aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/config/s390/s390.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/config/s390/s390.h')
-rw-r--r--gcc-4.9/gcc/config/s390/s390.h931
1 files changed, 931 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/config/s390/s390.h b/gcc-4.9/gcc/config/s390/s390.h
new file mode 100644
index 000000000..2f2139e91
--- /dev/null
+++ b/gcc-4.9/gcc/config/s390/s390.h
@@ -0,0 +1,931 @@
+/* Definitions of target machine for GNU compiler, for IBM S/390
+ Copyright (C) 1999-2014 Free Software Foundation, Inc.
+ Contributed by Hartmut Penner (hpenner@de.ibm.com) and
+ Ulrich Weigand (uweigand@de.ibm.com).
+ Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#ifndef _S390_H
+#define _S390_H
+
+/* Optional architectural facilities supported by the processor. */
+
+enum processor_flags
+{
+ PF_IEEE_FLOAT = 1,
+ PF_ZARCH = 2,
+ PF_LONG_DISPLACEMENT = 4,
+ PF_EXTIMM = 8,
+ PF_DFP = 16,
+ PF_Z10 = 32,
+ PF_Z196 = 64,
+ PF_ZEC12 = 128,
+ PF_TX = 256
+};
+
+/* This is necessary to avoid a warning about comparing different enum
+ types. */
+#define s390_tune_attr ((enum attr_cpu)s390_tune)
+
+/* These flags indicate that the generated code should run on a cpu
+ providing the respective hardware facility regardless of the
+ current cpu mode (ESA or z/Architecture). */
+
+#define TARGET_CPU_IEEE_FLOAT \
+ (s390_arch_flags & PF_IEEE_FLOAT)
+#define TARGET_CPU_ZARCH \
+ (s390_arch_flags & PF_ZARCH)
+#define TARGET_CPU_LONG_DISPLACEMENT \
+ (s390_arch_flags & PF_LONG_DISPLACEMENT)
+#define TARGET_CPU_EXTIMM \
+ (s390_arch_flags & PF_EXTIMM)
+#define TARGET_CPU_DFP \
+ (s390_arch_flags & PF_DFP)
+#define TARGET_CPU_Z10 \
+ (s390_arch_flags & PF_Z10)
+#define TARGET_CPU_Z196 \
+ (s390_arch_flags & PF_Z196)
+#define TARGET_CPU_ZEC12 \
+ (s390_arch_flags & PF_ZEC12)
+#define TARGET_CPU_HTM \
+ (s390_arch_flags & PF_TX)
+
+/* These flags indicate that the generated code should run on a cpu
+ providing the respective hardware facility when run in
+ z/Architecture mode. */
+
+#define TARGET_LONG_DISPLACEMENT \
+ (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
+#define TARGET_EXTIMM \
+ (TARGET_ZARCH && TARGET_CPU_EXTIMM)
+#define TARGET_DFP \
+ (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
+#define TARGET_Z10 \
+ (TARGET_ZARCH && TARGET_CPU_Z10)
+#define TARGET_Z196 \
+ (TARGET_ZARCH && TARGET_CPU_Z196)
+#define TARGET_ZEC12 \
+ (TARGET_ZARCH && TARGET_CPU_ZEC12)
+#define TARGET_HTM (TARGET_OPT_HTM)
+
+
+#define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196)
+
+/* Run-time target specification. */
+
+/* Defaults for option flags defined only on some subtargets. */
+#ifndef TARGET_TPF_PROFILING
+#define TARGET_TPF_PROFILING 0
+#endif
+
+/* This will be overridden by OS headers. */
+#define TARGET_TPF 0
+
+/* Target CPU builtins. */
+#define TARGET_CPU_CPP_BUILTINS() \
+ do \
+ { \
+ builtin_assert ("cpu=s390"); \
+ builtin_assert ("machine=s390"); \
+ builtin_define ("__s390__"); \
+ if (TARGET_ZARCH) \
+ builtin_define ("__zarch__"); \
+ if (TARGET_64BIT) \
+ builtin_define ("__s390x__"); \
+ if (TARGET_LONG_DOUBLE_128) \
+ builtin_define ("__LONG_DOUBLE_128__"); \
+ if (TARGET_HTM) \
+ builtin_define ("__HTM__"); \
+ } \
+ while (0)
+
+#ifdef DEFAULT_TARGET_64BIT
+#define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP | MASK_OPT_HTM)
+#else
+#define TARGET_DEFAULT 0
+#endif
+
+/* Support for configure-time defaults. */
+#define OPTION_DEFAULT_SPECS \
+ { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
+ { "arch", "%{!march=*:-march=%(VALUE)}" }, \
+ { "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
+
+/* Defaulting rules. */
+#ifdef DEFAULT_TARGET_64BIT
+#define DRIVER_SELF_SPECS \
+ "%{!m31:%{!m64:-m64}}", \
+ "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
+ "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
+#else
+#define DRIVER_SELF_SPECS \
+ "%{!m31:%{!m64:-m31}}", \
+ "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
+ "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
+#endif
+
+/* Constants needed to control the TEST DATA CLASS (TDC) instruction. */
+#define S390_TDC_POSITIVE_ZERO (1 << 11)
+#define S390_TDC_NEGATIVE_ZERO (1 << 10)
+#define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9)
+#define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8)
+#define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7)
+#define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6)
+#define S390_TDC_POSITIVE_INFINITY (1 << 5)
+#define S390_TDC_NEGATIVE_INFINITY (1 << 4)
+#define S390_TDC_POSITIVE_QUIET_NAN (1 << 3)
+#define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2)
+#define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1)
+#define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0)
+
+/* The following values are different for DFP. */
+#define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
+#define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
+#define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7)
+#define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6)
+
+/* For signbit, the BFP-DFP-difference makes no difference. */
+#define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
+ | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
+ | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
+ | S390_TDC_NEGATIVE_INFINITY \
+ | S390_TDC_NEGATIVE_QUIET_NAN \
+ | S390_TDC_NEGATIVE_SIGNALING_NAN )
+
+#define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
+ | S390_TDC_NEGATIVE_INFINITY )
+
+/* This is used by float.h to define the float_t and double_t data
+ types. For historical reasons both are double on s390 what cannot
+ be changed anymore. */
+#define TARGET_FLT_EVAL_METHOD 1
+
+/* Target machine storage layout. */
+
+/* Everything is big-endian. */
+#define BITS_BIG_ENDIAN 1
+#define BYTES_BIG_ENDIAN 1
+#define WORDS_BIG_ENDIAN 1
+
+#define STACK_SIZE_MODE (Pmode)
+
+#ifndef IN_LIBGCC2
+
+/* Width of a word, in units (bytes). */
+ #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
+
+/* Width of a pointer. To be used instead of UNITS_PER_WORD in
+ ABI-relevant contexts. This always matches
+ GET_MODE_SIZE (Pmode). */
+ #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
+ #define MIN_UNITS_PER_WORD 4
+ #define MAX_BITS_PER_WORD 64
+#else
+
+ /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
+ the library should export TImode functions or not. Thus, we have
+ to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */
+ #ifdef __s390x__
+ #define UNITS_PER_WORD 8
+ #else
+ #define UNITS_PER_WORD 4
+ #endif
+#endif
+
+/* Width of a pointer, in bits. */
+#define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
+
+/* Allocation boundary (in *bits*) for storing arguments in argument list. */
+#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
+
+/* Boundary (in *bits*) on which stack pointer should be aligned. */
+#define STACK_BOUNDARY 64
+
+/* Allocation boundary (in *bits*) for the code of a function. */
+#define FUNCTION_BOUNDARY 64
+
+/* There is no point aligning anything to a rounder boundary than this. */
+#define BIGGEST_ALIGNMENT 64
+
+/* Alignment of field after `int : 0' in a structure. */
+#define EMPTY_FIELD_BOUNDARY 32
+
+/* Alignment on even addresses for LARL instruction. */
+#define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
+#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
+
+/* Alignment is not required by the hardware. */
+#define STRICT_ALIGNMENT 0
+
+/* Mode of stack savearea.
+ FUNCTION is VOIDmode because calling convention maintains SP.
+ BLOCK needs Pmode for SP.
+ NONLOCAL needs twice Pmode to maintain both backchain and SP. */
+#define STACK_SAVEAREA_MODE(LEVEL) \
+ (LEVEL == SAVE_FUNCTION ? VOIDmode \
+ : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
+
+
+/* Type layout. */
+
+/* Sizes in bits of the source language data types. */
+#define SHORT_TYPE_SIZE 16
+#define INT_TYPE_SIZE 32
+#define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
+#define LONG_LONG_TYPE_SIZE 64
+#define FLOAT_TYPE_SIZE 32
+#define DOUBLE_TYPE_SIZE 64
+#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
+
+/* Define this to set long double type size to use in libgcc2.c, which can
+ not depend on target_flags. */
+#ifdef __LONG_DOUBLE_128__
+#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
+#else
+#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
+#endif
+
+/* Work around target_flags dependency in ada/targtyps.c. */
+#define WIDEST_HARDWARE_FP_SIZE 64
+
+/* We use "unsigned char" as default. */
+#define DEFAULT_SIGNED_CHAR 0
+
+
+/* Register usage. */
+
+/* We have 16 general purpose registers (registers 0-15),
+ and 16 floating point registers (registers 16-31).
+ (On non-IEEE machines, we have only 4 fp registers.)
+
+ Amongst the general purpose registers, some are used
+ for specific purposes:
+ GPR 11: Hard frame pointer (if needed)
+ GPR 12: Global offset table pointer (if needed)
+ GPR 13: Literal pool base register
+ GPR 14: Return address register
+ GPR 15: Stack pointer
+
+ Registers 32-35 are 'fake' hard registers that do not
+ correspond to actual hardware:
+ Reg 32: Argument pointer
+ Reg 33: Condition code
+ Reg 34: Frame pointer
+ Reg 35: Return address pointer
+
+ Registers 36 and 37 are mapped to access registers
+ 0 and 1, used to implement thread-local storage. */
+
+#define FIRST_PSEUDO_REGISTER 38
+
+/* Standard register usage. */
+#define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
+#define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
+#define FP_REGNO_P(N) ((N) >= 16 && (N) < 32)
+#define CC_REGNO_P(N) ((N) == 33)
+#define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
+#define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
+
+#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
+#define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
+#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
+#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
+#define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
+#define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
+
+/* Set up fixed registers and calling convention:
+
+ GPRs 0-5 are always call-clobbered,
+ GPRs 6-15 are always call-saved.
+ GPR 12 is fixed if used as GOT pointer.
+ GPR 13 is always fixed (as literal pool pointer).
+ GPR 14 is always fixed on S/390 machines (as return address).
+ GPR 15 is always fixed (as stack pointer).
+ The 'fake' hard registers are call-clobbered and fixed.
+ The access registers are call-saved and fixed.
+
+ On 31-bit, FPRs 18-19 are call-clobbered;
+ on 64-bit, FPRs 24-31 are call-clobbered.
+ The remaining FPRs are call-saved. */
+
+#define FIXED_REGISTERS \
+{ 0, 0, 0, 0, \
+ 0, 0, 0, 0, \
+ 0, 0, 0, 0, \
+ 0, 1, 1, 1, \
+ 0, 0, 0, 0, \
+ 0, 0, 0, 0, \
+ 0, 0, 0, 0, \
+ 0, 0, 0, 0, \
+ 1, 1, 1, 1, \
+ 1, 1 }
+
+#define CALL_USED_REGISTERS \
+{ 1, 1, 1, 1, \
+ 1, 1, 0, 0, \
+ 0, 0, 0, 0, \
+ 0, 1, 1, 1, \
+ 1, 1, 1, 1, \
+ 1, 1, 1, 1, \
+ 1, 1, 1, 1, \
+ 1, 1, 1, 1, \
+ 1, 1, 1, 1, \
+ 1, 1 }
+
+#define CALL_REALLY_USED_REGISTERS \
+{ 1, 1, 1, 1, \
+ 1, 1, 0, 0, \
+ 0, 0, 0, 0, \
+ 0, 0, 0, 0, \
+ 1, 1, 1, 1, \
+ 1, 1, 1, 1, \
+ 1, 1, 1, 1, \
+ 1, 1, 1, 1, \
+ 1, 1, 1, 1, \
+ 0, 0 }
+
+/* Preferred register allocation order. */
+#define REG_ALLOC_ORDER \
+{ 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \
+ 16, 17, 18, 19, 20, 21, 22, 23, \
+ 24, 25, 26, 27, 28, 29, 30, 31, \
+ 15, 32, 33, 34, 35, 36, 37 }
+
+
+/* Fitting values into registers. */
+
+/* Integer modes <= word size fit into any GPR.
+ Integer modes > word size fit into successive GPRs, starting with
+ an even-numbered register.
+ SImode and DImode fit into FPRs as well.
+
+ Floating point modes <= word size fit into any FPR or GPR.
+ Floating point modes > word size (i.e. DFmode on 32-bit) fit
+ into any FPR, or an even-odd GPR pair.
+ TFmode fits only into an even-odd FPR pair.
+
+ Complex floating point modes fit either into two FPRs, or into
+ successive GPRs (again starting with an even number).
+ TCmode fits only into two successive even-odd FPR pairs.
+
+ Condition code modes fit only into the CC register. */
+
+/* Because all registers in a class have the same size HARD_REGNO_NREGS
+ is equivalent to CLASS_MAX_NREGS. */
+#define HARD_REGNO_NREGS(REGNO, MODE) \
+ s390_class_max_nregs (REGNO_REG_CLASS (REGNO), (MODE))
+
+#define HARD_REGNO_MODE_OK(REGNO, MODE) \
+ s390_hard_regno_mode_ok ((REGNO), (MODE))
+
+#define HARD_REGNO_RENAME_OK(FROM, TO) \
+ s390_hard_regno_rename_ok (FROM, TO)
+
+#define MODES_TIEABLE_P(MODE1, MODE2) \
+ (((MODE1) == SFmode || (MODE1) == DFmode) \
+ == ((MODE2) == SFmode || (MODE2) == DFmode))
+
+/* When generating code that runs in z/Architecture mode,
+ but conforms to the 31-bit ABI, GPRs can hold 8 bytes;
+ the ABI guarantees only that the lower 4 bytes are
+ saved across calls, however. */
+#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
+ (!TARGET_64BIT && TARGET_ZARCH \
+ && GET_MODE_SIZE (MODE) > 4 \
+ && (((REGNO) >= 6 && (REGNO) <= 15) || (REGNO) == 32))
+
+/* Maximum number of registers to represent a value of mode MODE
+ in a register of class CLASS. */
+#define CLASS_MAX_NREGS(CLASS, MODE) \
+ s390_class_max_nregs ((CLASS), (MODE))
+
+/* If a 4-byte value is loaded into a FPR, it is placed into the
+ *upper* half of the register, not the lower. Therefore, we
+ cannot use SUBREGs to switch between modes in FP registers.
+ Likewise for access registers, since they have only half the
+ word size on 64-bit. */
+#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
+ (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
+ ? ((reg_classes_intersect_p (FP_REGS, CLASS) \
+ && (GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8)) \
+ || reg_classes_intersect_p (ACCESS_REGS, CLASS)) : 0)
+
+/* Register classes. */
+
+/* We use the following register classes:
+ GENERAL_REGS All general purpose registers
+ ADDR_REGS All general purpose registers except %r0
+ (These registers can be used in address generation)
+ FP_REGS All floating point registers
+ CC_REGS The condition code register
+ ACCESS_REGS The access registers
+
+ GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
+ ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
+ GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
+ ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
+
+ NO_REGS No registers
+ ALL_REGS All registers
+
+ Note that the 'fake' frame pointer and argument pointer registers
+ are included amongst the address registers here. */
+
+enum reg_class
+{
+ NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
+ ADDR_CC_REGS, GENERAL_CC_REGS,
+ FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
+ ALL_REGS, LIM_REG_CLASSES
+};
+#define N_REG_CLASSES (int) LIM_REG_CLASSES
+
+#define REG_CLASS_NAMES \
+{ "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
+ "ADDR_CC_REGS", "GENERAL_CC_REGS", \
+ "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
+
+/* Class -> register mapping. */
+#define REG_CLASS_CONTENTS \
+{ \
+ { 0x00000000, 0x00000000 }, /* NO_REGS */ \
+ { 0x00000000, 0x00000002 }, /* CC_REGS */ \
+ { 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
+ { 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
+ { 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
+ { 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
+ { 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
+ { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
+ { 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
+ { 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
+ { 0xffffffff, 0x0000003f }, /* ALL_REGS */ \
+}
+
+/* In some case register allocation order is not enough for IRA to
+ generate a good code. The following macro (if defined) increases
+ cost of REGNO for a pseudo approximately by pseudo usage frequency
+ multiplied by the macro value.
+
+ We avoid usage of BASE_REGNUM by nonzero macro value because the
+ reload can decide not to use the hard register because some
+ constant was forced to be in memory. */
+#define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \
+ (regno == BASE_REGNUM ? 0.0 : 0.5)
+
+/* Register -> class mapping. */
+extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
+#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
+
+/* ADDR_REGS can be used as base or index register. */
+#define INDEX_REG_CLASS ADDR_REGS
+#define BASE_REG_CLASS ADDR_REGS
+
+/* Check whether REGNO is a hard register of the suitable class
+ or a pseudo register currently allocated to one such. */
+#define REGNO_OK_FOR_INDEX_P(REGNO) \
+ (((REGNO) < FIRST_PSEUDO_REGISTER \
+ && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
+ || ADDR_REGNO_P (reg_renumber[REGNO]))
+#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
+
+
+/* We need secondary memory to move data between GPRs and FPRs. With
+ DFP the ldgr lgdr instructions are available. But these
+ instructions do not handle GPR pairs so it is not possible for 31
+ bit. */
+#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
+ ((CLASS1) != (CLASS2) \
+ && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS) \
+ && (!TARGET_DFP || !TARGET_64BIT || GET_MODE_SIZE (MODE) != 8))
+
+/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
+ because the movsi and movsf patterns don't handle r/f moves. */
+#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
+ (GET_MODE_BITSIZE (MODE) < 32 \
+ ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
+ : MODE)
+
+
+/* Stack layout and calling conventions. */
+
+/* Our stack grows from higher to lower addresses. However, local variables
+ are accessed by positive offsets, and function arguments are stored at
+ increasing addresses. */
+#define STACK_GROWS_DOWNWARD
+#define FRAME_GROWS_DOWNWARD 1
+/* #undef ARGS_GROW_DOWNWARD */
+
+/* The basic stack layout looks like this: the stack pointer points
+ to the register save area for called functions. Above that area
+ is the location to place outgoing arguments. Above those follow
+ dynamic allocations (alloca), and finally the local variables. */
+
+/* Offset from stack-pointer to first location of outgoing args. */
+#define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
+
+/* Offset within stack frame to start allocating local variables at. */
+#define STARTING_FRAME_OFFSET 0
+
+/* Offset from the stack pointer register to an item dynamically
+ allocated on the stack, e.g., by `alloca'. */
+#define STACK_DYNAMIC_OFFSET(FUNDECL) \
+ (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
+
+/* Offset of first parameter from the argument pointer register value.
+ We have a fake argument pointer register that points directly to
+ the argument area. */
+#define FIRST_PARM_OFFSET(FNDECL) 0
+
+/* Defining this macro makes __builtin_frame_address(0) and
+ __builtin_return_address(0) work with -fomit-frame-pointer. */
+#define INITIAL_FRAME_ADDRESS_RTX \
+ (plus_constant (Pmode, arg_pointer_rtx, -STACK_POINTER_OFFSET))
+
+/* The return address of the current frame is retrieved
+ from the initial value of register RETURN_REGNUM.
+ For frames farther back, we use the stack slot where
+ the corresponding RETURN_REGNUM register was saved. */
+#define DYNAMIC_CHAIN_ADDRESS(FRAME) \
+ (TARGET_PACKED_STACK ? \
+ plus_constant (Pmode, (FRAME), \
+ STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
+
+/* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
+ builtin_frame_address. Otherwise arg pointer -
+ STACK_POINTER_OFFSET would be returned for
+ __builtin_frame_address(0) what might result in an address pointing
+ somewhere into the middle of the local variables since the packed
+ stack layout generally does not need all the bytes in the register
+ save area. */
+#define FRAME_ADDR_RTX(FRAME) \
+ DYNAMIC_CHAIN_ADDRESS ((FRAME))
+
+#define RETURN_ADDR_RTX(COUNT, FRAME) \
+ s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
+
+/* In 31-bit mode, we need to mask off the high bit of return addresses. */
+#define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
+
+
+/* Exception handling. */
+
+/* Describe calling conventions for DWARF-2 exception handling. */
+#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
+#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
+#define DWARF_FRAME_RETURN_COLUMN 14
+
+/* Describe how we implement __builtin_eh_return. */
+#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
+#define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
+
+/* Select a format to encode pointers in exception handling data. */
+#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
+ (flag_pic \
+ ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
+ : DW_EH_PE_absptr)
+
+/* Register save slot alignment. */
+#define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
+
+/* Let the assembler generate debug line info. */
+#define DWARF2_ASM_LINE_DEBUG_INFO 1
+
+
+/* Frame registers. */
+
+#define STACK_POINTER_REGNUM 15
+#define FRAME_POINTER_REGNUM 34
+#define HARD_FRAME_POINTER_REGNUM 11
+#define ARG_POINTER_REGNUM 32
+#define RETURN_ADDRESS_POINTER_REGNUM 35
+
+/* The static chain must be call-clobbered, but not used for
+ function argument passing. As register 1 is clobbered by
+ the trampoline code, we only have one option. */
+#define STATIC_CHAIN_REGNUM 0
+
+/* Number of hardware registers that go into the DWARF-2 unwind info.
+ To avoid ABI incompatibility, this number must not change even as
+ 'fake' hard registers are added or removed. */
+#define DWARF_FRAME_REGISTERS 34
+
+
+/* Frame pointer and argument pointer elimination. */
+
+#define ELIMINABLE_REGS \
+{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
+ { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
+ { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
+ { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
+ { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
+ { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
+ { BASE_REGNUM, BASE_REGNUM }}
+
+#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
+ (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
+
+
+/* Stack arguments. */
+
+/* We need current_function_outgoing_args to be valid. */
+#define ACCUMULATE_OUTGOING_ARGS 1
+
+
+/* Register arguments. */
+
+typedef struct s390_arg_structure
+{
+ int gprs; /* gpr so far */
+ int fprs; /* fpr so far */
+}
+CUMULATIVE_ARGS;
+
+#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
+ ((CUM).gprs=0, (CUM).fprs=0)
+
+/* Arguments can be placed in general registers 2 to 6, or in floating
+ point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
+ bit. */
+#define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
+ (N) == 16 || (N) == 17 || (TARGET_64BIT && ((N) == 18 || (N) == 19)))
+
+
+/* Only gpr 2 and fpr 0 are ever used as return registers. */
+#define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
+
+
+/* Function entry and exit. */
+
+/* When returning from a function, the stack pointer does not matter. */
+#define EXIT_IGNORE_STACK 1
+
+
+/* Profiling. */
+
+#define FUNCTION_PROFILER(FILE, LABELNO) \
+ s390_function_profiler ((FILE), ((LABELNO)))
+
+#define PROFILE_BEFORE_PROLOGUE 1
+
+
+/* Trampolines for nested functions. */
+
+#define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
+#define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
+
+/* Addressing modes, and classification of registers for them. */
+
+/* Recognize any constant value that is a valid address. */
+#define CONSTANT_ADDRESS_P(X) 0
+
+/* Maximum number of registers that can appear in a valid memory address. */
+#define MAX_REGS_PER_ADDRESS 2
+
+/* This definition replaces the formerly used 'm' constraint with a
+ different constraint letter in order to avoid changing semantics of
+ the 'm' constraint when accepting new address formats in
+ TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here
+ must not be used in insn definitions or inline assemblies. */
+#define TARGET_MEM_CONSTRAINT 'e'
+
+/* Try a machine-dependent way of reloading an illegitimate address
+ operand. If we find one, push the reload and jump to WIN. This
+ macro is used in only one place: `find_reloads_address' in reload.c. */
+#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
+do { \
+ rtx new_rtx = legitimize_reload_address (AD, MODE, OPNUM, (int)(TYPE)); \
+ if (new_rtx) \
+ { \
+ (AD) = new_rtx; \
+ goto WIN; \
+ } \
+} while (0)
+
+/* Helper macro for s390.c and s390.md to check for symbolic constants. */
+#define SYMBOLIC_CONST(X) \
+(GET_CODE (X) == SYMBOL_REF \
+ || GET_CODE (X) == LABEL_REF \
+ || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
+
+#define TLS_SYMBOLIC_CONST(X) \
+((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
+ || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
+
+
+/* Condition codes. */
+
+/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
+ return the mode to be used for the comparison. */
+#define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
+
+/* Relative costs of operations. */
+
+/* A C expression for the cost of a branch instruction. A value of 1
+ is the default; other values are interpreted relative to that. */
+#define BRANCH_COST(speed_p, predictable_p) s390_branch_cost
+
+/* Nonzero if access to memory by bytes is slow and undesirable. */
+#define SLOW_BYTE_ACCESS 1
+
+/* An integer expression for the size in bits of the largest integer machine
+ mode that should actually be used. We allow pairs of registers. */
+#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
+
+/* The maximum number of bytes that a single instruction can move quickly
+ between memory and registers or between two memory locations. */
+#define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
+#define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
+#define MAX_MOVE_MAX 16
+
+/* Determine whether to use move_by_pieces or block move insn. */
+#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
+ ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
+ || (TARGET_ZARCH && (SIZE) == 8) )
+
+/* Determine whether to use clear_by_pieces or block clear insn. */
+#define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
+ ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
+ || (TARGET_ZARCH && (SIZE) == 8) )
+
+/* This macro is used to determine whether store_by_pieces should be
+ called to "memcpy" storage when the source is a constant string. */
+#define STORE_BY_PIECES_P(SIZE, ALIGN) MOVE_BY_PIECES_P (SIZE, ALIGN)
+
+/* Likewise to decide whether to "memset" storage with byte values
+ other than zero. */
+#define SET_BY_PIECES_P(SIZE, ALIGN) STORE_BY_PIECES_P (SIZE, ALIGN)
+
+/* Don't perform CSE on function addresses. */
+#define NO_FUNCTION_CSE
+
+/* This value is used in tree-sra to decide whether it might benefical
+ to split a struct move into several word-size moves. For S/390
+ only small values make sense here since struct moves are relatively
+ cheap thanks to mvc so the small default value chosen for archs
+ with memmove patterns should be ok. But this value is multiplied
+ in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
+ here to compensate for that factor since mvc costs exactly the same
+ on 31 and 64 bit. */
+#define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
+
+
+/* Sections. */
+
+/* Output before read-only data. */
+#define TEXT_SECTION_ASM_OP ".text"
+
+/* Output before writable (initialized) data. */
+#define DATA_SECTION_ASM_OP ".data"
+
+/* Output before writable (uninitialized) data. */
+#define BSS_SECTION_ASM_OP ".bss"
+
+/* S/390 constant pool breaks the devices in crtstuff.c to control section
+ in where code resides. We have to write it as asm code. */
+#ifndef __s390x__
+#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
+ asm (SECTION_OP "\n\
+ bras\t%r2,1f\n\
+0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
+1: l\t%r3,0(%r2)\n\
+ bas\t%r14,0(%r3,%r2)\n\
+ .previous");
+#endif
+
+
+/* Position independent code. */
+
+#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
+
+#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
+
+
+/* Assembler file format. */
+
+/* Character to start a comment. */
+#define ASM_COMMENT_START "#"
+
+/* Declare an uninitialized external linkage data object. */
+#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
+ asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
+
+/* Globalizing directive for a label. */
+#define GLOBAL_ASM_OP ".globl "
+
+/* Advance the location counter to a multiple of 2**LOG bytes. */
+#define ASM_OUTPUT_ALIGN(FILE, LOG) \
+ if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
+
+/* Advance the location counter by SIZE bytes. */
+#define ASM_OUTPUT_SKIP(FILE, SIZE) \
+ fprintf ((FILE), "\t.set\t.,.+"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
+
+/* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
+#define LOCAL_LABEL_PREFIX "."
+
+#define LABEL_ALIGN(LABEL) \
+ s390_label_align (LABEL)
+
+/* How to refer to registers in assembler output. This sequence is
+ indexed by compiler's hard-register-number (see above). */
+#define REGISTER_NAMES \
+{ "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
+ "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
+ "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
+ "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
+ "%ap", "%cc", "%fp", "%rp", "%a0", "%a1" \
+}
+
+/* Print operand X (an rtx) in assembler syntax to file FILE. */
+#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
+#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
+
+/* Output an element of a case-vector that is absolute. */
+#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
+do { \
+ char buf[32]; \
+ fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
+ ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
+ assemble_name ((FILE), buf); \
+ fputc ('\n', (FILE)); \
+} while (0)
+
+/* Output an element of a case-vector that is relative. */
+#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
+do { \
+ char buf[32]; \
+ fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
+ ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
+ assemble_name ((FILE), buf); \
+ fputc ('-', (FILE)); \
+ ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
+ assemble_name ((FILE), buf); \
+ fputc ('\n', (FILE)); \
+} while (0)
+
+/* Mark the return register as used by the epilogue so that we can
+ use it in unadorned (return) and (simple_return) instructions. */
+#define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_REGNUM)
+
+#undef ASM_OUTPUT_FUNCTION_LABEL
+#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
+ s390_asm_output_function_label (FILE, NAME, DECL)
+
+/* Miscellaneous parameters. */
+
+/* Specify the machine mode that this machine uses for the index in the
+ tablejump instruction. */
+#define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
+
+/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
+ is done just by pretending it is already truncated. */
+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
+
+/* Specify the machine mode that pointers have.
+ After generation of rtl, the compiler makes no further distinction
+ between pointers and any other objects of this machine mode. */
+#define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
+
+/* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
+#define POINTERS_EXTEND_UNSIGNED -1
+
+/* A function address in a call instruction is a byte address (for
+ indexing purposes) so give the MEM rtx a byte's mode. */
+#define FUNCTION_MODE QImode
+
+/* Specify the value which is used when clz operand is zero. */
+#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
+
+/* Machine-specific symbol_ref flags. */
+#define SYMBOL_FLAG_ALIGN1 (SYMBOL_FLAG_MACH_DEP << 0)
+#define SYMBOL_REF_ALIGN1_P(X) \
+ ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN1))
+#define SYMBOL_FLAG_NOT_NATURALLY_ALIGNED (SYMBOL_FLAG_MACH_DEP << 1)
+#define SYMBOL_REF_NOT_NATURALLY_ALIGNED_P(X) \
+ ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_NOT_NATURALLY_ALIGNED))
+
+/* Check whether integer displacement is in range. */
+#define DISP_IN_RANGE(d) \
+ (TARGET_LONG_DISPLACEMENT? ((d) >= -524288 && (d) <= 524287) \
+ : ((d) >= 0 && (d) <= 4095))
+
+/* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */
+#define READ_CAN_USE_WRITE_PREFETCH 1
+
+extern const int processor_flags_table[];
+#endif