, 1 }, LSHR_CLOBBERS_T },
+ { 2, { 16, 2 }, 0 },
+ { 3, { 16, 1, 2 }, LSHR_CLOBBERS_T },
+ { 3, { 16, 2, 2 }, 0 }, // 20
+ { 4, { 16, 2, 1, 2 }, LSHR_CLOBBERS_T },
+ { 3, { 16, -2, 8 }, 0 },
+ { 3, { 16, -1, 8 }, ASHL_CLOBBERS_T },
+ { 2, { 16, 8 }, 0 }, // 24
+ { 3, { 16, 1, 8 }, LSHR_CLOBBERS_T },
+ { 3, { 16, 8, 2 }, 0 },
+ { 4, { 16, 8, 1, 2 }, LSHR_CLOBBERS_T },
+ { 4, { 16, 8, 2, 2 }, 0 }, // 28
+ { 4, { 16, -1, -2, 16 }, ASHL_CLOBBERS_T },
+ { 3, { 16, -2, 16 }, 0 },
+
+ /* For a right shift by 31 a 2 insn shll-movt sequence can be used.
+ For a left shift by 31 a 2 insn and-rotl sequences can be used.
+ However, the shift-and combiner code needs this entry here to be in
+ terms of real shift insns. */
+ { 3, { 16, -1, 16 }, ASHL_CLOBBERS_T }
+};
+
+/* Individual shift amounts for shift amounts < 16, up to three highmost
+ bits might be clobbered. This is typically used when combined with some
+ kind of sign or zero extension. */
+static const struct ashl_lshr_sequence ext_ashl_lshr_seq[32] =
+{
+ { 0, { 0 }, 0 }, // 0
+ { 1, { 1 }, LSHR_CLOBBERS_T },
+ { 1, { 2 }, 0 },
+ { 2, { 2, 1 }, LSHR_CLOBBERS_T },
+ { 2, { 2, 2 }, 0 }, // 4
+ { 3, { 2, 1, 2 }, LSHR_CLOBBERS_T },
+ { 2, { 8, -2 }, 0 },
+ { 2, { 8, -1 }, ASHL_CLOBBERS_T },
+ { 1, { 8 }, 0 }, // 8
+ { 2, { 8, 1 }, LSHR_CLOBBERS_T },
+ { 2, { 8, 2 }, 0 },
+ { 3, { 8, 1, 2 }, LSHR_CLOBBERS_T },
+ { 3, { 8, 2, 2 }, 0 }, // 12
+ { 3, { 16, -2, -1 }, ASHL_CLOBBERS_T },
+ { 2, { 16, -2 }, 0 },
+ { 2, { 16, -1 }, ASHL_CLOBBERS_T },
+ { 1, { 16 }, 0 }, // 16
+ { 2, { 16, 1 }, LSHR_CLOBBERS_T },
+ { 2, { 16, 2 }, 0 },
+ { 3, { 16, 1, 2 }, LSHR_CLOBBERS_T },
+ { 3, { 16, 2, 2 }, 0 }, // 20
+ { 4, { 16, 2, 1, 2 }, LSHR_CLOBBERS_T },
+ { 3, { 16, -2, 8 }, 0 },
+ { 3, { 16, -1, 8 }, ASHL_CLOBBERS_T },
+ { 2, { 16, 8 }, 0 }, // 24
+ { 3, { 16, 1, 8 }, LSHR_CLOBBERS_T },
+ { 3, { 16, 8, 2 }, 0 },
+ { 4, { 16, 8, 1, 2 }, LSHR_CLOBBERS_T },
+ { 4, { 16, 8, 2, 2 }, 0 }, // 28
+ { 4, { 16, -1, -2, 16 }, ASHL_CLOBBERS_T },
+ { 3, { 16, -2, 16 }, 0 },
+ { 3, { 16, -1, 16 }, ASHL_CLOBBERS_T }
+};
+
+/* Return true if a shift left consisting of 1/2/8/16 shift instructions
+ will clobber the T bit. */
+bool
+sh_ashlsi_clobbers_t_reg_p (rtx shift_amount)
+{
+ gcc_assert (CONST_INT_P (shift_amount));
+
+ const int shift_amount_i = INTVAL (shift_amount) & 31;
+
+ /* Special case for shift count of 31: use and-rotl sequence. */
+ if (shift_amount_i == 31)
+ return true;
+
+ return (ashl_lshr_seq[shift_amount_i].clobbers_t
+ & ASHL_CLOBBERS_T) != 0;
+}
+
+/* Return true if a logical right shift consisting of 1/2/8/16 shift
+ instructions will clobber the T bit. */
+bool
+sh_lshrsi_clobbers_t_reg_p (rtx shift_amount)
+{
+ gcc_assert (CONST_INT_P (shift_amount));
+
+ const int shift_amount_i = INTVAL (shift_amount) & 31;
+
+ /* Special case for shift count of 31: use shll-movt sequence. */
+ if (shift_amount_i == 31)
+ return true;
+
+ return (ashl_lshr_seq[shift_amount_i].clobbers_t
+ & LSHR_CLOBBERS_T) != 0;
+}
+
+/* Return true if it is potentially beneficial to use a dynamic shift
+ instruction (shad / shar) instead of a combination of 1/2/8/16
+ shift instructions for the specified shift count.
+ If dynamic shifts are not available, always return false. */
+bool
+sh_dynamicalize_shift_p (rtx count)
+{
+ gcc_assert (CONST_INT_P (count));
+
+ const int shift_amount_i = INTVAL (count) & 31;
+ int insn_count;
+
+ /* For left and right shifts, there are shorter 2 insn sequences for
+ shift amounts of 31. */
+ if (shift_amount_i == 31)
+ insn_count = 2;
+ else
+ insn_count = ashl_lshr_seq[shift_amount_i].insn_count;
+
+ return TARGET_DYNSHIFT && (insn_count > 1 + SH_DYNAMIC_SHIFT_COST);
+}
+
+/* Assuming we have a value that has been sign-extended by at least one bit,
+ can we use the ext_shift_amounts with the last shift turned to an
+ arithmetic shift to shift it by N without data loss, and quicker than by
+ other means? */
+#define EXT_SHIFT_SIGNED(n) (((n) | 8) == 15)
+
+/* Return the cost of a shift. */
+static inline int
+shiftcosts (rtx x)
+{
+ int value;
+
+ if (TARGET_SHMEDIA)
+ return 1;
+
+ if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
+ {
+ if (GET_MODE (x) == DImode
+ && CONST_INT_P (XEXP (x, 1))
+ && INTVAL (XEXP (x, 1)) == 1)
+ return 2;
+
+ /* Everything else is invalid, because there is no pattern for it. */
+ return -1;
+ }
+ /* If shift by a non constant, then this will be expensive. */
+ if (!CONST_INT_P (XEXP (x, 1)))
+ return SH_DYNAMIC_SHIFT_COST;
+
+ /* Otherwise, return the true cost in instructions. Cope with out of range
+ shift counts more or less arbitrarily. */
+ value = INTVAL (XEXP (x, 1)) & 31;
+
+ if (GET_CODE (x) == ASHIFTRT)
+ {
+ int cost = ashiftrt_insns[value];
+ /* If dynamic shifts are available and profitable in this case, then we
+ put the constant in a reg and use shad. */
+ if (cost > 1 + SH_DYNAMIC_SHIFT_COST)
+ cost = 1 + SH_DYNAMIC_SHIFT_COST;
+ return cost;
+ }
+ else
+ return ashl_lshr_seq[value].insn_count;
+}
+
+/* Return the cost of an AND/XOR/IOR operation. */
+static inline int
+and_xor_ior_costs (rtx x, int code)
+{
+ /* On SH1-4 we have only max. SImode operations.
+ Double the cost for modes > SImode. */
+ const int cost_scale = !TARGET_SHMEDIA
+ && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
+ ? 2 : 1;
+
+ /* A logical operation with two registers is a single cycle
+ instruction. */
+ if (!CONST_INT_P (XEXP (x, 1)))
+ return 1 * cost_scale;
+
+ int i = INTVAL (XEXP (x, 1));
+
+ if (TARGET_SHMEDIA)
+ {
+ if (satisfies_constraint_I10 (XEXP (x, 1))
+ || satisfies_constraint_J16 (XEXP (x, 1)))
+ return 1;
+ else
+ return 1 + rtx_cost (XEXP (x, 1), AND, 1, !optimize_size);
+ }
+
+ /* These constants are single cycle extu.[bw] instructions. */
+ if ((i == 0xff || i == 0xffff) && code == AND)
+ return 1 * cost_scale;
+ /* Constants that can be used in an instruction as an immediate are
+ a single cycle, but this requires r0, so make it a little more
+ expensive. */
+ if (CONST_OK_FOR_K08 (i))
+ return 2 * cost_scale;
+ /* Constants that can be loaded with a mov immediate need one more cycle.
+ This case is probably unnecessary. */
+ if (CONST_OK_FOR_I08 (i))
+ return 2 * cost_scale;
+ /* Any other constant requires an additional 2 cycle pc-relative load.
+ This case is probably unnecessary. */
+ return 3 * cost_scale;
+}
+
+/* Return the cost of an addition or a subtraction. */
+static inline int
+addsubcosts (rtx x)
+{
+ if (GET_MODE (x) == SImode)
+ {
+ /* The addc or subc patterns will eventually become one or two
+ instructions. Below are some costs for some of the patterns
+ which combine would reject because the costs of the individual
+ insns in the patterns are lower.
+
+ FIXME: It would be much easier if we had something like insn cost
+ attributes and the cost calculation machinery used those attributes
+ in the first place. This would eliminate redundant recog-like C
+ code to calculate costs of complex patterns. */
+ rtx op0 = XEXP (x, 0);
+ rtx op1 = XEXP (x, 1);
+
+ if (GET_CODE (x) == PLUS)
+ {
+ if (GET_CODE (op0) == AND
+ && XEXP (op0, 1) == const1_rtx
+ && (GET_CODE (op1) == PLUS
+ || (GET_CODE (op1) == MULT && XEXP (op1, 1) == const2_rtx)))
+ return 1;
+
+ if (GET_CODE (op0) == MULT && XEXP (op0, 1) == const2_rtx
+ && GET_CODE (op1) == LSHIFTRT
+ && CONST_INT_P (XEXP (op1, 1)) && INTVAL (XEXP (op1, 1)) == 31)
+ return 1;
+ }
+ }
+
+ /* On SH1-4 we have only max. SImode operations.
+ Double the cost for modes > SImode. */
+ const int cost_scale = !TARGET_SHMEDIA
+ && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
+ ? 2 : 1;
+
+ /* Adding a register is a single cycle insn. */
+ if (REG_P (XEXP (x, 1))
+ || GET_CODE (XEXP (x, 1)) == SUBREG)
+ return 1 * cost_scale;
+
+ /* Likewise for small constants. */
+ if (CONST_INT_P (XEXP (x, 1))
+ && CONST_OK_FOR_ADD (INTVAL (XEXP (x, 1))))
+ return 1 * cost_scale;
+
+ if (TARGET_SHMEDIA)
+ switch (GET_CODE (XEXP (x, 1)))
+ {
+ case CONST:
+ case LABEL_REF:
+ case SYMBOL_REF:
+ return TARGET_SHMEDIA64 ? 5 : 3;
+
+ case CONST_INT:
+ if (CONST_OK_FOR_I16 (INTVAL (XEXP (x, 1))))
+ return 2;
+ else if (CONST_OK_FOR_I16 (INTVAL (XEXP (x, 1)) >> 16))
+ return 3;
+ else if (CONST_OK_FOR_I16 ((INTVAL (XEXP (x, 1)) >> 16) >> 16))
+ return 4;
+
+ /* Fall through. */
+ default:
+ return 5;
+ }
+
+ /* Any other constant requires a 2 cycle pc-relative load plus an
+ addition. */
+ return 3 * cost_scale;
+}
+
+/* Return the cost of a multiply. */
+static inline int
+multcosts (rtx x ATTRIBUTE_UNUSED)
+{
+ if (sh_multcost >= 0)
+ return sh_multcost;
+ if (TARGET_SHMEDIA)
+ /* ??? We have a mul insn, but it has a latency of three, and doesn't
+ accept constants. Ideally, we would use a cost of one or two and
+ add the cost of the operand, but disregard the latter when inside loops
+ and loop invariant code motion is still to follow.
+ Using a multiply first and splitting it later if it's a loss
+ doesn't work because of different sign / zero extension semantics
+ of multiplies vs. shifts. */
+ return optimize_size ? 2 : 3;
+
+ if (TARGET_SH2)
+ {
+ /* We have a mul insn, so we can never take more than the mul and the
+ read of the mac reg, but count more because of the latency and extra
+ reg usage. */
+ if (optimize_size)
+ return 2;
+ return 3;
+ }
+
+ /* If we're aiming at small code, then just count the number of
+ insns in a multiply call sequence. */
+ if (optimize_size)
+ return 5;
+
+ /* Otherwise count all the insns in the routine we'd be calling too. */
+ return 20;
+}
+
+/* Compute a (partial) cost for rtx X. Return true if the complete
+ cost has been computed, and false if subexpressions should be
+ scanned. In either case, *TOTAL contains the cost result. */
+static bool
+sh_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
+ int *total, bool speed ATTRIBUTE_UNUSED)
+{
+ switch (code)
+ {
+ /* The lower-subreg pass decides whether to split multi-word regs
+ into individual regs by looking at the cost for a SET of certain
+ modes with the following patterns:
+ (set (reg) (reg))
+ (set (reg) (const_int 0))
+ On machines that support vector-move operations a multi-word move
+ is the same cost as individual reg move. On SH there is no
+ vector-move, so we have to provide the correct cost in the number
+ of move insns to load/store the reg of the mode in question. */
+ case SET:
+ if (register_operand (SET_DEST (x), VOIDmode)
+ && (register_operand (SET_SRC (x), VOIDmode)
+ || satisfies_constraint_Z (SET_SRC (x))))
+ {
+ const enum machine_mode mode = GET_MODE (SET_DEST (x));
+ *total = COSTS_N_INSNS (GET_MODE_SIZE (mode)
+ / mov_insn_size (mode, TARGET_SH2A));
+ return true;
+ }
+ return false;
+
+ /* The cost of a mem access is mainly the cost of the address mode. */
+ case MEM:
+ *total = sh_address_cost (XEXP (x, 0), GET_MODE (x), MEM_ADDR_SPACE (x),
+ true);
+ return true;
+
+ /* The cost of a sign or zero extend depends on whether the source is a
+ reg or a mem. In case of a mem take the address into acount. */
+ case SIGN_EXTEND:
+ if (REG_P (XEXP (x, 0)))
+ {
+ *total = COSTS_N_INSNS (1);
+ return true;
+ }
+ if (MEM_P (XEXP (x, 0)))
+ {
+ *total = sh_address_cost (XEXP (XEXP (x, 0), 0),
+ GET_MODE (XEXP (x, 0)),
+ MEM_ADDR_SPACE (XEXP (x, 0)), true);
+ return true;
+ }
+ return false;
+
+ case ZERO_EXTEND:
+ if (REG_P (XEXP (x, 0)))
+ {
+ *total = COSTS_N_INSNS (1);
+ return true;
+ }
+ else if (TARGET_SH2A && MEM_P (XEXP (x, 0))
+ && (GET_MODE (XEXP (x, 0)) == QImode
+ || GET_MODE (XEXP (x, 0)) == HImode))
+ {
+ /* Handle SH2A's movu.b and movu.w insn. */
+ *total = sh_address_cost (XEXP (XEXP (x, 0), 0),
+ GET_MODE (XEXP (x, 0)),
+ MEM_ADDR_SPACE (XEXP (x, 0)), true);
+ return true;
+ }
+ return false;
+
+ /* mems for SFmode and DFmode can be inside a parallel due to
+ the way the fpscr is handled. */
+ case PARALLEL:
+ for (int i = 0; i < XVECLEN (x, 0); i++)
+ {
+ rtx xx = XVECEXP (x, 0, i);
+ if (GET_CODE (xx) == SET && MEM_P (XEXP (xx, 0)))
+ {
+ *total = sh_address_cost (XEXP (XEXP (xx, 0), 0),
+ GET_MODE (XEXP (xx, 0)),
+ MEM_ADDR_SPACE (XEXP (xx, 0)), true);
+ return true;
+ }
+ if (GET_CODE (xx) == SET && MEM_P (XEXP (xx, 1)))
+ {
+ *total = sh_address_cost (XEXP (XEXP (xx, 1), 0),
+ GET_MODE (XEXP (xx, 1)),
+ MEM_ADDR_SPACE (XEXP (xx, 1)), true);
+ return true;
+ }
+ }
+
+ if (sh_1el_vec (x, VOIDmode))
+ *total = outer_code != SET;
+ else if (sh_rep_vec (x, VOIDmode))
+ *total = ((GET_MODE_UNIT_SIZE (GET_MODE (x)) + 3) / 4
+ + (outer_code != SET));
+ else
+ *total = COSTS_N_INSNS (3) + (outer_code != SET);
+ return true;
+
+ case CONST_INT:
+ if (TARGET_SHMEDIA)
+ {
+ if (INTVAL (x) == 0)
+ *total = 0;
+ else if (outer_code == AND && and_operand ((x), DImode))
+ *total = 0;
+ else if ((outer_code == IOR || outer_code == XOR
+ || outer_code == PLUS)
+ && CONST_OK_FOR_I10 (INTVAL (x)))
+ *total = 0;
+ else if (CONST_OK_FOR_I16 (INTVAL (x)))
+ *total = COSTS_N_INSNS (outer_code != SET);
+ else if (CONST_OK_FOR_I16 (INTVAL (x) >> 16))
+ *total = COSTS_N_INSNS ((outer_code != SET) + 1);
+ else if (CONST_OK_FOR_I16 ((INTVAL (x) >> 16) >> 16))
+ *total = COSTS_N_INSNS ((outer_code != SET) + 2);
+ else
+ *total = COSTS_N_INSNS ((outer_code != SET) + 3);
+ return true;
+ }
+ if (CONST_OK_FOR_I08 (INTVAL (x)))
+ *total = 0;
+ else if ((outer_code == AND || outer_code == IOR || outer_code == XOR)
+ && CONST_OK_FOR_K08 (INTVAL (x)))
+ *total = 1;
+ /* prepare_cmp_insn will force costly constants int registers before
+ the cbranch[sd]i4 patterns can see them, so preserve potentially
+ interesting ones not covered by I08 above. */
+ else if (outer_code == COMPARE
+ && ((unsigned HOST_WIDE_INT) INTVAL (x)
+ == (unsigned HOST_WIDE_INT) 0x7fffffff + 1
+ || INTVAL (x) == 0x7fffffff
+ || INTVAL (x) == 0x80 || INTVAL (x) == -0x81))
+ *total = 1;
+ else
+ *total = 8;
+ return true;
+
+ case EQ:
+ /* An and with a constant compared against zero is
+ most likely going to be a TST #imm, R0 instruction.
+ Notice that this does not catch the zero_extract variants from
+ the md file. */
+ if (GET_CODE (XEXP (x, 0)) == AND
+ && CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) == 0)
+ {
+ *total = 1;
+ return true;
+ }
+ else
+ return false;
+
+ case SMIN:
+ case SMAX:
+ /* This is most likely a clips.b or clips.w insn that is being made up
+ by combine. */
+ if (TARGET_SH2A
+ && (GET_CODE (XEXP (x, 0)) == SMAX || GET_CODE (XEXP (x, 0)) == SMIN)
+ && CONST_INT_P (XEXP (XEXP (x, 0), 1))
+ && REG_P (XEXP (XEXP (x, 0), 0))
+ && CONST_INT_P (XEXP (x, 1)))
+ {
+ *total = COSTS_N_INSNS (1);
+ return true;
+ }
+ else
+ return false;
+
+ case CONST:
+ case LABEL_REF:
+ case SYMBOL_REF:
+ if (TARGET_SHMEDIA64)
+ *total = COSTS_N_INSNS (4);
+ else if (TARGET_SHMEDIA32)
+ *total = COSTS_N_INSNS (2);
+ else
+ *total = 5;
+ return true;
+
+ case CONST_DOUBLE:
+ if (TARGET_SHMEDIA)
+ *total = COSTS_N_INSNS (4);
+ /* prepare_cmp_insn will force costly constants int registers before
+ the cbranchdi4 pattern can see them, so preserve potentially
+ interesting ones. */
+ else if (outer_code == COMPARE && GET_MODE (x) == DImode)
+ *total = 1;
+ else
+ *total = 10;
+ return true;
+
+ case CONST_VECTOR:
+ /* FIXME: This looks broken. Only the last statement has any effect.
+ Probably this could be folded with the PARALLEL case? */
+ if (x == CONST0_RTX (GET_MODE (x)))
+ *total = 0;
+ else if (sh_1el_vec (x, VOIDmode))
+ *total = outer_code != SET;
+ if (sh_rep_vec (x, VOIDmode))
+ *total = ((GET_MODE_UNIT_SIZE (GET_MODE (x)) + 3) / 4
+ + (outer_code != SET));
+ *total = COSTS_N_INSNS (3) + (outer_code != SET);
+ return true;
+
+ case PLUS:
+ case MINUS:
+ *total = COSTS_N_INSNS (addsubcosts (x));
+ return true;
+
+ case AND:
+ case XOR:
+ case IOR:
+ *total = COSTS_N_INSNS (and_xor_ior_costs (x, code));
+ return true;
+
+ case MULT:
+ *total = COSTS_N_INSNS (multcosts (x));
+ return true;
+
+ case LT:
+ case GE:
+ /* div0s sign comparison. */
+ if (GET_CODE (XEXP (x, 0)) == XOR
+ && REG_P ((XEXP (XEXP (x, 0), 0)))
+ && REG_P ((XEXP (XEXP (x, 0), 1)))
+ && satisfies_constraint_Z (XEXP (x, 1)))
+ {
+ *total = COSTS_N_INSNS (1);
+ return true;
+ }
+ else
+ return false;
+
+ case LSHIFTRT:
+ /* div0s sign comparison. */
+ if (GET_CODE (XEXP (x, 0)) == XOR
+ && REG_P ((XEXP (XEXP (x, 0), 0)))
+ && REG_P ((XEXP (XEXP (x, 0), 1)))
+ && CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) == 31)
+ {
+ *total = COSTS_N_INSNS (1);
+ return true;
+ }
+ /* Fall through to shiftcosts. */
+ case ASHIFT:
+ case ASHIFTRT:
+ {
+ int cost = shiftcosts (x);
+ if (cost < 0)
+ return false;
+ *total = COSTS_N_INSNS (cost);
+ return true;
+ }
+
+ case DIV:
+ case UDIV:
+ case MOD:
+ case UMOD:
+ *total = COSTS_N_INSNS (20);
+ return true;
+
+ case FLOAT:
+ case FIX:
+ *total = 100;
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/* Determine the size of the fundamental move insn that will be used
+ for the specified mode. */
+static inline int
+mov_insn_size (enum machine_mode mode, bool consider_sh2a)
+{
+ const int mode_sz = GET_MODE_SIZE (mode);
+
+ if ((consider_sh2a && TARGET_SH2A_DOUBLE && mode == DFmode)
+ || (TARGET_FMOVD && mode == DFmode))
+ return mode_sz;
+ else
+ {
+ /* The max. available mode for actual move insns is SImode.
+ Larger accesses will be split into multiple loads/stores. */
+ const int max_mov_sz = GET_MODE_SIZE (SImode);
+ return mode_sz >= max_mov_sz ? max_mov_sz : mode_sz;
+ }
+}
+
+/* Determine the maximum possible displacement for a move insn for the
+ specified mode. */
+int
+sh_max_mov_insn_displacement (machine_mode mode, bool consider_sh2a)
+{
+ /* The 4 byte displacement move insns are the same as the 2 byte
+ versions but take a 12 bit displacement. All we need to do is to
+ scale the max. displacement value accordingly. */
+ const int disp_scale = consider_sh2a ? (4095 / 15) : 1;
+
+ /* SH2A supports FPU move insns with 12 bit displacements.
+ Other variants to do not support any kind of displacements for
+ FPU move insns. */
+ if (! consider_sh2a && TARGET_FPU_ANY && GET_MODE_CLASS (mode) == MODE_FLOAT)
+ return 0;
+ else
+ {
+ const int mov_insn_sz = mov_insn_size (mode, consider_sh2a);
+ const int mode_sz = GET_MODE_SIZE (mode);
+ int r = 15 * mov_insn_sz * disp_scale;
+
+ /* If the mov insn will be split into multiple loads/stores, the
+ maximum possible displacement is a bit smaller. */
+ if (mode_sz > mov_insn_sz)
+ r -= mode_sz - mov_insn_sz;
+ return r;
+ }
+}
+
+/* Determine the alignment mask for a move insn of the
+ specified mode. */
+static inline int
+mov_insn_alignment_mask (enum machine_mode mode, bool consider_sh2a)
+{
+ const int mov_insn_sz = mov_insn_size (mode, consider_sh2a);
+ return mov_insn_sz > 0 ? (mov_insn_sz - 1) : 0;
+}
+
+/* Return the displacement value of a displacement address. */
+HOST_WIDE_INT
+sh_disp_addr_displacement (rtx x)
+{
+ gcc_assert (satisfies_constraint_Sdd (x));
+ return INTVAL (XEXP (XEXP (x, 0), 1));
+}
+
+/* Compute the cost of an address. */
+static int
+sh_address_cost (rtx x, enum machine_mode mode,
+ addr_space_t as ATTRIBUTE_UNUSED, bool speed ATTRIBUTE_UNUSED)
+{
+ /* 'GBR + 0'. Account one more because of R0 restriction. */
+ if (REG_P (x) && REGNO (x) == GBR_REG)
+ return 2;
+
+ /* Simple reg, post-inc, pre-dec addressing. */
+ if (REG_P (x) || GET_CODE (x) == POST_INC || GET_CODE (x) == PRE_DEC)
+ return 1;
+
+ /* 'reg + disp' addressing. */
+ if (GET_CODE (x) == PLUS
+ && REG_P (XEXP (x, 0)) && CONST_INT_P (XEXP (x, 1)))
+ {
+ /* 'GBR + disp'. Account one more because of R0 restriction. */
+ if (REGNO (XEXP (x, 0)) == GBR_REG
+ && gbr_displacement (XEXP (x, 1), mode))
+ return 2;
+
+ const HOST_WIDE_INT offset = INTVAL (XEXP (x, 1));
+
+ if (offset == 0)
+ return 1;
+
+ /* The displacement would fit into a 2 byte move insn.
+ HImode and QImode loads/stores with displacement put pressure on
+ R0 which will most likely require another reg copy. Thus account
+ a higher cost for that. */
+ if (offset > 0 && offset <= sh_max_mov_insn_displacement (mode, false))
+ return (mode == HImode || mode == QImode) ? 2 : 1;
+
+ /* The displacement would fit into a 4 byte move insn (SH2A). */
+ if (TARGET_SH2A
+ && offset > 0 && offset <= sh_max_mov_insn_displacement (mode, true))
+ return 2;
+
+ /* The displacement is probably out of range and will require extra
+ calculations. */
+ return 3;
+ }
+
+ /* 'reg + reg' addressing. Account a slightly higher cost because of
+ increased pressure on R0. */
+ if (GET_CODE (x) == PLUS && ! CONSTANT_P (XEXP (x, 1))
+ && ! TARGET_SHMEDIA)
+ return 3;
+
+ /* Not sure what it is - probably expensive. */
+ return 10;
+}
+
+/* Code to expand a shift. */
+static void
+gen_ashift (int type, int n, rtx reg)
+{
+ rtx n_rtx;
+
+ /* Negative values here come from the shift_amounts array. */
+ if (n < 0)
+ {
+ if (type == ASHIFT)
+ type = LSHIFTRT;
+ else
+ type = ASHIFT;
+ n = -n;
+ }
+
+ n_rtx = GEN_INT (n);
+ gcc_assert (satisfies_constraint_P27 (n_rtx));
+
+ switch (type)
+ {
+ case ASHIFTRT:
+ emit_insn (gen_ashrsi3_k (reg, reg, n_rtx));
+ break;
+ case LSHIFTRT:
+ if (n == 1)
+ emit_insn (gen_shlr (reg, reg));
+ else
+ emit_insn (gen_lshrsi3_k (reg, reg, n_rtx));
+ break;
+ case ASHIFT:
+ emit_insn (gen_ashlsi3_k (reg, reg, n_rtx));
+ break;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Code to expand a HImode shift. */
+static void
+gen_ashift_hi (int type, int n, rtx reg)
+{
+ /* Negative values here come from the shift_amounts array. */
+ if (n < 0)
+ {
+ if (type == ASHIFT)
+ type = LSHIFTRT;
+ else
+ type = ASHIFT;
+ n = -n;
+ }
+
+ switch (type)
+ {
+ case ASHIFTRT:
+ case LSHIFTRT:
+ /* We don't have HImode right shift operations because using the
+ ordinary 32 bit shift instructions for that doesn't generate proper
+ zero/sign extension.
+ gen_ashift_hi is only called in contexts where we know that the
+ sign extension works out correctly. */
+ {
+ int offset = 0;
+ if (GET_CODE (reg) == SUBREG)
+ {
+ offset = SUBREG_BYTE (reg);
+ reg = SUBREG_REG (reg);
+ }
+ gen_ashift (type, n, gen_rtx_SUBREG (SImode, reg, offset));
+ break;
+ }
+ case ASHIFT:
+ emit_insn (gen_ashlhi3_k (reg, reg, GEN_INT (n)));
+ break;
+ }
+}
+
+/* Output RTL to split a constant shift into its component SH constant
+ shift instructions. */
+void
+gen_shifty_op (int code, rtx *operands)
+{
+ int value = INTVAL (operands[2]);
+ int max, i;
+
+ /* Truncate the shift count in case it is out of bounds. */
+ value = value & 31;
+
+ if (value == 31)
+ {
+ if (code == LSHIFTRT)
+ {
+ emit_insn (gen_rotlsi3_1 (operands[0], operands[0]));
+ emit_insn (gen_movt (operands[0], get_t_reg_rtx ()));
+ return;
+ }
+ else if (code == ASHIFT)
+ {
+ /* There is a two instruction sequence for 31 bit left shifts,
+ but it requires r0. */
+ if (REG_P (operands[0]) && REGNO (operands[0]) == 0)
+ {
+ emit_insn (gen_andsi3 (operands[0], operands[0], const1_rtx));
+ emit_insn (gen_rotlsi3_31 (operands[0], operands[0]));
+ return;
+ }
+ }
+ }
+ else if (value == 0)
+ {
+ /* This can happen even when optimizing, if there were subregs before
+ reload. Don't output a nop here, as this is never optimized away;
+ use a no-op move instead. */
+ emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[0]));
+ return;
+ }
+
+ max = ashl_lshr_seq[value].insn_count;
+ for (i = 0; i < max; i++)
+ gen_ashift (code, ashl_lshr_seq[value].amount[i], operands[0]);
+}
+
+/* Same as gen_shifty_op, but optimized for values where the topmost bits
+ don't matter. */
+void
+gen_shifty_hi_op (int code, rtx *operands)
+{
+ int value = INTVAL (operands[2]);
+ int max, i;
+ void (*gen_fun) (int, int, rtx);
+
+ /* This operation is used by and_shl for SImode values with a few
+ high bits known to be cleared. */
+ value &= 31;
+ if (value == 0)
+ {
+ emit_insn (gen_nop ());
+ return;
+ }
+
+ gen_fun = GET_MODE (operands[0]) == HImode ? gen_ashift_hi : gen_ashift;
+ if (code == ASHIFT)
+ {
+ max = ext_ashl_lshr_seq[value].insn_count;
+ for (i = 0; i < max; i++)
+ gen_fun (code, ext_ashl_lshr_seq[value].amount[i], operands[0]);
+ }
+ else
+ /* When shifting right, emit the shifts in reverse order, so that
+ solitary negative values come first. */
+ for (i = ext_ashl_lshr_seq[value].insn_count - 1; i >= 0; i--)
+ gen_fun (code, ext_ashl_lshr_seq[value].amount[i], operands[0]);
+}
+
+/* Output RTL for an arithmetic right shift.
+ ??? Rewrite to use super-optimizer sequences. */
+bool
+expand_ashiftrt (rtx *operands)
+{
+ rtx wrk;
+ char func[18];
+ int value;
+
+ if (TARGET_DYNSHIFT)
+ {
+ if (!CONST_INT_P (operands[2]))
+ {
+ rtx count = copy_to_mode_reg (SImode, operands[2]);
+ emit_insn (gen_negsi2 (count, count));
+ emit_insn (gen_ashrsi3_d (operands[0], operands[1], count));
+ return true;
+ }
+ else if (ashiftrt_insns[INTVAL (operands[2]) & 31]
+ > 1 + SH_DYNAMIC_SHIFT_COST)
+ {
+ rtx count
+ = force_reg (SImode, GEN_INT (- (INTVAL (operands[2]) & 31)));
+ emit_insn (gen_ashrsi3_d (operands[0], operands[1], count));
+ return true;
+ }
+ }
+ if (!CONST_INT_P (operands[2]))
+ return false;
+
+ value = INTVAL (operands[2]) & 31;
+
+ if (value == 31)
+ {
+ /* If we are called from abs expansion, arrange things so that we
+ we can use a single MT instruction that doesn't clobber the source,
+ if LICM can hoist out the load of the constant zero. */
+ if (currently_expanding_to_rtl)
+ {
+ emit_insn (gen_cmpgtsi_t (force_reg (SImode, CONST0_RTX (SImode)),
+ operands[1]));
+ emit_insn (gen_mov_neg_si_t (operands[0], get_t_reg_rtx ()));
+ return true;
+ }
+ emit_insn (gen_ashrsi2_31 (operands[0], operands[1]));
+ return true;
+ }
+ else if (value >= 16 && value <= 19)
+ {
+ wrk = gen_reg_rtx (SImode);
+ emit_insn (gen_ashrsi2_16 (wrk, operands[1]));
+ value -= 16;
+ while (value--)
+ gen_ashift (ASHIFTRT, 1, wrk);
+ emit_move_insn (operands[0], wrk);
+ return true;
+ }
+ /* Expand a short sequence inline, longer call a magic routine. */
+ else if (value <= 5)
+ {
+ wrk = gen_reg_rtx (SImode);
+ emit_move_insn (wrk, operands[1]);
+ while (value--)
+ gen_ashift (ASHIFTRT, 1, wrk);
+ emit_move_insn (operands[0], wrk);
+ return true;
+ }
+
+ wrk = gen_reg_rtx (Pmode);
+
+ /* Load the value into an arg reg and call a helper. */
+ emit_move_insn (gen_rtx_REG (SImode, 4), operands[1]);
+ sprintf (func, "__ashiftrt_r4_%d", value);
+ function_symbol (wrk, func, SFUNC_STATIC);
+ emit_insn (gen_ashrsi3_n (GEN_INT (value), wrk));
+ emit_move_insn (operands[0], gen_rtx_REG (SImode, 4));
+ return true;
+}
+
+/* Try to find a good way to implement the combiner pattern
+ [(set (match_operand:SI 0 "register_operand" "r")
+ (and:SI (ashift:SI (match_operand:SI 1 "register_operand" "r")
+ (match_operand:SI 2 "const_int_operand" "n"))
+ (match_operand:SI 3 "const_int_operand" "n"))) .
+ LEFT_RTX is operand 2 in the above pattern, and MASK_RTX is operand 3.
+ return 0 for simple right / left or left/right shift combination.
+ return 1 for a combination of shifts with zero_extend.
+ return 2 for a combination of shifts with an AND that needs r0.
+ return 3 for a combination of shifts with an AND that needs an extra
+ scratch register, when the three highmost bits of the AND mask are clear.
+ return 4 for a combination of shifts with an AND that needs an extra
+ scratch register, when any of the three highmost bits of the AND mask
+ is set.
+ If ATTRP is set, store an initial right shift width in ATTRP[0],
+ and the instruction length in ATTRP[1] . These values are not valid
+ when returning 0.
+ When ATTRP is set and returning 1, ATTRP[2] gets set to the index into
+ shift_amounts for the last shift value that is to be used before the
+ sign extend. */
+int
+shl_and_kind (rtx left_rtx, rtx mask_rtx, int *attrp)
+{
+ unsigned HOST_WIDE_INT mask, lsb, mask2, lsb2;
+ int left = INTVAL (left_rtx), right;
+ int best = 0;
+ int cost, best_cost = 10000;
+ int best_right = 0, best_len = 0;
+ int i;
+ int can_ext;
+
+ if (left < 0 || left > 31)
+ return 0;
+ if (CONST_INT_P (mask_rtx))
+ mask = (unsigned HOST_WIDE_INT) INTVAL (mask_rtx) >> left;
+ else
+ mask = (unsigned HOST_WIDE_INT) GET_MODE_MASK (SImode) >> left;
+ /* Can this be expressed as a right shift / left shift pair? */
+ lsb = ((mask ^ (mask - 1)) >> 1) + 1;
+ right = exact_log2 (lsb);
+ mask2 = ~(mask + lsb - 1);
+ lsb2 = ((mask2 ^ (mask2 - 1)) >> 1) + 1;
+ /* mask has no zeroes but trailing zeroes <==> ! mask2 */
+ if (! mask2)
+ best_cost = ashl_lshr_seq[right].insn_count
+ + ashl_lshr_seq[right + left].insn_count;
+ /* mask has no trailing zeroes <==> ! right */
+ else if (! right && mask2 == ~(lsb2 - 1))
+ {
+ int late_right = exact_log2 (lsb2);
+ best_cost = ashl_lshr_seq[left + late_right].insn_count
+ + ashl_lshr_seq[late_right].insn_count;
+ }
+ /* Try to use zero extend. */
+ if (mask2 == ~(lsb2 - 1))
+ {
+ int width, first;
+
+ for (width = 8; width <= 16; width += 8)
+ {
+ /* Can we zero-extend right away? */
+ if (lsb2 == (unsigned HOST_WIDE_INT) 1 << width)
+ {
+ cost = 1 + ext_ashl_lshr_seq[right].insn_count
+ + ext_ashl_lshr_seq[left + right].insn_count;
+ if (cost < best_cost)
+ {
+ best = 1;
+ best_cost = cost;
+ best_right = right;
+ best_len = cost;
+ if (attrp)
+ attrp[2] = -1;
+ }
+ continue;
+ }
+ /* ??? Could try to put zero extend into initial right shift,
+ or even shift a bit left before the right shift. */
+ /* Determine value of first part of left shift, to get to the
+ zero extend cut-off point. */
+ first = width - exact_log2 (lsb2) + right;
+ if (first >= 0 && right + left - first >= 0)
+ {
+ cost = ext_ashl_lshr_seq[right].insn_count
+ + ext_ashl_lshr_seq[first].insn_count + 1
+ + ext_ashl_lshr_seq[right + left - first].insn_count;
+
+ if (cost < best_cost)
+ {
+ best = 1;
+ best_cost = cost;
+ best_right = right;
+ best_len = cost;
+ if (attrp)
+ attrp[2] = first;
+ }
+ }
+ }
+ }
+ /* Try to use r0 AND pattern */
+ for (i = 0; i <= 2; i++)
+ {
+ if (i > right)
+ break;
+ if (! CONST_OK_FOR_K08 (mask >> i))
+ continue;
+ cost = (i != 0) + 2 + ext_ashl_lshr_seq[left + i].insn_count;
+ if (cost < best_cost)
+ {
+ best = 2;
+ best_cost = cost;
+ best_right = i;
+ best_len = cost - 1;
+ }
+ }
+ /* Try to use a scratch register to hold the AND operand. */
+ can_ext = ((mask << left) & ((unsigned HOST_WIDE_INT) 3 << 30)) == 0;
+ for (i = 0; i <= 2; i++)
+ {
+ if (i > right)
+ break;
+ cost = (i != 0) + (CONST_OK_FOR_I08 (mask >> i) ? 2 : 3)
+ + (can_ext
+ ? ext_ashl_lshr_seq
+ : ashl_lshr_seq)[left + i].insn_count;
+ if (cost < best_cost)
+ {
+ best = 4 - can_ext;
+ best_cost = cost;
+ best_right = i;
+ best_len = cost - 1 - ! CONST_OK_FOR_I08 (mask >> i);
+ }
+ }
+
+ if (attrp)
+ {
+ attrp[0] = best_right;
+ attrp[1] = best_len;
+ }
+ return best;
+}
+
+/* This is used in length attributes of the unnamed instructions
+ corresponding to shl_and_kind return values of 1 and 2. */
+int
+shl_and_length (rtx insn)
+{
+ rtx set_src, left_rtx, mask_rtx;
+ int attributes[3];
+
+ set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0));
+ left_rtx = XEXP (XEXP (set_src, 0), 1);
+ mask_rtx = XEXP (set_src, 1);
+ shl_and_kind (left_rtx, mask_rtx, attributes);
+ return attributes[1];
+}
+
+/* This is used in length attribute of the and_shl_scratch instruction. */
+int
+shl_and_scr_length (rtx insn)
+{
+ rtx set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0));
+ int len = ashl_lshr_seq[INTVAL (XEXP (set_src, 1)) & 31].insn_count;
+ rtx op = XEXP (set_src, 0);
+ len += ashl_lshr_seq[INTVAL (XEXP (op, 1)) & 31].insn_count + 1;
+ op = XEXP (XEXP (op, 0), 0);
+ return len + ashl_lshr_seq[INTVAL (XEXP (op, 1)) & 31].insn_count;
+}
+
+/* Generate rtl for instructions for which shl_and_kind advised a particular
+ method of generating them, i.e. returned zero. */
+bool
+gen_shl_and (rtx dest, rtx left_rtx, rtx mask_rtx, rtx source)
+{
+ int attributes[3];
+ unsigned HOST_WIDE_INT mask;
+ int kind = shl_and_kind (left_rtx, mask_rtx, attributes);
+ int right, total_shift;
+ void (*shift_gen_fun) (int, rtx *) = gen_shifty_hi_op;
+
+ right = attributes[0];
+ total_shift = INTVAL (left_rtx) + right;
+ mask = (unsigned HOST_WIDE_INT) INTVAL (mask_rtx) >> total_shift;
+ switch (kind)
+ {
+ default:
+ return true;
+ case 1:
+ {
+ int first = attributes[2];
+ rtx operands[3];
+
+ if (first < 0)
+ {
+ emit_insn ((mask << right) <= 0xff
+ ? gen_zero_extendqisi2 (dest,
+ gen_lowpart (QImode, source))
+ : gen_zero_extendhisi2 (dest,
+ gen_lowpart (HImode, source)));
+ source = dest;
+ }
+ if (source != dest)
+ emit_insn (gen_movsi (dest, source));
+ operands[0] = dest;
+ if (right)
+ {
+ operands[2] = GEN_INT (right);
+ gen_shifty_hi_op (LSHIFTRT, operands);
+ }
+ if (first > 0)
+ {
+ operands[2] = GEN_INT (first);
+ gen_shifty_hi_op (ASHIFT, operands);
+ total_shift -= first;
+ mask <<= first;
+ }
+ if (first >= 0)
+ emit_insn (mask <= 0xff
+ ? gen_zero_extendqisi2 (dest, gen_lowpart (QImode, dest))
+ : gen_zero_extendhisi2 (dest, gen_lowpart (HImode, dest)));
+ if (total_shift > 0)
+ {
+ operands[2] = GEN_INT (total_shift);
+ gen_shifty_hi_op (ASHIFT, operands);
+ }
+ break;
+ }
+ case 4:
+ shift_gen_fun = gen_shifty_op;
+ case 3:
+ /* If the topmost bit that matters is set, set the topmost bits
+ that don't matter. This way, we might be able to get a shorter
+ signed constant. */
+ if (mask & ((HOST_WIDE_INT) 1 << (31 - total_shift)))
+ mask |= (HOST_WIDE_INT) ~0 << (31 - total_shift);
+ case 2:
+ /* Don't expand fine-grained when combining, because that will
+ make the pattern fail. */
+ if (currently_expanding_to_rtl
+ || reload_in_progress || reload_completed)
+ {
+ rtx operands[3];
+
+ /* Cases 3 and 4 should be handled by this split
+ only while combining */
+ gcc_assert (kind <= 2);
+ if (right)
+ {
+ emit_insn (gen_lshrsi3 (dest, source, GEN_INT (right)));
+ source = dest;
+ }
+ emit_insn (gen_andsi3 (dest, source, GEN_INT (mask)));
+ if (total_shift)
+ {
+ operands[0] = dest;
+ operands[1] = dest;
+ operands[2] = GEN_INT (total_shift);
+ shift_gen_fun (ASHIFT, operands);
+ }
+ break;
+ }
+ else
+ {
+ int neg = 0;
+ if (kind != 4 && total_shift < 16)
+ {
+ neg = -ext_ashl_lshr_seq[total_shift].amount[1];
+ if (neg > 0)
+ neg -= ext_ashl_lshr_seq[total_shift].amount[2];
+ else
+ neg = 0;
+ }
+ emit_insn (gen_and_shl_scratch (dest, source,
+ GEN_INT (right),
+ GEN_INT (mask),
+ GEN_INT (total_shift + neg),
+ GEN_INT (neg)));
+ emit_insn (gen_movsi (dest, dest));
+ break;
+ }
+ }
+ return false;
+}
+
+/* Try to find a good way to implement the combiner pattern
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (sign_extract:SI (ashift:SI (match_operand:SI 1 "register_operand" "r")
+ (match_operand:SI 2 "const_int_operand" "n")
+ (match_operand:SI 3 "const_int_operand" "n")
+ (const_int 0)))
+ (clobber (reg:SI T_REG))]
+ LEFT_RTX is operand 2 in the above pattern, and SIZE_RTX is operand 3.
+ return 0 for simple left / right shift combination.
+ return 1 for left shift / 8 bit sign extend / left shift.
+ return 2 for left shift / 16 bit sign extend / left shift.
+ return 3 for left shift / 8 bit sign extend / shift / sign extend.
+ return 4 for left shift / 16 bit sign extend / shift / sign extend.
+ return 5 for left shift / 16 bit sign extend / right shift
+ return 6 for < 8 bit sign extend / left shift.
+ return 7 for < 8 bit sign extend / left shift / single right shift.
+ If COSTP is nonzero, assign the calculated cost to *COSTP. */
+int
+shl_sext_kind (rtx left_rtx, rtx size_rtx, int *costp)
+{
+ int left, size, insize, ext;
+ int cost = 0, best_cost;
+ int kind;
+
+ left = INTVAL (left_rtx);
+ size = INTVAL (size_rtx);
+ insize = size - left;
+ gcc_assert (insize > 0);
+ /* Default to left / right shift. */
+ kind = 0;
+ best_cost = ashl_lshr_seq[32 - insize].insn_count
+ + ashl_lshr_seq[32 - size].insn_count;
+ if (size <= 16)
+ {
+ /* 16 bit shift / sign extend / 16 bit shift */
+ cost = ashl_lshr_seq[16 - insize].insn_count + 1
+ + ashl_lshr_seq[16 - size].insn_count;
+ /* If ashiftrt_insns[16 - size] is 8, this choice will be overridden
+ below, by alternative 3 or something even better. */
+ if (cost < best_cost)
+ {
+ kind = 5;
+ best_cost = cost;
+ }
+ }
+ /* Try a plain sign extend between two shifts. */
+ for (ext = 16; ext >= insize; ext -= 8)
+ {
+ if (ext <= size)
+ {
+ cost = ext_ashl_lshr_seq[ext - insize].insn_count + 1
+ + ashl_lshr_seq[size - ext].insn_count;
+ if (cost < best_cost)
+ {
+ kind = ext / (unsigned) 8;
+ best_cost = cost;
+ }
+ }
+ /* Check if we can do a sloppy shift with a final signed shift
+ restoring the sign. */
+ if (EXT_SHIFT_SIGNED (size - ext))
+ cost = ext_ashl_lshr_seq[ext - insize].insn_count
+ + ext_ashl_lshr_seq[size - ext].insn_count + 1;
+ /* If not, maybe it's still cheaper to do the second shift sloppy,
+ and do a final sign extend? */
+ else if (size <= 16)
+ cost = ext_ashl_lshr_seq[ext - insize].insn_count + 1
+ + ext_ashl_lshr_seq[size > ext ? size - ext : ext - size].insn_count
+ + 1;
+ else
+ continue;
+ if (cost < best_cost)
+ {
+ kind = ext / (unsigned) 8 + 2;
+ best_cost = cost;
+ }
+ }
+ /* Check if we can sign extend in r0 */
+ if (insize < 8)
+ {
+ cost = 3 + ashl_lshr_seq[left].insn_count;
+ if (cost < best_cost)
+ {
+ kind = 6;
+ best_cost = cost;
+ }
+ /* Try the same with a final signed shift. */
+ if (left < 31)
+ {
+ cost = 3 + ext_ashl_lshr_seq[left + 1].insn_count + 1;
+ if (cost < best_cost)
+ {
+ kind = 7;
+ best_cost = cost;
+ }
+ }
+ }
+ if (TARGET_DYNSHIFT)
+ {
+ /* Try to use a dynamic shift. */
+ cost = ashl_lshr_seq[32 - insize].insn_count + 1 + SH_DYNAMIC_SHIFT_COST;
+ if (cost < best_cost)
+ {
+ kind = 0;
+ best_cost = cost;
+ }
+ }
+ if (costp)
+ *costp = cost;
+ return kind;
+}
+
+/* Function to be used in the length attribute of the instructions
+ implementing this pattern. */
+int
+shl_sext_length (rtx insn)
+{
+ rtx set_src, left_rtx, size_rtx;
+ int cost;
+
+ set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0));
+ left_rtx = XEXP (XEXP (set_src, 0), 1);
+ size_rtx = XEXP (set_src, 1);
+ shl_sext_kind (left_rtx, size_rtx, &cost);
+ return cost;
+}
+
+/* Generate rtl for this pattern */
+bool
+gen_shl_sext (rtx dest, rtx left_rtx, rtx size_rtx, rtx source)
+{
+ int kind;
+ int left, size, insize, cost;
+ rtx operands[3];
+
+ kind = shl_sext_kind (left_rtx, size_rtx, &cost);
+ left = INTVAL (left_rtx);
+ size = INTVAL (size_rtx);
+ insize = size - left;
+ switch (kind)
+ {
+ case 1:
+ case 2:
+ case 3:
+ case 4:
+ {
+ int ext = kind & 1 ? 8 : 16;
+ int shift2 = size - ext;
+
+ /* Don't expand fine-grained when combining, because that will
+ make the pattern fail. */
+ if (! currently_expanding_to_rtl
+ && ! reload_in_progress && ! reload_completed)
+ {
+ emit_insn (gen_shl_sext_ext (dest, source, left_rtx, size_rtx));
+ emit_insn (gen_movsi (dest, source));
+ break;
+ }
+ if (dest != source)
+ emit_insn (gen_movsi (dest, source));
+ operands[0] = dest;
+ if (ext - insize)
+ {
+ operands[2] = GEN_INT (ext - insize);
+ gen_shifty_hi_op (ASHIFT, operands);
+ }
+ emit_insn (kind & 1
+ ? gen_extendqisi2 (dest, gen_lowpart (QImode, dest))
+ : gen_extendhisi2 (dest, gen_lowpart (HImode, dest)));
+ if (kind <= 2)
+ {
+ if (shift2)
+ {
+ operands[2] = GEN_INT (shift2);
+ gen_shifty_op (ASHIFT, operands);
+ }
+ }
+ else
+ {
+ if (shift2 > 0)
+ {
+ if (EXT_SHIFT_SIGNED (shift2))
+ {
+ operands[2] = GEN_INT (shift2 + 1);
+ gen_shifty_op (ASHIFT, operands);
+ operands[2] = const1_rtx;
+ gen_shifty_op (ASHIFTRT, operands);
+ break;
+ }
+ operands[2] = GEN_INT (shift2);
+ gen_shifty_hi_op (ASHIFT, operands);
+ }
+ else if (shift2)
+ {
+ operands[2] = GEN_INT (-shift2);
+ gen_shifty_hi_op (LSHIFTRT, operands);
+ }
+ emit_insn (size <= 8
+ ? gen_extendqisi2 (dest, gen_lowpart (QImode, dest))
+ : gen_extendhisi2 (dest, gen_lowpart (HImode, dest)));
+ }
+ break;
+ }
+ case 5:
+ {
+ int i = 16 - size;
+ if (! currently_expanding_to_rtl
+ && ! reload_in_progress && ! reload_completed)
+ emit_insn (gen_shl_sext_ext (dest, source, left_rtx, size_rtx));
+ else
+ {
+ operands[0] = dest;
+ operands[2] = GEN_INT (16 - insize);
+ gen_shifty_hi_op (ASHIFT, operands);
+ emit_insn (gen_extendhisi2 (dest, gen_lowpart (HImode, dest)));
+ }
+ /* Don't use gen_ashrsi3 because it generates new pseudos. */
+ while (--i >= 0)
+ gen_ashift (ASHIFTRT, 1, dest);
+ break;
+ }
+ case 6:
+ case 7:
+ /* Don't expand fine-grained when combining, because that will
+ make the pattern fail. */
+ if (! currently_expanding_to_rtl
+ && ! reload_in_progress && ! reload_completed)
+ {
+ emit_insn (gen_shl_sext_ext (dest, source, left_rtx, size_rtx));
+ emit_insn (gen_movsi (dest, source));
+ break;
+ }
+ emit_insn (gen_andsi3 (dest, source, GEN_INT ((1 << insize) - 1)));
+ emit_insn (gen_xorsi3 (dest, dest, GEN_INT (1 << (insize - 1))));
+ emit_insn (gen_addsi3 (dest, dest, GEN_INT (-1 << (insize - 1))));
+ operands[0] = dest;
+ operands[2] = kind == 7 ? GEN_INT (left + 1) : left_rtx;
+ gen_shifty_op (ASHIFT, operands);
+ if (kind == 7)
+ emit_insn (gen_ashrsi3_k (dest, dest, const1_rtx));
+ break;
+ default:
+ return true;
+ }
+ return false;
+}
+
+/* Prefix a symbol_ref name with "datalabel". */
+rtx
+gen_datalabel_ref (rtx sym)
+{
+ const char *str;
+
+ if (GET_CODE (sym) == LABEL_REF)
+ return gen_rtx_CONST (GET_MODE (sym),
+ gen_rtx_UNSPEC (GET_MODE (sym),
+ gen_rtvec (1, sym),
+ UNSPEC_DATALABEL));
+
+ gcc_assert (GET_CODE (sym) == SYMBOL_REF);
+
+ str = XSTR (sym, 0);
+ /* Share all SYMBOL_REF strings with the same value - that is important
+ for cse. */
+ str = IDENTIFIER_POINTER (get_identifier (str));
+ XSTR (sym, 0) = str;
+
+ return sym;
+}
+
+
+static alloc_pool label_ref_list_pool;
+
+typedef struct label_ref_list_d
+{
+ rtx label;
+ struct label_ref_list_d *next;
+} *label_ref_list_t;
+
+/* The SH cannot load a large constant into a register, constants have to
+ come from a pc relative load. The reference of a pc relative load
+ instruction must be less than 1k in front of the instruction. This
+ means that we often have to dump a constant inside a function, and
+ generate code to branch around it.
+
+ It is important to minimize this, since the branches will slow things
+ down and make things bigger.
+
+ Worst case code looks like:
+
+ mov.l L1,rn
+ bra L2
+ nop
+ align
+ L1: .long value
+ L2:
+ ..
+
+ mov.l L3,rn
+ bra L4
+ nop
+ align
+ L3: .long value
+ L4:
+ ..
+
+ We fix this by performing a scan before scheduling, which notices which
+ instructions need to have their operands fetched from the constant table
+ and builds the table.
+
+ The algorithm is:
+
+ scan, find an instruction which needs a pcrel move. Look forward, find the
+ last barrier which is within MAX_COUNT bytes of the requirement.
+ If there isn't one, make one. Process all the instructions between
+ the find and the barrier.
+
+ In the above example, we can tell that L3 is within 1k of L1, so
+ the first move can be shrunk from the 3 insn+constant sequence into
+ just 1 insn, and the constant moved to L3 to make:
+
+ mov.l L1,rn
+ ..
+ mov.l L3,rn
+ bra L4
+ nop
+ align
+ L3:.long value
+ L4:.long value
+
+ Then the second move becomes the target for the shortening process. */
+
+typedef struct
+{
+ rtx value; /* Value in table. */
+ rtx label; /* Label of value. */
+ label_ref_list_t wend; /* End of window. */
+ enum machine_mode mode; /* Mode of value. */
+
+ /* True if this constant is accessed as part of a post-increment
+ sequence. Note that HImode constants are never accessed in this way. */
+ bool part_of_sequence_p;
+} pool_node;
+
+/* The maximum number of constants that can fit into one pool, since
+ constants in the range 0..510 are at least 2 bytes long, and in the
+ range from there to 1018 at least 4 bytes. */
+
+#define MAX_POOL_SIZE 372
+static pool_node pool_vector[MAX_POOL_SIZE];
+static int pool_size;
+static rtx pool_window_label;
+static int pool_window_last;
+
+static int max_labelno_before_reorg;
+
+/* ??? If we need a constant in HImode which is the truncated value of a
+ constant we need in SImode, we could combine the two entries thus saving
+ two bytes. Is this common enough to be worth the effort of implementing
+ it? */
+
+/* ??? This stuff should be done at the same time that we shorten branches.
+ As it is now, we must assume that all branches are the maximum size, and
+ this causes us to almost always output constant pools sooner than
+ necessary. */
+
+/* Add a constant to the pool and return its label. */
+static rtx
+add_constant (rtx x, enum machine_mode mode, rtx last_value)
+{
+ int i;
+ rtx lab, new_rtx;
+ label_ref_list_t ref, newref;
+
+ /* First see if we've already got it. */
+ for (i = 0; i < pool_size; i++)
+ {
+ if (x->code == pool_vector[i].value->code
+ && mode == pool_vector[i].mode)
+ {
+ if (x->code == CODE_LABEL)
+ {
+ if (XINT (x, 3) != XINT (pool_vector[i].value, 3))
+ continue;
+ }
+ if (rtx_equal_p (x, pool_vector[i].value))
+ {
+ lab = new_rtx = 0;
+ if (! last_value
+ || ! i
+ || ! rtx_equal_p (last_value, pool_vector[i-1].value))
+ {
+ new_rtx = gen_label_rtx ();
+ LABEL_REFS (new_rtx) = pool_vector[i].label;
+ pool_vector[i].label = lab = new_rtx;
+ }
+ if (lab && pool_window_label)
+ {
+ newref = (label_ref_list_t) pool_alloc (label_ref_list_pool);
+ newref->label = pool_window_label;
+ ref = pool_vector[pool_window_last].wend;
+ newref->next = ref;
+ pool_vector[pool_window_last].wend = newref;
+ }
+ if (new_rtx)
+ pool_window_label = new_rtx;
+ pool_window_last = i;
+ return lab;
+ }
+ }
+ }
+
+ /* Need a new one. */
+ pool_vector[pool_size].value = x;
+ if (last_value && rtx_equal_p (last_value, pool_vector[pool_size - 1].value))
+ {
+ lab = 0;
+ pool_vector[pool_size - 1].part_of_sequence_p = true;
+ }
+ else
+ lab = gen_label_rtx ();
+ pool_vector[pool_size].mode = mode;
+ pool_vector[pool_size].label = lab;
+ pool_vector[pool_size].wend = NULL;
+ pool_vector[pool_size].part_of_sequence_p = (lab == 0);
+ if (lab && pool_window_label)
+ {
+ newref = (label_ref_list_t) pool_alloc (label_ref_list_pool);
+ newref->label = pool_window_label;
+ ref = pool_vector[pool_window_last].wend;
+ newref->next = ref;
+ pool_vector[pool_window_last].wend = newref;
+ }
+ if (lab)
+ pool_window_label = lab;
+ pool_window_last = pool_size;
+ pool_size++;
+ return lab;
+}
+
+/* Output the literal table. START, if nonzero, is the first instruction
+ this table is needed for, and also indicates that there is at least one
+ casesi_worker_2 instruction; We have to emit the operand3 labels from
+ these insns at a 4-byte aligned position. BARRIER is the barrier
+ after which we are to place the table. */
+static void
+dump_table (rtx start, rtx barrier)
+{
+ rtx scan = barrier;
+ int i;
+ bool need_align = true;
+ rtx lab;
+ label_ref_list_t ref;
+ bool have_df = false;
+
+ /* Do two passes, first time dump out the HI sized constants. */
+
+ for (i = 0; i < pool_size; i++)
+ {
+ pool_node *p = &pool_vector[i];
+
+ if (p->mode == HImode)
+ {
+ if (need_align)
+ {
+ scan = emit_insn_after (gen_align_2 (), scan);
+ need_align = false;
+ }
+ for (lab = p->label; lab; lab = LABEL_REFS (lab))
+ scan = emit_label_after (lab, scan);
+ scan = emit_insn_after (gen_consttable_2 (p->value, const0_rtx),
+ scan);
+ for (ref = p->wend; ref; ref = ref->next)
+ {
+ lab = ref->label;
+ scan = emit_insn_after (gen_consttable_window_end (lab), scan);
+ }
+ }
+ else if (p->mode == DFmode)
+ have_df = true;
+ }
+
+ need_align = true;
+
+ if (start)
+ {
+ scan = emit_insn_after (gen_align_4 (), scan);
+ need_align = false;
+ for (; start != barrier; start = NEXT_INSN (start))
+ if (NONJUMP_INSN_P (start)
+ && recog_memoized (start) == CODE_FOR_casesi_worker_2)
+ {
+ rtx src = SET_SRC (XVECEXP (PATTERN (start), 0, 0));
+ rtx lab = XEXP (XVECEXP (src, 0, 3), 0);
+
+ scan = emit_label_after (lab, scan);
+ }
+ }
+ if (TARGET_FMOVD && TARGET_ALIGN_DOUBLE && have_df)
+ {
+ rtx align_insn = NULL_RTX;
+
+ scan = emit_label_after (gen_label_rtx (), scan);
+ scan = emit_insn_after (gen_align_log (GEN_INT (3)), scan);
+ need_align = false;
+
+ for (i = 0; i < pool_size; i++)
+ {
+ pool_node *p = &pool_vector[i];
+
+ switch (p->mode)
+ {
+ case HImode:
+ break;
+ case SImode:
+ case SFmode:
+ if (align_insn && !p->part_of_sequence_p)
+ {
+ for (lab = p->label; lab; lab = LABEL_REFS (lab))
+ emit_label_before (lab, align_insn);
+ emit_insn_before (gen_consttable_4 (p->value, const0_rtx),
+ align_insn);
+ for (ref = p->wend; ref; ref = ref->next)
+ {
+ lab = ref->label;
+ emit_insn_before (gen_consttable_window_end (lab),
+ align_insn);
+ }
+ delete_insn (align_insn);
+ align_insn = NULL_RTX;
+ continue;
+ }
+ else
+ {
+ for (lab = p->label; lab; lab = LABEL_REFS (lab))
+ scan = emit_label_after (lab, scan);
+ scan = emit_insn_after (gen_consttable_4 (p->value,
+ const0_rtx), scan);
+ need_align = ! need_align;
+ }
+ break;
+ case DFmode:
+ if (need_align)
+ {
+ scan = emit_insn_after (gen_align_log (GEN_INT (3)), scan);
+ align_insn = scan;
+ need_align = false;
+ }
+ case DImode:
+ for (lab = p->label; lab; lab = LABEL_REFS (lab))
+ scan = emit_label_after (lab, scan);
+ scan = emit_insn_after (gen_consttable_8 (p->value, const0_rtx),
+ scan);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ if (p->mode != HImode)
+ {
+ for (ref = p->wend; ref; ref = ref->next)
+ {
+ lab = ref->label;
+ scan = emit_insn_after (gen_consttable_window_end (lab),
+ scan);
+ }
+ }
+ }
+
+ pool_size = 0;
+ }
+
+ for (i = 0; i < pool_size; i++)
+ {
+ pool_node *p = &pool_vector[i];
+
+ switch (p->mode)
+ {
+ case HImode:
+ break;
+ case SImode:
+ case SFmode:
+ if (need_align)
+ {
+ need_align = false;
+ scan = emit_label_after (gen_label_rtx (), scan);
+ scan = emit_insn_after (gen_align_4 (), scan);
+ }
+ for (lab = p->label; lab; lab = LABEL_REFS (lab))
+ scan = emit_label_after (lab, scan);
+ scan = emit_insn_after (gen_consttable_4 (p->value, const0_rtx),
+ scan);
+ break;
+ case DFmode:
+ case DImode:
+ if (need_align)
+ {
+ need_align = false;
+ scan = emit_label_after (gen_label_rtx (), scan);
+ scan = emit_insn_after (gen_align_4 (), scan);
+ }
+ for (lab = p->label; lab; lab = LABEL_REFS (lab))
+ scan = emit_label_after (lab, scan);
+ scan = emit_insn_after (gen_consttable_8 (p->value, const0_rtx),
+ scan);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ if (p->mode != HImode)
+ {
+ for (ref = p->wend; ref; ref = ref->next)
+ {
+ lab = ref->label;
+ scan = emit_insn_after (gen_consttable_window_end (lab), scan);
+ }
+ }
+ }
+
+ scan = emit_insn_after (gen_consttable_end (), scan);
+ scan = emit_barrier_after (scan);
+ pool_size = 0;
+ pool_window_label = NULL_RTX;
+ pool_window_last = 0;
+}
+
+#define MOVA_LABELREF(mova) XVECEXP (SET_SRC (PATTERN (mova)), 0, 0)
+
+/* Nonzero if the insn is a move instruction which needs to be fixed. */
+
+/* ??? For a DImode/DFmode moves, we don't need to fix it if each half of the
+ CONST_DOUBLE input value is CONST_OK_FOR_I08. For a SFmode move, we don't
+ need to fix it if the input value is CONST_OK_FOR_I08. */
+static bool
+broken_move (rtx insn)
+{
+ if (NONJUMP_INSN_P (insn))
+ {
+ rtx pat = PATTERN (insn);
+ if (GET_CODE (pat) == PARALLEL)
+ pat = XVECEXP (pat, 0, 0);
+ if (GET_CODE (pat) == SET
+ /* We can load any 8-bit value if we don't care what the high
+ order bits end up as. */
+ && GET_MODE (SET_DEST (pat)) != QImode
+ && (CONSTANT_P (SET_SRC (pat))
+ || (GET_CODE (SET_SRC (pat)) == UNSPEC_VOLATILE
+ && XINT (SET_SRC (pat), 1) == UNSPECV_SP_SWITCH_B)
+ /* Match mova_const. */
+ || (GET_CODE (SET_SRC (pat)) == UNSPEC
+ && XINT (SET_SRC (pat), 1) == UNSPEC_MOVA
+ && GET_CODE (XVECEXP (SET_SRC (pat), 0, 0)) == CONST))
+ && ! (TARGET_SH2E
+ && GET_CODE (SET_SRC (pat)) == CONST_DOUBLE
+ && (fp_zero_operand (SET_SRC (pat))
+ || fp_one_operand (SET_SRC (pat)))
+ /* In general we don't know the current setting of fpscr, so
+ disable fldi.
+ There is an exception if this was a register-register move
+ before reload - and hence it was ascertained that we have
+ single precision setting - and in a post-reload optimization
+ we changed this to do a constant load. In that case
+ we don't have an r0 clobber, hence we must use fldi. */
+ && (TARGET_FMOVD
+ || (GET_CODE (XEXP (XVECEXP (PATTERN (insn), 0, 2), 0))
+ == SCRATCH))
+ && REG_P (SET_DEST (pat))
+ && FP_REGISTER_P (REGNO (SET_DEST (pat))))
+ && ! (TARGET_SH2A
+ && GET_MODE (SET_DEST (pat)) == SImode
+ && (satisfies_constraint_I20 (SET_SRC (pat))
+ || satisfies_constraint_I28 (SET_SRC (pat))))
+ && ! satisfies_constraint_I08 (SET_SRC (pat)))
+ return true;
+ }
+
+ return false;
+}
+
+/* Return true if the specified insn is a mova insn. */
+static bool
+mova_p (rtx insn)
+{
+ return (NONJUMP_INSN_P (insn)
+ && GET_CODE (PATTERN (insn)) == SET
+ && GET_CODE (SET_SRC (PATTERN (insn))) == UNSPEC
+ && XINT (SET_SRC (PATTERN (insn)), 1) == UNSPEC_MOVA
+ /* Don't match mova_const. */
+ && GET_CODE (MOVA_LABELREF (insn)) == LABEL_REF);
+}
+
+/* Fix up a mova from a switch that went out of range. */
+static void
+fixup_mova (rtx mova)
+{
+ PUT_MODE (XEXP (MOVA_LABELREF (mova), 0), QImode);
+ if (! flag_pic)
+ {
+ SET_SRC (PATTERN (mova)) = MOVA_LABELREF (mova);
+ INSN_CODE (mova) = -1;
+ }
+ else
+ {
+ rtx worker = mova;
+ rtx lab = gen_label_rtx ();
+ rtx wpat, wpat0, wpat1, wsrc, target, base, diff;
+
+ do
+ {
+ worker = NEXT_INSN (worker);
+ gcc_assert (worker
+ && !LABEL_P (worker)
+ && !JUMP_P (worker));
+ } while (NOTE_P (worker)
+ || recog_memoized (worker) != CODE_FOR_casesi_worker_1);
+ wpat = PATTERN (worker);
+ wpat0 = XVECEXP (wpat, 0, 0);
+ wpat1 = XVECEXP (wpat, 0, 1);
+ wsrc = SET_SRC (wpat0);
+ PATTERN (worker) = (gen_casesi_worker_2
+ (SET_DEST (wpat0), XVECEXP (wsrc, 0, 1),
+ XEXP (XVECEXP (wsrc, 0, 2), 0), lab,
+ XEXP (wpat1, 0)));
+ INSN_CODE (worker) = -1;
+ target = XVECEXP (SET_SRC (PATTERN (mova)), 0, 0);
+ base = gen_rtx_LABEL_REF (Pmode, lab);
+ diff = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, target, base), UNSPEC_SYMOFF);
+ SET_SRC (PATTERN (mova)) = gen_rtx_CONST (Pmode, diff);
+ INSN_CODE (mova) = -1;
+ }
+}
+
+/* NEW_MOVA is a mova we've just encountered while scanning forward. Update
+ *num_mova, and check if the new mova is not nested within the first one.
+ return 0 if *first_mova was replaced, 1 if new_mova was replaced,
+ 2 if new_mova has been assigned to *first_mova, -1 otherwise.. */
+static int
+untangle_mova (int *num_mova, rtx *first_mova, rtx new_mova)
+{
+ int n_addr = 0; /* Initialization to shut up spurious warning. */
+ int f_target, n_target = 0; /* Likewise. */
+
+ if (optimize)
+ {
+ /* If NEW_MOVA has no address yet, it will be handled later. */
+ if (INSN_ADDRESSES_SIZE() <= (unsigned) INSN_UID (new_mova))
+ return -1;
+
+ n_addr = INSN_ADDRESSES (INSN_UID (new_mova));
+ n_target = INSN_ADDRESSES (INSN_UID (XEXP (MOVA_LABELREF (new_mova), 0)));
+ if (n_addr > n_target || n_addr + 1022 < n_target)
+ {
+ /* Change the mova into a load.
+ broken_move will then return true for it. */
+ fixup_mova (new_mova);
+ return 1;
+ }
+ }
+ if (!(*num_mova)++)
+ {
+ *first_mova = new_mova;
+ return 2;
+ }
+ if (!optimize
+ || ((f_target
+ = INSN_ADDRESSES (INSN_UID (XEXP (MOVA_LABELREF (*first_mova), 0))))
+ >= n_target))
+ return -1;
+
+ (*num_mova)--;
+ if (f_target - INSN_ADDRESSES (INSN_UID (*first_mova))
+ > n_target - n_addr)
+ {
+ fixup_mova (*first_mova);
+ return 0;
+ }
+ else
+ {
+ fixup_mova (new_mova);
+ return 1;
+ }
+}
+
+/* Find the last barrier from insn FROM which is close enough to hold the
+ constant pool. If we can't find one, then create one near the end of
+ the range. */
+static rtx
+find_barrier (int num_mova, rtx mova, rtx from)
+{
+ int count_si = 0;
+ int count_hi = 0;
+ int found_hi = 0;
+ int found_si = 0;
+ int found_di = 0;
+ int hi_align = 2;
+ int si_align = 2;
+ int leading_mova = num_mova;
+ rtx barrier_before_mova = NULL_RTX;
+ rtx found_barrier = NULL_RTX;
+ rtx good_barrier = NULL_RTX;
+ int si_limit;
+ int hi_limit;
+ rtx orig = from;
+ rtx last_got = NULL_RTX;
+ rtx last_symoff = NULL_RTX;
+
+ /* For HImode: range is 510, add 4 because pc counts from address of
+ second instruction after this one, subtract 2 for the jump instruction
+ that we may need to emit before the table, subtract 2 for the instruction
+ that fills the jump delay slot (in very rare cases, reorg will take an
+ instruction from after the constant pool or will leave the delay slot
+ empty). This gives 510.
+ For SImode: range is 1020, add 4 because pc counts from address of
+ second instruction after this one, subtract 2 in case pc is 2 byte
+ aligned, subtract 2 for the jump instruction that we may need to emit
+ before the table, subtract 2 for the instruction that fills the jump
+ delay slot. This gives 1018. */
+
+ /* The branch will always be shortened now that the reference address for
+ forward branches is the successor address, thus we need no longer make
+ adjustments to the [sh]i_limit for -O0. */
+
+ si_limit = 1018;
+ hi_limit = 510;
+
+ while (from && count_si < si_limit && count_hi < hi_limit)
+ {
+ int inc = get_attr_length (from);
+ int new_align = 1;
+
+ /* If this is a label that existed at the time of the compute_alignments
+ call, determine the alignment. N.B. When find_barrier recurses for
+ an out-of-reach mova, we might see labels at the start of previously
+ inserted constant tables. */
+ if (LABEL_P (from)
+ && CODE_LABEL_NUMBER (from) <= max_labelno_before_reorg)
+ {
+ if (optimize)
+ new_align = 1 << label_to_alignment (from);
+ else if (BARRIER_P (prev_nonnote_insn (from)))
+ new_align = 1 << barrier_align (from);
+ else
+ new_align = 1;
+ inc = 0;
+ }
+ /* In case we are scanning a constant table because of recursion, check
+ for explicit alignments. If the table is long, we might be forced
+ to emit the new table in front of it; the length of the alignment
+ might be the last straw. */
+ else if (NONJUMP_INSN_P (from)
+ && GET_CODE (PATTERN (from)) == UNSPEC_VOLATILE
+ && XINT (PATTERN (from), 1) == UNSPECV_ALIGN)
+ new_align = INTVAL (XVECEXP (PATTERN (from), 0, 0));
+ /* When we find the end of a constant table, paste the new constant
+ at the end. That is better than putting it in front because
+ this way, we don't need extra alignment for adding a 4-byte-aligned
+ mov(a) label to a 2/4 or 8/4 byte aligned table. */
+ else if (NONJUMP_INSN_P (from)
+ && GET_CODE (PATTERN (from)) == UNSPEC_VOLATILE
+ && XINT (PATTERN (from), 1) == UNSPECV_CONST_END)
+ return from;
+
+ if (BARRIER_P (from))
+ {
+ rtx next;
+
+ found_barrier = from;
+
+ /* If we are at the end of the function, or in front of an alignment
+ instruction, we need not insert an extra alignment. We prefer
+ this kind of barrier. */
+ if (barrier_align (from) > 2)
+ good_barrier = from;
+
+ /* If we are at the end of a hot/cold block, dump the constants
+ here. */
+ next = NEXT_INSN (from);
+ if (next
+ && NOTE_P (next)
+ && NOTE_KIND (next) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
+ break;
+ }
+
+ if (broken_move (from))
+ {
+ rtx pat, src, dst;
+ enum machine_mode mode;
+
+ pat = PATTERN (from);
+ if (GET_CODE (pat) == PARALLEL)
+ pat = XVECEXP (pat, 0, 0);
+ src = SET_SRC (pat);
+ dst = SET_DEST (pat);
+ mode = GET_MODE (dst);
+
+ /* GOT pcrelat setting comes in pair of
+ mova .L8,r0
+ mov.l .L8,r12
+ instructions. (plus add r0,r12).
+ Remember if we see one without the other. */
+ if (GET_CODE (src) == UNSPEC && PIC_ADDR_P (XVECEXP (src, 0, 0)))
+ last_got = last_got ? NULL_RTX : from;
+ else if (PIC_ADDR_P (src))
+ last_got = last_got ? NULL_RTX : from;
+
+ /* We must explicitly check the mode, because sometimes the
+ front end will generate code to load unsigned constants into
+ HImode targets without properly sign extending them. */
+ if (mode == HImode
+ || (mode == SImode && satisfies_constraint_I16 (src)
+ && REGNO (dst) != FPUL_REG))
+ {
+ found_hi += 2;
+ /* We put the short constants before the long constants, so
+ we must count the length of short constants in the range
+ for the long constants. */
+ /* ??? This isn't optimal, but is easy to do. */
+ si_limit -= 2;
+ }
+ else
+ {
+ /* We dump DF/DI constants before SF/SI ones, because
+ the limit is the same, but the alignment requirements
+ are higher. We may waste up to 4 additional bytes
+ for alignment, and the DF/DI constant may have
+ another SF/SI constant placed before it. */
+ if (TARGET_SHCOMPACT
+ && ! found_di
+ && (mode == DFmode || mode == DImode))
+ {
+ found_di = 1;
+ si_limit -= 8;
+ }
+ while (si_align > 2 && found_si + si_align - 2 > count_si)
+ si_align >>= 1;
+ if (found_si > count_si)
+ count_si = found_si;
+ found_si += GET_MODE_SIZE (mode);
+ if (num_mova)
+ si_limit -= GET_MODE_SIZE (mode);
+ }
+ }
+
+ if (mova_p (from))
+ {
+ switch (untangle_mova (&num_mova, &mova, from))
+ {
+ case 1:
+ if (flag_pic)
+ {
+ rtx src = SET_SRC (PATTERN (from));
+ if (GET_CODE (src) == CONST
+ && GET_CODE (XEXP (src, 0)) == UNSPEC
+ && XINT (XEXP (src, 0), 1) == UNSPEC_SYMOFF)
+ last_symoff = from;
+ }
+ break;
+ case 0: return find_barrier (0, 0, mova);
+ case 2:
+ {
+ leading_mova = 0;
+ barrier_before_mova
+ = good_barrier ? good_barrier : found_barrier;
+ }
+ default: break;
+ }
+ if (found_si > count_si)
+ count_si = found_si;
+ }
+ else if (JUMP_TABLE_DATA_P (from)
+ && GET_CODE (PATTERN (from)) == ADDR_DIFF_VEC)
+ {
+ if ((num_mova > 1 && GET_MODE (prev_nonnote_insn (from)) == VOIDmode)
+ || (num_mova
+ && (prev_nonnote_insn (from)
+ == XEXP (MOVA_LABELREF (mova), 0))))
+ num_mova--;
+ if (barrier_align (next_real_insn (from)) == align_jumps_log)
+ {
+ /* We have just passed the barrier in front of the
+ ADDR_DIFF_VEC, which is stored in found_barrier. Since
+ the ADDR_DIFF_VEC is accessed as data, just like our pool
+ constants, this is a good opportunity to accommodate what
+ we have gathered so far.
+ If we waited any longer, we could end up at a barrier in
+ front of code, which gives worse cache usage for separated
+ instruction / data caches. */
+ good_barrier = found_barrier;
+ break;
+ }
+ else
+ {
+ rtx body = PATTERN (from);
+ inc = XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body));
+ }
+ }
+ /* For the SH1, we generate alignments even after jumps-around-jumps. */
+ else if (JUMP_P (from)
+ && ! TARGET_SH2
+ && ! optimize_size)
+ new_align = 4;
+
+ /* There is a possibility that a bf is transformed into a bf/s by the
+ delay slot scheduler. */
+ if (JUMP_P (from)
+ && get_attr_type (from) == TYPE_CBRANCH
+ && ! sequence_insn_p (from))
+ inc += 2;
+
+ if (found_si)
+ {
+ count_si += inc;
+ if (new_align > si_align)
+ {
+ si_limit -= (count_si - 1) & (new_align - si_align);
+ si_align = new_align;
+ }
+ count_si = (count_si + new_align - 1) & -new_align;
+ }
+ if (found_hi)
+ {
+ count_hi += inc;
+ if (new_align > hi_align)
+ {
+ hi_limit -= (count_hi - 1) & (new_align - hi_align);
+ hi_align = new_align;
+ }
+ count_hi = (count_hi + new_align - 1) & -new_align;
+ }
+ from = NEXT_INSN (from);
+ }
+
+ if (num_mova)
+ {
+ if (leading_mova)
+ {
+ /* Try as we might, the leading mova is out of range. Change
+ it into a load (which will become a pcload) and retry. */
+ fixup_mova (mova);
+ return find_barrier (0, 0, mova);
+ }
+ else
+ {
+ /* Insert the constant pool table before the mova instruction,
+ to prevent the mova label reference from going out of range. */
+ from = mova;
+ good_barrier = found_barrier = barrier_before_mova;
+ }
+ }
+
+ if (found_barrier)
+ {
+ if (good_barrier && next_real_insn (found_barrier))
+ found_barrier = good_barrier;
+ }
+ else
+ {
+ /* We didn't find a barrier in time to dump our stuff,
+ so we'll make one. */
+ rtx label = gen_label_rtx ();
+
+ /* Don't emit a constant table in the middle of insns for
+ casesi_worker_2. This is a bit overkill but is enough
+ because casesi_worker_2 wouldn't appear so frequently. */
+ if (last_symoff)
+ from = last_symoff;
+
+ /* If we exceeded the range, then we must back up over the last
+ instruction we looked at. Otherwise, we just need to undo the
+ NEXT_INSN at the end of the loop. */
+ if (PREV_INSN (from) != orig
+ && (count_hi > hi_limit || count_si > si_limit))
+ from = PREV_INSN (PREV_INSN (from));
+ else
+ from = PREV_INSN (from);
+
+ /* Don't emit a constant table int the middle of global pointer setting,
+ since that that would move the addressing base GOT into another table.
+ We need the first mov instruction before the _GLOBAL_OFFSET_TABLE_
+ in the pool anyway, so just move up the whole constant pool.
+
+ However, avoid doing so when the last single GOT mov is the starting
+ insn itself. Going past above the start insn would create a negative
+ offset, causing errors. */
+ if (last_got && last_got != orig)
+ from = PREV_INSN (last_got);
+
+ /* Don't insert the constant pool table at the position which
+ may be the landing pad. */
+ if (flag_exceptions
+ && CALL_P (from)
+ && find_reg_note (from, REG_EH_REGION, NULL_RTX))
+ from = PREV_INSN (from);
+
+ /* Walk back to be just before any jump or label.
+ Putting it before a label reduces the number of times the branch
+ around the constant pool table will be hit. Putting it before
+ a jump makes it more likely that the bra delay slot will be
+ filled. */
+ while (NOTE_P (from) || JUMP_P (from)
+ || LABEL_P (from))
+ from = PREV_INSN (from);
+
+ /* Make sure we do not split between a call and its corresponding
+ CALL_ARG_LOCATION note. */
+ if (CALL_P (from))
+ {
+ rtx next = NEXT_INSN (from);
+ if (next && NOTE_P (next)
+ && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
+ from = next;
+ }
+
+ from = emit_jump_insn_after (gen_jump (label), from);
+ JUMP_LABEL (from) = label;
+ LABEL_NUSES (label) = 1;
+ found_barrier = emit_barrier_after (from);
+ emit_label_after (label, found_barrier);
+ }
+
+ return found_barrier;
+}
+
+/* If the instruction INSN is implemented by a special function, and we can
+ positively find the register that is used to call the sfunc, and this
+ register is not used anywhere else in this instruction - except as the
+ destination of a set, return this register; else, return 0. */
+rtx
+sfunc_uses_reg (rtx insn)
+{
+ int i;
+ rtx pattern, part, reg_part, reg;
+
+ if (!NONJUMP_INSN_P (insn))
+ return NULL_RTX;
+ pattern = PATTERN (insn);
+ if (GET_CODE (pattern) != PARALLEL || get_attr_type (insn) != TYPE_SFUNC)
+ return NULL_RTX;
+
+ for (reg_part = NULL_RTX, i = XVECLEN (pattern, 0) - 1; i >= 1; i--)
+ {
+ part = XVECEXP (pattern, 0, i);
+ if (GET_CODE (part) == USE && GET_MODE (XEXP (part, 0)) == SImode)
+ reg_part = part;
+ }
+ if (! reg_part)
+ return NULL_RTX;
+ reg = XEXP (reg_part, 0);
+ for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
+ {
+ part = XVECEXP (pattern, 0, i);
+ if (part == reg_part || GET_CODE (part) == CLOBBER)
+ continue;
+ if (reg_mentioned_p (reg, ((GET_CODE (part) == SET
+ && REG_P (SET_DEST (part)))
+ ? SET_SRC (part) : part)))
+ return NULL_RTX;
+ }
+ return reg;
+}
+
+/* See if the only way in which INSN uses REG is by calling it, or by
+ setting it while calling it. Set *SET to a SET rtx if the register
+ is set by INSN. */
+static bool
+noncall_uses_reg (rtx reg, rtx insn, rtx *set)
+{
+ rtx pattern, reg2;
+
+ *set = NULL_RTX;
+
+ reg2 = sfunc_uses_reg (insn);
+ if (reg2 && REGNO (reg2) == REGNO (reg))
+ {
+ pattern = single_set (insn);
+ if (pattern
+ && REG_P (SET_DEST (pattern))
+ && REGNO (reg) == REGNO (SET_DEST (pattern)))
+ *set = pattern;
+ return false;
+ }
+ if (!CALL_P (insn))
+ {
+ /* We don't use rtx_equal_p because we don't care if the mode is
+ different. */
+ pattern = single_set (insn);
+ if (pattern
+ && REG_P (SET_DEST (pattern))
+ && REGNO (reg) == REGNO (SET_DEST (pattern)))
+ {
+ rtx par, part;
+ int i;
+
+ *set = pattern;
+ par = PATTERN (insn);
+ if (GET_CODE (par) == PARALLEL)
+ for (i = XVECLEN (par, 0) - 1; i >= 0; i--)
+ {
+ part = XVECEXP (par, 0, i);
+ if (GET_CODE (part) != SET && reg_mentioned_p (reg, part))
+ return true;
+ }
+ return reg_mentioned_p (reg, SET_SRC (pattern));
+ }
+
+ return true;
+ }
+
+ pattern = PATTERN (insn);
+
+ if (GET_CODE (pattern) == PARALLEL)
+ {
+ int i;
+
+ for (i = XVECLEN (pattern, 0) - 1; i >= 1; i--)
+ if (reg_mentioned_p (reg, XVECEXP (pattern, 0, i)))
+ return true;
+ pattern = XVECEXP (pattern, 0, 0);
+ }
+
+ if (GET_CODE (pattern) == SET)
+ {
+ if (reg_mentioned_p (reg, SET_DEST (pattern)))
+ {
+ /* We don't use rtx_equal_p, because we don't care if the
+ mode is different. */
+ if (!REG_P (SET_DEST (pattern))
+ || REGNO (reg) != REGNO (SET_DEST (pattern)))
+ return true;
+
+ *set = pattern;
+ }
+
+ pattern = SET_SRC (pattern);
+ }
+
+ if (GET_CODE (pattern) != CALL
+ || !MEM_P (XEXP (pattern, 0))
+ || ! rtx_equal_p (reg, XEXP (XEXP (pattern, 0), 0)))
+ return true;
+
+ return false;
+}
+
+/* Given a X, a pattern of an insn or a part of it, return a mask of used
+ general registers. Bits 0..15 mean that the respective registers
+ are used as inputs in the instruction. Bits 16..31 mean that the
+ registers 0..15, respectively, are used as outputs, or are clobbered.
+ IS_DEST should be set to 16 if X is the destination of a SET, else to 0. */
+int
+regs_used (rtx x, int is_dest)
+{
+ enum rtx_code code;
+ const char *fmt;
+ int i, used = 0;
+
+ if (! x)
+ return used;
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case REG:
+ if (REGNO (x) < 16)
+ return (((1 << HARD_REGNO_NREGS (0, GET_MODE (x))) - 1)
+ << (REGNO (x) + is_dest));
+ return 0;
+ case SUBREG:
+ {
+ rtx y = SUBREG_REG (x);
+
+ if (!REG_P (y))
+ break;
+ if (REGNO (y) < 16)
+ return (((1 << HARD_REGNO_NREGS (0, GET_MODE (x))) - 1)
+ << (REGNO (y) +
+ subreg_regno_offset (REGNO (y),
+ GET_MODE (y),
+ SUBREG_BYTE (x),
+ GET_MODE (x)) + is_dest));
+ return 0;
+ }
+ case SET:
+ return regs_used (SET_SRC (x), 0) | regs_used (SET_DEST (x), 16);
+ case RETURN:
+ /* If there was a return value, it must have been indicated with USE. */
+ return 0x00ffff00;
+ case CLOBBER:
+ is_dest = 1;
+ break;
+ case MEM:
+ is_dest = 0;
+ break;
+ case CALL:
+ used |= 0x00ff00f0;
+ break;
+ default:
+ break;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'E')
+ {
+ int j;
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ used |= regs_used (XVECEXP (x, i, j), is_dest);
+ }
+ else if (fmt[i] == 'e')
+ used |= regs_used (XEXP (x, i), is_dest);
+ }
+ return used;
+}
+
+/* Create an instruction that prevents redirection of a conditional branch
+ to the destination of the JUMP with address ADDR.
+ If the branch needs to be implemented as an indirect jump, try to find
+ a scratch register for it.
+ If NEED_BLOCK is 0, don't do anything unless we need a scratch register.
+ If any preceding insn that doesn't fit into a delay slot is good enough,
+ pass 1. Pass 2 if a definite blocking insn is needed.
+ -1 is used internally to avoid deep recursion.
+ If a blocking instruction is made or recognized, return it. */
+static rtx
+gen_block_redirect (rtx jump, int addr, int need_block)
+{
+ int dead = 0;
+ rtx prev = prev_nonnote_insn (jump);
+ rtx dest;
+
+ /* First, check if we already have an instruction that satisfies our need. */
+ if (prev && NONJUMP_INSN_P (prev) && ! INSN_DELETED_P (prev))
+ {
+ if (INSN_CODE (prev) == CODE_FOR_indirect_jump_scratch)
+ return prev;
+ if (GET_CODE (PATTERN (prev)) == USE
+ || GET_CODE (PATTERN (prev)) == CLOBBER
+ || get_attr_in_delay_slot (prev) == IN_DELAY_SLOT_YES)
+ prev = jump;
+ else if ((need_block &= ~1) < 0)
+ return prev;
+ else if (recog_memoized (prev) == CODE_FOR_block_branch_redirect)
+ need_block = 0;
+ }
+ if (GET_CODE (PATTERN (jump)) == RETURN)
+ {
+ if (! need_block)
+ return prev;
+ /* Reorg even does nasty things with return insns that cause branches
+ to go out of range - see find_end_label and callers. */
+ return emit_insn_before (gen_block_branch_redirect (const0_rtx) , jump);
+ }
+ /* We can't use JUMP_LABEL here because it might be undefined
+ when not optimizing. */
+ dest = XEXP (SET_SRC (PATTERN (jump)), 0);
+ /* If the branch is out of range, try to find a scratch register for it. */
+ if (optimize
+ && (INSN_ADDRESSES (INSN_UID (dest)) - addr + (unsigned) 4092
+ > 4092 + 4098))
+ {
+ rtx scan;
+ /* Don't look for the stack pointer as a scratch register,
+ it would cause trouble if an interrupt occurred. */
+ unsigned attempt = 0x7fff, used;
+ int jump_left = flag_expensive_optimizations + 1;
+
+ /* It is likely that the most recent eligible instruction is wanted for
+ the delay slot. Therefore, find out which registers it uses, and
+ try to avoid using them. */
+
+ for (scan = jump; (scan = PREV_INSN (scan)); )
+ {
+ enum rtx_code code;
+
+ if (INSN_DELETED_P (scan))
+ continue;
+ code = GET_CODE (scan);
+ if (code == CODE_LABEL || code == JUMP_INSN)
+ break;
+ if (code == INSN
+ && GET_CODE (PATTERN (scan)) != USE
+ && GET_CODE (PATTERN (scan)) != CLOBBER
+ && get_attr_in_delay_slot (scan) == IN_DELAY_SLOT_YES)
+ {
+ attempt &= ~regs_used (PATTERN (scan), 0);
+ break;
+ }
+ }
+ for (used = dead = 0, scan = JUMP_LABEL (jump);
+ (scan = NEXT_INSN (scan)); )
+ {
+ enum rtx_code code;
+
+ if (INSN_DELETED_P (scan))
+ continue;
+ code = GET_CODE (scan);
+ if (INSN_P (scan))
+ {
+ used |= regs_used (PATTERN (scan), 0);
+ if (code == CALL_INSN)
+ used |= regs_used (CALL_INSN_FUNCTION_USAGE (scan), 0);
+ dead |= (used >> 16) & ~used;
+ if (dead & attempt)
+ {
+ dead &= attempt;
+ break;
+ }
+ if (code == JUMP_INSN)
+ {
+ if (jump_left-- && simplejump_p (scan))
+ scan = JUMP_LABEL (scan);
+ else
+ break;
+ }
+ }
+ }
+ /* Mask out the stack pointer again, in case it was
+ the only 'free' register we have found. */
+ dead &= 0x7fff;
+ }
+ /* If the immediate destination is still in range, check for possible
+ threading with a jump beyond the delay slot insn.
+ Don't check if we are called recursively; the jump has been or will be
+ checked in a different invocation then. */
+
+ else if (optimize && need_block >= 0)
+ {
+ rtx next = next_active_insn (next_active_insn (dest));
+ if (next && JUMP_P (next)
+ && GET_CODE (PATTERN (next)) == SET
+ && recog_memoized (next) == CODE_FOR_jump_compact)
+ {
+ dest = JUMP_LABEL (next);
+ if (dest
+ && (INSN_ADDRESSES (INSN_UID (dest)) - addr + (unsigned) 4092
+ > 4092 + 4098))
+ gen_block_redirect (next, INSN_ADDRESSES (INSN_UID (next)), -1);
+ }
+ }
+
+ if (dead)
+ {
+ rtx reg = gen_rtx_REG (SImode, exact_log2 (dead & -dead));
+
+ /* It would be nice if we could convert the jump into an indirect
+ jump / far branch right now, and thus exposing all constituent
+ instructions to further optimization. However, reorg uses
+ simplejump_p to determine if there is an unconditional jump where
+ it should try to schedule instructions from the target of the
+ branch; simplejump_p fails for indirect jumps even if they have
+ a JUMP_LABEL. */
+ rtx insn = emit_insn_before (gen_indirect_jump_scratch
+ (reg, GEN_INT (unspec_bbr_uid++)),
+ jump);
+ /* ??? We would like this to have the scope of the jump, but that
+ scope will change when a delay slot insn of an inner scope is added.
+ Hence, after delay slot scheduling, we'll have to expect
+ NOTE_INSN_BLOCK_END notes between the indirect_jump_scratch and
+ the jump. */
+
+ INSN_LOCATION (insn) = INSN_LOCATION (jump);
+ INSN_CODE (insn) = CODE_FOR_indirect_jump_scratch;
+ return insn;
+ }
+ else if (need_block)
+ /* We can't use JUMP_LABEL here because it might be undefined
+ when not optimizing. */
+ return emit_insn_before (gen_block_branch_redirect
+ (GEN_INT (unspec_bbr_uid++)),
+ jump);
+ return prev;
+}
+
+#define CONDJUMP_MIN -252
+#define CONDJUMP_MAX 262
+struct far_branch
+{
+ /* A label (to be placed) in front of the jump
+ that jumps to our ultimate destination. */
+ rtx near_label;
+ /* Where we are going to insert it if we cannot move the jump any farther,
+ or the jump itself if we have picked up an existing jump. */
+ rtx insert_place;
+ /* The ultimate destination. */
+ rtx far_label;
+ struct far_branch *prev;
+ /* If the branch has already been created, its address;
+ else the address of its first prospective user. */
+ int address;
+};
+
+static void gen_far_branch (struct far_branch *);
+enum mdep_reorg_phase_e mdep_reorg_phase;
+static void
+gen_far_branch (struct far_branch *bp)
+{
+ rtx insn = bp->insert_place;
+ rtx jump;
+ rtx label = gen_label_rtx ();
+ int ok;
+
+ emit_label_after (label, insn);
+ if (bp->far_label)
+ {
+ jump = emit_jump_insn_after (gen_jump (bp->far_label), insn);
+ LABEL_NUSES (bp->far_label)++;
+ }
+ else
+ jump = emit_jump_insn_after (gen_return (), insn);
+
+ /* Emit a barrier so that reorg knows that any following instructions
+ are not reachable via a fall-through path.
+ But don't do this when not optimizing, since we wouldn't suppress the
+ alignment for the barrier then, and could end up with out-of-range
+ pc-relative loads. */
+ if (optimize)
+ emit_barrier_after (jump);
+ emit_label_after (bp->near_label, insn);
+
+ if (bp->far_label)
+ JUMP_LABEL (jump) = bp->far_label;
+ else
+ {
+ rtx pat = PATTERN (jump);
+ gcc_assert (ANY_RETURN_P (pat));
+ JUMP_LABEL (jump) = pat;
+ }
+
+ ok = invert_jump (insn, label, 1);
+ gcc_assert (ok);
+
+ /* If we are branching around a jump (rather than a return), prevent
+ reorg from using an insn from the jump target as the delay slot insn -
+ when reorg did this, it pessimized code (we rather hide the delay slot)
+ and it could cause branches to go out of range. */
+ if (bp->far_label)
+ (emit_insn_after
+ (gen_stuff_delay_slot
+ (GEN_INT (unspec_bbr_uid++),
+ GEN_INT (recog_memoized (insn) == CODE_FOR_branch_false)),
+ insn));
+ /* Prevent reorg from undoing our splits. */
+ gen_block_redirect (jump, bp->address += 2, 2);
+}
+
+/* Fix up ADDR_DIFF_VECs. */
+void
+fixup_addr_diff_vecs (rtx first)
+{
+ rtx insn;
+
+ for (insn = first; insn; insn = NEXT_INSN (insn))
+ {
+ rtx vec_lab, pat, prev, prevpat, x, braf_label;
+
+ if (! JUMP_TABLE_DATA_P (insn)
+ || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
+ continue;
+ pat = PATTERN (insn);
+ vec_lab = XEXP (XEXP (pat, 0), 0);
+
+ /* Search the matching casesi_jump_2. */
+ for (prev = vec_lab; ; prev = PREV_INSN (prev))
+ {
+ if (!JUMP_P (prev))
+ continue;
+ prevpat = PATTERN (prev);
+ if (GET_CODE (prevpat) != PARALLEL || XVECLEN (prevpat, 0) != 2)
+ continue;
+ x = XVECEXP (prevpat, 0, 1);
+ if (GET_CODE (x) != USE)
+ continue;
+ x = XEXP (x, 0);
+ if (GET_CODE (x) == LABEL_REF && XEXP (x, 0) == vec_lab)
+ break;
+ }
+ /* FIXME: This is a bug in the optimizer, but it seems harmless
+ to just avoid panicing. */
+ if (!prev)
+ continue;
+
+ /* Emit the reference label of the braf where it belongs, right after
+ the casesi_jump_2 (i.e. braf). */
+ braf_label = XEXP (XEXP (SET_SRC (XVECEXP (prevpat, 0, 0)), 1), 0);
+ emit_label_after (braf_label, prev);
+
+ /* Fix up the ADDR_DIF_VEC to be relative
+ to the reference address of the braf. */
+ XEXP (XEXP (pat, 0), 0) = braf_label;
+ }
+}
+
+/* BARRIER_OR_LABEL is either a BARRIER or a CODE_LABEL immediately following
+ a barrier. Return the base 2 logarithm of the desired alignment. */
+int
+barrier_align (rtx barrier_or_label)
+{
+ rtx next, pat;
+
+ if (! barrier_or_label)
+ return 0;
+
+ if (LABEL_P (barrier_or_label)
+ && NEXT_INSN (barrier_or_label)
+ && JUMP_TABLE_DATA_P (NEXT_INSN (barrier_or_label)))
+ return 2;
+
+ if (BARRIER_P (barrier_or_label)
+ && PREV_INSN (barrier_or_label)
+ && JUMP_TABLE_DATA_P (PREV_INSN (barrier_or_label)))
+ {
+ pat = PATTERN (PREV_INSN (barrier_or_label));
+ /* If this is a very small table, we want to keep the alignment after
+ the table to the minimum for proper code alignment. */
+ return ((optimize_size
+ || ((unsigned) XVECLEN (pat, 1) * GET_MODE_SIZE (GET_MODE (pat))
+ <= (unsigned) 1 << (CACHE_LOG - 2)))
+ ? 1 << TARGET_SHMEDIA : align_jumps_log);
+ }
+
+ next = next_active_insn (barrier_or_label);
+
+ if (! next)
+ return 0;
+
+ pat = PATTERN (next);
+
+ if (GET_CODE (pat) == UNSPEC_VOLATILE && XINT (pat, 1) == UNSPECV_ALIGN)
+ /* This is a barrier in front of a constant table. */
+ return 0;
+
+ if (optimize_size)
+ return 0;
+
+ if (! TARGET_SH2 || ! optimize)
+ return align_jumps_log;
+
+ /* When fixing up pcloads, a constant table might be inserted just before
+ the basic block that ends with the barrier. Thus, we can't trust the
+ instruction lengths before that. */
+ if (mdep_reorg_phase > SH_FIXUP_PCLOAD)
+ {
+ /* Check if there is an immediately preceding branch to the insn beyond
+ the barrier. We must weight the cost of discarding useful information
+ from the current cache line when executing this branch and there is
+ an alignment, against that of fetching unneeded insn in front of the
+ branch target when there is no alignment. */
+
+ /* There are two delay_slot cases to consider. One is the simple case
+ where the preceding branch is to the insn beyond the barrier (simple
+ delay slot filling), and the other is where the preceding branch has
+ a delay slot that is a duplicate of the insn after the barrier
+ (fill_eager_delay_slots) and the branch is to the insn after the insn
+ after the barrier. */
+
+ int slot, credit;
+ bool jump_to_next = false;
+
+ /* Skip to the insn before the JUMP_INSN before the barrier under
+ investigation. */
+ rtx prev = prev_real_insn (prev_active_insn (barrier_or_label));
+
+ for (slot = 2, credit = (1 << (CACHE_LOG - 2)) + 2;
+ credit >= 0 && prev && NONJUMP_INSN_P (prev);
+ prev = prev_real_insn (prev))
+ {
+ jump_to_next = false;
+ if (GET_CODE (PATTERN (prev)) == USE
+ || GET_CODE (PATTERN (prev)) == CLOBBER)
+ continue;
+ if (GET_CODE (PATTERN (prev)) == SEQUENCE)
+ {
+ prev = XVECEXP (PATTERN (prev), 0, 1);
+ if (INSN_UID (prev) == INSN_UID (next))
+ {
+ /* Delay slot was filled with insn at jump target. */
+ jump_to_next = true;
+ continue;
+ }
+ }
+
+ if (slot &&
+ get_attr_in_delay_slot (prev) == IN_DELAY_SLOT_YES)
+ slot = 0;
+ credit -= get_attr_length (prev);
+ }
+ if (prev && jump_to_label_p (prev))
+ {
+ rtx x;
+ if (jump_to_next
+ || next_real_insn (JUMP_LABEL (prev)) == next
+ /* If relax_delay_slots() decides NEXT was redundant
+ with some previous instruction, it will have
+ redirected PREV's jump to the following insn. */
+ || JUMP_LABEL (prev) == next_nonnote_insn (next)
+ /* There is no upper bound on redundant instructions
+ that might have been skipped, but we must not put an
+ alignment where none had been before. */
+ || (x = (NEXT_INSN (NEXT_INSN (PREV_INSN (prev)))),
+ (INSN_P (x)
+ && (INSN_CODE (x) == CODE_FOR_block_branch_redirect
+ || INSN_CODE (x) == CODE_FOR_indirect_jump_scratch
+ || INSN_CODE (x) == CODE_FOR_stuff_delay_slot))))
+ {
+ rtx pat = PATTERN (prev);
+ if (GET_CODE (pat) == PARALLEL)
+ pat = XVECEXP (pat, 0, 0);
+ if (credit - slot >= (GET_CODE (SET_SRC (pat)) == PC ? 2 : 0))
+ return 0;
+ }
+ }
+ }
+
+ return align_jumps_log;
+}
+
+/* If we are inside a phony loop, almost any kind of label can turn up as the
+ first one in the loop. Aligning a braf label causes incorrect switch
+ destination addresses; we can detect braf labels because they are
+ followed by a BARRIER.
+ Applying loop alignment to small constant or switch tables is a waste
+ of space, so we suppress this too. */
+int
+sh_loop_align (rtx label)
+{
+ rtx next = label;
+
+ if (! optimize || optimize_size)
+ return 0;
+
+ do
+ next = next_nonnote_insn (next);
+ while (next && LABEL_P (next));
+
+ if (! next
+ || ! INSN_P (next)
+ || recog_memoized (next) == CODE_FOR_consttable_2)
+ return 0;
+
+ return align_loops_log;
+}
+
+/* Do a final pass over the function, just before delayed branch
+ scheduling. */
+static void
+sh_reorg (void)
+{
+ rtx first, insn, mova = NULL_RTX;
+ int num_mova;
+ rtx r0_rtx = gen_rtx_REG (Pmode, 0);
+ rtx r0_inc_rtx = gen_rtx_POST_INC (Pmode, r0_rtx);
+
+ first = get_insns ();
+ max_labelno_before_reorg = max_label_num ();
+
+ /* We must split call insns before introducing `mova's. If we're
+ optimizing, they'll have already been split. Otherwise, make
+ sure we don't split them too late. */
+ if (! optimize)
+ split_all_insns_noflow ();
+
+ if (TARGET_SHMEDIA)
+ return;
+
+ /* If relaxing, generate pseudo-ops to associate function calls with
+ the symbols they call. It does no harm to not generate these
+ pseudo-ops. However, when we can generate them, it enables the
+ linker to potentially relax the jsr to a bsr, and eliminate the
+ register load and, possibly, the constant pool entry. */
+
+ mdep_reorg_phase = SH_INSERT_USES_LABELS;
+ if (TARGET_RELAX)
+ {
+ /* Remove all REG_LABEL_OPERAND notes. We want to use them for our
+ own purposes. This works because none of the remaining passes
+ need to look at them.
+
+ ??? But it may break in the future. We should use a machine
+ dependent REG_NOTE, or some other approach entirely. */
+ for (insn = first; insn; insn = NEXT_INSN (insn))
+ {
+ if (INSN_P (insn))
+ {
+ rtx note;
+
+ while ((note = find_reg_note (insn, REG_LABEL_OPERAND,
+ NULL_RTX)) != 0)
+ remove_note (insn, note);
+ }
+ }
+
+ for (insn = first; insn; insn = NEXT_INSN (insn))
+ {
+ rtx pattern, reg, link, set, scan, dies, label;
+ int rescan = 0, foundinsn = 0;
+
+ if (CALL_P (insn))
+ {
+ pattern = PATTERN (insn);
+
+ if (GET_CODE (pattern) == PARALLEL)
+ pattern = XVECEXP (pattern, 0, 0);
+ if (GET_CODE (pattern) == SET)
+ pattern = SET_SRC (pattern);
+
+ if (GET_CODE (pattern) != CALL
+ || !MEM_P (XEXP (pattern, 0)))
+ continue;
+
+ reg = XEXP (XEXP (pattern, 0), 0);
+ }
+ else
+ {
+ reg = sfunc_uses_reg (insn);
+ if (! reg)
+ continue;
+ }
+
+ if (!REG_P (reg))
+ continue;
+
+ /* Try scanning backward to find where the register is set. */
+ link = NULL;
+ for (scan = PREV_INSN (insn);
+ scan && !LABEL_P (scan);
+ scan = PREV_INSN (scan))
+ {
+ if (! INSN_P (scan))
+ continue;
+
+ if (! reg_mentioned_p (reg, scan))
+ continue;
+
+ if (noncall_uses_reg (reg, scan, &set))
+ break;
+
+ if (set)
+ {
+ link = scan;
+ break;
+ }
+ }
+
+ if (! link)
+ continue;
+
+ /* The register is set at LINK. */
+
+ /* We can only optimize the function call if the register is
+ being set to a symbol. In theory, we could sometimes
+ optimize calls to a constant location, but the assembler
+ and linker do not support that at present. */
+ if (GET_CODE (SET_SRC (set)) != SYMBOL_REF
+ && GET_CODE (SET_SRC (set)) != LABEL_REF)
+ continue;
+
+ /* Scan forward from LINK to the place where REG dies, and
+ make sure that the only insns which use REG are
+ themselves function calls. */
+
+ /* ??? This doesn't work for call targets that were allocated
+ by reload, since there may not be a REG_DEAD note for the
+ register. */
+
+ dies = NULL_RTX;
+ for (scan = NEXT_INSN (link); scan; scan = NEXT_INSN (scan))
+ {
+ rtx scanset;
+
+ /* Don't try to trace forward past a CODE_LABEL if we haven't
+ seen INSN yet. Ordinarily, we will only find the setting insn
+ if it is in the same basic block. However,
+ cross-jumping can insert code labels in between the load and
+ the call, and can result in situations where a single call
+ insn may have two targets depending on where we came from. */
+
+ if (LABEL_P (scan) && ! foundinsn)
+ break;
+
+ if (! INSN_P (scan))
+ continue;
+
+ /* Don't try to trace forward past a JUMP. To optimize
+ safely, we would have to check that all the
+ instructions at the jump destination did not use REG. */
+
+ if (JUMP_P (scan))
+ break;
+
+ if (! reg_mentioned_p (reg, scan))
+ continue;
+
+ if (noncall_uses_reg (reg, scan, &scanset))
+ break;
+
+ if (scan == insn)
+ foundinsn = 1;
+
+ if (scan != insn
+ && (CALL_P (scan) || sfunc_uses_reg (scan)))
+ {
+ /* There is a function call to this register other
+ than the one we are checking. If we optimize
+ this call, we need to rescan again below. */
+ rescan = 1;
+ }
+
+ /* ??? We shouldn't have to worry about SCANSET here.
+ We should just be able to check for a REG_DEAD note
+ on a function call. However, the REG_DEAD notes are
+ apparently not dependable around libcalls; c-torture
+ execute/920501-2 is a test case. If SCANSET is set,
+ then this insn sets the register, so it must have
+ died earlier. Unfortunately, this will only handle
+ the cases in which the register is, in fact, set in a
+ later insn. */
+
+ /* ??? We shouldn't have to use FOUNDINSN here.
+ This dates back to when we used LOG_LINKS to find
+ the most recent insn which sets the register. */
+
+ if (foundinsn
+ && (scanset
+ || find_reg_note (scan, REG_DEAD, reg)))
+ {
+ dies = scan;
+ break;
+ }
+ }
+
+ if (! dies)
+ {
+ /* Either there was a branch, or some insn used REG
+ other than as a function call address. */
+ continue;
+ }
+
+ /* Create a code label, and put it in a REG_LABEL_OPERAND note
+ on the insn which sets the register, and on each call insn
+ which uses the register. In final_prescan_insn we look for
+ the REG_LABEL_OPERAND notes, and output the appropriate label
+ or pseudo-op. */
+
+ label = gen_label_rtx ();
+ add_reg_note (link, REG_LABEL_OPERAND, label);
+ add_reg_note (insn, REG_LABEL_OPERAND, label);
+ if (rescan)
+ {
+ scan = link;
+ do
+ {
+ rtx reg2;
+
+ scan = NEXT_INSN (scan);
+ if (scan != insn
+ && ((CALL_P (scan)
+ && reg_mentioned_p (reg, scan))
+ || ((reg2 = sfunc_uses_reg (scan))
+ && REGNO (reg2) == REGNO (reg))))
+ add_reg_note (scan, REG_LABEL_OPERAND, label);
+ }
+ while (scan != dies);
+ }
+ }
+ }
+
+ if (TARGET_SH2)
+ fixup_addr_diff_vecs (first);
+
+ if (optimize)
+ {
+ mdep_reorg_phase = SH_SHORTEN_BRANCHES0;
+ shorten_branches (first);
+ }
+
+ /* Scan the function looking for move instructions which have to be
+ changed to pc-relative loads and insert the literal tables. */
+ label_ref_list_pool = create_alloc_pool ("label references list",
+ sizeof (struct label_ref_list_d),
+ 30);
+ mdep_reorg_phase = SH_FIXUP_PCLOAD;
+ for (insn = first, num_mova = 0; insn; insn = NEXT_INSN (insn))
+ {
+ if (mova_p (insn))
+ {
+ /* ??? basic block reordering can move a switch table dispatch
+ below the switch table. Check if that has happened.
+ We only have the addresses available when optimizing; but then,
+ this check shouldn't be needed when not optimizing. */
+ if (!untangle_mova (&num_mova, &mova, insn))
+ {
+ insn = mova;
+ num_mova = 0;
+ }
+ }
+ else if (JUMP_TABLE_DATA_P (insn)
+ && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
+ && num_mova
+ /* ??? loop invariant motion can also move a mova out of a
+ loop. Since loop does this code motion anyway, maybe we
+ should wrap UNSPEC_MOVA into a CONST, so that reload can
+ move it back. */
+ && ((num_mova > 1
+ && GET_MODE (prev_nonnote_insn (insn)) == VOIDmode)
+ || (prev_nonnote_insn (insn)
+ == XEXP (MOVA_LABELREF (mova), 0))))
+ {
+ rtx scan;
+ int total;
+
+ num_mova--;
+
+ /* Some code might have been inserted between the mova and
+ its ADDR_DIFF_VEC. Check if the mova is still in range. */
+ for (scan = mova, total = 0; scan != insn; scan = NEXT_INSN (scan))
+ total += get_attr_length (scan);
+
+ /* range of mova is 1020, add 4 because pc counts from address of
+ second instruction after this one, subtract 2 in case pc is 2
+ byte aligned. Possible alignment needed for the ADDR_DIFF_VEC
+ cancels out with alignment effects of the mova itself. */
+ if (total > 1022)
+ {
+ /* Change the mova into a load, and restart scanning
+ there. broken_move will then return true for mova. */
+ fixup_mova (mova);
+ insn = mova;
+ }
+ }
+ if (broken_move (insn)
+ || (NONJUMP_INSN_P (insn)
+ && recog_memoized (insn) == CODE_FOR_casesi_worker_2))
+ {
+ rtx scan;
+ /* Scan ahead looking for a barrier to stick the constant table
+ behind. */
+ rtx barrier = find_barrier (num_mova, mova, insn);
+ rtx last_float_move = NULL_RTX, last_float = 0, *last_float_addr = NULL;
+ int need_aligned_label = 0;
+
+ if (num_mova && ! mova_p (mova))
+ {
+ /* find_barrier had to change the first mova into a
+ pcload; thus, we have to start with this new pcload. */
+ insn = mova;
+ num_mova = 0;
+ }
+ /* Now find all the moves between the points and modify them. */
+ for (scan = insn; scan != barrier; scan = NEXT_INSN (scan))
+ {
+ if (LABEL_P (scan))
+ last_float = 0;
+ if (NONJUMP_INSN_P (scan)
+ && recog_memoized (scan) == CODE_FOR_casesi_worker_2)
+ need_aligned_label = 1;
+ if (broken_move (scan))
+ {
+ rtx *patp = &PATTERN (scan), pat = *patp;
+ rtx src, dst;
+ rtx lab;
+ rtx newsrc;
+ enum machine_mode mode;
+
+ if (GET_CODE (pat) == PARALLEL)
+ patp = &XVECEXP (pat, 0, 0), pat = *patp;
+ src = SET_SRC (pat);
+ dst = SET_DEST (pat);
+ mode = GET_MODE (dst);
+
+ if (mode == SImode && satisfies_constraint_I16 (src)
+ && REGNO (dst) != FPUL_REG)
+ {
+ int offset = 0;
+
+ mode = HImode;
+ while (GET_CODE (dst) == SUBREG)
+ {
+ offset += subreg_regno_offset (REGNO (SUBREG_REG (dst)),
+ GET_MODE (SUBREG_REG (dst)),
+ SUBREG_BYTE (dst),
+ GET_MODE (dst));
+ dst = SUBREG_REG (dst);
+ }
+ dst = gen_rtx_REG (HImode, REGNO (dst) + offset);
+ }
+ if (REG_P (dst) && FP_ANY_REGISTER_P (REGNO (dst)))
+ {
+ /* This must be an insn that clobbers r0. */
+ rtx *clobberp = &XVECEXP (PATTERN (scan), 0,
+ XVECLEN (PATTERN (scan), 0)
+ - 1);
+ rtx clobber = *clobberp;
+
+ gcc_assert (GET_CODE (clobber) == CLOBBER
+ && rtx_equal_p (XEXP (clobber, 0), r0_rtx));
+
+ if (last_float
+ && reg_set_between_p (r0_rtx, last_float_move, scan))
+ last_float = 0;
+ if (last_float
+ && TARGET_SHCOMPACT
+ && GET_MODE_SIZE (mode) != 4
+ && GET_MODE_SIZE (GET_MODE (last_float)) == 4)
+ last_float = 0;
+ lab = add_constant (src, mode, last_float);
+ if (lab)
+ emit_insn_before (gen_mova (lab), scan);
+ else
+ {
+ /* There will be a REG_UNUSED note for r0 on
+ LAST_FLOAT_MOVE; we have to change it to REG_INC,
+ lest reorg:mark_target_live_regs will not
+ consider r0 to be used, and we end up with delay
+ slot insn in front of SCAN that clobbers r0. */
+ rtx note
+ = find_regno_note (last_float_move, REG_UNUSED, 0);
+
+ /* If we are not optimizing, then there may not be
+ a note. */
+ if (note)
+ PUT_REG_NOTE_KIND (note, REG_INC);
+
+ *last_float_addr = r0_inc_rtx;
+ }
+ last_float_move = scan;
+ last_float = src;
+ newsrc = gen_const_mem (mode,
+ (((TARGET_SH4 && ! TARGET_FMOVD)
+ || REGNO (dst) == FPUL_REG)
+ ? r0_inc_rtx
+ : r0_rtx));
+ last_float_addr = &XEXP (newsrc, 0);
+
+ /* Remove the clobber of r0. */
+ *clobberp = gen_rtx_CLOBBER (GET_MODE (clobber),
+ gen_rtx_SCRATCH (Pmode));
+ }
+ /* This is a mova needing a label. Create it. */
+ else if (GET_CODE (src) == UNSPEC
+ && XINT (src, 1) == UNSPEC_MOVA
+ && GET_CODE (XVECEXP (src, 0, 0)) == CONST)
+ {
+ lab = add_constant (XVECEXP (src, 0, 0), mode, 0);
+ newsrc = gen_rtx_LABEL_REF (VOIDmode, lab);
+ newsrc = gen_rtx_UNSPEC (SImode,
+ gen_rtvec (1, newsrc),
+ UNSPEC_MOVA);
+ }
+ else if (GET_CODE (src) == UNSPEC_VOLATILE
+ && XINT (src, 1) == UNSPECV_SP_SWITCH_B)
+ {
+ newsrc = XVECEXP (src, 0, 0);
+ XVECEXP (src, 0, 0) = gen_const_mem (mode, newsrc);
+ INSN_CODE (scan) = -1;
+ continue;
+ }
+ else
+ {
+ lab = add_constant (src, mode, 0);
+ newsrc = gen_rtx_LABEL_REF (VOIDmode, lab);
+ newsrc = gen_const_mem (mode, newsrc);
+ }
+ *patp = gen_rtx_SET (VOIDmode, dst, newsrc);
+ INSN_CODE (scan) = -1;
+ }
+ }
+ dump_table (need_aligned_label ? insn : 0, barrier);
+ insn = barrier;
+ }
+ }
+ free_alloc_pool (label_ref_list_pool);
+ for (insn = first; insn; insn = NEXT_INSN (insn))
+ PUT_MODE (insn, VOIDmode);
+
+ mdep_reorg_phase = SH_SHORTEN_BRANCHES1;
+ INSN_ADDRESSES_FREE ();
+ split_branches (first);
+
+ /* The INSN_REFERENCES_ARE_DELAYED in sh.h is problematic because it
+ also has an effect on the register that holds the address of the sfunc.
+ Insert an extra dummy insn in front of each sfunc that pretends to
+ use this register. */
+ if (flag_delayed_branch)
+ {
+ for (insn = first; insn; insn = NEXT_INSN (insn))
+ {
+ rtx reg = sfunc_uses_reg (insn);
+
+ if (! reg)
+ continue;
+ emit_insn_before (gen_use_sfunc_addr (reg), insn);
+ }
+ }
+#if 0
+ /* fpscr is not actually a user variable, but we pretend it is for the
+ sake of the previous optimization passes, since we want it handled like
+ one. However, we don't have any debugging information for it, so turn
+ it into a non-user variable now. */
+ if (TARGET_SH4)
+ REG_USERVAR_P (get_fpscr_rtx ()) = 0;
+#endif
+ mdep_reorg_phase = SH_AFTER_MDEP_REORG;
+}
+
+/* Return the UID of the insn that follows the specified label. */
+int
+get_dest_uid (rtx label, int max_uid)
+{
+ rtx dest = next_real_insn (label);
+ int dest_uid;
+ if (! dest)
+ /* This can happen for an undefined label. */
+ return 0;
+ dest_uid = INSN_UID (dest);
+ /* If this is a newly created branch redirection blocking instruction,
+ we cannot index the branch_uid or insn_addresses arrays with its
+ uid. But then, we won't need to, because the actual destination is
+ the following branch. */
+ while (dest_uid >= max_uid)
+ {
+ dest = NEXT_INSN (dest);
+ dest_uid = INSN_UID (dest);
+ }
+ if (JUMP_P (dest) && GET_CODE (PATTERN (dest)) == RETURN)
+ return 0;
+ return dest_uid;
+}
+
+/* Split condbranches that are out of range. Also add clobbers for
+ scratch registers that are needed in far jumps.
+ We do this before delay slot scheduling, so that it can take our
+ newly created instructions into account. It also allows us to
+ find branches with common targets more easily. */
+static void
+split_branches (rtx first)
+{
+ rtx insn;
+ struct far_branch **uid_branch, *far_branch_list = 0;
+ int max_uid = get_max_uid ();
+ int ok;
+
+ /* Find out which branches are out of range. */
+ shorten_branches (first);
+
+ uid_branch = (struct far_branch **) alloca (max_uid * sizeof *uid_branch);
+ memset ((char *) uid_branch, 0, max_uid * sizeof *uid_branch);
+
+ for (insn = first; insn; insn = NEXT_INSN (insn))
+ if (! INSN_P (insn))
+ continue;
+ else if (INSN_DELETED_P (insn))
+ {
+ /* Shorten_branches would split this instruction again,
+ so transform it into a note. */
+ SET_INSN_DELETED (insn);
+ }
+ else if (JUMP_P (insn))
+ {
+ enum attr_type type = get_attr_type (insn);
+ if (type == TYPE_CBRANCH)
+ {
+ rtx next, beyond;
+
+ if (get_attr_length (insn) > 4)
+ {
+ rtx src = SET_SRC (PATTERN (insn));
+ rtx olabel = XEXP (XEXP (src, 1), 0);
+ int addr = INSN_ADDRESSES (INSN_UID (insn));
+ rtx label = 0;
+ int dest_uid = get_dest_uid (olabel, max_uid);
+ struct far_branch *bp = uid_branch[dest_uid];
+
+ /* redirect_jump needs a valid JUMP_LABEL, and it might delete
+ the label if the LABEL_NUSES count drops to zero. There is
+ always a jump_optimize pass that sets these values, but it
+ proceeds to delete unreferenced code, and then if not
+ optimizing, to un-delete the deleted instructions, thus
+ leaving labels with too low uses counts. */
+ if (! optimize)
+ {
+ JUMP_LABEL (insn) = olabel;
+ LABEL_NUSES (olabel)++;
+ }
+ if (! bp)
+ {
+ bp = (struct far_branch *) alloca (sizeof *bp);
+ uid_branch[dest_uid] = bp;
+ bp->prev = far_branch_list;
+ far_branch_list = bp;
+ bp->far_label
+ = XEXP (XEXP (SET_SRC (PATTERN (insn)), 1), 0);
+ LABEL_NUSES (bp->far_label)++;
+ }
+ else
+ {
+ label = bp->near_label;
+ if (! label && bp->address - addr >= CONDJUMP_MIN)
+ {
+ rtx block = bp->insert_place;
+
+ if (GET_CODE (PATTERN (block)) == RETURN)
+ block = PREV_INSN (block);
+ else
+ block = gen_block_redirect (block,
+ bp->address, 2);
+ label = emit_label_after (gen_label_rtx (),
+ PREV_INSN (block));
+ bp->near_label = label;
+ }
+ else if (label && ! NEXT_INSN (label))
+ {
+ if (addr + 2 - bp->address <= CONDJUMP_MAX)
+ bp->insert_place = insn;
+ else
+ gen_far_branch (bp);
+ }
+ }
+ if (! label
+ || (NEXT_INSN (label) && bp->address - addr < CONDJUMP_MIN))
+ {
+ bp->near_label = label = gen_label_rtx ();
+ bp->insert_place = insn;
+ bp->address = addr;
+ }
+ ok = redirect_jump (insn, label, 0);
+ gcc_assert (ok);
+ }
+ else
+ {
+ /* get_attr_length (insn) == 2 */
+ /* Check if we have a pattern where reorg wants to redirect
+ the branch to a label from an unconditional branch that
+ is too far away. */
+ /* We can't use JUMP_LABEL here because it might be undefined
+ when not optimizing. */
+ /* A syntax error might cause beyond to be NULL_RTX. */
+ beyond
+ = next_active_insn (XEXP (XEXP (SET_SRC (PATTERN (insn)), 1),
+ 0));
+
+ if (beyond
+ && (JUMP_P (beyond)
+ || ((beyond = next_active_insn (beyond))
+ && JUMP_P (beyond)))
+ && GET_CODE (PATTERN (beyond)) == SET
+ && recog_memoized (beyond) == CODE_FOR_jump_compact
+ && ((INSN_ADDRESSES
+ (INSN_UID (XEXP (SET_SRC (PATTERN (beyond)), 0)))
+ - INSN_ADDRESSES (INSN_UID (insn)) + (unsigned) 252)
+ > 252 + 258 + 2))
+ gen_block_redirect (beyond,
+ INSN_ADDRESSES (INSN_UID (beyond)), 1);
+ }
+
+ next = next_active_insn (insn);
+
+ if (next
+ && (JUMP_P (next)
+ || ((next = next_active_insn (next))
+ && JUMP_P (next)))
+ && GET_CODE (PATTERN (next)) == SET
+ && recog_memoized (next) == CODE_FOR_jump_compact
+ && ((INSN_ADDRESSES
+ (INSN_UID (XEXP (SET_SRC (PATTERN (next)), 0)))
+ - INSN_ADDRESSES (INSN_UID (insn)) + (unsigned) 252)
+ > 252 + 258 + 2))
+ gen_block_redirect (next, INSN_ADDRESSES (INSN_UID (next)), 1);
+ }
+ else if (type == TYPE_JUMP || type == TYPE_RETURN)
+ {
+ int addr = INSN_ADDRESSES (INSN_UID (insn));
+ rtx far_label = 0;
+ int dest_uid = 0;
+ struct far_branch *bp;
+
+ if (type == TYPE_JUMP)
+ {
+ far_label = XEXP (SET_SRC (PATTERN (insn)), 0);
+ dest_uid = get_dest_uid (far_label, max_uid);
+ if (! dest_uid)
+ {
+ /* Parse errors can lead to labels outside
+ the insn stream. */
+ if (! NEXT_INSN (far_label))
+ continue;
+
+ if (! optimize)
+ {
+ JUMP_LABEL (insn) = far_label;
+ LABEL_NUSES (far_label)++;
+ }
+ redirect_jump (insn, ret_rtx, 1);
+ far_label = 0;
+ }
+ }
+ bp = uid_branch[dest_uid];
+ if (! bp)
+ {
+ bp = (struct far_branch *) alloca (sizeof *bp);
+ uid_branch[dest_uid] = bp;
+ bp->prev = far_branch_list;
+ far_branch_list = bp;
+ bp->near_label = 0;
+ bp->far_label = far_label;
+ if (far_label)
+ LABEL_NUSES (far_label)++;
+ }
+ else if (bp->near_label && ! NEXT_INSN (bp->near_label))
+ if (addr - bp->address <= CONDJUMP_MAX)
+ emit_label_after (bp->near_label, PREV_INSN (insn));
+ else
+ {
+ gen_far_branch (bp);
+ bp->near_label = 0;
+ }
+ else
+ bp->near_label = 0;
+ bp->address = addr;
+ bp->insert_place = insn;
+ if (! far_label)
+ emit_insn_before (gen_block_branch_redirect (const0_rtx), insn);
+ else
+ gen_block_redirect (insn, addr, bp->near_label ? 2 : 0);
+ }
+ }
+ /* Generate all pending far branches,
+ and free our references to the far labels. */
+ while (far_branch_list)
+ {
+ if (far_branch_list->near_label
+ && ! NEXT_INSN (far_branch_list->near_label))
+ gen_far_branch (far_branch_list);
+ if (optimize
+ && far_branch_list->far_label
+ && ! --LABEL_NUSES (far_branch_list->far_label))
+ delete_insn (far_branch_list->far_label);
+ far_branch_list = far_branch_list->prev;
+ }
+
+ /* Instruction length information is no longer valid due to the new
+ instructions that have been generated. */
+ init_insn_lengths ();
+}
+
+/* Dump out instruction addresses, which is useful for debugging the
+ constant pool table stuff.
+
+ If relaxing, output the label and pseudo-ops used to link together
+ calls and the instruction which set the registers.
+
+ ??? The addresses printed by this routine for insns are nonsense for
+ insns which are inside of a sequence where none of the inner insns have
+ variable length. This is because the second pass of shorten_branches
+ does not bother to update them. */
+void
+final_prescan_insn (rtx insn, rtx *opvec ATTRIBUTE_UNUSED,
+ int noperands ATTRIBUTE_UNUSED)
+{
+ if (TARGET_DUMPISIZE)
+ fprintf (asm_out_file, "\n! at %04x\n", INSN_ADDRESSES (INSN_UID (insn)));
+
+ if (TARGET_RELAX)
+ {
+ rtx note;
+
+ note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
+ if (note)
+ {
+ rtx pattern;
+
+ pattern = PATTERN (insn);
+ if (GET_CODE (pattern) == PARALLEL)
+ pattern = XVECEXP (pattern, 0, 0);
+ switch (GET_CODE (pattern))
+ {
+ case SET:
+ if (GET_CODE (SET_SRC (pattern)) != CALL
+ && get_attr_type (insn) != TYPE_SFUNC)
+ {
+ targetm.asm_out.internal_label
+ (asm_out_file, "L", CODE_LABEL_NUMBER (XEXP (note, 0)));
+ break;
+ }
+ /* else FALLTHROUGH */
+ case CALL:
+ asm_fprintf (asm_out_file, "\t.uses %LL%d\n",
+ CODE_LABEL_NUMBER (XEXP (note, 0)));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+ }
+}
+
+/* Dump out any constants accumulated in the final pass. These will
+ only be labels. */
+const char *
+output_jump_label_table (void)
+{
+ int i;
+
+ if (pool_size)
+ {
+ fprintf (asm_out_file, "\t.align 2\n");
+ for (i = 0; i < pool_size; i++)
+ {
+ pool_node *p = &pool_vector[i];
+
+ (*targetm.asm_out.internal_label) (asm_out_file, "L",
+ CODE_LABEL_NUMBER (p->label));
+ output_asm_insn (".long %O0", &p->value);
+ }
+ pool_size = 0;
+ }
+
+ return "";
+}
+
+/* A full frame looks like:
+
+ arg-5
+ arg-4
+ [ if current_function_anonymous_args
+ arg-3
+ arg-2
+ arg-1
+ arg-0 ]
+ saved-fp
+ saved-r10
+ saved-r11
+ saved-r12
+ saved-pr
+ local-n
+ ..
+ local-1
+ local-0 <- fp points here.
+
+ Number of bytes pushed for anonymous args, used to pass information
+ between expand_prologue and expand_epilogue.
+
+ Adjust the stack by SIZE bytes. REG holds the rtl of the register to be
+ adjusted. If epilogue_p is zero, this is for a prologue; otherwise, it's
+ for an epilogue and a negative value means that it's for a sibcall
+ epilogue. If LIVE_REGS_MASK is nonzero, it points to a HARD_REG_SET of
+ all the registers that are about to be restored, and hence dead. */
+static void
+output_stack_adjust (int size, rtx reg, int epilogue_p,
+ HARD_REG_SET *live_regs_mask, bool frame_p)
+{
+ rtx (*emit_fn) (rtx) = frame_p ? &frame_insn : &emit_insn;
+ if (size)
+ {
+ HOST_WIDE_INT align = STACK_BOUNDARY / BITS_PER_UNIT;
+
+/* This test is bogus, as output_stack_adjust is used to re-align the
+ stack. */
+#if 0
+ gcc_assert (!(size % align));
+#endif
+
+ if (CONST_OK_FOR_ADD (size))
+ emit_fn (GEN_ADD3 (reg, reg, GEN_INT (size)));
+ /* Try to do it with two partial adjustments; however, we must make
+ sure that the stack is properly aligned at all times, in case
+ an interrupt occurs between the two partial adjustments. */
+ else if (CONST_OK_FOR_ADD (size / 2 & -align)
+ && CONST_OK_FOR_ADD (size - (size / 2 & -align)))
+ {
+ emit_fn (GEN_ADD3 (reg, reg, GEN_INT (size / 2 & -align)));
+ emit_fn (GEN_ADD3 (reg, reg, GEN_INT (size - (size / 2 & -align))));
+ }
+ else
+ {
+ rtx const_reg;
+ rtx insn;
+ int temp = epilogue_p ? 7 : (TARGET_SH5 ? 0 : 1);
+ int i;
+
+ /* If TEMP is invalid, we could temporarily save a general
+ register to MACL. However, there is currently no need
+ to handle this case, so just die when we see it. */
+ if (epilogue_p < 0
+ || current_function_interrupt
+ || ! call_really_used_regs[temp] || fixed_regs[temp])
+ temp = -1;
+ if (temp < 0 && ! current_function_interrupt
+ && (TARGET_SHMEDIA || epilogue_p >= 0))
+ {
+ HARD_REG_SET temps;
+ COPY_HARD_REG_SET (temps, call_used_reg_set);
+ AND_COMPL_HARD_REG_SET (temps, call_fixed_reg_set);
+ if (epilogue_p > 0)
+ {
+ int nreg = 0;
+ if (crtl->return_rtx)
+ {
+ enum machine_mode mode;
+ mode = GET_MODE (crtl->return_rtx);
+ if (BASE_RETURN_VALUE_REG (mode) == FIRST_RET_REG)
+ nreg = HARD_REGNO_NREGS (FIRST_RET_REG, mode);
+ }
+ for (i = 0; i < nreg; i++)
+ CLEAR_HARD_REG_BIT (temps, FIRST_RET_REG + i);
+ if (crtl->calls_eh_return)
+ {
+ CLEAR_HARD_REG_BIT (temps, EH_RETURN_STACKADJ_REGNO);
+ for (i = 0; i <= 3; i++)
+ CLEAR_HARD_REG_BIT (temps, EH_RETURN_DATA_REGNO (i));
+ }
+ }
+ if (TARGET_SHMEDIA && epilogue_p < 0)
+ for (i = FIRST_TARGET_REG; i <= LAST_TARGET_REG; i++)
+ CLEAR_HARD_REG_BIT (temps, i);
+ if (epilogue_p <= 0)
+ {
+ for (i = FIRST_PARM_REG;
+ i < FIRST_PARM_REG + NPARM_REGS (SImode); i++)
+ CLEAR_HARD_REG_BIT (temps, i);
+ if (cfun->static_chain_decl != NULL)
+ CLEAR_HARD_REG_BIT (temps, STATIC_CHAIN_REGNUM);
+ }
+ temp = scavenge_reg (&temps);
+ }
+ if (temp < 0 && live_regs_mask)
+ {
+ HARD_REG_SET temps;
+
+ COPY_HARD_REG_SET (temps, *live_regs_mask);
+ CLEAR_HARD_REG_BIT (temps, REGNO (reg));
+ temp = scavenge_reg (&temps);
+ }
+ if (temp < 0)
+ {
+ rtx adj_reg, tmp_reg, mem;
+
+ /* If we reached here, the most likely case is the (sibcall)
+ epilogue for non SHmedia. Put a special push/pop sequence
+ for such case as the last resort. This looks lengthy but
+ would not be problem because it seems to be very
+ rare. */
+
+ gcc_assert (!TARGET_SHMEDIA && epilogue_p);
+
+
+ /* ??? There is still the slight possibility that r4 or
+ r5 have been reserved as fixed registers or assigned
+ as global registers, and they change during an
+ interrupt. There are possible ways to handle this:
+
+ - If we are adjusting the frame pointer (r14), we can do
+ with a single temp register and an ordinary push / pop
+ on the stack.
+ - Grab any call-used or call-saved registers (i.e. not
+ fixed or globals) for the temps we need. We might
+ also grab r14 if we are adjusting the stack pointer.
+ If we can't find enough available registers, issue
+ a diagnostic and die - the user must have reserved
+ way too many registers.
+ But since all this is rather unlikely to happen and
+ would require extra testing, we just die if r4 / r5
+ are not available. */
+ gcc_assert (!fixed_regs[4] && !fixed_regs[5]
+ && !global_regs[4] && !global_regs[5]);
+
+ adj_reg = gen_rtx_REG (GET_MODE (reg), 4);
+ tmp_reg = gen_rtx_REG (GET_MODE (reg), 5);
+ emit_move_insn (gen_tmp_stack_mem (Pmode, reg), adj_reg);
+ emit_insn (GEN_MOV (adj_reg, GEN_INT (size)));
+ emit_insn (GEN_ADD3 (adj_reg, adj_reg, reg));
+ mem = gen_tmp_stack_mem (Pmode, gen_rtx_PRE_DEC (Pmode, adj_reg));
+ emit_move_insn (mem, tmp_reg);
+ emit_move_insn (tmp_reg, gen_tmp_stack_mem (Pmode, reg));
+ mem = gen_tmp_stack_mem (Pmode, gen_rtx_PRE_DEC (Pmode, adj_reg));
+ emit_move_insn (mem, tmp_reg);
+ emit_move_insn (reg, adj_reg);
+ mem = gen_tmp_stack_mem (Pmode, gen_rtx_POST_INC (Pmode, reg));
+ emit_move_insn (adj_reg, mem);
+ mem = gen_tmp_stack_mem (Pmode, gen_rtx_POST_INC (Pmode, reg));
+ emit_move_insn (tmp_reg, mem);
+ /* Tell flow the insns that pop r4/r5 aren't dead. */
+ emit_use (tmp_reg);
+ emit_use (adj_reg);
+ return;
+ }
+ const_reg = gen_rtx_REG (GET_MODE (reg), temp);
+
+ /* If SIZE is negative, subtract the positive value.
+ This sometimes allows a constant pool entry to be shared
+ between prologue and epilogue code. */
+ if (size < 0)
+ {
+ emit_insn (GEN_MOV (const_reg, GEN_INT (-size)));
+ insn = emit_fn (GEN_SUB3 (reg, reg, const_reg));
+ }
+ else
+ {
+ emit_insn (GEN_MOV (const_reg, GEN_INT (size)));
+ insn = emit_fn (GEN_ADD3 (reg, reg, const_reg));
+ }
+ add_reg_note (insn, REG_FRAME_RELATED_EXPR,
+ gen_rtx_SET (VOIDmode, reg,
+ gen_rtx_PLUS (SImode, reg,
+ GEN_INT (size))));
+ }
+ }
+}
+
+/* Emit the specified insn and mark it as frame related.
+ FIXME: Rename this to emit_frame_insn. */
+static rtx
+frame_insn (rtx x)
+{
+ x = emit_insn (x);
+ RTX_FRAME_RELATED_P (x) = 1;
+ return x;
+}
+
+/* Output RTL to push register RN onto the stack. */
+static rtx
+push (int rn)
+{
+ rtx x;
+ if (rn == FPUL_REG)
+ x = gen_push_fpul ();
+ else if (rn == FPSCR_REG)
+ x = gen_push_fpscr ();
+ else if ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && TARGET_FMOVD
+ && ! TARGET_FPU_SINGLE && FP_OR_XD_REGISTER_P (rn))
+ {
+ if (FP_REGISTER_P (rn) && (rn - FIRST_FP_REG) & 1)
+ return NULL_RTX;
+ x = gen_push_4 (gen_rtx_REG (DFmode, rn));
+ }
+ else if (TARGET_SH2E && FP_REGISTER_P (rn))
+ x = gen_push_e (gen_rtx_REG (SFmode, rn));
+ else
+ x = gen_push (gen_rtx_REG (SImode, rn));
+
+ x = frame_insn (x);
+ add_reg_note (x, REG_INC, gen_rtx_REG (SImode, STACK_POINTER_REGNUM));
+ return x;
+}
+
+/* Output RTL to pop register RN from the stack. */
+static void
+pop (int rn)
+{
+ rtx x, sp_reg, reg;
+ if (rn == FPUL_REG)
+ x = gen_pop_fpul ();
+ else if (rn == FPSCR_REG)
+ x = gen_pop_fpscr ();
+ else if ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && TARGET_FMOVD
+ && ! TARGET_FPU_SINGLE && FP_OR_XD_REGISTER_P (rn))
+ {
+ if (FP_REGISTER_P (rn) && (rn - FIRST_FP_REG) & 1)
+ return;
+ x = gen_pop_4 (gen_rtx_REG (DFmode, rn));
+ }
+ else if (TARGET_SH2E && FP_REGISTER_P (rn))
+ x = gen_pop_e (gen_rtx_REG (SFmode, rn));
+ else
+ x = gen_pop (gen_rtx_REG (SImode, rn));
+
+ x = emit_insn (x);
+
+ sp_reg = gen_rtx_REG (SImode, STACK_POINTER_REGNUM);
+ reg = copy_rtx (GET_CODE (PATTERN (x)) == PARALLEL
+ ? SET_DEST (XVECEXP (PATTERN (x), 0, 0))
+ : SET_DEST (PATTERN (x)));
+ add_reg_note (x, REG_CFA_RESTORE, reg);
+ add_reg_note (x, REG_CFA_ADJUST_CFA,
+ gen_rtx_SET (SImode, sp_reg,
+ plus_constant (SImode, sp_reg,
+ GET_MODE_SIZE (GET_MODE (reg)))));
+ add_reg_note (x, REG_INC, gen_rtx_REG (SImode, STACK_POINTER_REGNUM));
+ RTX_FRAME_RELATED_P (x) = 1;
+}
+
+/* Generate code to push the regs specified in the mask. */
+static void
+push_regs (HARD_REG_SET *mask, int interrupt_handler)
+{
+ int i = interrupt_handler ? LAST_BANKED_REG + 1 : 0;
+ int skip_fpscr = 0;
+
+ /* Push PR last; this gives better latencies after the prologue, and
+ candidates for the return delay slot when there are no general
+ registers pushed. */
+ for (; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ /* If this is an interrupt handler, and the SZ bit varies,
+ and we have to push any floating point register, we need
+ to switch to the correct precision first. */
+ if (i == FIRST_FP_REG && interrupt_handler && TARGET_FMOVD
+ && hard_reg_set_intersect_p (*mask, reg_class_contents[DF_REGS]))
+ {
+ HARD_REG_SET unsaved;
+
+ push (FPSCR_REG);
+ COMPL_HARD_REG_SET (unsaved, *mask);
+ fpscr_set_from_mem (NORMAL_MODE (FP_MODE), unsaved);
+ skip_fpscr = 1;
+ }
+ if (i != PR_REG
+ && (i != FPSCR_REG || ! skip_fpscr)
+ && TEST_HARD_REG_BIT (*mask, i))
+ {
+ /* If the ISR has RESBANK attribute assigned, don't push any of
+ the following registers - R0-R14, MACH, MACL and GBR. */
+ if (! (sh_cfun_resbank_handler_p ()
+ && ((i >= FIRST_GENERAL_REG && i < LAST_GENERAL_REG)
+ || i == MACH_REG
+ || i == MACL_REG
+ || i == GBR_REG)))
+ push (i);
+ }
+ }
+
+ /* Push banked registers last to improve delay slot opportunities. */
+ if (interrupt_handler)
+ {
+ bool use_movml = false;
+
+ if (TARGET_SH2A)
+ {
+ unsigned int count = 0;
+
+ for (i = FIRST_BANKED_REG; i <= LAST_BANKED_REG; i++)
+ if (TEST_HARD_REG_BIT (*mask, i))
+ count++;
+ else
+ break;
+
+ /* Use movml when all banked registers are pushed. */
+ if (count == LAST_BANKED_REG - FIRST_BANKED_REG + 1)
+ use_movml = true;
+ }
+
+ if (sh_cfun_resbank_handler_p ())
+ ; /* Do nothing. */
+ else if (use_movml)
+ {
+ rtx x, mem, reg, set;
+ rtx sp_reg = gen_rtx_REG (SImode, STACK_POINTER_REGNUM);
+
+ /* We must avoid scheduling multiple store insn with another
+ insns. */
+ emit_insn (gen_blockage ());
+ x = gen_movml_push_banked (sp_reg);
+ x = frame_insn (x);
+ for (i = FIRST_BANKED_REG; i <= LAST_BANKED_REG; i++)
+ {
+ mem = gen_rtx_MEM (SImode, plus_constant (Pmode, sp_reg, i * 4));
+ reg = gen_rtx_REG (SImode, i);
+ add_reg_note (x, REG_CFA_OFFSET, gen_rtx_SET (SImode, mem, reg));
+ }
+
+ set = gen_rtx_SET (SImode, sp_reg,
+ plus_constant (Pmode, sp_reg, - 32));
+ add_reg_note (x, REG_CFA_ADJUST_CFA, set);
+ emit_insn (gen_blockage ());
+ }
+ else
+ for (i = FIRST_BANKED_REG; i <= LAST_BANKED_REG; i++)
+ if (TEST_HARD_REG_BIT (*mask, i))
+ push (i);
+ }
+
+ /* Don't push PR register for an ISR with RESBANK attribute assigned. */
+ if (TEST_HARD_REG_BIT (*mask, PR_REG) && !sh_cfun_resbank_handler_p ())
+ push (PR_REG);
+}
+
+/* Calculate how much extra space is needed to save all callee-saved
+ target registers.
+ LIVE_REGS_MASK is the register mask calculated by calc_live_regs. */
+static int
+shmedia_target_regs_stack_space (HARD_REG_SET *live_regs_mask)
+{
+ int reg;
+ int stack_space = 0;
+ int interrupt_handler = sh_cfun_interrupt_handler_p ();
+
+ for (reg = LAST_TARGET_REG; reg >= FIRST_TARGET_REG; reg--)
+ if ((! call_really_used_regs[reg] || interrupt_handler)
+ && ! TEST_HARD_REG_BIT (*live_regs_mask, reg))
+ /* Leave space to save this target register on the stack,
+ in case target register allocation wants to use it. */
+ stack_space += GET_MODE_SIZE (REGISTER_NATURAL_MODE (reg));
+ return stack_space;
+}
+
+/* Decide whether we should reserve space for callee-save target registers,
+ in case target register allocation wants to use them. REGS_SAVED is
+ the space, in bytes, that is already required for register saves.
+ LIVE_REGS_MASK is the register mask calculated by calc_live_regs. */
+static int
+shmedia_reserve_space_for_target_registers_p (int regs_saved,
+ HARD_REG_SET *live_regs_mask)
+{
+ if (optimize_size)
+ return 0;
+ return shmedia_target_regs_stack_space (live_regs_mask) <= regs_saved;
+}
+
+/* Decide how much space to reserve for callee-save target registers
+ in case target register allocation wants to use them.
+ LIVE_REGS_MASK is the register mask calculated by calc_live_regs. */
+static int
+shmedia_target_regs_stack_adjust (HARD_REG_SET *live_regs_mask)
+{
+ if (shmedia_space_reserved_for_target_registers)
+ return shmedia_target_regs_stack_space (live_regs_mask);
+ else
+ return 0;
+}
+
+/* Work out the registers which need to be saved, both as a mask and a
+ count of saved words. Return the count.
+
+ If doing a pragma interrupt function, then push all regs used by the
+ function, and if we call another function (we can tell by looking at PR),
+ make sure that all the regs it clobbers are safe too. */
+static int
+calc_live_regs (HARD_REG_SET *live_regs_mask)
+{
+ unsigned int reg;
+ int count;
+ tree attrs;
+ bool interrupt_or_trapa_handler, trapa_handler, interrupt_handler;
+ bool nosave_low_regs;
+ int pr_live, has_call;
+
+ attrs = DECL_ATTRIBUTES (current_function_decl);
+ interrupt_or_trapa_handler = sh_cfun_interrupt_handler_p ();
+ trapa_handler = lookup_attribute ("trapa_handler", attrs) != NULL_TREE;
+ interrupt_handler = interrupt_or_trapa_handler && ! trapa_handler;
+ nosave_low_regs = lookup_attribute ("nosave_low_regs", attrs) != NULL_TREE;
+
+ CLEAR_HARD_REG_SET (*live_regs_mask);
+ if ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && TARGET_FMOVD && interrupt_handler
+ && df_regs_ever_live_p (FPSCR_REG))
+ target_flags &= ~MASK_FPU_SINGLE;
+ /* If we can save a lot of saves by switching to double mode, do that. */
+ else if ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && TARGET_FMOVD
+ && TARGET_FPU_SINGLE)
+ for (count = 0, reg = FIRST_FP_REG; reg <= LAST_FP_REG; reg += 2)
+ if (df_regs_ever_live_p (reg) && df_regs_ever_live_p (reg+1)
+ && (! call_really_used_regs[reg]
+ || interrupt_handler)
+ && ++count > 2)
+ {
+ target_flags &= ~MASK_FPU_SINGLE;
+ break;
+ }
+ /* PR_MEDIA_REG is a general purpose register, thus global_alloc already
+ knows how to use it. That means the pseudo originally allocated for
+ the initial value can become the PR_MEDIA_REG hard register, as seen for
+ execute/20010122-1.c:test9. */
+ if (TARGET_SHMEDIA)
+ /* ??? this function is called from initial_elimination_offset, hence we
+ can't use the result of sh_media_register_for_return here. */
+ pr_live = sh_pr_n_sets ();
+ else
+ {
+ rtx pr_initial = has_hard_reg_initial_val (Pmode, PR_REG);
+ pr_live = (pr_initial
+ ? (!REG_P (pr_initial)
+ || REGNO (pr_initial) != (PR_REG))
+ : df_regs_ever_live_p (PR_REG));
+ /* For Shcompact, if not optimizing, we end up with a memory reference
+ using the return address pointer for __builtin_return_address even
+ though there is no actual need to put the PR register on the stack. */
+ pr_live |= df_regs_ever_live_p (RETURN_ADDRESS_POINTER_REGNUM);
+ }
+ /* Force PR to be live if the prologue has to call the SHmedia
+ argument decoder or register saver. */
+ if (TARGET_SHCOMPACT
+ && ((crtl->args.info.call_cookie
+ & ~ CALL_COOKIE_RET_TRAMP (1))
+ || crtl->saves_all_registers))
+ pr_live = 1;
+ has_call = TARGET_SHMEDIA ? ! leaf_function_p () : pr_live;
+ for (count = 0, reg = FIRST_PSEUDO_REGISTER; reg-- != 0; )
+ {
+ if (reg == (TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG)
+ ? pr_live
+ : interrupt_handler
+ ? (/* Need to save all the regs ever live. */
+ (df_regs_ever_live_p (reg)
+ || (call_really_used_regs[reg]
+ && (! fixed_regs[reg] || reg == MACH_REG || reg == MACL_REG
+ || reg == PIC_OFFSET_TABLE_REGNUM)
+ && has_call)
+ || (TARGET_SHMEDIA && has_call
+ && REGISTER_NATURAL_MODE (reg) == SImode
+ && (GENERAL_REGISTER_P (reg) || TARGET_REGISTER_P (reg))))
+ && reg != STACK_POINTER_REGNUM && reg != ARG_POINTER_REGNUM
+ && reg != RETURN_ADDRESS_POINTER_REGNUM
+ && reg != T_REG && reg != GBR_REG
+ /* Push fpscr only on targets which have FPU */
+ && (reg != FPSCR_REG || TARGET_FPU_ANY))
+ : (/* Only push those regs which are used and need to be saved. */
+ (TARGET_SHCOMPACT
+ && flag_pic
+ && crtl->args.info.call_cookie
+ && reg == PIC_OFFSET_TABLE_REGNUM)
+ || (df_regs_ever_live_p (reg)
+ && ((!call_really_used_regs[reg]
+ && !(reg != PIC_OFFSET_TABLE_REGNUM
+ && fixed_regs[reg] && call_used_regs[reg]))
+ || (trapa_handler && reg == FPSCR_REG && TARGET_FPU_ANY)))
+ || (crtl->calls_eh_return
+ && (reg == EH_RETURN_DATA_REGNO (0)
+ || reg == EH_RETURN_DATA_REGNO (1)
+ || reg == EH_RETURN_DATA_REGNO (2)
+ || reg == EH_RETURN_DATA_REGNO (3)))
+ || ((reg == MACL_REG || reg == MACH_REG)
+ && df_regs_ever_live_p (reg)
+ && sh_cfun_attr_renesas_p ())
+ ))
+ {
+ SET_HARD_REG_BIT (*live_regs_mask, reg);
+ count += GET_MODE_SIZE (REGISTER_NATURAL_MODE (reg));
+
+ if ((TARGET_SH4 || TARGET_SH2A_DOUBLE || TARGET_SH5) && TARGET_FMOVD
+ && GET_MODE_CLASS (REGISTER_NATURAL_MODE (reg)) == MODE_FLOAT)
+ {
+ if (FP_REGISTER_P (reg))
+ {
+ if (! TARGET_FPU_SINGLE && ! df_regs_ever_live_p (reg ^ 1))
+ {
+ SET_HARD_REG_BIT (*live_regs_mask, (reg ^ 1));
+ count += GET_MODE_SIZE (REGISTER_NATURAL_MODE (reg ^ 1));
+ }
+ }
+ else if (XD_REGISTER_P (reg))
+ {
+ /* Must switch to double mode to access these registers. */
+ target_flags &= ~MASK_FPU_SINGLE;
+ }
+ }
+ }
+ if (nosave_low_regs && reg == R8_REG)
+ break;
+ }
+ /* If we have a target register optimization pass after prologue / epilogue
+ threading, we need to assume all target registers will be live even if
+ they aren't now. */
+ if (flag_branch_target_load_optimize2
+ && TARGET_SAVE_ALL_TARGET_REGS
+ && shmedia_space_reserved_for_target_registers)
+ for (reg = LAST_TARGET_REG; reg >= FIRST_TARGET_REG; reg--)
+ if ((! call_really_used_regs[reg] || interrupt_handler)
+ && ! TEST_HARD_REG_BIT (*live_regs_mask, reg))
+ {
+ SET_HARD_REG_BIT (*live_regs_mask, reg);
+ count += GET_MODE_SIZE (REGISTER_NATURAL_MODE (reg));
+ }
+ /* If this is an interrupt handler, we don't have any call-clobbered
+ registers we can conveniently use for target register save/restore.
+ Make sure we save at least one general purpose register when we need
+ to save target registers. */
+ if (interrupt_handler
+ && hard_reg_set_intersect_p (*live_regs_mask,
+ reg_class_contents[TARGET_REGS])
+ && ! hard_reg_set_intersect_p (*live_regs_mask,
+ reg_class_contents[GENERAL_REGS]))
+ {
+ SET_HARD_REG_BIT (*live_regs_mask, R0_REG);
+ count += GET_MODE_SIZE (REGISTER_NATURAL_MODE (R0_REG));
+ }
+
+ return count;
+}
+
+/* Code to generate prologue and epilogue sequences */
+
+/* PUSHED is the number of bytes that are being pushed on the
+ stack for register saves. Return the frame size, padded
+ appropriately so that the stack stays properly aligned. */
+static HOST_WIDE_INT
+rounded_frame_size (int pushed)
+{
+ HOST_WIDE_INT size = get_frame_size ();
+ HOST_WIDE_INT align = STACK_BOUNDARY / BITS_PER_UNIT;
+
+ if (ACCUMULATE_OUTGOING_ARGS)
+ size += crtl->outgoing_args_size;
+
+ return ((size + pushed + align - 1) & -align) - pushed;
+}
+
+/* Choose a call-clobbered target-branch register that remains
+ unchanged along the whole function. We set it up as the return
+ value in the prologue. */
+int
+sh_media_register_for_return (void)
+{
+ int regno;
+ int tr0_used;
+
+ if (! crtl->is_leaf)
+ return -1;
+ if (lookup_attribute ("interrupt_handler",
+ DECL_ATTRIBUTES (current_function_decl)))
+ return -1;
+ if (sh_cfun_interrupt_handler_p ())
+ return -1;
+
+ tr0_used = flag_pic && df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM);
+
+ for (regno = FIRST_TARGET_REG + tr0_used; regno <= LAST_TARGET_REG; regno++)
+ if (call_really_used_regs[regno] && ! df_regs_ever_live_p (regno))
+ return regno;
+
+ return -1;
+}
+
+/* The maximum registers we need to save are:
+ - 62 general purpose registers (r15 is stack pointer, r63 is zero)
+ - 32 floating point registers (for each pair, we save none,
+ one single precision value, or a double precision value).
+ - 8 target registers
+ - add 1 entry for a delimiter. */
+#define MAX_SAVED_REGS (62+32+8)
+
+typedef struct save_entry_s
+{
+ unsigned char reg;
+ unsigned char mode;
+ short offset;
+} save_entry;
+
+#define MAX_TEMPS 4
+
+/* There will be a delimiter entry with VOIDmode both at the start and the
+ end of a filled in schedule. The end delimiter has the offset of the
+ save with the smallest (i.e. most negative) offset. */
+typedef struct save_schedule_s
+{
+ save_entry entries[MAX_SAVED_REGS + 2];
+ int temps[MAX_TEMPS+1];
+} save_schedule;
+
+/* Fill in SCHEDULE according to LIVE_REGS_MASK. If RESTORE is nonzero,
+ use reverse order. Returns the last entry written to (not counting
+ the delimiter). OFFSET_BASE is a number to be added to all offset
+ entries. */
+static save_entry *
+sh5_schedule_saves (HARD_REG_SET *live_regs_mask, save_schedule *schedule,
+ int offset_base)
+{
+ int align, i;
+ save_entry *entry = schedule->entries;
+ int tmpx = 0;
+ int offset;
+
+ if (! current_function_interrupt)
+ for (i = FIRST_GENERAL_REG; tmpx < MAX_TEMPS && i <= LAST_GENERAL_REG; i++)
+ if (call_really_used_regs[i] && ! fixed_regs[i] && i != PR_MEDIA_REG
+ && ! FUNCTION_ARG_REGNO_P (i)
+ && i != FIRST_RET_REG
+ && ! (cfun->static_chain_decl != NULL && i == STATIC_CHAIN_REGNUM)
+ && ! (crtl->calls_eh_return
+ && (i == EH_RETURN_STACKADJ_REGNO
+ || ((unsigned) i >= EH_RETURN_DATA_REGNO (0)
+ && (unsigned) i <= EH_RETURN_DATA_REGNO (3)))))
+ schedule->temps[tmpx++] = i;
+ entry->reg = -1;
+ entry->mode = VOIDmode;
+ entry->offset = offset_base;
+ entry++;
+ /* We loop twice: first, we save 8-byte aligned registers in the
+ higher addresses, that are known to be aligned. Then, we
+ proceed to saving 32-bit registers that don't need 8-byte
+ alignment.
+ If this is an interrupt function, all registers that need saving
+ need to be saved in full. moreover, we need to postpone saving
+ target registers till we have saved some general purpose registers
+ we can then use as scratch registers. */
+ offset = offset_base;
+ for (align = 1; align >= 0; align--)
+ {
+ for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
+ if (TEST_HARD_REG_BIT (*live_regs_mask, i))
+ {
+ enum machine_mode mode = REGISTER_NATURAL_MODE (i);
+ int reg = i;
+
+ if (current_function_interrupt)
+ {
+ if (TARGET_REGISTER_P (i))
+ continue;
+ if (GENERAL_REGISTER_P (i))
+ mode = DImode;
+ }
+ if (mode == SFmode && (i % 2) == 1
+ && ! TARGET_FPU_SINGLE && FP_REGISTER_P (i)
+ && (TEST_HARD_REG_BIT (*live_regs_mask, (i ^ 1))))
+ {
+ mode = DFmode;
+ i--;
+ reg--;
+ }
+
+ /* If we're doing the aligned pass and this is not aligned,
+ or we're doing the unaligned pass and this is aligned,
+ skip it. */
+ if ((GET_MODE_SIZE (mode) % (STACK_BOUNDARY / BITS_PER_UNIT) == 0)
+ != align)
+ continue;
+
+ if (current_function_interrupt
+ && GENERAL_REGISTER_P (i)
+ && tmpx < MAX_TEMPS)
+ schedule->temps[tmpx++] = i;
+
+ offset -= GET_MODE_SIZE (mode);
+ entry->reg = i;
+ entry->mode = mode;
+ entry->offset = offset;
+ entry++;
+ }
+ if (align && current_function_interrupt)
+ for (i = LAST_TARGET_REG; i >= FIRST_TARGET_REG; i--)
+ if (TEST_HARD_REG_BIT (*live_regs_mask, i))
+ {
+ offset -= GET_MODE_SIZE (DImode);
+ entry->reg = i;
+ entry->mode = DImode;
+ entry->offset = offset;
+ entry++;
+ }
+ }
+ entry->reg = -1;
+ entry->mode = VOIDmode;
+ entry->offset = offset;
+ schedule->temps[tmpx] = -1;
+ return entry - 1;
+}
+
+/* Expand code for the function prologue. */
+void
+sh_expand_prologue (void)
+{
+ HARD_REG_SET live_regs_mask;
+ int d, i;
+ int d_rounding = 0;
+ int save_flags = target_flags;
+ int pretend_args;
+ int stack_usage;
+ tree sp_switch_attr
+ = lookup_attribute ("sp_switch", DECL_ATTRIBUTES (current_function_decl));
+
+ current_function_interrupt = sh_cfun_interrupt_handler_p ();
+
+ /* We have pretend args if we had an object sent partially in registers
+ and partially on the stack, e.g. a large structure. */
+ pretend_args = crtl->args.pretend_args_size;
+ if (TARGET_VARARGS_PRETEND_ARGS (current_function_decl)
+ && (NPARM_REGS(SImode)
+ > crtl->args.info.arg_count[(int) SH_ARG_INT]))
+ pretend_args = 0;
+
+ output_stack_adjust (-pretend_args
+ - crtl->args.info.stack_regs * 8,
+ stack_pointer_rtx, 0, NULL, true);
+ stack_usage = pretend_args + crtl->args.info.stack_regs * 8;
+
+ if (TARGET_SHCOMPACT && flag_pic && crtl->args.info.call_cookie)
+ /* We're going to use the PIC register to load the address of the
+ incoming-argument decoder and/or of the return trampoline from
+ the GOT, so make sure the PIC register is preserved and
+ initialized. */
+ df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
+
+ if (TARGET_SHCOMPACT
+ && (crtl->args.info.call_cookie & ~ CALL_COOKIE_RET_TRAMP(1)))
+ {
+ int reg;
+
+ /* First, make all registers with incoming arguments that will
+ be pushed onto the stack live, so that register renaming
+ doesn't overwrite them. */
+ for (reg = 0; reg < NPARM_REGS (SImode); reg++)
+ if (CALL_COOKIE_STACKSEQ_GET (crtl->args.info.call_cookie)
+ >= NPARM_REGS (SImode) - reg)
+ for (; reg < NPARM_REGS (SImode); reg++)
+ emit_insn (gen_shcompact_preserve_incoming_args
+ (gen_rtx_REG (SImode, FIRST_PARM_REG + reg)));
+ else if (CALL_COOKIE_INT_REG_GET
+ (crtl->args.info.call_cookie, reg) == 1)
+ emit_insn (gen_shcompact_preserve_incoming_args
+ (gen_rtx_REG (SImode, FIRST_PARM_REG + reg)));
+
+ emit_move_insn (gen_rtx_REG (Pmode, MACL_REG),
+ stack_pointer_rtx);
+ emit_move_insn (gen_rtx_REG (SImode, R0_REG),
+ GEN_INT (crtl->args.info.call_cookie));
+ emit_move_insn (gen_rtx_REG (SImode, MACH_REG),
+ gen_rtx_REG (SImode, R0_REG));
+ }
+ else if (TARGET_SHMEDIA)
+ {
+ int tr = sh_media_register_for_return ();
+
+ if (tr >= 0)
+ emit_move_insn (gen_rtx_REG (DImode, tr),
+ gen_rtx_REG (DImode, PR_MEDIA_REG));
+ }
+
+ /* Emit the code for SETUP_VARARGS. */
+ if (cfun->stdarg)
+ {
+ if (TARGET_VARARGS_PRETEND_ARGS (current_function_decl))
+ {
+ /* Push arg regs as if they'd been provided by caller in stack. */
+ for (i = 0; i < NPARM_REGS(SImode); i++)
+ {
+ int rn = NPARM_REGS(SImode) + FIRST_PARM_REG - i - 1;
+
+ if (i >= (NPARM_REGS(SImode)
+ - crtl->args.info.arg_count[(int) SH_ARG_INT]
+ ))
+ break;
+ push (rn);
+ stack_usage += GET_MODE_SIZE (SImode);
+ }
+ }
+ }
+
+ /* If we're supposed to switch stacks at function entry, do so now. */
+ if (sp_switch_attr)
+ {
+ rtx lab, newsrc;
+ /* The argument specifies a variable holding the address of the
+ stack the interrupt function should switch to/from at entry/exit. */
+ tree arg = TREE_VALUE ( TREE_VALUE (sp_switch_attr));
+ const char *s
+ = ggc_strdup (TREE_STRING_POINTER (arg));
+ rtx sp_switch = gen_rtx_SYMBOL_REF (Pmode, s);
+
+ lab = add_constant (sp_switch, SImode, 0);
+ newsrc = gen_rtx_LABEL_REF (VOIDmode, lab);
+
+ emit_insn (gen_sp_switch_1 (newsrc));
+ }
+
+ d = calc_live_regs (&live_regs_mask);
+ /* ??? Maybe we could save some switching if we can move a mode switch
+ that already happens to be at the function start into the prologue. */
+ if (target_flags != save_flags && ! current_function_interrupt)
+ emit_insn (gen_toggle_sz ());
+
+ if (TARGET_SH5)
+ {
+ int offset_base, offset;
+ rtx r0 = NULL_RTX;
+ int offset_in_r0 = -1;
+ int sp_in_r0 = 0;
+ int tregs_space = shmedia_target_regs_stack_adjust (&live_regs_mask);
+ int total_size, save_size;
+ save_schedule schedule;
+ save_entry *entry;
+ int *tmp_pnt;
+
+ if (call_really_used_regs[R0_REG] && ! fixed_regs[R0_REG]
+ && ! current_function_interrupt)
+ r0 = gen_rtx_REG (Pmode, R0_REG);
+
+ /* D is the actual number of bytes that we need for saving registers,
+ however, in initial_elimination_offset we have committed to using
+ an additional TREGS_SPACE amount of bytes - in order to keep both
+ addresses to arguments supplied by the caller and local variables
+ valid, we must keep this gap. Place it between the incoming
+ arguments and the actually saved registers in a bid to optimize
+ locality of reference. */
+ total_size = d + tregs_space;
+ total_size += rounded_frame_size (total_size);
+ save_size = total_size - rounded_frame_size (d);
+ if (save_size % (STACK_BOUNDARY / BITS_PER_UNIT))
+ d_rounding = ((STACK_BOUNDARY / BITS_PER_UNIT)
+ - save_size % (STACK_BOUNDARY / BITS_PER_UNIT));
+
+ /* If adjusting the stack in a single step costs nothing extra, do so.
+ I.e. either if a single addi is enough, or we need a movi anyway,
+ and we don't exceed the maximum offset range (the test for the
+ latter is conservative for simplicity). */
+ if (TARGET_SHMEDIA
+ && (CONST_OK_FOR_I10 (-total_size)
+ || (! CONST_OK_FOR_I10 (-(save_size + d_rounding))
+ && total_size <= 2044)))
+ d_rounding = total_size - save_size;
+
+ offset_base = d + d_rounding;
+
+ output_stack_adjust (-(save_size + d_rounding), stack_pointer_rtx,
+ 0, NULL, true);
+ stack_usage += save_size + d_rounding;
+
+ sh5_schedule_saves (&live_regs_mask, &schedule, offset_base);
+ tmp_pnt = schedule.temps;
+ for (entry = &schedule.entries[1]; entry->mode != VOIDmode; entry++)
+ {
+ enum machine_mode mode = (enum machine_mode) entry->mode;
+ unsigned int reg = entry->reg;
+ rtx reg_rtx, mem_rtx, pre_dec = NULL_RTX;
+ rtx orig_reg_rtx;
+
+ offset = entry->offset;
+
+ reg_rtx = gen_rtx_REG (mode, reg);
+
+ mem_rtx = gen_frame_mem (mode,
+ gen_rtx_PLUS (Pmode,
+ stack_pointer_rtx,
+ GEN_INT (offset)));
+
+ if (!memory_address_p (mode, XEXP (mem_rtx, 0)))
+ {
+ gcc_assert (r0);
+ mem_rtx = NULL_RTX;
+ }
+
+ if (HAVE_PRE_DECREMENT
+ && (offset_in_r0 - offset == GET_MODE_SIZE (mode)
+ || mem_rtx == NULL_RTX
+ || reg == PR_REG || SPECIAL_REGISTER_P (reg)))
+ {
+ pre_dec = gen_frame_mem (mode, gen_rtx_PRE_DEC (Pmode, r0));
+
+ if (!memory_address_p (mode, XEXP (pre_dec, 0)))
+ pre_dec = NULL_RTX;
+ else
+ {
+ mem_rtx = NULL_RTX;
+ offset += GET_MODE_SIZE (mode);
+ }
+ }
+
+ if (mem_rtx != NULL_RTX)
+ goto addr_ok;
+
+ if (offset_in_r0 == -1)
+ {
+ emit_move_insn (r0, GEN_INT (offset));
+ offset_in_r0 = offset;
+ }
+ else if (offset != offset_in_r0)
+ {
+ emit_move_insn (r0,
+ gen_rtx_PLUS
+ (Pmode, r0,
+ GEN_INT (offset - offset_in_r0)));
+ offset_in_r0 += offset - offset_in_r0;
+ }
+
+ if (pre_dec != NULL_RTX)
+ {
+ if (! sp_in_r0)
+ {
+ emit_move_insn (r0,
+ gen_rtx_PLUS
+ (Pmode, r0, stack_pointer_rtx));
+ sp_in_r0 = 1;
+ }
+
+ offset -= GET_MODE_SIZE (mode);
+ offset_in_r0 -= GET_MODE_SIZE (mode);
+
+ mem_rtx = pre_dec;
+ }
+ else if (sp_in_r0)
+ mem_rtx = gen_frame_mem (mode, r0);
+ else
+ mem_rtx = gen_frame_mem (mode,
+ gen_rtx_PLUS (Pmode,
+ stack_pointer_rtx,
+ r0));
+
+ /* We must not use an r0-based address for target-branch
+ registers or for special registers without pre-dec
+ memory addresses, since we store their values in r0
+ first. */
+ gcc_assert (!TARGET_REGISTER_P (reg)
+ && ((reg != PR_REG && !SPECIAL_REGISTER_P (reg))
+ || mem_rtx == pre_dec));
+
+ addr_ok:
+ orig_reg_rtx = reg_rtx;
+ if (TARGET_REGISTER_P (reg)
+ || ((reg == PR_REG || SPECIAL_REGISTER_P (reg))
+ && mem_rtx != pre_dec))
+ {
+ rtx tmp_reg = gen_rtx_REG (GET_MODE (reg_rtx), *tmp_pnt);
+
+ emit_move_insn (tmp_reg, reg_rtx);
+
+ if (REGNO (tmp_reg) == R0_REG)
+ {
+ offset_in_r0 = -1;
+ sp_in_r0 = 0;
+ gcc_assert (!refers_to_regno_p
+ (R0_REG, R0_REG+1, mem_rtx, (rtx *) 0));
+ }
+
+ if (*++tmp_pnt <= 0)
+ tmp_pnt = schedule.temps;
+
+ reg_rtx = tmp_reg;
+ }
+ {
+ rtx insn;
+
+ /* Mark as interesting for dwarf cfi generator */
+ insn = emit_move_insn (mem_rtx, reg_rtx);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ /* If we use an intermediate register for the save, we can't
+ describe this exactly in cfi as a copy of the to-be-saved
+ register into the temporary register and then the temporary
+ register on the stack, because the temporary register can
+ have a different natural size than the to-be-saved register.
+ Thus, we gloss over the intermediate copy and pretend we do
+ a direct save from the to-be-saved register. */
+ if (REGNO (reg_rtx) != reg)
+ {
+ rtx set;
+
+ set = gen_rtx_SET (VOIDmode, mem_rtx, orig_reg_rtx);
+ add_reg_note (insn, REG_FRAME_RELATED_EXPR, set);
+ }
+
+ if (TARGET_SHCOMPACT && (offset_in_r0 != -1))
+ {
+ rtx reg_rtx = gen_rtx_REG (mode, reg);
+ rtx set;
+ rtx mem_rtx = gen_frame_mem (mode,
+ gen_rtx_PLUS (Pmode,
+ stack_pointer_rtx,
+ GEN_INT (offset)));
+
+ set = gen_rtx_SET (VOIDmode, mem_rtx, reg_rtx);
+ add_reg_note (insn, REG_FRAME_RELATED_EXPR, set);
+ }
+ }
+ }
+
+ gcc_assert (entry->offset == d_rounding);
+ }
+ else
+ {
+ push_regs (&live_regs_mask, current_function_interrupt);
+ stack_usage += d;
+ }
+
+ if (flag_pic && df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM))
+ emit_insn (gen_GOTaddr2picreg ());
+
+ if (SHMEDIA_REGS_STACK_ADJUST ())
+ {
+ /* This must NOT go through the PLT, otherwise mach and macl
+ may be clobbered. */
+ function_symbol (gen_rtx_REG (Pmode, R0_REG),
+ (TARGET_FPU_ANY
+ ? "__GCC_push_shmedia_regs"
+ : "__GCC_push_shmedia_regs_nofpu"), SFUNC_GOT);
+ emit_insn (gen_shmedia_save_restore_regs_compact
+ (GEN_INT (-SHMEDIA_REGS_STACK_ADJUST ())));
+ }
+
+ if (target_flags != save_flags && ! current_function_interrupt)
+ emit_insn (gen_toggle_sz ());
+
+ target_flags = save_flags;
+
+ output_stack_adjust (-rounded_frame_size (d) + d_rounding,
+ stack_pointer_rtx, 0, NULL, true);
+ stack_usage += rounded_frame_size (d) - d_rounding;
+
+ if (frame_pointer_needed)
+ frame_insn (GEN_MOV (hard_frame_pointer_rtx, stack_pointer_rtx));
+
+ if (TARGET_SHCOMPACT
+ && (crtl->args.info.call_cookie & ~ CALL_COOKIE_RET_TRAMP(1)))
+ {
+ /* This must NOT go through the PLT, otherwise mach and macl
+ may be clobbered. */
+ function_symbol (gen_rtx_REG (Pmode, R0_REG),
+ "__GCC_shcompact_incoming_args", SFUNC_GOT);
+ emit_insn (gen_shcompact_incoming_args ());
+ }
+
+ /* If we are profiling, make sure no instructions are scheduled before
+ the call to mcount. Similarly if some call instructions are swapped
+ before frame related insns, it'll confuse the unwinder because
+ currently SH has no unwind info for function epilogues. */
+ if (crtl->profile || flag_exceptions || flag_unwind_tables)
+ emit_insn (gen_blockage ());
+
+ if (flag_stack_usage_info)
+ current_function_static_stack_size = stack_usage;
+}
+
+/* Expand code for the function epilogue. */
+void
+sh_expand_epilogue (bool sibcall_p)
+{
+ HARD_REG_SET live_regs_mask;
+ int d, i;
+ int d_rounding = 0;
+
+ int save_flags = target_flags;
+ int frame_size, save_size;
+ int fpscr_deferred = 0;
+ int e = sibcall_p ? -1 : 1;
+
+ d = calc_live_regs (&live_regs_mask);
+
+ save_size = d;
+ frame_size = rounded_frame_size (d);
+
+ if (TARGET_SH5)
+ {
+ int tregs_space = shmedia_target_regs_stack_adjust (&live_regs_mask);
+ int total_size;
+ if (d % (STACK_BOUNDARY / BITS_PER_UNIT))
+ d_rounding = ((STACK_BOUNDARY / BITS_PER_UNIT)
+ - d % (STACK_BOUNDARY / BITS_PER_UNIT));
+
+ total_size = d + tregs_space;
+ total_size += rounded_frame_size (total_size);
+ save_size = total_size - frame_size;
+
+ /* If adjusting the stack in a single step costs nothing extra, do so.
+ I.e. either if a single addi is enough, or we need a movi anyway,
+ and we don't exceed the maximum offset range (the test for the
+ latter is conservative for simplicity). */
+ if (TARGET_SHMEDIA
+ && ! frame_pointer_needed
+ && (CONST_OK_FOR_I10 (total_size)
+ || (! CONST_OK_FOR_I10 (save_size + d_rounding)
+ && total_size <= 2044)))
+ d_rounding = frame_size;
+
+ frame_size -= d_rounding;
+ }
+
+ if (frame_pointer_needed)
+ {
+ /* We must avoid scheduling the epilogue with previous basic blocks.
+ See PR/18032 and PR/40313. */
+ emit_insn (gen_blockage ());
+ output_stack_adjust (frame_size, hard_frame_pointer_rtx, e,
+ &live_regs_mask, true);
+
+ /* We must avoid moving the stack pointer adjustment past code
+ which reads from the local frame, else an interrupt could
+ occur after the SP adjustment and clobber data in the local
+ frame. */
+ emit_insn (gen_blockage ());
+ frame_insn (GEN_MOV (stack_pointer_rtx, hard_frame_pointer_rtx));
+ }
+ else if (frame_size)
+ {
+ /* We must avoid moving the stack pointer adjustment past code
+ which reads from the local frame, else an interrupt could
+ occur after the SP adjustment and clobber data in the local
+ frame. */
+ emit_insn (gen_blockage ());
+ output_stack_adjust (frame_size, stack_pointer_rtx, e,
+ &live_regs_mask, true);
+ }
+
+ if (SHMEDIA_REGS_STACK_ADJUST ())
+ {
+ function_symbol (gen_rtx_REG (Pmode, R0_REG),
+ (TARGET_FPU_ANY
+ ? "__GCC_pop_shmedia_regs"
+ : "__GCC_pop_shmedia_regs_nofpu"), SFUNC_GOT);
+ /* This must NOT go through the PLT, otherwise mach and macl
+ may be clobbered. */
+ emit_insn (gen_shmedia_save_restore_regs_compact
+ (GEN_INT (SHMEDIA_REGS_STACK_ADJUST ())));
+ }
+
+ /* Pop all the registers. */
+
+ if (target_flags != save_flags && ! current_function_interrupt)
+ emit_insn (gen_toggle_sz ());
+ if (TARGET_SH5)
+ {
+ int offset_base, offset;
+ int offset_in_r0 = -1;
+ int sp_in_r0 = 0;
+ rtx r0 = gen_rtx_REG (Pmode, R0_REG);
+ save_schedule schedule;
+ save_entry *entry;
+ int *tmp_pnt;
+
+ entry = sh5_schedule_saves (&live_regs_mask, &schedule, d_rounding);
+ offset_base = -entry[1].offset + d_rounding;
+ tmp_pnt = schedule.temps;
+ for (; entry->mode != VOIDmode; entry--)
+ {
+ enum machine_mode mode = (enum machine_mode) entry->mode;
+ int reg = entry->reg;
+ rtx reg_rtx, mem_rtx, post_inc = NULL_RTX;
+
+ offset = offset_base + entry->offset;
+ reg_rtx = gen_rtx_REG (mode, reg);
+
+ mem_rtx = gen_frame_mem (mode,
+ gen_rtx_PLUS (Pmode,
+ stack_pointer_rtx,
+ GEN_INT (offset)));
+
+ if (!memory_address_p (mode, XEXP (mem_rtx, 0)))
+ mem_rtx = NULL_RTX;
+
+ if (HAVE_POST_INCREMENT
+ && (offset == offset_in_r0
+ || (offset + GET_MODE_SIZE (mode) != d + d_rounding
+ && mem_rtx == NULL_RTX)
+ || reg == PR_REG || SPECIAL_REGISTER_P (reg)))
+ {
+ post_inc = gen_frame_mem (mode, gen_rtx_POST_INC (Pmode, r0));
+
+ if (!memory_address_p (mode, XEXP (post_inc, 0)))
+ post_inc = NULL_RTX;
+ else
+ mem_rtx = NULL_RTX;
+ }
+
+ if (mem_rtx != NULL_RTX)
+ goto addr_ok;
+
+ if (offset_in_r0 == -1)
+ {
+ emit_move_insn (r0, GEN_INT (offset));
+ offset_in_r0 = offset;
+ }
+ else if (offset != offset_in_r0)
+ {
+ emit_move_insn (r0,
+ gen_rtx_PLUS
+ (Pmode, r0,
+ GEN_INT (offset - offset_in_r0)));
+ offset_in_r0 += offset - offset_in_r0;
+ }
+
+ if (post_inc != NULL_RTX)
+ {
+ if (! sp_in_r0)
+ {
+ emit_move_insn (r0,
+ gen_rtx_PLUS
+ (Pmode, r0, stack_pointer_rtx));
+ sp_in_r0 = 1;
+ }
+
+ mem_rtx = post_inc;
+
+ offset_in_r0 += GET_MODE_SIZE (mode);
+ }
+ else if (sp_in_r0)
+ mem_rtx = gen_frame_mem (mode, r0);
+ else
+ mem_rtx = gen_frame_mem (mode,
+ gen_rtx_PLUS (Pmode,
+ stack_pointer_rtx,
+ r0));
+
+ gcc_assert ((reg != PR_REG && !SPECIAL_REGISTER_P (reg))
+ || mem_rtx == post_inc);
+
+ addr_ok:
+ if ((reg == PR_REG || SPECIAL_REGISTER_P (reg))
+ && mem_rtx != post_inc)
+ {
+ emit_move_insn (r0, mem_rtx);
+ mem_rtx = r0;
+ }
+ else if (TARGET_REGISTER_P (reg))
+ {
+ rtx tmp_reg = gen_rtx_REG (mode, *tmp_pnt);
+
+ /* Give the scheduler a bit of freedom by using up to
+ MAX_TEMPS registers in a round-robin fashion. */
+ emit_move_insn (tmp_reg, mem_rtx);
+ mem_rtx = tmp_reg;
+ if (*++tmp_pnt < 0)
+ tmp_pnt = schedule.temps;
+ }
+
+ emit_move_insn (reg_rtx, mem_rtx);
+ }
+
+ gcc_assert (entry->offset + offset_base == d + d_rounding);
+ }
+ else /* ! TARGET_SH5 */
+ {
+ int last_reg;
+
+ save_size = 0;
+ /* For an ISR with RESBANK attribute assigned, don't pop PR
+ register. */
+ if (TEST_HARD_REG_BIT (live_regs_mask, PR_REG)
+ && !sh_cfun_resbank_handler_p ())
+ {
+ if (!frame_pointer_needed)
+ emit_insn (gen_blockage ());
+ pop (PR_REG);
+ }
+
+ /* Banked registers are popped first to avoid being scheduled in the
+ delay slot. RTE switches banks before the ds instruction. */
+ if (current_function_interrupt)
+ {
+ bool use_movml = false;
+
+ if (TARGET_SH2A)
+ {
+ unsigned int count = 0;
+
+ for (i = FIRST_BANKED_REG; i <= LAST_BANKED_REG; i++)
+ if (TEST_HARD_REG_BIT (live_regs_mask, i))
+ count++;
+ else
+ break;
+
+ /* Use movml when all banked register are poped. */
+ if (count == LAST_BANKED_REG - FIRST_BANKED_REG + 1)
+ use_movml = true;
+ }
+
+ if (sh_cfun_resbank_handler_p ())
+ ; /* Do nothing. */
+ else if (use_movml)
+ {
+ rtx sp_reg = gen_rtx_REG (SImode, STACK_POINTER_REGNUM);
+
+ /* We must avoid scheduling multiple load insn with another
+ insns. */
+ emit_insn (gen_blockage ());
+ emit_insn (gen_movml_pop_banked (sp_reg));
+ emit_insn (gen_blockage ());
+ }
+ else
+ for (i = LAST_BANKED_REG; i >= FIRST_BANKED_REG; i--)
+ if (TEST_HARD_REG_BIT (live_regs_mask, i))
+ pop (i);
+
+ last_reg = FIRST_PSEUDO_REGISTER - LAST_BANKED_REG - 1;
+ }
+ else
+ last_reg = FIRST_PSEUDO_REGISTER;
+
+ for (i = 0; i < last_reg; i++)
+ {
+ int j = (FIRST_PSEUDO_REGISTER - 1) - i;
+
+ if (j == FPSCR_REG && current_function_interrupt && TARGET_FMOVD
+ && hard_reg_set_intersect_p (live_regs_mask,
+ reg_class_contents[DF_REGS]))
+ fpscr_deferred = 1;
+ /* For an ISR with RESBANK attribute assigned, don't pop
+ following registers, R0-R14, MACH, MACL and GBR. */
+ else if (j != PR_REG && TEST_HARD_REG_BIT (live_regs_mask, j)
+ && ! (sh_cfun_resbank_handler_p ()
+ && ((j >= FIRST_GENERAL_REG
+ && j < LAST_GENERAL_REG)
+ || j == MACH_REG
+ || j == MACL_REG
+ || j == GBR_REG)))
+ pop (j);
+
+ if (j == FIRST_FP_REG && fpscr_deferred)
+ pop (FPSCR_REG);
+ }
+ }
+ if (target_flags != save_flags && ! current_function_interrupt)
+ emit_insn (gen_toggle_sz ());
+ target_flags = save_flags;
+
+ output_stack_adjust (crtl->args.pretend_args_size
+ + save_size + d_rounding
+ + crtl->args.info.stack_regs * 8,
+ stack_pointer_rtx, e, NULL, true);
+
+ if (crtl->calls_eh_return)
+ emit_insn (GEN_ADD3 (stack_pointer_rtx, stack_pointer_rtx,
+ EH_RETURN_STACKADJ_RTX));
+
+ /* Switch back to the normal stack if necessary. */
+ if (lookup_attribute ("sp_switch", DECL_ATTRIBUTES (current_function_decl)))
+ emit_insn (gen_sp_switch_2 ());
+
+ /* Tell flow the insn that pops PR isn't dead. */
+ /* PR_REG will never be live in SHmedia mode, and we don't need to
+ USE PR_MEDIA_REG, since it will be explicitly copied to TR0_REG
+ by the return pattern. */
+ if (TEST_HARD_REG_BIT (live_regs_mask, PR_REG))
+ emit_use (gen_rtx_REG (SImode, PR_REG));
+}
+
+/* Emit code to change the current function's return address to RA.
+ TEMP is available as a scratch register, if needed. */
+void
+sh_set_return_address (rtx ra, rtx tmp)
+{
+ HARD_REG_SET live_regs_mask;
+ int d;
+ int pr_reg = TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG;
+ int pr_offset;
+
+ d = calc_live_regs (&live_regs_mask);
+
+ /* If pr_reg isn't life, we can set it (or the register given in
+ sh_media_register_for_return) directly. */
+ if (! TEST_HARD_REG_BIT (live_regs_mask, pr_reg))
+ {
+ rtx rr;
+
+ if (TARGET_SHMEDIA)
+ {
+ int rr_regno = sh_media_register_for_return ();
+
+ if (rr_regno < 0)
+ rr_regno = pr_reg;
+
+ rr = gen_rtx_REG (DImode, rr_regno);
+ }
+ else
+ rr = gen_rtx_REG (SImode, pr_reg);
+
+ emit_insn (GEN_MOV (rr, ra));
+ /* Tell flow the register for return isn't dead. */
+ emit_use (rr);
+ return;
+ }
+
+ if (TARGET_SH5)
+ {
+ int offset;
+ save_schedule schedule;
+ save_entry *entry;
+
+ entry = sh5_schedule_saves (&live_regs_mask, &schedule, 0);
+ offset = entry[1].offset;
+ for (; entry->mode != VOIDmode; entry--)
+ if (entry->reg == pr_reg)
+ goto found;
+
+ /* We can't find pr register. */
+ gcc_unreachable ();
+
+ found:
+ offset = entry->offset - offset;
+ pr_offset = (rounded_frame_size (d) + offset
+ + SHMEDIA_REGS_STACK_ADJUST ());
+ }
+ else
+ pr_offset = rounded_frame_size (d);
+
+ emit_insn (GEN_MOV (tmp, GEN_INT (pr_offset)));
+
+ if (frame_pointer_needed)
+ emit_insn (GEN_ADD3 (tmp, tmp, hard_frame_pointer_rtx));
+ else
+ emit_insn (GEN_ADD3 (tmp, tmp, stack_pointer_rtx));
+
+ tmp = gen_frame_mem (Pmode, tmp);
+ emit_insn (GEN_MOV (tmp, ra));
+ /* Tell this store isn't dead. */
+ emit_use (tmp);
+}
+
+/* Clear variables at function end. */
+static void
+sh_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
+ HOST_WIDE_INT size ATTRIBUTE_UNUSED)
+{
+}
+
+static rtx
+sh_builtin_saveregs (void)
+{
+ /* First unnamed integer register. */
+ int first_intreg = crtl->args.info.arg_count[(int) SH_ARG_INT];
+ /* Number of integer registers we need to save. */
+ int n_intregs = MAX (0, NPARM_REGS (SImode) - first_intreg);
+ /* First unnamed SFmode float reg */
+ int first_floatreg = crtl->args.info.arg_count[(int) SH_ARG_FLOAT];
+ /* Number of SFmode float regs to save. */
+ int n_floatregs = MAX (0, NPARM_REGS (SFmode) - first_floatreg);
+ rtx regbuf, fpregs;
+ int bufsize, regno;
+ alias_set_type alias_set;
+
+ if (TARGET_SH5)
+ {
+ if (n_intregs)
+ {
+ int pushregs = n_intregs;
+
+ while (pushregs < NPARM_REGS (SImode) - 1
+ && (CALL_COOKIE_INT_REG_GET
+ (crtl->args.info.call_cookie,
+ NPARM_REGS (SImode) - pushregs)
+ == 1))
+ {
+ crtl->args.info.call_cookie
+ &= ~ CALL_COOKIE_INT_REG (NPARM_REGS (SImode)
+ - pushregs, 1);
+ pushregs++;
+ }
+
+ if (pushregs == NPARM_REGS (SImode))
+ crtl->args.info.call_cookie
+ |= (CALL_COOKIE_INT_REG (0, 1)
+ | CALL_COOKIE_STACKSEQ (pushregs - 1));
+ else
+ crtl->args.info.call_cookie
+ |= CALL_COOKIE_STACKSEQ (pushregs);
+
+ crtl->args.pretend_args_size += 8 * n_intregs;
+ }
+ if (TARGET_SHCOMPACT)
+ return const0_rtx;
+ }
+
+ if (! TARGET_SH2E && ! TARGET_SH4 && ! TARGET_SH5)
+ {
+ error ("__builtin_saveregs not supported by this subtarget");
+ return const0_rtx;
+ }
+
+ if (TARGET_SHMEDIA)
+ n_floatregs = 0;
+
+ /* Allocate block of memory for the regs. */
+ /* ??? If n_intregs + n_floatregs == 0, should we allocate at least 1 byte?
+ Or can assign_stack_local accept a 0 SIZE argument? */
+ bufsize = (n_intregs * UNITS_PER_WORD) + (n_floatregs * UNITS_PER_WORD);
+
+ if (TARGET_SHMEDIA)
+ regbuf = gen_frame_mem (BLKmode, gen_rtx_REG (Pmode, ARG_POINTER_REGNUM));
+ else if (n_floatregs & 1)
+ {
+ rtx addr;
+
+ regbuf = assign_stack_local (BLKmode, bufsize + UNITS_PER_WORD, 0);
+ addr = copy_to_mode_reg (Pmode, XEXP (regbuf, 0));
+ emit_insn (gen_iorsi3 (addr, addr, GEN_INT (UNITS_PER_WORD)));
+ regbuf = change_address (regbuf, BLKmode, addr);
+ }
+ else if (STACK_BOUNDARY < 64 && TARGET_FPU_DOUBLE && n_floatregs)
+ {
+ rtx addr, mask;
+
+ regbuf = assign_stack_local (BLKmode, bufsize + UNITS_PER_WORD, 0);
+ addr = copy_to_mode_reg (Pmode, plus_constant (Pmode,
+ XEXP (regbuf, 0), 4));
+ mask = copy_to_mode_reg (Pmode, GEN_INT (-8));
+ emit_insn (gen_andsi3 (addr, addr, mask));
+ regbuf = change_address (regbuf, BLKmode, addr);
+ }
+ else
+ regbuf = assign_stack_local (BLKmode, bufsize, TARGET_FPU_DOUBLE ? 64 : 0);
+ alias_set = get_varargs_alias_set ();
+ set_mem_alias_set (regbuf, alias_set);
+
+ /* Save int args.
+ This is optimized to only save the regs that are necessary. Explicitly
+ named args need not be saved. */
+ if (n_intregs > 0)
+ move_block_from_reg (BASE_ARG_REG (SImode) + first_intreg,
+ adjust_address (regbuf, BLKmode,
+ n_floatregs * UNITS_PER_WORD),
+ n_intregs);
+
+ if (TARGET_SHMEDIA)
+ /* Return the address of the regbuf. */
+ return XEXP (regbuf, 0);
+
+ /* Save float args.
+ This is optimized to only save the regs that are necessary. Explicitly
+ named args need not be saved.
+ We explicitly build a pointer to the buffer because it halves the insn
+ count when not optimizing (otherwise the pointer is built for each reg
+ saved).
+ We emit the moves in reverse order so that we can use predecrement. */
+
+ fpregs = copy_to_mode_reg (Pmode,
+ plus_constant (Pmode, XEXP (regbuf, 0),
+ n_floatregs * UNITS_PER_WORD));
+ if (TARGET_SH4 || TARGET_SH2A_DOUBLE)
+ {
+ rtx mem;
+ for (regno = NPARM_REGS (DFmode) - 2; regno >= first_floatreg; regno -= 2)
+ {
+ emit_insn (gen_addsi3 (fpregs, fpregs,
+ GEN_INT (-2 * UNITS_PER_WORD)));
+ mem = change_address (regbuf, DFmode, fpregs);
+ emit_move_insn (mem,
+ gen_rtx_REG (DFmode, BASE_ARG_REG (DFmode) + regno));
+ }
+ regno = first_floatreg;
+ if (regno & 1)
+ {
+ emit_insn (gen_addsi3 (fpregs, fpregs, GEN_INT (-UNITS_PER_WORD)));
+ mem = change_address (regbuf, SFmode, fpregs);
+ emit_move_insn (mem,
+ gen_rtx_REG (SFmode, BASE_ARG_REG (SFmode)
+ + regno - SH_REG_MSW_OFFSET));
+ }
+ }
+ else
+ for (regno = NPARM_REGS (SFmode) - 1; regno >= first_floatreg; regno--)
+ {
+ rtx mem;
+
+ emit_insn (gen_addsi3 (fpregs, fpregs, GEN_INT (-UNITS_PER_WORD)));
+ mem = change_address (regbuf, SFmode, fpregs);
+ emit_move_insn (mem,
+ gen_rtx_REG (SFmode, BASE_ARG_REG (SFmode) + regno));
+ }
+
+ /* Return the address of the regbuf. */
+ return XEXP (regbuf, 0);
+}
+
+/* Define the `__builtin_va_list' type for the ABI. */
+static tree
+sh_build_builtin_va_list (void)
+{
+ tree f_next_o, f_next_o_limit, f_next_fp, f_next_fp_limit, f_next_stack;
+ tree record, type_decl;
+
+ if (TARGET_SH5 || (! TARGET_SH2E && ! TARGET_SH4)
+ || TARGET_HITACHI || sh_cfun_attr_renesas_p ())
+ return ptr_type_node;
+
+ record = (*lang_hooks.types.make_type) (RECORD_TYPE);
+ type_decl = build_decl (BUILTINS_LOCATION,
+ TYPE_DECL, get_identifier ("__va_list_tag"), record);
+
+ f_next_o = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL, get_identifier ("__va_next_o"),
+ ptr_type_node);
+ f_next_o_limit = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL,
+ get_identifier ("__va_next_o_limit"),
+ ptr_type_node);
+ f_next_fp = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL, get_identifier ("__va_next_fp"),
+ ptr_type_node);
+ f_next_fp_limit = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL,
+ get_identifier ("__va_next_fp_limit"),
+ ptr_type_node);
+ f_next_stack = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL, get_identifier ("__va_next_stack"),
+ ptr_type_node);
+
+ DECL_FIELD_CONTEXT (f_next_o) = record;
+ DECL_FIELD_CONTEXT (f_next_o_limit) = record;
+ DECL_FIELD_CONTEXT (f_next_fp) = record;
+ DECL_FIELD_CONTEXT (f_next_fp_limit) = record;
+ DECL_FIELD_CONTEXT (f_next_stack) = record;
+
+ TYPE_STUB_DECL (record) = type_decl;
+ TYPE_NAME (record) = type_decl;
+ TYPE_FIELDS (record) = f_next_o;
+ DECL_CHAIN (f_next_o) = f_next_o_limit;
+ DECL_CHAIN (f_next_o_limit) = f_next_fp;
+ DECL_CHAIN (f_next_fp) = f_next_fp_limit;
+ DECL_CHAIN (f_next_fp_limit) = f_next_stack;
+
+ layout_type (record);
+
+ return record;
+}
+
+/* Implement `va_start' for varargs and stdarg. */
+static void
+sh_va_start (tree valist, rtx nextarg)
+{
+ tree f_next_o, f_next_o_limit, f_next_fp, f_next_fp_limit, f_next_stack;
+ tree next_o, next_o_limit, next_fp, next_fp_limit, next_stack;
+ tree t, u;
+ int nfp, nint;
+
+ if (TARGET_SH5)
+ {
+ expand_builtin_saveregs ();
+ std_expand_builtin_va_start (valist, nextarg);
+ return;
+ }
+
+ if ((! TARGET_SH2E && ! TARGET_SH4)
+ || TARGET_HITACHI || sh_cfun_attr_renesas_p ())
+ {
+ std_expand_builtin_va_start (valist, nextarg);
+ return;
+ }
+
+ f_next_o = TYPE_FIELDS (va_list_type_node);
+ f_next_o_limit = DECL_CHAIN (f_next_o);
+ f_next_fp = DECL_CHAIN (f_next_o_limit);
+ f_next_fp_limit = DECL_CHAIN (f_next_fp);
+ f_next_stack = DECL_CHAIN (f_next_fp_limit);
+
+ next_o = build3 (COMPONENT_REF, TREE_TYPE (f_next_o), valist, f_next_o,
+ NULL_TREE);
+ next_o_limit = build3 (COMPONENT_REF, TREE_TYPE (f_next_o_limit),
+ valist, f_next_o_limit, NULL_TREE);
+ next_fp = build3 (COMPONENT_REF, TREE_TYPE (f_next_fp), valist, f_next_fp,
+ NULL_TREE);
+ next_fp_limit = build3 (COMPONENT_REF, TREE_TYPE (f_next_fp_limit),
+ valist, f_next_fp_limit, NULL_TREE);
+ next_stack = build3 (COMPONENT_REF, TREE_TYPE (f_next_stack),
+ valist, f_next_stack, NULL_TREE);
+
+ /* Call __builtin_saveregs. */
+ u = make_tree (sizetype, expand_builtin_saveregs ());
+ u = fold_convert (ptr_type_node, u);
+ t = build2 (MODIFY_EXPR, ptr_type_node, next_fp, u);
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+
+ nfp = crtl->args.info.arg_count[SH_ARG_FLOAT];
+ if (nfp < 8)
+ nfp = 8 - nfp;
+ else
+ nfp = 0;
+ u = fold_build_pointer_plus_hwi (u, UNITS_PER_WORD * nfp);
+ t = build2 (MODIFY_EXPR, ptr_type_node, next_fp_limit, u);
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+
+ t = build2 (MODIFY_EXPR, ptr_type_node, next_o, u);
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+
+ nint = crtl->args.info.arg_count[SH_ARG_INT];
+ if (nint < 4)
+ nint = 4 - nint;
+ else
+ nint = 0;
+ u = fold_build_pointer_plus_hwi (u, UNITS_PER_WORD * nint);
+ t = build2 (MODIFY_EXPR, ptr_type_node, next_o_limit, u);
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+
+ u = make_tree (ptr_type_node, nextarg);
+ t = build2 (MODIFY_EXPR, ptr_type_node, next_stack, u);
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+}
+
+/* TYPE is a RECORD_TYPE. If there is only a single nonzero-sized
+ member, return it. */
+static tree
+find_sole_member (tree type)
+{
+ tree field, member = NULL_TREE;
+
+ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
+ {
+ if (TREE_CODE (field) != FIELD_DECL)
+ continue;
+ if (!DECL_SIZE (field))
+ return NULL_TREE;
+ if (integer_zerop (DECL_SIZE (field)))
+ continue;
+ if (member)
+ return NULL_TREE;
+ member = field;
+ }
+ return member;
+}
+
+/* Implement `va_arg'. */
+static tree
+sh_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
+ gimple_seq *post_p ATTRIBUTE_UNUSED)
+{
+ HOST_WIDE_INT size, rsize;
+ tree tmp, pptr_type_node;
+ tree addr, lab_over = NULL, result = NULL;
+ bool pass_by_ref;
+ tree eff_type;
+
+ if (!VOID_TYPE_P (type))
+ pass_by_ref = targetm.calls.must_pass_in_stack (TYPE_MODE (type), type);
+ else
+ pass_by_ref = false;
+
+ if (pass_by_ref)
+ type = build_pointer_type (type);
+
+ size = int_size_in_bytes (type);
+ rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
+ pptr_type_node = build_pointer_type (ptr_type_node);
+
+ if (! TARGET_SH5 && (TARGET_SH2E || TARGET_SH4)
+ && ! (TARGET_HITACHI || sh_cfun_attr_renesas_p ()))
+ {
+ tree f_next_o, f_next_o_limit, f_next_fp, f_next_fp_limit, f_next_stack;
+ tree next_o, next_o_limit, next_fp, next_fp_limit, next_stack;
+ int pass_as_float;
+ tree lab_false;
+ tree member;
+
+ f_next_o = TYPE_FIELDS (va_list_type_node);
+ f_next_o_limit = DECL_CHAIN (f_next_o);
+ f_next_fp = DECL_CHAIN (f_next_o_limit);
+ f_next_fp_limit = DECL_CHAIN (f_next_fp);
+ f_next_stack = DECL_CHAIN (f_next_fp_limit);
+
+ next_o = build3 (COMPONENT_REF, TREE_TYPE (f_next_o), valist, f_next_o,
+ NULL_TREE);
+ next_o_limit = build3 (COMPONENT_REF, TREE_TYPE (f_next_o_limit),
+ valist, f_next_o_limit, NULL_TREE);
+ next_fp = build3 (COMPONENT_REF, TREE_TYPE (f_next_fp),
+ valist, f_next_fp, NULL_TREE);
+ next_fp_limit = build3 (COMPONENT_REF, TREE_TYPE (f_next_fp_limit),
+ valist, f_next_fp_limit, NULL_TREE);
+ next_stack = build3 (COMPONENT_REF, TREE_TYPE (f_next_stack),
+ valist, f_next_stack, NULL_TREE);
+
+ /* Structures with a single member with a distinct mode are passed
+ like their member. This is relevant if the latter has a REAL_TYPE
+ or COMPLEX_TYPE type. */
+ eff_type = type;
+ while (TREE_CODE (eff_type) == RECORD_TYPE
+ && (member = find_sole_member (eff_type))
+ && (TREE_CODE (TREE_TYPE (member)) == REAL_TYPE
+ || TREE_CODE (TREE_TYPE (member)) == COMPLEX_TYPE
+ || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE))
+ {
+ tree field_type = TREE_TYPE (member);
+
+ if (TYPE_MODE (eff_type) == TYPE_MODE (field_type))
+ eff_type = field_type;
+ else
+ {
+ gcc_assert ((TYPE_ALIGN (eff_type)
+ < GET_MODE_ALIGNMENT (TYPE_MODE (field_type)))
+ || (TYPE_ALIGN (eff_type)
+ > GET_MODE_BITSIZE (TYPE_MODE (field_type))));
+ break;
+ }
+ }
+
+ if (TARGET_SH4 || TARGET_SH2A_DOUBLE)
+ {
+ pass_as_float = ((TREE_CODE (eff_type) == REAL_TYPE && size <= 8)
+ || (TREE_CODE (eff_type) == COMPLEX_TYPE
+ && TREE_CODE (TREE_TYPE (eff_type)) == REAL_TYPE
+ && size <= 16));
+ }
+ else
+ {
+ pass_as_float = (TREE_CODE (eff_type) == REAL_TYPE && size == 4);
+ }
+
+ addr = create_tmp_var (pptr_type_node, NULL);
+ lab_false = create_artificial_label (UNKNOWN_LOCATION);
+ lab_over = create_artificial_label (UNKNOWN_LOCATION);
+
+ valist = build_simple_mem_ref (addr);
+
+ if (pass_as_float)
+ {
+ tree next_fp_tmp = create_tmp_var (TREE_TYPE (f_next_fp), NULL);
+ tree cmp;
+ bool is_double = size == 8 && TREE_CODE (eff_type) == REAL_TYPE;
+
+ tmp = build1 (ADDR_EXPR, pptr_type_node, unshare_expr (next_fp));
+ gimplify_assign (unshare_expr (addr), tmp, pre_p);
+
+ gimplify_assign (unshare_expr (next_fp_tmp), valist, pre_p);
+ tmp = next_fp_limit;
+ if (size > 4 && !is_double)
+ tmp = fold_build_pointer_plus_hwi (unshare_expr (tmp), 4 - size);
+ tmp = build2 (GE_EXPR, boolean_type_node,
+ unshare_expr (next_fp_tmp), unshare_expr (tmp));
+ cmp = build3 (COND_EXPR, void_type_node, tmp,
+ build1 (GOTO_EXPR, void_type_node,
+ unshare_expr (lab_false)), NULL_TREE);
+ if (!is_double)
+ gimplify_and_add (cmp, pre_p);
+
+ if (TYPE_ALIGN (eff_type) > BITS_PER_WORD
+ || (is_double || size == 16))
+ {
+ tmp = fold_convert (sizetype, next_fp_tmp);
+ tmp = build2 (BIT_AND_EXPR, sizetype, tmp,
+ size_int (UNITS_PER_WORD));
+ tmp = fold_build_pointer_plus (unshare_expr (next_fp_tmp), tmp);
+ gimplify_assign (unshare_expr (next_fp_tmp), tmp, pre_p);
+ }
+ if (is_double)
+ gimplify_and_add (cmp, pre_p);
+
+#ifdef FUNCTION_ARG_SCmode_WART
+ if (TYPE_MODE (eff_type) == SCmode
+ && TARGET_SH4 && TARGET_LITTLE_ENDIAN)
+ {
+ tree subtype = TREE_TYPE (eff_type);
+ tree real, imag;
+
+ imag
+ = std_gimplify_va_arg_expr (next_fp_tmp, subtype, pre_p, NULL);
+ imag = get_initialized_tmp_var (imag, pre_p, NULL);
+
+ real
+ = std_gimplify_va_arg_expr (next_fp_tmp, subtype, pre_p, NULL);
+ real = get_initialized_tmp_var (real, pre_p, NULL);
+
+ result = build2 (COMPLEX_EXPR, eff_type, real, imag);
+ if (type != eff_type)
+ result = build1 (VIEW_CONVERT_EXPR, type, result);
+ result = get_initialized_tmp_var (result, pre_p, NULL);
+ }
+#endif /* FUNCTION_ARG_SCmode_WART */
+
+ tmp = build1 (GOTO_EXPR, void_type_node, unshare_expr (lab_over));
+ gimplify_and_add (tmp, pre_p);
+
+ tmp = build1 (LABEL_EXPR, void_type_node, unshare_expr (lab_false));
+ gimplify_and_add (tmp, pre_p);
+
+ tmp = build1 (ADDR_EXPR, pptr_type_node, unshare_expr (next_stack));
+ gimplify_assign (unshare_expr (addr), tmp, pre_p);
+ gimplify_assign (unshare_expr (next_fp_tmp),
+ unshare_expr (valist), pre_p);
+
+ gimplify_assign (unshare_expr (valist),
+ unshare_expr (next_fp_tmp), post_p);
+ valist = next_fp_tmp;
+ }
+ else
+ {
+ tmp = fold_build_pointer_plus_hwi (unshare_expr (next_o), rsize);
+ tmp = build2 (GT_EXPR, boolean_type_node, tmp,
+ unshare_expr (next_o_limit));
+ tmp = build3 (COND_EXPR, void_type_node, tmp,
+ build1 (GOTO_EXPR, void_type_node,
+ unshare_expr (lab_false)),
+ NULL_TREE);
+ gimplify_and_add (tmp, pre_p);
+
+ tmp = build1 (ADDR_EXPR, pptr_type_node, unshare_expr (next_o));
+ gimplify_assign (unshare_expr (addr), tmp, pre_p);
+
+ tmp = build1 (GOTO_EXPR, void_type_node, unshare_expr (lab_over));
+ gimplify_and_add (tmp, pre_p);
+
+ tmp = build1 (LABEL_EXPR, void_type_node, unshare_expr (lab_false));
+ gimplify_and_add (tmp, pre_p);
+
+ if (size > 4 && ! (TARGET_SH4 || TARGET_SH2A))
+ gimplify_assign (unshare_expr (next_o),
+ unshare_expr (next_o_limit), pre_p);
+
+ tmp = build1 (ADDR_EXPR, pptr_type_node, unshare_expr (next_stack));
+ gimplify_assign (unshare_expr (addr), tmp, pre_p);
+ }
+
+ if (!result)
+ {
+ tmp = build1 (LABEL_EXPR, void_type_node, unshare_expr (lab_over));
+ gimplify_and_add (tmp, pre_p);
+ }
+ }
+
+ /* ??? In va-sh.h, there had been code to make values larger than
+ size 8 indirect. This does not match the FUNCTION_ARG macros. */
+
+ tmp = std_gimplify_va_arg_expr (valist, type, pre_p, NULL);
+ if (result)
+ {
+ gimplify_assign (result, tmp, pre_p);
+ result = build1 (NOP_EXPR, TREE_TYPE (result), result);
+ tmp = build1 (LABEL_EXPR, void_type_node, unshare_expr (lab_over));
+ gimplify_and_add (tmp, pre_p);
+ }
+ else
+ result = tmp;
+
+ if (pass_by_ref)
+ result = build_va_arg_indirect_ref (result);
+
+ return result;
+}
+
+/* 64 bit floating points memory transfers are paired single precision loads
+ or store. So DWARF information needs fixing in little endian (unless
+ PR=SZ=1 in FPSCR). */
+rtx
+sh_dwarf_register_span (rtx reg)
+{
+ unsigned regno = REGNO (reg);
+
+ if (WORDS_BIG_ENDIAN || GET_MODE (reg) != DFmode)
+ return NULL_RTX;
+
+ return
+ gen_rtx_PARALLEL (VOIDmode,
+ gen_rtvec (2,
+ gen_rtx_REG (SFmode, regno + 1),
+ gen_rtx_REG (SFmode, regno)));
+}
+
+static enum machine_mode
+sh_promote_function_mode (const_tree type, enum machine_mode mode,
+ int *punsignedp, const_tree funtype,
+ int for_return)
+{
+ if (sh_promote_prototypes (funtype))
+ return promote_mode (type, mode, punsignedp);
+ else
+ return default_promote_function_mode (type, mode, punsignedp, funtype,
+ for_return);
+}
+
+static bool
+sh_promote_prototypes (const_tree type)
+{
+ if (TARGET_HITACHI)
+ return false;
+ if (! type)
+ return true;
+ return ! sh_attr_renesas_p (type);
+}
+
+/* Whether an argument must be passed by reference. On SHcompact, we
+ pretend arguments wider than 32-bits that would have been passed in
+ registers are passed by reference, so that an SHmedia trampoline
+ loads them into the full 64-bits registers. */
+static int
+shcompact_byref (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
+ const_tree type, bool named)
+{
+ unsigned HOST_WIDE_INT size;
+
+ if (type)
+ size = int_size_in_bytes (type);
+ else
+ size = GET_MODE_SIZE (mode);
+
+ if (cum->arg_count[SH_ARG_INT] < NPARM_REGS (SImode)
+ && (!named
+ || GET_SH_ARG_CLASS (mode) == SH_ARG_INT
+ || (GET_SH_ARG_CLASS (mode) == SH_ARG_FLOAT
+ && cum->arg_count[SH_ARG_FLOAT] >= NPARM_REGS (SFmode)))
+ && size > 4
+ && !SHCOMPACT_FORCE_ON_STACK (mode, type)
+ && !SH5_WOULD_BE_PARTIAL_NREGS (*cum, mode, type, named))
+ return size;
+ else
+ return 0;
+}
+
+static bool
+sh_pass_by_reference (cumulative_args_t cum_v, enum machine_mode mode,
+ const_tree type, bool named)
+{
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+
+ if (targetm.calls.must_pass_in_stack (mode, type))
+ return true;
+
+ /* ??? std_gimplify_va_arg_expr passes NULL for cum. That function
+ wants to know about pass-by-reference semantics for incoming
+ arguments. */
+ if (! cum)
+ return false;
+
+ if (TARGET_SHCOMPACT)
+ {
+ cum->byref = shcompact_byref (cum, mode, type, named);
+ return cum->byref != 0;
+ }
+
+ return false;
+}
+
+static bool
+sh_callee_copies (cumulative_args_t cum, enum machine_mode mode,
+ const_tree type, bool named ATTRIBUTE_UNUSED)
+{
+ /* ??? How can it possibly be correct to return true only on the
+ caller side of the equation? Is there someplace else in the
+ sh backend that's magically producing the copies? */
+ return (get_cumulative_args (cum)->outgoing
+ && ((mode == BLKmode ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode))
+ % SH_MIN_ALIGN_FOR_CALLEE_COPY == 0));
+}
+
+static int
+sh_arg_partial_bytes (cumulative_args_t cum_v, enum machine_mode mode,
+ tree type, bool named ATTRIBUTE_UNUSED)
+{
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+ int words = 0;
+
+ if (!TARGET_SH5
+ && PASS_IN_REG_P (*cum, mode, type)
+ && !(TARGET_SH4 || TARGET_SH2A_DOUBLE)
+ && (ROUND_REG (*cum, mode)
+ + (mode != BLKmode
+ ? ROUND_ADVANCE (GET_MODE_SIZE (mode))
+ : ROUND_ADVANCE (int_size_in_bytes (type)))
+ > NPARM_REGS (mode)))
+ words = NPARM_REGS (mode) - ROUND_REG (*cum, mode);
+
+ else if (!TARGET_SHCOMPACT
+ && SH5_WOULD_BE_PARTIAL_NREGS (*cum, mode, type, named))
+ words = NPARM_REGS (SImode) - cum->arg_count[SH_ARG_INT];
+
+ return words * UNITS_PER_WORD;
+}
+
+
+/* Define where to put the arguments to a function.
+ Value is zero to push the argument on the stack,
+ or a hard register in which to store the argument.
+
+ MODE is the argument's machine mode.
+ TYPE is the data type of the argument (as a tree).
+ This is null for libcalls where that information may
+ not be available.
+ CUM is a variable of type CUMULATIVE_ARGS which gives info about
+ the preceding args and about the function being called.
+ NAMED is nonzero if this argument is a named parameter
+ (otherwise it is an extra parameter matching an ellipsis).
+
+ On SH the first args are normally in registers
+ and the rest are pushed. Any arg that starts within the first
+ NPARM_REGS words is at least partially passed in a register unless
+ its data type forbids. */
+static rtx
+sh_function_arg (cumulative_args_t ca_v, enum machine_mode mode,
+ const_tree type, bool named)
+{
+ CUMULATIVE_ARGS *ca = get_cumulative_args (ca_v);
+
+ if (! TARGET_SH5 && mode == VOIDmode)
+ return GEN_INT (ca->renesas_abi ? 1 : 0);
+
+ if (! TARGET_SH5
+ && PASS_IN_REG_P (*ca, mode, type)
+ && (named || ! (TARGET_HITACHI || ca->renesas_abi)))
+ {
+ int regno;
+
+ if (mode == SCmode && TARGET_SH4 && TARGET_LITTLE_ENDIAN
+ && (! FUNCTION_ARG_SCmode_WART || (ROUND_REG (*ca, mode) & 1)))
+ {
+ rtx r1 = gen_rtx_EXPR_LIST (VOIDmode,
+ gen_rtx_REG (SFmode,
+ BASE_ARG_REG (mode)
+ + (ROUND_REG (*ca, mode) ^ 1)),
+ const0_rtx);
+ rtx r2 = gen_rtx_EXPR_LIST (VOIDmode,
+ gen_rtx_REG (SFmode,
+ BASE_ARG_REG (mode)
+ + ((ROUND_REG (*ca, mode) + 1) ^ 1)),
+ GEN_INT (4));
+ return gen_rtx_PARALLEL(SCmode, gen_rtvec(2, r1, r2));
+ }
+
+ /* If the alignment of a DF value causes an SF register to be
+ skipped, we will use that skipped register for the next SF
+ value. */
+ if ((TARGET_HITACHI || ca->renesas_abi)
+ && ca->free_single_fp_reg
+ && mode == SFmode)
+ return gen_rtx_REG (mode, ca->free_single_fp_reg);
+
+ regno = (BASE_ARG_REG (mode) + ROUND_REG (*ca, mode))
+ ^ (mode == SFmode && TARGET_SH4
+ && TARGET_LITTLE_ENDIAN
+ && ! TARGET_HITACHI && ! ca->renesas_abi);
+ return gen_rtx_REG (mode, regno);
+
+ }
+
+ if (TARGET_SH5)
+ {
+ if (mode == VOIDmode && TARGET_SHCOMPACT)
+ return GEN_INT (ca->call_cookie);
+
+ /* The following test assumes unnamed arguments are promoted to
+ DFmode. */
+ if (mode == SFmode && ca->free_single_fp_reg)
+ return SH5_PROTOTYPED_FLOAT_ARG (*ca, mode, ca->free_single_fp_reg);
+
+ if ((GET_SH_ARG_CLASS (mode) == SH_ARG_FLOAT)
+ && (named || ! ca->prototype_p)
+ && ca->arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (SFmode))
+ {
+ if (! ca->prototype_p && TARGET_SHMEDIA)
+ return SH5_PROTOTYPELESS_FLOAT_ARG (*ca, mode);
+
+ return SH5_PROTOTYPED_FLOAT_ARG (*ca, mode,
+ FIRST_FP_PARM_REG
+ + ca->arg_count[(int) SH_ARG_FLOAT]);
+ }
+
+ if (ca->arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode)
+ && (! TARGET_SHCOMPACT
+ || (! SHCOMPACT_FORCE_ON_STACK (mode, type)
+ && ! SH5_WOULD_BE_PARTIAL_NREGS (*ca, mode,
+ type, named))))
+ {
+ return gen_rtx_REG (mode, (FIRST_PARM_REG
+ + ca->arg_count[(int) SH_ARG_INT]));
+ }
+
+ return NULL_RTX;
+ }
+
+ return NULL_RTX;
+}
+
+/* Update the data in CUM to advance over an argument
+ of mode MODE and data type TYPE.
+ (TYPE is null for libcalls where that information may not be
+ available.) */
+static void
+sh_function_arg_advance (cumulative_args_t ca_v, enum machine_mode mode,
+ const_tree type, bool named)
+{
+ CUMULATIVE_ARGS *ca = get_cumulative_args (ca_v);
+
+ if (ca->force_mem)
+ ca->force_mem = 0;
+ else if (TARGET_SH5)
+ {
+ const_tree type2 = (ca->byref && type
+ ? TREE_TYPE (type)
+ : type);
+ enum machine_mode mode2 = (ca->byref && type
+ ? TYPE_MODE (type2)
+ : mode);
+ int dwords = ((ca->byref
+ ? ca->byref
+ : mode2 == BLKmode
+ ? int_size_in_bytes (type2)
+ : GET_MODE_SIZE (mode2)) + 7) / 8;
+ int numregs = MIN (dwords, NPARM_REGS (SImode)
+ - ca->arg_count[(int) SH_ARG_INT]);
+
+ if (numregs)
+ {
+ ca->arg_count[(int) SH_ARG_INT] += numregs;
+ if (TARGET_SHCOMPACT
+ && SHCOMPACT_FORCE_ON_STACK (mode2, type2))
+ {
+ ca->call_cookie
+ |= CALL_COOKIE_INT_REG (ca->arg_count[(int) SH_ARG_INT]
+ - numregs, 1);
+ /* N.B. We want this also for outgoing. */
+ ca->stack_regs += numregs;
+ }
+ else if (ca->byref)
+ {
+ if (! ca->outgoing)
+ ca->stack_regs += numregs;
+ ca->byref_regs += numregs;
+ ca->byref = 0;
+ do
+ ca->call_cookie
+ |= CALL_COOKIE_INT_REG (ca->arg_count[(int) SH_ARG_INT]
+ - numregs, 2);
+ while (--numregs);
+ ca->call_cookie
+ |= CALL_COOKIE_INT_REG (ca->arg_count[(int) SH_ARG_INT]
+ - 1, 1);
+ }
+ else if (dwords > numregs)
+ {
+ int pushregs = numregs;
+
+ if (TARGET_SHCOMPACT)
+ ca->stack_regs += numregs;
+ while (pushregs < NPARM_REGS (SImode) - 1
+ && (CALL_COOKIE_INT_REG_GET
+ (ca->call_cookie,
+ NPARM_REGS (SImode) - pushregs)
+ == 1))
+ {
+ ca->call_cookie
+ &= ~ CALL_COOKIE_INT_REG (NPARM_REGS (SImode)
+ - pushregs, 1);
+ pushregs++;
+ }
+ if (numregs == NPARM_REGS (SImode))
+ ca->call_cookie
+ |= CALL_COOKIE_INT_REG (0, 1)
+ | CALL_COOKIE_STACKSEQ (numregs - 1);
+ else
+ ca->call_cookie
+ |= CALL_COOKIE_STACKSEQ (numregs);
+ }
+ }
+ if (GET_SH_ARG_CLASS (mode2) == SH_ARG_FLOAT
+ && (named || ! ca->prototype_p))
+ {
+ if (mode2 == SFmode && ca->free_single_fp_reg)
+ ca->free_single_fp_reg = 0;
+ else if (ca->arg_count[(int) SH_ARG_FLOAT]
+ < NPARM_REGS (SFmode))
+ {
+ int numfpregs
+ = MIN ((GET_MODE_SIZE (mode2) + 7) / 8 * 2,
+ NPARM_REGS (SFmode)
+ - ca->arg_count[(int) SH_ARG_FLOAT]);
+
+ ca->arg_count[(int) SH_ARG_FLOAT] += numfpregs;
+
+ if (TARGET_SHCOMPACT && ! ca->prototype_p)
+ {
+ if (ca->outgoing && numregs > 0)
+ do
+ {
+ ca->call_cookie
+ |= (CALL_COOKIE_INT_REG
+ (ca->arg_count[(int) SH_ARG_INT]
+ - numregs + ((numfpregs - 2) / 2),
+ 4 + (ca->arg_count[(int) SH_ARG_FLOAT]
+ - numfpregs) / 2));
+ }
+ while (numfpregs -= 2);
+ }
+ else if (mode2 == SFmode && (named)
+ && (ca->arg_count[(int) SH_ARG_FLOAT]
+ < NPARM_REGS (SFmode)))
+ ca->free_single_fp_reg
+ = FIRST_FP_PARM_REG - numfpregs
+ + ca->arg_count[(int) SH_ARG_FLOAT] + 1;
+ }
+ }
+ return;
+ }
+
+ if ((TARGET_HITACHI || ca->renesas_abi) && TARGET_FPU_DOUBLE)
+ {
+ /* Note that we've used the skipped register. */
+ if (mode == SFmode && ca->free_single_fp_reg)
+ {
+ ca->free_single_fp_reg = 0;
+ return;
+ }
+ /* When we have a DF after an SF, there's an SF register that get
+ skipped in order to align the DF value. We note this skipped
+ register, because the next SF value will use it, and not the
+ SF that follows the DF. */
+ if (mode == DFmode
+ && ROUND_REG (*ca, DFmode) != ROUND_REG (*ca, SFmode))
+ {
+ ca->free_single_fp_reg = (ROUND_REG (*ca, SFmode)
+ + BASE_ARG_REG (mode));
+ }
+ }
+
+ if (! ((TARGET_SH4 || TARGET_SH2A) || ca->renesas_abi)
+ || PASS_IN_REG_P (*ca, mode, type))
+ (ca->arg_count[(int) GET_SH_ARG_CLASS (mode)]
+ = (ROUND_REG (*ca, mode)
+ + (mode == BLKmode
+ ? ROUND_ADVANCE (int_size_in_bytes (type))
+ : ROUND_ADVANCE (GET_MODE_SIZE (mode)))));
+}
+
+/* The Renesas calling convention doesn't quite fit into this scheme since
+ the address is passed like an invisible argument, but one that is always
+ passed in memory. */
+static rtx
+sh_struct_value_rtx (tree fndecl, int incoming ATTRIBUTE_UNUSED)
+{
+ if (TARGET_HITACHI || sh_attr_renesas_p (fndecl))
+ return NULL_RTX;
+ return gen_rtx_REG (Pmode, 2);
+}
+
+/* Worker function for TARGET_FUNCTION_VALUE.
+
+ For the SH, this is like LIBCALL_VALUE, except that we must change the
+ mode like PROMOTE_MODE does.
+ ??? PROMOTE_MODE is ignored for non-scalar types. The set of types
+ tested here has to be kept in sync with the one in
+ explow.c:promote_mode. */
+static rtx
+sh_function_value (const_tree valtype,
+ const_tree fn_decl_or_type,
+ bool outgoing ATTRIBUTE_UNUSED)
+{
+ if (fn_decl_or_type
+ && !DECL_P (fn_decl_or_type))
+ fn_decl_or_type = NULL;
+
+ return gen_rtx_REG (
+ ((GET_MODE_CLASS (TYPE_MODE (valtype)) == MODE_INT
+ && GET_MODE_SIZE (TYPE_MODE (valtype)) < 4
+ && (TREE_CODE (valtype) == INTEGER_TYPE
+ || TREE_CODE (valtype) == ENUMERAL_TYPE
+ || TREE_CODE (valtype) == BOOLEAN_TYPE
+ || TREE_CODE (valtype) == REAL_TYPE
+ || TREE_CODE (valtype) == OFFSET_TYPE))
+ && sh_promote_prototypes (fn_decl_or_type)
+ ? (TARGET_SHMEDIA64 ? DImode : SImode) : TYPE_MODE (valtype)),
+ BASE_RETURN_VALUE_REG (TYPE_MODE (valtype)));
+}
+
+/* Worker function for TARGET_LIBCALL_VALUE. */
+static rtx
+sh_libcall_value (enum machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
+{
+ return gen_rtx_REG (mode, BASE_RETURN_VALUE_REG (mode));
+}
+
+/* Return true if N is a possible register number of function value. */
+static bool
+sh_function_value_regno_p (const unsigned int regno)
+{
+ return ((regno) == FIRST_RET_REG
+ || (TARGET_SH2E && (regno) == FIRST_FP_RET_REG)
+ || (TARGET_SHMEDIA_FPU && (regno) == FIRST_FP_RET_REG));
+}
+
+/* Worker function for TARGET_RETURN_IN_MEMORY. */
+static bool
+sh_return_in_memory (const_tree type, const_tree fndecl)
+{
+ if (TARGET_SH5)
+ {
+ if (TYPE_MODE (type) == BLKmode)
+ return ((unsigned HOST_WIDE_INT) int_size_in_bytes (type)) > 8;
+ else
+ return GET_MODE_SIZE (TYPE_MODE (type)) > 8;
+ }
+ else
+ {
+ return (TYPE_MODE (type) == BLKmode
+ || ((TARGET_HITACHI || sh_attr_renesas_p (fndecl))
+ && TREE_CODE (type) == RECORD_TYPE));
+ }
+}
+
+/* We actually emit the code in sh_expand_prologue. We used to use
+ a static variable to flag that we need to emit this code, but that
+ doesn't when inlining, when functions are deferred and then emitted
+ later. Fortunately, we already have two flags that are part of struct
+ function that tell if a function uses varargs or stdarg. */
+static void
+sh_setup_incoming_varargs (cumulative_args_t ca,
+ enum machine_mode mode,
+ tree type,
+ int *pretend_arg_size,
+ int second_time ATTRIBUTE_UNUSED)
+{
+ gcc_assert (cfun->stdarg);
+ if (TARGET_VARARGS_PRETEND_ARGS (current_function_decl))
+ {
+ int named_parm_regs, anon_parm_regs;
+
+ named_parm_regs = (ROUND_REG (*get_cumulative_args (ca), mode)
+ + (mode == BLKmode
+ ? ROUND_ADVANCE (int_size_in_bytes (type))
+ : ROUND_ADVANCE (GET_MODE_SIZE (mode))));
+ anon_parm_regs = NPARM_REGS (SImode) - named_parm_regs;
+ if (anon_parm_regs > 0)
+ *pretend_arg_size = anon_parm_regs * 4;
+ }
+}
+
+static bool
+sh_strict_argument_naming (cumulative_args_t ca ATTRIBUTE_UNUSED)
+{
+ return TARGET_SH5;
+}
+
+static bool
+sh_pretend_outgoing_varargs_named (cumulative_args_t ca_v)
+{
+ CUMULATIVE_ARGS *ca = get_cumulative_args (ca_v);
+
+ return ! (TARGET_HITACHI || ca->renesas_abi) && ! TARGET_SH5;
+}
+
+
+/* Define the offset between two registers, one to be eliminated, and
+ the other its replacement, at the start of a routine. */
+int
+initial_elimination_offset (int from, int to)
+{
+ int regs_saved;
+ int regs_saved_rounding = 0;
+ int total_saved_regs_space;
+ int total_auto_space;
+ int save_flags = target_flags;
+ int copy_flags;
+ HARD_REG_SET live_regs_mask;
+
+ shmedia_space_reserved_for_target_registers = false;
+ regs_saved = calc_live_regs (&live_regs_mask);
+ regs_saved += SHMEDIA_REGS_STACK_ADJUST ();
+
+ if (shmedia_reserve_space_for_target_registers_p (regs_saved, &live_regs_mask))
+ {
+ shmedia_space_reserved_for_target_registers = true;
+ regs_saved += shmedia_target_regs_stack_adjust (&live_regs_mask);
+ }
+
+ if (TARGET_SH5 && regs_saved % (STACK_BOUNDARY / BITS_PER_UNIT))
+ regs_saved_rounding = ((STACK_BOUNDARY / BITS_PER_UNIT)
+ - regs_saved % (STACK_BOUNDARY / BITS_PER_UNIT));
+
+ total_auto_space = rounded_frame_size (regs_saved) - regs_saved_rounding;
+ copy_flags = target_flags;
+ target_flags = save_flags;
+
+ total_saved_regs_space = regs_saved + regs_saved_rounding;
+
+ if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
+ return total_saved_regs_space + total_auto_space
+ + crtl->args.info.byref_regs * 8;
+
+ if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
+ return total_saved_regs_space + total_auto_space
+ + crtl->args.info.byref_regs * 8;
+
+ /* Initial gap between fp and sp is 0. */
+ if (from == HARD_FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
+ return 0;
+
+ if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
+ return rounded_frame_size (0);
+
+ if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
+ return rounded_frame_size (0);
+
+ gcc_assert (from == RETURN_ADDRESS_POINTER_REGNUM
+ && (to == HARD_FRAME_POINTER_REGNUM
+ || to == STACK_POINTER_REGNUM));
+ if (TARGET_SH5)
+ {
+ int n = total_saved_regs_space;
+ int pr_reg = TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG;
+ save_schedule schedule;
+ save_entry *entry;
+
+ n += total_auto_space;
+
+ /* If it wasn't saved, there's not much we can do. */
+ if (! TEST_HARD_REG_BIT (live_regs_mask, pr_reg))
+ return n;
+
+ target_flags = copy_flags;
+
+ sh5_schedule_saves (&live_regs_mask, &schedule, n);
+ for (entry = &schedule.entries[1]; entry->mode != VOIDmode; entry++)
+ if (entry->reg == pr_reg)
+ {
+ target_flags = save_flags;
+ return entry->offset;
+ }
+ gcc_unreachable ();
+ }
+ else
+ return total_auto_space;
+}
+
+/* Parse the -mfixed-range= option string. */
+void
+sh_fix_range (const char *const_str)
+{
+ int i, first, last;
+ char *str, *dash, *comma;
+
+ /* str must be of the form REG1'-'REG2{,REG1'-'REG} where REG1 and
+ REG2 are either register names or register numbers. The effect
+ of this option is to mark the registers in the range from REG1 to
+ REG2 as ``fixed'' so they won't be used by the compiler. */
+
+ i = strlen (const_str);
+ str = (char *) alloca (i + 1);
+ memcpy (str, const_str, i + 1);
+
+ while (1)
+ {
+ dash = strchr (str, '-');
+ if (!dash)
+ {
+ warning (0, "value of -mfixed-range must have form REG1-REG2");
+ return;
+ }
+ *dash = '\0';
+ comma = strchr (dash + 1, ',');
+ if (comma)
+ *comma = '\0';
+
+ first = decode_reg_name (str);
+ if (first < 0)
+ {
+ warning (0, "unknown register name: %s", str);
+ return;
+ }
+
+ last = decode_reg_name (dash + 1);
+ if (last < 0)
+ {
+ warning (0, "unknown register name: %s", dash + 1);
+ return;
+ }
+
+ *dash = '-';
+
+ if (first > last)
+ {
+ warning (0, "%s-%s is an empty range", str, dash + 1);
+ return;
+ }
+
+ for (i = first; i <= last; ++i)
+ fixed_regs[i] = call_used_regs[i] = 1;
+
+ if (!comma)
+ break;
+
+ *comma = ',';
+ str = comma + 1;
+ }
+}
+
+/* Insert any deferred function attributes from earlier pragmas. */
+static void
+sh_insert_attributes (tree node, tree *attributes)
+{
+ tree attrs;
+
+ if (TREE_CODE (node) != FUNCTION_DECL)
+ return;
+
+ /* We are only interested in fields. */
+ if (!DECL_P (node))
+ return;
+
+ /* Append the attributes to the deferred attributes. */
+ *sh_deferred_function_attributes_tail = *attributes;
+ attrs = sh_deferred_function_attributes;
+ if (!attrs)
+ return;
+
+ /* Some attributes imply or require the interrupt attribute. */
+ if (!lookup_attribute ("interrupt_handler", attrs)
+ && !lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (node)))
+ {
+ /* If we have a trapa_handler, but no interrupt_handler attribute,
+ insert an interrupt_handler attribute. */
+ if (lookup_attribute ("trapa_handler", attrs) != NULL_TREE)
+ /* We can't use sh_pr_interrupt here because that's not in the
+ java frontend. */
+ attrs
+ = tree_cons (get_identifier("interrupt_handler"), NULL_TREE, attrs);
+ /* However, for sp_switch, trap_exit, nosave_low_regs and resbank,
+ if the interrupt attribute is missing, we ignore the attribute
+ and warn. */
+ else if (lookup_attribute ("sp_switch", attrs)
+ || lookup_attribute ("trap_exit", attrs)
+ || lookup_attribute ("nosave_low_regs", attrs)
+ || lookup_attribute ("resbank", attrs))
+ {
+ tree *tail;
+
+ for (tail = attributes; attrs; attrs = TREE_CHAIN (attrs))
+ {
+ if (is_attribute_p ("sp_switch", TREE_PURPOSE (attrs))
+ || is_attribute_p ("trap_exit", TREE_PURPOSE (attrs))
+ || is_attribute_p ("nosave_low_regs", TREE_PURPOSE (attrs))
+ || is_attribute_p ("resbank", TREE_PURPOSE (attrs)))
+ warning (OPT_Wattributes,
+ "%qE attribute only applies to interrupt functions",
+ TREE_PURPOSE (attrs));
+ else
+ {
+ *tail = tree_cons (TREE_PURPOSE (attrs), NULL_TREE,
+ NULL_TREE);
+ tail = &TREE_CHAIN (*tail);
+ }
+ }
+ attrs = *attributes;
+ }
+ }
+
+ /* Install the processed list. */
+ *attributes = attrs;
+
+ /* Clear deferred attributes. */
+ sh_deferred_function_attributes = NULL_TREE;
+ sh_deferred_function_attributes_tail = &sh_deferred_function_attributes;
+
+ return;
+}
+
+/*------------------------------------------------------------------------------
+ Target specific attributes
+ Supported attributes are:
+
+ * interrupt_handler
+ Specifies this function is an interrupt handler.
+
+ * trapa_handler
+ Like interrupt_handler, but don't save all registers.
+
+ * sp_switch
+ Specifies an alternate stack for an interrupt handler to run on.
+
+ * trap_exit
+ Use a trapa to exit an interrupt function instead of rte.
+
+ * nosave_low_regs
+ Don't save r0..r7 in an interrupt handler function.
+ This is useful on SH3* and SH4*, which have a separate set of low
+ regs for user and privileged modes.
+ This is mainly to be used for non-reentrant interrupt handlers (i.e.
+ those that run with interrupts disabled and thus can't be
+ interrupted thenselves).
+
+ * renesas
+ Use Renesas calling/layout conventions (functions and structures).
+
+ * resbank
+ In case of an interrupt handler function, use a register bank to
+ save registers R0-R14, MACH, MACL, GBR and PR.
+ This is available only on SH2A targets.
+
+ * function_vector
+ Declares a function to be called using the TBR relative addressing
+ mode. Takes an argument that specifies the slot number in the table
+ where this function can be looked up by the JSR/N @@(disp8,TBR) insn.
+*/
+
+/* Handle a 'resbank' attribute. */
+static tree
+sh_handle_resbank_handler_attribute (tree * node, tree name,
+ tree args ATTRIBUTE_UNUSED,
+ int flags ATTRIBUTE_UNUSED,
+ bool * no_add_attrs)
+{
+ if (!TARGET_SH2A)
+ {
+ warning (OPT_Wattributes, "%qE attribute is supported only for SH2A",
+ name);
+ *no_add_attrs = true;
+ }
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute only applies to functions",
+ name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle an "interrupt_handler" attribute; arguments as in
+ struct attribute_spec.handler. */
+static tree
+sh_handle_interrupt_handler_attribute (tree *node, tree name,
+ tree args ATTRIBUTE_UNUSED,
+ int flags ATTRIBUTE_UNUSED,
+ bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute only applies to functions",
+ name);
+ *no_add_attrs = true;
+ }
+ else if (TARGET_SHCOMPACT)
+ {
+ error ("attribute interrupt_handler is not compatible with -m5-compact");
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle an 'function_vector' attribute; arguments as in
+ struct attribute_spec.handler. */
+static tree
+sh2a_handle_function_vector_handler_attribute (tree * node, tree name,
+ tree args ATTRIBUTE_UNUSED,
+ int flags ATTRIBUTE_UNUSED,
+ bool * no_add_attrs)
+{
+ if (!TARGET_SH2A)
+ {
+ warning (OPT_Wattributes, "%qE attribute only applies to SH2A",
+ name);
+ *no_add_attrs = true;
+ }
+ else if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute only applies to functions",
+ name);
+ *no_add_attrs = true;
+ }
+ else if (TREE_CODE (TREE_VALUE (args)) != INTEGER_CST)
+ {
+ /* The argument must be a constant integer. */
+ warning (OPT_Wattributes,
+ "%qE attribute argument not an integer constant",
+ name);
+ *no_add_attrs = true;
+ }
+ else if (TREE_INT_CST_LOW (TREE_VALUE (args)) > 255)
+ {
+ /* The argument value must be between 0 to 255. */
+ warning (OPT_Wattributes,
+ "%qE attribute argument should be between 0 to 255",
+ name);
+ *no_add_attrs = true;
+ }
+ return NULL_TREE;
+}
+
+/* Returns true if current function has been assigned the attribute
+ 'function_vector'. */
+bool
+sh2a_is_function_vector_call (rtx x)
+{
+ if (GET_CODE (x) == SYMBOL_REF
+ && (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_FUNCVEC_FUNCTION))
+ {
+ tree tr = SYMBOL_REF_DECL (x);
+
+ if (sh2a_function_vector_p (tr))
+ return true;
+ }
+
+ return false;
+}
+
+/* Returns the function vector number, if the attribute
+ 'function_vector' is assigned, otherwise returns zero. */
+int
+sh2a_get_function_vector_number (rtx x)
+{
+ int num;
+ tree list, t;
+
+ if ((GET_CODE (x) == SYMBOL_REF)
+ && (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_FUNCVEC_FUNCTION))
+ {
+ t = SYMBOL_REF_DECL (x);
+
+ if (TREE_CODE (t) != FUNCTION_DECL)
+ return 0;
+
+ list = SH_ATTRIBUTES (t);
+ while (list)
+ {
+ if (is_attribute_p ("function_vector", TREE_PURPOSE (list)))
+ {
+ num = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (list)));
+ return num;
+ }
+
+ list = TREE_CHAIN (list);
+ }
+
+ return 0;
+ }
+ else
+ return 0;
+}
+
+/* Handle an "sp_switch" attribute; arguments as in
+ struct attribute_spec.handler. */
+static tree
+sh_handle_sp_switch_attribute (tree *node, tree name, tree args,
+ int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute only applies to functions",
+ name);
+ *no_add_attrs = true;
+ }
+ else if (TREE_CODE (TREE_VALUE (args)) != STRING_CST)
+ {
+ /* The argument must be a constant string. */
+ warning (OPT_Wattributes, "%qE attribute argument not a string constant",
+ name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle an "trap_exit" attribute; arguments as in
+ struct attribute_spec.handler. */
+static tree
+sh_handle_trap_exit_attribute (tree *node, tree name, tree args,
+ int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute only applies to functions",
+ name);
+ *no_add_attrs = true;
+ }
+ /* The argument specifies a trap number to be used in a trapa instruction
+ at function exit (instead of an rte instruction). */
+ else if (TREE_CODE (TREE_VALUE (args)) != INTEGER_CST)
+ {
+ /* The argument must be a constant integer. */
+ warning (OPT_Wattributes, "%qE attribute argument not an "
+ "integer constant", name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+static tree
+sh_handle_renesas_attribute (tree *node ATTRIBUTE_UNUSED,
+ tree name ATTRIBUTE_UNUSED,
+ tree args ATTRIBUTE_UNUSED,
+ int flags ATTRIBUTE_UNUSED,
+ bool *no_add_attrs ATTRIBUTE_UNUSED)
+{
+ return NULL_TREE;
+}
+
+/* True if __attribute__((renesas)) or -mrenesas. */
+bool
+sh_attr_renesas_p (const_tree td)
+{
+ if (TARGET_HITACHI)
+ return true;
+ if (td == NULL_TREE)
+ return false;
+ if (DECL_P (td))
+ td = TREE_TYPE (td);
+ if (td == error_mark_node)
+ return false;
+ return (lookup_attribute ("renesas", TYPE_ATTRIBUTES (td))
+ != NULL_TREE);
+}
+
+/* True if __attribute__((renesas)) or -mrenesas, for the current
+ function. */
+bool
+sh_cfun_attr_renesas_p (void)
+{
+ return sh_attr_renesas_p (current_function_decl);
+}
+
+/* Returns true if the current function has the "interrupt_handler"
+ attribute set. */
+bool
+sh_cfun_interrupt_handler_p (void)
+{
+ return (lookup_attribute ("interrupt_handler",
+ DECL_ATTRIBUTES (current_function_decl))
+ != NULL_TREE);
+}
+
+/* Returns true if FUNC has been assigned the attribute
+ "function_vector". */
+bool
+sh2a_function_vector_p (tree func)
+{
+ tree list;
+ if (TREE_CODE (func) != FUNCTION_DECL)
+ return false;
+
+ list = SH_ATTRIBUTES (func);
+ while (list)
+ {
+ if (is_attribute_p ("function_vector", TREE_PURPOSE (list)))
+ return true;
+
+ list = TREE_CHAIN (list);
+ }
+ return false;
+}
+
+/* Returns true if given tree has the "resbank" attribute set. */
+bool
+sh_cfun_resbank_handler_p (void)
+{
+ return ((lookup_attribute ("resbank",
+ DECL_ATTRIBUTES (current_function_decl))
+ != NULL_TREE)
+ && (lookup_attribute ("interrupt_handler",
+ DECL_ATTRIBUTES (current_function_decl))
+ != NULL_TREE) && TARGET_SH2A);
+}
+
+/* Returns true if the current function has a "trap_exit" attribute set. */
+bool
+sh_cfun_trap_exit_p (void)
+{
+ return lookup_attribute ("trap_exit", DECL_ATTRIBUTES (current_function_decl))
+ != NULL_TREE;
+}
+
+/* Implement TARGET_CHECK_PCH_TARGET_FLAGS. */
+static const char *
+sh_check_pch_target_flags (int old_flags)
+{
+ if ((old_flags ^ target_flags) & (MASK_SH1 | MASK_SH2 | MASK_SH3
+ | MASK_SH_E | MASK_HARD_SH4
+ | MASK_FPU_SINGLE | MASK_SH4))
+ return _("created and used with different architectures / ABIs");
+ if ((old_flags ^ target_flags) & MASK_HITACHI)
+ return _("created and used with different ABIs");
+ if ((old_flags ^ target_flags) & MASK_LITTLE_ENDIAN)
+ return _("created and used with different endianness");
+ return NULL;
+}
+
+/* Predicates used by the templates. */
+
+/* Returns true if OP is MACL, MACH or PR. The input must be a REG rtx.
+ Used only in general_movsrc_operand. */
+bool
+system_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
+{
+ switch (REGNO (op))
+ {
+ case PR_REG:
+ case MACL_REG:
+ case MACH_REG:
+ return true;
+ }
+ return false;
+}
+
+/* Returns true if OP is a floating point value with value 0.0. */
+bool
+fp_zero_operand (rtx op)
+{
+ REAL_VALUE_TYPE r;
+
+ if (GET_MODE (op) != SFmode)
+ return false;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (r, op);
+ return REAL_VALUES_EQUAL (r, dconst0) && ! REAL_VALUE_MINUS_ZERO (r);
+}
+
+/* Returns true if OP is a floating point value with value 1.0. */
+bool
+fp_one_operand (rtx op)
+{
+ REAL_VALUE_TYPE r;
+
+ if (GET_MODE (op) != SFmode)
+ return false;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (r, op);
+ return REAL_VALUES_EQUAL (r, dconst1);
+}
+
+/* In general mode switching is used. If we are
+ compiling without -mfmovd, movsf_ie isn't taken into account for
+ mode switching. We could check in machine_dependent_reorg for
+ cases where we know we are in single precision mode, but there is
+ interface to find that out during reload, so we must avoid
+ choosing an fldi alternative during reload and thus failing to
+ allocate a scratch register for the constant loading. */
+bool
+fldi_ok (void)
+{
+ return true;
+}
+
+/* Return the TLS type for TLS symbols. */
+enum tls_model
+tls_symbolic_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
+{
+ if (GET_CODE (op) != SYMBOL_REF)
+ return TLS_MODEL_NONE;
+ return SYMBOL_REF_TLS_MODEL (op);
+}
+
+/* Return the destination address of a branch. */
+static int
+branch_dest (rtx branch)
+{
+ rtx dest = SET_SRC (PATTERN (branch));
+ int dest_uid;
+
+ if (GET_CODE (dest) == IF_THEN_ELSE)
+ dest = XEXP (dest, 1);
+ dest = XEXP (dest, 0);
+ dest_uid = INSN_UID (dest);
+ return INSN_ADDRESSES (dest_uid);
+}
+
+/* Return nonzero if REG is not used after INSN.
+ We assume REG is a reload reg, and therefore does
+ not live past labels. It may live past calls or jumps though. */
+bool
+reg_unused_after (rtx reg, rtx insn)
+{
+ enum rtx_code code;
+ rtx set;
+
+ /* If the reg is set by this instruction, then it is safe for our
+ case. Disregard the case where this is a store to memory, since
+ we are checking a register used in the store address. */
+ set = single_set (insn);
+ if (set && !MEM_P (SET_DEST (set))
+ && reg_overlap_mentioned_p (reg, SET_DEST (set)))
+ return true;
+
+ while ((insn = NEXT_INSN (insn)))
+ {
+ rtx set;
+ if (!INSN_P (insn))
+ continue;
+
+ code = GET_CODE (insn);
+
+#if 0
+ /* If this is a label that existed before reload, then the register
+ is dead here. However, if this is a label added by reorg, then
+ the register may still be live here. We can't tell the difference,
+ so we just ignore labels completely. */
+ if (code == CODE_LABEL)
+ return 1;
+ /* else */
+#endif
+
+ if (code == JUMP_INSN)
+ return false;
+
+ /* If this is a sequence, we must handle them all at once.
+ We could have for instance a call that sets the target register,
+ and an insn in a delay slot that uses the register. In this case,
+ we must return 0. */
+ else if (code == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
+ {
+ int i;
+ int retval = 0;
+
+ for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
+ {
+ rtx this_insn = XVECEXP (PATTERN (insn), 0, i);
+ rtx set = single_set (this_insn);
+
+ if (CALL_P (this_insn))
+ code = CALL_INSN;
+ else if (JUMP_P (this_insn))
+ {
+ if (INSN_ANNULLED_BRANCH_P (this_insn))
+ return false;
+ code = JUMP_INSN;
+ }
+
+ if (set && reg_overlap_mentioned_p (reg, SET_SRC (set)))
+ return false;
+ if (set && reg_overlap_mentioned_p (reg, SET_DEST (set)))
+ {
+ if (!MEM_P (SET_DEST (set)))
+ retval = true;
+ else
+ return false;
+ }
+ if (set == NULL_RTX
+ && reg_overlap_mentioned_p (reg, PATTERN (this_insn)))
+ return false;
+ }
+ if (retval == 1)
+ return true;
+ else if (code == JUMP_INSN)
+ return false;
+ }
+
+ set = single_set (insn);
+ if (set && reg_overlap_mentioned_p (reg, SET_SRC (set)))
+ return false;
+ if (set && reg_overlap_mentioned_p (reg, SET_DEST (set)))
+ return !MEM_P (SET_DEST (set));
+ if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
+ return false;
+
+ if (code == CALL_INSN && call_really_used_regs[REGNO (reg)])
+ return true;
+ }
+ return true;
+}
+
+#include "ggc.h"
+
+static GTY(()) rtx t_reg_rtx;
+rtx
+get_t_reg_rtx (void)
+{
+ if (! t_reg_rtx)
+ t_reg_rtx = gen_rtx_REG (SImode, T_REG);
+ return t_reg_rtx;
+}
+
+static GTY(()) rtx fpscr_rtx;
+rtx
+get_fpscr_rtx (void)
+{
+ if (! fpscr_rtx)
+ {
+ fpscr_rtx = gen_rtx_REG (PSImode, FPSCR_REG);
+ REG_USERVAR_P (fpscr_rtx) = 1;
+ mark_user_reg (fpscr_rtx);
+ }
+ if (! reload_completed || mdep_reorg_phase != SH_AFTER_MDEP_REORG)
+ mark_user_reg (fpscr_rtx);
+ return fpscr_rtx;
+}
+
+static GTY(()) tree fpscr_values;
+
+static void
+emit_fpu_switch (rtx scratch, int index)
+{
+ rtx dst, src;
+
+ if (fpscr_values == NULL)
+ {
+ tree t;
+
+ t = build_index_type (integer_one_node);
+ t = build_array_type (integer_type_node, t);
+ t = build_decl (BUILTINS_LOCATION,
+ VAR_DECL, get_identifier ("__fpscr_values"), t);
+ DECL_ARTIFICIAL (t) = 1;
+ DECL_IGNORED_P (t) = 1;
+ DECL_EXTERNAL (t) = 1;
+ TREE_STATIC (t) = 1;
+ TREE_PUBLIC (t) = 1;
+ TREE_USED (t) = 1;
+
+ fpscr_values = t;
+ }
+
+ src = DECL_RTL (fpscr_values);
+ if (!can_create_pseudo_p ())
+ {
+ emit_move_insn (scratch, XEXP (src, 0));
+ if (index != 0)
+ emit_insn (gen_addsi3 (scratch, scratch, GEN_INT (index * 4)));
+ src = adjust_automodify_address (src, PSImode, scratch, index * 4);
+ }
+ else
+ src = adjust_address (src, PSImode, index * 4);
+
+ dst = get_fpscr_rtx ();
+ emit_move_insn (dst, src);
+}
+
+void
+emit_sf_insn (rtx pat)
+{
+ emit_insn (pat);
+}
+
+void
+emit_df_insn (rtx pat)
+{
+ emit_insn (pat);
+}
+
+void
+expand_sf_unop (rtx (*fun) (rtx, rtx, rtx), rtx *operands)
+{
+ emit_sf_insn ((*fun) (operands[0], operands[1], get_fpscr_rtx ()));
+}
+
+void
+expand_sf_binop (rtx (*fun) (rtx, rtx, rtx, rtx), rtx *operands)
+{
+ emit_sf_insn ((*fun) (operands[0], operands[1], operands[2],
+ get_fpscr_rtx ()));
+}
+
+void
+expand_df_unop (rtx (*fun) (rtx, rtx, rtx), rtx *operands)
+{
+ emit_df_insn ((*fun) (operands[0], operands[1], get_fpscr_rtx ()));
+}
+
+void
+expand_df_binop (rtx (*fun) (rtx, rtx, rtx, rtx), rtx *operands)
+{
+ emit_df_insn ((*fun) (operands[0], operands[1], operands[2],
+ get_fpscr_rtx ()));
+}
+
+static rtx get_free_reg (HARD_REG_SET);
+
+/* This function returns a register to use to load the address to load
+ the fpscr from. Currently it always returns r1 or r7, but when we are
+ able to use pseudo registers after combine, or have a better mechanism
+ for choosing a register, it should be done here. */
+/* REGS_LIVE is the liveness information for the point for which we
+ need this allocation. In some bare-bones exit blocks, r1 is live at the
+ start. We can even have all of r0..r3 being live:
+__complex__ long long f (double d) { if (d == 0) return 2; else return 3; }
+ INSN before which new insns are placed with will clobber the register
+ we return. If a basic block consists only of setting the return value
+ register to a pseudo and using that register, the return value is not
+ live before or after this block, yet we we'll insert our insns right in
+ the middle. */
+static rtx
+get_free_reg (HARD_REG_SET regs_live)
+{
+ if (! TEST_HARD_REG_BIT (regs_live, 1))
+ return gen_rtx_REG (Pmode, 1);
+
+ /* Hard reg 1 is live; since this is a small register classes target,
+ there shouldn't be anything but a jump before the function end. */
+ gcc_assert (!TEST_HARD_REG_BIT (regs_live, 7));
+ return gen_rtx_REG (Pmode, 7);
+}
+
+/* This function will set the fpscr from memory.
+ MODE is the mode we are setting it to. */
+void
+fpscr_set_from_mem (int mode, HARD_REG_SET regs_live)
+{
+ enum attr_fp_mode fp_mode = (enum attr_fp_mode) mode;
+ enum attr_fp_mode norm_mode = ACTUAL_NORMAL_MODE (FP_MODE);
+ rtx addr_reg;
+
+ addr_reg = !can_create_pseudo_p () ? get_free_reg (regs_live) : NULL_RTX;
+ emit_fpu_switch (addr_reg, fp_mode == norm_mode);
+}
+
+/* Is the given character a logical line separator for the assembler? */
+#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
+#define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
+#endif
+
+static bool
+sequence_insn_p (rtx insn)
+{
+ rtx prev, next;
+
+ prev = PREV_INSN (insn);
+ if (prev == NULL)
+ return false;
+
+ next = NEXT_INSN (prev);
+ if (next == NULL)
+ return false;
+
+ return INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE;
+}
+
+int
+sh_insn_length_adjustment (rtx insn)
+{
+ /* Instructions with unfilled delay slots take up an extra two bytes for
+ the nop in the delay slot. */
+ if (((NONJUMP_INSN_P (insn)
+ && GET_CODE (PATTERN (insn)) != USE
+ && GET_CODE (PATTERN (insn)) != CLOBBER)
+ || CALL_P (insn) || JUMP_P (insn))
+ && ! sequence_insn_p (insn)
+ && get_attr_needs_delay_slot (insn) == NEEDS_DELAY_SLOT_YES)
+ return 2;
+
+ /* SH2e has a bug that prevents the use of annulled branches, so if
+ the delay slot is not filled, we'll have to put a NOP in it. */
+ if (sh_cpu_attr == CPU_SH2E
+ && JUMP_P (insn)
+ && get_attr_type (insn) == TYPE_CBRANCH
+ && ! sequence_insn_p (insn))
+ return 2;
+
+ /* sh-dsp parallel processing insn take four bytes instead of two. */
+
+ if (NONJUMP_INSN_P (insn))
+ {
+ int sum = 0;
+ rtx body = PATTERN (insn);
+ const char *templ;
+ char c;
+ bool maybe_label = true;
+
+ if (GET_CODE (body) == ASM_INPUT)
+ templ = XSTR (body, 0);
+ else if (asm_noperands (body) >= 0)
+ templ
+ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
+ else
+ return 0;
+ do
+ {
+ int ppi_adjust = 0;
+
+ do
+ c = *templ++;
+ while (c == ' ' || c == '\t');
+ /* all sh-dsp parallel-processing insns start with p.
+ The only non-ppi sh insn starting with p is pref.
+ The only ppi starting with pr is prnd. */
+ if ((c == 'p' || c == 'P') && strncasecmp ("re", templ, 2))
+ ppi_adjust = 2;
+ /* The repeat pseudo-insn expands two three insns, a total of
+ six bytes in size. */
+ else if ((c == 'r' || c == 'R')
+ && ! strncasecmp ("epeat", templ, 5))
+ ppi_adjust = 4;
+ while (c && c != '\n'
+ && ! IS_ASM_LOGICAL_LINE_SEPARATOR (c, templ))
+ {
+ /* If this is a label, it is obviously not a ppi insn. */
+ if (c == ':' && maybe_label)
+ {
+ ppi_adjust = 0;
+ break;
+ }
+ else if (c == '\'' || c == '"')
+ maybe_label = false;
+ c = *templ++;
+ }
+ sum += ppi_adjust;
+ maybe_label = c != ':';
+ }
+ while (c);
+ return sum;
+ }
+ return 0;
+}
+
+/* Return TRUE for a valid displacement for the REG+disp addressing
+ with MODE. */
+bool
+sh_legitimate_index_p (enum machine_mode mode, rtx op, bool consider_sh2a,
+ bool allow_zero)
+{
+ if (! CONST_INT_P (op))
+ return false;
+
+ if (TARGET_SHMEDIA)
+ {
+ int size;
+
+ /* Check if this is the address of an unaligned load / store. */
+ if (mode == VOIDmode)
+ return satisfies_constraint_I06 (op);
+
+ size = GET_MODE_SIZE (mode);
+ return (!(INTVAL (op) & (size - 1))
+ && INTVAL (op) >= -512 * size
+ && INTVAL (op) < 512 * size);
+ }
+ else
+ {
+ const HOST_WIDE_INT offset = INTVAL (op);
+ const int max_disp = sh_max_mov_insn_displacement (mode, consider_sh2a);
+ const int align_mask = mov_insn_alignment_mask (mode, consider_sh2a);
+
+ /* If the mode does not support any displacement always return false.
+ Even though an index of '0' is actually always valid, it will cause
+ troubles when e.g. a DFmode move is split into two SFmode moves,
+ where one SFmode move will have index '0' and the other move will
+ have index '4'. */
+ if (!allow_zero && max_disp < 1)
+ return false;
+
+ return offset >= 0 && offset <= max_disp && (offset & align_mask) == 0;
+ }
+}
+
+/* Recognize an RTL expression that is a valid memory address for
+ an instruction.
+ The MODE argument is the machine mode for the MEM expression
+ that wants to use this address.
+ Allow REG
+ REG+disp
+ REG+r0
+ REG++
+ --REG
+ GBR
+ GBR+disp */
+static bool
+sh_legitimate_address_p (enum machine_mode mode, rtx x, bool strict)
+{
+ if (REG_P (x) && REGNO (x) == GBR_REG)
+ return true;
+
+ if (MAYBE_BASE_REGISTER_RTX_P (x, strict))
+ return true;
+ else if ((GET_CODE (x) == POST_INC || GET_CODE (x) == PRE_DEC)
+ && ! TARGET_SHMEDIA
+ && MAYBE_BASE_REGISTER_RTX_P (XEXP (x, 0), strict))
+ return true;
+ else if (GET_CODE (x) == PLUS
+ && (mode != PSImode || reload_completed))
+ {
+ rtx xop0 = XEXP (x, 0);
+ rtx xop1 = XEXP (x, 1);
+
+ if (REG_P (xop0) && REGNO (xop0) == GBR_REG)
+ return gbr_displacement (xop1, mode);
+
+ if (GET_MODE_SIZE (mode) <= 8
+ && MAYBE_BASE_REGISTER_RTX_P (xop0, strict)
+ && sh_legitimate_index_p (mode, xop1, TARGET_SH2A, false))
+ return true;
+
+ if ((ALLOW_INDEXED_ADDRESS || GET_MODE (x) == DImode
+ || ((xop0 == stack_pointer_rtx
+ || xop0 == hard_frame_pointer_rtx)
+ && REG_P (xop1) && REGNO (xop1) == R0_REG)
+ || ((xop1 == stack_pointer_rtx
+ || xop1 == hard_frame_pointer_rtx)
+ && REG_P (xop0) && REGNO (xop0) == R0_REG))
+ && ((!TARGET_SHMEDIA && GET_MODE_SIZE (mode) <= 4)
+ || (TARGET_SHMEDIA && GET_MODE_SIZE (mode) <= 8)
+ || ((TARGET_SH4 || TARGET_SH2A_DOUBLE)
+ && TARGET_FMOVD && mode == DFmode)))
+ {
+ if (MAYBE_BASE_REGISTER_RTX_P (xop1, strict)
+ && MAYBE_INDEX_REGISTER_RTX_P (xop0, strict))
+ return true;
+ if (MAYBE_INDEX_REGISTER_RTX_P (xop1, strict)
+ && MAYBE_BASE_REGISTER_RTX_P (xop0, strict))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* Return TRUE if X references a SYMBOL_REF or LABEL_REF whose symbol
+ isn't protected by a PIC unspec. */
+bool
+nonpic_symbol_mentioned_p (rtx x)
+{
+ const char *fmt;
+ int i;
+
+ if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF
+ || GET_CODE (x) == PC)
+ return true;
+
+ /* We don't want to look into the possible MEM location of a
+ CONST_DOUBLE, since we're not going to use it, in general. */
+ if (GET_CODE (x) == CONST_DOUBLE)
+ return false;
+
+ if (GET_CODE (x) == UNSPEC
+ && (XINT (x, 1) == UNSPEC_PIC
+ || XINT (x, 1) == UNSPEC_GOT
+ || XINT (x, 1) == UNSPEC_GOTOFF
+ || XINT (x, 1) == UNSPEC_GOTPLT
+ || XINT (x, 1) == UNSPEC_GOTTPOFF
+ || XINT (x, 1) == UNSPEC_DTPOFF
+ || XINT (x, 1) == UNSPEC_TPOFF
+ || XINT (x, 1) == UNSPEC_PLT
+ || XINT (x, 1) == UNSPEC_SYMOFF
+ || XINT (x, 1) == UNSPEC_PCREL_SYMOFF))
+ return false;
+
+ fmt = GET_RTX_FORMAT (GET_CODE (x));
+ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'E')
+ {
+ int j;
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ if (nonpic_symbol_mentioned_p (XVECEXP (x, i, j)))
+ return true;
+ }
+ else if (fmt[i] == 'e' && nonpic_symbol_mentioned_p (XEXP (x, i)))
+ return true;
+ }
+
+ return false;
+}
+
+/* Convert a non-PIC address in `orig' to a PIC address using @GOT or
+ @GOTOFF in `reg'. */
+rtx
+legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
+ rtx reg)
+{
+ if (tls_symbolic_operand (orig, Pmode) != TLS_MODEL_NONE)
+ return orig;
+
+ if (GET_CODE (orig) == LABEL_REF
+ || (GET_CODE (orig) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (orig)))
+ {
+ if (reg == NULL_RTX)
+ reg = gen_reg_rtx (Pmode);
+
+ emit_insn (gen_symGOTOFF2reg (reg, orig));
+ return reg;
+ }
+ else if (GET_CODE (orig) == SYMBOL_REF)
+ {
+ if (reg == NULL_RTX)
+ reg = gen_reg_rtx (Pmode);
+
+ emit_insn (gen_symGOT2reg (reg, orig));
+ return reg;
+ }
+ return orig;
+}
+
+/* Given a (logical) mode size and an offset in bytes, try to find a the
+ appropriate displacement value for a mov insn. On SH the displacements
+ are limited to max. 60 bytes for SImode, max. 30 bytes in HImode and max.
+ 15 bytes in QImode. To compensate this we create a new base address by
+ adding an adjustment value to it.
+
+ If the originally requested offset is greater than 127 we prefer using
+ values 124..127 over 128..131 to increase opportunities to use the
+ add #imm, Rn insn.
+
+ In some cases it is possible that a requested offset might seem unaligned
+ or inappropriate for the mode size, like offset = 2 and mode size = 4.
+ This is compensated by adjusting the base address so that the effective
+ address of the displacement move insn will be aligned.
+
+ This is not the best possible way of rebasing the base address, as it
+ does not look at other present displacement addressings around it.
+ In some cases this can create more base address adjustments than would
+ actually be necessary. */
+struct disp_adjust
+{
+ rtx offset_adjust;
+ rtx mov_disp;
+};
+
+static struct disp_adjust
+sh_find_mov_disp_adjust (enum machine_mode mode, HOST_WIDE_INT offset)
+{
+ struct disp_adjust res = { NULL_RTX, NULL_RTX };
+
+ /* Do not try to use SH2A's large displacements here, because this would
+ effectively disable the small displacement insns. */
+ const int mode_sz = GET_MODE_SIZE (mode);
+ const int mov_insn_sz = mov_insn_size (mode, false);
+ const int max_disp = sh_max_mov_insn_displacement (mode, false);
+ const int max_disp_next = max_disp + mov_insn_sz;
+ HOST_WIDE_INT align_modifier = offset > 127 ? mov_insn_sz : 0;
+ HOST_WIDE_INT offset_adjust;
+
+ /* In some cases this actually does happen and we must check for it. */
+ if (mode_sz < 1 || mode_sz > 8 || max_disp < 1)
+ return res;
+
+ /* Keeps the previous behavior for QImode displacement addressing.
+ This just decides how the offset is re-based. Removing this special
+ case will result in slightly bigger code on average, but it's not that
+ bad actually. */
+ if (mov_insn_sz == 1)
+ align_modifier = 0;
+
+ offset_adjust = ((offset + align_modifier) & ~max_disp) - align_modifier;
+
+ if (mode_sz + offset - offset_adjust <= max_disp_next)
+ {
+ res.offset_adjust = GEN_INT (offset_adjust);
+ res.mov_disp = GEN_INT (offset - offset_adjust);
+ }
+
+ return res;
+}
+
+/* Try to modify an illegitimate address and make it legitimate.
+ If we find one, return the new, valid address.
+ Otherwise, return the original address. */
+static rtx
+sh_legitimize_address (rtx x, rtx oldx, enum machine_mode mode)
+{
+ if (flag_pic)
+ x = legitimize_pic_address (oldx, mode, NULL_RTX);
+
+ if (TARGET_SHMEDIA)
+ return x;
+
+ if (((TARGET_SH4 || TARGET_SH2A_DOUBLE) && mode == DFmode)
+ || (TARGET_SH2E && mode == SFmode))
+ return x;
+
+ if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1))
+ && BASE_REGISTER_RTX_P (XEXP (x, 0)))
+ {
+ struct disp_adjust adj = sh_find_mov_disp_adjust (mode,
+ INTVAL (XEXP (x, 1)));
+
+ if (adj.offset_adjust != NULL_RTX && adj.mov_disp != NULL_RTX)
+ {
+ rtx sum = expand_binop (Pmode, add_optab, XEXP (x, 0),
+ adj.offset_adjust, NULL_RTX, 0,
+ OPTAB_LIB_WIDEN);
+ return gen_rtx_PLUS (Pmode, sum, adj.mov_disp);
+ }
+ }
+
+ return x;
+}
+
+/* Attempt to replace *p, which is an address that needs reloading, with
+ a valid memory address for an operand of mode MODE.
+ Like for sh_legitimize_address, for the SH we try to get a normal form
+ of the address. That will allow inheritance of the address reloads. */
+bool
+sh_legitimize_reload_address (rtx *p, enum machine_mode mode, int opnum,
+ int itype)
+{
+ enum reload_type type = (enum reload_type) itype;
+ const int mode_sz = GET_MODE_SIZE (mode);
+
+ if (TARGET_SHMEDIA)
+ return false;
+
+ if (GET_CODE (*p) == PLUS && CONST_INT_P (XEXP (*p, 1))
+ && MAYBE_BASE_REGISTER_RTX_P (XEXP (*p, 0), true)
+ && ! (mode == PSImode && type == RELOAD_FOR_INPUT_ADDRESS)
+ && (ALLOW_INDEXED_ADDRESS
+ || XEXP (*p, 0) == stack_pointer_rtx
+ || XEXP (*p, 0) == hard_frame_pointer_rtx))
+ {
+ const HOST_WIDE_INT offset = INTVAL (XEXP (*p, 1));
+ struct disp_adjust adj = sh_find_mov_disp_adjust (mode, offset);
+
+ if (TARGET_SH2A && mode == DFmode && (offset & 0x7))
+ {
+ push_reload (*p, NULL_RTX, p, NULL,
+ BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, type);
+ return true;
+ }
+
+ if (TARGET_SH2E && mode == SFmode)
+ {
+ *p = copy_rtx (*p);
+ push_reload (*p, NULL_RTX, p, NULL,
+ BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, type);
+ return true;
+ }
+
+ /* FIXME: Do not allow to legitimize QImode and HImode displacement
+ moves because then reload has a problem figuring the constraint
+ that the move insn target/source reg must be R0.
+ Or maybe some handling is wrong in sh_secondary_reload for this
+ to work properly? */
+ if ((mode_sz == 4 || mode_sz == 8)
+ && ! (TARGET_SH4 && mode == DFmode)
+ && adj.offset_adjust != NULL_RTX && adj.mov_disp != NULL_RTX)
+ {
+ rtx sum = gen_rtx_PLUS (Pmode, XEXP (*p, 0), adj.offset_adjust);
+ *p = gen_rtx_PLUS (Pmode, sum, adj.mov_disp);
+ push_reload (sum, NULL_RTX, &XEXP (*p, 0), NULL,
+ BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, type);
+ return true;
+ }
+ }
+
+ /* We must re-recognize what we created before. */
+ if (GET_CODE (*p) == PLUS
+ && (mode_sz == 4 || mode_sz == 8)
+ && GET_CODE (XEXP (*p, 0)) == PLUS
+ && CONST_INT_P (XEXP (XEXP (*p, 0), 1))
+ && MAYBE_BASE_REGISTER_RTX_P (XEXP (XEXP (*p, 0), 0), true)
+ && CONST_INT_P (XEXP (*p, 1))
+ && ! (TARGET_SH2E && mode == SFmode))
+ {
+ /* Because this address is so complex, we know it must have
+ been created by LEGITIMIZE_RELOAD_ADDRESS before; thus,
+ it is already unshared, and needs no further unsharing. */
+ push_reload (XEXP (*p, 0), NULL_RTX, &XEXP (*p, 0), NULL,
+ BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, type);
+ return true;
+ }
+
+ return false;
+}
+
+/* In the name of slightly smaller debug output, and to cater to
+ general assembler lossage, recognize various UNSPEC sequences
+ and turn them back into a direct symbol reference. */
+static rtx
+sh_delegitimize_address (rtx orig_x)
+{
+ rtx x, y;
+
+ orig_x = delegitimize_mem_from_attrs (orig_x);
+
+ x = orig_x;
+ if (MEM_P (x))
+ x = XEXP (x, 0);
+ if (GET_CODE (x) == CONST)
+ {
+ y = XEXP (x, 0);
+ if (GET_CODE (y) == UNSPEC)
+ {
+ if (XINT (y, 1) == UNSPEC_GOT
+ || XINT (y, 1) == UNSPEC_GOTOFF
+ || XINT (y, 1) == UNSPEC_SYMOFF)
+ return XVECEXP (y, 0, 0);
+ else if (XINT (y, 1) == UNSPEC_PCREL_SYMOFF)
+ {
+ if (GET_CODE (XVECEXP (y, 0, 0)) == CONST)
+ {
+ rtx symplt = XEXP (XVECEXP (y, 0, 0), 0);
+
+ if (GET_CODE (symplt) == UNSPEC
+ && XINT (symplt, 1) == UNSPEC_PLT)
+ return XVECEXP (symplt, 0, 0);
+ }
+ }
+ else if (TARGET_SHMEDIA
+ && (XINT (y, 1) == UNSPEC_EXTRACT_S16
+ || XINT (y, 1) == UNSPEC_EXTRACT_U16))
+ {
+ rtx offset = XVECEXP (y, 0, 1);
+
+ x = gen_rtx_PLUS (Pmode, XVECEXP (y, 0, 0), offset);
+ if (MEM_P (orig_x))
+ x = replace_equiv_address_nv (orig_x, x);
+ return x;
+ }
+ }
+ }
+
+ return orig_x;
+}
+
+/* Mark the use of a constant in the literal table. If the constant
+ has multiple labels, make it unique. */
+static rtx
+mark_constant_pool_use (rtx x)
+{
+ rtx insn, lab, pattern;
+
+ if (x == NULL_RTX)
+ return x;
+
+ switch (GET_CODE (x))
+ {
+ case LABEL_REF:
+ x = XEXP (x, 0);
+ case CODE_LABEL:
+ break;
+ default:
+ return x;
+ }
+
+ /* Get the first label in the list of labels for the same constant
+ and delete another labels in the list. */
+ lab = x;
+ for (insn = PREV_INSN (x); insn; insn = PREV_INSN (insn))
+ {
+ if (!LABEL_P (insn)
+ || LABEL_REFS (insn) != NEXT_INSN (insn))
+ break;
+ lab = insn;
+ }
+
+ for (insn = LABEL_REFS (lab); insn; insn = LABEL_REFS (insn))
+ INSN_DELETED_P (insn) = 1;
+
+ /* Mark constants in a window. */
+ for (insn = NEXT_INSN (x); insn; insn = NEXT_INSN (insn))
+ {
+ if (!NONJUMP_INSN_P (insn))
+ continue;
+
+ pattern = PATTERN (insn);
+ if (GET_CODE (pattern) != UNSPEC_VOLATILE)
+ continue;
+
+ switch (XINT (pattern, 1))
+ {
+ case UNSPECV_CONST2:
+ case UNSPECV_CONST4:
+ case UNSPECV_CONST8:
+ XVECEXP (pattern, 0, 1) = const1_rtx;
+ break;
+ case UNSPECV_WINDOW_END:
+ if (XVECEXP (pattern, 0, 0) == x)
+ return lab;
+ break;
+ case UNSPECV_CONST_END:
+ return lab;
+ default:
+ break;
+ }
+ }
+
+ return lab;
+}
+
+/* Return true if it's possible to redirect BRANCH1 to the destination
+ of an unconditional jump BRANCH2. We only want to do this if the
+ resulting branch will have a short displacement. */
+bool
+sh_can_redirect_branch (rtx branch1, rtx branch2)
+{
+ if (flag_expensive_optimizations && simplejump_p (branch2))
+ {
+ rtx dest = XEXP (SET_SRC (single_set (branch2)), 0);
+ rtx insn;
+ int distance;
+
+ for (distance = 0, insn = NEXT_INSN (branch1);
+ insn && distance < 256;
+ insn = PREV_INSN (insn))
+ {
+ if (insn == dest)
+ return true;
+ else
+ distance += get_attr_length (insn);
+ }
+ for (distance = 0, insn = NEXT_INSN (branch1);
+ insn && distance < 256;
+ insn = NEXT_INSN (insn))
+ {
+ if (insn == dest)
+ return true;
+ else
+ distance += get_attr_length (insn);
+ }
+ }
+ return false;
+}
+
+/* Return nonzero if register old_reg can be renamed to register new_reg. */
+bool
+sh_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
+ unsigned int new_reg)
+{
+ /* Interrupt functions can only use registers that have already been
+ saved by the prologue, even if they would normally be
+ call-clobbered. */
+ if (sh_cfun_interrupt_handler_p () && !df_regs_ever_live_p (new_reg))
+ return false;
+
+ return true;
+}
+
+/* Function to update the integer COST
+ based on the relationship between INSN that is dependent on
+ DEP_INSN through the dependence LINK. The default is to make no
+ adjustment to COST. This can be used for example to specify to
+ the scheduler that an output- or anti-dependence does not incur
+ the same cost as a data-dependence. The return value should be
+ the new value for COST. */
+static int
+sh_adjust_cost (rtx insn, rtx link ATTRIBUTE_UNUSED, rtx dep_insn, int cost)
+{
+ rtx reg, use_pat;
+
+ if (TARGET_SHMEDIA)
+ {
+ /* On SHmedia, if the dependence is an anti-dependence or
+ output-dependence, there is no cost. */
+ if (REG_NOTE_KIND (link) != 0)
+ {
+ /* However, dependencies between target register loads and
+ uses of the register in a subsequent block that are separated
+ by a conditional branch are not modelled - we have to do with
+ the anti-dependency between the target register load and the
+ conditional branch that ends the current block. */
+ if (REG_NOTE_KIND (link) == REG_DEP_ANTI
+ && GET_CODE (PATTERN (dep_insn)) == SET
+ && (get_attr_type (dep_insn) == TYPE_PT_MEDIA
+ || get_attr_type (dep_insn) == TYPE_PTABS_MEDIA)
+ && get_attr_type (insn) == TYPE_CBRANCH_MEDIA)
+ {
+ int orig_cost = cost;
+ rtx note = find_reg_note (insn, REG_BR_PROB, 0);
+ rtx target = ((!note || XINT (note, 0) * 2 < REG_BR_PROB_BASE)
+ ? insn : JUMP_LABEL (insn));
+ /* On the likely path, the branch costs 1, on the unlikely path,
+ it costs 3. */
+ cost--;
+ do
+ target = next_active_insn (target);
+ while (target && ! flow_dependent_p (target, dep_insn)
+ && --cost > 0);
+ /* If two branches are executed in immediate succession, with the
+ first branch properly predicted, this causes a stall at the
+ second branch, hence we won't need the target for the
+ second branch for two cycles after the launch of the first
+ branch. */
+ if (cost > orig_cost - 2)
+ cost = orig_cost - 2;
+ }
+ else
+ cost = 0;
+ }
+
+ else if (get_attr_is_mac_media (insn)
+ && get_attr_is_mac_media (dep_insn))
+ cost = 1;
+
+ else if (! reload_completed
+ && GET_CODE (PATTERN (insn)) == SET
+ && GET_CODE (SET_SRC (PATTERN (insn))) == FLOAT
+ && GET_CODE (PATTERN (dep_insn)) == SET
+ && fp_arith_reg_operand (SET_SRC (PATTERN (dep_insn)), VOIDmode)
+ && cost < 4)
+ cost = 4;
+ /* Schedule the ptabs for a casesi_jump_media in preference to stuff
+ that is needed at the target. */
+ else if (get_attr_type (insn) == TYPE_JUMP_MEDIA
+ && ! flow_dependent_p (insn, dep_insn))
+ cost--;
+ }
+ else if (REG_NOTE_KIND (link) == 0)
+ {
+ enum attr_type type;
+ rtx dep_set;
+
+ if (recog_memoized (insn) < 0
+ || recog_memoized (dep_insn) < 0)
+ return cost;
+
+ dep_set = single_set (dep_insn);
+
+ /* The latency that we specify in the scheduling description refers
+ to the actual output, not to an auto-increment register; for that,
+ the latency is one. */
+ if (dep_set && MEM_P (SET_SRC (dep_set)) && cost > 1)
+ {
+ rtx set = single_set (insn);
+
+ if (set
+ && !reg_mentioned_p (SET_DEST (dep_set), SET_SRC (set))
+ && (!MEM_P (SET_DEST (set))
+ || !reg_mentioned_p (SET_DEST (dep_set),
+ XEXP (SET_DEST (set), 0))))
+ cost = 1;
+ }
+ /* The only input for a call that is timing-critical is the
+ function's address. */
+ if (CALL_P (insn))
+ {
+ rtx call = get_call_rtx_from (insn);
+ if (call
+ /* sibcalli_thunk uses a symbol_ref in an unspec. */
+ && (GET_CODE (XEXP (XEXP (call, 0), 0)) == UNSPEC
+ || ! reg_set_p (XEXP (XEXP (call, 0), 0), dep_insn)))
+ cost -= TARGET_SH4_300 ? 3 : 6;
+ }
+ /* Likewise, the most timing critical input for an sfuncs call
+ is the function address. However, sfuncs typically start
+ using their arguments pretty quickly.
+ Assume a four cycle delay for SH4 before they are needed.
+ Cached ST40-300 calls are quicker, so assume only a one
+ cycle delay there.
+ ??? Maybe we should encode the delays till input registers
+ are needed by sfuncs into the sfunc call insn. */
+ /* All sfunc calls are parallels with at least four components.
+ Exploit this to avoid unnecessary calls to sfunc_uses_reg. */
+ else if (GET_CODE (PATTERN (insn)) == PARALLEL
+ && XVECLEN (PATTERN (insn), 0) >= 4
+ && (reg = sfunc_uses_reg (insn)))
+ {
+ if (! reg_set_p (reg, dep_insn))
+ cost -= TARGET_SH4_300 ? 1 : 4;
+ }
+ if (TARGET_HARD_SH4 && !TARGET_SH4_300)
+ {
+ enum attr_type dep_type = get_attr_type (dep_insn);
+
+ if (dep_type == TYPE_FLOAD || dep_type == TYPE_PCFLOAD)
+ cost--;
+ else if ((dep_type == TYPE_LOAD_SI || dep_type == TYPE_PCLOAD_SI)
+ && (type = get_attr_type (insn)) != TYPE_CALL
+ && type != TYPE_SFUNC)
+ cost--;
+ /* When the preceding instruction loads the shift amount of
+ the following SHAD/SHLD, the latency of the load is increased
+ by 1 cycle. */
+ if (get_attr_type (insn) == TYPE_DYN_SHIFT
+ && get_attr_any_int_load (dep_insn) == ANY_INT_LOAD_YES
+ && reg_overlap_mentioned_p (SET_DEST (dep_set),
+ XEXP (SET_SRC (single_set (insn)),
+ 1)))
+ cost++;
+ /* When an LS group instruction with a latency of less than
+ 3 cycles is followed by a double-precision floating-point
+ instruction, FIPR, or FTRV, the latency of the first
+ instruction is increased to 3 cycles. */
+ else if (cost < 3
+ && get_attr_insn_class (dep_insn) == INSN_CLASS_LS_GROUP
+ && get_attr_dfp_comp (insn) == DFP_COMP_YES)
+ cost = 3;
+ /* The lsw register of a double-precision computation is ready one
+ cycle earlier. */
+ else if (reload_completed
+ && get_attr_dfp_comp (dep_insn) == DFP_COMP_YES
+ && (use_pat = single_set (insn))
+ && ! regno_use_in (REGNO (SET_DEST (single_set (dep_insn))),
+ SET_SRC (use_pat)))
+ cost -= 1;
+
+ if (get_attr_any_fp_comp (dep_insn) == ANY_FP_COMP_YES
+ && get_attr_late_fp_use (insn) == LATE_FP_USE_YES)
+ cost -= 1;
+ }
+ else if (TARGET_SH4_300)
+ {
+ /* Stores need their input register two cycles later. */
+ if (dep_set && cost >= 1
+ && ((type = get_attr_type (insn)) == TYPE_STORE
+ || type == TYPE_PSTORE
+ || type == TYPE_FSTORE || type == TYPE_MAC_MEM))
+ {
+ rtx set = single_set (insn);
+
+ if (!reg_mentioned_p (SET_SRC (set), XEXP (SET_DEST (set), 0))
+ && rtx_equal_p (SET_SRC (set), SET_DEST (dep_set)))
+ {
+ cost -= 2;
+ /* But don't reduce the cost below 1 if the address depends
+ on a side effect of dep_insn. */
+ if (cost < 1
+ && modified_in_p (XEXP (SET_DEST (set), 0), dep_insn))
+ cost = 1;
+ }
+ }
+ }
+ }
+ /* An anti-dependence penalty of two applies if the first insn is a double
+ precision fadd / fsub / fmul. */
+ else if (!TARGET_SH4_300
+ && REG_NOTE_KIND (link) == REG_DEP_ANTI
+ && recog_memoized (dep_insn) >= 0
+ && (get_attr_type (dep_insn) == TYPE_DFP_ARITH
+ || get_attr_type (dep_insn) == TYPE_DFP_MUL)
+ /* A lot of alleged anti-flow dependences are fake,
+ so check this one is real. */
+ && flow_dependent_p (dep_insn, insn))
+ cost = 2;
+
+ return cost;
+}
+
+/* Check if INSN is flow-dependent on DEP_INSN. Can also be used to check
+ if DEP_INSN is anti-flow dependent on INSN. */
+static bool
+flow_dependent_p (rtx insn, rtx dep_insn)
+{
+ rtx tmp = PATTERN (insn);
+
+ note_stores (PATTERN (dep_insn), flow_dependent_p_1, &tmp);
+ return tmp == NULL_RTX;
+}
+
+/* A helper function for flow_dependent_p called through note_stores. */
+static void
+flow_dependent_p_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
+{
+ rtx * pinsn = (rtx *) data;
+
+ if (*pinsn && reg_referenced_p (x, *pinsn))
+ *pinsn = NULL_RTX;
+}
+
+/* For use by sh_allocate_initial_value. Note that sh.md contains some
+ 'special function' patterns (type sfunc) that clobber pr, but that
+ do not look like function calls to leaf_function_p. Hence we must
+ do this extra check. */
+static int
+sh_pr_n_sets (void)
+{
+ return DF_REG_DEF_COUNT (TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG);
+}
+
+/* Return where to allocate pseudo for a given hard register initial
+ value. */
+static rtx
+sh_allocate_initial_value (rtx hard_reg)
+{
+ rtx x;
+
+ if (REGNO (hard_reg) == (TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG))
+ {
+ if (crtl->is_leaf
+ && ! sh_pr_n_sets ()
+ && ! (TARGET_SHCOMPACT
+ && ((crtl->args.info.call_cookie
+ & ~ CALL_COOKIE_RET_TRAMP (1))
+ || crtl->saves_all_registers)))
+ x = hard_reg;
+ else
+ x = gen_frame_mem (Pmode, return_address_pointer_rtx);
+ }
+ else
+ x = NULL_RTX;
+
+ return x;
+}
+
+/* This function returns "2" to indicate dual issue for the SH4
+ processor. To be used by the DFA pipeline description. */
+static int
+sh_issue_rate (void)
+{
+ if (TARGET_SUPERSCALAR)
+ return 2;
+ else
+ return 1;
+}
+
+/* Functions for ready queue reordering for sched1. */
+
+/* Get weight for mode for a set x. */
+static short
+find_set_regmode_weight (rtx x, enum machine_mode mode)
+{
+ if (GET_CODE (x) == CLOBBER && register_operand (SET_DEST (x), mode))
+ return 1;
+ if (GET_CODE (x) == SET && register_operand (SET_DEST (x), mode))
+ {
+ if (REG_P (SET_DEST (x)))
+ {
+ if (!reg_mentioned_p (SET_DEST (x), SET_SRC (x)))
+ return 1;
+ else
+ return 0;
+ }
+ return 1;
+ }
+ return 0;
+}
+
+/* Get regmode weight for insn. */
+static short
+find_insn_regmode_weight (rtx insn, enum machine_mode mode)
+{
+ short reg_weight = 0;
+ rtx x;
+
+ /* Increment weight for each register born here. */
+ x = PATTERN (insn);
+ reg_weight += find_set_regmode_weight (x, mode);
+ if (GET_CODE (x) == PARALLEL)
+ {
+ int j;
+ for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
+ {
+ x = XVECEXP (PATTERN (insn), 0, j);
+ reg_weight += find_set_regmode_weight (x, mode);
+ }
+ }
+ /* Decrement weight for each register that dies here. */
+ for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
+ {
+ if (REG_NOTE_KIND (x) == REG_DEAD || REG_NOTE_KIND (x) == REG_UNUSED)
+ {
+ rtx note = XEXP (x, 0);
+ if (REG_P (note) && GET_MODE (note) == mode)
+ reg_weight--;
+ }
+ }
+ return reg_weight;
+}
+
+/* Calculate regmode weights for all insns of a basic block. */
+static void
+find_regmode_weight (basic_block b, enum machine_mode mode)
+{
+ rtx insn, next_tail, head, tail;
+
+ get_ebb_head_tail (b, b, &head, &tail);
+ next_tail = NEXT_INSN (tail);
+
+ for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
+ {
+ /* Handle register life information. */
+ if (!INSN_P (insn))
+ continue;
+
+ if (mode == SFmode)
+ INSN_REGMODE_WEIGHT (insn, mode) =
+ find_insn_regmode_weight (insn, mode)
+ + 2 * find_insn_regmode_weight (insn, DFmode);
+ else if (mode == SImode)
+ INSN_REGMODE_WEIGHT (insn, mode) =
+ find_insn_regmode_weight (insn, mode)
+ + 2 * find_insn_regmode_weight (insn, DImode);
+ }
+}
+
+/* Comparison function for ready queue sorting. */
+static int
+rank_for_reorder (const void *x, const void *y)
+{
+ rtx tmp = *(const rtx *) y;
+ rtx tmp2 = *(const rtx *) x;
+
+ /* The insn in a schedule group should be issued the first. */
+ if (SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
+ return SCHED_GROUP_P (tmp2) ? 1 : -1;
+
+ /* If insns are equally good, sort by INSN_LUID (original insn order), This
+ minimizes instruction movement, thus minimizing sched's effect on
+ register pressure. */
+ return INSN_LUID (tmp) - INSN_LUID (tmp2);
+}
+
+/* Resort the array A in which only element at index N may be out of order. */
+static void
+swap_reorder (rtx *a, int n)
+{
+ rtx insn = a[n - 1];
+ int i = n - 2;
+
+ while (i >= 0 && rank_for_reorder (a + i, &insn) >= 0)
+ {
+ a[i + 1] = a[i];
+ i -= 1;
+ }
+ a[i + 1] = insn;
+}
+
+/* Sort the ready list by ascending priority. */
+static void
+ready_reorder (rtx *ready, int nready)
+{
+ if (nready == 2)
+ swap_reorder (ready, nready);
+ else if (nready > 2)
+ qsort (ready, nready, sizeof (rtx), rank_for_reorder);
+}
+
+/* Count life regions of r0 for a block. */
+static int
+find_r0_life_regions (basic_block b)
+{
+ rtx end, insn;
+ rtx pset;
+ rtx r0_reg;
+ int live;
+ int set;
+ int death = 0;
+
+ if (REGNO_REG_SET_P (df_get_live_in (b), R0_REG))
+ {
+ set = 1;
+ live = 1;
+ }
+ else
+ {
+ set = 0;
+ live = 0;
+ }
+
+ insn = BB_HEAD (b);
+ end = BB_END (b);
+ r0_reg = gen_rtx_REG (SImode, R0_REG);
+ while (1)
+ {
+ if (INSN_P (insn))
+ {
+ if (find_regno_note (insn, REG_DEAD, R0_REG))
+ {
+ death++;
+ live = 0;
+ }
+ if (!live
+ && (pset = single_set (insn))
+ && reg_overlap_mentioned_p (r0_reg, SET_DEST (pset))
+ && !find_regno_note (insn, REG_UNUSED, R0_REG))
+ {
+ set++;
+ live = 1;
+ }
+ }
+ if (insn == end)
+ break;
+ insn = NEXT_INSN (insn);
+ }
+ return set - death;
+}
+
+/* Calculate regmode weights for all insns of all basic block. */
+static void
+sh_md_init_global (FILE *dump ATTRIBUTE_UNUSED,
+ int verbose ATTRIBUTE_UNUSED,
+ int old_max_uid)
+{
+ basic_block b;
+
+ regmode_weight[0] = (short *) xcalloc (old_max_uid, sizeof (short));
+ regmode_weight[1] = (short *) xcalloc (old_max_uid, sizeof (short));
+ r0_life_regions = 0;
+
+ FOR_EACH_BB_REVERSE_FN (b, cfun)
+ {
+ find_regmode_weight (b, SImode);
+ find_regmode_weight (b, SFmode);
+ if (!reload_completed)
+ r0_life_regions += find_r0_life_regions (b);
+ }
+
+ CURR_REGMODE_PRESSURE (SImode) = 0;
+ CURR_REGMODE_PRESSURE (SFmode) = 0;
+}
+
+/* Cleanup. */
+static void
+sh_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
+ int verbose ATTRIBUTE_UNUSED)
+{
+ if (regmode_weight[0])
+ {
+ free (regmode_weight[0]);
+ regmode_weight[0] = NULL;
+ }
+ if (regmode_weight[1])
+ {
+ free (regmode_weight[1]);
+ regmode_weight[1] = NULL;
+ }
+}
+
+/* The scalar modes supported differs from the default version in TImode
+ for 32-bit SHMEDIA. */
+static bool
+sh_scalar_mode_supported_p (enum machine_mode mode)
+{
+ if (TARGET_SHMEDIA32 && mode == TImode)
+ return false;
+
+ return default_scalar_mode_supported_p (mode);
+}
+
+/* Cache the can_issue_more so that we can return it from reorder2. Also,
+ keep count of register pressures on SImode and SFmode. */
+static int
+sh_variable_issue (FILE *dump ATTRIBUTE_UNUSED,
+ int sched_verbose ATTRIBUTE_UNUSED,
+ rtx insn,
+ int can_issue_more)
+{
+ if (GET_CODE (PATTERN (insn)) != USE
+ && GET_CODE (PATTERN (insn)) != CLOBBER)
+ cached_can_issue_more = can_issue_more - 1;
+ else
+ cached_can_issue_more = can_issue_more;
+
+ if (reload_completed)
+ return cached_can_issue_more;
+
+ CURR_REGMODE_PRESSURE (SImode) += INSN_REGMODE_WEIGHT (insn, SImode);
+ CURR_REGMODE_PRESSURE (SFmode) += INSN_REGMODE_WEIGHT (insn, SFmode);
+
+ return cached_can_issue_more;
+}
+
+static void
+sh_md_init (FILE *dump ATTRIBUTE_UNUSED,
+ int verbose ATTRIBUTE_UNUSED,
+ int veclen ATTRIBUTE_UNUSED)
+{
+ CURR_REGMODE_PRESSURE (SImode) = 0;
+ CURR_REGMODE_PRESSURE (SFmode) = 0;
+}
+
+/* Some magic numbers. */
+/* Pressure on register r0 can lead to spill failures. so avoid sched1 for
+ functions that already have high pressure on r0. */
+#define R0_MAX_LIFE_REGIONS 2
+/* Register Pressure thresholds for SImode and SFmode registers. */
+#define SIMODE_MAX_WEIGHT 5
+#define SFMODE_MAX_WEIGHT 10
+
+/* Return true if the pressure is high for MODE. */
+static bool
+high_pressure (enum machine_mode mode)
+{
+ /* Pressure on register r0 can lead to spill failures. so avoid sched1 for
+ functions that already have high pressure on r0. */
+ if (r0_life_regions >= R0_MAX_LIFE_REGIONS)
+ return true;
+
+ if (mode == SFmode)
+ return (CURR_REGMODE_PRESSURE (SFmode) > SFMODE_MAX_WEIGHT);
+ else
+ return (CURR_REGMODE_PRESSURE (SImode) > SIMODE_MAX_WEIGHT);
+}
+
+/* Reorder ready queue if register pressure is high. */
+static int
+sh_reorder (FILE *dump ATTRIBUTE_UNUSED,
+ int sched_verbose ATTRIBUTE_UNUSED,
+ rtx *ready,
+ int *n_readyp,
+ int clock_var ATTRIBUTE_UNUSED)
+{
+ if (reload_completed)
+ return sh_issue_rate ();
+
+ if (high_pressure (SFmode) || high_pressure (SImode))
+ {
+ ready_reorder (ready, *n_readyp);
+ }
+
+ return sh_issue_rate ();
+}
+
+/* Skip cycles if the current register pressure is high. */
+static int
+sh_reorder2 (FILE *dump ATTRIBUTE_UNUSED,
+ int sched_verbose ATTRIBUTE_UNUSED,
+ rtx *ready ATTRIBUTE_UNUSED,
+ int *n_readyp ATTRIBUTE_UNUSED,
+ int clock_var ATTRIBUTE_UNUSED)
+{
+ if (reload_completed)
+ return cached_can_issue_more;
+
+ if (high_pressure(SFmode) || high_pressure (SImode))
+ skip_cycles = 1;
+
+ return cached_can_issue_more;
+}
+
+/* Skip cycles without sorting the ready queue. This will move insn from
+ Q->R. If this is the last cycle we are skipping; allow sorting of ready
+ queue by sh_reorder. */
+
+/* Generally, skipping these many cycles are sufficient for all insns to move
+ from Q -> R. */
+#define MAX_SKIPS 8
+
+static int
+sh_dfa_new_cycle (FILE *sched_dump ATTRIBUTE_UNUSED,
+ int sched_verbose ATTRIBUTE_UNUSED,
+ rtx insn ATTRIBUTE_UNUSED,
+ int last_clock_var,
+ int clock_var,
+ int *sort_p)
+{
+ if (reload_completed)
+ return 0;
+
+ if (skip_cycles)
+ {
+ if ((clock_var - last_clock_var) < MAX_SKIPS)
+ {
+ *sort_p = 0;
+ return 1;
+ }
+ /* If this is the last cycle we are skipping, allow reordering of R. */
+ if ((clock_var - last_clock_var) == MAX_SKIPS)
+ {
+ *sort_p = 1;
+ return 1;
+ }
+ }
+
+ skip_cycles = 0;
+
+ return 0;
+}
+
+/* SHmedia requires registers for branches, so we can't generate new
+ branches past reload. */
+static bool
+sh_cannot_modify_jumps_p (void)
+{
+ return (TARGET_SHMEDIA && (reload_in_progress || reload_completed));
+}
+
+static reg_class_t
+sh_target_reg_class (void)
+{
+ return TARGET_SHMEDIA ? TARGET_REGS : NO_REGS;
+}
+
+static bool
+sh_optimize_target_register_callee_saved (bool after_prologue_epilogue_gen)
+{
+ if (! shmedia_space_reserved_for_target_registers)
+ return 0;
+ if (after_prologue_epilogue_gen && ! TARGET_SAVE_ALL_TARGET_REGS)
+ return 0;
+
+ HARD_REG_SET dummy;
+ if (calc_live_regs (&dummy) >= 6 * 8)
+ return 1;
+ return 0;
+}
+
+static bool
+sh_ms_bitfield_layout_p (const_tree record_type ATTRIBUTE_UNUSED)
+{
+ return (TARGET_SH5 || TARGET_HITACHI || sh_attr_renesas_p (record_type));
+}
+
+/*
+ On the SH1..SH4, the trampoline looks like
+ 2 0002 D202 mov.l l2,r2
+ 1 0000 D301 mov.l l1,r3
+ 3 0004 422B jmp @r2
+ 4 0006 0009 nop
+ 5 0008 00000000 l1: .long area
+ 6 000c 00000000 l2: .long function
+
+ SH5 (compact) uses r1 instead of r3 for the static chain. */
+
+
+/* Emit RTL insns to initialize the variable parts of a trampoline.
+ FNADDR is an RTX for the address of the function's pure code.
+ CXT is an RTX for the static chain value for the function. */
+static void
+sh_trampoline_init (rtx tramp_mem, tree fndecl, rtx cxt)
+{
+ rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
+ rtx tramp = force_reg (Pmode, XEXP (tramp_mem, 0));
+
+ if (TARGET_SHMEDIA64)
+ {
+ rtx tramp_templ;
+ int fixed_len;
+
+ rtx movi1 = GEN_INT (0xcc000010);
+ rtx shori1 = GEN_INT (0xc8000010);
+ rtx src, dst;
+
+ /* The following trampoline works within a +- 128 KB range for cxt:
+ ptb/u cxt,tr1; movi fnaddr >> 48,r0; shori fnaddr >> 32,r0;
+ shori fnaddr >> 16,r0; shori fnaddr,r0; ptabs/l r0,tr0
+ gettr tr1,r1; blink tr0,r63 */
+ /* Address rounding makes it hard to compute the exact bounds of the
+ offset for this trampoline, but we have a rather generous offset
+ range, so frame_offset should do fine as an upper bound. */
+ if (cxt == virtual_stack_vars_rtx && frame_offset < 0x20000)
+ {
+ /* ??? could optimize this trampoline initialization
+ by writing DImode words with two insns each. */
+ rtx mask = force_reg (DImode, GEN_INT (0x3fffc00));
+ rtx insn = gen_rtx_MINUS (DImode, cxt, tramp);
+ insn = gen_rtx_ASHIFT (DImode, insn, GEN_INT (10-2));
+ insn = gen_rtx_AND (DImode, insn, mask);
+ /* Or in ptb/u .,tr1 pattern */
+ insn = gen_rtx_IOR (DImode, insn, gen_int_mode (0xec000010, SImode));
+ insn = force_operand (insn, NULL_RTX);
+ insn = gen_lowpart (SImode, insn);
+ emit_move_insn (change_address (tramp_mem, SImode, NULL_RTX), insn);
+ insn = gen_rtx_LSHIFTRT (DImode, fnaddr, GEN_INT (38));
+ insn = gen_rtx_AND (DImode, insn, mask);
+ insn = force_operand (gen_rtx_IOR (DImode, movi1, insn), NULL_RTX);
+ insn = gen_lowpart (SImode, insn);
+ emit_move_insn (adjust_address (tramp_mem, SImode, 4), insn);
+ insn = gen_rtx_LSHIFTRT (DImode, fnaddr, GEN_INT (22));
+ insn = gen_rtx_AND (DImode, insn, mask);
+ insn = force_operand (gen_rtx_IOR (DImode, shori1, insn), NULL_RTX);
+ insn = gen_lowpart (SImode, insn);
+ emit_move_insn (adjust_address (tramp_mem, SImode, 8), insn);
+ insn = gen_rtx_LSHIFTRT (DImode, fnaddr, GEN_INT (6));
+ insn = gen_rtx_AND (DImode, insn, mask);
+ insn = force_operand (gen_rtx_IOR (DImode, shori1, insn), NULL_RTX);
+ insn = gen_lowpart (SImode, insn);
+ emit_move_insn (adjust_address (tramp_mem, SImode, 12), insn);
+ insn = gen_rtx_ASHIFT (DImode, fnaddr, GEN_INT (10));
+ insn = gen_rtx_AND (DImode, insn, mask);
+ insn = force_operand (gen_rtx_IOR (DImode, shori1, insn), NULL_RTX);
+ insn = gen_lowpart (SImode, insn);
+ emit_move_insn (adjust_address (tramp_mem, SImode, 16), insn);
+ emit_move_insn (adjust_address (tramp_mem, SImode, 20),
+ GEN_INT (0x6bf10600));
+ emit_move_insn (adjust_address (tramp_mem, SImode, 24),
+ GEN_INT (0x4415fc10));
+ emit_move_insn (adjust_address (tramp_mem, SImode, 28),
+ GEN_INT (0x4401fff0));
+ emit_insn (gen_ic_invalidate_line (tramp));
+ return;
+ }
+ tramp_templ = gen_rtx_SYMBOL_REF (Pmode,"__GCC_nested_trampoline");
+ fixed_len = TRAMPOLINE_SIZE - 2 * GET_MODE_SIZE (Pmode);
+
+ tramp_templ = gen_datalabel_ref (tramp_templ);
+ dst = tramp_mem;
+ src = gen_const_mem (BLKmode, tramp_templ);
+ set_mem_align (dst, 256);
+ set_mem_align (src, 64);
+ emit_block_move (dst, src, GEN_INT (fixed_len), BLOCK_OP_NORMAL);
+
+ emit_move_insn (adjust_address (tramp_mem, Pmode, fixed_len), fnaddr);
+ emit_move_insn (adjust_address (tramp_mem, Pmode,
+ fixed_len + GET_MODE_SIZE (Pmode)),
+ cxt);
+ emit_insn (gen_ic_invalidate_line (tramp));
+ return;
+ }
+ else if (TARGET_SHMEDIA)
+ {
+ /* movi fnaddr >> 16,r1; shori fnaddr,r1; ptabs/l r1,tr0
+ movi cxt >> 16,r1; shori cxt,r1; blink tr0,r63 */
+ rtx quad0 = gen_reg_rtx (DImode), cxtload = gen_reg_rtx (DImode);
+ rtx quad1 = gen_reg_rtx (DImode), quad2 = gen_reg_rtx (DImode);
+ /* movi 0,r1: 0xcc000010 shori 0,r1: c8000010 concatenated,
+ rotated 10 right, and higher 16 bit of every 32 selected. */
+ rtx movishori
+ = force_reg (V2HImode, (simplify_gen_subreg
+ (V2HImode, GEN_INT (0x4330432), SImode, 0)));
+ rtx ptabs = force_reg (DImode, GEN_INT (0x6bf10600));
+ rtx blink = force_reg (DImode, GEN_INT (0x4401fff0));
+
+ fnaddr = force_reg (SImode, fnaddr);
+ cxt = force_reg (SImode, cxt);
+ emit_insn (gen_mshflo_w_x (gen_rtx_SUBREG (V4HImode, quad0, 0),
+ gen_rtx_SUBREG (V2HImode, fnaddr, 0),
+ movishori));
+ emit_insn (gen_rotrdi3_mextr (quad0, quad0,
+ GEN_INT (TARGET_LITTLE_ENDIAN ? 24 : 56)));
+ emit_insn (gen_ashldi3_media (quad0, quad0, const2_rtx));
+ emit_move_insn (change_address (tramp_mem, DImode, NULL_RTX), quad0);
+ emit_insn (gen_mshflo_w_x (gen_rtx_SUBREG (V4HImode, cxtload, 0),
+ gen_rtx_SUBREG (V2HImode, cxt, 0),
+ movishori));
+ emit_insn (gen_rotrdi3_mextr (cxtload, cxtload,
+ GEN_INT (TARGET_LITTLE_ENDIAN ? 24 : 56)));
+ emit_insn (gen_ashldi3_media (cxtload, cxtload, const2_rtx));
+ if (TARGET_LITTLE_ENDIAN)
+ {
+ emit_insn (gen_mshflo_l_di (quad1, ptabs, cxtload));
+ emit_insn (gen_mextr4 (quad2, cxtload, blink));
+ }
+ else
+ {
+ emit_insn (gen_mextr4 (quad1, cxtload, ptabs));
+ emit_insn (gen_mshflo_l_di (quad2, blink, cxtload));
+ }
+ emit_move_insn (adjust_address (tramp_mem, DImode, 8), quad1);
+ emit_move_insn (adjust_address (tramp_mem, DImode, 16), quad2);
+ emit_insn (gen_ic_invalidate_line (tramp));
+ return;
+ }
+ else if (TARGET_SHCOMPACT)
+ {
+ emit_insn (gen_initialize_trampoline (tramp, cxt, fnaddr));
+ return;
+ }
+ emit_move_insn (change_address (tramp_mem, SImode, NULL_RTX),
+ gen_int_mode (TARGET_LITTLE_ENDIAN ? 0xd301d202 : 0xd202d301,
+ SImode));
+ emit_move_insn (adjust_address (tramp_mem, SImode, 4),
+ gen_int_mode (TARGET_LITTLE_ENDIAN ? 0x0009422b : 0x422b0009,
+ SImode));
+ emit_move_insn (adjust_address (tramp_mem, SImode, 8), cxt);
+ emit_move_insn (adjust_address (tramp_mem, SImode, 12), fnaddr);
+ if (TARGET_HARD_SH4 || TARGET_SH5)
+ {
+ if (!TARGET_INLINE_IC_INVALIDATE
+ || (!(TARGET_SH4A_ARCH || TARGET_SH4_300) && TARGET_USERMODE))
+ emit_library_call (function_symbol (NULL, "__ic_invalidate",
+ FUNCTION_ORDINARY),
+ LCT_NORMAL, VOIDmode, 1, tramp, SImode);
+ else
+ emit_insn (gen_ic_invalidate_line (tramp));
+ }
+}
+
+/* On SH5, trampolines are SHmedia code, so add 1 to the address. */
+static rtx
+sh_trampoline_adjust_address (rtx tramp)
+{
+ if (TARGET_SHMEDIA)
+ tramp = expand_simple_binop (Pmode, PLUS, tramp, const1_rtx,
+ gen_reg_rtx (Pmode), 0, OPTAB_LIB_WIDEN);
+ return tramp;
+}
+
+/* FIXME: This is overly conservative. A SHcompact function that
+ receives arguments ``by reference'' will have them stored in its
+ own stack frame, so it must not pass pointers or references to
+ these arguments to other functions by means of sibling calls. */
+/* If PIC, we cannot make sibling calls to global functions
+ because the PLT requires r12 to be live. */
+static bool
+sh_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
+{
+ return (1
+ && (! TARGET_SHCOMPACT
+ || crtl->args.info.stack_regs == 0)
+ && ! sh_cfun_interrupt_handler_p ()
+ && (! flag_pic
+ || (decl && ! TREE_PUBLIC (decl))
+ || (decl && DECL_VISIBILITY (decl) != VISIBILITY_DEFAULT)));
+}
+
+/* Machine specific built-in functions. */
+
+struct builtin_description
+{
+ bool (* const is_enabled) (void);
+ const enum insn_code icode;
+ const char *const name;
+ int signature;
+ tree fndecl;
+};
+
+static bool
+shmedia_builtin_p (void)
+{
+ return TARGET_SHMEDIA;
+}
+
+/* This function can be used if there are any built-ins that are not for
+ SHmedia. It's commented out to avoid the defined-but-unused warning.
+static bool
+sh1_builtin_p (void)
+{
+ return TARGET_SH1;
+}
+*/
+
+/* describe number and signedness of arguments; arg[0] == result
+ (1: unsigned, 2: signed, 4: don't care, 8: pointer 0: no argument */
+/* 9: 64-bit pointer, 10: 32-bit pointer */
+static const char signature_args[][4] =
+{
+#define SH_BLTIN_V2SI2 0
+ { 4, 4 },
+#define SH_BLTIN_V4HI2 1
+ { 4, 4 },
+#define SH_BLTIN_V2SI3 2
+ { 4, 4, 4 },
+#define SH_BLTIN_V4HI3 3
+ { 4, 4, 4 },
+#define SH_BLTIN_V8QI3 4
+ { 4, 4, 4 },
+#define SH_BLTIN_MAC_HISI 5
+ { 1, 4, 4, 1 },
+#define SH_BLTIN_SH_HI 6
+ { 4, 4, 1 },
+#define SH_BLTIN_SH_SI 7
+ { 4, 4, 1 },
+#define SH_BLTIN_V4HI2V2SI 8
+ { 4, 4, 4 },
+#define SH_BLTIN_V4HI2V8QI 9
+ { 4, 4, 4 },
+#define SH_BLTIN_SISF 10
+ { 4, 2 },
+#define SH_BLTIN_LDUA_L 11
+ { 2, 10 },
+#define SH_BLTIN_LDUA_Q 12
+ { 1, 10 },
+#define SH_BLTIN_STUA_L 13
+ { 0, 10, 2 },
+#define SH_BLTIN_STUA_Q 14
+ { 0, 10, 1 },
+#define SH_BLTIN_LDUA_L64 15
+ { 2, 9 },
+#define SH_BLTIN_LDUA_Q64 16
+ { 1, 9 },
+#define SH_BLTIN_STUA_L64 17
+ { 0, 9, 2 },
+#define SH_BLTIN_STUA_Q64 18
+ { 0, 9, 1 },
+#define SH_BLTIN_NUM_SHARED_SIGNATURES 19
+#define SH_BLTIN_2 19
+#define SH_BLTIN_SU 19
+ { 1, 2 },
+#define SH_BLTIN_3 20
+#define SH_BLTIN_SUS 20
+ { 2, 2, 1 },
+#define SH_BLTIN_PSSV 21
+ { 0, 8, 2, 2 },
+#define SH_BLTIN_XXUU 22
+#define SH_BLTIN_UUUU 22
+ { 1, 1, 1, 1 },
+#define SH_BLTIN_PV 23
+ { 0, 8 },
+#define SH_BLTIN_VP 24
+ { 8, 0 },
+};
+/* mcmv: operands considered unsigned. */
+/* mmulsum_wq, msad_ubq: result considered unsigned long long. */
+/* mperm: control value considered unsigned int. */
+/* mshalds, mshard, mshards, mshlld, mshlrd: shift count is unsigned int. */
+/* mshards_q: returns signed short. */
+/* nsb: takes long long arg, returns unsigned char. */
+static struct builtin_description bdesc[] =
+{
+ { shmedia_builtin_p,
+ CODE_FOR_absv2si2, "__builtin_absv2si2", SH_BLTIN_V2SI2, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_absv4hi2, "__builtin_absv4hi2", SH_BLTIN_V4HI2, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_addv2si3, "__builtin_addv2si3", SH_BLTIN_V2SI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_addv4hi3, "__builtin_addv4hi3", SH_BLTIN_V4HI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_ssaddv2si3,"__builtin_ssaddv2si3", SH_BLTIN_V2SI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_usaddv8qi3,"__builtin_usaddv8qi3", SH_BLTIN_V8QI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_ssaddv4hi3,"__builtin_ssaddv4hi3", SH_BLTIN_V4HI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_alloco_i, "__builtin_sh_media_ALLOCO", SH_BLTIN_PV, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_negcmpeqv8qi,"__builtin_sh_media_MCMPEQ_B", SH_BLTIN_V8QI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_negcmpeqv2si,"__builtin_sh_media_MCMPEQ_L", SH_BLTIN_V2SI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_negcmpeqv4hi,"__builtin_sh_media_MCMPEQ_W", SH_BLTIN_V4HI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_negcmpgtuv8qi,"__builtin_sh_media_MCMPGT_UB", SH_BLTIN_V8QI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_negcmpgtv2si,"__builtin_sh_media_MCMPGT_L", SH_BLTIN_V2SI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_negcmpgtv4hi,"__builtin_sh_media_MCMPGT_W", SH_BLTIN_V4HI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mcmv, "__builtin_sh_media_MCMV", SH_BLTIN_UUUU, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mcnvs_lw, "__builtin_sh_media_MCNVS_LW", SH_BLTIN_3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mcnvs_wb, "__builtin_sh_media_MCNVS_WB", SH_BLTIN_V4HI2V8QI, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mcnvs_wub, "__builtin_sh_media_MCNVS_WUB", SH_BLTIN_V4HI2V8QI, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mextr1, "__builtin_sh_media_MEXTR1", SH_BLTIN_V8QI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mextr2, "__builtin_sh_media_MEXTR2", SH_BLTIN_V8QI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mextr3, "__builtin_sh_media_MEXTR3", SH_BLTIN_V8QI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mextr4, "__builtin_sh_media_MEXTR4", SH_BLTIN_V8QI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mextr5, "__builtin_sh_media_MEXTR5", SH_BLTIN_V8QI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mextr6, "__builtin_sh_media_MEXTR6", SH_BLTIN_V8QI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mextr7, "__builtin_sh_media_MEXTR7", SH_BLTIN_V8QI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mmacfx_wl, "__builtin_sh_media_MMACFX_WL", SH_BLTIN_MAC_HISI, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mmacnfx_wl,"__builtin_sh_media_MMACNFX_WL", SH_BLTIN_MAC_HISI, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mulv2si3, "__builtin_mulv2si3", SH_BLTIN_V2SI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mulv4hi3, "__builtin_mulv4hi3", SH_BLTIN_V4HI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mmulfx_l, "__builtin_sh_media_MMULFX_L", SH_BLTIN_V2SI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mmulfx_w, "__builtin_sh_media_MMULFX_W", SH_BLTIN_V4HI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mmulfxrp_w,"__builtin_sh_media_MMULFXRP_W", SH_BLTIN_V4HI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mmulhi_wl, "__builtin_sh_media_MMULHI_WL", SH_BLTIN_V4HI2V2SI, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mmullo_wl, "__builtin_sh_media_MMULLO_WL", SH_BLTIN_V4HI2V2SI, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mmulsum_wq,"__builtin_sh_media_MMULSUM_WQ", SH_BLTIN_XXUU, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mperm_w, "__builtin_sh_media_MPERM_W", SH_BLTIN_SH_HI, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_msad_ubq, "__builtin_sh_media_MSAD_UBQ", SH_BLTIN_XXUU, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mshalds_l, "__builtin_sh_media_MSHALDS_L", SH_BLTIN_SH_SI, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mshalds_w, "__builtin_sh_media_MSHALDS_W", SH_BLTIN_SH_HI, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_ashrv2si3, "__builtin_ashrv2si3", SH_BLTIN_SH_SI, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_ashrv4hi3, "__builtin_ashrv4hi3", SH_BLTIN_SH_HI, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mshards_q, "__builtin_sh_media_MSHARDS_Q", SH_BLTIN_SUS, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mshfhi_b, "__builtin_sh_media_MSHFHI_B", SH_BLTIN_V8QI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mshfhi_l, "__builtin_sh_media_MSHFHI_L", SH_BLTIN_V2SI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mshfhi_w, "__builtin_sh_media_MSHFHI_W", SH_BLTIN_V4HI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mshflo_b, "__builtin_sh_media_MSHFLO_B", SH_BLTIN_V8QI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mshflo_l, "__builtin_sh_media_MSHFLO_L", SH_BLTIN_V2SI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_mshflo_w, "__builtin_sh_media_MSHFLO_W", SH_BLTIN_V4HI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_ashlv2si3, "__builtin_ashlv2si3", SH_BLTIN_SH_SI, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_ashlv4hi3, "__builtin_ashlv4hi3", SH_BLTIN_SH_HI, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_lshrv2si3, "__builtin_lshrv2si3", SH_BLTIN_SH_SI, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_lshrv4hi3, "__builtin_lshrv4hi3", SH_BLTIN_SH_HI, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_subv2si3, "__builtin_subv2si3", SH_BLTIN_V2SI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_subv4hi3, "__builtin_subv4hi3", SH_BLTIN_V4HI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_sssubv2si3,"__builtin_sssubv2si3", SH_BLTIN_V2SI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_ussubv8qi3,"__builtin_ussubv8qi3", SH_BLTIN_V8QI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_sssubv4hi3,"__builtin_sssubv4hi3", SH_BLTIN_V4HI3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_fcosa_s, "__builtin_sh_media_FCOSA_S", SH_BLTIN_SISF, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_fsina_s, "__builtin_sh_media_FSINA_S", SH_BLTIN_SISF, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_fipr, "__builtin_sh_media_FIPR_S", SH_BLTIN_3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_ftrv, "__builtin_sh_media_FTRV_S", SH_BLTIN_3, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_sqrtdf2, "__builtin_sh_media_FSQRT_D", SH_BLTIN_2, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_sqrtsf2, "__builtin_sh_media_FSQRT_S", SH_BLTIN_2, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_fsrra_s, "__builtin_sh_media_FSRRA_S", SH_BLTIN_2, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_ldhi_l, "__builtin_sh_media_LDHI_L", SH_BLTIN_LDUA_L, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_ldhi_q, "__builtin_sh_media_LDHI_Q", SH_BLTIN_LDUA_Q, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_ldlo_l, "__builtin_sh_media_LDLO_L", SH_BLTIN_LDUA_L, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_ldlo_q, "__builtin_sh_media_LDLO_Q", SH_BLTIN_LDUA_Q, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_sthi_l, "__builtin_sh_media_STHI_L", SH_BLTIN_STUA_L, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_sthi_q, "__builtin_sh_media_STHI_Q", SH_BLTIN_STUA_Q, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_stlo_l, "__builtin_sh_media_STLO_L", SH_BLTIN_STUA_L, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_stlo_q, "__builtin_sh_media_STLO_Q", SH_BLTIN_STUA_Q, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_ldhi_l64, "__builtin_sh_media_LDHI_L", SH_BLTIN_LDUA_L64, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_ldhi_q64, "__builtin_sh_media_LDHI_Q", SH_BLTIN_LDUA_Q64, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_ldlo_l64, "__builtin_sh_media_LDLO_L", SH_BLTIN_LDUA_L64, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_ldlo_q64, "__builtin_sh_media_LDLO_Q", SH_BLTIN_LDUA_Q64, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_sthi_l64, "__builtin_sh_media_STHI_L", SH_BLTIN_STUA_L64, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_sthi_q64, "__builtin_sh_media_STHI_Q", SH_BLTIN_STUA_Q64, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_stlo_l64, "__builtin_sh_media_STLO_L", SH_BLTIN_STUA_L64, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_stlo_q64, "__builtin_sh_media_STLO_Q", SH_BLTIN_STUA_Q64, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_nsb, "__builtin_sh_media_NSB", SH_BLTIN_SU, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_byterev, "__builtin_sh_media_BYTEREV", SH_BLTIN_2, 0 },
+ { shmedia_builtin_p,
+ CODE_FOR_prefetch, "__builtin_sh_media_PREFO", SH_BLTIN_PSSV, 0 },
+};
+
+static void
+sh_init_builtins (void)
+{
+ tree shared[SH_BLTIN_NUM_SHARED_SIGNATURES];
+ memset (shared, 0, sizeof shared);
+
+ for (unsigned int di = 0; di < ARRAY_SIZE (bdesc); ++di)
+ {
+ builtin_description* d = &bdesc[di];
+
+ if (!d->is_enabled ())
+ continue;
+
+ tree type, arg_type = NULL_TREE;
+ int signature = d->signature;
+
+ if (signature < SH_BLTIN_NUM_SHARED_SIGNATURES && shared[signature])
+ type = shared[signature];
+ else
+ {
+ int has_result = signature_args[signature][0] != 0;
+ tree args[3];
+
+ if ((signature_args[signature][1] & 8)
+ && (((signature_args[signature][1] & 1) && TARGET_SHMEDIA32)
+ || ((signature_args[signature][1] & 2) && TARGET_SHMEDIA64)))
+ continue;
+ if (! TARGET_FPU_ANY
+ && FLOAT_MODE_P (insn_data[d->icode].operand[0].mode))
+ continue;
+ for (unsigned int i = 0; i < ARRAY_SIZE (args); i++)
+ args[i] = NULL_TREE;
+ for (int i = 3; ; i--)
+ {
+ int arg = signature_args[signature][i];
+ int opno = i - 1 + has_result;
+
+ if (arg & 8)
+ arg_type = ptr_type_node;
+ else if (arg)
+ arg_type = (*lang_hooks.types.type_for_mode)
+ (insn_data[d->icode].operand[opno].mode, (arg & 1));
+ else if (i)
+ continue;
+ else
+ arg_type = void_type_node;
+ if (i == 0)
+ break;
+ args[i-1] = arg_type;
+ }
+ type = build_function_type_list (arg_type, args[0], args[1],
+ args[2], NULL_TREE);
+ if (signature < SH_BLTIN_NUM_SHARED_SIGNATURES)
+ shared[signature] = type;
+ }
+ d->fndecl =
+ add_builtin_function (d->name, type, d - bdesc, BUILT_IN_MD,
+ NULL, NULL_TREE);
+ }
+}
+
+/* Implements target hook vector_mode_supported_p. */
+bool
+sh_vector_mode_supported_p (enum machine_mode mode)
+{
+ if (TARGET_FPU_ANY
+ && ((mode == V2SFmode)
+ || (mode == V4SFmode)
+ || (mode == V16SFmode)))
+ return true;
+
+ else if (TARGET_SHMEDIA
+ && ((mode == V8QImode)
+ || (mode == V2HImode)
+ || (mode == V4HImode)
+ || (mode == V2SImode)))
+ return true;
+
+ return false;
+}
+
+bool
+sh_frame_pointer_required (void)
+{
+/* If needed override this in other tm.h files to cope with various OS
+ lossage requiring a frame pointer. */
+ if (SUBTARGET_FRAME_POINTER_REQUIRED)
+ return true;
+
+ if (crtl->profile)
+ return true;
+
+ return false;
+}
+
+/* Implements target hook dwarf_calling_convention. Return an enum
+ of dwarf_calling_convention. */
+int
+sh_dwarf_calling_convention (const_tree func)
+{
+ if (sh_attr_renesas_p (func))
+ return DW_CC_GNU_renesas_sh;
+
+ return DW_CC_normal;
+}
+
+/* Returns the sh builtin decl for CODE. */
+static tree
+sh_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
+{
+ if (code >= ARRAY_SIZE (bdesc))
+ return error_mark_node;
+
+ if (!bdesc[code].is_enabled ())
+ return error_mark_node;
+
+ return bdesc[code].fndecl;
+}
+
+/* Expand an expression EXP that calls a built-in function,
+ with result going to TARGET if that's convenient
+ (and in mode MODE if that's convenient).
+ SUBTARGET may be used as the target for computing one of EXP's operands.
+ IGNORE is nonzero if the value is to be ignored. */
+static rtx
+sh_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
+ enum machine_mode mode ATTRIBUTE_UNUSED, int ignore)
+{
+ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
+ unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
+ const struct builtin_description *d = &bdesc[fcode];
+ enum insn_code icode = d->icode;
+ int signature = d->signature;
+ int nop = 0;
+ rtx op[4];
+
+ if (signature_args[signature][0])
+ {
+ if (ignore)
+ return NULL_RTX;
+
+ enum machine_mode tmode = insn_data[icode].operand[0].mode;
+ if (! target || GET_MODE (target) != tmode
+ || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
+ target = gen_reg_rtx (tmode);
+ op[nop++] = target;
+ }
+ else
+ target = NULL_RTX;
+
+ for (int i = 1; i <= 3; i++, nop++)
+ {
+ tree arg;
+ enum machine_mode opmode, argmode;
+ tree optype;
+
+ if (! signature_args[signature][i])
+ break;
+ arg = CALL_EXPR_ARG (exp, i - 1);
+ if (arg == error_mark_node)
+ return const0_rtx;
+ if (signature_args[signature][i] & 8)
+ {
+ opmode = ptr_mode;
+ optype = ptr_type_node;
+ }
+ else
+ {
+ opmode = insn_data[icode].operand[nop].mode;
+ optype = (*lang_hooks.types.type_for_mode) (opmode, 0);
+ }
+ argmode = TYPE_MODE (TREE_TYPE (arg));
+ if (argmode != opmode)
+ arg = build1 (NOP_EXPR, optype, arg);
+ op[nop] = expand_expr (arg, NULL_RTX, opmode, EXPAND_NORMAL);
+ if (! (*insn_data[icode].operand[nop].predicate) (op[nop], opmode))
+ op[nop] = copy_to_mode_reg (opmode, op[nop]);
+ }
+
+ rtx pat = NULL_RTX;
+
+ switch (nop)
+ {
+ case 1:
+ pat = (*insn_data[d->icode].genfun) (op[0]);
+ break;
+ case 2:
+ pat = (*insn_data[d->icode].genfun) (op[0], op[1]);
+ break;
+ case 3:
+ pat = (*insn_data[d->icode].genfun) (op[0], op[1], op[2]);
+ break;
+ case 4:
+ pat = (*insn_data[d->icode].genfun) (op[0], op[1], op[2], op[3]);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ if (! pat)
+ return NULL_RTX;
+ emit_insn (pat);
+ return target;
+}
+
+void
+sh_expand_unop_v2sf (enum rtx_code code, rtx op0, rtx op1)
+{
+ rtx sel0 = const0_rtx;
+ rtx sel1 = const1_rtx;
+ rtx (*fn) (rtx, rtx, rtx, rtx, rtx) = gen_unary_sf_op;
+ rtx op = gen_rtx_fmt_e (code, SFmode, op1);
+
+ emit_insn ((*fn) (op0, op1, op, sel0, sel0));
+ emit_insn ((*fn) (op0, op1, op, sel1, sel1));
+}
+
+void
+sh_expand_binop_v2sf (enum rtx_code code, rtx op0, rtx op1, rtx op2)
+{
+ rtx op = gen_rtx_fmt_ee (code, SFmode, op1, op2);
+
+ emit_insn (gen_binary_sf_op0 (op0, op1, op2, op));
+ emit_insn (gen_binary_sf_op1 (op0, op1, op2, op));
+}
+
+/* Return true if hard register REGNO can hold a value of machine-mode MODE.
+ We can allow any mode in any general register. The special registers
+ only allow SImode. Don't allow any mode in the PR.
+
+ We cannot hold DCmode values in the XD registers because alter_reg
+ handles subregs of them incorrectly. We could work around this by
+ spacing the XD registers like the DR registers, but this would require
+ additional memory in every compilation to hold larger register vectors.
+ We could hold SFmode / SCmode values in XD registers, but that
+ would require a tertiary reload when reloading from / to memory,
+ and a secondary reload to reload from / to general regs; that
+ seems to be a losing proposition.
+
+ We want to allow TImode FP regs so that when V4SFmode is loaded as TImode,
+ it won't be ferried through GP registers first. */
+bool
+sh_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
+{
+ if (SPECIAL_REGISTER_P (regno))
+ return mode == SImode;
+
+ if (regno == FPUL_REG)
+ return (mode == SImode || mode == SFmode);
+
+ if (FP_REGISTER_P (regno) && mode == SFmode)
+ return true;
+
+ if (mode == V2SFmode)
+ {
+ if (((FP_REGISTER_P (regno) && (regno - FIRST_FP_REG) % 2 == 0)
+ || GENERAL_REGISTER_P (regno)))
+ return true;
+ else
+ return false;
+ }
+
+ if (mode == V4SFmode)
+ {
+ if ((FP_REGISTER_P (regno) && (regno - FIRST_FP_REG) % 4 == 0)
+ || GENERAL_REGISTER_P (regno))
+ return true;
+ else
+ return false;
+ }
+
+ if (mode == V16SFmode)
+ {
+ if (TARGET_SHMEDIA)
+ {
+ if (FP_REGISTER_P (regno) && (regno - FIRST_FP_REG) % 16 == 0)
+ return true;
+ else
+ return false;
+ }
+ else
+ return regno == FIRST_XD_REG;
+ }
+
+ if (FP_REGISTER_P (regno))
+ {
+ if (mode == SFmode
+ || mode == SImode
+ || ((TARGET_SH2E || TARGET_SHMEDIA) && mode == SCmode)
+ || ((((TARGET_SH4 || TARGET_SH2A_DOUBLE) && mode == DFmode)
+ || mode == DCmode
+ || (TARGET_SHMEDIA
+ && (mode == DFmode || mode == DImode
+ || mode == V2SFmode || mode == TImode)))
+ && ((regno - FIRST_FP_REG) & 1) == 0)
+ || ((TARGET_SH4 || TARGET_SHMEDIA) && mode == TImode
+ && ((regno - FIRST_FP_REG) & 3) == 0))
+ return true;
+ else
+ return false;
+ }
+
+ if (XD_REGISTER_P (regno))
+ return mode == DFmode;
+
+ if (TARGET_REGISTER_P (regno))
+ return (mode == DImode || mode == SImode || mode == PDImode);
+
+ if (regno == PR_REG)
+ return mode == SImode;
+
+ if (regno == FPSCR_REG)
+ return mode == PSImode;
+
+ /* FIXME. This works around PR target/37633 for -O0. */
+ if (!optimize && TARGET_SHMEDIA32 && GET_MODE_SIZE (mode) > 4)
+ {
+ unsigned int n = GET_MODE_SIZE (mode) / 8;
+
+ if (regno >= FIRST_GENERAL_REG + 10 - n + 1
+ && regno <= FIRST_GENERAL_REG + 14)
+ return false;
+ }
+
+ return true;
+}
+
+/* Return the class of registers for which a mode change from FROM to TO
+ is invalid. */
+bool
+sh_cannot_change_mode_class (enum machine_mode from, enum machine_mode to,
+ enum reg_class rclass)
+{
+ /* We want to enable the use of SUBREGs as a means to
+ VEC_SELECT a single element of a vector. */
+
+ /* This effectively disallows using GENERAL_REGS for SFmode vector subregs.
+ This can be problematic when SFmode vector subregs need to be accessed
+ on the stack with displacement addressing, as it happens with -O0.
+ Thus we disallow the mode change for -O0. */
+ if (to == SFmode && VECTOR_MODE_P (from) && GET_MODE_INNER (from) == SFmode)
+ return optimize ? (reg_classes_intersect_p (GENERAL_REGS, rclass)) : false;
+
+ if (GET_MODE_SIZE (from) != GET_MODE_SIZE (to))
+ {
+ if (TARGET_LITTLE_ENDIAN)
+ {
+ if (GET_MODE_SIZE (to) < 8 || GET_MODE_SIZE (from) < 8)
+ return reg_classes_intersect_p (DF_REGS, rclass);
+ }
+ else
+ {
+ if (GET_MODE_SIZE (from) < 8)
+ return reg_classes_intersect_p (DF_REGS, rclass);
+ }
+ }
+ return false;
+}
+
+/* Return true if registers in machine mode MODE will likely be
+ allocated to registers in small register classes. */
+bool
+sh_small_register_classes_for_mode_p (enum machine_mode mode ATTRIBUTE_UNUSED)
+{
+ return (! TARGET_SHMEDIA);
+}
+
+/* If ADDRESS refers to a CODE_LABEL, add NUSES to the number of times
+ that label is used. */
+void
+sh_mark_label (rtx address, int nuses)
+{
+ if (GOTOFF_P (address))
+ {
+ /* Extract the label or symbol. */
+ address = XEXP (address, 0);
+ if (GET_CODE (address) == PLUS)
+ address = XEXP (address, 0);
+ address = XVECEXP (address, 0, 0);
+ }
+ if (GET_CODE (address) == LABEL_REF
+ && LABEL_P (XEXP (address, 0)))
+ LABEL_NUSES (XEXP (address, 0)) += nuses;
+}
+
+/* Compute extra cost of moving data between one register class
+ and another.
+
+ If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, regclass
+ uses this information. Hence, the general register <-> floating point
+ register information here is not used for SFmode. */
+static int
+sh_register_move_cost (enum machine_mode mode,
+ reg_class_t srcclass, reg_class_t dstclass)
+{
+ if (dstclass == T_REGS || dstclass == PR_REGS)
+ return 10;
+
+ if (dstclass == MAC_REGS && srcclass == MAC_REGS)
+ return 4;
+
+ if (mode == SImode && ! TARGET_SHMEDIA && TARGET_FMOVD
+ && REGCLASS_HAS_FP_REG (srcclass)
+ && REGCLASS_HAS_FP_REG (dstclass))
+ return 4;
+
+ if (REGCLASS_HAS_FP_REG (dstclass) && srcclass == T_REGS)
+ return ((TARGET_HARD_SH4 && !optimize_size) ? 10 : 7);
+
+ if ((REGCLASS_HAS_FP_REG (dstclass) && srcclass == MAC_REGS)
+ || (dstclass == MAC_REGS && REGCLASS_HAS_FP_REG (srcclass)))
+ return 9;
+
+ if ((REGCLASS_HAS_FP_REG (dstclass)
+ && REGCLASS_HAS_GENERAL_REG (srcclass))
+ || (REGCLASS_HAS_GENERAL_REG (dstclass)
+ && REGCLASS_HAS_FP_REG (srcclass)))
+ {
+ /* Discourage trying to use fp regs for a pointer. This also
+ discourages fp regs with SImode because Pmode is an alias
+ of SImode on this target. See PR target/48596. */
+ int addend = (mode == Pmode) ? 40 : 0;
+
+ return (((TARGET_SHMEDIA ? 4 : TARGET_FMOVD ? 8 : 12) + addend)
+ * ((GET_MODE_SIZE (mode) + 7) / 8U));
+ }
+
+ if ((dstclass == FPUL_REGS
+ && REGCLASS_HAS_GENERAL_REG (srcclass))
+ || (srcclass == FPUL_REGS
+ && REGCLASS_HAS_GENERAL_REG (dstclass)))
+ return 5;
+
+ if ((dstclass == FPUL_REGS
+ && (srcclass == PR_REGS || srcclass == MAC_REGS || srcclass == T_REGS))
+ || (srcclass == FPUL_REGS
+ && (dstclass == PR_REGS || dstclass == MAC_REGS)))
+ return 7;
+
+ if ((srcclass == TARGET_REGS && ! REGCLASS_HAS_GENERAL_REG (dstclass))
+ || ((dstclass) == TARGET_REGS && ! REGCLASS_HAS_GENERAL_REG (srcclass)))
+ return 20;
+
+ /* ??? ptabs faults on (value & 0x3) == 0x3 */
+ if (TARGET_SHMEDIA
+ && ((srcclass) == TARGET_REGS || (srcclass) == SIBCALL_REGS))
+ {
+ if (sh_gettrcost >= 0)
+ return sh_gettrcost;
+ else if (!TARGET_PT_FIXED)
+ return 100;
+ }
+
+ if ((srcclass == FPSCR_REGS && ! REGCLASS_HAS_GENERAL_REG (dstclass))
+ || (dstclass == FPSCR_REGS && ! REGCLASS_HAS_GENERAL_REG (srcclass)))
+ return 4;
+
+ if (TARGET_SHMEDIA
+ || (TARGET_FMOVD
+ && ! REGCLASS_HAS_GENERAL_REG (srcclass)
+ && ! REGCLASS_HAS_GENERAL_REG (dstclass)))
+ return 2 * ((GET_MODE_SIZE (mode) + 7) / 8U);
+
+ return 2 * ((GET_MODE_SIZE (mode) + 3) / 4U);
+}
+
+static rtx
+emit_load_ptr (rtx reg, rtx addr)
+{
+ rtx mem = gen_const_mem (ptr_mode, addr);
+
+ if (Pmode != ptr_mode)
+ mem = gen_rtx_SIGN_EXTEND (Pmode, mem);
+ return emit_move_insn (reg, mem);
+}
+
+static void
+sh_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
+ HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
+ tree function)
+{
+ CUMULATIVE_ARGS cum;
+ int structure_value_byref = 0;
+ rtx this_rtx, this_value, sibcall, insns, funexp;
+ tree funtype = TREE_TYPE (function);
+ int simple_add = CONST_OK_FOR_ADD (delta);
+ int did_load = 0;
+ rtx scratch0, scratch1, scratch2;
+ unsigned i;
+
+ reload_completed = 1;
+ epilogue_completed = 1;
+ crtl->uses_only_leaf_regs = 1;
+
+ emit_note (NOTE_INSN_PROLOGUE_END);
+
+ /* Find the "this" pointer. We have such a wide range of ABIs for the
+ SH that it's best to do this completely machine independently.
+ "this" is passed as first argument, unless a structure return pointer
+ comes first, in which case "this" comes second. */
+ INIT_CUMULATIVE_ARGS (cum, funtype, NULL_RTX, 0, 1);
+#ifndef PCC_STATIC_STRUCT_RETURN
+ if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
+ structure_value_byref = 1;
+#endif /* not PCC_STATIC_STRUCT_RETURN */
+ if (structure_value_byref && sh_struct_value_rtx (function, 0) == 0)
+ {
+ tree ptype = build_pointer_type (TREE_TYPE (funtype));
+
+ sh_function_arg_advance (pack_cumulative_args (&cum), Pmode, ptype, true);
+ }
+ this_rtx
+ = sh_function_arg (pack_cumulative_args (&cum), Pmode, ptr_type_node, true);
+
+ /* For SHcompact, we only have r0 for a scratch register: r1 is the
+ static chain pointer (even if you can't have nested virtual functions
+ right now, someone might implement them sometime), and the rest of the
+ registers are used for argument passing, are callee-saved, or reserved. */
+ /* We need to check call_used_regs / fixed_regs in case -fcall_saved-reg /
+ -ffixed-reg has been used. */
+ if (! call_used_regs[0] || fixed_regs[0])
+ error ("r0 needs to be available as a call-clobbered register");
+ scratch0 = scratch1 = scratch2 = gen_rtx_REG (Pmode, 0);
+ if (! TARGET_SH5)
+ {
+ if (call_used_regs[1] && ! fixed_regs[1])
+ scratch1 = gen_rtx_REG (ptr_mode, 1);
+ /* N.B., if not TARGET_HITACHI, register 2 is used to pass the pointer
+ pointing where to return struct values. */
+ if (call_used_regs[3] && ! fixed_regs[3])
+ scratch2 = gen_rtx_REG (Pmode, 3);
+ }
+ else if (TARGET_SHMEDIA)
+ {
+ for (i = FIRST_GENERAL_REG; i <= LAST_GENERAL_REG; i++)
+ if (i != REGNO (scratch0) &&
+ call_used_regs[i] && ! fixed_regs[i] && ! FUNCTION_ARG_REGNO_P (i))
+ {
+ scratch1 = gen_rtx_REG (ptr_mode, i);
+ break;
+ }
+ if (scratch1 == scratch0)
+ error ("need a second call-clobbered general purpose register");
+ for (i = FIRST_TARGET_REG; i <= LAST_TARGET_REG; i++)
+ if (call_used_regs[i] && ! fixed_regs[i])
+ {
+ scratch2 = gen_rtx_REG (Pmode, i);
+ break;
+ }
+ if (scratch2 == scratch0)
+ error ("need a call-clobbered target register");
+ }
+
+ this_value = plus_constant (Pmode, this_rtx, delta);
+ if (vcall_offset
+ && (simple_add || scratch0 != scratch1)
+ && strict_memory_address_p (ptr_mode, this_value))
+ {
+ emit_load_ptr (scratch0, this_value);
+ did_load = 1;
+ }
+
+ if (!delta)
+ ; /* Do nothing. */
+ else if (simple_add)
+ emit_move_insn (this_rtx, this_value);
+ else
+ {
+ emit_move_insn (scratch1, GEN_INT (delta));
+ emit_insn (gen_add2_insn (this_rtx, scratch1));
+ }
+
+ if (vcall_offset)
+ {
+ rtx offset_addr;
+
+ if (!did_load)
+ emit_load_ptr (scratch0, this_rtx);
+
+ offset_addr = plus_constant (Pmode, scratch0, vcall_offset);
+ if (strict_memory_address_p (ptr_mode, offset_addr))
+ ; /* Do nothing. */
+ else if (! TARGET_SH5 && scratch0 != scratch1)
+ {
+ /* scratch0 != scratch1, and we have indexed loads. Get better
+ schedule by loading the offset into r1 and using an indexed
+ load - then the load of r1 can issue before the load from
+ (this_rtx + delta) finishes. */
+ emit_move_insn (scratch1, GEN_INT (vcall_offset));
+ offset_addr = gen_rtx_PLUS (Pmode, scratch0, scratch1);
+ }
+ else if (CONST_OK_FOR_ADD (vcall_offset))
+ {
+ emit_insn (gen_add2_insn (scratch0, GEN_INT (vcall_offset)));
+ offset_addr = scratch0;
+ }
+ else if (scratch0 != scratch1)
+ {
+ emit_move_insn (scratch1, GEN_INT (vcall_offset));
+ emit_insn (gen_add2_insn (scratch0, scratch1));
+ offset_addr = scratch0;
+ }
+ else
+ gcc_unreachable (); /* FIXME */
+ emit_load_ptr (scratch0, offset_addr);
+
+ if (Pmode != ptr_mode)
+ scratch0 = gen_rtx_TRUNCATE (ptr_mode, scratch0);
+ emit_insn (gen_add2_insn (this_rtx, scratch0));
+ }
+
+ /* Generate a tail call to the target function. */
+ if (! TREE_USED (function))
+ {
+ assemble_external (function);
+ TREE_USED (function) = 1;
+ }
+ funexp = XEXP (DECL_RTL (function), 0);
+ /* If the function is overridden, so is the thunk, hence we don't
+ need GOT addressing even if this is a public symbol. */
+#if 0
+ if (TARGET_SH1 && ! flag_weak)
+ sibcall = gen_sibcalli_thunk (funexp, const0_rtx);
+ else
+#endif
+ if (TARGET_SH2 && flag_pic)
+ {
+ sibcall = gen_sibcall_pcrel (funexp, const0_rtx);
+ XEXP (XVECEXP (sibcall, 0, 2), 0) = scratch2;
+ }
+ else
+ {
+ if (TARGET_SHMEDIA && flag_pic)
+ {
+ funexp = gen_sym2PIC (funexp);
+ PUT_MODE (funexp, Pmode);
+ }
+ emit_move_insn (scratch2, funexp);
+ funexp = gen_rtx_MEM (FUNCTION_MODE, scratch2);
+ sibcall = gen_sibcall (funexp, const0_rtx, NULL_RTX);
+ }
+ sibcall = emit_call_insn (sibcall);
+ SIBLING_CALL_P (sibcall) = 1;
+ use_reg (&CALL_INSN_FUNCTION_USAGE (sibcall), this_rtx);
+ emit_barrier ();
+
+ /* Run just enough of rest_of_compilation to do scheduling and get
+ the insns emitted. Note that use_thunk calls
+ assemble_start_function and assemble_end_function. */
+
+ insns = get_insns ();
+
+ if (optimize > 0)
+ {
+ if (! cfun->cfg)
+ init_flow (cfun);
+ split_all_insns_noflow ();
+ }
+
+ sh_reorg ();
+ shorten_branches (insns);
+ final_start_function (insns, file, 1);
+ final (insns, file, 1);
+ final_end_function ();
+
+ reload_completed = 0;
+ epilogue_completed = 0;
+}
+
+rtx
+function_symbol (rtx target, const char *name, enum sh_function_kind kind)
+{
+ rtx sym;
+
+ /* If this is not an ordinary function, the name usually comes from a
+ string literal or an sprintf buffer. Make sure we use the same
+ string consistently, so that cse will be able to unify address loads. */
+ if (kind != FUNCTION_ORDINARY)
+ name = IDENTIFIER_POINTER (get_identifier (name));
+ sym = gen_rtx_SYMBOL_REF (Pmode, name);
+ SYMBOL_REF_FLAGS (sym) = SYMBOL_FLAG_FUNCTION;
+ if (flag_pic)
+ switch (kind)
+ {
+ case FUNCTION_ORDINARY:
+ break;
+ case SFUNC_GOT:
+ {
+ rtx reg = target ? target : gen_reg_rtx (Pmode);
+
+ emit_insn (gen_symGOT2reg (reg, sym));
+ sym = reg;
+ break;
+ }
+ case SFUNC_STATIC:
+ {
+ /* ??? To allow cse to work, we use GOTOFF relocations.
+ We could add combiner patterns to transform this into
+ straight pc-relative calls with sym2PIC / bsrf when
+ label load and function call are still 1:1 and in the
+ same basic block during combine. */
+ rtx reg = target ? target : gen_reg_rtx (Pmode);
+
+ emit_insn (gen_symGOTOFF2reg (reg, sym));
+ sym = reg;
+ break;
+ }
+ }
+ if (target && sym != target)
+ {
+ emit_move_insn (target, sym);
+ return target;
+ }
+ return sym;
+}
+
+/* Find the number of a general purpose register in S. */
+static int
+scavenge_reg (HARD_REG_SET *s)
+{
+ int r;
+ for (r = FIRST_GENERAL_REG; r <= LAST_GENERAL_REG; r++)
+ if (TEST_HARD_REG_BIT (*s, r))
+ return r;
+ return -1;
+}
+
+rtx
+sh_get_pr_initial_val (void)
+{
+ rtx val;
+
+ /* ??? Unfortunately, get_hard_reg_initial_val doesn't always work for the
+ PR register on SHcompact, because it might be clobbered by the prologue.
+ We check first if that is known to be the case. */
+ if (TARGET_SHCOMPACT
+ && ((crtl->args.info.call_cookie
+ & ~ CALL_COOKIE_RET_TRAMP (1))
+ || crtl->saves_all_registers))
+ return gen_frame_mem (SImode, return_address_pointer_rtx);
+
+ /* If we haven't finished rtl generation, there might be a nonlocal label
+ that we haven't seen yet.
+ ??? get_hard_reg_initial_val fails if it is called after register
+ allocation has started, unless it has been called before for the
+ same register. And even then, we end in trouble if we didn't use
+ the register in the same basic block before. So call
+ get_hard_reg_initial_val now and wrap it in an unspec if we might
+ need to replace it. */
+ /* ??? We also must do this for TARGET_SH1 in general, because otherwise
+ combine can put the pseudo returned by get_hard_reg_initial_val into
+ instructions that need a general purpose registers, which will fail to
+ be recognized when the pseudo becomes allocated to PR. */
+ val
+ = get_hard_reg_initial_val (Pmode, TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG);
+ if (TARGET_SH1)
+ return gen_rtx_UNSPEC (SImode, gen_rtvec (1, val), UNSPEC_RA);
+ return val;
+}
+
+bool
+sh_expand_t_scc (rtx operands[])
+{
+ enum rtx_code code = GET_CODE (operands[1]);
+ rtx target = operands[0];
+ rtx op0 = operands[2];
+ rtx op1 = operands[3];
+ rtx result = target;
+ HOST_WIDE_INT val;
+
+ if (!REG_P (op0) || REGNO (op0) != T_REG
+ || !CONST_INT_P (op1))
+ return false;
+ if (!REG_P (result))
+ result = gen_reg_rtx (SImode);
+ val = INTVAL (op1);
+ if ((code == EQ && val == 1) || (code == NE && val == 0))
+ emit_insn (gen_movt (result, get_t_reg_rtx ()));
+ else if ((code == EQ && val == 0) || (code == NE && val == 1))
+ emit_insn (gen_movnegt (result, get_t_reg_rtx ()));
+ else if (code == EQ || code == NE)
+ emit_insn (gen_move_insn (result, GEN_INT (code == NE)));
+ else
+ return false;
+ if (result != target)
+ emit_move_insn (target, result);
+ return true;
+}
+
+/* INSN is an sfunc; return the rtx that describes the address used. */
+static rtx
+extract_sfunc_addr (rtx insn)
+{
+ rtx pattern, part = NULL_RTX;
+ int len, i;
+
+ pattern = PATTERN (insn);
+ len = XVECLEN (pattern, 0);
+ for (i = 0; i < len; i++)
+ {
+ part = XVECEXP (pattern, 0, i);
+ if (GET_CODE (part) == USE && GET_MODE (XEXP (part, 0)) == Pmode
+ && GENERAL_REGISTER_P (true_regnum (XEXP (part, 0))))
+ return XEXP (part, 0);
+ }
+ gcc_assert (GET_CODE (XVECEXP (pattern, 0, 0)) == UNSPEC_VOLATILE);
+ return XVECEXP (XVECEXP (pattern, 0, 0), 0, 1);
+}
+
+/* Verify that the register in use_sfunc_addr still agrees with the address
+ used in the sfunc. This prevents fill_slots_from_thread from changing
+ use_sfunc_addr.
+ INSN is the use_sfunc_addr instruction, and REG is the register it
+ guards. */
+bool
+check_use_sfunc_addr (rtx insn, rtx reg)
+{
+ /* Search for the sfunc. It should really come right after INSN. */
+ while ((insn = NEXT_INSN (insn)))
+ {
+ if (LABEL_P (insn) || JUMP_P (insn))
+ break;
+ if (! INSN_P (insn))
+ continue;
+
+ if (GET_CODE (PATTERN (insn)) == SEQUENCE)
+ insn = XVECEXP (PATTERN (insn), 0, 0);
+ if (GET_CODE (PATTERN (insn)) != PARALLEL
+ || get_attr_type (insn) != TYPE_SFUNC)
+ continue;
+ return rtx_equal_p (extract_sfunc_addr (insn), reg);
+ }
+ gcc_unreachable ();
+}
+
+/* This function returns a constant rtx that represents 2**15 / pi in
+ SFmode. It's used to scale a fixed-point signed 16.16-bit fraction
+ of a full circle back to an SFmode value, i.e. 0x10000 maps to 2*pi. */
+static GTY(()) rtx sh_fsca_sf2int_rtx;
+
+rtx
+sh_fsca_sf2int (void)
+{
+ if (! sh_fsca_sf2int_rtx)
+ {
+ REAL_VALUE_TYPE rv;
+
+ real_from_string (&rv, "10430.378350470453");
+ sh_fsca_sf2int_rtx = const_double_from_real_value (rv, SFmode);
+ }
+
+ return sh_fsca_sf2int_rtx;
+}
+
+/* This function returns a constant rtx that represents pi / 2**15 in
+ SFmode. It's used to scale SFmode angles, in radians, to a
+ fixed-point signed 16.16-bit fraction of a full circle, i.e. 2*pi
+ maps to 0x10000. */
+static GTY(()) rtx sh_fsca_int2sf_rtx;
+
+rtx
+sh_fsca_int2sf (void)
+{
+ if (! sh_fsca_int2sf_rtx)
+ {
+ REAL_VALUE_TYPE rv;
+
+ real_from_string (&rv, "9.587379924285257e-5");
+ sh_fsca_int2sf_rtx = const_double_from_real_value (rv, SFmode);
+ }
+
+ return sh_fsca_int2sf_rtx;
+}
+
+/* Initialize the CUMULATIVE_ARGS structure. */
+void
+sh_init_cumulative_args (CUMULATIVE_ARGS * pcum,
+ tree fntype,
+ rtx libname ATTRIBUTE_UNUSED,
+ tree fndecl,
+ signed int n_named_args,
+ enum machine_mode mode)
+{
+ pcum->arg_count [(int) SH_ARG_FLOAT] = 0;
+ pcum->free_single_fp_reg = 0;
+ pcum->stack_regs = 0;
+ pcum->byref_regs = 0;
+ pcum->byref = 0;
+ pcum->outgoing = (n_named_args == -1) ? 0 : 1;
+
+ /* XXX - Should we check TARGET_HITACHI here ??? */
+ pcum->renesas_abi = sh_attr_renesas_p (fntype) ? 1 : 0;
+
+ if (fntype)
+ {
+ pcum->force_mem = ((TARGET_HITACHI || pcum->renesas_abi)
+ && aggregate_value_p (TREE_TYPE (fntype), fndecl));
+ pcum->prototype_p = prototype_p (fntype);
+ pcum->arg_count [(int) SH_ARG_INT]
+ = TARGET_SH5 && aggregate_value_p (TREE_TYPE (fntype), fndecl);
+
+ pcum->call_cookie
+ = CALL_COOKIE_RET_TRAMP (TARGET_SHCOMPACT
+ && pcum->arg_count [(int) SH_ARG_INT] == 0
+ && (TYPE_MODE (TREE_TYPE (fntype)) == BLKmode
+ ? int_size_in_bytes (TREE_TYPE (fntype))
+ : GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (fntype)))) > 4
+ && (BASE_RETURN_VALUE_REG (TYPE_MODE (TREE_TYPE (fntype)))
+ == FIRST_RET_REG));
+ }
+ else
+ {
+ pcum->arg_count [(int) SH_ARG_INT] = 0;
+ pcum->prototype_p = FALSE;
+ if (mode != VOIDmode)
+ {
+ pcum->call_cookie =
+ CALL_COOKIE_RET_TRAMP (TARGET_SHCOMPACT
+ && GET_MODE_SIZE (mode) > 4
+ && BASE_RETURN_VALUE_REG (mode) == FIRST_RET_REG);
+
+ /* If the default ABI is the Renesas ABI then all library
+ calls must assume that the library will be using the
+ Renesas ABI. So if the function would return its result
+ in memory then we must force the address of this memory
+ block onto the stack. Ideally we would like to call
+ targetm.calls.return_in_memory() here but we do not have
+ the TYPE or the FNDECL available so we synthesize the
+ contents of that function as best we can. */
+ pcum->force_mem =
+ (TARGET_DEFAULT & MASK_HITACHI)
+ && (mode == BLKmode
+ || (GET_MODE_SIZE (mode) > 4
+ && !(mode == DFmode
+ && TARGET_FPU_DOUBLE)));
+ }
+ else
+ {
+ pcum->call_cookie = 0;
+ pcum->force_mem = FALSE;
+ }
+ }
+}
+
+/* Replace any occurrence of FROM(n) in X with TO(n). The function does
+ not enter into CONST_DOUBLE for the replace.
+
+ Note that copying is not done so X must not be shared unless all copies
+ are to be modified.
+
+ This is like replace_rtx, except that we operate on N_REPLACEMENTS
+ replacements simultaneously - FROM(n) is replacements[n*2] and to(n) is
+ replacements[n*2+1] - and that we take mode changes into account.
+
+ If a replacement is ambiguous, return NULL_RTX.
+
+ If MODIFY is zero, don't modify any rtl in place,
+ just return zero or nonzero for failure / success. */
+rtx
+replace_n_hard_rtx (rtx x, rtx *replacements, int n_replacements, int modify)
+{
+ int i, j;
+ const char *fmt;
+
+ /* The following prevents loops occurrence when we change MEM in
+ CONST_DOUBLE onto the same CONST_DOUBLE. */
+ if (x != NULL_RTX && GET_CODE (x) == CONST_DOUBLE)
+ return x;
+
+ for (i = n_replacements - 1; i >= 0 ; i--)
+ if (x == replacements[i*2] && GET_MODE (x) == GET_MODE (replacements[i*2+1]))
+ return replacements[i*2+1];
+
+ /* Allow this function to make replacements in EXPR_LISTs. */
+ if (x == NULL_RTX)
+ return NULL_RTX;
+
+ if (GET_CODE (x) == SUBREG)
+ {
+ rtx new_rtx = replace_n_hard_rtx (SUBREG_REG (x), replacements,
+ n_replacements, modify);
+
+ if (CONST_INT_P (new_rtx))
+ {
+ x = simplify_subreg (GET_MODE (x), new_rtx,
+ GET_MODE (SUBREG_REG (x)),
+ SUBREG_BYTE (x));
+ if (! x)
+ abort ();
+ }
+ else if (modify)
+ SUBREG_REG (x) = new_rtx;
+
+ return x;
+ }
+ else if (REG_P (x))
+ {
+ unsigned regno = REGNO (x);
+ unsigned nregs = (regno < FIRST_PSEUDO_REGISTER
+ ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
+ rtx result = NULL_RTX;
+
+ for (i = n_replacements - 1; i >= 0; i--)
+ {
+ rtx from = replacements[i*2];
+ rtx to = replacements[i*2+1];
+ unsigned from_regno, from_nregs, to_regno, new_regno;
+
+ if (!REG_P (from))
+ continue;
+ from_regno = REGNO (from);
+ from_nregs = (from_regno < FIRST_PSEUDO_REGISTER
+ ? HARD_REGNO_NREGS (from_regno, GET_MODE (from)) : 1);
+ if (regno < from_regno + from_nregs && regno + nregs > from_regno)
+ {
+ if (regno < from_regno
+ || regno + nregs > from_regno + nregs
+ || !REG_P (to)
+ || result)
+ return NULL_RTX;
+ to_regno = REGNO (to);
+ if (to_regno < FIRST_PSEUDO_REGISTER)
+ {
+ new_regno = regno + to_regno - from_regno;
+ if ((unsigned) HARD_REGNO_NREGS (new_regno, GET_MODE (x))
+ != nregs)
+ return NULL_RTX;
+ result = gen_rtx_REG (GET_MODE (x), new_regno);
+ }
+ else if (GET_MODE (x) <= GET_MODE (to))
+ result = gen_lowpart_common (GET_MODE (x), to);
+ else
+ result = gen_lowpart_SUBREG (GET_MODE (x), to);
+ }
+ }
+ return result ? result : x;
+ }
+ else if (GET_CODE (x) == ZERO_EXTEND)
+ {
+ rtx new_rtx = replace_n_hard_rtx (XEXP (x, 0), replacements,
+ n_replacements, modify);
+
+ if (CONST_INT_P (new_rtx))
+ {
+ x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
+ new_rtx, GET_MODE (XEXP (x, 0)));
+ if (! x)
+ abort ();
+ }
+ else if (modify)
+ XEXP (x, 0) = new_rtx;
+
+ return x;
+ }
+
+ fmt = GET_RTX_FORMAT (GET_CODE (x));
+ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
+ {
+ rtx new_rtx;
+
+ if (fmt[i] == 'e')
+ {
+ new_rtx = replace_n_hard_rtx (XEXP (x, i), replacements,
+ n_replacements, modify);
+ if (!new_rtx)
+ return NULL_RTX;
+ if (modify)
+ XEXP (x, i) = new_rtx;
+ }
+ else if (fmt[i] == 'E')
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ {
+ new_rtx = replace_n_hard_rtx (XVECEXP (x, i, j), replacements,
+ n_replacements, modify);
+ if (!new_rtx)
+ return NULL_RTX;
+ if (modify)
+ XVECEXP (x, i, j) = new_rtx;
+ }
+ }
+
+ return x;
+}
+
+rtx
+sh_gen_truncate (enum machine_mode mode, rtx x, int need_sign_ext)
+{
+ enum rtx_code code = TRUNCATE;
+
+ if (GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
+ {
+ rtx inner = XEXP (x, 0);
+ enum machine_mode inner_mode = GET_MODE (inner);
+
+ if (inner_mode == mode)
+ return inner;
+ else if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode))
+ x = inner;
+ else if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode)
+ && (! need_sign_ext || GET_CODE (x) == SIGN_EXTEND))
+ {
+ code = GET_CODE (x);
+ x = inner;
+ }
+ }
+ return gen_rtx_fmt_e (code, mode, x);
+}
+
+/* Called via for_each_rtx after reload, to clean up truncates of
+ registers that span multiple actual hard registers. */
+int
+shmedia_cleanup_truncate (rtx *p, void *n_changes)
+{
+ rtx x = *p, reg;
+
+ if (GET_CODE (x) != TRUNCATE)
+ return 0;
+ reg = XEXP (x, 0);
+ if (GET_MODE_SIZE (GET_MODE (reg)) > 8 && REG_P (reg))
+ {
+ enum machine_mode reg_mode = GET_MODE (reg);
+ XEXP (x, 0) = simplify_subreg (DImode, reg, reg_mode,
+ subreg_lowpart_offset (DImode, reg_mode));
+ *(int*) n_changes += 1;
+ return -1;
+ }
+ return 0;
+}
+
+/* Load and store depend on the highpart of the address. However,
+ set_attr_alternative does not give well-defined results before reload,
+ so we must look at the rtl ourselves to see if any of the feeding
+ registers is used in a memref.
+
+ Called by sh_contains_memref_p via for_each_rtx. */
+static int
+sh_contains_memref_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
+{
+ return (MEM_P (*loc));
+}
+
+/* Return true iff INSN contains a MEM. */
+bool
+sh_contains_memref_p (rtx insn)
+{
+ return for_each_rtx (&PATTERN (insn), &sh_contains_memref_p_1, NULL);
+}
+
+/* Return true iff INSN loads a banked register. */
+bool
+sh_loads_bankedreg_p (rtx insn)
+{
+ if (GET_CODE (PATTERN (insn)) == SET)
+ {
+ rtx op = SET_DEST (PATTERN(insn));
+ if (REG_P (op) && BANKED_REGISTER_P (REGNO (op)))
+ return true;
+ }
+
+ return false;
+}
+
+/* FNADDR is the MEM expression from a call expander. Return an address
+ to use in an SHmedia insn pattern. */
+rtx
+shmedia_prepare_call_address (rtx fnaddr, int is_sibcall)
+{
+ int is_sym;
+
+ fnaddr = XEXP (fnaddr, 0);
+ is_sym = GET_CODE (fnaddr) == SYMBOL_REF;
+ if (flag_pic && is_sym)
+ {
+ if (! SYMBOL_REF_LOCAL_P (fnaddr))
+ {
+ rtx reg = gen_reg_rtx (Pmode);
+
+ /* We must not use GOTPLT for sibcalls, because PIC_REG
+ must be restored before the PLT code gets to run. */
+ if (is_sibcall)
+ emit_insn (gen_symGOT2reg (reg, fnaddr));
+ else
+ emit_insn (gen_symGOTPLT2reg (reg, fnaddr));
+ fnaddr = reg;
+ }
+ else
+ {
+ fnaddr = gen_sym2PIC (fnaddr);
+ PUT_MODE (fnaddr, Pmode);
+ }
+ }
+ /* If ptabs might trap, make this visible to the rest of the compiler.
+ We generally assume that symbols pertain to valid locations, but
+ it is possible to generate invalid symbols with asm or linker tricks.
+ In a list of functions where each returns its successor, an invalid
+ symbol might denote an empty list. */
+ if (!TARGET_PT_FIXED
+ && (!is_sym || TARGET_INVALID_SYMBOLS)
+ && (!REG_P (fnaddr) || ! TARGET_REGISTER_P (REGNO (fnaddr))))
+ {
+ rtx tr = gen_reg_rtx (PDImode);
+
+ emit_insn (gen_ptabs (tr, fnaddr));
+ fnaddr = tr;
+ }
+ else if (! target_reg_operand (fnaddr, Pmode))
+ fnaddr = copy_to_mode_reg (Pmode, fnaddr);
+ return fnaddr;
+}
+
+/* Implement TARGET_PREFERRED_RELOAD_CLASS. */
+static reg_class_t
+sh_preferred_reload_class (rtx x, reg_class_t rclass)
+{
+ if (rclass == NO_REGS
+ && TARGET_SHMEDIA
+ && (CONST_DOUBLE_P (x)
+ || GET_CODE (x) == SYMBOL_REF
+ || PIC_ADDR_P (x)))
+ return GENERAL_REGS;
+
+ return rclass;
+}
+
+/* Implement TARGET_SECONDARY_RELOAD. */
+static reg_class_t
+sh_secondary_reload (bool in_p, rtx x, reg_class_t rclass_i,
+ enum machine_mode mode, secondary_reload_info *sri)
+{
+ enum reg_class rclass = (enum reg_class) rclass_i;
+
+ if (MEM_P (x) && GET_CODE (XEXP (x, 0)) == PLUS
+ && REG_P (XEXP (XEXP (x, 0), 0))
+ && REGNO (XEXP (XEXP (x, 0), 0)) == GBR_REG)
+ return rclass == R0_REGS ? NO_REGS : R0_REGS;
+
+ if (MEM_P (x) && REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) == GBR_REG)
+ return rclass == R0_REGS ? NO_REGS : R0_REGS;
+
+ if (REG_P (x) && REGNO (x) == GBR_REG)
+ return NO_REGS;
+
+ if (in_p)
+ {
+ if (REGCLASS_HAS_FP_REG (rclass)
+ && ! TARGET_SHMEDIA
+ && immediate_operand ((x), mode)
+ && ! ((fp_zero_operand (x) || fp_one_operand (x))
+ && mode == SFmode && fldi_ok ()))
+ switch (mode)
+ {
+ case SFmode:
+ sri->icode = CODE_FOR_reload_insf__frn;
+ return NO_REGS;
+ case DFmode:
+ sri->icode = CODE_FOR_reload_indf__frn;
+ return NO_REGS;
+ case SImode:
+ /* ??? If we knew that we are in the appropriate mode -
+ single precision - we could use a reload pattern directly. */
+ return FPUL_REGS;
+ default:
+ abort ();
+ }
+ if (rclass == FPUL_REGS
+ && ((REG_P (x) && (REGNO (x) == MACL_REG || REGNO (x) == MACH_REG
+ || REGNO (x) == T_REG))
+ || GET_CODE (x) == PLUS))
+ return GENERAL_REGS;
+ if (rclass == FPUL_REGS && immediate_operand (x, mode))
+ {
+ if (satisfies_constraint_I08 (x) || fp_zero_operand (x))
+ return GENERAL_REGS;
+ else if (mode == SFmode)
+ return FP_REGS;
+ sri->icode = CODE_FOR_reload_insi__i_fpul;
+ return NO_REGS;
+ }
+ if (rclass == FPSCR_REGS
+ && ((REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
+ || (MEM_P (x) && GET_CODE (XEXP (x, 0)) == PLUS)))
+ return GENERAL_REGS;
+ if (REGCLASS_HAS_FP_REG (rclass)
+ && TARGET_SHMEDIA
+ && immediate_operand (x, mode)
+ && x != CONST0_RTX (GET_MODE (x))
+ && GET_MODE (x) != V4SFmode)
+ return GENERAL_REGS;
+ if ((mode == QImode || mode == HImode)
+ && TARGET_SHMEDIA && inqhi_operand (x, mode))
+ {
+ sri->icode = ((mode == QImode)
+ ? CODE_FOR_reload_inqi : CODE_FOR_reload_inhi);
+ return NO_REGS;
+ }
+ if (TARGET_SHMEDIA && rclass == GENERAL_REGS
+ && (GET_CODE (x) == LABEL_REF || PIC_ADDR_P (x)))
+ return TARGET_REGS;
+ } /* end of input-only processing. */
+
+ if (((REGCLASS_HAS_FP_REG (rclass)
+ && (REG_P (x)
+ && (GENERAL_OR_AP_REGISTER_P (REGNO (x))
+ || (FP_REGISTER_P (REGNO (x)) && mode == SImode
+ && TARGET_FMOVD))))
+ || (REGCLASS_HAS_GENERAL_REG (rclass)
+ && REG_P (x)
+ && FP_REGISTER_P (REGNO (x))))
+ && ! TARGET_SHMEDIA
+ && (mode == SFmode || mode == SImode))
+ return FPUL_REGS;
+ if ((rclass == FPUL_REGS
+ || (REGCLASS_HAS_FP_REG (rclass)
+ && ! TARGET_SHMEDIA && mode == SImode))
+ && (MEM_P (x)
+ || (REG_P (x)
+ && (REGNO (x) >= FIRST_PSEUDO_REGISTER
+ || REGNO (x) == T_REG
+ || system_reg_operand (x, VOIDmode)))))
+ {
+ if (rclass == FPUL_REGS)
+ return GENERAL_REGS;
+ return FPUL_REGS;
+ }
+ if ((rclass == TARGET_REGS
+ || (TARGET_SHMEDIA && rclass == SIBCALL_REGS))
+ && !satisfies_constraint_Csy (x)
+ && (!REG_P (x) || ! GENERAL_REGISTER_P (REGNO (x))))
+ return GENERAL_REGS;
+ if ((rclass == MAC_REGS || rclass == PR_REGS)
+ && REG_P (x) && ! GENERAL_REGISTER_P (REGNO (x))
+ && rclass != REGNO_REG_CLASS (REGNO (x)))
+ return GENERAL_REGS;
+ if (rclass != GENERAL_REGS && REG_P (x)
+ && TARGET_REGISTER_P (REGNO (x)))
+ return GENERAL_REGS;
+
+ /* If here fall back to loading FPUL register through general registers.
+ This case can happen when movsi_ie insn is picked initially to
+ load/store the FPUL register from/to another register, and then the
+ other register is allocated on the stack. */
+ if (rclass == FPUL_REGS && true_regnum (x) == -1)
+ return GENERAL_REGS;
+
+ /* Force mov.b / mov.w displacement addressing insn to use R0 as
+ the other operand.
+ On SH2A could also just leave it alone here, which would result in a
+ 4 byte move insn being generated instead. However, for this to work
+ the insns must have the appropriate alternatives. */
+ if ((mode == QImode || mode == HImode) && rclass != R0_REGS
+ && satisfies_constraint_Sdd (x)
+ && sh_disp_addr_displacement (x)
+ <= sh_max_mov_insn_displacement (mode, false))
+ return R0_REGS;
+
+ /* When reload is trying to address a QImode or HImode subreg on the stack,
+ force any subreg byte into R0_REGS, as this is going to become a
+ displacement address.
+ We could restrict this to SUBREG_BYTE (x) > 0, but if the actual reg
+ is on the stack, the memref to it might already require a displacement
+ and that has to be added to the final address. At this point we don't
+ know the cumulative displacement so we assume the worst case. */
+ if ((mode == QImode || mode == HImode) && rclass != R0_REGS
+ && GET_CODE (x) == SUBREG && true_regnum (x) == -1)
+ return R0_REGS;
+
+ return NO_REGS;
+}
+
+static void
+sh_conditional_register_usage (void)
+{
+ int regno;
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno ++)
+ if (! VALID_REGISTER_P (regno))
+ fixed_regs[regno] = call_used_regs[regno] = 1;
+ /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. */
+ if (TARGET_SH5)
+ {
+ call_used_regs[FIRST_GENERAL_REG + 8]
+ = call_used_regs[FIRST_GENERAL_REG + 9] = 1;
+ call_really_used_regs[FIRST_GENERAL_REG + 8]
+ = call_really_used_regs[FIRST_GENERAL_REG + 9] = 1;
+ }
+ if (TARGET_SHMEDIA)
+ {
+ regno_reg_class[FIRST_GENERAL_REG] = GENERAL_REGS;
+ CLEAR_HARD_REG_SET (reg_class_contents[FP0_REGS]);
+ regno_reg_class[FIRST_FP_REG] = FP_REGS;
+ }
+ if (flag_pic)
+ {
+ fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
+ call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
+ }
+ /* Renesas saves and restores mac registers on call. */
+ if (TARGET_HITACHI && ! TARGET_NOMACSAVE)
+ {
+ call_really_used_regs[MACH_REG] = 0;
+ call_really_used_regs[MACL_REG] = 0;
+ }
+
+ if (TARGET_SHMEDIA)
+ {
+ for (regno = FIRST_TARGET_REG; regno <= LAST_TARGET_REG; regno ++)
+ if (! fixed_regs[regno] && call_really_used_regs[regno])
+ SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno);
+ }
+ else
+ for (regno = FIRST_GENERAL_REG; regno <= LAST_GENERAL_REG; regno++)
+ if (! fixed_regs[regno] && call_really_used_regs[regno])
+ SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno);
+}
+
+/* Implement TARGET_LEGITIMATE_CONSTANT_P
+
+ can_store_by_pieces constructs VOIDmode CONST_DOUBLEs. */
+static bool
+sh_legitimate_constant_p (enum machine_mode mode, rtx x)
+{
+ return (TARGET_SHMEDIA
+ ? ((mode != DFmode && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
+ || x == CONST0_RTX (mode)
+ || !TARGET_SHMEDIA_FPU
+ || TARGET_SHMEDIA64)
+ : (GET_CODE (x) != CONST_DOUBLE
+ || mode == DFmode || mode == SFmode
+ || mode == DImode || GET_MODE (x) == VOIDmode));
+}
+
+enum sh_divide_strategy_e sh_div_strategy = SH_DIV_STRATEGY_DEFAULT;
+
+static void
+sh_init_sync_libfuncs (void)
+{
+ init_sync_libfuncs (UNITS_PER_WORD);
+}
+
+/* Return true if it is appropriate to emit `ret' instructions in the
+ body of a function. */
+bool
+sh_can_use_simple_return_p (void)
+{
+ HARD_REG_SET live_regs_mask;
+ int d;
+
+ /* Some targets require special return insns. */
+ if (TARGET_SHMEDIA
+ || (TARGET_SHCOMPACT
+ && (crtl->args.info.call_cookie & CALL_COOKIE_RET_TRAMP (1))))
+ return false;
+
+ if (! reload_completed || frame_pointer_needed)
+ return false;
+
+ /* Moving prologue around does't reduce the size. */
+ if (optimize_function_for_size_p (cfun))
+ return false;
+
+ /* Finally, allow for pr save. */
+ d = calc_live_regs (&live_regs_mask);
+
+ if (rounded_frame_size (d) > 4)
+ return false;
+
+ return true;
+}
+
+/*------------------------------------------------------------------------------
+ Address mode optimization support code
+*/
+
+typedef HOST_WIDE_INT disp_t;
+static const disp_t MIN_DISP = HOST_WIDE_INT_MIN;
+static const disp_t MAX_DISP = HOST_WIDE_INT_MAX;
+static const disp_t INVALID_DISP = MAX_DISP;
+
+/* A memory reference which is described by a base register and a
+ displacement. */
+class base_reg_disp
+{
+public:
+ base_reg_disp (rtx br, disp_t d);
+
+ bool is_reg (void) const;
+ bool is_disp (void) const;
+ rtx reg (void) const;
+ disp_t disp (void) const;
+
+private:
+ rtx reg_;
+ disp_t disp_;
+};
+
+inline
+base_reg_disp::base_reg_disp (rtx br, disp_t d)
+: reg_ (br), disp_ (d)
+{
+}
+
+inline bool
+base_reg_disp::is_reg (void) const
+{
+ return reg_ != NULL_RTX && disp_ != INVALID_DISP;
+}
+
+inline bool
+base_reg_disp::is_disp (void) const
+{
+ return reg_ == NULL_RTX && disp_ != INVALID_DISP;
+}
+
+inline rtx
+base_reg_disp::reg (void) const
+{
+ return reg_;
+}
+
+inline disp_t
+base_reg_disp::disp (void) const
+{
+ return disp_;
+}
+
+/* Find the base register and calculate the displacement for a given
+ address rtx 'x'.
+ This is done by walking the insn list backwards and following SET insns
+ that set the value of the specified reg 'x'. */
+static base_reg_disp
+sh_find_base_reg_disp (rtx insn, rtx x, disp_t disp = 0, rtx base_reg = NULL)
+{
+ if (REG_P (x))
+ {
+ if (REGNO (x) == GBR_REG)
+ return base_reg_disp (x, disp);
+
+ /* We've reached a hard-reg. This is probably the point where
+ function args are copied to pseudos. Do not go any further and
+ stick to the pseudo. If the original mem addr was in a hard reg
+ from the beginning, it will become the base reg. */
+ if (REGNO (x) < FIRST_PSEUDO_REGISTER)
+ return base_reg_disp (base_reg != NULL ? base_reg : x, disp);
+
+ /* Try to find the previous insn that sets the reg. */
+ for (rtx i = prev_nonnote_insn (insn); i != NULL;
+ i = prev_nonnote_insn (i))
+ {
+ if (REGNO_REG_SET_P (regs_invalidated_by_call_regset, GBR_REG)
+ && CALL_P (i))
+ break;
+
+ if (!NONJUMP_INSN_P (i))
+ continue;
+
+ rtx p = PATTERN (i);
+ if (p != NULL && GET_CODE (p) == SET && REG_P (XEXP (p, 0))
+ && REGNO (XEXP (p, 0)) == REGNO (x))
+ {
+ /* If the recursion can't find out any more details about the
+ source of the set, then this reg becomes our new base reg. */
+ return sh_find_base_reg_disp (i, XEXP (p, 1), disp, XEXP (p, 0));
+ }
+ }
+
+ /* When here, no previous insn was found that sets the reg.
+ The input reg is already the base reg. */
+ return base_reg_disp (x, disp);
+ }
+
+ else if (GET_CODE (x) == PLUS)
+ {
+ base_reg_disp left_val = sh_find_base_reg_disp (insn, XEXP (x, 0));
+ base_reg_disp right_val = sh_find_base_reg_disp (insn, XEXP (x, 1));
+
+ /* Either left or right val must be a reg.
+ We don't handle the case of 'reg + reg' here. */
+ if (left_val.is_reg () && right_val.is_disp ())
+ return base_reg_disp (left_val.reg (), left_val.disp ()
+ + right_val.disp () + disp);
+ else if (right_val.is_reg () && left_val.is_disp ())
+ return base_reg_disp (right_val.reg (), right_val.disp ()
+ + left_val.disp () + disp);
+ else
+ return base_reg_disp (base_reg, disp);
+ }
+
+ else if (CONST_INT_P (x))
+ return base_reg_disp (NULL, disp + INTVAL (x));
+
+ /* Didn't find anything useful. */
+ return base_reg_disp (base_reg, disp);
+}
+
+/* Given an insn and a memory operand, try to find an equivalent GBR
+ based memory address and return the corresponding new memory address.
+ Return NULL_RTX if not found. */
+rtx
+sh_find_equiv_gbr_addr (rtx insn, rtx mem)
+{
+ if (!MEM_P (mem))
+ return NULL_RTX;
+
+ /* Leave post/pre inc/dec or any other side effect addresses alone. */
+ if (side_effects_p (XEXP (mem, 0)))
+ return NULL_RTX;
+
+ base_reg_disp gbr_disp = sh_find_base_reg_disp (insn, XEXP (mem, 0));
+
+ if (gbr_disp.is_reg () && REGNO (gbr_disp.reg ()) == GBR_REG)
+ {
+ rtx disp = GEN_INT (gbr_disp.disp ());
+ if (gbr_displacement (disp, GET_MODE (mem)))
+ return gen_rtx_PLUS (SImode, gen_rtx_REG (SImode, GBR_REG), disp);
+ }
+
+ return NULL_RTX;
+}
+
+/*------------------------------------------------------------------------------
+ Manual insn combine support code.
+*/
+
+/* Given a reg rtx and a start insn, try to find the insn that sets the
+ specified reg by using the specified insn stepping function, such as
+ 'prev_nonnote_insn_bb'. When the insn is found, try to extract the rtx
+ of the reg set. */
+set_of_reg
+sh_find_set_of_reg (rtx reg, rtx insn, rtx(*stepfunc)(rtx))
+{
+ set_of_reg result;
+ result.insn = insn;
+ result.set_rtx = NULL_RTX;
+ result.set_src = NULL_RTX;
+
+ if (!REG_P (reg) || insn == NULL_RTX)
+ return result;
+
+ for (result.insn = stepfunc (insn); result.insn != NULL_RTX;
+ result.insn = stepfunc (result.insn))
+ {
+ if (BARRIER_P (result.insn))
+ return result;
+ if (!NONJUMP_INSN_P (result.insn))
+ continue;
+ if (reg_set_p (reg, result.insn))
+ {
+ result.set_rtx = set_of (reg, result.insn);
+
+ if (result.set_rtx == NULL_RTX || GET_CODE (result.set_rtx) != SET)
+ return result;
+
+ result.set_src = XEXP (result.set_rtx, 1);
+ return result;
+ }
+ }
+
+ return result;
+}
+
+/* Given an op rtx and an insn, try to find out whether the result of the
+ specified op consists only of logical operations on T bit stores. */
+bool
+sh_is_logical_t_store_expr (rtx op, rtx insn)
+{
+ if (!logical_operator (op, SImode))
+ return false;
+
+ rtx ops[2] = { XEXP (op, 0), XEXP (op, 1) };
+ int op_is_t_count = 0;
+
+ for (int i = 0; i < 2; ++i)
+ {
+ if (t_reg_operand (ops[i], VOIDmode)
+ || negt_reg_operand (ops[i], VOIDmode))
+ op_is_t_count++;
+
+ else
+ {
+ set_of_reg op_set = sh_find_set_of_reg (ops[i], insn,
+ prev_nonnote_insn_bb);
+ if (op_set.set_src == NULL_RTX)
+ continue;
+
+ if (t_reg_operand (op_set.set_src, VOIDmode)
+ || negt_reg_operand (op_set.set_src, VOIDmode)
+ || sh_is_logical_t_store_expr (op_set.set_src, op_set.insn))
+ op_is_t_count++;
+ }
+ }
+
+ return op_is_t_count == 2;
+}
+
+/* Given the operand that is extended in a sign/zero extend insn, and the
+ insn, try to figure out whether the sign/zero extension can be replaced
+ by a simple reg-reg copy. If so, the replacement reg rtx is returned,
+ NULL_RTX otherwise. */
+rtx
+sh_try_omit_signzero_extend (rtx extended_op, rtx insn)
+{
+ if (REG_P (extended_op))
+ extended_op = extended_op;
+ else if (GET_CODE (extended_op) == SUBREG && REG_P (SUBREG_REG (extended_op)))
+ extended_op = SUBREG_REG (extended_op);
+ else
+ return NULL_RTX;
+
+ /* Reg moves must be of the same mode. */
+ if (GET_MODE (extended_op) != SImode)
+ return NULL_RTX;
+
+ set_of_reg s = sh_find_set_of_reg (extended_op, insn, prev_nonnote_insn_bb);
+ if (s.set_src == NULL_RTX)
+ return NULL_RTX;
+
+ if (t_reg_operand (s.set_src, VOIDmode)
+ || negt_reg_operand (s.set_src, VOIDmode))
+ return extended_op;
+
+ /* If the zero extended reg was formed by a logical operation, check the
+ operands of the logical operation. If both originated from T bit
+ stores the zero extension can be eliminated. */
+ else if (sh_is_logical_t_store_expr (s.set_src, s.insn))
+ return extended_op;
+
+ return NULL_RTX;
+}
+
+#include "gt-sh.h"