aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/config/s390/s390.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/config/s390/s390.c')
-rw-r--r--gcc-4.9/gcc/config/s390/s390.c12237
1 files changed, 12237 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/config/s390/s390.c b/gcc-4.9/gcc/config/s390/s390.c
new file mode 100644
index 000000000..7a79286c9
--- /dev/null
+++ b/gcc-4.9/gcc/config/s390/s390.c
@@ -0,0 +1,12237 @@
+/* Subroutines used for code generation on IBM S/390 and zSeries
+ Copyright (C) 1999-2014 Free Software Foundation, Inc.
+ Contributed by Hartmut Penner (hpenner@de.ibm.com) and
+ Ulrich Weigand (uweigand@de.ibm.com) and
+ Andreas Krebbel (Andreas.Krebbel@de.ibm.com).
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "tree.h"
+#include "print-tree.h"
+#include "stringpool.h"
+#include "stor-layout.h"
+#include "varasm.h"
+#include "calls.h"
+#include "tm_p.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "insn-config.h"
+#include "conditions.h"
+#include "output.h"
+#include "insn-attr.h"
+#include "flags.h"
+#include "except.h"
+#include "function.h"
+#include "recog.h"
+#include "expr.h"
+#include "reload.h"
+#include "diagnostic-core.h"
+#include "basic-block.h"
+#include "ggc.h"
+#include "target.h"
+#include "target-def.h"
+#include "debug.h"
+#include "langhooks.h"
+#include "optabs.h"
+#include "pointer-set.h"
+#include "hash-table.h"
+#include "vec.h"
+#include "basic-block.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-fold.h"
+#include "tree-eh.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimplify.h"
+#include "df.h"
+#include "params.h"
+#include "cfgloop.h"
+#include "opts.h"
+#include "tree-pass.h"
+#include "context.h"
+
+/* Define the specific costs for a given cpu. */
+
+struct processor_costs
+{
+ /* multiplication */
+ const int m; /* cost of an M instruction. */
+ const int mghi; /* cost of an MGHI instruction. */
+ const int mh; /* cost of an MH instruction. */
+ const int mhi; /* cost of an MHI instruction. */
+ const int ml; /* cost of an ML instruction. */
+ const int mr; /* cost of an MR instruction. */
+ const int ms; /* cost of an MS instruction. */
+ const int msg; /* cost of an MSG instruction. */
+ const int msgf; /* cost of an MSGF instruction. */
+ const int msgfr; /* cost of an MSGFR instruction. */
+ const int msgr; /* cost of an MSGR instruction. */
+ const int msr; /* cost of an MSR instruction. */
+ const int mult_df; /* cost of multiplication in DFmode. */
+ const int mxbr;
+ /* square root */
+ const int sqxbr; /* cost of square root in TFmode. */
+ const int sqdbr; /* cost of square root in DFmode. */
+ const int sqebr; /* cost of square root in SFmode. */
+ /* multiply and add */
+ const int madbr; /* cost of multiply and add in DFmode. */
+ const int maebr; /* cost of multiply and add in SFmode. */
+ /* division */
+ const int dxbr;
+ const int ddbr;
+ const int debr;
+ const int dlgr;
+ const int dlr;
+ const int dr;
+ const int dsgfr;
+ const int dsgr;
+};
+
+const struct processor_costs *s390_cost;
+
+static const
+struct processor_costs z900_cost =
+{
+ COSTS_N_INSNS (5), /* M */
+ COSTS_N_INSNS (10), /* MGHI */
+ COSTS_N_INSNS (5), /* MH */
+ COSTS_N_INSNS (4), /* MHI */
+ COSTS_N_INSNS (5), /* ML */
+ COSTS_N_INSNS (5), /* MR */
+ COSTS_N_INSNS (4), /* MS */
+ COSTS_N_INSNS (15), /* MSG */
+ COSTS_N_INSNS (7), /* MSGF */
+ COSTS_N_INSNS (7), /* MSGFR */
+ COSTS_N_INSNS (10), /* MSGR */
+ COSTS_N_INSNS (4), /* MSR */
+ COSTS_N_INSNS (7), /* multiplication in DFmode */
+ COSTS_N_INSNS (13), /* MXBR */
+ COSTS_N_INSNS (136), /* SQXBR */
+ COSTS_N_INSNS (44), /* SQDBR */
+ COSTS_N_INSNS (35), /* SQEBR */
+ COSTS_N_INSNS (18), /* MADBR */
+ COSTS_N_INSNS (13), /* MAEBR */
+ COSTS_N_INSNS (134), /* DXBR */
+ COSTS_N_INSNS (30), /* DDBR */
+ COSTS_N_INSNS (27), /* DEBR */
+ COSTS_N_INSNS (220), /* DLGR */
+ COSTS_N_INSNS (34), /* DLR */
+ COSTS_N_INSNS (34), /* DR */
+ COSTS_N_INSNS (32), /* DSGFR */
+ COSTS_N_INSNS (32), /* DSGR */
+};
+
+static const
+struct processor_costs z990_cost =
+{
+ COSTS_N_INSNS (4), /* M */
+ COSTS_N_INSNS (2), /* MGHI */
+ COSTS_N_INSNS (2), /* MH */
+ COSTS_N_INSNS (2), /* MHI */
+ COSTS_N_INSNS (4), /* ML */
+ COSTS_N_INSNS (4), /* MR */
+ COSTS_N_INSNS (5), /* MS */
+ COSTS_N_INSNS (6), /* MSG */
+ COSTS_N_INSNS (4), /* MSGF */
+ COSTS_N_INSNS (4), /* MSGFR */
+ COSTS_N_INSNS (4), /* MSGR */
+ COSTS_N_INSNS (4), /* MSR */
+ COSTS_N_INSNS (1), /* multiplication in DFmode */
+ COSTS_N_INSNS (28), /* MXBR */
+ COSTS_N_INSNS (130), /* SQXBR */
+ COSTS_N_INSNS (66), /* SQDBR */
+ COSTS_N_INSNS (38), /* SQEBR */
+ COSTS_N_INSNS (1), /* MADBR */
+ COSTS_N_INSNS (1), /* MAEBR */
+ COSTS_N_INSNS (60), /* DXBR */
+ COSTS_N_INSNS (40), /* DDBR */
+ COSTS_N_INSNS (26), /* DEBR */
+ COSTS_N_INSNS (176), /* DLGR */
+ COSTS_N_INSNS (31), /* DLR */
+ COSTS_N_INSNS (31), /* DR */
+ COSTS_N_INSNS (31), /* DSGFR */
+ COSTS_N_INSNS (31), /* DSGR */
+};
+
+static const
+struct processor_costs z9_109_cost =
+{
+ COSTS_N_INSNS (4), /* M */
+ COSTS_N_INSNS (2), /* MGHI */
+ COSTS_N_INSNS (2), /* MH */
+ COSTS_N_INSNS (2), /* MHI */
+ COSTS_N_INSNS (4), /* ML */
+ COSTS_N_INSNS (4), /* MR */
+ COSTS_N_INSNS (5), /* MS */
+ COSTS_N_INSNS (6), /* MSG */
+ COSTS_N_INSNS (4), /* MSGF */
+ COSTS_N_INSNS (4), /* MSGFR */
+ COSTS_N_INSNS (4), /* MSGR */
+ COSTS_N_INSNS (4), /* MSR */
+ COSTS_N_INSNS (1), /* multiplication in DFmode */
+ COSTS_N_INSNS (28), /* MXBR */
+ COSTS_N_INSNS (130), /* SQXBR */
+ COSTS_N_INSNS (66), /* SQDBR */
+ COSTS_N_INSNS (38), /* SQEBR */
+ COSTS_N_INSNS (1), /* MADBR */
+ COSTS_N_INSNS (1), /* MAEBR */
+ COSTS_N_INSNS (60), /* DXBR */
+ COSTS_N_INSNS (40), /* DDBR */
+ COSTS_N_INSNS (26), /* DEBR */
+ COSTS_N_INSNS (30), /* DLGR */
+ COSTS_N_INSNS (23), /* DLR */
+ COSTS_N_INSNS (23), /* DR */
+ COSTS_N_INSNS (24), /* DSGFR */
+ COSTS_N_INSNS (24), /* DSGR */
+};
+
+static const
+struct processor_costs z10_cost =
+{
+ COSTS_N_INSNS (10), /* M */
+ COSTS_N_INSNS (10), /* MGHI */
+ COSTS_N_INSNS (10), /* MH */
+ COSTS_N_INSNS (10), /* MHI */
+ COSTS_N_INSNS (10), /* ML */
+ COSTS_N_INSNS (10), /* MR */
+ COSTS_N_INSNS (10), /* MS */
+ COSTS_N_INSNS (10), /* MSG */
+ COSTS_N_INSNS (10), /* MSGF */
+ COSTS_N_INSNS (10), /* MSGFR */
+ COSTS_N_INSNS (10), /* MSGR */
+ COSTS_N_INSNS (10), /* MSR */
+ COSTS_N_INSNS (1) , /* multiplication in DFmode */
+ COSTS_N_INSNS (50), /* MXBR */
+ COSTS_N_INSNS (120), /* SQXBR */
+ COSTS_N_INSNS (52), /* SQDBR */
+ COSTS_N_INSNS (38), /* SQEBR */
+ COSTS_N_INSNS (1), /* MADBR */
+ COSTS_N_INSNS (1), /* MAEBR */
+ COSTS_N_INSNS (111), /* DXBR */
+ COSTS_N_INSNS (39), /* DDBR */
+ COSTS_N_INSNS (32), /* DEBR */
+ COSTS_N_INSNS (160), /* DLGR */
+ COSTS_N_INSNS (71), /* DLR */
+ COSTS_N_INSNS (71), /* DR */
+ COSTS_N_INSNS (71), /* DSGFR */
+ COSTS_N_INSNS (71), /* DSGR */
+};
+
+static const
+struct processor_costs z196_cost =
+{
+ COSTS_N_INSNS (7), /* M */
+ COSTS_N_INSNS (5), /* MGHI */
+ COSTS_N_INSNS (5), /* MH */
+ COSTS_N_INSNS (5), /* MHI */
+ COSTS_N_INSNS (7), /* ML */
+ COSTS_N_INSNS (7), /* MR */
+ COSTS_N_INSNS (6), /* MS */
+ COSTS_N_INSNS (8), /* MSG */
+ COSTS_N_INSNS (6), /* MSGF */
+ COSTS_N_INSNS (6), /* MSGFR */
+ COSTS_N_INSNS (8), /* MSGR */
+ COSTS_N_INSNS (6), /* MSR */
+ COSTS_N_INSNS (1) , /* multiplication in DFmode */
+ COSTS_N_INSNS (40), /* MXBR B+40 */
+ COSTS_N_INSNS (100), /* SQXBR B+100 */
+ COSTS_N_INSNS (42), /* SQDBR B+42 */
+ COSTS_N_INSNS (28), /* SQEBR B+28 */
+ COSTS_N_INSNS (1), /* MADBR B */
+ COSTS_N_INSNS (1), /* MAEBR B */
+ COSTS_N_INSNS (101), /* DXBR B+101 */
+ COSTS_N_INSNS (29), /* DDBR */
+ COSTS_N_INSNS (22), /* DEBR */
+ COSTS_N_INSNS (160), /* DLGR cracked */
+ COSTS_N_INSNS (160), /* DLR cracked */
+ COSTS_N_INSNS (160), /* DR expanded */
+ COSTS_N_INSNS (160), /* DSGFR cracked */
+ COSTS_N_INSNS (160), /* DSGR cracked */
+};
+
+static const
+struct processor_costs zEC12_cost =
+{
+ COSTS_N_INSNS (7), /* M */
+ COSTS_N_INSNS (5), /* MGHI */
+ COSTS_N_INSNS (5), /* MH */
+ COSTS_N_INSNS (5), /* MHI */
+ COSTS_N_INSNS (7), /* ML */
+ COSTS_N_INSNS (7), /* MR */
+ COSTS_N_INSNS (6), /* MS */
+ COSTS_N_INSNS (8), /* MSG */
+ COSTS_N_INSNS (6), /* MSGF */
+ COSTS_N_INSNS (6), /* MSGFR */
+ COSTS_N_INSNS (8), /* MSGR */
+ COSTS_N_INSNS (6), /* MSR */
+ COSTS_N_INSNS (1) , /* multiplication in DFmode */
+ COSTS_N_INSNS (40), /* MXBR B+40 */
+ COSTS_N_INSNS (100), /* SQXBR B+100 */
+ COSTS_N_INSNS (42), /* SQDBR B+42 */
+ COSTS_N_INSNS (28), /* SQEBR B+28 */
+ COSTS_N_INSNS (1), /* MADBR B */
+ COSTS_N_INSNS (1), /* MAEBR B */
+ COSTS_N_INSNS (131), /* DXBR B+131 */
+ COSTS_N_INSNS (29), /* DDBR */
+ COSTS_N_INSNS (22), /* DEBR */
+ COSTS_N_INSNS (160), /* DLGR cracked */
+ COSTS_N_INSNS (160), /* DLR cracked */
+ COSTS_N_INSNS (160), /* DR expanded */
+ COSTS_N_INSNS (160), /* DSGFR cracked */
+ COSTS_N_INSNS (160), /* DSGR cracked */
+};
+
+extern int reload_completed;
+
+/* Kept up to date using the SCHED_VARIABLE_ISSUE hook. */
+static rtx last_scheduled_insn;
+
+/* Structure used to hold the components of a S/390 memory
+ address. A legitimate address on S/390 is of the general
+ form
+ base + index + displacement
+ where any of the components is optional.
+
+ base and index are registers of the class ADDR_REGS,
+ displacement is an unsigned 12-bit immediate constant. */
+
+struct s390_address
+{
+ rtx base;
+ rtx indx;
+ rtx disp;
+ bool pointer;
+ bool literal_pool;
+};
+
+/* The following structure is embedded in the machine
+ specific part of struct function. */
+
+struct GTY (()) s390_frame_layout
+{
+ /* Offset within stack frame. */
+ HOST_WIDE_INT gprs_offset;
+ HOST_WIDE_INT f0_offset;
+ HOST_WIDE_INT f4_offset;
+ HOST_WIDE_INT f8_offset;
+ HOST_WIDE_INT backchain_offset;
+
+ /* Number of first and last gpr where slots in the register
+ save area are reserved for. */
+ int first_save_gpr_slot;
+ int last_save_gpr_slot;
+
+ /* Location (FP register number) where GPRs (r0-r15) should
+ be saved to.
+ 0 - does not need to be saved at all
+ -1 - stack slot */
+ signed char gpr_save_slots[16];
+
+ /* Number of first and last gpr to be saved, restored. */
+ int first_save_gpr;
+ int first_restore_gpr;
+ int last_save_gpr;
+ int last_restore_gpr;
+
+ /* Bits standing for floating point registers. Set, if the
+ respective register has to be saved. Starting with reg 16 (f0)
+ at the rightmost bit.
+ Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+ fpr 15 13 11 9 14 12 10 8 7 5 3 1 6 4 2 0
+ reg 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 */
+ unsigned int fpr_bitmap;
+
+ /* Number of floating point registers f8-f15 which must be saved. */
+ int high_fprs;
+
+ /* Set if return address needs to be saved.
+ This flag is set by s390_return_addr_rtx if it could not use
+ the initial value of r14 and therefore depends on r14 saved
+ to the stack. */
+ bool save_return_addr_p;
+
+ /* Size of stack frame. */
+ HOST_WIDE_INT frame_size;
+};
+
+/* Define the structure for the machine field in struct function. */
+
+struct GTY(()) machine_function
+{
+ struct s390_frame_layout frame_layout;
+
+ /* Literal pool base register. */
+ rtx base_reg;
+
+ /* True if we may need to perform branch splitting. */
+ bool split_branches_pending_p;
+
+ /* Some local-dynamic TLS symbol name. */
+ const char *some_ld_name;
+
+ bool has_landing_pad_p;
+
+ /* True if the current function may contain a tbegin clobbering
+ FPRs. */
+ bool tbegin_p;
+};
+
+/* Few accessor macros for struct cfun->machine->s390_frame_layout. */
+
+#define cfun_frame_layout (cfun->machine->frame_layout)
+#define cfun_save_high_fprs_p (!!cfun_frame_layout.high_fprs)
+#define cfun_save_arg_fprs_p (!!(TARGET_64BIT \
+ ? cfun_frame_layout.fpr_bitmap & 0x0f \
+ : cfun_frame_layout.fpr_bitmap & 0x03))
+#define cfun_gprs_save_area_size ((cfun_frame_layout.last_save_gpr_slot - \
+ cfun_frame_layout.first_save_gpr_slot + 1) * UNITS_PER_LONG)
+#define cfun_set_fpr_save(REGNO) (cfun->machine->frame_layout.fpr_bitmap |= \
+ (1 << (REGNO - FPR0_REGNUM)))
+#define cfun_fpr_save_p(REGNO) (!!(cfun->machine->frame_layout.fpr_bitmap & \
+ (1 << (REGNO - FPR0_REGNUM))))
+#define cfun_gpr_save_slot(REGNO) \
+ cfun->machine->frame_layout.gpr_save_slots[REGNO]
+
+/* Number of GPRs and FPRs used for argument passing. */
+#define GP_ARG_NUM_REG 5
+#define FP_ARG_NUM_REG (TARGET_64BIT? 4 : 2)
+
+/* A couple of shortcuts. */
+#define CONST_OK_FOR_J(x) \
+ CONST_OK_FOR_CONSTRAINT_P((x), 'J', "J")
+#define CONST_OK_FOR_K(x) \
+ CONST_OK_FOR_CONSTRAINT_P((x), 'K', "K")
+#define CONST_OK_FOR_Os(x) \
+ CONST_OK_FOR_CONSTRAINT_P((x), 'O', "Os")
+#define CONST_OK_FOR_Op(x) \
+ CONST_OK_FOR_CONSTRAINT_P((x), 'O', "Op")
+#define CONST_OK_FOR_On(x) \
+ CONST_OK_FOR_CONSTRAINT_P((x), 'O', "On")
+
+#define REGNO_PAIR_OK(REGNO, MODE) \
+ (HARD_REGNO_NREGS ((REGNO), (MODE)) == 1 || !((REGNO) & 1))
+
+/* That's the read ahead of the dynamic branch prediction unit in
+ bytes on a z10 (or higher) CPU. */
+#define PREDICT_DISTANCE (TARGET_Z10 ? 384 : 2048)
+
+static const int s390_hotpatch_trampoline_halfwords_default = 12;
+static const int s390_hotpatch_trampoline_halfwords_max = 1000000;
+static int s390_hotpatch_trampoline_halfwords = -1;
+
+/* Return the argument of the given hotpatch attribute or the default value if
+ no argument is present. */
+
+static inline int
+get_hotpatch_attribute (tree hotpatch_attr)
+{
+ const_tree args;
+
+ args = TREE_VALUE (hotpatch_attr);
+
+ return (args) ?
+ TREE_INT_CST_LOW (TREE_VALUE (args)):
+ s390_hotpatch_trampoline_halfwords_default;
+}
+
+/* Check whether the hotpatch attribute is applied to a function and, if it has
+ an argument, the argument is valid. */
+
+static tree
+s390_handle_hotpatch_attribute (tree *node, tree name, tree args,
+ int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute only applies to functions",
+ name);
+ *no_add_attrs = true;
+ }
+ else if (args)
+ {
+ tree expr = TREE_VALUE (args);
+
+ if (TREE_CODE (expr) != INTEGER_CST
+ || !INTEGRAL_TYPE_P (TREE_TYPE (expr))
+ || TREE_INT_CST_HIGH (expr) != 0
+ || TREE_INT_CST_LOW (expr) > (unsigned int)
+ s390_hotpatch_trampoline_halfwords_max)
+ {
+ error ("requested %qE attribute is not a non-negative integer"
+ " constant or too large (max. %d)", name,
+ s390_hotpatch_trampoline_halfwords_max);
+ *no_add_attrs = true;
+ }
+ }
+
+ return NULL_TREE;
+}
+
+static const struct attribute_spec s390_attribute_table[] = {
+ { "hotpatch", 0, 1, true, false, false, s390_handle_hotpatch_attribute, false
+ },
+ /* End element. */
+ { NULL, 0, 0, false, false, false, NULL, false }
+};
+
+/* Return the alignment for LABEL. We default to the -falign-labels
+ value except for the literal pool base label. */
+int
+s390_label_align (rtx label)
+{
+ rtx prev_insn = prev_active_insn (label);
+
+ if (prev_insn == NULL_RTX)
+ goto old;
+
+ prev_insn = single_set (prev_insn);
+
+ if (prev_insn == NULL_RTX)
+ goto old;
+
+ prev_insn = SET_SRC (prev_insn);
+
+ /* Don't align literal pool base labels. */
+ if (GET_CODE (prev_insn) == UNSPEC
+ && XINT (prev_insn, 1) == UNSPEC_MAIN_BASE)
+ return 0;
+
+ old:
+ return align_labels_log;
+}
+
+static enum machine_mode
+s390_libgcc_cmp_return_mode (void)
+{
+ return TARGET_64BIT ? DImode : SImode;
+}
+
+static enum machine_mode
+s390_libgcc_shift_count_mode (void)
+{
+ return TARGET_64BIT ? DImode : SImode;
+}
+
+static enum machine_mode
+s390_unwind_word_mode (void)
+{
+ return TARGET_64BIT ? DImode : SImode;
+}
+
+/* Return true if the back end supports mode MODE. */
+static bool
+s390_scalar_mode_supported_p (enum machine_mode mode)
+{
+ /* In contrast to the default implementation reject TImode constants on 31bit
+ TARGET_ZARCH for ABI compliance. */
+ if (!TARGET_64BIT && TARGET_ZARCH && mode == TImode)
+ return false;
+
+ if (DECIMAL_FLOAT_MODE_P (mode))
+ return default_decimal_float_supported_p ();
+
+ return default_scalar_mode_supported_p (mode);
+}
+
+/* Set the has_landing_pad_p flag in struct machine_function to VALUE. */
+
+void
+s390_set_has_landing_pad_p (bool value)
+{
+ cfun->machine->has_landing_pad_p = value;
+}
+
+/* If two condition code modes are compatible, return a condition code
+ mode which is compatible with both. Otherwise, return
+ VOIDmode. */
+
+static enum machine_mode
+s390_cc_modes_compatible (enum machine_mode m1, enum machine_mode m2)
+{
+ if (m1 == m2)
+ return m1;
+
+ switch (m1)
+ {
+ case CCZmode:
+ if (m2 == CCUmode || m2 == CCTmode || m2 == CCZ1mode
+ || m2 == CCSmode || m2 == CCSRmode || m2 == CCURmode)
+ return m2;
+ return VOIDmode;
+
+ case CCSmode:
+ case CCUmode:
+ case CCTmode:
+ case CCSRmode:
+ case CCURmode:
+ case CCZ1mode:
+ if (m2 == CCZmode)
+ return m1;
+
+ return VOIDmode;
+
+ default:
+ return VOIDmode;
+ }
+ return VOIDmode;
+}
+
+/* Return true if SET either doesn't set the CC register, or else
+ the source and destination have matching CC modes and that
+ CC mode is at least as constrained as REQ_MODE. */
+
+static bool
+s390_match_ccmode_set (rtx set, enum machine_mode req_mode)
+{
+ enum machine_mode set_mode;
+
+ gcc_assert (GET_CODE (set) == SET);
+
+ if (GET_CODE (SET_DEST (set)) != REG || !CC_REGNO_P (REGNO (SET_DEST (set))))
+ return 1;
+
+ set_mode = GET_MODE (SET_DEST (set));
+ switch (set_mode)
+ {
+ case CCSmode:
+ case CCSRmode:
+ case CCUmode:
+ case CCURmode:
+ case CCLmode:
+ case CCL1mode:
+ case CCL2mode:
+ case CCL3mode:
+ case CCT1mode:
+ case CCT2mode:
+ case CCT3mode:
+ if (req_mode != set_mode)
+ return 0;
+ break;
+
+ case CCZmode:
+ if (req_mode != CCSmode && req_mode != CCUmode && req_mode != CCTmode
+ && req_mode != CCSRmode && req_mode != CCURmode)
+ return 0;
+ break;
+
+ case CCAPmode:
+ case CCANmode:
+ if (req_mode != CCAmode)
+ return 0;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return (GET_MODE (SET_SRC (set)) == set_mode);
+}
+
+/* Return true if every SET in INSN that sets the CC register
+ has source and destination with matching CC modes and that
+ CC mode is at least as constrained as REQ_MODE.
+ If REQ_MODE is VOIDmode, always return false. */
+
+bool
+s390_match_ccmode (rtx insn, enum machine_mode req_mode)
+{
+ int i;
+
+ /* s390_tm_ccmode returns VOIDmode to indicate failure. */
+ if (req_mode == VOIDmode)
+ return false;
+
+ if (GET_CODE (PATTERN (insn)) == SET)
+ return s390_match_ccmode_set (PATTERN (insn), req_mode);
+
+ if (GET_CODE (PATTERN (insn)) == PARALLEL)
+ for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
+ {
+ rtx set = XVECEXP (PATTERN (insn), 0, i);
+ if (GET_CODE (set) == SET)
+ if (!s390_match_ccmode_set (set, req_mode))
+ return false;
+ }
+
+ return true;
+}
+
+/* If a test-under-mask instruction can be used to implement
+ (compare (and ... OP1) OP2), return the CC mode required
+ to do that. Otherwise, return VOIDmode.
+ MIXED is true if the instruction can distinguish between
+ CC1 and CC2 for mixed selected bits (TMxx), it is false
+ if the instruction cannot (TM). */
+
+enum machine_mode
+s390_tm_ccmode (rtx op1, rtx op2, bool mixed)
+{
+ int bit0, bit1;
+
+ /* ??? Fixme: should work on CONST_DOUBLE as well. */
+ if (GET_CODE (op1) != CONST_INT || GET_CODE (op2) != CONST_INT)
+ return VOIDmode;
+
+ /* Selected bits all zero: CC0.
+ e.g.: int a; if ((a & (16 + 128)) == 0) */
+ if (INTVAL (op2) == 0)
+ return CCTmode;
+
+ /* Selected bits all one: CC3.
+ e.g.: int a; if ((a & (16 + 128)) == 16 + 128) */
+ if (INTVAL (op2) == INTVAL (op1))
+ return CCT3mode;
+
+ /* Exactly two bits selected, mixed zeroes and ones: CC1 or CC2. e.g.:
+ int a;
+ if ((a & (16 + 128)) == 16) -> CCT1
+ if ((a & (16 + 128)) == 128) -> CCT2 */
+ if (mixed)
+ {
+ bit1 = exact_log2 (INTVAL (op2));
+ bit0 = exact_log2 (INTVAL (op1) ^ INTVAL (op2));
+ if (bit0 != -1 && bit1 != -1)
+ return bit0 > bit1 ? CCT1mode : CCT2mode;
+ }
+
+ return VOIDmode;
+}
+
+/* Given a comparison code OP (EQ, NE, etc.) and the operands
+ OP0 and OP1 of a COMPARE, return the mode to be used for the
+ comparison. */
+
+enum machine_mode
+s390_select_ccmode (enum rtx_code code, rtx op0, rtx op1)
+{
+ switch (code)
+ {
+ case EQ:
+ case NE:
+ if ((GET_CODE (op0) == NEG || GET_CODE (op0) == ABS)
+ && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
+ return CCAPmode;
+ if (GET_CODE (op0) == PLUS && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && CONST_OK_FOR_K (INTVAL (XEXP (op0, 1))))
+ return CCAPmode;
+ if ((GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
+ || GET_CODE (op1) == NEG)
+ && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
+ return CCLmode;
+
+ if (GET_CODE (op0) == AND)
+ {
+ /* Check whether we can potentially do it via TM. */
+ enum machine_mode ccmode;
+ ccmode = s390_tm_ccmode (XEXP (op0, 1), op1, 1);
+ if (ccmode != VOIDmode)
+ {
+ /* Relax CCTmode to CCZmode to allow fall-back to AND
+ if that turns out to be beneficial. */
+ return ccmode == CCTmode ? CCZmode : ccmode;
+ }
+ }
+
+ if (register_operand (op0, HImode)
+ && GET_CODE (op1) == CONST_INT
+ && (INTVAL (op1) == -1 || INTVAL (op1) == 65535))
+ return CCT3mode;
+ if (register_operand (op0, QImode)
+ && GET_CODE (op1) == CONST_INT
+ && (INTVAL (op1) == -1 || INTVAL (op1) == 255))
+ return CCT3mode;
+
+ return CCZmode;
+
+ case LE:
+ case LT:
+ case GE:
+ case GT:
+ /* The only overflow condition of NEG and ABS happens when
+ -INT_MAX is used as parameter, which stays negative. So
+ we have an overflow from a positive value to a negative.
+ Using CCAP mode the resulting cc can be used for comparisons. */
+ if ((GET_CODE (op0) == NEG || GET_CODE (op0) == ABS)
+ && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
+ return CCAPmode;
+
+ /* If constants are involved in an add instruction it is possible to use
+ the resulting cc for comparisons with zero. Knowing the sign of the
+ constant the overflow behavior gets predictable. e.g.:
+ int a, b; if ((b = a + c) > 0)
+ with c as a constant value: c < 0 -> CCAN and c >= 0 -> CCAP */
+ if (GET_CODE (op0) == PLUS && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && (CONST_OK_FOR_K (INTVAL (XEXP (op0, 1)))
+ || (CONST_OK_FOR_CONSTRAINT_P (INTVAL (XEXP (op0, 1)), 'O', "Os")
+ /* Avoid INT32_MIN on 32 bit. */
+ && (!TARGET_ZARCH || INTVAL (XEXP (op0, 1)) != -0x7fffffff - 1))))
+ {
+ if (INTVAL (XEXP((op0), 1)) < 0)
+ return CCANmode;
+ else
+ return CCAPmode;
+ }
+ /* Fall through. */
+ case UNORDERED:
+ case ORDERED:
+ case UNEQ:
+ case UNLE:
+ case UNLT:
+ case UNGE:
+ case UNGT:
+ case LTGT:
+ if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND)
+ && GET_CODE (op1) != CONST_INT)
+ return CCSRmode;
+ return CCSmode;
+
+ case LTU:
+ case GEU:
+ if (GET_CODE (op0) == PLUS
+ && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
+ return CCL1mode;
+
+ if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND)
+ && GET_CODE (op1) != CONST_INT)
+ return CCURmode;
+ return CCUmode;
+
+ case LEU:
+ case GTU:
+ if (GET_CODE (op0) == MINUS
+ && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
+ return CCL2mode;
+
+ if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND)
+ && GET_CODE (op1) != CONST_INT)
+ return CCURmode;
+ return CCUmode;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Replace the comparison OP0 CODE OP1 by a semantically equivalent one
+ that we can implement more efficiently. */
+
+static void
+s390_canonicalize_comparison (int *code, rtx *op0, rtx *op1,
+ bool op0_preserve_value)
+{
+ if (op0_preserve_value)
+ return;
+
+ /* Convert ZERO_EXTRACT back to AND to enable TM patterns. */
+ if ((*code == EQ || *code == NE)
+ && *op1 == const0_rtx
+ && GET_CODE (*op0) == ZERO_EXTRACT
+ && GET_CODE (XEXP (*op0, 1)) == CONST_INT
+ && GET_CODE (XEXP (*op0, 2)) == CONST_INT
+ && SCALAR_INT_MODE_P (GET_MODE (XEXP (*op0, 0))))
+ {
+ rtx inner = XEXP (*op0, 0);
+ HOST_WIDE_INT modesize = GET_MODE_BITSIZE (GET_MODE (inner));
+ HOST_WIDE_INT len = INTVAL (XEXP (*op0, 1));
+ HOST_WIDE_INT pos = INTVAL (XEXP (*op0, 2));
+
+ if (len > 0 && len < modesize
+ && pos >= 0 && pos + len <= modesize
+ && modesize <= HOST_BITS_PER_WIDE_INT)
+ {
+ unsigned HOST_WIDE_INT block;
+ block = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
+ block <<= modesize - pos - len;
+
+ *op0 = gen_rtx_AND (GET_MODE (inner), inner,
+ gen_int_mode (block, GET_MODE (inner)));
+ }
+ }
+
+ /* Narrow AND of memory against immediate to enable TM. */
+ if ((*code == EQ || *code == NE)
+ && *op1 == const0_rtx
+ && GET_CODE (*op0) == AND
+ && GET_CODE (XEXP (*op0, 1)) == CONST_INT
+ && SCALAR_INT_MODE_P (GET_MODE (XEXP (*op0, 0))))
+ {
+ rtx inner = XEXP (*op0, 0);
+ rtx mask = XEXP (*op0, 1);
+
+ /* Ignore paradoxical SUBREGs if all extra bits are masked out. */
+ if (GET_CODE (inner) == SUBREG
+ && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (inner)))
+ && (GET_MODE_SIZE (GET_MODE (inner))
+ >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner))))
+ && ((INTVAL (mask)
+ & GET_MODE_MASK (GET_MODE (inner))
+ & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (inner))))
+ == 0))
+ inner = SUBREG_REG (inner);
+
+ /* Do not change volatile MEMs. */
+ if (MEM_P (inner) && !MEM_VOLATILE_P (inner))
+ {
+ int part = s390_single_part (XEXP (*op0, 1),
+ GET_MODE (inner), QImode, 0);
+ if (part >= 0)
+ {
+ mask = gen_int_mode (s390_extract_part (mask, QImode, 0), QImode);
+ inner = adjust_address_nv (inner, QImode, part);
+ *op0 = gen_rtx_AND (QImode, inner, mask);
+ }
+ }
+ }
+
+ /* Narrow comparisons against 0xffff to HImode if possible. */
+ if ((*code == EQ || *code == NE)
+ && GET_CODE (*op1) == CONST_INT
+ && INTVAL (*op1) == 0xffff
+ && SCALAR_INT_MODE_P (GET_MODE (*op0))
+ && (nonzero_bits (*op0, GET_MODE (*op0))
+ & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
+ {
+ *op0 = gen_lowpart (HImode, *op0);
+ *op1 = constm1_rtx;
+ }
+
+ /* Remove redundant UNSPEC_STRCMPCC_TO_INT conversions if possible. */
+ if (GET_CODE (*op0) == UNSPEC
+ && XINT (*op0, 1) == UNSPEC_STRCMPCC_TO_INT
+ && XVECLEN (*op0, 0) == 1
+ && GET_MODE (XVECEXP (*op0, 0, 0)) == CCUmode
+ && GET_CODE (XVECEXP (*op0, 0, 0)) == REG
+ && REGNO (XVECEXP (*op0, 0, 0)) == CC_REGNUM
+ && *op1 == const0_rtx)
+ {
+ enum rtx_code new_code = UNKNOWN;
+ switch (*code)
+ {
+ case EQ: new_code = EQ; break;
+ case NE: new_code = NE; break;
+ case LT: new_code = GTU; break;
+ case GT: new_code = LTU; break;
+ case LE: new_code = GEU; break;
+ case GE: new_code = LEU; break;
+ default: break;
+ }
+
+ if (new_code != UNKNOWN)
+ {
+ *op0 = XVECEXP (*op0, 0, 0);
+ *code = new_code;
+ }
+ }
+
+ /* Remove redundant UNSPEC_CC_TO_INT conversions if possible. */
+ if (GET_CODE (*op0) == UNSPEC
+ && XINT (*op0, 1) == UNSPEC_CC_TO_INT
+ && XVECLEN (*op0, 0) == 1
+ && GET_CODE (XVECEXP (*op0, 0, 0)) == REG
+ && REGNO (XVECEXP (*op0, 0, 0)) == CC_REGNUM
+ && CONST_INT_P (*op1))
+ {
+ enum rtx_code new_code = UNKNOWN;
+ switch (GET_MODE (XVECEXP (*op0, 0, 0)))
+ {
+ case CCZmode:
+ case CCRAWmode:
+ switch (*code)
+ {
+ case EQ: new_code = EQ; break;
+ case NE: new_code = NE; break;
+ default: break;
+ }
+ break;
+ default: break;
+ }
+
+ if (new_code != UNKNOWN)
+ {
+ /* For CCRAWmode put the required cc mask into the second
+ operand. */
+ if (GET_MODE (XVECEXP (*op0, 0, 0)) == CCRAWmode
+ && INTVAL (*op1) >= 0 && INTVAL (*op1) <= 3)
+ *op1 = gen_rtx_CONST_INT (VOIDmode, 1 << (3 - INTVAL (*op1)));
+ *op0 = XVECEXP (*op0, 0, 0);
+ *code = new_code;
+ }
+ }
+
+ /* Simplify cascaded EQ, NE with const0_rtx. */
+ if ((*code == NE || *code == EQ)
+ && (GET_CODE (*op0) == EQ || GET_CODE (*op0) == NE)
+ && GET_MODE (*op0) == SImode
+ && GET_MODE (XEXP (*op0, 0)) == CCZ1mode
+ && REG_P (XEXP (*op0, 0))
+ && XEXP (*op0, 1) == const0_rtx
+ && *op1 == const0_rtx)
+ {
+ if ((*code == EQ && GET_CODE (*op0) == NE)
+ || (*code == NE && GET_CODE (*op0) == EQ))
+ *code = EQ;
+ else
+ *code = NE;
+ *op0 = XEXP (*op0, 0);
+ }
+
+ /* Prefer register over memory as first operand. */
+ if (MEM_P (*op0) && REG_P (*op1))
+ {
+ rtx tem = *op0; *op0 = *op1; *op1 = tem;
+ *code = (int)swap_condition ((enum rtx_code)*code);
+ }
+}
+
+/* Emit a compare instruction suitable to implement the comparison
+ OP0 CODE OP1. Return the correct condition RTL to be placed in
+ the IF_THEN_ELSE of the conditional branch testing the result. */
+
+rtx
+s390_emit_compare (enum rtx_code code, rtx op0, rtx op1)
+{
+ enum machine_mode mode = s390_select_ccmode (code, op0, op1);
+ rtx cc;
+
+ /* Do not output a redundant compare instruction if a compare_and_swap
+ pattern already computed the result and the machine modes are compatible. */
+ if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
+ {
+ gcc_assert (s390_cc_modes_compatible (GET_MODE (op0), mode)
+ == GET_MODE (op0));
+ cc = op0;
+ }
+ else
+ {
+ cc = gen_rtx_REG (mode, CC_REGNUM);
+ emit_insn (gen_rtx_SET (VOIDmode, cc, gen_rtx_COMPARE (mode, op0, op1)));
+ }
+
+ return gen_rtx_fmt_ee (code, VOIDmode, cc, const0_rtx);
+}
+
+/* Emit a SImode compare and swap instruction setting MEM to NEW_RTX if OLD
+ matches CMP.
+ Return the correct condition RTL to be placed in the IF_THEN_ELSE of the
+ conditional branch testing the result. */
+
+static rtx
+s390_emit_compare_and_swap (enum rtx_code code, rtx old, rtx mem,
+ rtx cmp, rtx new_rtx)
+{
+ emit_insn (gen_atomic_compare_and_swapsi_internal (old, mem, cmp, new_rtx));
+ return s390_emit_compare (code, gen_rtx_REG (CCZ1mode, CC_REGNUM),
+ const0_rtx);
+}
+
+/* Emit a jump instruction to TARGET and return it. If COND is
+ NULL_RTX, emit an unconditional jump, else a conditional jump under
+ condition COND. */
+
+rtx
+s390_emit_jump (rtx target, rtx cond)
+{
+ rtx insn;
+
+ target = gen_rtx_LABEL_REF (VOIDmode, target);
+ if (cond)
+ target = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, target, pc_rtx);
+
+ insn = gen_rtx_SET (VOIDmode, pc_rtx, target);
+ return emit_jump_insn (insn);
+}
+
+/* Return branch condition mask to implement a branch
+ specified by CODE. Return -1 for invalid comparisons. */
+
+int
+s390_branch_condition_mask (rtx code)
+{
+ const int CC0 = 1 << 3;
+ const int CC1 = 1 << 2;
+ const int CC2 = 1 << 1;
+ const int CC3 = 1 << 0;
+
+ gcc_assert (GET_CODE (XEXP (code, 0)) == REG);
+ gcc_assert (REGNO (XEXP (code, 0)) == CC_REGNUM);
+ gcc_assert (XEXP (code, 1) == const0_rtx
+ || (GET_MODE (XEXP (code, 0)) == CCRAWmode
+ && CONST_INT_P (XEXP (code, 1))));
+
+
+ switch (GET_MODE (XEXP (code, 0)))
+ {
+ case CCZmode:
+ case CCZ1mode:
+ switch (GET_CODE (code))
+ {
+ case EQ: return CC0;
+ case NE: return CC1 | CC2 | CC3;
+ default: return -1;
+ }
+ break;
+
+ case CCT1mode:
+ switch (GET_CODE (code))
+ {
+ case EQ: return CC1;
+ case NE: return CC0 | CC2 | CC3;
+ default: return -1;
+ }
+ break;
+
+ case CCT2mode:
+ switch (GET_CODE (code))
+ {
+ case EQ: return CC2;
+ case NE: return CC0 | CC1 | CC3;
+ default: return -1;
+ }
+ break;
+
+ case CCT3mode:
+ switch (GET_CODE (code))
+ {
+ case EQ: return CC3;
+ case NE: return CC0 | CC1 | CC2;
+ default: return -1;
+ }
+ break;
+
+ case CCLmode:
+ switch (GET_CODE (code))
+ {
+ case EQ: return CC0 | CC2;
+ case NE: return CC1 | CC3;
+ default: return -1;
+ }
+ break;
+
+ case CCL1mode:
+ switch (GET_CODE (code))
+ {
+ case LTU: return CC2 | CC3; /* carry */
+ case GEU: return CC0 | CC1; /* no carry */
+ default: return -1;
+ }
+ break;
+
+ case CCL2mode:
+ switch (GET_CODE (code))
+ {
+ case GTU: return CC0 | CC1; /* borrow */
+ case LEU: return CC2 | CC3; /* no borrow */
+ default: return -1;
+ }
+ break;
+
+ case CCL3mode:
+ switch (GET_CODE (code))
+ {
+ case EQ: return CC0 | CC2;
+ case NE: return CC1 | CC3;
+ case LTU: return CC1;
+ case GTU: return CC3;
+ case LEU: return CC1 | CC2;
+ case GEU: return CC2 | CC3;
+ default: return -1;
+ }
+
+ case CCUmode:
+ switch (GET_CODE (code))
+ {
+ case EQ: return CC0;
+ case NE: return CC1 | CC2 | CC3;
+ case LTU: return CC1;
+ case GTU: return CC2;
+ case LEU: return CC0 | CC1;
+ case GEU: return CC0 | CC2;
+ default: return -1;
+ }
+ break;
+
+ case CCURmode:
+ switch (GET_CODE (code))
+ {
+ case EQ: return CC0;
+ case NE: return CC2 | CC1 | CC3;
+ case LTU: return CC2;
+ case GTU: return CC1;
+ case LEU: return CC0 | CC2;
+ case GEU: return CC0 | CC1;
+ default: return -1;
+ }
+ break;
+
+ case CCAPmode:
+ switch (GET_CODE (code))
+ {
+ case EQ: return CC0;
+ case NE: return CC1 | CC2 | CC3;
+ case LT: return CC1 | CC3;
+ case GT: return CC2;
+ case LE: return CC0 | CC1 | CC3;
+ case GE: return CC0 | CC2;
+ default: return -1;
+ }
+ break;
+
+ case CCANmode:
+ switch (GET_CODE (code))
+ {
+ case EQ: return CC0;
+ case NE: return CC1 | CC2 | CC3;
+ case LT: return CC1;
+ case GT: return CC2 | CC3;
+ case LE: return CC0 | CC1;
+ case GE: return CC0 | CC2 | CC3;
+ default: return -1;
+ }
+ break;
+
+ case CCSmode:
+ switch (GET_CODE (code))
+ {
+ case EQ: return CC0;
+ case NE: return CC1 | CC2 | CC3;
+ case LT: return CC1;
+ case GT: return CC2;
+ case LE: return CC0 | CC1;
+ case GE: return CC0 | CC2;
+ case UNORDERED: return CC3;
+ case ORDERED: return CC0 | CC1 | CC2;
+ case UNEQ: return CC0 | CC3;
+ case UNLT: return CC1 | CC3;
+ case UNGT: return CC2 | CC3;
+ case UNLE: return CC0 | CC1 | CC3;
+ case UNGE: return CC0 | CC2 | CC3;
+ case LTGT: return CC1 | CC2;
+ default: return -1;
+ }
+ break;
+
+ case CCSRmode:
+ switch (GET_CODE (code))
+ {
+ case EQ: return CC0;
+ case NE: return CC2 | CC1 | CC3;
+ case LT: return CC2;
+ case GT: return CC1;
+ case LE: return CC0 | CC2;
+ case GE: return CC0 | CC1;
+ case UNORDERED: return CC3;
+ case ORDERED: return CC0 | CC2 | CC1;
+ case UNEQ: return CC0 | CC3;
+ case UNLT: return CC2 | CC3;
+ case UNGT: return CC1 | CC3;
+ case UNLE: return CC0 | CC2 | CC3;
+ case UNGE: return CC0 | CC1 | CC3;
+ case LTGT: return CC2 | CC1;
+ default: return -1;
+ }
+ break;
+
+ case CCRAWmode:
+ switch (GET_CODE (code))
+ {
+ case EQ:
+ return INTVAL (XEXP (code, 1));
+ case NE:
+ return (INTVAL (XEXP (code, 1))) ^ 0xf;
+ default:
+ gcc_unreachable ();
+ }
+
+ default:
+ return -1;
+ }
+}
+
+
+/* Return branch condition mask to implement a compare and branch
+ specified by CODE. Return -1 for invalid comparisons. */
+
+int
+s390_compare_and_branch_condition_mask (rtx code)
+{
+ const int CC0 = 1 << 3;
+ const int CC1 = 1 << 2;
+ const int CC2 = 1 << 1;
+
+ switch (GET_CODE (code))
+ {
+ case EQ:
+ return CC0;
+ case NE:
+ return CC1 | CC2;
+ case LT:
+ case LTU:
+ return CC1;
+ case GT:
+ case GTU:
+ return CC2;
+ case LE:
+ case LEU:
+ return CC0 | CC1;
+ case GE:
+ case GEU:
+ return CC0 | CC2;
+ default:
+ gcc_unreachable ();
+ }
+ return -1;
+}
+
+/* If INV is false, return assembler mnemonic string to implement
+ a branch specified by CODE. If INV is true, return mnemonic
+ for the corresponding inverted branch. */
+
+static const char *
+s390_branch_condition_mnemonic (rtx code, int inv)
+{
+ int mask;
+
+ static const char *const mnemonic[16] =
+ {
+ NULL, "o", "h", "nle",
+ "l", "nhe", "lh", "ne",
+ "e", "nlh", "he", "nl",
+ "le", "nh", "no", NULL
+ };
+
+ if (GET_CODE (XEXP (code, 0)) == REG
+ && REGNO (XEXP (code, 0)) == CC_REGNUM
+ && (XEXP (code, 1) == const0_rtx
+ || (GET_MODE (XEXP (code, 0)) == CCRAWmode
+ && CONST_INT_P (XEXP (code, 1)))))
+ mask = s390_branch_condition_mask (code);
+ else
+ mask = s390_compare_and_branch_condition_mask (code);
+
+ gcc_assert (mask >= 0);
+
+ if (inv)
+ mask ^= 15;
+
+ gcc_assert (mask >= 1 && mask <= 14);
+
+ return mnemonic[mask];
+}
+
+/* Return the part of op which has a value different from def.
+ The size of the part is determined by mode.
+ Use this function only if you already know that op really
+ contains such a part. */
+
+unsigned HOST_WIDE_INT
+s390_extract_part (rtx op, enum machine_mode mode, int def)
+{
+ unsigned HOST_WIDE_INT value = 0;
+ int max_parts = HOST_BITS_PER_WIDE_INT / GET_MODE_BITSIZE (mode);
+ int part_bits = GET_MODE_BITSIZE (mode);
+ unsigned HOST_WIDE_INT part_mask
+ = ((unsigned HOST_WIDE_INT)1 << part_bits) - 1;
+ int i;
+
+ for (i = 0; i < max_parts; i++)
+ {
+ if (i == 0)
+ value = (unsigned HOST_WIDE_INT) INTVAL (op);
+ else
+ value >>= part_bits;
+
+ if ((value & part_mask) != (def & part_mask))
+ return value & part_mask;
+ }
+
+ gcc_unreachable ();
+}
+
+/* If OP is an integer constant of mode MODE with exactly one
+ part of mode PART_MODE unequal to DEF, return the number of that
+ part. Otherwise, return -1. */
+
+int
+s390_single_part (rtx op,
+ enum machine_mode mode,
+ enum machine_mode part_mode,
+ int def)
+{
+ unsigned HOST_WIDE_INT value = 0;
+ int n_parts = GET_MODE_SIZE (mode) / GET_MODE_SIZE (part_mode);
+ unsigned HOST_WIDE_INT part_mask
+ = ((unsigned HOST_WIDE_INT)1 << GET_MODE_BITSIZE (part_mode)) - 1;
+ int i, part = -1;
+
+ if (GET_CODE (op) != CONST_INT)
+ return -1;
+
+ for (i = 0; i < n_parts; i++)
+ {
+ if (i == 0)
+ value = (unsigned HOST_WIDE_INT) INTVAL (op);
+ else
+ value >>= GET_MODE_BITSIZE (part_mode);
+
+ if ((value & part_mask) != (def & part_mask))
+ {
+ if (part != -1)
+ return -1;
+ else
+ part = i;
+ }
+ }
+ return part == -1 ? -1 : n_parts - 1 - part;
+}
+
+/* Return true if IN contains a contiguous bitfield in the lower SIZE
+ bits and no other bits are set in IN. POS and LENGTH can be used
+ to obtain the start position and the length of the bitfield.
+
+ POS gives the position of the first bit of the bitfield counting
+ from the lowest order bit starting with zero. In order to use this
+ value for S/390 instructions this has to be converted to "bits big
+ endian" style. */
+
+bool
+s390_contiguous_bitmask_p (unsigned HOST_WIDE_INT in, int size,
+ int *pos, int *length)
+{
+ int tmp_pos = 0;
+ int tmp_length = 0;
+ int i;
+ unsigned HOST_WIDE_INT mask = 1ULL;
+ bool contiguous = false;
+
+ for (i = 0; i < size; mask <<= 1, i++)
+ {
+ if (contiguous)
+ {
+ if (mask & in)
+ tmp_length++;
+ else
+ break;
+ }
+ else
+ {
+ if (mask & in)
+ {
+ contiguous = true;
+ tmp_length++;
+ }
+ else
+ tmp_pos++;
+ }
+ }
+
+ if (!tmp_length)
+ return false;
+
+ /* Calculate a mask for all bits beyond the contiguous bits. */
+ mask = (-1LL & ~(((1ULL << (tmp_length + tmp_pos - 1)) << 1) - 1));
+
+ if (mask & in)
+ return false;
+
+ if (tmp_length + tmp_pos - 1 > size)
+ return false;
+
+ if (length)
+ *length = tmp_length;
+
+ if (pos)
+ *pos = tmp_pos;
+
+ return true;
+}
+
+/* Check whether a rotate of ROTL followed by an AND of CONTIG is
+ equivalent to a shift followed by the AND. In particular, CONTIG
+ should not overlap the (rotated) bit 0/bit 63 gap. Negative values
+ for ROTL indicate a rotate to the right. */
+
+bool
+s390_extzv_shift_ok (int bitsize, int rotl, unsigned HOST_WIDE_INT contig)
+{
+ int pos, len;
+ bool ok;
+
+ ok = s390_contiguous_bitmask_p (contig, bitsize, &pos, &len);
+ gcc_assert (ok);
+
+ return ((rotl >= 0 && rotl <= pos)
+ || (rotl < 0 && -rotl <= bitsize - len - pos));
+}
+
+/* Check whether we can (and want to) split a double-word
+ move in mode MODE from SRC to DST into two single-word
+ moves, moving the subword FIRST_SUBWORD first. */
+
+bool
+s390_split_ok_p (rtx dst, rtx src, enum machine_mode mode, int first_subword)
+{
+ /* Floating point registers cannot be split. */
+ if (FP_REG_P (src) || FP_REG_P (dst))
+ return false;
+
+ /* We don't need to split if operands are directly accessible. */
+ if (s_operand (src, mode) || s_operand (dst, mode))
+ return false;
+
+ /* Non-offsettable memory references cannot be split. */
+ if ((GET_CODE (src) == MEM && !offsettable_memref_p (src))
+ || (GET_CODE (dst) == MEM && !offsettable_memref_p (dst)))
+ return false;
+
+ /* Moving the first subword must not clobber a register
+ needed to move the second subword. */
+ if (register_operand (dst, mode))
+ {
+ rtx subreg = operand_subword (dst, first_subword, 0, mode);
+ if (reg_overlap_mentioned_p (subreg, src))
+ return false;
+ }
+
+ return true;
+}
+
+/* Return true if it can be proven that [MEM1, MEM1 + SIZE]
+ and [MEM2, MEM2 + SIZE] do overlap and false
+ otherwise. */
+
+bool
+s390_overlap_p (rtx mem1, rtx mem2, HOST_WIDE_INT size)
+{
+ rtx addr1, addr2, addr_delta;
+ HOST_WIDE_INT delta;
+
+ if (GET_CODE (mem1) != MEM || GET_CODE (mem2) != MEM)
+ return true;
+
+ if (size == 0)
+ return false;
+
+ addr1 = XEXP (mem1, 0);
+ addr2 = XEXP (mem2, 0);
+
+ addr_delta = simplify_binary_operation (MINUS, Pmode, addr2, addr1);
+
+ /* This overlapping check is used by peepholes merging memory block operations.
+ Overlapping operations would otherwise be recognized by the S/390 hardware
+ and would fall back to a slower implementation. Allowing overlapping
+ operations would lead to slow code but not to wrong code. Therefore we are
+ somewhat optimistic if we cannot prove that the memory blocks are
+ overlapping.
+ That's why we return false here although this may accept operations on
+ overlapping memory areas. */
+ if (!addr_delta || GET_CODE (addr_delta) != CONST_INT)
+ return false;
+
+ delta = INTVAL (addr_delta);
+
+ if (delta == 0
+ || (delta > 0 && delta < size)
+ || (delta < 0 && -delta < size))
+ return true;
+
+ return false;
+}
+
+/* Check whether the address of memory reference MEM2 equals exactly
+ the address of memory reference MEM1 plus DELTA. Return true if
+ we can prove this to be the case, false otherwise. */
+
+bool
+s390_offset_p (rtx mem1, rtx mem2, rtx delta)
+{
+ rtx addr1, addr2, addr_delta;
+
+ if (GET_CODE (mem1) != MEM || GET_CODE (mem2) != MEM)
+ return false;
+
+ addr1 = XEXP (mem1, 0);
+ addr2 = XEXP (mem2, 0);
+
+ addr_delta = simplify_binary_operation (MINUS, Pmode, addr2, addr1);
+ if (!addr_delta || !rtx_equal_p (addr_delta, delta))
+ return false;
+
+ return true;
+}
+
+/* Expand logical operator CODE in mode MODE with operands OPERANDS. */
+
+void
+s390_expand_logical_operator (enum rtx_code code, enum machine_mode mode,
+ rtx *operands)
+{
+ enum machine_mode wmode = mode;
+ rtx dst = operands[0];
+ rtx src1 = operands[1];
+ rtx src2 = operands[2];
+ rtx op, clob, tem;
+
+ /* If we cannot handle the operation directly, use a temp register. */
+ if (!s390_logical_operator_ok_p (operands))
+ dst = gen_reg_rtx (mode);
+
+ /* QImode and HImode patterns make sense only if we have a destination
+ in memory. Otherwise perform the operation in SImode. */
+ if ((mode == QImode || mode == HImode) && GET_CODE (dst) != MEM)
+ wmode = SImode;
+
+ /* Widen operands if required. */
+ if (mode != wmode)
+ {
+ if (GET_CODE (dst) == SUBREG
+ && (tem = simplify_subreg (wmode, dst, mode, 0)) != 0)
+ dst = tem;
+ else if (REG_P (dst))
+ dst = gen_rtx_SUBREG (wmode, dst, 0);
+ else
+ dst = gen_reg_rtx (wmode);
+
+ if (GET_CODE (src1) == SUBREG
+ && (tem = simplify_subreg (wmode, src1, mode, 0)) != 0)
+ src1 = tem;
+ else if (GET_MODE (src1) != VOIDmode)
+ src1 = gen_rtx_SUBREG (wmode, force_reg (mode, src1), 0);
+
+ if (GET_CODE (src2) == SUBREG
+ && (tem = simplify_subreg (wmode, src2, mode, 0)) != 0)
+ src2 = tem;
+ else if (GET_MODE (src2) != VOIDmode)
+ src2 = gen_rtx_SUBREG (wmode, force_reg (mode, src2), 0);
+ }
+
+ /* Emit the instruction. */
+ op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_ee (code, wmode, src1, src2));
+ clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM));
+ emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob)));
+
+ /* Fix up the destination if needed. */
+ if (dst != operands[0])
+ emit_move_insn (operands[0], gen_lowpart (mode, dst));
+}
+
+/* Check whether OPERANDS are OK for a logical operation (AND, IOR, XOR). */
+
+bool
+s390_logical_operator_ok_p (rtx *operands)
+{
+ /* If the destination operand is in memory, it needs to coincide
+ with one of the source operands. After reload, it has to be
+ the first source operand. */
+ if (GET_CODE (operands[0]) == MEM)
+ return rtx_equal_p (operands[0], operands[1])
+ || (!reload_completed && rtx_equal_p (operands[0], operands[2]));
+
+ return true;
+}
+
+/* Narrow logical operation CODE of memory operand MEMOP with immediate
+ operand IMMOP to switch from SS to SI type instructions. */
+
+void
+s390_narrow_logical_operator (enum rtx_code code, rtx *memop, rtx *immop)
+{
+ int def = code == AND ? -1 : 0;
+ HOST_WIDE_INT mask;
+ int part;
+
+ gcc_assert (GET_CODE (*memop) == MEM);
+ gcc_assert (!MEM_VOLATILE_P (*memop));
+
+ mask = s390_extract_part (*immop, QImode, def);
+ part = s390_single_part (*immop, GET_MODE (*memop), QImode, def);
+ gcc_assert (part >= 0);
+
+ *memop = adjust_address (*memop, QImode, part);
+ *immop = gen_int_mode (mask, QImode);
+}
+
+
+/* How to allocate a 'struct machine_function'. */
+
+static struct machine_function *
+s390_init_machine_status (void)
+{
+ return ggc_alloc_cleared_machine_function ();
+}
+
+/* Map for smallest class containing reg regno. */
+
+const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER] =
+{ GENERAL_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
+ ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
+ ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
+ ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ FP_REGS, FP_REGS, FP_REGS, FP_REGS,
+ ADDR_REGS, CC_REGS, ADDR_REGS, ADDR_REGS,
+ ACCESS_REGS, ACCESS_REGS
+};
+
+/* Return attribute type of insn. */
+
+static enum attr_type
+s390_safe_attr_type (rtx insn)
+{
+ if (recog_memoized (insn) >= 0)
+ return get_attr_type (insn);
+ else
+ return TYPE_NONE;
+}
+
+/* Return true if DISP is a valid short displacement. */
+
+static bool
+s390_short_displacement (rtx disp)
+{
+ /* No displacement is OK. */
+ if (!disp)
+ return true;
+
+ /* Without the long displacement facility we don't need to
+ distingiush between long and short displacement. */
+ if (!TARGET_LONG_DISPLACEMENT)
+ return true;
+
+ /* Integer displacement in range. */
+ if (GET_CODE (disp) == CONST_INT)
+ return INTVAL (disp) >= 0 && INTVAL (disp) < 4096;
+
+ /* GOT offset is not OK, the GOT can be large. */
+ if (GET_CODE (disp) == CONST
+ && GET_CODE (XEXP (disp, 0)) == UNSPEC
+ && (XINT (XEXP (disp, 0), 1) == UNSPEC_GOT
+ || XINT (XEXP (disp, 0), 1) == UNSPEC_GOTNTPOFF))
+ return false;
+
+ /* All other symbolic constants are literal pool references,
+ which are OK as the literal pool must be small. */
+ if (GET_CODE (disp) == CONST)
+ return true;
+
+ return false;
+}
+
+/* Decompose a RTL expression ADDR for a memory address into
+ its components, returned in OUT.
+
+ Returns false if ADDR is not a valid memory address, true
+ otherwise. If OUT is NULL, don't return the components,
+ but check for validity only.
+
+ Note: Only addresses in canonical form are recognized.
+ LEGITIMIZE_ADDRESS should convert non-canonical forms to the
+ canonical form so that they will be recognized. */
+
+static int
+s390_decompose_address (rtx addr, struct s390_address *out)
+{
+ HOST_WIDE_INT offset = 0;
+ rtx base = NULL_RTX;
+ rtx indx = NULL_RTX;
+ rtx disp = NULL_RTX;
+ rtx orig_disp;
+ bool pointer = false;
+ bool base_ptr = false;
+ bool indx_ptr = false;
+ bool literal_pool = false;
+
+ /* We may need to substitute the literal pool base register into the address
+ below. However, at this point we do not know which register is going to
+ be used as base, so we substitute the arg pointer register. This is going
+ to be treated as holding a pointer below -- it shouldn't be used for any
+ other purpose. */
+ rtx fake_pool_base = gen_rtx_REG (Pmode, ARG_POINTER_REGNUM);
+
+ /* Decompose address into base + index + displacement. */
+
+ if (GET_CODE (addr) == REG || GET_CODE (addr) == UNSPEC)
+ base = addr;
+
+ else if (GET_CODE (addr) == PLUS)
+ {
+ rtx op0 = XEXP (addr, 0);
+ rtx op1 = XEXP (addr, 1);
+ enum rtx_code code0 = GET_CODE (op0);
+ enum rtx_code code1 = GET_CODE (op1);
+
+ if (code0 == REG || code0 == UNSPEC)
+ {
+ if (code1 == REG || code1 == UNSPEC)
+ {
+ indx = op0; /* index + base */
+ base = op1;
+ }
+
+ else
+ {
+ base = op0; /* base + displacement */
+ disp = op1;
+ }
+ }
+
+ else if (code0 == PLUS)
+ {
+ indx = XEXP (op0, 0); /* index + base + disp */
+ base = XEXP (op0, 1);
+ disp = op1;
+ }
+
+ else
+ {
+ return false;
+ }
+ }
+
+ else
+ disp = addr; /* displacement */
+
+ /* Extract integer part of displacement. */
+ orig_disp = disp;
+ if (disp)
+ {
+ if (GET_CODE (disp) == CONST_INT)
+ {
+ offset = INTVAL (disp);
+ disp = NULL_RTX;
+ }
+ else if (GET_CODE (disp) == CONST
+ && GET_CODE (XEXP (disp, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (disp, 0), 1)) == CONST_INT)
+ {
+ offset = INTVAL (XEXP (XEXP (disp, 0), 1));
+ disp = XEXP (XEXP (disp, 0), 0);
+ }
+ }
+
+ /* Strip off CONST here to avoid special case tests later. */
+ if (disp && GET_CODE (disp) == CONST)
+ disp = XEXP (disp, 0);
+
+ /* We can convert literal pool addresses to
+ displacements by basing them off the base register. */
+ if (disp && GET_CODE (disp) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (disp))
+ {
+ /* Either base or index must be free to hold the base register. */
+ if (!base)
+ base = fake_pool_base, literal_pool = true;
+ else if (!indx)
+ indx = fake_pool_base, literal_pool = true;
+ else
+ return false;
+
+ /* Mark up the displacement. */
+ disp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, disp),
+ UNSPEC_LTREL_OFFSET);
+ }
+
+ /* Validate base register. */
+ if (base)
+ {
+ if (GET_CODE (base) == UNSPEC)
+ switch (XINT (base, 1))
+ {
+ case UNSPEC_LTREF:
+ if (!disp)
+ disp = gen_rtx_UNSPEC (Pmode,
+ gen_rtvec (1, XVECEXP (base, 0, 0)),
+ UNSPEC_LTREL_OFFSET);
+ else
+ return false;
+
+ base = XVECEXP (base, 0, 1);
+ break;
+
+ case UNSPEC_LTREL_BASE:
+ if (XVECLEN (base, 0) == 1)
+ base = fake_pool_base, literal_pool = true;
+ else
+ base = XVECEXP (base, 0, 1);
+ break;
+
+ default:
+ return false;
+ }
+
+ if (!REG_P (base)
+ || (GET_MODE (base) != SImode
+ && GET_MODE (base) != Pmode))
+ return false;
+
+ if (REGNO (base) == STACK_POINTER_REGNUM
+ || REGNO (base) == FRAME_POINTER_REGNUM
+ || ((reload_completed || reload_in_progress)
+ && frame_pointer_needed
+ && REGNO (base) == HARD_FRAME_POINTER_REGNUM)
+ || REGNO (base) == ARG_POINTER_REGNUM
+ || (flag_pic
+ && REGNO (base) == PIC_OFFSET_TABLE_REGNUM))
+ pointer = base_ptr = true;
+
+ if ((reload_completed || reload_in_progress)
+ && base == cfun->machine->base_reg)
+ pointer = base_ptr = literal_pool = true;
+ }
+
+ /* Validate index register. */
+ if (indx)
+ {
+ if (GET_CODE (indx) == UNSPEC)
+ switch (XINT (indx, 1))
+ {
+ case UNSPEC_LTREF:
+ if (!disp)
+ disp = gen_rtx_UNSPEC (Pmode,
+ gen_rtvec (1, XVECEXP (indx, 0, 0)),
+ UNSPEC_LTREL_OFFSET);
+ else
+ return false;
+
+ indx = XVECEXP (indx, 0, 1);
+ break;
+
+ case UNSPEC_LTREL_BASE:
+ if (XVECLEN (indx, 0) == 1)
+ indx = fake_pool_base, literal_pool = true;
+ else
+ indx = XVECEXP (indx, 0, 1);
+ break;
+
+ default:
+ return false;
+ }
+
+ if (!REG_P (indx)
+ || (GET_MODE (indx) != SImode
+ && GET_MODE (indx) != Pmode))
+ return false;
+
+ if (REGNO (indx) == STACK_POINTER_REGNUM
+ || REGNO (indx) == FRAME_POINTER_REGNUM
+ || ((reload_completed || reload_in_progress)
+ && frame_pointer_needed
+ && REGNO (indx) == HARD_FRAME_POINTER_REGNUM)
+ || REGNO (indx) == ARG_POINTER_REGNUM
+ || (flag_pic
+ && REGNO (indx) == PIC_OFFSET_TABLE_REGNUM))
+ pointer = indx_ptr = true;
+
+ if ((reload_completed || reload_in_progress)
+ && indx == cfun->machine->base_reg)
+ pointer = indx_ptr = literal_pool = true;
+ }
+
+ /* Prefer to use pointer as base, not index. */
+ if (base && indx && !base_ptr
+ && (indx_ptr || (!REG_POINTER (base) && REG_POINTER (indx))))
+ {
+ rtx tmp = base;
+ base = indx;
+ indx = tmp;
+ }
+
+ /* Validate displacement. */
+ if (!disp)
+ {
+ /* If virtual registers are involved, the displacement will change later
+ anyway as the virtual registers get eliminated. This could make a
+ valid displacement invalid, but it is more likely to make an invalid
+ displacement valid, because we sometimes access the register save area
+ via negative offsets to one of those registers.
+ Thus we don't check the displacement for validity here. If after
+ elimination the displacement turns out to be invalid after all,
+ this is fixed up by reload in any case. */
+ /* LRA maintains always displacements up to date and we need to
+ know the displacement is right during all LRA not only at the
+ final elimination. */
+ if (lra_in_progress
+ || (base != arg_pointer_rtx
+ && indx != arg_pointer_rtx
+ && base != return_address_pointer_rtx
+ && indx != return_address_pointer_rtx
+ && base != frame_pointer_rtx
+ && indx != frame_pointer_rtx
+ && base != virtual_stack_vars_rtx
+ && indx != virtual_stack_vars_rtx))
+ if (!DISP_IN_RANGE (offset))
+ return false;
+ }
+ else
+ {
+ /* All the special cases are pointers. */
+ pointer = true;
+
+ /* In the small-PIC case, the linker converts @GOT
+ and @GOTNTPOFF offsets to possible displacements. */
+ if (GET_CODE (disp) == UNSPEC
+ && (XINT (disp, 1) == UNSPEC_GOT
+ || XINT (disp, 1) == UNSPEC_GOTNTPOFF)
+ && flag_pic == 1)
+ {
+ ;
+ }
+
+ /* Accept pool label offsets. */
+ else if (GET_CODE (disp) == UNSPEC
+ && XINT (disp, 1) == UNSPEC_POOL_OFFSET)
+ ;
+
+ /* Accept literal pool references. */
+ else if (GET_CODE (disp) == UNSPEC
+ && XINT (disp, 1) == UNSPEC_LTREL_OFFSET)
+ {
+ /* In case CSE pulled a non literal pool reference out of
+ the pool we have to reject the address. This is
+ especially important when loading the GOT pointer on non
+ zarch CPUs. In this case the literal pool contains an lt
+ relative offset to the _GLOBAL_OFFSET_TABLE_ label which
+ will most likely exceed the displacement. */
+ if (GET_CODE (XVECEXP (disp, 0, 0)) != SYMBOL_REF
+ || !CONSTANT_POOL_ADDRESS_P (XVECEXP (disp, 0, 0)))
+ return false;
+
+ orig_disp = gen_rtx_CONST (Pmode, disp);
+ if (offset)
+ {
+ /* If we have an offset, make sure it does not
+ exceed the size of the constant pool entry. */
+ rtx sym = XVECEXP (disp, 0, 0);
+ if (offset >= GET_MODE_SIZE (get_pool_mode (sym)))
+ return false;
+
+ orig_disp = plus_constant (Pmode, orig_disp, offset);
+ }
+ }
+
+ else
+ return false;
+ }
+
+ if (!base && !indx)
+ pointer = true;
+
+ if (out)
+ {
+ out->base = base;
+ out->indx = indx;
+ out->disp = orig_disp;
+ out->pointer = pointer;
+ out->literal_pool = literal_pool;
+ }
+
+ return true;
+}
+
+/* Decompose a RTL expression OP for a shift count into its components,
+ and return the base register in BASE and the offset in OFFSET.
+
+ Return true if OP is a valid shift count, false if not. */
+
+bool
+s390_decompose_shift_count (rtx op, rtx *base, HOST_WIDE_INT *offset)
+{
+ HOST_WIDE_INT off = 0;
+
+ /* We can have an integer constant, an address register,
+ or a sum of the two. */
+ if (GET_CODE (op) == CONST_INT)
+ {
+ off = INTVAL (op);
+ op = NULL_RTX;
+ }
+ if (op && GET_CODE (op) == PLUS && GET_CODE (XEXP (op, 1)) == CONST_INT)
+ {
+ off = INTVAL (XEXP (op, 1));
+ op = XEXP (op, 0);
+ }
+ while (op && GET_CODE (op) == SUBREG)
+ op = SUBREG_REG (op);
+
+ if (op && GET_CODE (op) != REG)
+ return false;
+
+ if (offset)
+ *offset = off;
+ if (base)
+ *base = op;
+
+ return true;
+}
+
+
+/* Return true if CODE is a valid address without index. */
+
+bool
+s390_legitimate_address_without_index_p (rtx op)
+{
+ struct s390_address addr;
+
+ if (!s390_decompose_address (XEXP (op, 0), &addr))
+ return false;
+ if (addr.indx)
+ return false;
+
+ return true;
+}
+
+
+/* Return TRUE if ADDR is an operand valid for a load/store relative
+ instruction. Be aware that the alignment of the operand needs to
+ be checked separately.
+ Valid addresses are single references or a sum of a reference and a
+ constant integer. Return these parts in SYMREF and ADDEND. You can
+ pass NULL in REF and/or ADDEND if you are not interested in these
+ values. Literal pool references are *not* considered symbol
+ references. */
+
+static bool
+s390_loadrelative_operand_p (rtx addr, rtx *symref, HOST_WIDE_INT *addend)
+{
+ HOST_WIDE_INT tmpaddend = 0;
+
+ if (GET_CODE (addr) == CONST)
+ addr = XEXP (addr, 0);
+
+ if (GET_CODE (addr) == PLUS)
+ {
+ if (!CONST_INT_P (XEXP (addr, 1)))
+ return false;
+
+ tmpaddend = INTVAL (XEXP (addr, 1));
+ addr = XEXP (addr, 0);
+ }
+
+ if ((GET_CODE (addr) == SYMBOL_REF && !CONSTANT_POOL_ADDRESS_P (addr))
+ || (GET_CODE (addr) == UNSPEC
+ && (XINT (addr, 1) == UNSPEC_GOTENT
+ || (TARGET_CPU_ZARCH && XINT (addr, 1) == UNSPEC_PLT))))
+ {
+ if (symref)
+ *symref = addr;
+ if (addend)
+ *addend = tmpaddend;
+
+ return true;
+ }
+ return false;
+}
+
+/* Return true if the address in OP is valid for constraint letter C
+ if wrapped in a MEM rtx. Set LIT_POOL_OK to true if it literal
+ pool MEMs should be accepted. Only the Q, R, S, T constraint
+ letters are allowed for C. */
+
+static int
+s390_check_qrst_address (char c, rtx op, bool lit_pool_ok)
+{
+ struct s390_address addr;
+ bool decomposed = false;
+
+ /* This check makes sure that no symbolic address (except literal
+ pool references) are accepted by the R or T constraints. */
+ if (s390_loadrelative_operand_p (op, NULL, NULL))
+ return 0;
+
+ /* Ensure literal pool references are only accepted if LIT_POOL_OK. */
+ if (!lit_pool_ok)
+ {
+ if (!s390_decompose_address (op, &addr))
+ return 0;
+ if (addr.literal_pool)
+ return 0;
+ decomposed = true;
+ }
+
+ switch (c)
+ {
+ case 'Q': /* no index short displacement */
+ if (!decomposed && !s390_decompose_address (op, &addr))
+ return 0;
+ if (addr.indx)
+ return 0;
+ if (!s390_short_displacement (addr.disp))
+ return 0;
+ break;
+
+ case 'R': /* with index short displacement */
+ if (TARGET_LONG_DISPLACEMENT)
+ {
+ if (!decomposed && !s390_decompose_address (op, &addr))
+ return 0;
+ if (!s390_short_displacement (addr.disp))
+ return 0;
+ }
+ /* Any invalid address here will be fixed up by reload,
+ so accept it for the most generic constraint. */
+ break;
+
+ case 'S': /* no index long displacement */
+ if (!TARGET_LONG_DISPLACEMENT)
+ return 0;
+ if (!decomposed && !s390_decompose_address (op, &addr))
+ return 0;
+ if (addr.indx)
+ return 0;
+ if (s390_short_displacement (addr.disp))
+ return 0;
+ break;
+
+ case 'T': /* with index long displacement */
+ if (!TARGET_LONG_DISPLACEMENT)
+ return 0;
+ /* Any invalid address here will be fixed up by reload,
+ so accept it for the most generic constraint. */
+ if ((decomposed || s390_decompose_address (op, &addr))
+ && s390_short_displacement (addr.disp))
+ return 0;
+ break;
+ default:
+ return 0;
+ }
+ return 1;
+}
+
+
+/* Evaluates constraint strings described by the regular expression
+ ([A|B|Z](Q|R|S|T))|U|W|Y and returns 1 if OP is a valid operand for
+ the constraint given in STR, or 0 else. */
+
+int
+s390_mem_constraint (const char *str, rtx op)
+{
+ char c = str[0];
+
+ switch (c)
+ {
+ case 'A':
+ /* Check for offsettable variants of memory constraints. */
+ if (!MEM_P (op) || MEM_VOLATILE_P (op))
+ return 0;
+ if ((reload_completed || reload_in_progress)
+ ? !offsettable_memref_p (op) : !offsettable_nonstrict_memref_p (op))
+ return 0;
+ return s390_check_qrst_address (str[1], XEXP (op, 0), true);
+ case 'B':
+ /* Check for non-literal-pool variants of memory constraints. */
+ if (!MEM_P (op))
+ return 0;
+ return s390_check_qrst_address (str[1], XEXP (op, 0), false);
+ case 'Q':
+ case 'R':
+ case 'S':
+ case 'T':
+ if (GET_CODE (op) != MEM)
+ return 0;
+ return s390_check_qrst_address (c, XEXP (op, 0), true);
+ case 'U':
+ return (s390_check_qrst_address ('Q', op, true)
+ || s390_check_qrst_address ('R', op, true));
+ case 'W':
+ return (s390_check_qrst_address ('S', op, true)
+ || s390_check_qrst_address ('T', op, true));
+ case 'Y':
+ /* Simply check for the basic form of a shift count. Reload will
+ take care of making sure we have a proper base register. */
+ if (!s390_decompose_shift_count (op, NULL, NULL))
+ return 0;
+ break;
+ case 'Z':
+ return s390_check_qrst_address (str[1], op, true);
+ default:
+ return 0;
+ }
+ return 1;
+}
+
+
+/* Evaluates constraint strings starting with letter O. Input
+ parameter C is the second letter following the "O" in the constraint
+ string. Returns 1 if VALUE meets the respective constraint and 0
+ otherwise. */
+
+int
+s390_O_constraint_str (const char c, HOST_WIDE_INT value)
+{
+ if (!TARGET_EXTIMM)
+ return 0;
+
+ switch (c)
+ {
+ case 's':
+ return trunc_int_for_mode (value, SImode) == value;
+
+ case 'p':
+ return value == 0
+ || s390_single_part (GEN_INT (value), DImode, SImode, 0) == 1;
+
+ case 'n':
+ return s390_single_part (GEN_INT (value - 1), DImode, SImode, -1) == 1;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/* Evaluates constraint strings starting with letter N. Parameter STR
+ contains the letters following letter "N" in the constraint string.
+ Returns true if VALUE matches the constraint. */
+
+int
+s390_N_constraint_str (const char *str, HOST_WIDE_INT value)
+{
+ enum machine_mode mode, part_mode;
+ int def;
+ int part, part_goal;
+
+
+ if (str[0] == 'x')
+ part_goal = -1;
+ else
+ part_goal = str[0] - '0';
+
+ switch (str[1])
+ {
+ case 'Q':
+ part_mode = QImode;
+ break;
+ case 'H':
+ part_mode = HImode;
+ break;
+ case 'S':
+ part_mode = SImode;
+ break;
+ default:
+ return 0;
+ }
+
+ switch (str[2])
+ {
+ case 'H':
+ mode = HImode;
+ break;
+ case 'S':
+ mode = SImode;
+ break;
+ case 'D':
+ mode = DImode;
+ break;
+ default:
+ return 0;
+ }
+
+ switch (str[3])
+ {
+ case '0':
+ def = 0;
+ break;
+ case 'F':
+ def = -1;
+ break;
+ default:
+ return 0;
+ }
+
+ if (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (part_mode))
+ return 0;
+
+ part = s390_single_part (GEN_INT (value), mode, part_mode, def);
+ if (part < 0)
+ return 0;
+ if (part_goal != -1 && part_goal != part)
+ return 0;
+
+ return 1;
+}
+
+
+/* Returns true if the input parameter VALUE is a float zero. */
+
+int
+s390_float_const_zero_p (rtx value)
+{
+ return (GET_MODE_CLASS (GET_MODE (value)) == MODE_FLOAT
+ && value == CONST0_RTX (GET_MODE (value)));
+}
+
+/* Implement TARGET_REGISTER_MOVE_COST. */
+
+static int
+s390_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
+ reg_class_t from, reg_class_t to)
+{
+ /* On s390, copy between fprs and gprs is expensive as long as no
+ ldgr/lgdr can be used. */
+ if ((!TARGET_Z10 || GET_MODE_SIZE (mode) != 8)
+ && ((reg_classes_intersect_p (from, GENERAL_REGS)
+ && reg_classes_intersect_p (to, FP_REGS))
+ || (reg_classes_intersect_p (from, FP_REGS)
+ && reg_classes_intersect_p (to, GENERAL_REGS))))
+ return 10;
+
+ return 1;
+}
+
+/* Implement TARGET_MEMORY_MOVE_COST. */
+
+static int
+s390_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
+ reg_class_t rclass ATTRIBUTE_UNUSED,
+ bool in ATTRIBUTE_UNUSED)
+{
+ return 1;
+}
+
+/* Compute a (partial) cost for rtx X. Return true if the complete
+ cost has been computed, and false if subexpressions should be
+ scanned. In either case, *TOTAL contains the cost result.
+ CODE contains GET_CODE (x), OUTER_CODE contains the code
+ of the superexpression of x. */
+
+static bool
+s390_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
+ int *total, bool speed ATTRIBUTE_UNUSED)
+{
+ switch (code)
+ {
+ case CONST:
+ case CONST_INT:
+ case LABEL_REF:
+ case SYMBOL_REF:
+ case CONST_DOUBLE:
+ case MEM:
+ *total = 0;
+ return true;
+
+ case ASHIFT:
+ case ASHIFTRT:
+ case LSHIFTRT:
+ case ROTATE:
+ case ROTATERT:
+ case AND:
+ case IOR:
+ case XOR:
+ case NEG:
+ case NOT:
+ *total = COSTS_N_INSNS (1);
+ return false;
+
+ case PLUS:
+ case MINUS:
+ *total = COSTS_N_INSNS (1);
+ return false;
+
+ case MULT:
+ switch (GET_MODE (x))
+ {
+ case SImode:
+ {
+ rtx left = XEXP (x, 0);
+ rtx right = XEXP (x, 1);
+ if (GET_CODE (right) == CONST_INT
+ && CONST_OK_FOR_K (INTVAL (right)))
+ *total = s390_cost->mhi;
+ else if (GET_CODE (left) == SIGN_EXTEND)
+ *total = s390_cost->mh;
+ else
+ *total = s390_cost->ms; /* msr, ms, msy */
+ break;
+ }
+ case DImode:
+ {
+ rtx left = XEXP (x, 0);
+ rtx right = XEXP (x, 1);
+ if (TARGET_ZARCH)
+ {
+ if (GET_CODE (right) == CONST_INT
+ && CONST_OK_FOR_K (INTVAL (right)))
+ *total = s390_cost->mghi;
+ else if (GET_CODE (left) == SIGN_EXTEND)
+ *total = s390_cost->msgf;
+ else
+ *total = s390_cost->msg; /* msgr, msg */
+ }
+ else /* TARGET_31BIT */
+ {
+ if (GET_CODE (left) == SIGN_EXTEND
+ && GET_CODE (right) == SIGN_EXTEND)
+ /* mulsidi case: mr, m */
+ *total = s390_cost->m;
+ else if (GET_CODE (left) == ZERO_EXTEND
+ && GET_CODE (right) == ZERO_EXTEND
+ && TARGET_CPU_ZARCH)
+ /* umulsidi case: ml, mlr */
+ *total = s390_cost->ml;
+ else
+ /* Complex calculation is required. */
+ *total = COSTS_N_INSNS (40);
+ }
+ break;
+ }
+ case SFmode:
+ case DFmode:
+ *total = s390_cost->mult_df;
+ break;
+ case TFmode:
+ *total = s390_cost->mxbr;
+ break;
+ default:
+ return false;
+ }
+ return false;
+
+ case FMA:
+ switch (GET_MODE (x))
+ {
+ case DFmode:
+ *total = s390_cost->madbr;
+ break;
+ case SFmode:
+ *total = s390_cost->maebr;
+ break;
+ default:
+ return false;
+ }
+ /* Negate in the third argument is free: FMSUB. */
+ if (GET_CODE (XEXP (x, 2)) == NEG)
+ {
+ *total += (rtx_cost (XEXP (x, 0), FMA, 0, speed)
+ + rtx_cost (XEXP (x, 1), FMA, 1, speed)
+ + rtx_cost (XEXP (XEXP (x, 2), 0), FMA, 2, speed));
+ return true;
+ }
+ return false;
+
+ case UDIV:
+ case UMOD:
+ if (GET_MODE (x) == TImode) /* 128 bit division */
+ *total = s390_cost->dlgr;
+ else if (GET_MODE (x) == DImode)
+ {
+ rtx right = XEXP (x, 1);
+ if (GET_CODE (right) == ZERO_EXTEND) /* 64 by 32 bit division */
+ *total = s390_cost->dlr;
+ else /* 64 by 64 bit division */
+ *total = s390_cost->dlgr;
+ }
+ else if (GET_MODE (x) == SImode) /* 32 bit division */
+ *total = s390_cost->dlr;
+ return false;
+
+ case DIV:
+ case MOD:
+ if (GET_MODE (x) == DImode)
+ {
+ rtx right = XEXP (x, 1);
+ if (GET_CODE (right) == ZERO_EXTEND) /* 64 by 32 bit division */
+ if (TARGET_ZARCH)
+ *total = s390_cost->dsgfr;
+ else
+ *total = s390_cost->dr;
+ else /* 64 by 64 bit division */
+ *total = s390_cost->dsgr;
+ }
+ else if (GET_MODE (x) == SImode) /* 32 bit division */
+ *total = s390_cost->dlr;
+ else if (GET_MODE (x) == SFmode)
+ {
+ *total = s390_cost->debr;
+ }
+ else if (GET_MODE (x) == DFmode)
+ {
+ *total = s390_cost->ddbr;
+ }
+ else if (GET_MODE (x) == TFmode)
+ {
+ *total = s390_cost->dxbr;
+ }
+ return false;
+
+ case SQRT:
+ if (GET_MODE (x) == SFmode)
+ *total = s390_cost->sqebr;
+ else if (GET_MODE (x) == DFmode)
+ *total = s390_cost->sqdbr;
+ else /* TFmode */
+ *total = s390_cost->sqxbr;
+ return false;
+
+ case SIGN_EXTEND:
+ case ZERO_EXTEND:
+ if (outer_code == MULT || outer_code == DIV || outer_code == MOD
+ || outer_code == PLUS || outer_code == MINUS
+ || outer_code == COMPARE)
+ *total = 0;
+ return false;
+
+ case COMPARE:
+ *total = COSTS_N_INSNS (1);
+ if (GET_CODE (XEXP (x, 0)) == AND
+ && GET_CODE (XEXP (x, 1)) == CONST_INT
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
+ {
+ rtx op0 = XEXP (XEXP (x, 0), 0);
+ rtx op1 = XEXP (XEXP (x, 0), 1);
+ rtx op2 = XEXP (x, 1);
+
+ if (memory_operand (op0, GET_MODE (op0))
+ && s390_tm_ccmode (op1, op2, 0) != VOIDmode)
+ return true;
+ if (register_operand (op0, GET_MODE (op0))
+ && s390_tm_ccmode (op1, op2, 1) != VOIDmode)
+ return true;
+ }
+ return false;
+
+ default:
+ return false;
+ }
+}
+
+/* Return the cost of an address rtx ADDR. */
+
+static int
+s390_address_cost (rtx addr, enum machine_mode mode ATTRIBUTE_UNUSED,
+ addr_space_t as ATTRIBUTE_UNUSED,
+ bool speed ATTRIBUTE_UNUSED)
+{
+ struct s390_address ad;
+ if (!s390_decompose_address (addr, &ad))
+ return 1000;
+
+ return ad.indx? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (1);
+}
+
+/* If OP is a SYMBOL_REF of a thread-local symbol, return its TLS mode,
+ otherwise return 0. */
+
+int
+tls_symbolic_operand (rtx op)
+{
+ if (GET_CODE (op) != SYMBOL_REF)
+ return 0;
+ return SYMBOL_REF_TLS_MODEL (op);
+}
+
+/* Split DImode access register reference REG (on 64-bit) into its constituent
+ low and high parts, and store them into LO and HI. Note that gen_lowpart/
+ gen_highpart cannot be used as they assume all registers are word-sized,
+ while our access registers have only half that size. */
+
+void
+s390_split_access_reg (rtx reg, rtx *lo, rtx *hi)
+{
+ gcc_assert (TARGET_64BIT);
+ gcc_assert (ACCESS_REG_P (reg));
+ gcc_assert (GET_MODE (reg) == DImode);
+ gcc_assert (!(REGNO (reg) & 1));
+
+ *lo = gen_rtx_REG (SImode, REGNO (reg) + 1);
+ *hi = gen_rtx_REG (SImode, REGNO (reg));
+}
+
+/* Return true if OP contains a symbol reference */
+
+bool
+symbolic_reference_mentioned_p (rtx op)
+{
+ const char *fmt;
+ int i;
+
+ if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
+ return 1;
+
+ fmt = GET_RTX_FORMAT (GET_CODE (op));
+ for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'E')
+ {
+ int j;
+
+ for (j = XVECLEN (op, i) - 1; j >= 0; j--)
+ if (symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
+ return 1;
+ }
+
+ else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i)))
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Return true if OP contains a reference to a thread-local symbol. */
+
+bool
+tls_symbolic_reference_mentioned_p (rtx op)
+{
+ const char *fmt;
+ int i;
+
+ if (GET_CODE (op) == SYMBOL_REF)
+ return tls_symbolic_operand (op);
+
+ fmt = GET_RTX_FORMAT (GET_CODE (op));
+ for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'E')
+ {
+ int j;
+
+ for (j = XVECLEN (op, i) - 1; j >= 0; j--)
+ if (tls_symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
+ return true;
+ }
+
+ else if (fmt[i] == 'e' && tls_symbolic_reference_mentioned_p (XEXP (op, i)))
+ return true;
+ }
+
+ return false;
+}
+
+
+/* Return true if OP is a legitimate general operand when
+ generating PIC code. It is given that flag_pic is on
+ and that OP satisfies CONSTANT_P or is a CONST_DOUBLE. */
+
+int
+legitimate_pic_operand_p (rtx op)
+{
+ /* Accept all non-symbolic constants. */
+ if (!SYMBOLIC_CONST (op))
+ return 1;
+
+ /* Reject everything else; must be handled
+ via emit_symbolic_move. */
+ return 0;
+}
+
+/* Returns true if the constant value OP is a legitimate general operand.
+ It is given that OP satisfies CONSTANT_P or is a CONST_DOUBLE. */
+
+static bool
+s390_legitimate_constant_p (enum machine_mode mode, rtx op)
+{
+ /* Accept all non-symbolic constants. */
+ if (!SYMBOLIC_CONST (op))
+ return 1;
+
+ /* Accept immediate LARL operands. */
+ if (TARGET_CPU_ZARCH && larl_operand (op, mode))
+ return 1;
+
+ /* Thread-local symbols are never legal constants. This is
+ so that emit_call knows that computing such addresses
+ might require a function call. */
+ if (TLS_SYMBOLIC_CONST (op))
+ return 0;
+
+ /* In the PIC case, symbolic constants must *not* be
+ forced into the literal pool. We accept them here,
+ so that they will be handled by emit_symbolic_move. */
+ if (flag_pic)
+ return 1;
+
+ /* All remaining non-PIC symbolic constants are
+ forced into the literal pool. */
+ return 0;
+}
+
+/* Determine if it's legal to put X into the constant pool. This
+ is not possible if X contains the address of a symbol that is
+ not constant (TLS) or not known at final link time (PIC). */
+
+static bool
+s390_cannot_force_const_mem (enum machine_mode mode, rtx x)
+{
+ switch (GET_CODE (x))
+ {
+ case CONST_INT:
+ case CONST_DOUBLE:
+ /* Accept all non-symbolic constants. */
+ return false;
+
+ case LABEL_REF:
+ /* Labels are OK iff we are non-PIC. */
+ return flag_pic != 0;
+
+ case SYMBOL_REF:
+ /* 'Naked' TLS symbol references are never OK,
+ non-TLS symbols are OK iff we are non-PIC. */
+ if (tls_symbolic_operand (x))
+ return true;
+ else
+ return flag_pic != 0;
+
+ case CONST:
+ return s390_cannot_force_const_mem (mode, XEXP (x, 0));
+ case PLUS:
+ case MINUS:
+ return s390_cannot_force_const_mem (mode, XEXP (x, 0))
+ || s390_cannot_force_const_mem (mode, XEXP (x, 1));
+
+ case UNSPEC:
+ switch (XINT (x, 1))
+ {
+ /* Only lt-relative or GOT-relative UNSPECs are OK. */
+ case UNSPEC_LTREL_OFFSET:
+ case UNSPEC_GOT:
+ case UNSPEC_GOTOFF:
+ case UNSPEC_PLTOFF:
+ case UNSPEC_TLSGD:
+ case UNSPEC_TLSLDM:
+ case UNSPEC_NTPOFF:
+ case UNSPEC_DTPOFF:
+ case UNSPEC_GOTNTPOFF:
+ case UNSPEC_INDNTPOFF:
+ return false;
+
+ /* If the literal pool shares the code section, be put
+ execute template placeholders into the pool as well. */
+ case UNSPEC_INSN:
+ return TARGET_CPU_ZARCH;
+
+ default:
+ return true;
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Returns true if the constant value OP is a legitimate general
+ operand during and after reload. The difference to
+ legitimate_constant_p is that this function will not accept
+ a constant that would need to be forced to the literal pool
+ before it can be used as operand.
+ This function accepts all constants which can be loaded directly
+ into a GPR. */
+
+bool
+legitimate_reload_constant_p (rtx op)
+{
+ /* Accept la(y) operands. */
+ if (GET_CODE (op) == CONST_INT
+ && DISP_IN_RANGE (INTVAL (op)))
+ return true;
+
+ /* Accept l(g)hi/l(g)fi operands. */
+ if (GET_CODE (op) == CONST_INT
+ && (CONST_OK_FOR_K (INTVAL (op)) || CONST_OK_FOR_Os (INTVAL (op))))
+ return true;
+
+ /* Accept lliXX operands. */
+ if (TARGET_ZARCH
+ && GET_CODE (op) == CONST_INT
+ && trunc_int_for_mode (INTVAL (op), word_mode) == INTVAL (op)
+ && s390_single_part (op, word_mode, HImode, 0) >= 0)
+ return true;
+
+ if (TARGET_EXTIMM
+ && GET_CODE (op) == CONST_INT
+ && trunc_int_for_mode (INTVAL (op), word_mode) == INTVAL (op)
+ && s390_single_part (op, word_mode, SImode, 0) >= 0)
+ return true;
+
+ /* Accept larl operands. */
+ if (TARGET_CPU_ZARCH
+ && larl_operand (op, VOIDmode))
+ return true;
+
+ /* Accept floating-point zero operands that fit into a single GPR. */
+ if (GET_CODE (op) == CONST_DOUBLE
+ && s390_float_const_zero_p (op)
+ && GET_MODE_SIZE (GET_MODE (op)) <= UNITS_PER_WORD)
+ return true;
+
+ /* Accept double-word operands that can be split. */
+ if (GET_CODE (op) == CONST_INT
+ && trunc_int_for_mode (INTVAL (op), word_mode) != INTVAL (op))
+ {
+ enum machine_mode dword_mode = word_mode == SImode ? DImode : TImode;
+ rtx hi = operand_subword (op, 0, 0, dword_mode);
+ rtx lo = operand_subword (op, 1, 0, dword_mode);
+ return legitimate_reload_constant_p (hi)
+ && legitimate_reload_constant_p (lo);
+ }
+
+ /* Everything else cannot be handled without reload. */
+ return false;
+}
+
+/* Returns true if the constant value OP is a legitimate fp operand
+ during and after reload.
+ This function accepts all constants which can be loaded directly
+ into an FPR. */
+
+static bool
+legitimate_reload_fp_constant_p (rtx op)
+{
+ /* Accept floating-point zero operands if the load zero instruction
+ can be used. Prior to z196 the load fp zero instruction caused a
+ performance penalty if the result is used as BFP number. */
+ if (TARGET_Z196
+ && GET_CODE (op) == CONST_DOUBLE
+ && s390_float_const_zero_p (op))
+ return true;
+
+ return false;
+}
+
+/* Given an rtx OP being reloaded into a reg required to be in class RCLASS,
+ return the class of reg to actually use. */
+
+static reg_class_t
+s390_preferred_reload_class (rtx op, reg_class_t rclass)
+{
+ switch (GET_CODE (op))
+ {
+ /* Constants we cannot reload into general registers
+ must be forced into the literal pool. */
+ case CONST_DOUBLE:
+ case CONST_INT:
+ if (reg_class_subset_p (GENERAL_REGS, rclass)
+ && legitimate_reload_constant_p (op))
+ return GENERAL_REGS;
+ else if (reg_class_subset_p (ADDR_REGS, rclass)
+ && legitimate_reload_constant_p (op))
+ return ADDR_REGS;
+ else if (reg_class_subset_p (FP_REGS, rclass)
+ && legitimate_reload_fp_constant_p (op))
+ return FP_REGS;
+ return NO_REGS;
+
+ /* If a symbolic constant or a PLUS is reloaded,
+ it is most likely being used as an address, so
+ prefer ADDR_REGS. If 'class' is not a superset
+ of ADDR_REGS, e.g. FP_REGS, reject this reload. */
+ case CONST:
+ /* Symrefs cannot be pushed into the literal pool with -fPIC
+ so we *MUST NOT* return NO_REGS for these cases
+ (s390_cannot_force_const_mem will return true).
+
+ On the other hand we MUST return NO_REGS for symrefs with
+ invalid addend which might have been pushed to the literal
+ pool (no -fPIC). Usually we would expect them to be
+ handled via secondary reload but this does not happen if
+ they are used as literal pool slot replacement in reload
+ inheritance (see emit_input_reload_insns). */
+ if (TARGET_CPU_ZARCH
+ && GET_CODE (XEXP (op, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP(op, 0), 0)) == SYMBOL_REF
+ && GET_CODE (XEXP (XEXP(op, 0), 1)) == CONST_INT)
+ {
+ if (flag_pic && reg_class_subset_p (ADDR_REGS, rclass))
+ return ADDR_REGS;
+ else
+ return NO_REGS;
+ }
+ /* fallthrough */
+ case LABEL_REF:
+ case SYMBOL_REF:
+ if (!legitimate_reload_constant_p (op))
+ return NO_REGS;
+ /* fallthrough */
+ case PLUS:
+ /* load address will be used. */
+ if (reg_class_subset_p (ADDR_REGS, rclass))
+ return ADDR_REGS;
+ else
+ return NO_REGS;
+
+ default:
+ break;
+ }
+
+ return rclass;
+}
+
+/* Return true if ADDR is SYMBOL_REF + addend with addend being a
+ multiple of ALIGNMENT and the SYMBOL_REF being naturally
+ aligned. */
+
+bool
+s390_check_symref_alignment (rtx addr, HOST_WIDE_INT alignment)
+{
+ HOST_WIDE_INT addend;
+ rtx symref;
+
+ if (!s390_loadrelative_operand_p (addr, &symref, &addend))
+ return false;
+
+ if (addend & (alignment - 1))
+ return false;
+
+ if (GET_CODE (symref) == SYMBOL_REF
+ && !SYMBOL_REF_NOT_NATURALLY_ALIGNED_P (symref))
+ return true;
+
+ if (GET_CODE (symref) == UNSPEC
+ && alignment <= UNITS_PER_LONG)
+ return true;
+
+ return false;
+}
+
+/* ADDR is moved into REG using larl. If ADDR isn't a valid larl
+ operand SCRATCH is used to reload the even part of the address and
+ adding one. */
+
+void
+s390_reload_larl_operand (rtx reg, rtx addr, rtx scratch)
+{
+ HOST_WIDE_INT addend;
+ rtx symref;
+
+ if (!s390_loadrelative_operand_p (addr, &symref, &addend))
+ gcc_unreachable ();
+
+ if (!(addend & 1))
+ /* Easy case. The addend is even so larl will do fine. */
+ emit_move_insn (reg, addr);
+ else
+ {
+ /* We can leave the scratch register untouched if the target
+ register is a valid base register. */
+ if (REGNO (reg) < FIRST_PSEUDO_REGISTER
+ && REGNO_REG_CLASS (REGNO (reg)) == ADDR_REGS)
+ scratch = reg;
+
+ gcc_assert (REGNO (scratch) < FIRST_PSEUDO_REGISTER);
+ gcc_assert (REGNO_REG_CLASS (REGNO (scratch)) == ADDR_REGS);
+
+ if (addend != 1)
+ emit_move_insn (scratch,
+ gen_rtx_CONST (Pmode,
+ gen_rtx_PLUS (Pmode, symref,
+ GEN_INT (addend - 1))));
+ else
+ emit_move_insn (scratch, symref);
+
+ /* Increment the address using la in order to avoid clobbering cc. */
+ s390_load_address (reg, gen_rtx_PLUS (Pmode, scratch, const1_rtx));
+ }
+}
+
+/* Generate what is necessary to move between REG and MEM using
+ SCRATCH. The direction is given by TOMEM. */
+
+void
+s390_reload_symref_address (rtx reg, rtx mem, rtx scratch, bool tomem)
+{
+ /* Reload might have pulled a constant out of the literal pool.
+ Force it back in. */
+ if (CONST_INT_P (mem) || GET_CODE (mem) == CONST_DOUBLE
+ || GET_CODE (mem) == CONST)
+ mem = force_const_mem (GET_MODE (reg), mem);
+
+ gcc_assert (MEM_P (mem));
+
+ /* For a load from memory we can leave the scratch register
+ untouched if the target register is a valid base register. */
+ if (!tomem
+ && REGNO (reg) < FIRST_PSEUDO_REGISTER
+ && REGNO_REG_CLASS (REGNO (reg)) == ADDR_REGS
+ && GET_MODE (reg) == GET_MODE (scratch))
+ scratch = reg;
+
+ /* Load address into scratch register. Since we can't have a
+ secondary reload for a secondary reload we have to cover the case
+ where larl would need a secondary reload here as well. */
+ s390_reload_larl_operand (scratch, XEXP (mem, 0), scratch);
+
+ /* Now we can use a standard load/store to do the move. */
+ if (tomem)
+ emit_move_insn (replace_equiv_address (mem, scratch), reg);
+ else
+ emit_move_insn (reg, replace_equiv_address (mem, scratch));
+}
+
+/* Inform reload about cases where moving X with a mode MODE to a register in
+ RCLASS requires an extra scratch or immediate register. Return the class
+ needed for the immediate register. */
+
+static reg_class_t
+s390_secondary_reload (bool in_p, rtx x, reg_class_t rclass_i,
+ enum machine_mode mode, secondary_reload_info *sri)
+{
+ enum reg_class rclass = (enum reg_class) rclass_i;
+
+ /* Intermediate register needed. */
+ if (reg_classes_intersect_p (CC_REGS, rclass))
+ return GENERAL_REGS;
+
+ if (TARGET_Z10)
+ {
+ HOST_WIDE_INT offset;
+ rtx symref;
+
+ /* On z10 several optimizer steps may generate larl operands with
+ an odd addend. */
+ if (in_p
+ && s390_loadrelative_operand_p (x, &symref, &offset)
+ && mode == Pmode
+ && !SYMBOL_REF_ALIGN1_P (symref)
+ && (offset & 1) == 1)
+ sri->icode = ((mode == DImode) ? CODE_FOR_reloaddi_larl_odd_addend_z10
+ : CODE_FOR_reloadsi_larl_odd_addend_z10);
+
+ /* On z10 we need a scratch register when moving QI, TI or floating
+ point mode values from or to a memory location with a SYMBOL_REF
+ or if the symref addend of a SI or DI move is not aligned to the
+ width of the access. */
+ if (MEM_P (x)
+ && s390_loadrelative_operand_p (XEXP (x, 0), NULL, NULL)
+ && (mode == QImode || mode == TImode || FLOAT_MODE_P (mode)
+ || (!TARGET_ZARCH && mode == DImode)
+ || ((mode == HImode || mode == SImode || mode == DImode)
+ && (!s390_check_symref_alignment (XEXP (x, 0),
+ GET_MODE_SIZE (mode))))))
+ {
+#define __SECONDARY_RELOAD_CASE(M,m) \
+ case M##mode: \
+ if (TARGET_64BIT) \
+ sri->icode = in_p ? CODE_FOR_reload##m##di_toreg_z10 : \
+ CODE_FOR_reload##m##di_tomem_z10; \
+ else \
+ sri->icode = in_p ? CODE_FOR_reload##m##si_toreg_z10 : \
+ CODE_FOR_reload##m##si_tomem_z10; \
+ break;
+
+ switch (GET_MODE (x))
+ {
+ __SECONDARY_RELOAD_CASE (QI, qi);
+ __SECONDARY_RELOAD_CASE (HI, hi);
+ __SECONDARY_RELOAD_CASE (SI, si);
+ __SECONDARY_RELOAD_CASE (DI, di);
+ __SECONDARY_RELOAD_CASE (TI, ti);
+ __SECONDARY_RELOAD_CASE (SF, sf);
+ __SECONDARY_RELOAD_CASE (DF, df);
+ __SECONDARY_RELOAD_CASE (TF, tf);
+ __SECONDARY_RELOAD_CASE (SD, sd);
+ __SECONDARY_RELOAD_CASE (DD, dd);
+ __SECONDARY_RELOAD_CASE (TD, td);
+
+ default:
+ gcc_unreachable ();
+ }
+#undef __SECONDARY_RELOAD_CASE
+ }
+ }
+
+ /* We need a scratch register when loading a PLUS expression which
+ is not a legitimate operand of the LOAD ADDRESS instruction. */
+ /* LRA can deal with transformation of plus op very well -- so we
+ don't need to prompt LRA in this case. */
+ if (! lra_in_progress && in_p && s390_plus_operand (x, mode))
+ sri->icode = (TARGET_64BIT ?
+ CODE_FOR_reloaddi_plus : CODE_FOR_reloadsi_plus);
+
+ /* Performing a multiword move from or to memory we have to make sure the
+ second chunk in memory is addressable without causing a displacement
+ overflow. If that would be the case we calculate the address in
+ a scratch register. */
+ if (MEM_P (x)
+ && GET_CODE (XEXP (x, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
+ && !DISP_IN_RANGE (INTVAL (XEXP (XEXP (x, 0), 1))
+ + GET_MODE_SIZE (mode) - 1))
+ {
+ /* For GENERAL_REGS a displacement overflow is no problem if occurring
+ in a s_operand address since we may fallback to lm/stm. So we only
+ have to care about overflows in the b+i+d case. */
+ if ((reg_classes_intersect_p (GENERAL_REGS, rclass)
+ && s390_class_max_nregs (GENERAL_REGS, mode) > 1
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS)
+ /* For FP_REGS no lm/stm is available so this check is triggered
+ for displacement overflows in b+i+d and b+d like addresses. */
+ || (reg_classes_intersect_p (FP_REGS, rclass)
+ && s390_class_max_nregs (FP_REGS, mode) > 1))
+ {
+ if (in_p)
+ sri->icode = (TARGET_64BIT ?
+ CODE_FOR_reloaddi_nonoffmem_in :
+ CODE_FOR_reloadsi_nonoffmem_in);
+ else
+ sri->icode = (TARGET_64BIT ?
+ CODE_FOR_reloaddi_nonoffmem_out :
+ CODE_FOR_reloadsi_nonoffmem_out);
+ }
+ }
+
+ /* A scratch address register is needed when a symbolic constant is
+ copied to r0 compiling with -fPIC. In other cases the target
+ register might be used as temporary (see legitimize_pic_address). */
+ if (in_p && SYMBOLIC_CONST (x) && flag_pic == 2 && rclass != ADDR_REGS)
+ sri->icode = (TARGET_64BIT ?
+ CODE_FOR_reloaddi_PIC_addr :
+ CODE_FOR_reloadsi_PIC_addr);
+
+ /* Either scratch or no register needed. */
+ return NO_REGS;
+}
+
+/* Generate code to load SRC, which is PLUS that is not a
+ legitimate operand for the LA instruction, into TARGET.
+ SCRATCH may be used as scratch register. */
+
+void
+s390_expand_plus_operand (rtx target, rtx src,
+ rtx scratch)
+{
+ rtx sum1, sum2;
+ struct s390_address ad;
+
+ /* src must be a PLUS; get its two operands. */
+ gcc_assert (GET_CODE (src) == PLUS);
+ gcc_assert (GET_MODE (src) == Pmode);
+
+ /* Check if any of the two operands is already scheduled
+ for replacement by reload. This can happen e.g. when
+ float registers occur in an address. */
+ sum1 = find_replacement (&XEXP (src, 0));
+ sum2 = find_replacement (&XEXP (src, 1));
+ src = gen_rtx_PLUS (Pmode, sum1, sum2);
+
+ /* If the address is already strictly valid, there's nothing to do. */
+ if (!s390_decompose_address (src, &ad)
+ || (ad.base && !REGNO_OK_FOR_BASE_P (REGNO (ad.base)))
+ || (ad.indx && !REGNO_OK_FOR_INDEX_P (REGNO (ad.indx))))
+ {
+ /* Otherwise, one of the operands cannot be an address register;
+ we reload its value into the scratch register. */
+ if (true_regnum (sum1) < 1 || true_regnum (sum1) > 15)
+ {
+ emit_move_insn (scratch, sum1);
+ sum1 = scratch;
+ }
+ if (true_regnum (sum2) < 1 || true_regnum (sum2) > 15)
+ {
+ emit_move_insn (scratch, sum2);
+ sum2 = scratch;
+ }
+
+ /* According to the way these invalid addresses are generated
+ in reload.c, it should never happen (at least on s390) that
+ *neither* of the PLUS components, after find_replacements
+ was applied, is an address register. */
+ if (sum1 == scratch && sum2 == scratch)
+ {
+ debug_rtx (src);
+ gcc_unreachable ();
+ }
+
+ src = gen_rtx_PLUS (Pmode, sum1, sum2);
+ }
+
+ /* Emit the LOAD ADDRESS pattern. Note that reload of PLUS
+ is only ever performed on addresses, so we can mark the
+ sum as legitimate for LA in any case. */
+ s390_load_address (target, src);
+}
+
+
+/* Return true if ADDR is a valid memory address.
+ STRICT specifies whether strict register checking applies. */
+
+static bool
+s390_legitimate_address_p (enum machine_mode mode, rtx addr, bool strict)
+{
+ struct s390_address ad;
+
+ if (TARGET_Z10
+ && larl_operand (addr, VOIDmode)
+ && (mode == VOIDmode
+ || s390_check_symref_alignment (addr, GET_MODE_SIZE (mode))))
+ return true;
+
+ if (!s390_decompose_address (addr, &ad))
+ return false;
+
+ if (strict)
+ {
+ if (ad.base && !REGNO_OK_FOR_BASE_P (REGNO (ad.base)))
+ return false;
+
+ if (ad.indx && !REGNO_OK_FOR_INDEX_P (REGNO (ad.indx)))
+ return false;
+ }
+ else
+ {
+ if (ad.base
+ && !(REGNO (ad.base) >= FIRST_PSEUDO_REGISTER
+ || REGNO_REG_CLASS (REGNO (ad.base)) == ADDR_REGS))
+ return false;
+
+ if (ad.indx
+ && !(REGNO (ad.indx) >= FIRST_PSEUDO_REGISTER
+ || REGNO_REG_CLASS (REGNO (ad.indx)) == ADDR_REGS))
+ return false;
+ }
+ return true;
+}
+
+/* Return true if OP is a valid operand for the LA instruction.
+ In 31-bit, we need to prove that the result is used as an
+ address, as LA performs only a 31-bit addition. */
+
+bool
+legitimate_la_operand_p (rtx op)
+{
+ struct s390_address addr;
+ if (!s390_decompose_address (op, &addr))
+ return false;
+
+ return (TARGET_64BIT || addr.pointer);
+}
+
+/* Return true if it is valid *and* preferable to use LA to
+ compute the sum of OP1 and OP2. */
+
+bool
+preferred_la_operand_p (rtx op1, rtx op2)
+{
+ struct s390_address addr;
+
+ if (op2 != const0_rtx)
+ op1 = gen_rtx_PLUS (Pmode, op1, op2);
+
+ if (!s390_decompose_address (op1, &addr))
+ return false;
+ if (addr.base && !REGNO_OK_FOR_BASE_P (REGNO (addr.base)))
+ return false;
+ if (addr.indx && !REGNO_OK_FOR_INDEX_P (REGNO (addr.indx)))
+ return false;
+
+ /* Avoid LA instructions with index register on z196; it is
+ preferable to use regular add instructions when possible.
+ Starting with zEC12 the la with index register is "uncracked"
+ again. */
+ if (addr.indx && s390_tune == PROCESSOR_2817_Z196)
+ return false;
+
+ if (!TARGET_64BIT && !addr.pointer)
+ return false;
+
+ if (addr.pointer)
+ return true;
+
+ if ((addr.base && REG_P (addr.base) && REG_POINTER (addr.base))
+ || (addr.indx && REG_P (addr.indx) && REG_POINTER (addr.indx)))
+ return true;
+
+ return false;
+}
+
+/* Emit a forced load-address operation to load SRC into DST.
+ This will use the LOAD ADDRESS instruction even in situations
+ where legitimate_la_operand_p (SRC) returns false. */
+
+void
+s390_load_address (rtx dst, rtx src)
+{
+ if (TARGET_64BIT)
+ emit_move_insn (dst, src);
+ else
+ emit_insn (gen_force_la_31 (dst, src));
+}
+
+/* Return a legitimate reference for ORIG (an address) using the
+ register REG. If REG is 0, a new pseudo is generated.
+
+ There are two types of references that must be handled:
+
+ 1. Global data references must load the address from the GOT, via
+ the PIC reg. An insn is emitted to do this load, and the reg is
+ returned.
+
+ 2. Static data references, constant pool addresses, and code labels
+ compute the address as an offset from the GOT, whose base is in
+ the PIC reg. Static data objects have SYMBOL_FLAG_LOCAL set to
+ differentiate them from global data objects. The returned
+ address is the PIC reg + an unspec constant.
+
+ TARGET_LEGITIMIZE_ADDRESS_P rejects symbolic references unless the PIC
+ reg also appears in the address. */
+
+rtx
+legitimize_pic_address (rtx orig, rtx reg)
+{
+ rtx addr = orig;
+ rtx addend = const0_rtx;
+ rtx new_rtx = orig;
+
+ gcc_assert (!TLS_SYMBOLIC_CONST (addr));
+
+ if (GET_CODE (addr) == CONST)
+ addr = XEXP (addr, 0);
+
+ if (GET_CODE (addr) == PLUS)
+ {
+ addend = XEXP (addr, 1);
+ addr = XEXP (addr, 0);
+ }
+
+ if ((GET_CODE (addr) == LABEL_REF
+ || (GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (addr))
+ || (GET_CODE (addr) == UNSPEC &&
+ (XINT (addr, 1) == UNSPEC_GOTENT
+ || (TARGET_CPU_ZARCH && XINT (addr, 1) == UNSPEC_PLT))))
+ && GET_CODE (addend) == CONST_INT)
+ {
+ /* This can be locally addressed. */
+
+ /* larl_operand requires UNSPECs to be wrapped in a const rtx. */
+ rtx const_addr = (GET_CODE (addr) == UNSPEC ?
+ gen_rtx_CONST (Pmode, addr) : addr);
+
+ if (TARGET_CPU_ZARCH
+ && larl_operand (const_addr, VOIDmode)
+ && INTVAL (addend) < (HOST_WIDE_INT)1 << 31
+ && INTVAL (addend) >= -((HOST_WIDE_INT)1 << 31))
+ {
+ if (INTVAL (addend) & 1)
+ {
+ /* LARL can't handle odd offsets, so emit a pair of LARL
+ and LA. */
+ rtx temp = reg? reg : gen_reg_rtx (Pmode);
+
+ if (!DISP_IN_RANGE (INTVAL (addend)))
+ {
+ HOST_WIDE_INT even = INTVAL (addend) - 1;
+ addr = gen_rtx_PLUS (Pmode, addr, GEN_INT (even));
+ addr = gen_rtx_CONST (Pmode, addr);
+ addend = const1_rtx;
+ }
+
+ emit_move_insn (temp, addr);
+ new_rtx = gen_rtx_PLUS (Pmode, temp, addend);
+
+ if (reg != 0)
+ {
+ s390_load_address (reg, new_rtx);
+ new_rtx = reg;
+ }
+ }
+ else
+ {
+ /* If the offset is even, we can just use LARL. This
+ will happen automatically. */
+ }
+ }
+ else
+ {
+ /* No larl - Access local symbols relative to the GOT. */
+
+ rtx temp = reg? reg : gen_reg_rtx (Pmode);
+
+ if (reload_in_progress || reload_completed)
+ df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
+
+ addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTOFF);
+ if (addend != const0_rtx)
+ addr = gen_rtx_PLUS (Pmode, addr, addend);
+ addr = gen_rtx_CONST (Pmode, addr);
+ addr = force_const_mem (Pmode, addr);
+ emit_move_insn (temp, addr);
+
+ new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, temp);
+ if (reg != 0)
+ {
+ s390_load_address (reg, new_rtx);
+ new_rtx = reg;
+ }
+ }
+ }
+ else if (GET_CODE (addr) == SYMBOL_REF && addend == const0_rtx)
+ {
+ /* A non-local symbol reference without addend.
+
+ The symbol ref is wrapped into an UNSPEC to make sure the
+ proper operand modifier (@GOT or @GOTENT) will be emitted.
+ This will tell the linker to put the symbol into the GOT.
+
+ Additionally the code dereferencing the GOT slot is emitted here.
+
+ An addend to the symref needs to be added afterwards.
+ legitimize_pic_address calls itself recursively to handle
+ that case. So no need to do it here. */
+
+ if (reg == 0)
+ reg = gen_reg_rtx (Pmode);
+
+ if (TARGET_Z10)
+ {
+ /* Use load relative if possible.
+ lgrl <target>, sym@GOTENT */
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTENT);
+ new_rtx = gen_rtx_CONST (Pmode, new_rtx);
+ new_rtx = gen_const_mem (GET_MODE (reg), new_rtx);
+
+ emit_move_insn (reg, new_rtx);
+ new_rtx = reg;
+ }
+ else if (flag_pic == 1)
+ {
+ /* Assume GOT offset is a valid displacement operand (< 4k
+ or < 512k with z990). This is handled the same way in
+ both 31- and 64-bit code (@GOT).
+ lg <target>, sym@GOT(r12) */
+
+ if (reload_in_progress || reload_completed)
+ df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
+
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOT);
+ new_rtx = gen_rtx_CONST (Pmode, new_rtx);
+ new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx);
+ new_rtx = gen_const_mem (Pmode, new_rtx);
+ emit_move_insn (reg, new_rtx);
+ new_rtx = reg;
+ }
+ else if (TARGET_CPU_ZARCH)
+ {
+ /* If the GOT offset might be >= 4k, we determine the position
+ of the GOT entry via a PC-relative LARL (@GOTENT).
+ larl temp, sym@GOTENT
+ lg <target>, 0(temp) */
+
+ rtx temp = reg ? reg : gen_reg_rtx (Pmode);
+
+ gcc_assert (REGNO (temp) >= FIRST_PSEUDO_REGISTER
+ || REGNO_REG_CLASS (REGNO (temp)) == ADDR_REGS);
+
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTENT);
+ new_rtx = gen_rtx_CONST (Pmode, new_rtx);
+ emit_move_insn (temp, new_rtx);
+
+ new_rtx = gen_const_mem (Pmode, temp);
+ emit_move_insn (reg, new_rtx);
+
+ new_rtx = reg;
+ }
+ else
+ {
+ /* If the GOT offset might be >= 4k, we have to load it
+ from the literal pool (@GOT).
+
+ lg temp, lit-litbase(r13)
+ lg <target>, 0(temp)
+ lit: .long sym@GOT */
+
+ rtx temp = reg ? reg : gen_reg_rtx (Pmode);
+
+ gcc_assert (REGNO (temp) >= FIRST_PSEUDO_REGISTER
+ || REGNO_REG_CLASS (REGNO (temp)) == ADDR_REGS);
+
+ if (reload_in_progress || reload_completed)
+ df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
+
+ addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOT);
+ addr = gen_rtx_CONST (Pmode, addr);
+ addr = force_const_mem (Pmode, addr);
+ emit_move_insn (temp, addr);
+
+ new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, temp);
+ new_rtx = gen_const_mem (Pmode, new_rtx);
+ emit_move_insn (reg, new_rtx);
+ new_rtx = reg;
+ }
+ }
+ else if (GET_CODE (addr) == UNSPEC && GET_CODE (addend) == CONST_INT)
+ {
+ gcc_assert (XVECLEN (addr, 0) == 1);
+ switch (XINT (addr, 1))
+ {
+ /* These address symbols (or PLT slots) relative to the GOT
+ (not GOT slots!). In general this will exceed the
+ displacement range so these value belong into the literal
+ pool. */
+ case UNSPEC_GOTOFF:
+ case UNSPEC_PLTOFF:
+ new_rtx = force_const_mem (Pmode, orig);
+ break;
+
+ /* For -fPIC the GOT size might exceed the displacement
+ range so make sure the value is in the literal pool. */
+ case UNSPEC_GOT:
+ if (flag_pic == 2)
+ new_rtx = force_const_mem (Pmode, orig);
+ break;
+
+ /* For @GOTENT larl is used. This is handled like local
+ symbol refs. */
+ case UNSPEC_GOTENT:
+ gcc_unreachable ();
+ break;
+
+ /* @PLT is OK as is on 64-bit, must be converted to
+ GOT-relative @PLTOFF on 31-bit. */
+ case UNSPEC_PLT:
+ if (!TARGET_CPU_ZARCH)
+ {
+ rtx temp = reg? reg : gen_reg_rtx (Pmode);
+
+ if (reload_in_progress || reload_completed)
+ df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
+
+ addr = XVECEXP (addr, 0, 0);
+ addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr),
+ UNSPEC_PLTOFF);
+ if (addend != const0_rtx)
+ addr = gen_rtx_PLUS (Pmode, addr, addend);
+ addr = gen_rtx_CONST (Pmode, addr);
+ addr = force_const_mem (Pmode, addr);
+ emit_move_insn (temp, addr);
+
+ new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, temp);
+ if (reg != 0)
+ {
+ s390_load_address (reg, new_rtx);
+ new_rtx = reg;
+ }
+ }
+ else
+ /* On 64 bit larl can be used. This case is handled like
+ local symbol refs. */
+ gcc_unreachable ();
+ break;
+
+ /* Everything else cannot happen. */
+ default:
+ gcc_unreachable ();
+ }
+ }
+ else if (addend != const0_rtx)
+ {
+ /* Otherwise, compute the sum. */
+
+ rtx base = legitimize_pic_address (addr, reg);
+ new_rtx = legitimize_pic_address (addend,
+ base == reg ? NULL_RTX : reg);
+ if (GET_CODE (new_rtx) == CONST_INT)
+ new_rtx = plus_constant (Pmode, base, INTVAL (new_rtx));
+ else
+ {
+ if (GET_CODE (new_rtx) == PLUS && CONSTANT_P (XEXP (new_rtx, 1)))
+ {
+ base = gen_rtx_PLUS (Pmode, base, XEXP (new_rtx, 0));
+ new_rtx = XEXP (new_rtx, 1);
+ }
+ new_rtx = gen_rtx_PLUS (Pmode, base, new_rtx);
+ }
+
+ if (GET_CODE (new_rtx) == CONST)
+ new_rtx = XEXP (new_rtx, 0);
+ new_rtx = force_operand (new_rtx, 0);
+ }
+
+ return new_rtx;
+}
+
+/* Load the thread pointer into a register. */
+
+rtx
+s390_get_thread_pointer (void)
+{
+ rtx tp = gen_reg_rtx (Pmode);
+
+ emit_move_insn (tp, gen_rtx_REG (Pmode, TP_REGNUM));
+ mark_reg_pointer (tp, BITS_PER_WORD);
+
+ return tp;
+}
+
+/* Emit a tls call insn. The call target is the SYMBOL_REF stored
+ in s390_tls_symbol which always refers to __tls_get_offset.
+ The returned offset is written to RESULT_REG and an USE rtx is
+ generated for TLS_CALL. */
+
+static GTY(()) rtx s390_tls_symbol;
+
+static void
+s390_emit_tls_call_insn (rtx result_reg, rtx tls_call)
+{
+ rtx insn;
+
+ if (!flag_pic)
+ emit_insn (s390_load_got ());
+
+ if (!s390_tls_symbol)
+ s390_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, "__tls_get_offset");
+
+ insn = s390_emit_call (s390_tls_symbol, tls_call, result_reg,
+ gen_rtx_REG (Pmode, RETURN_REGNUM));
+
+ use_reg (&CALL_INSN_FUNCTION_USAGE (insn), result_reg);
+ RTL_CONST_CALL_P (insn) = 1;
+}
+
+/* ADDR contains a thread-local SYMBOL_REF. Generate code to compute
+ this (thread-local) address. REG may be used as temporary. */
+
+static rtx
+legitimize_tls_address (rtx addr, rtx reg)
+{
+ rtx new_rtx, tls_call, temp, base, r2, insn;
+
+ if (GET_CODE (addr) == SYMBOL_REF)
+ switch (tls_symbolic_operand (addr))
+ {
+ case TLS_MODEL_GLOBAL_DYNAMIC:
+ start_sequence ();
+ r2 = gen_rtx_REG (Pmode, 2);
+ tls_call = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_TLSGD);
+ new_rtx = gen_rtx_CONST (Pmode, tls_call);
+ new_rtx = force_const_mem (Pmode, new_rtx);
+ emit_move_insn (r2, new_rtx);
+ s390_emit_tls_call_insn (r2, tls_call);
+ insn = get_insns ();
+ end_sequence ();
+
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_NTPOFF);
+ temp = gen_reg_rtx (Pmode);
+ emit_libcall_block (insn, temp, r2, new_rtx);
+
+ new_rtx = gen_rtx_PLUS (Pmode, s390_get_thread_pointer (), temp);
+ if (reg != 0)
+ {
+ s390_load_address (reg, new_rtx);
+ new_rtx = reg;
+ }
+ break;
+
+ case TLS_MODEL_LOCAL_DYNAMIC:
+ start_sequence ();
+ r2 = gen_rtx_REG (Pmode, 2);
+ tls_call = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TLSLDM);
+ new_rtx = gen_rtx_CONST (Pmode, tls_call);
+ new_rtx = force_const_mem (Pmode, new_rtx);
+ emit_move_insn (r2, new_rtx);
+ s390_emit_tls_call_insn (r2, tls_call);
+ insn = get_insns ();
+ end_sequence ();
+
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TLSLDM_NTPOFF);
+ temp = gen_reg_rtx (Pmode);
+ emit_libcall_block (insn, temp, r2, new_rtx);
+
+ new_rtx = gen_rtx_PLUS (Pmode, s390_get_thread_pointer (), temp);
+ base = gen_reg_rtx (Pmode);
+ s390_load_address (base, new_rtx);
+
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_DTPOFF);
+ new_rtx = gen_rtx_CONST (Pmode, new_rtx);
+ new_rtx = force_const_mem (Pmode, new_rtx);
+ temp = gen_reg_rtx (Pmode);
+ emit_move_insn (temp, new_rtx);
+
+ new_rtx = gen_rtx_PLUS (Pmode, base, temp);
+ if (reg != 0)
+ {
+ s390_load_address (reg, new_rtx);
+ new_rtx = reg;
+ }
+ break;
+
+ case TLS_MODEL_INITIAL_EXEC:
+ if (flag_pic == 1)
+ {
+ /* Assume GOT offset < 4k. This is handled the same way
+ in both 31- and 64-bit code. */
+
+ if (reload_in_progress || reload_completed)
+ df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
+
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTNTPOFF);
+ new_rtx = gen_rtx_CONST (Pmode, new_rtx);
+ new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx);
+ new_rtx = gen_const_mem (Pmode, new_rtx);
+ temp = gen_reg_rtx (Pmode);
+ emit_move_insn (temp, new_rtx);
+ }
+ else if (TARGET_CPU_ZARCH)
+ {
+ /* If the GOT offset might be >= 4k, we determine the position
+ of the GOT entry via a PC-relative LARL. */
+
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_INDNTPOFF);
+ new_rtx = gen_rtx_CONST (Pmode, new_rtx);
+ temp = gen_reg_rtx (Pmode);
+ emit_move_insn (temp, new_rtx);
+
+ new_rtx = gen_const_mem (Pmode, temp);
+ temp = gen_reg_rtx (Pmode);
+ emit_move_insn (temp, new_rtx);
+ }
+ else if (flag_pic)
+ {
+ /* If the GOT offset might be >= 4k, we have to load it
+ from the literal pool. */
+
+ if (reload_in_progress || reload_completed)
+ df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true);
+
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTNTPOFF);
+ new_rtx = gen_rtx_CONST (Pmode, new_rtx);
+ new_rtx = force_const_mem (Pmode, new_rtx);
+ temp = gen_reg_rtx (Pmode);
+ emit_move_insn (temp, new_rtx);
+
+ new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, temp);
+ new_rtx = gen_const_mem (Pmode, new_rtx);
+
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, new_rtx, addr), UNSPEC_TLS_LOAD);
+ temp = gen_reg_rtx (Pmode);
+ emit_insn (gen_rtx_SET (Pmode, temp, new_rtx));
+ }
+ else
+ {
+ /* In position-dependent code, load the absolute address of
+ the GOT entry from the literal pool. */
+
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_INDNTPOFF);
+ new_rtx = gen_rtx_CONST (Pmode, new_rtx);
+ new_rtx = force_const_mem (Pmode, new_rtx);
+ temp = gen_reg_rtx (Pmode);
+ emit_move_insn (temp, new_rtx);
+
+ new_rtx = temp;
+ new_rtx = gen_const_mem (Pmode, new_rtx);
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, new_rtx, addr), UNSPEC_TLS_LOAD);
+ temp = gen_reg_rtx (Pmode);
+ emit_insn (gen_rtx_SET (Pmode, temp, new_rtx));
+ }
+
+ new_rtx = gen_rtx_PLUS (Pmode, s390_get_thread_pointer (), temp);
+ if (reg != 0)
+ {
+ s390_load_address (reg, new_rtx);
+ new_rtx = reg;
+ }
+ break;
+
+ case TLS_MODEL_LOCAL_EXEC:
+ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_NTPOFF);
+ new_rtx = gen_rtx_CONST (Pmode, new_rtx);
+ new_rtx = force_const_mem (Pmode, new_rtx);
+ temp = gen_reg_rtx (Pmode);
+ emit_move_insn (temp, new_rtx);
+
+ new_rtx = gen_rtx_PLUS (Pmode, s390_get_thread_pointer (), temp);
+ if (reg != 0)
+ {
+ s390_load_address (reg, new_rtx);
+ new_rtx = reg;
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == UNSPEC)
+ {
+ switch (XINT (XEXP (addr, 0), 1))
+ {
+ case UNSPEC_INDNTPOFF:
+ gcc_assert (TARGET_CPU_ZARCH);
+ new_rtx = addr;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
+ {
+ new_rtx = XEXP (XEXP (addr, 0), 0);
+ if (GET_CODE (new_rtx) != SYMBOL_REF)
+ new_rtx = gen_rtx_CONST (Pmode, new_rtx);
+
+ new_rtx = legitimize_tls_address (new_rtx, reg);
+ new_rtx = plus_constant (Pmode, new_rtx,
+ INTVAL (XEXP (XEXP (addr, 0), 1)));
+ new_rtx = force_operand (new_rtx, 0);
+ }
+
+ else
+ gcc_unreachable (); /* for now ... */
+
+ return new_rtx;
+}
+
+/* Emit insns making the address in operands[1] valid for a standard
+ move to operands[0]. operands[1] is replaced by an address which
+ should be used instead of the former RTX to emit the move
+ pattern. */
+
+void
+emit_symbolic_move (rtx *operands)
+{
+ rtx temp = !can_create_pseudo_p () ? operands[0] : gen_reg_rtx (Pmode);
+
+ if (GET_CODE (operands[0]) == MEM)
+ operands[1] = force_reg (Pmode, operands[1]);
+ else if (TLS_SYMBOLIC_CONST (operands[1]))
+ operands[1] = legitimize_tls_address (operands[1], temp);
+ else if (flag_pic)
+ operands[1] = legitimize_pic_address (operands[1], temp);
+}
+
+/* Try machine-dependent ways of modifying an illegitimate address X
+ to be legitimate. If we find one, return the new, valid address.
+
+ OLDX is the address as it was before break_out_memory_refs was called.
+ In some cases it is useful to look at this to decide what needs to be done.
+
+ MODE is the mode of the operand pointed to by X.
+
+ When -fpic is used, special handling is needed for symbolic references.
+ See comments by legitimize_pic_address for details. */
+
+static rtx
+s390_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
+ enum machine_mode mode ATTRIBUTE_UNUSED)
+{
+ rtx constant_term = const0_rtx;
+
+ if (TLS_SYMBOLIC_CONST (x))
+ {
+ x = legitimize_tls_address (x, 0);
+
+ if (s390_legitimate_address_p (mode, x, FALSE))
+ return x;
+ }
+ else if (GET_CODE (x) == PLUS
+ && (TLS_SYMBOLIC_CONST (XEXP (x, 0))
+ || TLS_SYMBOLIC_CONST (XEXP (x, 1))))
+ {
+ return x;
+ }
+ else if (flag_pic)
+ {
+ if (SYMBOLIC_CONST (x)
+ || (GET_CODE (x) == PLUS
+ && (SYMBOLIC_CONST (XEXP (x, 0))
+ || SYMBOLIC_CONST (XEXP (x, 1)))))
+ x = legitimize_pic_address (x, 0);
+
+ if (s390_legitimate_address_p (mode, x, FALSE))
+ return x;
+ }
+
+ x = eliminate_constant_term (x, &constant_term);
+
+ /* Optimize loading of large displacements by splitting them
+ into the multiple of 4K and the rest; this allows the
+ former to be CSE'd if possible.
+
+ Don't do this if the displacement is added to a register
+ pointing into the stack frame, as the offsets will
+ change later anyway. */
+
+ if (GET_CODE (constant_term) == CONST_INT
+ && !TARGET_LONG_DISPLACEMENT
+ && !DISP_IN_RANGE (INTVAL (constant_term))
+ && !(REG_P (x) && REGNO_PTR_FRAME_P (REGNO (x))))
+ {
+ HOST_WIDE_INT lower = INTVAL (constant_term) & 0xfff;
+ HOST_WIDE_INT upper = INTVAL (constant_term) ^ lower;
+
+ rtx temp = gen_reg_rtx (Pmode);
+ rtx val = force_operand (GEN_INT (upper), temp);
+ if (val != temp)
+ emit_move_insn (temp, val);
+
+ x = gen_rtx_PLUS (Pmode, x, temp);
+ constant_term = GEN_INT (lower);
+ }
+
+ if (GET_CODE (x) == PLUS)
+ {
+ if (GET_CODE (XEXP (x, 0)) == REG)
+ {
+ rtx temp = gen_reg_rtx (Pmode);
+ rtx val = force_operand (XEXP (x, 1), temp);
+ if (val != temp)
+ emit_move_insn (temp, val);
+
+ x = gen_rtx_PLUS (Pmode, XEXP (x, 0), temp);
+ }
+
+ else if (GET_CODE (XEXP (x, 1)) == REG)
+ {
+ rtx temp = gen_reg_rtx (Pmode);
+ rtx val = force_operand (XEXP (x, 0), temp);
+ if (val != temp)
+ emit_move_insn (temp, val);
+
+ x = gen_rtx_PLUS (Pmode, temp, XEXP (x, 1));
+ }
+ }
+
+ if (constant_term != const0_rtx)
+ x = gen_rtx_PLUS (Pmode, x, constant_term);
+
+ return x;
+}
+
+/* Try a machine-dependent way of reloading an illegitimate address AD
+ operand. If we find one, push the reload and return the new address.
+
+ MODE is the mode of the enclosing MEM. OPNUM is the operand number
+ and TYPE is the reload type of the current reload. */
+
+rtx
+legitimize_reload_address (rtx ad, enum machine_mode mode ATTRIBUTE_UNUSED,
+ int opnum, int type)
+{
+ if (!optimize || TARGET_LONG_DISPLACEMENT)
+ return NULL_RTX;
+
+ if (GET_CODE (ad) == PLUS)
+ {
+ rtx tem = simplify_binary_operation (PLUS, Pmode,
+ XEXP (ad, 0), XEXP (ad, 1));
+ if (tem)
+ ad = tem;
+ }
+
+ if (GET_CODE (ad) == PLUS
+ && GET_CODE (XEXP (ad, 0)) == REG
+ && GET_CODE (XEXP (ad, 1)) == CONST_INT
+ && !DISP_IN_RANGE (INTVAL (XEXP (ad, 1))))
+ {
+ HOST_WIDE_INT lower = INTVAL (XEXP (ad, 1)) & 0xfff;
+ HOST_WIDE_INT upper = INTVAL (XEXP (ad, 1)) ^ lower;
+ rtx cst, tem, new_rtx;
+
+ cst = GEN_INT (upper);
+ if (!legitimate_reload_constant_p (cst))
+ cst = force_const_mem (Pmode, cst);
+
+ tem = gen_rtx_PLUS (Pmode, XEXP (ad, 0), cst);
+ new_rtx = gen_rtx_PLUS (Pmode, tem, GEN_INT (lower));
+
+ push_reload (XEXP (tem, 1), 0, &XEXP (tem, 1), 0,
+ BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
+ opnum, (enum reload_type) type);
+ return new_rtx;
+ }
+
+ return NULL_RTX;
+}
+
+/* Emit code to move LEN bytes from DST to SRC. */
+
+bool
+s390_expand_movmem (rtx dst, rtx src, rtx len)
+{
+ /* When tuning for z10 or higher we rely on the Glibc functions to
+ do the right thing. Only for constant lengths below 64k we will
+ generate inline code. */
+ if (s390_tune >= PROCESSOR_2097_Z10
+ && (GET_CODE (len) != CONST_INT || INTVAL (len) > (1<<16)))
+ return false;
+
+ if (GET_CODE (len) == CONST_INT && INTVAL (len) >= 0 && INTVAL (len) <= 256)
+ {
+ if (INTVAL (len) > 0)
+ emit_insn (gen_movmem_short (dst, src, GEN_INT (INTVAL (len) - 1)));
+ }
+
+ else if (TARGET_MVCLE)
+ {
+ emit_insn (gen_movmem_long (dst, src, convert_to_mode (Pmode, len, 1)));
+ }
+
+ else
+ {
+ rtx dst_addr, src_addr, count, blocks, temp;
+ rtx loop_start_label = gen_label_rtx ();
+ rtx loop_end_label = gen_label_rtx ();
+ rtx end_label = gen_label_rtx ();
+ enum machine_mode mode;
+
+ mode = GET_MODE (len);
+ if (mode == VOIDmode)
+ mode = Pmode;
+
+ dst_addr = gen_reg_rtx (Pmode);
+ src_addr = gen_reg_rtx (Pmode);
+ count = gen_reg_rtx (mode);
+ blocks = gen_reg_rtx (mode);
+
+ convert_move (count, len, 1);
+ emit_cmp_and_jump_insns (count, const0_rtx,
+ EQ, NULL_RTX, mode, 1, end_label);
+
+ emit_move_insn (dst_addr, force_operand (XEXP (dst, 0), NULL_RTX));
+ emit_move_insn (src_addr, force_operand (XEXP (src, 0), NULL_RTX));
+ dst = change_address (dst, VOIDmode, dst_addr);
+ src = change_address (src, VOIDmode, src_addr);
+
+ temp = expand_binop (mode, add_optab, count, constm1_rtx, count, 1,
+ OPTAB_DIRECT);
+ if (temp != count)
+ emit_move_insn (count, temp);
+
+ temp = expand_binop (mode, lshr_optab, count, GEN_INT (8), blocks, 1,
+ OPTAB_DIRECT);
+ if (temp != blocks)
+ emit_move_insn (blocks, temp);
+
+ emit_cmp_and_jump_insns (blocks, const0_rtx,
+ EQ, NULL_RTX, mode, 1, loop_end_label);
+
+ emit_label (loop_start_label);
+
+ if (TARGET_Z10
+ && (GET_CODE (len) != CONST_INT || INTVAL (len) > 768))
+ {
+ rtx prefetch;
+
+ /* Issue a read prefetch for the +3 cache line. */
+ prefetch = gen_prefetch (gen_rtx_PLUS (Pmode, src_addr, GEN_INT (768)),
+ const0_rtx, const0_rtx);
+ PREFETCH_SCHEDULE_BARRIER_P (prefetch) = true;
+ emit_insn (prefetch);
+
+ /* Issue a write prefetch for the +3 cache line. */
+ prefetch = gen_prefetch (gen_rtx_PLUS (Pmode, dst_addr, GEN_INT (768)),
+ const1_rtx, const0_rtx);
+ PREFETCH_SCHEDULE_BARRIER_P (prefetch) = true;
+ emit_insn (prefetch);
+ }
+
+ emit_insn (gen_movmem_short (dst, src, GEN_INT (255)));
+ s390_load_address (dst_addr,
+ gen_rtx_PLUS (Pmode, dst_addr, GEN_INT (256)));
+ s390_load_address (src_addr,
+ gen_rtx_PLUS (Pmode, src_addr, GEN_INT (256)));
+
+ temp = expand_binop (mode, add_optab, blocks, constm1_rtx, blocks, 1,
+ OPTAB_DIRECT);
+ if (temp != blocks)
+ emit_move_insn (blocks, temp);
+
+ emit_cmp_and_jump_insns (blocks, const0_rtx,
+ EQ, NULL_RTX, mode, 1, loop_end_label);
+
+ emit_jump (loop_start_label);
+ emit_label (loop_end_label);
+
+ emit_insn (gen_movmem_short (dst, src,
+ convert_to_mode (Pmode, count, 1)));
+ emit_label (end_label);
+ }
+ return true;
+}
+
+/* Emit code to set LEN bytes at DST to VAL.
+ Make use of clrmem if VAL is zero. */
+
+void
+s390_expand_setmem (rtx dst, rtx len, rtx val)
+{
+ if (GET_CODE (len) == CONST_INT && INTVAL (len) == 0)
+ return;
+
+ gcc_assert (GET_CODE (val) == CONST_INT || GET_MODE (val) == QImode);
+
+ if (GET_CODE (len) == CONST_INT && INTVAL (len) > 0 && INTVAL (len) <= 257)
+ {
+ if (val == const0_rtx && INTVAL (len) <= 256)
+ emit_insn (gen_clrmem_short (dst, GEN_INT (INTVAL (len) - 1)));
+ else
+ {
+ /* Initialize memory by storing the first byte. */
+ emit_move_insn (adjust_address (dst, QImode, 0), val);
+
+ if (INTVAL (len) > 1)
+ {
+ /* Initiate 1 byte overlap move.
+ The first byte of DST is propagated through DSTP1.
+ Prepare a movmem for: DST+1 = DST (length = LEN - 1).
+ DST is set to size 1 so the rest of the memory location
+ does not count as source operand. */
+ rtx dstp1 = adjust_address (dst, VOIDmode, 1);
+ set_mem_size (dst, 1);
+
+ emit_insn (gen_movmem_short (dstp1, dst,
+ GEN_INT (INTVAL (len) - 2)));
+ }
+ }
+ }
+
+ else if (TARGET_MVCLE)
+ {
+ val = force_not_mem (convert_modes (Pmode, QImode, val, 1));
+ emit_insn (gen_setmem_long (dst, convert_to_mode (Pmode, len, 1), val));
+ }
+
+ else
+ {
+ rtx dst_addr, count, blocks, temp, dstp1 = NULL_RTX;
+ rtx loop_start_label = gen_label_rtx ();
+ rtx loop_end_label = gen_label_rtx ();
+ rtx end_label = gen_label_rtx ();
+ enum machine_mode mode;
+
+ mode = GET_MODE (len);
+ if (mode == VOIDmode)
+ mode = Pmode;
+
+ dst_addr = gen_reg_rtx (Pmode);
+ count = gen_reg_rtx (mode);
+ blocks = gen_reg_rtx (mode);
+
+ convert_move (count, len, 1);
+ emit_cmp_and_jump_insns (count, const0_rtx,
+ EQ, NULL_RTX, mode, 1, end_label);
+
+ emit_move_insn (dst_addr, force_operand (XEXP (dst, 0), NULL_RTX));
+ dst = change_address (dst, VOIDmode, dst_addr);
+
+ if (val == const0_rtx)
+ temp = expand_binop (mode, add_optab, count, constm1_rtx, count, 1,
+ OPTAB_DIRECT);
+ else
+ {
+ dstp1 = adjust_address (dst, VOIDmode, 1);
+ set_mem_size (dst, 1);
+
+ /* Initialize memory by storing the first byte. */
+ emit_move_insn (adjust_address (dst, QImode, 0), val);
+
+ /* If count is 1 we are done. */
+ emit_cmp_and_jump_insns (count, const1_rtx,
+ EQ, NULL_RTX, mode, 1, end_label);
+
+ temp = expand_binop (mode, add_optab, count, GEN_INT (-2), count, 1,
+ OPTAB_DIRECT);
+ }
+ if (temp != count)
+ emit_move_insn (count, temp);
+
+ temp = expand_binop (mode, lshr_optab, count, GEN_INT (8), blocks, 1,
+ OPTAB_DIRECT);
+ if (temp != blocks)
+ emit_move_insn (blocks, temp);
+
+ emit_cmp_and_jump_insns (blocks, const0_rtx,
+ EQ, NULL_RTX, mode, 1, loop_end_label);
+
+ emit_label (loop_start_label);
+
+ if (TARGET_Z10
+ && (GET_CODE (len) != CONST_INT || INTVAL (len) > 1024))
+ {
+ /* Issue a write prefetch for the +4 cache line. */
+ rtx prefetch = gen_prefetch (gen_rtx_PLUS (Pmode, dst_addr,
+ GEN_INT (1024)),
+ const1_rtx, const0_rtx);
+ emit_insn (prefetch);
+ PREFETCH_SCHEDULE_BARRIER_P (prefetch) = true;
+ }
+
+ if (val == const0_rtx)
+ emit_insn (gen_clrmem_short (dst, GEN_INT (255)));
+ else
+ emit_insn (gen_movmem_short (dstp1, dst, GEN_INT (255)));
+ s390_load_address (dst_addr,
+ gen_rtx_PLUS (Pmode, dst_addr, GEN_INT (256)));
+
+ temp = expand_binop (mode, add_optab, blocks, constm1_rtx, blocks, 1,
+ OPTAB_DIRECT);
+ if (temp != blocks)
+ emit_move_insn (blocks, temp);
+
+ emit_cmp_and_jump_insns (blocks, const0_rtx,
+ EQ, NULL_RTX, mode, 1, loop_end_label);
+
+ emit_jump (loop_start_label);
+ emit_label (loop_end_label);
+
+ if (val == const0_rtx)
+ emit_insn (gen_clrmem_short (dst, convert_to_mode (Pmode, count, 1)));
+ else
+ emit_insn (gen_movmem_short (dstp1, dst, convert_to_mode (Pmode, count, 1)));
+ emit_label (end_label);
+ }
+}
+
+/* Emit code to compare LEN bytes at OP0 with those at OP1,
+ and return the result in TARGET. */
+
+bool
+s390_expand_cmpmem (rtx target, rtx op0, rtx op1, rtx len)
+{
+ rtx ccreg = gen_rtx_REG (CCUmode, CC_REGNUM);
+ rtx tmp;
+
+ /* When tuning for z10 or higher we rely on the Glibc functions to
+ do the right thing. Only for constant lengths below 64k we will
+ generate inline code. */
+ if (s390_tune >= PROCESSOR_2097_Z10
+ && (GET_CODE (len) != CONST_INT || INTVAL (len) > (1<<16)))
+ return false;
+
+ /* As the result of CMPINT is inverted compared to what we need,
+ we have to swap the operands. */
+ tmp = op0; op0 = op1; op1 = tmp;
+
+ if (GET_CODE (len) == CONST_INT && INTVAL (len) >= 0 && INTVAL (len) <= 256)
+ {
+ if (INTVAL (len) > 0)
+ {
+ emit_insn (gen_cmpmem_short (op0, op1, GEN_INT (INTVAL (len) - 1)));
+ emit_insn (gen_cmpint (target, ccreg));
+ }
+ else
+ emit_move_insn (target, const0_rtx);
+ }
+ else if (TARGET_MVCLE)
+ {
+ emit_insn (gen_cmpmem_long (op0, op1, convert_to_mode (Pmode, len, 1)));
+ emit_insn (gen_cmpint (target, ccreg));
+ }
+ else
+ {
+ rtx addr0, addr1, count, blocks, temp;
+ rtx loop_start_label = gen_label_rtx ();
+ rtx loop_end_label = gen_label_rtx ();
+ rtx end_label = gen_label_rtx ();
+ enum machine_mode mode;
+
+ mode = GET_MODE (len);
+ if (mode == VOIDmode)
+ mode = Pmode;
+
+ addr0 = gen_reg_rtx (Pmode);
+ addr1 = gen_reg_rtx (Pmode);
+ count = gen_reg_rtx (mode);
+ blocks = gen_reg_rtx (mode);
+
+ convert_move (count, len, 1);
+ emit_cmp_and_jump_insns (count, const0_rtx,
+ EQ, NULL_RTX, mode, 1, end_label);
+
+ emit_move_insn (addr0, force_operand (XEXP (op0, 0), NULL_RTX));
+ emit_move_insn (addr1, force_operand (XEXP (op1, 0), NULL_RTX));
+ op0 = change_address (op0, VOIDmode, addr0);
+ op1 = change_address (op1, VOIDmode, addr1);
+
+ temp = expand_binop (mode, add_optab, count, constm1_rtx, count, 1,
+ OPTAB_DIRECT);
+ if (temp != count)
+ emit_move_insn (count, temp);
+
+ temp = expand_binop (mode, lshr_optab, count, GEN_INT (8), blocks, 1,
+ OPTAB_DIRECT);
+ if (temp != blocks)
+ emit_move_insn (blocks, temp);
+
+ emit_cmp_and_jump_insns (blocks, const0_rtx,
+ EQ, NULL_RTX, mode, 1, loop_end_label);
+
+ emit_label (loop_start_label);
+
+ if (TARGET_Z10
+ && (GET_CODE (len) != CONST_INT || INTVAL (len) > 512))
+ {
+ rtx prefetch;
+
+ /* Issue a read prefetch for the +2 cache line of operand 1. */
+ prefetch = gen_prefetch (gen_rtx_PLUS (Pmode, addr0, GEN_INT (512)),
+ const0_rtx, const0_rtx);
+ emit_insn (prefetch);
+ PREFETCH_SCHEDULE_BARRIER_P (prefetch) = true;
+
+ /* Issue a read prefetch for the +2 cache line of operand 2. */
+ prefetch = gen_prefetch (gen_rtx_PLUS (Pmode, addr1, GEN_INT (512)),
+ const0_rtx, const0_rtx);
+ emit_insn (prefetch);
+ PREFETCH_SCHEDULE_BARRIER_P (prefetch) = true;
+ }
+
+ emit_insn (gen_cmpmem_short (op0, op1, GEN_INT (255)));
+ temp = gen_rtx_NE (VOIDmode, ccreg, const0_rtx);
+ temp = gen_rtx_IF_THEN_ELSE (VOIDmode, temp,
+ gen_rtx_LABEL_REF (VOIDmode, end_label), pc_rtx);
+ temp = gen_rtx_SET (VOIDmode, pc_rtx, temp);
+ emit_jump_insn (temp);
+
+ s390_load_address (addr0,
+ gen_rtx_PLUS (Pmode, addr0, GEN_INT (256)));
+ s390_load_address (addr1,
+ gen_rtx_PLUS (Pmode, addr1, GEN_INT (256)));
+
+ temp = expand_binop (mode, add_optab, blocks, constm1_rtx, blocks, 1,
+ OPTAB_DIRECT);
+ if (temp != blocks)
+ emit_move_insn (blocks, temp);
+
+ emit_cmp_and_jump_insns (blocks, const0_rtx,
+ EQ, NULL_RTX, mode, 1, loop_end_label);
+
+ emit_jump (loop_start_label);
+ emit_label (loop_end_label);
+
+ emit_insn (gen_cmpmem_short (op0, op1,
+ convert_to_mode (Pmode, count, 1)));
+ emit_label (end_label);
+
+ emit_insn (gen_cmpint (target, ccreg));
+ }
+ return true;
+}
+
+
+/* Expand conditional increment or decrement using alc/slb instructions.
+ Should generate code setting DST to either SRC or SRC + INCREMENT,
+ depending on the result of the comparison CMP_OP0 CMP_CODE CMP_OP1.
+ Returns true if successful, false otherwise.
+
+ That makes it possible to implement some if-constructs without jumps e.g.:
+ (borrow = CC0 | CC1 and carry = CC2 | CC3)
+ unsigned int a, b, c;
+ if (a < b) c++; -> CCU b > a -> CC2; c += carry;
+ if (a < b) c--; -> CCL3 a - b -> borrow; c -= borrow;
+ if (a <= b) c++; -> CCL3 b - a -> borrow; c += carry;
+ if (a <= b) c--; -> CCU a <= b -> borrow; c -= borrow;
+
+ Checks for EQ and NE with a nonzero value need an additional xor e.g.:
+ if (a == b) c++; -> CCL3 a ^= b; 0 - a -> borrow; c += carry;
+ if (a == b) c--; -> CCU a ^= b; a <= 0 -> CC0 | CC1; c -= borrow;
+ if (a != b) c++; -> CCU a ^= b; a > 0 -> CC2; c += carry;
+ if (a != b) c--; -> CCL3 a ^= b; 0 - a -> borrow; c -= borrow; */
+
+bool
+s390_expand_addcc (enum rtx_code cmp_code, rtx cmp_op0, rtx cmp_op1,
+ rtx dst, rtx src, rtx increment)
+{
+ enum machine_mode cmp_mode;
+ enum machine_mode cc_mode;
+ rtx op_res;
+ rtx insn;
+ rtvec p;
+ int ret;
+
+ if ((GET_MODE (cmp_op0) == SImode || GET_MODE (cmp_op0) == VOIDmode)
+ && (GET_MODE (cmp_op1) == SImode || GET_MODE (cmp_op1) == VOIDmode))
+ cmp_mode = SImode;
+ else if ((GET_MODE (cmp_op0) == DImode || GET_MODE (cmp_op0) == VOIDmode)
+ && (GET_MODE (cmp_op1) == DImode || GET_MODE (cmp_op1) == VOIDmode))
+ cmp_mode = DImode;
+ else
+ return false;
+
+ /* Try ADD LOGICAL WITH CARRY. */
+ if (increment == const1_rtx)
+ {
+ /* Determine CC mode to use. */
+ if (cmp_code == EQ || cmp_code == NE)
+ {
+ if (cmp_op1 != const0_rtx)
+ {
+ cmp_op0 = expand_simple_binop (cmp_mode, XOR, cmp_op0, cmp_op1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ cmp_op1 = const0_rtx;
+ }
+
+ cmp_code = cmp_code == EQ ? LEU : GTU;
+ }
+
+ if (cmp_code == LTU || cmp_code == LEU)
+ {
+ rtx tem = cmp_op0;
+ cmp_op0 = cmp_op1;
+ cmp_op1 = tem;
+ cmp_code = swap_condition (cmp_code);
+ }
+
+ switch (cmp_code)
+ {
+ case GTU:
+ cc_mode = CCUmode;
+ break;
+
+ case GEU:
+ cc_mode = CCL3mode;
+ break;
+
+ default:
+ return false;
+ }
+
+ /* Emit comparison instruction pattern. */
+ if (!register_operand (cmp_op0, cmp_mode))
+ cmp_op0 = force_reg (cmp_mode, cmp_op0);
+
+ insn = gen_rtx_SET (VOIDmode, gen_rtx_REG (cc_mode, CC_REGNUM),
+ gen_rtx_COMPARE (cc_mode, cmp_op0, cmp_op1));
+ /* We use insn_invalid_p here to add clobbers if required. */
+ ret = insn_invalid_p (emit_insn (insn), false);
+ gcc_assert (!ret);
+
+ /* Emit ALC instruction pattern. */
+ op_res = gen_rtx_fmt_ee (cmp_code, GET_MODE (dst),
+ gen_rtx_REG (cc_mode, CC_REGNUM),
+ const0_rtx);
+
+ if (src != const0_rtx)
+ {
+ if (!register_operand (src, GET_MODE (dst)))
+ src = force_reg (GET_MODE (dst), src);
+
+ op_res = gen_rtx_PLUS (GET_MODE (dst), op_res, src);
+ op_res = gen_rtx_PLUS (GET_MODE (dst), op_res, const0_rtx);
+ }
+
+ p = rtvec_alloc (2);
+ RTVEC_ELT (p, 0) =
+ gen_rtx_SET (VOIDmode, dst, op_res);
+ RTVEC_ELT (p, 1) =
+ gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM));
+ emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
+
+ return true;
+ }
+
+ /* Try SUBTRACT LOGICAL WITH BORROW. */
+ if (increment == constm1_rtx)
+ {
+ /* Determine CC mode to use. */
+ if (cmp_code == EQ || cmp_code == NE)
+ {
+ if (cmp_op1 != const0_rtx)
+ {
+ cmp_op0 = expand_simple_binop (cmp_mode, XOR, cmp_op0, cmp_op1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ cmp_op1 = const0_rtx;
+ }
+
+ cmp_code = cmp_code == EQ ? LEU : GTU;
+ }
+
+ if (cmp_code == GTU || cmp_code == GEU)
+ {
+ rtx tem = cmp_op0;
+ cmp_op0 = cmp_op1;
+ cmp_op1 = tem;
+ cmp_code = swap_condition (cmp_code);
+ }
+
+ switch (cmp_code)
+ {
+ case LEU:
+ cc_mode = CCUmode;
+ break;
+
+ case LTU:
+ cc_mode = CCL3mode;
+ break;
+
+ default:
+ return false;
+ }
+
+ /* Emit comparison instruction pattern. */
+ if (!register_operand (cmp_op0, cmp_mode))
+ cmp_op0 = force_reg (cmp_mode, cmp_op0);
+
+ insn = gen_rtx_SET (VOIDmode, gen_rtx_REG (cc_mode, CC_REGNUM),
+ gen_rtx_COMPARE (cc_mode, cmp_op0, cmp_op1));
+ /* We use insn_invalid_p here to add clobbers if required. */
+ ret = insn_invalid_p (emit_insn (insn), false);
+ gcc_assert (!ret);
+
+ /* Emit SLB instruction pattern. */
+ if (!register_operand (src, GET_MODE (dst)))
+ src = force_reg (GET_MODE (dst), src);
+
+ op_res = gen_rtx_MINUS (GET_MODE (dst),
+ gen_rtx_MINUS (GET_MODE (dst), src, const0_rtx),
+ gen_rtx_fmt_ee (cmp_code, GET_MODE (dst),
+ gen_rtx_REG (cc_mode, CC_REGNUM),
+ const0_rtx));
+ p = rtvec_alloc (2);
+ RTVEC_ELT (p, 0) =
+ gen_rtx_SET (VOIDmode, dst, op_res);
+ RTVEC_ELT (p, 1) =
+ gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM));
+ emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
+
+ return true;
+ }
+
+ return false;
+}
+
+/* Expand code for the insv template. Return true if successful. */
+
+bool
+s390_expand_insv (rtx dest, rtx op1, rtx op2, rtx src)
+{
+ int bitsize = INTVAL (op1);
+ int bitpos = INTVAL (op2);
+ enum machine_mode mode = GET_MODE (dest);
+ enum machine_mode smode;
+ int smode_bsize, mode_bsize;
+ rtx op, clobber;
+
+ if (bitsize + bitpos > GET_MODE_SIZE (mode))
+ return false;
+
+ /* Generate INSERT IMMEDIATE (IILL et al). */
+ /* (set (ze (reg)) (const_int)). */
+ if (TARGET_ZARCH
+ && register_operand (dest, word_mode)
+ && (bitpos % 16) == 0
+ && (bitsize % 16) == 0
+ && const_int_operand (src, VOIDmode))
+ {
+ HOST_WIDE_INT val = INTVAL (src);
+ int regpos = bitpos + bitsize;
+
+ while (regpos > bitpos)
+ {
+ enum machine_mode putmode;
+ int putsize;
+
+ if (TARGET_EXTIMM && (regpos % 32 == 0) && (regpos >= bitpos + 32))
+ putmode = SImode;
+ else
+ putmode = HImode;
+
+ putsize = GET_MODE_BITSIZE (putmode);
+ regpos -= putsize;
+ emit_move_insn (gen_rtx_ZERO_EXTRACT (word_mode, dest,
+ GEN_INT (putsize),
+ GEN_INT (regpos)),
+ gen_int_mode (val, putmode));
+ val >>= putsize;
+ }
+ gcc_assert (regpos == bitpos);
+ return true;
+ }
+
+ smode = smallest_mode_for_size (bitsize, MODE_INT);
+ smode_bsize = GET_MODE_BITSIZE (smode);
+ mode_bsize = GET_MODE_BITSIZE (mode);
+
+ /* Generate STORE CHARACTERS UNDER MASK (STCM et al). */
+ if (bitpos == 0
+ && (bitsize % BITS_PER_UNIT) == 0
+ && MEM_P (dest)
+ && (register_operand (src, word_mode)
+ || const_int_operand (src, VOIDmode)))
+ {
+ /* Emit standard pattern if possible. */
+ if (smode_bsize == bitsize)
+ {
+ emit_move_insn (adjust_address (dest, smode, 0),
+ gen_lowpart (smode, src));
+ return true;
+ }
+
+ /* (set (ze (mem)) (const_int)). */
+ else if (const_int_operand (src, VOIDmode))
+ {
+ int size = bitsize / BITS_PER_UNIT;
+ rtx src_mem = adjust_address (force_const_mem (word_mode, src),
+ BLKmode,
+ UNITS_PER_WORD - size);
+
+ dest = adjust_address (dest, BLKmode, 0);
+ set_mem_size (dest, size);
+ s390_expand_movmem (dest, src_mem, GEN_INT (size));
+ return true;
+ }
+
+ /* (set (ze (mem)) (reg)). */
+ else if (register_operand (src, word_mode))
+ {
+ if (bitsize <= 32)
+ emit_move_insn (gen_rtx_ZERO_EXTRACT (word_mode, dest, op1,
+ const0_rtx), src);
+ else
+ {
+ /* Emit st,stcmh sequence. */
+ int stcmh_width = bitsize - 32;
+ int size = stcmh_width / BITS_PER_UNIT;
+
+ emit_move_insn (adjust_address (dest, SImode, size),
+ gen_lowpart (SImode, src));
+ set_mem_size (dest, size);
+ emit_move_insn (gen_rtx_ZERO_EXTRACT (word_mode, dest,
+ GEN_INT (stcmh_width),
+ const0_rtx),
+ gen_rtx_LSHIFTRT (word_mode, src, GEN_INT (32)));
+ }
+ return true;
+ }
+ }
+
+ /* Generate INSERT CHARACTERS UNDER MASK (IC, ICM et al). */
+ if ((bitpos % BITS_PER_UNIT) == 0
+ && (bitsize % BITS_PER_UNIT) == 0
+ && (bitpos & 32) == ((bitpos + bitsize - 1) & 32)
+ && MEM_P (src)
+ && (mode == DImode || mode == SImode)
+ && register_operand (dest, mode))
+ {
+ /* Emit a strict_low_part pattern if possible. */
+ if (smode_bsize == bitsize && bitpos == mode_bsize - smode_bsize)
+ {
+ op = gen_rtx_STRICT_LOW_PART (VOIDmode, gen_lowpart (smode, dest));
+ op = gen_rtx_SET (VOIDmode, op, gen_lowpart (smode, src));
+ clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM));
+ emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clobber)));
+ return true;
+ }
+
+ /* ??? There are more powerful versions of ICM that are not
+ completely represented in the md file. */
+ }
+
+ /* For z10, generate ROTATE THEN INSERT SELECTED BITS (RISBG et al). */
+ if (TARGET_Z10 && (mode == DImode || mode == SImode))
+ {
+ enum machine_mode mode_s = GET_MODE (src);
+
+ if (mode_s == VOIDmode)
+ {
+ /* Assume const_int etc already in the proper mode. */
+ src = force_reg (mode, src);
+ }
+ else if (mode_s != mode)
+ {
+ gcc_assert (GET_MODE_BITSIZE (mode_s) >= bitsize);
+ src = force_reg (mode_s, src);
+ src = gen_lowpart (mode, src);
+ }
+
+ op = gen_rtx_ZERO_EXTRACT (mode, dest, op1, op2),
+ op = gen_rtx_SET (VOIDmode, op, src);
+
+ if (!TARGET_ZEC12)
+ {
+ clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM));
+ op = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clobber));
+ }
+ emit_insn (op);
+
+ return true;
+ }
+
+ return false;
+}
+
+/* A subroutine of s390_expand_cs_hqi and s390_expand_atomic which returns a
+ register that holds VAL of mode MODE shifted by COUNT bits. */
+
+static inline rtx
+s390_expand_mask_and_shift (rtx val, enum machine_mode mode, rtx count)
+{
+ val = expand_simple_binop (SImode, AND, val, GEN_INT (GET_MODE_MASK (mode)),
+ NULL_RTX, 1, OPTAB_DIRECT);
+ return expand_simple_binop (SImode, ASHIFT, val, count,
+ NULL_RTX, 1, OPTAB_DIRECT);
+}
+
+/* Structure to hold the initial parameters for a compare_and_swap operation
+ in HImode and QImode. */
+
+struct alignment_context
+{
+ rtx memsi; /* SI aligned memory location. */
+ rtx shift; /* Bit offset with regard to lsb. */
+ rtx modemask; /* Mask of the HQImode shifted by SHIFT bits. */
+ rtx modemaski; /* ~modemask */
+ bool aligned; /* True if memory is aligned, false else. */
+};
+
+/* A subroutine of s390_expand_cs_hqi and s390_expand_atomic to initialize
+ structure AC for transparent simplifying, if the memory alignment is known
+ to be at least 32bit. MEM is the memory location for the actual operation
+ and MODE its mode. */
+
+static void
+init_alignment_context (struct alignment_context *ac, rtx mem,
+ enum machine_mode mode)
+{
+ ac->shift = GEN_INT (GET_MODE_SIZE (SImode) - GET_MODE_SIZE (mode));
+ ac->aligned = (MEM_ALIGN (mem) >= GET_MODE_BITSIZE (SImode));
+
+ if (ac->aligned)
+ ac->memsi = adjust_address (mem, SImode, 0); /* Memory is aligned. */
+ else
+ {
+ /* Alignment is unknown. */
+ rtx byteoffset, addr, align;
+
+ /* Force the address into a register. */
+ addr = force_reg (Pmode, XEXP (mem, 0));
+
+ /* Align it to SImode. */
+ align = expand_simple_binop (Pmode, AND, addr,
+ GEN_INT (-GET_MODE_SIZE (SImode)),
+ NULL_RTX, 1, OPTAB_DIRECT);
+ /* Generate MEM. */
+ ac->memsi = gen_rtx_MEM (SImode, align);
+ MEM_VOLATILE_P (ac->memsi) = MEM_VOLATILE_P (mem);
+ set_mem_alias_set (ac->memsi, ALIAS_SET_MEMORY_BARRIER);
+ set_mem_align (ac->memsi, GET_MODE_BITSIZE (SImode));
+
+ /* Calculate shiftcount. */
+ byteoffset = expand_simple_binop (Pmode, AND, addr,
+ GEN_INT (GET_MODE_SIZE (SImode) - 1),
+ NULL_RTX, 1, OPTAB_DIRECT);
+ /* As we already have some offset, evaluate the remaining distance. */
+ ac->shift = expand_simple_binop (SImode, MINUS, ac->shift, byteoffset,
+ NULL_RTX, 1, OPTAB_DIRECT);
+ }
+
+ /* Shift is the byte count, but we need the bitcount. */
+ ac->shift = expand_simple_binop (SImode, ASHIFT, ac->shift, GEN_INT (3),
+ NULL_RTX, 1, OPTAB_DIRECT);
+
+ /* Calculate masks. */
+ ac->modemask = expand_simple_binop (SImode, ASHIFT,
+ GEN_INT (GET_MODE_MASK (mode)),
+ ac->shift, NULL_RTX, 1, OPTAB_DIRECT);
+ ac->modemaski = expand_simple_unop (SImode, NOT, ac->modemask,
+ NULL_RTX, 1);
+}
+
+/* A subroutine of s390_expand_cs_hqi. Insert INS into VAL. If possible,
+ use a single insv insn into SEQ2. Otherwise, put prep insns in SEQ1 and
+ perform the merge in SEQ2. */
+
+static rtx
+s390_two_part_insv (struct alignment_context *ac, rtx *seq1, rtx *seq2,
+ enum machine_mode mode, rtx val, rtx ins)
+{
+ rtx tmp;
+
+ if (ac->aligned)
+ {
+ start_sequence ();
+ tmp = copy_to_mode_reg (SImode, val);
+ if (s390_expand_insv (tmp, GEN_INT (GET_MODE_BITSIZE (mode)),
+ const0_rtx, ins))
+ {
+ *seq1 = NULL;
+ *seq2 = get_insns ();
+ end_sequence ();
+ return tmp;
+ }
+ end_sequence ();
+ }
+
+ /* Failed to use insv. Generate a two part shift and mask. */
+ start_sequence ();
+ tmp = s390_expand_mask_and_shift (ins, mode, ac->shift);
+ *seq1 = get_insns ();
+ end_sequence ();
+
+ start_sequence ();
+ tmp = expand_simple_binop (SImode, IOR, tmp, val, NULL_RTX, 1, OPTAB_DIRECT);
+ *seq2 = get_insns ();
+ end_sequence ();
+
+ return tmp;
+}
+
+/* Expand an atomic compare and swap operation for HImode and QImode. MEM is
+ the memory location, CMP the old value to compare MEM with and NEW_RTX the
+ value to set if CMP == MEM. */
+
+void
+s390_expand_cs_hqi (enum machine_mode mode, rtx btarget, rtx vtarget, rtx mem,
+ rtx cmp, rtx new_rtx, bool is_weak)
+{
+ struct alignment_context ac;
+ rtx cmpv, newv, val, cc, seq0, seq1, seq2, seq3;
+ rtx res = gen_reg_rtx (SImode);
+ rtx csloop = NULL, csend = NULL;
+
+ gcc_assert (MEM_P (mem));
+
+ init_alignment_context (&ac, mem, mode);
+
+ /* Load full word. Subsequent loads are performed by CS. */
+ val = expand_simple_binop (SImode, AND, ac.memsi, ac.modemaski,
+ NULL_RTX, 1, OPTAB_DIRECT);
+
+ /* Prepare insertions of cmp and new_rtx into the loaded value. When
+ possible, we try to use insv to make this happen efficiently. If
+ that fails we'll generate code both inside and outside the loop. */
+ cmpv = s390_two_part_insv (&ac, &seq0, &seq2, mode, val, cmp);
+ newv = s390_two_part_insv (&ac, &seq1, &seq3, mode, val, new_rtx);
+
+ if (seq0)
+ emit_insn (seq0);
+ if (seq1)
+ emit_insn (seq1);
+
+ /* Start CS loop. */
+ if (!is_weak)
+ {
+ /* Begin assuming success. */
+ emit_move_insn (btarget, const1_rtx);
+
+ csloop = gen_label_rtx ();
+ csend = gen_label_rtx ();
+ emit_label (csloop);
+ }
+
+ /* val = "<mem>00..0<mem>"
+ * cmp = "00..0<cmp>00..0"
+ * new = "00..0<new>00..0"
+ */
+
+ emit_insn (seq2);
+ emit_insn (seq3);
+
+ cc = s390_emit_compare_and_swap (EQ, res, ac.memsi, cmpv, newv);
+ if (is_weak)
+ emit_insn (gen_cstorecc4 (btarget, cc, XEXP (cc, 0), XEXP (cc, 1)));
+ else
+ {
+ rtx tmp;
+
+ /* Jump to end if we're done (likely?). */
+ s390_emit_jump (csend, cc);
+
+ /* Check for changes outside mode, and loop internal if so.
+ Arrange the moves so that the compare is adjacent to the
+ branch so that we can generate CRJ. */
+ tmp = copy_to_reg (val);
+ force_expand_binop (SImode, and_optab, res, ac.modemaski, val,
+ 1, OPTAB_DIRECT);
+ cc = s390_emit_compare (NE, val, tmp);
+ s390_emit_jump (csloop, cc);
+
+ /* Failed. */
+ emit_move_insn (btarget, const0_rtx);
+ emit_label (csend);
+ }
+
+ /* Return the correct part of the bitfield. */
+ convert_move (vtarget, expand_simple_binop (SImode, LSHIFTRT, res, ac.shift,
+ NULL_RTX, 1, OPTAB_DIRECT), 1);
+}
+
+/* Expand an atomic operation CODE of mode MODE. MEM is the memory location
+ and VAL the value to play with. If AFTER is true then store the value
+ MEM holds after the operation, if AFTER is false then store the value MEM
+ holds before the operation. If TARGET is zero then discard that value, else
+ store it to TARGET. */
+
+void
+s390_expand_atomic (enum machine_mode mode, enum rtx_code code,
+ rtx target, rtx mem, rtx val, bool after)
+{
+ struct alignment_context ac;
+ rtx cmp;
+ rtx new_rtx = gen_reg_rtx (SImode);
+ rtx orig = gen_reg_rtx (SImode);
+ rtx csloop = gen_label_rtx ();
+
+ gcc_assert (!target || register_operand (target, VOIDmode));
+ gcc_assert (MEM_P (mem));
+
+ init_alignment_context (&ac, mem, mode);
+
+ /* Shift val to the correct bit positions.
+ Preserve "icm", but prevent "ex icm". */
+ if (!(ac.aligned && code == SET && MEM_P (val)))
+ val = s390_expand_mask_and_shift (val, mode, ac.shift);
+
+ /* Further preparation insns. */
+ if (code == PLUS || code == MINUS)
+ emit_move_insn (orig, val);
+ else if (code == MULT || code == AND) /* val = "11..1<val>11..1" */
+ val = expand_simple_binop (SImode, XOR, val, ac.modemaski,
+ NULL_RTX, 1, OPTAB_DIRECT);
+
+ /* Load full word. Subsequent loads are performed by CS. */
+ cmp = force_reg (SImode, ac.memsi);
+
+ /* Start CS loop. */
+ emit_label (csloop);
+ emit_move_insn (new_rtx, cmp);
+
+ /* Patch new with val at correct position. */
+ switch (code)
+ {
+ case PLUS:
+ case MINUS:
+ val = expand_simple_binop (SImode, code, new_rtx, orig,
+ NULL_RTX, 1, OPTAB_DIRECT);
+ val = expand_simple_binop (SImode, AND, val, ac.modemask,
+ NULL_RTX, 1, OPTAB_DIRECT);
+ /* FALLTHRU */
+ case SET:
+ if (ac.aligned && MEM_P (val))
+ store_bit_field (new_rtx, GET_MODE_BITSIZE (mode), 0,
+ 0, 0, SImode, val);
+ else
+ {
+ new_rtx = expand_simple_binop (SImode, AND, new_rtx, ac.modemaski,
+ NULL_RTX, 1, OPTAB_DIRECT);
+ new_rtx = expand_simple_binop (SImode, IOR, new_rtx, val,
+ NULL_RTX, 1, OPTAB_DIRECT);
+ }
+ break;
+ case AND:
+ case IOR:
+ case XOR:
+ new_rtx = expand_simple_binop (SImode, code, new_rtx, val,
+ NULL_RTX, 1, OPTAB_DIRECT);
+ break;
+ case MULT: /* NAND */
+ new_rtx = expand_simple_binop (SImode, AND, new_rtx, val,
+ NULL_RTX, 1, OPTAB_DIRECT);
+ new_rtx = expand_simple_binop (SImode, XOR, new_rtx, ac.modemask,
+ NULL_RTX, 1, OPTAB_DIRECT);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ s390_emit_jump (csloop, s390_emit_compare_and_swap (NE, cmp,
+ ac.memsi, cmp, new_rtx));
+
+ /* Return the correct part of the bitfield. */
+ if (target)
+ convert_move (target, expand_simple_binop (SImode, LSHIFTRT,
+ after ? new_rtx : cmp, ac.shift,
+ NULL_RTX, 1, OPTAB_DIRECT), 1);
+}
+
+/* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
+ We need to emit DTP-relative relocations. */
+
+static void s390_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
+
+static void
+s390_output_dwarf_dtprel (FILE *file, int size, rtx x)
+{
+ switch (size)
+ {
+ case 4:
+ fputs ("\t.long\t", file);
+ break;
+ case 8:
+ fputs ("\t.quad\t", file);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ output_addr_const (file, x);
+ fputs ("@DTPOFF", file);
+}
+
+#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING
+/* Implement TARGET_MANGLE_TYPE. */
+
+static const char *
+s390_mangle_type (const_tree type)
+{
+ if (TYPE_MAIN_VARIANT (type) == long_double_type_node
+ && TARGET_LONG_DOUBLE_128)
+ return "g";
+
+ /* For all other types, use normal C++ mangling. */
+ return NULL;
+}
+#endif
+
+/* In the name of slightly smaller debug output, and to cater to
+ general assembler lossage, recognize various UNSPEC sequences
+ and turn them back into a direct symbol reference. */
+
+static rtx
+s390_delegitimize_address (rtx orig_x)
+{
+ rtx x, y;
+
+ orig_x = delegitimize_mem_from_attrs (orig_x);
+ x = orig_x;
+
+ /* Extract the symbol ref from:
+ (plus:SI (reg:SI 12 %r12)
+ (const:SI (unspec:SI [(symbol_ref/f:SI ("*.LC0"))]
+ UNSPEC_GOTOFF/PLTOFF)))
+ and
+ (plus:SI (reg:SI 12 %r12)
+ (const:SI (plus:SI (unspec:SI [(symbol_ref:SI ("L"))]
+ UNSPEC_GOTOFF/PLTOFF)
+ (const_int 4 [0x4])))) */
+ if (GET_CODE (x) == PLUS
+ && REG_P (XEXP (x, 0))
+ && REGNO (XEXP (x, 0)) == PIC_OFFSET_TABLE_REGNUM
+ && GET_CODE (XEXP (x, 1)) == CONST)
+ {
+ HOST_WIDE_INT offset = 0;
+
+ /* The const operand. */
+ y = XEXP (XEXP (x, 1), 0);
+
+ if (GET_CODE (y) == PLUS
+ && GET_CODE (XEXP (y, 1)) == CONST_INT)
+ {
+ offset = INTVAL (XEXP (y, 1));
+ y = XEXP (y, 0);
+ }
+
+ if (GET_CODE (y) == UNSPEC
+ && (XINT (y, 1) == UNSPEC_GOTOFF
+ || XINT (y, 1) == UNSPEC_PLTOFF))
+ return plus_constant (Pmode, XVECEXP (y, 0, 0), offset);
+ }
+
+ if (GET_CODE (x) != MEM)
+ return orig_x;
+
+ x = XEXP (x, 0);
+ if (GET_CODE (x) == PLUS
+ && GET_CODE (XEXP (x, 1)) == CONST
+ && GET_CODE (XEXP (x, 0)) == REG
+ && REGNO (XEXP (x, 0)) == PIC_OFFSET_TABLE_REGNUM)
+ {
+ y = XEXP (XEXP (x, 1), 0);
+ if (GET_CODE (y) == UNSPEC
+ && XINT (y, 1) == UNSPEC_GOT)
+ y = XVECEXP (y, 0, 0);
+ else
+ return orig_x;
+ }
+ else if (GET_CODE (x) == CONST)
+ {
+ /* Extract the symbol ref from:
+ (mem:QI (const:DI (unspec:DI [(symbol_ref:DI ("foo"))]
+ UNSPEC_PLT/GOTENT))) */
+
+ y = XEXP (x, 0);
+ if (GET_CODE (y) == UNSPEC
+ && (XINT (y, 1) == UNSPEC_GOTENT
+ || XINT (y, 1) == UNSPEC_PLT))
+ y = XVECEXP (y, 0, 0);
+ else
+ return orig_x;
+ }
+ else
+ return orig_x;
+
+ if (GET_MODE (orig_x) != Pmode)
+ {
+ if (GET_MODE (orig_x) == BLKmode)
+ return orig_x;
+ y = lowpart_subreg (GET_MODE (orig_x), y, Pmode);
+ if (y == NULL_RTX)
+ return orig_x;
+ }
+ return y;
+}
+
+/* Output operand OP to stdio stream FILE.
+ OP is an address (register + offset) which is not used to address data;
+ instead the rightmost bits are interpreted as the value. */
+
+static void
+print_shift_count_operand (FILE *file, rtx op)
+{
+ HOST_WIDE_INT offset;
+ rtx base;
+
+ /* Extract base register and offset. */
+ if (!s390_decompose_shift_count (op, &base, &offset))
+ gcc_unreachable ();
+
+ /* Sanity check. */
+ if (base)
+ {
+ gcc_assert (GET_CODE (base) == REG);
+ gcc_assert (REGNO (base) < FIRST_PSEUDO_REGISTER);
+ gcc_assert (REGNO_REG_CLASS (REGNO (base)) == ADDR_REGS);
+ }
+
+ /* Offsets are constricted to twelve bits. */
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, offset & ((1 << 12) - 1));
+ if (base)
+ fprintf (file, "(%s)", reg_names[REGNO (base)]);
+}
+
+/* See 'get_some_local_dynamic_name'. */
+
+static int
+get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
+{
+ rtx x = *px;
+
+ if (GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x))
+ {
+ x = get_pool_constant (x);
+ return for_each_rtx (&x, get_some_local_dynamic_name_1, 0);
+ }
+
+ if (GET_CODE (x) == SYMBOL_REF
+ && tls_symbolic_operand (x) == TLS_MODEL_LOCAL_DYNAMIC)
+ {
+ cfun->machine->some_ld_name = XSTR (x, 0);
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Locate some local-dynamic symbol still in use by this function
+ so that we can print its name in local-dynamic base patterns. */
+
+static const char *
+get_some_local_dynamic_name (void)
+{
+ rtx insn;
+
+ if (cfun->machine->some_ld_name)
+ return cfun->machine->some_ld_name;
+
+ for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
+ if (INSN_P (insn)
+ && for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0))
+ return cfun->machine->some_ld_name;
+
+ gcc_unreachable ();
+}
+
+/* Returns -1 if the function should not be made hotpatchable. Otherwise it
+ returns a number >= 0 that is the desired size of the hotpatch trampoline
+ in halfwords. */
+
+static int s390_function_num_hotpatch_trampoline_halfwords (tree decl,
+ bool do_warn)
+{
+ tree attr;
+
+ if (DECL_DECLARED_INLINE_P (decl)
+ || DECL_ARTIFICIAL (decl)
+ || MAIN_NAME_P (DECL_NAME (decl)))
+ {
+ /* - Explicitly inlined functions cannot be hotpatched.
+ - Artificial functions need not be hotpatched.
+ - Making the main function hotpatchable is useless. */
+ return -1;
+ }
+ attr = lookup_attribute ("hotpatch", DECL_ATTRIBUTES (decl));
+ if (attr || s390_hotpatch_trampoline_halfwords >= 0)
+ {
+ if (lookup_attribute ("always_inline", DECL_ATTRIBUTES (decl)))
+ {
+ if (do_warn)
+ warning (OPT_Wattributes, "function %qE with the %qs attribute"
+ " is not hotpatchable", DECL_NAME (decl), "always_inline");
+ return -1;
+ }
+ else
+ {
+ return (attr) ?
+ get_hotpatch_attribute (attr) : s390_hotpatch_trampoline_halfwords;
+ }
+ }
+
+ return -1;
+}
+
+/* Hook to determine if one function can safely inline another. */
+
+static bool
+s390_can_inline_p (tree caller, tree callee)
+{
+ if (s390_function_num_hotpatch_trampoline_halfwords (callee, false) >= 0)
+ return false;
+
+ return default_target_can_inline_p (caller, callee);
+}
+
+/* Write the extra assembler code needed to declare a function properly. */
+
+void
+s390_asm_output_function_label (FILE *asm_out_file, const char *fname,
+ tree decl)
+{
+ int hotpatch_trampoline_halfwords = -1;
+
+ if (decl)
+ {
+ hotpatch_trampoline_halfwords =
+ s390_function_num_hotpatch_trampoline_halfwords (decl, true);
+ if (hotpatch_trampoline_halfwords >= 0
+ && decl_function_context (decl) != NULL_TREE)
+ {
+ warning_at (DECL_SOURCE_LOCATION (decl), OPT_mhotpatch,
+ "hotpatching is not compatible with nested functions");
+ hotpatch_trampoline_halfwords = -1;
+ }
+ }
+
+ if (hotpatch_trampoline_halfwords > 0)
+ {
+ int i;
+
+ /* Add a trampoline code area before the function label and initialize it
+ with two-byte nop instructions. This area can be overwritten with code
+ that jumps to a patched version of the function. */
+ for (i = 0; i < hotpatch_trampoline_halfwords; i++)
+ asm_fprintf (asm_out_file, "\tnopr\t%%r7\n");
+ /* Note: The function label must be aligned so that (a) the bytes of the
+ following nop do not cross a cacheline boundary, and (b) a jump address
+ (eight bytes for 64 bit targets, 4 bytes for 32 bit targets) can be
+ stored directly before the label without crossing a cacheline
+ boundary. All this is necessary to make sure the trampoline code can
+ be changed atomically. */
+ }
+
+ ASM_OUTPUT_LABEL (asm_out_file, fname);
+
+ /* Output a four-byte nop if hotpatching is enabled. This can be overwritten
+ atomically with a relative backwards jump to the trampoline area. */
+ if (hotpatch_trampoline_halfwords >= 0)
+ asm_fprintf (asm_out_file, "\tnop\t0\n");
+}
+
+/* Output machine-dependent UNSPECs occurring in address constant X
+ in assembler syntax to stdio stream FILE. Returns true if the
+ constant X could be recognized, false otherwise. */
+
+static bool
+s390_output_addr_const_extra (FILE *file, rtx x)
+{
+ if (GET_CODE (x) == UNSPEC && XVECLEN (x, 0) == 1)
+ switch (XINT (x, 1))
+ {
+ case UNSPEC_GOTENT:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fprintf (file, "@GOTENT");
+ return true;
+ case UNSPEC_GOT:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fprintf (file, "@GOT");
+ return true;
+ case UNSPEC_GOTOFF:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fprintf (file, "@GOTOFF");
+ return true;
+ case UNSPEC_PLT:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fprintf (file, "@PLT");
+ return true;
+ case UNSPEC_PLTOFF:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fprintf (file, "@PLTOFF");
+ return true;
+ case UNSPEC_TLSGD:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fprintf (file, "@TLSGD");
+ return true;
+ case UNSPEC_TLSLDM:
+ assemble_name (file, get_some_local_dynamic_name ());
+ fprintf (file, "@TLSLDM");
+ return true;
+ case UNSPEC_DTPOFF:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fprintf (file, "@DTPOFF");
+ return true;
+ case UNSPEC_NTPOFF:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fprintf (file, "@NTPOFF");
+ return true;
+ case UNSPEC_GOTNTPOFF:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fprintf (file, "@GOTNTPOFF");
+ return true;
+ case UNSPEC_INDNTPOFF:
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ fprintf (file, "@INDNTPOFF");
+ return true;
+ }
+
+ if (GET_CODE (x) == UNSPEC && XVECLEN (x, 0) == 2)
+ switch (XINT (x, 1))
+ {
+ case UNSPEC_POOL_OFFSET:
+ x = gen_rtx_MINUS (GET_MODE (x), XVECEXP (x, 0, 0), XVECEXP (x, 0, 1));
+ output_addr_const (file, x);
+ return true;
+ }
+ return false;
+}
+
+/* Output address operand ADDR in assembler syntax to
+ stdio stream FILE. */
+
+void
+print_operand_address (FILE *file, rtx addr)
+{
+ struct s390_address ad;
+
+ if (s390_loadrelative_operand_p (addr, NULL, NULL))
+ {
+ if (!TARGET_Z10)
+ {
+ output_operand_lossage ("symbolic memory references are "
+ "only supported on z10 or later");
+ return;
+ }
+ output_addr_const (file, addr);
+ return;
+ }
+
+ if (!s390_decompose_address (addr, &ad)
+ || (ad.base && !REGNO_OK_FOR_BASE_P (REGNO (ad.base)))
+ || (ad.indx && !REGNO_OK_FOR_INDEX_P (REGNO (ad.indx))))
+ output_operand_lossage ("cannot decompose address");
+
+ if (ad.disp)
+ output_addr_const (file, ad.disp);
+ else
+ fprintf (file, "0");
+
+ if (ad.base && ad.indx)
+ fprintf (file, "(%s,%s)", reg_names[REGNO (ad.indx)],
+ reg_names[REGNO (ad.base)]);
+ else if (ad.base)
+ fprintf (file, "(%s)", reg_names[REGNO (ad.base)]);
+}
+
+/* Output operand X in assembler syntax to stdio stream FILE.
+ CODE specified the format flag. The following format flags
+ are recognized:
+
+ 'C': print opcode suffix for branch condition.
+ 'D': print opcode suffix for inverse branch condition.
+ 'E': print opcode suffix for branch on index instruction.
+ 'G': print the size of the operand in bytes.
+ 'J': print tls_load/tls_gdcall/tls_ldcall suffix
+ 'M': print the second word of a TImode operand.
+ 'N': print the second word of a DImode operand.
+ 'O': print only the displacement of a memory reference.
+ 'R': print only the base register of a memory reference.
+ 'S': print S-type memory reference (base+displacement).
+ 'Y': print shift count operand.
+
+ 'b': print integer X as if it's an unsigned byte.
+ 'c': print integer X as if it's an signed byte.
+ 'e': "end" of DImode contiguous bitmask X.
+ 'f': "end" of SImode contiguous bitmask X.
+ 'h': print integer X as if it's a signed halfword.
+ 'i': print the first nonzero HImode part of X.
+ 'j': print the first HImode part unequal to -1 of X.
+ 'k': print the first nonzero SImode part of X.
+ 'm': print the first SImode part unequal to -1 of X.
+ 'o': print integer X as if it's an unsigned 32bit word.
+ 's': "start" of DImode contiguous bitmask X.
+ 't': "start" of SImode contiguous bitmask X.
+ 'x': print integer X as if it's an unsigned halfword.
+*/
+
+void
+print_operand (FILE *file, rtx x, int code)
+{
+ HOST_WIDE_INT ival;
+
+ switch (code)
+ {
+ case 'C':
+ fprintf (file, s390_branch_condition_mnemonic (x, FALSE));
+ return;
+
+ case 'D':
+ fprintf (file, s390_branch_condition_mnemonic (x, TRUE));
+ return;
+
+ case 'E':
+ if (GET_CODE (x) == LE)
+ fprintf (file, "l");
+ else if (GET_CODE (x) == GT)
+ fprintf (file, "h");
+ else
+ output_operand_lossage ("invalid comparison operator "
+ "for 'E' output modifier");
+ return;
+
+ case 'J':
+ if (GET_CODE (x) == SYMBOL_REF)
+ {
+ fprintf (file, "%s", ":tls_load:");
+ output_addr_const (file, x);
+ }
+ else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSGD)
+ {
+ fprintf (file, "%s", ":tls_gdcall:");
+ output_addr_const (file, XVECEXP (x, 0, 0));
+ }
+ else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSLDM)
+ {
+ fprintf (file, "%s", ":tls_ldcall:");
+ assemble_name (file, get_some_local_dynamic_name ());
+ }
+ else
+ output_operand_lossage ("invalid reference for 'J' output modifier");
+ return;
+
+ case 'G':
+ fprintf (file, "%u", GET_MODE_SIZE (GET_MODE (x)));
+ return;
+
+ case 'O':
+ {
+ struct s390_address ad;
+ int ret;
+
+ if (!MEM_P (x))
+ {
+ output_operand_lossage ("memory reference expected for "
+ "'O' output modifier");
+ return;
+ }
+
+ ret = s390_decompose_address (XEXP (x, 0), &ad);
+
+ if (!ret
+ || (ad.base && !REGNO_OK_FOR_BASE_P (REGNO (ad.base)))
+ || ad.indx)
+ {
+ output_operand_lossage ("invalid address for 'O' output modifier");
+ return;
+ }
+
+ if (ad.disp)
+ output_addr_const (file, ad.disp);
+ else
+ fprintf (file, "0");
+ }
+ return;
+
+ case 'R':
+ {
+ struct s390_address ad;
+ int ret;
+
+ if (!MEM_P (x))
+ {
+ output_operand_lossage ("memory reference expected for "
+ "'R' output modifier");
+ return;
+ }
+
+ ret = s390_decompose_address (XEXP (x, 0), &ad);
+
+ if (!ret
+ || (ad.base && !REGNO_OK_FOR_BASE_P (REGNO (ad.base)))
+ || ad.indx)
+ {
+ output_operand_lossage ("invalid address for 'R' output modifier");
+ return;
+ }
+
+ if (ad.base)
+ fprintf (file, "%s", reg_names[REGNO (ad.base)]);
+ else
+ fprintf (file, "0");
+ }
+ return;
+
+ case 'S':
+ {
+ struct s390_address ad;
+ int ret;
+
+ if (!MEM_P (x))
+ {
+ output_operand_lossage ("memory reference expected for "
+ "'S' output modifier");
+ return;
+ }
+ ret = s390_decompose_address (XEXP (x, 0), &ad);
+
+ if (!ret
+ || (ad.base && !REGNO_OK_FOR_BASE_P (REGNO (ad.base)))
+ || ad.indx)
+ {
+ output_operand_lossage ("invalid address for 'S' output modifier");
+ return;
+ }
+
+ if (ad.disp)
+ output_addr_const (file, ad.disp);
+ else
+ fprintf (file, "0");
+
+ if (ad.base)
+ fprintf (file, "(%s)", reg_names[REGNO (ad.base)]);
+ }
+ return;
+
+ case 'N':
+ if (GET_CODE (x) == REG)
+ x = gen_rtx_REG (GET_MODE (x), REGNO (x) + 1);
+ else if (GET_CODE (x) == MEM)
+ x = change_address (x, VOIDmode,
+ plus_constant (Pmode, XEXP (x, 0), 4));
+ else
+ output_operand_lossage ("register or memory expression expected "
+ "for 'N' output modifier");
+ break;
+
+ case 'M':
+ if (GET_CODE (x) == REG)
+ x = gen_rtx_REG (GET_MODE (x), REGNO (x) + 1);
+ else if (GET_CODE (x) == MEM)
+ x = change_address (x, VOIDmode,
+ plus_constant (Pmode, XEXP (x, 0), 8));
+ else
+ output_operand_lossage ("register or memory expression expected "
+ "for 'M' output modifier");
+ break;
+
+ case 'Y':
+ print_shift_count_operand (file, x);
+ return;
+ }
+
+ switch (GET_CODE (x))
+ {
+ case REG:
+ fprintf (file, "%s", reg_names[REGNO (x)]);
+ break;
+
+ case MEM:
+ output_address (XEXP (x, 0));
+ break;
+
+ case CONST:
+ case CODE_LABEL:
+ case LABEL_REF:
+ case SYMBOL_REF:
+ output_addr_const (file, x);
+ break;
+
+ case CONST_INT:
+ ival = INTVAL (x);
+ switch (code)
+ {
+ case 0:
+ break;
+ case 'b':
+ ival &= 0xff;
+ break;
+ case 'c':
+ ival = ((ival & 0xff) ^ 0x80) - 0x80;
+ break;
+ case 'x':
+ ival &= 0xffff;
+ break;
+ case 'h':
+ ival = ((ival & 0xffff) ^ 0x8000) - 0x8000;
+ break;
+ case 'i':
+ ival = s390_extract_part (x, HImode, 0);
+ break;
+ case 'j':
+ ival = s390_extract_part (x, HImode, -1);
+ break;
+ case 'k':
+ ival = s390_extract_part (x, SImode, 0);
+ break;
+ case 'm':
+ ival = s390_extract_part (x, SImode, -1);
+ break;
+ case 'o':
+ ival &= 0xffffffff;
+ break;
+ case 'e': case 'f':
+ case 's': case 't':
+ {
+ int pos, len;
+ bool ok;
+
+ len = (code == 's' || code == 'e' ? 64 : 32);
+ ok = s390_contiguous_bitmask_p (ival, len, &pos, &len);
+ gcc_assert (ok);
+ if (code == 's' || code == 't')
+ ival = 64 - pos - len;
+ else
+ ival = 64 - 1 - pos;
+ }
+ break;
+ default:
+ output_operand_lossage ("invalid constant for output modifier '%c'", code);
+ }
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, ival);
+ break;
+
+ case CONST_DOUBLE:
+ gcc_assert (GET_MODE (x) == VOIDmode);
+ if (code == 'b')
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x) & 0xff);
+ else if (code == 'x')
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x) & 0xffff);
+ else if (code == 'h')
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC,
+ ((CONST_DOUBLE_LOW (x) & 0xffff) ^ 0x8000) - 0x8000);
+ else
+ {
+ if (code == 0)
+ output_operand_lossage ("invalid constant - try using "
+ "an output modifier");
+ else
+ output_operand_lossage ("invalid constant for output modifier '%c'",
+ code);
+ }
+ break;
+
+ default:
+ if (code == 0)
+ output_operand_lossage ("invalid expression - try using "
+ "an output modifier");
+ else
+ output_operand_lossage ("invalid expression for output "
+ "modifier '%c'", code);
+ break;
+ }
+}
+
+/* Target hook for assembling integer objects. We need to define it
+ here to work a round a bug in some versions of GAS, which couldn't
+ handle values smaller than INT_MIN when printed in decimal. */
+
+static bool
+s390_assemble_integer (rtx x, unsigned int size, int aligned_p)
+{
+ if (size == 8 && aligned_p
+ && GET_CODE (x) == CONST_INT && INTVAL (x) < INT_MIN)
+ {
+ fprintf (asm_out_file, "\t.quad\t" HOST_WIDE_INT_PRINT_HEX "\n",
+ INTVAL (x));
+ return true;
+ }
+ return default_assemble_integer (x, size, aligned_p);
+}
+
+/* Returns true if register REGNO is used for forming
+ a memory address in expression X. */
+
+static bool
+reg_used_in_mem_p (int regno, rtx x)
+{
+ enum rtx_code code = GET_CODE (x);
+ int i, j;
+ const char *fmt;
+
+ if (code == MEM)
+ {
+ if (refers_to_regno_p (regno, regno+1,
+ XEXP (x, 0), 0))
+ return true;
+ }
+ else if (code == SET
+ && GET_CODE (SET_DEST (x)) == PC)
+ {
+ if (refers_to_regno_p (regno, regno+1,
+ SET_SRC (x), 0))
+ return true;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e'
+ && reg_used_in_mem_p (regno, XEXP (x, i)))
+ return true;
+
+ else if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (x, i); j++)
+ if (reg_used_in_mem_p (regno, XVECEXP (x, i, j)))
+ return true;
+ }
+ return false;
+}
+
+/* Returns true if expression DEP_RTX sets an address register
+ used by instruction INSN to address memory. */
+
+static bool
+addr_generation_dependency_p (rtx dep_rtx, rtx insn)
+{
+ rtx target, pat;
+
+ if (NONJUMP_INSN_P (dep_rtx))
+ dep_rtx = PATTERN (dep_rtx);
+
+ if (GET_CODE (dep_rtx) == SET)
+ {
+ target = SET_DEST (dep_rtx);
+ if (GET_CODE (target) == STRICT_LOW_PART)
+ target = XEXP (target, 0);
+ while (GET_CODE (target) == SUBREG)
+ target = SUBREG_REG (target);
+
+ if (GET_CODE (target) == REG)
+ {
+ int regno = REGNO (target);
+
+ if (s390_safe_attr_type (insn) == TYPE_LA)
+ {
+ pat = PATTERN (insn);
+ if (GET_CODE (pat) == PARALLEL)
+ {
+ gcc_assert (XVECLEN (pat, 0) == 2);
+ pat = XVECEXP (pat, 0, 0);
+ }
+ gcc_assert (GET_CODE (pat) == SET);
+ return refers_to_regno_p (regno, regno+1, SET_SRC (pat), 0);
+ }
+ else if (get_attr_atype (insn) == ATYPE_AGEN)
+ return reg_used_in_mem_p (regno, PATTERN (insn));
+ }
+ }
+ return false;
+}
+
+/* Return 1, if dep_insn sets register used in insn in the agen unit. */
+
+int
+s390_agen_dep_p (rtx dep_insn, rtx insn)
+{
+ rtx dep_rtx = PATTERN (dep_insn);
+ int i;
+
+ if (GET_CODE (dep_rtx) == SET
+ && addr_generation_dependency_p (dep_rtx, insn))
+ return 1;
+ else if (GET_CODE (dep_rtx) == PARALLEL)
+ {
+ for (i = 0; i < XVECLEN (dep_rtx, 0); i++)
+ {
+ if (addr_generation_dependency_p (XVECEXP (dep_rtx, 0, i), insn))
+ return 1;
+ }
+ }
+ return 0;
+}
+
+
+/* A C statement (sans semicolon) to update the integer scheduling priority
+ INSN_PRIORITY (INSN). Increase the priority to execute the INSN earlier,
+ reduce the priority to execute INSN later. Do not define this macro if
+ you do not need to adjust the scheduling priorities of insns.
+
+ A STD instruction should be scheduled earlier,
+ in order to use the bypass. */
+static int
+s390_adjust_priority (rtx insn ATTRIBUTE_UNUSED, int priority)
+{
+ if (! INSN_P (insn))
+ return priority;
+
+ if (s390_tune != PROCESSOR_2084_Z990
+ && s390_tune != PROCESSOR_2094_Z9_109
+ && s390_tune != PROCESSOR_2097_Z10
+ && s390_tune != PROCESSOR_2817_Z196
+ && s390_tune != PROCESSOR_2827_ZEC12)
+ return priority;
+
+ switch (s390_safe_attr_type (insn))
+ {
+ case TYPE_FSTOREDF:
+ case TYPE_FSTORESF:
+ priority = priority << 3;
+ break;
+ case TYPE_STORE:
+ case TYPE_STM:
+ priority = priority << 1;
+ break;
+ default:
+ break;
+ }
+ return priority;
+}
+
+
+/* The number of instructions that can be issued per cycle. */
+
+static int
+s390_issue_rate (void)
+{
+ switch (s390_tune)
+ {
+ case PROCESSOR_2084_Z990:
+ case PROCESSOR_2094_Z9_109:
+ case PROCESSOR_2817_Z196:
+ return 3;
+ case PROCESSOR_2097_Z10:
+ case PROCESSOR_2827_ZEC12:
+ return 2;
+ default:
+ return 1;
+ }
+}
+
+static int
+s390_first_cycle_multipass_dfa_lookahead (void)
+{
+ return 4;
+}
+
+/* Annotate every literal pool reference in X by an UNSPEC_LTREF expression.
+ Fix up MEMs as required. */
+
+static void
+annotate_constant_pool_refs (rtx *x)
+{
+ int i, j;
+ const char *fmt;
+
+ gcc_assert (GET_CODE (*x) != SYMBOL_REF
+ || !CONSTANT_POOL_ADDRESS_P (*x));
+
+ /* Literal pool references can only occur inside a MEM ... */
+ if (GET_CODE (*x) == MEM)
+ {
+ rtx memref = XEXP (*x, 0);
+
+ if (GET_CODE (memref) == SYMBOL_REF
+ && CONSTANT_POOL_ADDRESS_P (memref))
+ {
+ rtx base = cfun->machine->base_reg;
+ rtx addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, memref, base),
+ UNSPEC_LTREF);
+
+ *x = replace_equiv_address (*x, addr);
+ return;
+ }
+
+ if (GET_CODE (memref) == CONST
+ && GET_CODE (XEXP (memref, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (memref, 0), 1)) == CONST_INT
+ && GET_CODE (XEXP (XEXP (memref, 0), 0)) == SYMBOL_REF
+ && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (memref, 0), 0)))
+ {
+ HOST_WIDE_INT off = INTVAL (XEXP (XEXP (memref, 0), 1));
+ rtx sym = XEXP (XEXP (memref, 0), 0);
+ rtx base = cfun->machine->base_reg;
+ rtx addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, sym, base),
+ UNSPEC_LTREF);
+
+ *x = replace_equiv_address (*x, plus_constant (Pmode, addr, off));
+ return;
+ }
+ }
+
+ /* ... or a load-address type pattern. */
+ if (GET_CODE (*x) == SET)
+ {
+ rtx addrref = SET_SRC (*x);
+
+ if (GET_CODE (addrref) == SYMBOL_REF
+ && CONSTANT_POOL_ADDRESS_P (addrref))
+ {
+ rtx base = cfun->machine->base_reg;
+ rtx addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, addrref, base),
+ UNSPEC_LTREF);
+
+ SET_SRC (*x) = addr;
+ return;
+ }
+
+ if (GET_CODE (addrref) == CONST
+ && GET_CODE (XEXP (addrref, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (addrref, 0), 1)) == CONST_INT
+ && GET_CODE (XEXP (XEXP (addrref, 0), 0)) == SYMBOL_REF
+ && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (addrref, 0), 0)))
+ {
+ HOST_WIDE_INT off = INTVAL (XEXP (XEXP (addrref, 0), 1));
+ rtx sym = XEXP (XEXP (addrref, 0), 0);
+ rtx base = cfun->machine->base_reg;
+ rtx addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, sym, base),
+ UNSPEC_LTREF);
+
+ SET_SRC (*x) = plus_constant (Pmode, addr, off);
+ return;
+ }
+ }
+
+ /* Annotate LTREL_BASE as well. */
+ if (GET_CODE (*x) == UNSPEC
+ && XINT (*x, 1) == UNSPEC_LTREL_BASE)
+ {
+ rtx base = cfun->machine->base_reg;
+ *x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, XVECEXP (*x, 0, 0), base),
+ UNSPEC_LTREL_BASE);
+ return;
+ }
+
+ fmt = GET_RTX_FORMAT (GET_CODE (*x));
+ for (i = GET_RTX_LENGTH (GET_CODE (*x)) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ annotate_constant_pool_refs (&XEXP (*x, i));
+ }
+ else if (fmt[i] == 'E')
+ {
+ for (j = 0; j < XVECLEN (*x, i); j++)
+ annotate_constant_pool_refs (&XVECEXP (*x, i, j));
+ }
+ }
+}
+
+/* Split all branches that exceed the maximum distance.
+ Returns true if this created a new literal pool entry. */
+
+static int
+s390_split_branches (void)
+{
+ rtx temp_reg = gen_rtx_REG (Pmode, RETURN_REGNUM);
+ int new_literal = 0, ret;
+ rtx insn, pat, tmp, target;
+ rtx *label;
+
+ /* We need correct insn addresses. */
+
+ shorten_branches (get_insns ());
+
+ /* Find all branches that exceed 64KB, and split them. */
+
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ {
+ if (! JUMP_P (insn) || tablejump_p (insn, NULL, NULL))
+ continue;
+
+ pat = PATTERN (insn);
+ if (GET_CODE (pat) == PARALLEL)
+ pat = XVECEXP (pat, 0, 0);
+ if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
+ continue;
+
+ if (GET_CODE (SET_SRC (pat)) == LABEL_REF)
+ {
+ label = &SET_SRC (pat);
+ }
+ else if (GET_CODE (SET_SRC (pat)) == IF_THEN_ELSE)
+ {
+ if (GET_CODE (XEXP (SET_SRC (pat), 1)) == LABEL_REF)
+ label = &XEXP (SET_SRC (pat), 1);
+ else if (GET_CODE (XEXP (SET_SRC (pat), 2)) == LABEL_REF)
+ label = &XEXP (SET_SRC (pat), 2);
+ else
+ continue;
+ }
+ else
+ continue;
+
+ if (get_attr_length (insn) <= 4)
+ continue;
+
+ /* We are going to use the return register as scratch register,
+ make sure it will be saved/restored by the prologue/epilogue. */
+ cfun_frame_layout.save_return_addr_p = 1;
+
+ if (!flag_pic)
+ {
+ new_literal = 1;
+ tmp = force_const_mem (Pmode, *label);
+ tmp = emit_insn_before (gen_rtx_SET (Pmode, temp_reg, tmp), insn);
+ INSN_ADDRESSES_NEW (tmp, -1);
+ annotate_constant_pool_refs (&PATTERN (tmp));
+
+ target = temp_reg;
+ }
+ else
+ {
+ new_literal = 1;
+ target = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, *label),
+ UNSPEC_LTREL_OFFSET);
+ target = gen_rtx_CONST (Pmode, target);
+ target = force_const_mem (Pmode, target);
+ tmp = emit_insn_before (gen_rtx_SET (Pmode, temp_reg, target), insn);
+ INSN_ADDRESSES_NEW (tmp, -1);
+ annotate_constant_pool_refs (&PATTERN (tmp));
+
+ target = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, XEXP (target, 0),
+ cfun->machine->base_reg),
+ UNSPEC_LTREL_BASE);
+ target = gen_rtx_PLUS (Pmode, temp_reg, target);
+ }
+
+ ret = validate_change (insn, label, target, 0);
+ gcc_assert (ret);
+ }
+
+ return new_literal;
+}
+
+
+/* Find an annotated literal pool symbol referenced in RTX X,
+ and store it at REF. Will abort if X contains references to
+ more than one such pool symbol; multiple references to the same
+ symbol are allowed, however.
+
+ The rtx pointed to by REF must be initialized to NULL_RTX
+ by the caller before calling this routine. */
+
+static void
+find_constant_pool_ref (rtx x, rtx *ref)
+{
+ int i, j;
+ const char *fmt;
+
+ /* Ignore LTREL_BASE references. */
+ if (GET_CODE (x) == UNSPEC
+ && XINT (x, 1) == UNSPEC_LTREL_BASE)
+ return;
+ /* Likewise POOL_ENTRY insns. */
+ if (GET_CODE (x) == UNSPEC_VOLATILE
+ && XINT (x, 1) == UNSPECV_POOL_ENTRY)
+ return;
+
+ gcc_assert (GET_CODE (x) != SYMBOL_REF
+ || !CONSTANT_POOL_ADDRESS_P (x));
+
+ if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_LTREF)
+ {
+ rtx sym = XVECEXP (x, 0, 0);
+ gcc_assert (GET_CODE (sym) == SYMBOL_REF
+ && CONSTANT_POOL_ADDRESS_P (sym));
+
+ if (*ref == NULL_RTX)
+ *ref = sym;
+ else
+ gcc_assert (*ref == sym);
+
+ return;
+ }
+
+ fmt = GET_RTX_FORMAT (GET_CODE (x));
+ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ find_constant_pool_ref (XEXP (x, i), ref);
+ }
+ else if (fmt[i] == 'E')
+ {
+ for (j = 0; j < XVECLEN (x, i); j++)
+ find_constant_pool_ref (XVECEXP (x, i, j), ref);
+ }
+ }
+}
+
+/* Replace every reference to the annotated literal pool
+ symbol REF in X by its base plus OFFSET. */
+
+static void
+replace_constant_pool_ref (rtx *x, rtx ref, rtx offset)
+{
+ int i, j;
+ const char *fmt;
+
+ gcc_assert (*x != ref);
+
+ if (GET_CODE (*x) == UNSPEC
+ && XINT (*x, 1) == UNSPEC_LTREF
+ && XVECEXP (*x, 0, 0) == ref)
+ {
+ *x = gen_rtx_PLUS (Pmode, XVECEXP (*x, 0, 1), offset);
+ return;
+ }
+
+ if (GET_CODE (*x) == PLUS
+ && GET_CODE (XEXP (*x, 1)) == CONST_INT
+ && GET_CODE (XEXP (*x, 0)) == UNSPEC
+ && XINT (XEXP (*x, 0), 1) == UNSPEC_LTREF
+ && XVECEXP (XEXP (*x, 0), 0, 0) == ref)
+ {
+ rtx addr = gen_rtx_PLUS (Pmode, XVECEXP (XEXP (*x, 0), 0, 1), offset);
+ *x = plus_constant (Pmode, addr, INTVAL (XEXP (*x, 1)));
+ return;
+ }
+
+ fmt = GET_RTX_FORMAT (GET_CODE (*x));
+ for (i = GET_RTX_LENGTH (GET_CODE (*x)) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ replace_constant_pool_ref (&XEXP (*x, i), ref, offset);
+ }
+ else if (fmt[i] == 'E')
+ {
+ for (j = 0; j < XVECLEN (*x, i); j++)
+ replace_constant_pool_ref (&XVECEXP (*x, i, j), ref, offset);
+ }
+ }
+}
+
+/* Check whether X contains an UNSPEC_LTREL_BASE.
+ Return its constant pool symbol if found, NULL_RTX otherwise. */
+
+static rtx
+find_ltrel_base (rtx x)
+{
+ int i, j;
+ const char *fmt;
+
+ if (GET_CODE (x) == UNSPEC
+ && XINT (x, 1) == UNSPEC_LTREL_BASE)
+ return XVECEXP (x, 0, 0);
+
+ fmt = GET_RTX_FORMAT (GET_CODE (x));
+ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ rtx fnd = find_ltrel_base (XEXP (x, i));
+ if (fnd)
+ return fnd;
+ }
+ else if (fmt[i] == 'E')
+ {
+ for (j = 0; j < XVECLEN (x, i); j++)
+ {
+ rtx fnd = find_ltrel_base (XVECEXP (x, i, j));
+ if (fnd)
+ return fnd;
+ }
+ }
+ }
+
+ return NULL_RTX;
+}
+
+/* Replace any occurrence of UNSPEC_LTREL_BASE in X with its base. */
+
+static void
+replace_ltrel_base (rtx *x)
+{
+ int i, j;
+ const char *fmt;
+
+ if (GET_CODE (*x) == UNSPEC
+ && XINT (*x, 1) == UNSPEC_LTREL_BASE)
+ {
+ *x = XVECEXP (*x, 0, 1);
+ return;
+ }
+
+ fmt = GET_RTX_FORMAT (GET_CODE (*x));
+ for (i = GET_RTX_LENGTH (GET_CODE (*x)) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ replace_ltrel_base (&XEXP (*x, i));
+ }
+ else if (fmt[i] == 'E')
+ {
+ for (j = 0; j < XVECLEN (*x, i); j++)
+ replace_ltrel_base (&XVECEXP (*x, i, j));
+ }
+ }
+}
+
+
+/* We keep a list of constants which we have to add to internal
+ constant tables in the middle of large functions. */
+
+#define NR_C_MODES 11
+enum machine_mode constant_modes[NR_C_MODES] =
+{
+ TFmode, TImode, TDmode,
+ DFmode, DImode, DDmode,
+ SFmode, SImode, SDmode,
+ HImode,
+ QImode
+};
+
+struct constant
+{
+ struct constant *next;
+ rtx value;
+ rtx label;
+};
+
+struct constant_pool
+{
+ struct constant_pool *next;
+ rtx first_insn;
+ rtx pool_insn;
+ bitmap insns;
+ rtx emit_pool_after;
+
+ struct constant *constants[NR_C_MODES];
+ struct constant *execute;
+ rtx label;
+ int size;
+};
+
+/* Allocate new constant_pool structure. */
+
+static struct constant_pool *
+s390_alloc_pool (void)
+{
+ struct constant_pool *pool;
+ int i;
+
+ pool = (struct constant_pool *) xmalloc (sizeof *pool);
+ pool->next = NULL;
+ for (i = 0; i < NR_C_MODES; i++)
+ pool->constants[i] = NULL;
+
+ pool->execute = NULL;
+ pool->label = gen_label_rtx ();
+ pool->first_insn = NULL_RTX;
+ pool->pool_insn = NULL_RTX;
+ pool->insns = BITMAP_ALLOC (NULL);
+ pool->size = 0;
+ pool->emit_pool_after = NULL_RTX;
+
+ return pool;
+}
+
+/* Create new constant pool covering instructions starting at INSN
+ and chain it to the end of POOL_LIST. */
+
+static struct constant_pool *
+s390_start_pool (struct constant_pool **pool_list, rtx insn)
+{
+ struct constant_pool *pool, **prev;
+
+ pool = s390_alloc_pool ();
+ pool->first_insn = insn;
+
+ for (prev = pool_list; *prev; prev = &(*prev)->next)
+ ;
+ *prev = pool;
+
+ return pool;
+}
+
+/* End range of instructions covered by POOL at INSN and emit
+ placeholder insn representing the pool. */
+
+static void
+s390_end_pool (struct constant_pool *pool, rtx insn)
+{
+ rtx pool_size = GEN_INT (pool->size + 8 /* alignment slop */);
+
+ if (!insn)
+ insn = get_last_insn ();
+
+ pool->pool_insn = emit_insn_after (gen_pool (pool_size), insn);
+ INSN_ADDRESSES_NEW (pool->pool_insn, -1);
+}
+
+/* Add INSN to the list of insns covered by POOL. */
+
+static void
+s390_add_pool_insn (struct constant_pool *pool, rtx insn)
+{
+ bitmap_set_bit (pool->insns, INSN_UID (insn));
+}
+
+/* Return pool out of POOL_LIST that covers INSN. */
+
+static struct constant_pool *
+s390_find_pool (struct constant_pool *pool_list, rtx insn)
+{
+ struct constant_pool *pool;
+
+ for (pool = pool_list; pool; pool = pool->next)
+ if (bitmap_bit_p (pool->insns, INSN_UID (insn)))
+ break;
+
+ return pool;
+}
+
+/* Add constant VAL of mode MODE to the constant pool POOL. */
+
+static void
+s390_add_constant (struct constant_pool *pool, rtx val, enum machine_mode mode)
+{
+ struct constant *c;
+ int i;
+
+ for (i = 0; i < NR_C_MODES; i++)
+ if (constant_modes[i] == mode)
+ break;
+ gcc_assert (i != NR_C_MODES);
+
+ for (c = pool->constants[i]; c != NULL; c = c->next)
+ if (rtx_equal_p (val, c->value))
+ break;
+
+ if (c == NULL)
+ {
+ c = (struct constant *) xmalloc (sizeof *c);
+ c->value = val;
+ c->label = gen_label_rtx ();
+ c->next = pool->constants[i];
+ pool->constants[i] = c;
+ pool->size += GET_MODE_SIZE (mode);
+ }
+}
+
+/* Return an rtx that represents the offset of X from the start of
+ pool POOL. */
+
+static rtx
+s390_pool_offset (struct constant_pool *pool, rtx x)
+{
+ rtx label;
+
+ label = gen_rtx_LABEL_REF (GET_MODE (x), pool->label);
+ x = gen_rtx_UNSPEC (GET_MODE (x), gen_rtvec (2, x, label),
+ UNSPEC_POOL_OFFSET);
+ return gen_rtx_CONST (GET_MODE (x), x);
+}
+
+/* Find constant VAL of mode MODE in the constant pool POOL.
+ Return an RTX describing the distance from the start of
+ the pool to the location of the new constant. */
+
+static rtx
+s390_find_constant (struct constant_pool *pool, rtx val,
+ enum machine_mode mode)
+{
+ struct constant *c;
+ int i;
+
+ for (i = 0; i < NR_C_MODES; i++)
+ if (constant_modes[i] == mode)
+ break;
+ gcc_assert (i != NR_C_MODES);
+
+ for (c = pool->constants[i]; c != NULL; c = c->next)
+ if (rtx_equal_p (val, c->value))
+ break;
+
+ gcc_assert (c);
+
+ return s390_pool_offset (pool, gen_rtx_LABEL_REF (Pmode, c->label));
+}
+
+/* Check whether INSN is an execute. Return the label_ref to its
+ execute target template if so, NULL_RTX otherwise. */
+
+static rtx
+s390_execute_label (rtx insn)
+{
+ if (NONJUMP_INSN_P (insn)
+ && GET_CODE (PATTERN (insn)) == PARALLEL
+ && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == UNSPEC
+ && XINT (XVECEXP (PATTERN (insn), 0, 0), 1) == UNSPEC_EXECUTE)
+ return XVECEXP (XVECEXP (PATTERN (insn), 0, 0), 0, 2);
+
+ return NULL_RTX;
+}
+
+/* Add execute target for INSN to the constant pool POOL. */
+
+static void
+s390_add_execute (struct constant_pool *pool, rtx insn)
+{
+ struct constant *c;
+
+ for (c = pool->execute; c != NULL; c = c->next)
+ if (INSN_UID (insn) == INSN_UID (c->value))
+ break;
+
+ if (c == NULL)
+ {
+ c = (struct constant *) xmalloc (sizeof *c);
+ c->value = insn;
+ c->label = gen_label_rtx ();
+ c->next = pool->execute;
+ pool->execute = c;
+ pool->size += 6;
+ }
+}
+
+/* Find execute target for INSN in the constant pool POOL.
+ Return an RTX describing the distance from the start of
+ the pool to the location of the execute target. */
+
+static rtx
+s390_find_execute (struct constant_pool *pool, rtx insn)
+{
+ struct constant *c;
+
+ for (c = pool->execute; c != NULL; c = c->next)
+ if (INSN_UID (insn) == INSN_UID (c->value))
+ break;
+
+ gcc_assert (c);
+
+ return s390_pool_offset (pool, gen_rtx_LABEL_REF (Pmode, c->label));
+}
+
+/* For an execute INSN, extract the execute target template. */
+
+static rtx
+s390_execute_target (rtx insn)
+{
+ rtx pattern = PATTERN (insn);
+ gcc_assert (s390_execute_label (insn));
+
+ if (XVECLEN (pattern, 0) == 2)
+ {
+ pattern = copy_rtx (XVECEXP (pattern, 0, 1));
+ }
+ else
+ {
+ rtvec vec = rtvec_alloc (XVECLEN (pattern, 0) - 1);
+ int i;
+
+ for (i = 0; i < XVECLEN (pattern, 0) - 1; i++)
+ RTVEC_ELT (vec, i) = copy_rtx (XVECEXP (pattern, 0, i + 1));
+
+ pattern = gen_rtx_PARALLEL (VOIDmode, vec);
+ }
+
+ return pattern;
+}
+
+/* Indicate that INSN cannot be duplicated. This is the case for
+ execute insns that carry a unique label. */
+
+static bool
+s390_cannot_copy_insn_p (rtx insn)
+{
+ rtx label = s390_execute_label (insn);
+ return label && label != const0_rtx;
+}
+
+/* Dump out the constants in POOL. If REMOTE_LABEL is true,
+ do not emit the pool base label. */
+
+static void
+s390_dump_pool (struct constant_pool *pool, bool remote_label)
+{
+ struct constant *c;
+ rtx insn = pool->pool_insn;
+ int i;
+
+ /* Switch to rodata section. */
+ if (TARGET_CPU_ZARCH)
+ {
+ insn = emit_insn_after (gen_pool_section_start (), insn);
+ INSN_ADDRESSES_NEW (insn, -1);
+ }
+
+ /* Ensure minimum pool alignment. */
+ if (TARGET_CPU_ZARCH)
+ insn = emit_insn_after (gen_pool_align (GEN_INT (8)), insn);
+ else
+ insn = emit_insn_after (gen_pool_align (GEN_INT (4)), insn);
+ INSN_ADDRESSES_NEW (insn, -1);
+
+ /* Emit pool base label. */
+ if (!remote_label)
+ {
+ insn = emit_label_after (pool->label, insn);
+ INSN_ADDRESSES_NEW (insn, -1);
+ }
+
+ /* Dump constants in descending alignment requirement order,
+ ensuring proper alignment for every constant. */
+ for (i = 0; i < NR_C_MODES; i++)
+ for (c = pool->constants[i]; c; c = c->next)
+ {
+ /* Convert UNSPEC_LTREL_OFFSET unspecs to pool-relative references. */
+ rtx value = copy_rtx (c->value);
+ if (GET_CODE (value) == CONST
+ && GET_CODE (XEXP (value, 0)) == UNSPEC
+ && XINT (XEXP (value, 0), 1) == UNSPEC_LTREL_OFFSET
+ && XVECLEN (XEXP (value, 0), 0) == 1)
+ value = s390_pool_offset (pool, XVECEXP (XEXP (value, 0), 0, 0));
+
+ insn = emit_label_after (c->label, insn);
+ INSN_ADDRESSES_NEW (insn, -1);
+
+ value = gen_rtx_UNSPEC_VOLATILE (constant_modes[i],
+ gen_rtvec (1, value),
+ UNSPECV_POOL_ENTRY);
+ insn = emit_insn_after (value, insn);
+ INSN_ADDRESSES_NEW (insn, -1);
+ }
+
+ /* Ensure minimum alignment for instructions. */
+ insn = emit_insn_after (gen_pool_align (GEN_INT (2)), insn);
+ INSN_ADDRESSES_NEW (insn, -1);
+
+ /* Output in-pool execute template insns. */
+ for (c = pool->execute; c; c = c->next)
+ {
+ insn = emit_label_after (c->label, insn);
+ INSN_ADDRESSES_NEW (insn, -1);
+
+ insn = emit_insn_after (s390_execute_target (c->value), insn);
+ INSN_ADDRESSES_NEW (insn, -1);
+ }
+
+ /* Switch back to previous section. */
+ if (TARGET_CPU_ZARCH)
+ {
+ insn = emit_insn_after (gen_pool_section_end (), insn);
+ INSN_ADDRESSES_NEW (insn, -1);
+ }
+
+ insn = emit_barrier_after (insn);
+ INSN_ADDRESSES_NEW (insn, -1);
+
+ /* Remove placeholder insn. */
+ remove_insn (pool->pool_insn);
+}
+
+/* Free all memory used by POOL. */
+
+static void
+s390_free_pool (struct constant_pool *pool)
+{
+ struct constant *c, *next;
+ int i;
+
+ for (i = 0; i < NR_C_MODES; i++)
+ for (c = pool->constants[i]; c; c = next)
+ {
+ next = c->next;
+ free (c);
+ }
+
+ for (c = pool->execute; c; c = next)
+ {
+ next = c->next;
+ free (c);
+ }
+
+ BITMAP_FREE (pool->insns);
+ free (pool);
+}
+
+
+/* Collect main literal pool. Return NULL on overflow. */
+
+static struct constant_pool *
+s390_mainpool_start (void)
+{
+ struct constant_pool *pool;
+ rtx insn;
+
+ pool = s390_alloc_pool ();
+
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ {
+ if (NONJUMP_INSN_P (insn)
+ && GET_CODE (PATTERN (insn)) == SET
+ && GET_CODE (SET_SRC (PATTERN (insn))) == UNSPEC_VOLATILE
+ && XINT (SET_SRC (PATTERN (insn)), 1) == UNSPECV_MAIN_POOL)
+ {
+ /* There might be two main_pool instructions if base_reg
+ is call-clobbered; one for shrink-wrapped code and one
+ for the rest. We want to keep the first. */
+ if (pool->pool_insn)
+ {
+ insn = PREV_INSN (insn);
+ delete_insn (NEXT_INSN (insn));
+ continue;
+ }
+ pool->pool_insn = insn;
+ }
+
+ if (!TARGET_CPU_ZARCH && s390_execute_label (insn))
+ {
+ s390_add_execute (pool, insn);
+ }
+ else if (NONJUMP_INSN_P (insn) || CALL_P (insn))
+ {
+ rtx pool_ref = NULL_RTX;
+ find_constant_pool_ref (PATTERN (insn), &pool_ref);
+ if (pool_ref)
+ {
+ rtx constant = get_pool_constant (pool_ref);
+ enum machine_mode mode = get_pool_mode (pool_ref);
+ s390_add_constant (pool, constant, mode);
+ }
+ }
+
+ /* If hot/cold partitioning is enabled we have to make sure that
+ the literal pool is emitted in the same section where the
+ initialization of the literal pool base pointer takes place.
+ emit_pool_after is only used in the non-overflow case on non
+ Z cpus where we can emit the literal pool at the end of the
+ function body within the text section. */
+ if (NOTE_P (insn)
+ && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS
+ && !pool->emit_pool_after)
+ pool->emit_pool_after = PREV_INSN (insn);
+ }
+
+ gcc_assert (pool->pool_insn || pool->size == 0);
+
+ if (pool->size >= 4096)
+ {
+ /* We're going to chunkify the pool, so remove the main
+ pool placeholder insn. */
+ remove_insn (pool->pool_insn);
+
+ s390_free_pool (pool);
+ pool = NULL;
+ }
+
+ /* If the functions ends with the section where the literal pool
+ should be emitted set the marker to its end. */
+ if (pool && !pool->emit_pool_after)
+ pool->emit_pool_after = get_last_insn ();
+
+ return pool;
+}
+
+/* POOL holds the main literal pool as collected by s390_mainpool_start.
+ Modify the current function to output the pool constants as well as
+ the pool register setup instruction. */
+
+static void
+s390_mainpool_finish (struct constant_pool *pool)
+{
+ rtx base_reg = cfun->machine->base_reg;
+ rtx insn;
+
+ /* If the pool is empty, we're done. */
+ if (pool->size == 0)
+ {
+ /* We don't actually need a base register after all. */
+ cfun->machine->base_reg = NULL_RTX;
+
+ if (pool->pool_insn)
+ remove_insn (pool->pool_insn);
+ s390_free_pool (pool);
+ return;
+ }
+
+ /* We need correct insn addresses. */
+ shorten_branches (get_insns ());
+
+ /* On zSeries, we use a LARL to load the pool register. The pool is
+ located in the .rodata section, so we emit it after the function. */
+ if (TARGET_CPU_ZARCH)
+ {
+ insn = gen_main_base_64 (base_reg, pool->label);
+ insn = emit_insn_after (insn, pool->pool_insn);
+ INSN_ADDRESSES_NEW (insn, -1);
+ remove_insn (pool->pool_insn);
+
+ insn = get_last_insn ();
+ pool->pool_insn = emit_insn_after (gen_pool (const0_rtx), insn);
+ INSN_ADDRESSES_NEW (pool->pool_insn, -1);
+
+ s390_dump_pool (pool, 0);
+ }
+
+ /* On S/390, if the total size of the function's code plus literal pool
+ does not exceed 4096 bytes, we use BASR to set up a function base
+ pointer, and emit the literal pool at the end of the function. */
+ else if (INSN_ADDRESSES (INSN_UID (pool->emit_pool_after))
+ + pool->size + 8 /* alignment slop */ < 4096)
+ {
+ insn = gen_main_base_31_small (base_reg, pool->label);
+ insn = emit_insn_after (insn, pool->pool_insn);
+ INSN_ADDRESSES_NEW (insn, -1);
+ remove_insn (pool->pool_insn);
+
+ insn = emit_label_after (pool->label, insn);
+ INSN_ADDRESSES_NEW (insn, -1);
+
+ /* emit_pool_after will be set by s390_mainpool_start to the
+ last insn of the section where the literal pool should be
+ emitted. */
+ insn = pool->emit_pool_after;
+
+ pool->pool_insn = emit_insn_after (gen_pool (const0_rtx), insn);
+ INSN_ADDRESSES_NEW (pool->pool_insn, -1);
+
+ s390_dump_pool (pool, 1);
+ }
+
+ /* Otherwise, we emit an inline literal pool and use BASR to branch
+ over it, setting up the pool register at the same time. */
+ else
+ {
+ rtx pool_end = gen_label_rtx ();
+
+ insn = gen_main_base_31_large (base_reg, pool->label, pool_end);
+ insn = emit_jump_insn_after (insn, pool->pool_insn);
+ JUMP_LABEL (insn) = pool_end;
+ INSN_ADDRESSES_NEW (insn, -1);
+ remove_insn (pool->pool_insn);
+
+ insn = emit_label_after (pool->label, insn);
+ INSN_ADDRESSES_NEW (insn, -1);
+
+ pool->pool_insn = emit_insn_after (gen_pool (const0_rtx), insn);
+ INSN_ADDRESSES_NEW (pool->pool_insn, -1);
+
+ insn = emit_label_after (pool_end, pool->pool_insn);
+ INSN_ADDRESSES_NEW (insn, -1);
+
+ s390_dump_pool (pool, 1);
+ }
+
+
+ /* Replace all literal pool references. */
+
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ {
+ if (INSN_P (insn))
+ replace_ltrel_base (&PATTERN (insn));
+
+ if (NONJUMP_INSN_P (insn) || CALL_P (insn))
+ {
+ rtx addr, pool_ref = NULL_RTX;
+ find_constant_pool_ref (PATTERN (insn), &pool_ref);
+ if (pool_ref)
+ {
+ if (s390_execute_label (insn))
+ addr = s390_find_execute (pool, insn);
+ else
+ addr = s390_find_constant (pool, get_pool_constant (pool_ref),
+ get_pool_mode (pool_ref));
+
+ replace_constant_pool_ref (&PATTERN (insn), pool_ref, addr);
+ INSN_CODE (insn) = -1;
+ }
+ }
+ }
+
+
+ /* Free the pool. */
+ s390_free_pool (pool);
+}
+
+/* POOL holds the main literal pool as collected by s390_mainpool_start.
+ We have decided we cannot use this pool, so revert all changes
+ to the current function that were done by s390_mainpool_start. */
+static void
+s390_mainpool_cancel (struct constant_pool *pool)
+{
+ /* We didn't actually change the instruction stream, so simply
+ free the pool memory. */
+ s390_free_pool (pool);
+}
+
+
+/* Chunkify the literal pool. */
+
+#define S390_POOL_CHUNK_MIN 0xc00
+#define S390_POOL_CHUNK_MAX 0xe00
+
+static struct constant_pool *
+s390_chunkify_start (void)
+{
+ struct constant_pool *curr_pool = NULL, *pool_list = NULL;
+ int extra_size = 0;
+ bitmap far_labels;
+ rtx pending_ltrel = NULL_RTX;
+ rtx insn;
+
+ rtx (*gen_reload_base) (rtx, rtx) =
+ TARGET_CPU_ZARCH? gen_reload_base_64 : gen_reload_base_31;
+
+
+ /* We need correct insn addresses. */
+
+ shorten_branches (get_insns ());
+
+ /* Scan all insns and move literals to pool chunks. */
+
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ {
+ bool section_switch_p = false;
+
+ /* Check for pending LTREL_BASE. */
+ if (INSN_P (insn))
+ {
+ rtx ltrel_base = find_ltrel_base (PATTERN (insn));
+ if (ltrel_base)
+ {
+ gcc_assert (ltrel_base == pending_ltrel);
+ pending_ltrel = NULL_RTX;
+ }
+ }
+
+ if (!TARGET_CPU_ZARCH && s390_execute_label (insn))
+ {
+ if (!curr_pool)
+ curr_pool = s390_start_pool (&pool_list, insn);
+
+ s390_add_execute (curr_pool, insn);
+ s390_add_pool_insn (curr_pool, insn);
+ }
+ else if (NONJUMP_INSN_P (insn) || CALL_P (insn))
+ {
+ rtx pool_ref = NULL_RTX;
+ find_constant_pool_ref (PATTERN (insn), &pool_ref);
+ if (pool_ref)
+ {
+ rtx constant = get_pool_constant (pool_ref);
+ enum machine_mode mode = get_pool_mode (pool_ref);
+
+ if (!curr_pool)
+ curr_pool = s390_start_pool (&pool_list, insn);
+
+ s390_add_constant (curr_pool, constant, mode);
+ s390_add_pool_insn (curr_pool, insn);
+
+ /* Don't split the pool chunk between a LTREL_OFFSET load
+ and the corresponding LTREL_BASE. */
+ if (GET_CODE (constant) == CONST
+ && GET_CODE (XEXP (constant, 0)) == UNSPEC
+ && XINT (XEXP (constant, 0), 1) == UNSPEC_LTREL_OFFSET)
+ {
+ gcc_assert (!pending_ltrel);
+ pending_ltrel = pool_ref;
+ }
+ }
+ }
+
+ if (JUMP_P (insn) || JUMP_TABLE_DATA_P (insn) || LABEL_P (insn))
+ {
+ if (curr_pool)
+ s390_add_pool_insn (curr_pool, insn);
+ /* An LTREL_BASE must follow within the same basic block. */
+ gcc_assert (!pending_ltrel);
+ }
+
+ if (NOTE_P (insn))
+ switch (NOTE_KIND (insn))
+ {
+ case NOTE_INSN_SWITCH_TEXT_SECTIONS:
+ section_switch_p = true;
+ break;
+ case NOTE_INSN_VAR_LOCATION:
+ case NOTE_INSN_CALL_ARG_LOCATION:
+ continue;
+ default:
+ break;
+ }
+
+ if (!curr_pool
+ || INSN_ADDRESSES_SIZE () <= (size_t) INSN_UID (insn)
+ || INSN_ADDRESSES (INSN_UID (insn)) == -1)
+ continue;
+
+ if (TARGET_CPU_ZARCH)
+ {
+ if (curr_pool->size < S390_POOL_CHUNK_MAX)
+ continue;
+
+ s390_end_pool (curr_pool, NULL_RTX);
+ curr_pool = NULL;
+ }
+ else
+ {
+ int chunk_size = INSN_ADDRESSES (INSN_UID (insn))
+ - INSN_ADDRESSES (INSN_UID (curr_pool->first_insn))
+ + extra_size;
+
+ /* We will later have to insert base register reload insns.
+ Those will have an effect on code size, which we need to
+ consider here. This calculation makes rather pessimistic
+ worst-case assumptions. */
+ if (LABEL_P (insn))
+ extra_size += 6;
+
+ if (chunk_size < S390_POOL_CHUNK_MIN
+ && curr_pool->size < S390_POOL_CHUNK_MIN
+ && !section_switch_p)
+ continue;
+
+ /* Pool chunks can only be inserted after BARRIERs ... */
+ if (BARRIER_P (insn))
+ {
+ s390_end_pool (curr_pool, insn);
+ curr_pool = NULL;
+ extra_size = 0;
+ }
+
+ /* ... so if we don't find one in time, create one. */
+ else if (chunk_size > S390_POOL_CHUNK_MAX
+ || curr_pool->size > S390_POOL_CHUNK_MAX
+ || section_switch_p)
+ {
+ rtx label, jump, barrier, next, prev;
+
+ if (!section_switch_p)
+ {
+ /* We can insert the barrier only after a 'real' insn. */
+ if (! NONJUMP_INSN_P (insn) && ! CALL_P (insn))
+ continue;
+ if (get_attr_length (insn) == 0)
+ continue;
+ /* Don't separate LTREL_BASE from the corresponding
+ LTREL_OFFSET load. */
+ if (pending_ltrel)
+ continue;
+ next = insn;
+ do
+ {
+ insn = next;
+ next = NEXT_INSN (insn);
+ }
+ while (next
+ && NOTE_P (next)
+ && (NOTE_KIND (next) == NOTE_INSN_VAR_LOCATION
+ || NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION));
+ }
+ else
+ {
+ gcc_assert (!pending_ltrel);
+
+ /* The old pool has to end before the section switch
+ note in order to make it part of the current
+ section. */
+ insn = PREV_INSN (insn);
+ }
+
+ label = gen_label_rtx ();
+ prev = insn;
+ if (prev && NOTE_P (prev))
+ prev = prev_nonnote_insn (prev);
+ if (prev)
+ jump = emit_jump_insn_after_setloc (gen_jump (label), insn,
+ INSN_LOCATION (prev));
+ else
+ jump = emit_jump_insn_after_noloc (gen_jump (label), insn);
+ barrier = emit_barrier_after (jump);
+ insn = emit_label_after (label, barrier);
+ JUMP_LABEL (jump) = label;
+ LABEL_NUSES (label) = 1;
+
+ INSN_ADDRESSES_NEW (jump, -1);
+ INSN_ADDRESSES_NEW (barrier, -1);
+ INSN_ADDRESSES_NEW (insn, -1);
+
+ s390_end_pool (curr_pool, barrier);
+ curr_pool = NULL;
+ extra_size = 0;
+ }
+ }
+ }
+
+ if (curr_pool)
+ s390_end_pool (curr_pool, NULL_RTX);
+ gcc_assert (!pending_ltrel);
+
+ /* Find all labels that are branched into
+ from an insn belonging to a different chunk. */
+
+ far_labels = BITMAP_ALLOC (NULL);
+
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ {
+ rtx table;
+
+ /* Labels marked with LABEL_PRESERVE_P can be target
+ of non-local jumps, so we have to mark them.
+ The same holds for named labels.
+
+ Don't do that, however, if it is the label before
+ a jump table. */
+
+ if (LABEL_P (insn)
+ && (LABEL_PRESERVE_P (insn) || LABEL_NAME (insn)))
+ {
+ rtx vec_insn = NEXT_INSN (insn);
+ if (! vec_insn || ! JUMP_TABLE_DATA_P (vec_insn))
+ bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (insn));
+ }
+ /* Check potential targets in a table jump (casesi_jump). */
+ else if (tablejump_p (insn, NULL, &table))
+ {
+ rtx vec_pat = PATTERN (table);
+ int i, diff_p = GET_CODE (vec_pat) == ADDR_DIFF_VEC;
+
+ for (i = 0; i < XVECLEN (vec_pat, diff_p); i++)
+ {
+ rtx label = XEXP (XVECEXP (vec_pat, diff_p, i), 0);
+
+ if (s390_find_pool (pool_list, label)
+ != s390_find_pool (pool_list, insn))
+ bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (label));
+ }
+ }
+ /* If we have a direct jump (conditional or unconditional),
+ check all potential targets. */
+ else if (JUMP_P (insn))
+ {
+ rtx pat = PATTERN (insn);
+
+ if (GET_CODE (pat) == PARALLEL)
+ pat = XVECEXP (pat, 0, 0);
+
+ if (GET_CODE (pat) == SET)
+ {
+ rtx label = JUMP_LABEL (insn);
+ if (label && !ANY_RETURN_P (label))
+ {
+ if (s390_find_pool (pool_list, label)
+ != s390_find_pool (pool_list, insn))
+ bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (label));
+ }
+ }
+ }
+ }
+
+ /* Insert base register reload insns before every pool. */
+
+ for (curr_pool = pool_list; curr_pool; curr_pool = curr_pool->next)
+ {
+ rtx new_insn = gen_reload_base (cfun->machine->base_reg,
+ curr_pool->label);
+ rtx insn = curr_pool->first_insn;
+ INSN_ADDRESSES_NEW (emit_insn_before (new_insn, insn), -1);
+ }
+
+ /* Insert base register reload insns at every far label. */
+
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ if (LABEL_P (insn)
+ && bitmap_bit_p (far_labels, CODE_LABEL_NUMBER (insn)))
+ {
+ struct constant_pool *pool = s390_find_pool (pool_list, insn);
+ if (pool)
+ {
+ rtx new_insn = gen_reload_base (cfun->machine->base_reg,
+ pool->label);
+ INSN_ADDRESSES_NEW (emit_insn_after (new_insn, insn), -1);
+ }
+ }
+
+
+ BITMAP_FREE (far_labels);
+
+
+ /* Recompute insn addresses. */
+
+ init_insn_lengths ();
+ shorten_branches (get_insns ());
+
+ return pool_list;
+}
+
+/* POOL_LIST is a chunk list as prepared by s390_chunkify_start.
+ After we have decided to use this list, finish implementing
+ all changes to the current function as required. */
+
+static void
+s390_chunkify_finish (struct constant_pool *pool_list)
+{
+ struct constant_pool *curr_pool = NULL;
+ rtx insn;
+
+
+ /* Replace all literal pool references. */
+
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ {
+ if (INSN_P (insn))
+ replace_ltrel_base (&PATTERN (insn));
+
+ curr_pool = s390_find_pool (pool_list, insn);
+ if (!curr_pool)
+ continue;
+
+ if (NONJUMP_INSN_P (insn) || CALL_P (insn))
+ {
+ rtx addr, pool_ref = NULL_RTX;
+ find_constant_pool_ref (PATTERN (insn), &pool_ref);
+ if (pool_ref)
+ {
+ if (s390_execute_label (insn))
+ addr = s390_find_execute (curr_pool, insn);
+ else
+ addr = s390_find_constant (curr_pool,
+ get_pool_constant (pool_ref),
+ get_pool_mode (pool_ref));
+
+ replace_constant_pool_ref (&PATTERN (insn), pool_ref, addr);
+ INSN_CODE (insn) = -1;
+ }
+ }
+ }
+
+ /* Dump out all literal pools. */
+
+ for (curr_pool = pool_list; curr_pool; curr_pool = curr_pool->next)
+ s390_dump_pool (curr_pool, 0);
+
+ /* Free pool list. */
+
+ while (pool_list)
+ {
+ struct constant_pool *next = pool_list->next;
+ s390_free_pool (pool_list);
+ pool_list = next;
+ }
+}
+
+/* POOL_LIST is a chunk list as prepared by s390_chunkify_start.
+ We have decided we cannot use this list, so revert all changes
+ to the current function that were done by s390_chunkify_start. */
+
+static void
+s390_chunkify_cancel (struct constant_pool *pool_list)
+{
+ struct constant_pool *curr_pool = NULL;
+ rtx insn;
+
+ /* Remove all pool placeholder insns. */
+
+ for (curr_pool = pool_list; curr_pool; curr_pool = curr_pool->next)
+ {
+ /* Did we insert an extra barrier? Remove it. */
+ rtx barrier = PREV_INSN (curr_pool->pool_insn);
+ rtx jump = barrier? PREV_INSN (barrier) : NULL_RTX;
+ rtx label = NEXT_INSN (curr_pool->pool_insn);
+
+ if (jump && JUMP_P (jump)
+ && barrier && BARRIER_P (barrier)
+ && label && LABEL_P (label)
+ && GET_CODE (PATTERN (jump)) == SET
+ && SET_DEST (PATTERN (jump)) == pc_rtx
+ && GET_CODE (SET_SRC (PATTERN (jump))) == LABEL_REF
+ && XEXP (SET_SRC (PATTERN (jump)), 0) == label)
+ {
+ remove_insn (jump);
+ remove_insn (barrier);
+ remove_insn (label);
+ }
+
+ remove_insn (curr_pool->pool_insn);
+ }
+
+ /* Remove all base register reload insns. */
+
+ for (insn = get_insns (); insn; )
+ {
+ rtx next_insn = NEXT_INSN (insn);
+
+ if (NONJUMP_INSN_P (insn)
+ && GET_CODE (PATTERN (insn)) == SET
+ && GET_CODE (SET_SRC (PATTERN (insn))) == UNSPEC
+ && XINT (SET_SRC (PATTERN (insn)), 1) == UNSPEC_RELOAD_BASE)
+ remove_insn (insn);
+
+ insn = next_insn;
+ }
+
+ /* Free pool list. */
+
+ while (pool_list)
+ {
+ struct constant_pool *next = pool_list->next;
+ s390_free_pool (pool_list);
+ pool_list = next;
+ }
+}
+
+/* Output the constant pool entry EXP in mode MODE with alignment ALIGN. */
+
+void
+s390_output_pool_entry (rtx exp, enum machine_mode mode, unsigned int align)
+{
+ REAL_VALUE_TYPE r;
+
+ switch (GET_MODE_CLASS (mode))
+ {
+ case MODE_FLOAT:
+ case MODE_DECIMAL_FLOAT:
+ gcc_assert (GET_CODE (exp) == CONST_DOUBLE);
+
+ REAL_VALUE_FROM_CONST_DOUBLE (r, exp);
+ assemble_real (r, mode, align);
+ break;
+
+ case MODE_INT:
+ assemble_integer (exp, GET_MODE_SIZE (mode), align, 1);
+ mark_symbol_refs_as_used (exp);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/* Return an RTL expression representing the value of the return address
+ for the frame COUNT steps up from the current frame. FRAME is the
+ frame pointer of that frame. */
+
+rtx
+s390_return_addr_rtx (int count, rtx frame ATTRIBUTE_UNUSED)
+{
+ int offset;
+ rtx addr;
+
+ /* Without backchain, we fail for all but the current frame. */
+
+ if (!TARGET_BACKCHAIN && count > 0)
+ return NULL_RTX;
+
+ /* For the current frame, we need to make sure the initial
+ value of RETURN_REGNUM is actually saved. */
+
+ if (count == 0)
+ {
+ /* On non-z architectures branch splitting could overwrite r14. */
+ if (TARGET_CPU_ZARCH)
+ return get_hard_reg_initial_val (Pmode, RETURN_REGNUM);
+ else
+ {
+ cfun_frame_layout.save_return_addr_p = true;
+ return gen_rtx_MEM (Pmode, return_address_pointer_rtx);
+ }
+ }
+
+ if (TARGET_PACKED_STACK)
+ offset = -2 * UNITS_PER_LONG;
+ else
+ offset = RETURN_REGNUM * UNITS_PER_LONG;
+
+ addr = plus_constant (Pmode, frame, offset);
+ addr = memory_address (Pmode, addr);
+ return gen_rtx_MEM (Pmode, addr);
+}
+
+/* Return an RTL expression representing the back chain stored in
+ the current stack frame. */
+
+rtx
+s390_back_chain_rtx (void)
+{
+ rtx chain;
+
+ gcc_assert (TARGET_BACKCHAIN);
+
+ if (TARGET_PACKED_STACK)
+ chain = plus_constant (Pmode, stack_pointer_rtx,
+ STACK_POINTER_OFFSET - UNITS_PER_LONG);
+ else
+ chain = stack_pointer_rtx;
+
+ chain = gen_rtx_MEM (Pmode, chain);
+ return chain;
+}
+
+/* Find first call clobbered register unused in a function.
+ This could be used as base register in a leaf function
+ or for holding the return address before epilogue. */
+
+static int
+find_unused_clobbered_reg (void)
+{
+ int i;
+ for (i = 0; i < 6; i++)
+ if (!df_regs_ever_live_p (i))
+ return i;
+ return 0;
+}
+
+
+/* Helper function for s390_regs_ever_clobbered. Sets the fields in DATA for all
+ clobbered hard regs in SETREG. */
+
+static void
+s390_reg_clobbered_rtx (rtx setreg, const_rtx set_insn ATTRIBUTE_UNUSED, void *data)
+{
+ char *regs_ever_clobbered = (char *)data;
+ unsigned int i, regno;
+ enum machine_mode mode = GET_MODE (setreg);
+
+ if (GET_CODE (setreg) == SUBREG)
+ {
+ rtx inner = SUBREG_REG (setreg);
+ if (!GENERAL_REG_P (inner) && !FP_REG_P (inner))
+ return;
+ regno = subreg_regno (setreg);
+ }
+ else if (GENERAL_REG_P (setreg) || FP_REG_P (setreg))
+ regno = REGNO (setreg);
+ else
+ return;
+
+ for (i = regno;
+ i < regno + HARD_REGNO_NREGS (regno, mode);
+ i++)
+ regs_ever_clobbered[i] = 1;
+}
+
+/* Walks through all basic blocks of the current function looking
+ for clobbered hard regs using s390_reg_clobbered_rtx. The fields
+ of the passed integer array REGS_EVER_CLOBBERED are set to one for
+ each of those regs. */
+
+static void
+s390_regs_ever_clobbered (char regs_ever_clobbered[])
+{
+ basic_block cur_bb;
+ rtx cur_insn;
+ unsigned int i;
+
+ memset (regs_ever_clobbered, 0, 32);
+
+ /* For non-leaf functions we have to consider all call clobbered regs to be
+ clobbered. */
+ if (!crtl->is_leaf)
+ {
+ for (i = 0; i < 32; i++)
+ regs_ever_clobbered[i] = call_really_used_regs[i];
+ }
+
+ /* Make the "magic" eh_return registers live if necessary. For regs_ever_live
+ this work is done by liveness analysis (mark_regs_live_at_end).
+ Special care is needed for functions containing landing pads. Landing pads
+ may use the eh registers, but the code which sets these registers is not
+ contained in that function. Hence s390_regs_ever_clobbered is not able to
+ deal with this automatically. */
+ if (crtl->calls_eh_return || cfun->machine->has_landing_pad_p)
+ for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM ; i++)
+ if (crtl->calls_eh_return
+ || (cfun->machine->has_landing_pad_p
+ && df_regs_ever_live_p (EH_RETURN_DATA_REGNO (i))))
+ regs_ever_clobbered[EH_RETURN_DATA_REGNO (i)] = 1;
+
+ /* For nonlocal gotos all call-saved registers have to be saved.
+ This flag is also set for the unwinding code in libgcc.
+ See expand_builtin_unwind_init. For regs_ever_live this is done by
+ reload. */
+ if (crtl->saves_all_registers)
+ for (i = 0; i < 32; i++)
+ if (!call_really_used_regs[i])
+ regs_ever_clobbered[i] = 1;
+
+ FOR_EACH_BB_FN (cur_bb, cfun)
+ {
+ FOR_BB_INSNS (cur_bb, cur_insn)
+ {
+ rtx pat;
+
+ if (!INSN_P (cur_insn))
+ continue;
+
+ pat = PATTERN (cur_insn);
+
+ /* Ignore GPR restore insns. */
+ if (epilogue_completed && RTX_FRAME_RELATED_P (cur_insn))
+ {
+ if (GET_CODE (pat) == SET
+ && GENERAL_REG_P (SET_DEST (pat)))
+ {
+ /* lgdr */
+ if (GET_MODE (SET_SRC (pat)) == DImode
+ && FP_REG_P (SET_SRC (pat)))
+ continue;
+
+ /* l / lg */
+ if (GET_CODE (SET_SRC (pat)) == MEM)
+ continue;
+ }
+
+ /* lm / lmg */
+ if (GET_CODE (pat) == PARALLEL
+ && load_multiple_operation (pat, VOIDmode))
+ continue;
+ }
+
+ note_stores (pat,
+ s390_reg_clobbered_rtx,
+ regs_ever_clobbered);
+ }
+ }
+}
+
+/* Determine the frame area which actually has to be accessed
+ in the function epilogue. The values are stored at the
+ given pointers AREA_BOTTOM (address of the lowest used stack
+ address) and AREA_TOP (address of the first item which does
+ not belong to the stack frame). */
+
+static void
+s390_frame_area (int *area_bottom, int *area_top)
+{
+ int b, t;
+
+ b = INT_MAX;
+ t = INT_MIN;
+
+ if (cfun_frame_layout.first_restore_gpr != -1)
+ {
+ b = (cfun_frame_layout.gprs_offset
+ + cfun_frame_layout.first_restore_gpr * UNITS_PER_LONG);
+ t = b + (cfun_frame_layout.last_restore_gpr
+ - cfun_frame_layout.first_restore_gpr + 1) * UNITS_PER_LONG;
+ }
+
+ if (TARGET_64BIT && cfun_save_high_fprs_p)
+ {
+ b = MIN (b, cfun_frame_layout.f8_offset);
+ t = MAX (t, (cfun_frame_layout.f8_offset
+ + cfun_frame_layout.high_fprs * 8));
+ }
+
+ if (!TARGET_64BIT)
+ {
+ if (cfun_fpr_save_p (FPR4_REGNUM))
+ {
+ b = MIN (b, cfun_frame_layout.f4_offset);
+ t = MAX (t, cfun_frame_layout.f4_offset + 8);
+ }
+ if (cfun_fpr_save_p (FPR6_REGNUM))
+ {
+ b = MIN (b, cfun_frame_layout.f4_offset + 8);
+ t = MAX (t, cfun_frame_layout.f4_offset + 16);
+ }
+ }
+ *area_bottom = b;
+ *area_top = t;
+}
+/* Update gpr_save_slots in the frame layout trying to make use of
+ FPRs as GPR save slots.
+ This is a helper routine of s390_register_info. */
+
+static void
+s390_register_info_gprtofpr ()
+{
+ int save_reg_slot = FPR0_REGNUM;
+ int i, j;
+
+ if (!TARGET_Z10 || !TARGET_HARD_FLOAT || !crtl->is_leaf)
+ return;
+
+ for (i = 15; i >= 6; i--)
+ {
+ if (cfun_gpr_save_slot (i) == 0)
+ continue;
+
+ /* Advance to the next FP register which can be used as a
+ GPR save slot. */
+ while ((!call_really_used_regs[save_reg_slot]
+ || df_regs_ever_live_p (save_reg_slot)
+ || cfun_fpr_save_p (save_reg_slot))
+ && FP_REGNO_P (save_reg_slot))
+ save_reg_slot++;
+ if (!FP_REGNO_P (save_reg_slot))
+ {
+ /* We only want to use ldgr/lgdr if we can get rid of
+ stm/lm entirely. So undo the gpr slot allocation in
+ case we ran out of FPR save slots. */
+ for (j = 6; j <= 15; j++)
+ if (FP_REGNO_P (cfun_gpr_save_slot (j)))
+ cfun_gpr_save_slot (j) = -1;
+ break;
+ }
+ cfun_gpr_save_slot (i) = save_reg_slot++;
+ }
+}
+
+/* Set the bits in fpr_bitmap for FPRs which need to be saved due to
+ stdarg.
+ This is a helper routine for s390_register_info. */
+
+static void
+s390_register_info_stdarg_fpr ()
+{
+ int i;
+ int min_fpr;
+ int max_fpr;
+
+ /* Save the FP argument regs for stdarg. f0, f2 for 31 bit and
+ f0-f4 for 64 bit. */
+ if (!cfun->stdarg
+ || !TARGET_HARD_FLOAT
+ || !cfun->va_list_fpr_size
+ || crtl->args.info.fprs >= FP_ARG_NUM_REG)
+ return;
+
+ min_fpr = crtl->args.info.fprs;
+ max_fpr = min_fpr + cfun->va_list_fpr_size;
+ if (max_fpr > FP_ARG_NUM_REG)
+ max_fpr = FP_ARG_NUM_REG;
+
+ for (i = min_fpr; i < max_fpr; i++)
+ cfun_set_fpr_save (i + FPR0_REGNUM);
+}
+
+/* Reserve the GPR save slots for GPRs which need to be saved due to
+ stdarg.
+ This is a helper routine for s390_register_info. */
+
+static void
+s390_register_info_stdarg_gpr ()
+{
+ int i;
+ int min_gpr;
+ int max_gpr;
+
+ if (!cfun->stdarg
+ || !cfun->va_list_gpr_size
+ || crtl->args.info.gprs >= GP_ARG_NUM_REG)
+ return;
+
+ min_gpr = crtl->args.info.gprs;
+ max_gpr = min_gpr + cfun->va_list_gpr_size;
+ if (max_gpr > GP_ARG_NUM_REG)
+ max_gpr = GP_ARG_NUM_REG;
+
+ for (i = min_gpr; i < max_gpr; i++)
+ cfun_gpr_save_slot (2 + i) = -1;
+}
+
+/* The GPR and FPR save slots in cfun->machine->frame_layout are set
+ for registers which need to be saved in function prologue.
+ This function can be used until the insns emitted for save/restore
+ of the regs are visible in the RTL stream. */
+
+static void
+s390_register_info ()
+{
+ int i, j;
+ char clobbered_regs[32];
+
+ gcc_assert (!epilogue_completed);
+
+ if (reload_completed)
+ /* After reload we rely on our own routine to determine which
+ registers need saving. */
+ s390_regs_ever_clobbered (clobbered_regs);
+ else
+ /* During reload we use regs_ever_live as a base since reload
+ does changes in there which we otherwise would not be aware
+ of. */
+ for (i = 0; i < 32; i++)
+ clobbered_regs[i] = df_regs_ever_live_p (i);
+
+ for (i = 0; i < 32; i++)
+ clobbered_regs[i] = clobbered_regs[i] && !global_regs[i];
+
+ /* Mark the call-saved FPRs which need to be saved.
+ This needs to be done before checking the special GPRs since the
+ stack pointer usage depends on whether high FPRs have to be saved
+ or not. */
+ cfun_frame_layout.fpr_bitmap = 0;
+ cfun_frame_layout.high_fprs = 0;
+ for (i = FPR0_REGNUM; i <= FPR15_REGNUM; i++)
+ if (clobbered_regs[i] && !call_really_used_regs[i])
+ {
+ cfun_set_fpr_save (i);
+ if (i >= FPR8_REGNUM)
+ cfun_frame_layout.high_fprs++;
+ }
+
+ if (flag_pic)
+ clobbered_regs[PIC_OFFSET_TABLE_REGNUM]
+ |= !!df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM);
+
+ clobbered_regs[BASE_REGNUM]
+ |= (cfun->machine->base_reg
+ && REGNO (cfun->machine->base_reg) == BASE_REGNUM);
+
+ clobbered_regs[HARD_FRAME_POINTER_REGNUM]
+ |= !!frame_pointer_needed;
+
+ /* On pre z900 machines this might take until machine dependent
+ reorg to decide.
+ save_return_addr_p will only be set on non-zarch machines so
+ there is no risk that r14 goes into an FPR instead of a stack
+ slot. */
+ clobbered_regs[RETURN_REGNUM]
+ |= (!crtl->is_leaf
+ || TARGET_TPF_PROFILING
+ || cfun->machine->split_branches_pending_p
+ || cfun_frame_layout.save_return_addr_p
+ || crtl->calls_eh_return);
+
+ clobbered_regs[STACK_POINTER_REGNUM]
+ |= (!crtl->is_leaf
+ || TARGET_TPF_PROFILING
+ || cfun_save_high_fprs_p
+ || get_frame_size () > 0
+ || (reload_completed && cfun_frame_layout.frame_size > 0)
+ || cfun->calls_alloca);
+
+ memset (cfun_frame_layout.gpr_save_slots, 0, 16);
+
+ for (i = 6; i < 16; i++)
+ if (clobbered_regs[i])
+ cfun_gpr_save_slot (i) = -1;
+
+ s390_register_info_stdarg_fpr ();
+ s390_register_info_gprtofpr ();
+
+ /* First find the range of GPRs to be restored. Vararg regs don't
+ need to be restored so we do it before assigning slots to the
+ vararg GPRs. */
+ for (i = 0; i < 16 && cfun_gpr_save_slot (i) != -1; i++);
+ for (j = 15; j > i && cfun_gpr_save_slot (j) != -1; j--);
+ cfun_frame_layout.first_restore_gpr = (i == 16) ? -1 : i;
+ cfun_frame_layout.last_restore_gpr = (i == 16) ? -1 : j;
+
+ /* stdarg functions might need to save GPRs 2 to 6. This might
+ override the GPR->FPR save decision made above for r6 since
+ vararg regs must go to the stack. */
+ s390_register_info_stdarg_gpr ();
+
+ /* Now the range of GPRs which need saving. */
+ for (i = 0; i < 16 && cfun_gpr_save_slot (i) != -1; i++);
+ for (j = 15; j > i && cfun_gpr_save_slot (j) != -1; j--);
+ cfun_frame_layout.first_save_gpr = (i == 16) ? -1 : i;
+ cfun_frame_layout.last_save_gpr = (i == 16) ? -1 : j;
+}
+
+/* This function is called by s390_optimize_prologue in order to get
+ rid of unnecessary GPR save/restore instructions. The register info
+ for the GPRs is re-computed and the ranges are re-calculated. */
+
+static void
+s390_optimize_register_info ()
+{
+ char clobbered_regs[32];
+ int i, j;
+
+ gcc_assert (epilogue_completed);
+ gcc_assert (!cfun->machine->split_branches_pending_p);
+
+ s390_regs_ever_clobbered (clobbered_regs);
+
+ for (i = 0; i < 32; i++)
+ clobbered_regs[i] = clobbered_regs[i] && !global_regs[i];
+
+ /* There is still special treatment needed for cases invisible to
+ s390_regs_ever_clobbered. */
+ clobbered_regs[RETURN_REGNUM]
+ |= (TARGET_TPF_PROFILING
+ /* When expanding builtin_return_addr in ESA mode we do not
+ know whether r14 will later be needed as scratch reg when
+ doing branch splitting. So the builtin always accesses the
+ r14 save slot and we need to stick to the save/restore
+ decision for r14 even if it turns out that it didn't get
+ clobbered. */
+ || cfun_frame_layout.save_return_addr_p
+ || crtl->calls_eh_return);
+
+ memset (cfun_frame_layout.gpr_save_slots, 0, 6);
+
+ for (i = 6; i < 16; i++)
+ if (!clobbered_regs[i])
+ cfun_gpr_save_slot (i) = 0;
+
+ for (i = 0; i < 16 && cfun_gpr_save_slot (i) != -1; i++);
+ for (j = 15; j > i && cfun_gpr_save_slot (j) != -1; j--);
+ cfun_frame_layout.first_restore_gpr = (i == 16) ? -1 : i;
+ cfun_frame_layout.last_restore_gpr = (i == 16) ? -1 : j;
+
+ s390_register_info_stdarg_gpr ();
+
+ for (i = 0; i < 16 && cfun_gpr_save_slot (i) != -1; i++);
+ for (j = 15; j > i && cfun_gpr_save_slot (j) != -1; j--);
+ cfun_frame_layout.first_save_gpr = (i == 16) ? -1 : i;
+ cfun_frame_layout.last_save_gpr = (i == 16) ? -1 : j;
+}
+
+/* Fill cfun->machine with info about frame of current function. */
+
+static void
+s390_frame_info (void)
+{
+ HOST_WIDE_INT lowest_offset;
+
+ cfun_frame_layout.first_save_gpr_slot = cfun_frame_layout.first_save_gpr;
+ cfun_frame_layout.last_save_gpr_slot = cfun_frame_layout.last_save_gpr;
+
+ /* The va_arg builtin uses a constant distance of 16 *
+ UNITS_PER_LONG (r0-r15) to reach the FPRs from the reg_save_area
+ pointer. So even if we are going to save the stack pointer in an
+ FPR we need the stack space in order to keep the offsets
+ correct. */
+ if (cfun->stdarg && cfun_save_arg_fprs_p)
+ {
+ cfun_frame_layout.last_save_gpr_slot = STACK_POINTER_REGNUM;
+
+ if (cfun_frame_layout.first_save_gpr_slot == -1)
+ cfun_frame_layout.first_save_gpr_slot = STACK_POINTER_REGNUM;
+ }
+
+ cfun_frame_layout.frame_size = get_frame_size ();
+ if (!TARGET_64BIT && cfun_frame_layout.frame_size > 0x7fff0000)
+ fatal_error ("total size of local variables exceeds architecture limit");
+
+ if (!TARGET_PACKED_STACK)
+ {
+ /* Fixed stack layout. */
+ cfun_frame_layout.backchain_offset = 0;
+ cfun_frame_layout.f0_offset = 16 * UNITS_PER_LONG;
+ cfun_frame_layout.f4_offset = cfun_frame_layout.f0_offset + 2 * 8;
+ cfun_frame_layout.f8_offset = -cfun_frame_layout.high_fprs * 8;
+ cfun_frame_layout.gprs_offset = (cfun_frame_layout.first_save_gpr_slot
+ * UNITS_PER_LONG);
+ }
+ else if (TARGET_BACKCHAIN)
+ {
+ /* Kernel stack layout - packed stack, backchain, no float */
+ gcc_assert (TARGET_SOFT_FLOAT);
+ cfun_frame_layout.backchain_offset = (STACK_POINTER_OFFSET
+ - UNITS_PER_LONG);
+
+ /* The distance between the backchain and the return address
+ save slot must not change. So we always need a slot for the
+ stack pointer which resides in between. */
+ cfun_frame_layout.last_save_gpr_slot = STACK_POINTER_REGNUM;
+
+ cfun_frame_layout.gprs_offset
+ = cfun_frame_layout.backchain_offset - cfun_gprs_save_area_size;
+
+ /* FPRs will not be saved. Nevertheless pick sane values to
+ keep area calculations valid. */
+ cfun_frame_layout.f0_offset =
+ cfun_frame_layout.f4_offset =
+ cfun_frame_layout.f8_offset = cfun_frame_layout.gprs_offset;
+ }
+ else
+ {
+ int num_fprs;
+
+ /* Packed stack layout without backchain. */
+
+ /* With stdarg FPRs need their dedicated slots. */
+ num_fprs = (TARGET_64BIT && cfun->stdarg ? 2
+ : (cfun_fpr_save_p (FPR4_REGNUM) +
+ cfun_fpr_save_p (FPR6_REGNUM)));
+ cfun_frame_layout.f4_offset = STACK_POINTER_OFFSET - 8 * num_fprs;
+
+ num_fprs = (cfun->stdarg ? 2
+ : (cfun_fpr_save_p (FPR0_REGNUM)
+ + cfun_fpr_save_p (FPR2_REGNUM)));
+ cfun_frame_layout.f0_offset = cfun_frame_layout.f4_offset - 8 * num_fprs;
+
+ cfun_frame_layout.gprs_offset
+ = cfun_frame_layout.f0_offset - cfun_gprs_save_area_size;
+
+ cfun_frame_layout.f8_offset = (cfun_frame_layout.gprs_offset
+ - cfun_frame_layout.high_fprs * 8);
+ }
+
+ if (cfun_save_high_fprs_p)
+ cfun_frame_layout.frame_size += cfun_frame_layout.high_fprs * 8;
+
+ if (!crtl->is_leaf)
+ cfun_frame_layout.frame_size += crtl->outgoing_args_size;
+
+ /* In the following cases we have to allocate a STACK_POINTER_OFFSET
+ sized area at the bottom of the stack. This is required also for
+ leaf functions. When GCC generates a local stack reference it
+ will always add STACK_POINTER_OFFSET to all these references. */
+ if (crtl->is_leaf
+ && !TARGET_TPF_PROFILING
+ && cfun_frame_layout.frame_size == 0
+ && !cfun->calls_alloca)
+ return;
+
+ /* Calculate the number of bytes we have used in our own register
+ save area. With the packed stack layout we can re-use the
+ remaining bytes for normal stack elements. */
+
+ if (TARGET_PACKED_STACK)
+ lowest_offset = MIN (MIN (cfun_frame_layout.f0_offset,
+ cfun_frame_layout.f4_offset),
+ cfun_frame_layout.gprs_offset);
+ else
+ lowest_offset = 0;
+
+ if (TARGET_BACKCHAIN)
+ lowest_offset = MIN (lowest_offset, cfun_frame_layout.backchain_offset);
+
+ cfun_frame_layout.frame_size += STACK_POINTER_OFFSET - lowest_offset;
+
+ /* If under 31 bit an odd number of gprs has to be saved we have to
+ adjust the frame size to sustain 8 byte alignment of stack
+ frames. */
+ cfun_frame_layout.frame_size = ((cfun_frame_layout.frame_size +
+ STACK_BOUNDARY / BITS_PER_UNIT - 1)
+ & ~(STACK_BOUNDARY / BITS_PER_UNIT - 1));
+}
+
+/* Generate frame layout. Fills in register and frame data for the current
+ function in cfun->machine. This routine can be called multiple times;
+ it will re-do the complete frame layout every time. */
+
+static void
+s390_init_frame_layout (void)
+{
+ HOST_WIDE_INT frame_size;
+ int base_used;
+
+ gcc_assert (!reload_completed);
+
+ /* On S/390 machines, we may need to perform branch splitting, which
+ will require both base and return address register. We have no
+ choice but to assume we're going to need them until right at the
+ end of the machine dependent reorg phase. */
+ if (!TARGET_CPU_ZARCH)
+ cfun->machine->split_branches_pending_p = true;
+
+ do
+ {
+ frame_size = cfun_frame_layout.frame_size;
+
+ /* Try to predict whether we'll need the base register. */
+ base_used = cfun->machine->split_branches_pending_p
+ || crtl->uses_const_pool
+ || (!DISP_IN_RANGE (frame_size)
+ && !CONST_OK_FOR_K (frame_size));
+
+ /* Decide which register to use as literal pool base. In small
+ leaf functions, try to use an unused call-clobbered register
+ as base register to avoid save/restore overhead. */
+ if (!base_used)
+ cfun->machine->base_reg = NULL_RTX;
+ else if (crtl->is_leaf && !df_regs_ever_live_p (5))
+ cfun->machine->base_reg = gen_rtx_REG (Pmode, 5);
+ else
+ cfun->machine->base_reg = gen_rtx_REG (Pmode, BASE_REGNUM);
+
+ s390_register_info ();
+ s390_frame_info ();
+ }
+ while (frame_size != cfun_frame_layout.frame_size);
+}
+
+/* Remove the FPR clobbers from a tbegin insn if it can be proven that
+ the TX is nonescaping. A transaction is considered escaping if
+ there is at least one path from tbegin returning CC0 to the
+ function exit block without an tend.
+
+ The check so far has some limitations:
+ - only single tbegin/tend BBs are supported
+ - the first cond jump after tbegin must separate the CC0 path from ~CC0
+ - when CC is copied to a GPR and the CC0 check is done with the GPR
+ this is not supported
+*/
+
+static void
+s390_optimize_nonescaping_tx (void)
+{
+ const unsigned int CC0 = 1 << 3;
+ basic_block tbegin_bb = NULL;
+ basic_block tend_bb = NULL;
+ basic_block bb;
+ rtx insn;
+ bool result = true;
+ int bb_index;
+ rtx tbegin_insn = NULL_RTX;
+
+ if (!cfun->machine->tbegin_p)
+ return;
+
+ for (bb_index = 0; bb_index < n_basic_blocks_for_fn (cfun); bb_index++)
+ {
+ bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
+
+ if (!bb)
+ continue;
+
+ FOR_BB_INSNS (bb, insn)
+ {
+ rtx ite, cc, pat, target;
+ unsigned HOST_WIDE_INT mask;
+
+ if (!INSN_P (insn) || INSN_CODE (insn) <= 0)
+ continue;
+
+ pat = PATTERN (insn);
+
+ if (GET_CODE (pat) == PARALLEL)
+ pat = XVECEXP (pat, 0, 0);
+
+ if (GET_CODE (pat) != SET
+ || GET_CODE (SET_SRC (pat)) != UNSPEC_VOLATILE)
+ continue;
+
+ if (XINT (SET_SRC (pat), 1) == UNSPECV_TBEGIN)
+ {
+ rtx tmp;
+
+ tbegin_insn = insn;
+
+ /* Just return if the tbegin doesn't have clobbers. */
+ if (GET_CODE (PATTERN (insn)) != PARALLEL)
+ return;
+
+ if (tbegin_bb != NULL)
+ return;
+
+ /* Find the next conditional jump. */
+ for (tmp = NEXT_INSN (insn);
+ tmp != NULL_RTX;
+ tmp = NEXT_INSN (tmp))
+ {
+ if (reg_set_p (gen_rtx_REG (CCmode, CC_REGNUM), tmp))
+ return;
+ if (!JUMP_P (tmp))
+ continue;
+
+ ite = SET_SRC (PATTERN (tmp));
+ if (GET_CODE (ite) != IF_THEN_ELSE)
+ continue;
+
+ cc = XEXP (XEXP (ite, 0), 0);
+ if (!REG_P (cc) || !CC_REGNO_P (REGNO (cc))
+ || GET_MODE (cc) != CCRAWmode
+ || GET_CODE (XEXP (XEXP (ite, 0), 1)) != CONST_INT)
+ return;
+
+ if (bb->succs->length () != 2)
+ return;
+
+ mask = INTVAL (XEXP (XEXP (ite, 0), 1));
+ if (GET_CODE (XEXP (ite, 0)) == NE)
+ mask ^= 0xf;
+
+ if (mask == CC0)
+ target = XEXP (ite, 1);
+ else if (mask == (CC0 ^ 0xf))
+ target = XEXP (ite, 2);
+ else
+ return;
+
+ {
+ edge_iterator ei;
+ edge e1, e2;
+
+ ei = ei_start (bb->succs);
+ e1 = ei_safe_edge (ei);
+ ei_next (&ei);
+ e2 = ei_safe_edge (ei);
+
+ if (e2->flags & EDGE_FALLTHRU)
+ {
+ e2 = e1;
+ e1 = ei_safe_edge (ei);
+ }
+
+ if (!(e1->flags & EDGE_FALLTHRU))
+ return;
+
+ tbegin_bb = (target == pc_rtx) ? e1->dest : e2->dest;
+ }
+ if (tmp == BB_END (bb))
+ break;
+ }
+ }
+
+ if (XINT (SET_SRC (pat), 1) == UNSPECV_TEND)
+ {
+ if (tend_bb != NULL)
+ return;
+ tend_bb = bb;
+ }
+ }
+ }
+
+ /* Either we successfully remove the FPR clobbers here or we are not
+ able to do anything for this TX. Both cases don't qualify for
+ another look. */
+ cfun->machine->tbegin_p = false;
+
+ if (tbegin_bb == NULL || tend_bb == NULL)
+ return;
+
+ calculate_dominance_info (CDI_POST_DOMINATORS);
+ result = dominated_by_p (CDI_POST_DOMINATORS, tbegin_bb, tend_bb);
+ free_dominance_info (CDI_POST_DOMINATORS);
+
+ if (!result)
+ return;
+
+ PATTERN (tbegin_insn) = gen_rtx_PARALLEL (VOIDmode,
+ gen_rtvec (2,
+ XVECEXP (PATTERN (tbegin_insn), 0, 0),
+ XVECEXP (PATTERN (tbegin_insn), 0, 1)));
+ INSN_CODE (tbegin_insn) = -1;
+ df_insn_rescan (tbegin_insn);
+
+ return;
+}
+
+/* Return true if it is legal to put a value with MODE into REGNO. */
+
+bool
+s390_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
+{
+ switch (REGNO_REG_CLASS (regno))
+ {
+ case FP_REGS:
+ if (REGNO_PAIR_OK (regno, mode))
+ {
+ if (mode == SImode || mode == DImode)
+ return true;
+
+ if (FLOAT_MODE_P (mode) && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
+ return true;
+ }
+ break;
+ case ADDR_REGS:
+ if (FRAME_REGNO_P (regno) && mode == Pmode)
+ return true;
+
+ /* fallthrough */
+ case GENERAL_REGS:
+ if (REGNO_PAIR_OK (regno, mode))
+ {
+ if (TARGET_ZARCH
+ || (mode != TFmode && mode != TCmode && mode != TDmode))
+ return true;
+ }
+ break;
+ case CC_REGS:
+ if (GET_MODE_CLASS (mode) == MODE_CC)
+ return true;
+ break;
+ case ACCESS_REGS:
+ if (REGNO_PAIR_OK (regno, mode))
+ {
+ if (mode == SImode || mode == Pmode)
+ return true;
+ }
+ break;
+ default:
+ return false;
+ }
+
+ return false;
+}
+
+/* Return nonzero if register OLD_REG can be renamed to register NEW_REG. */
+
+bool
+s390_hard_regno_rename_ok (unsigned int old_reg, unsigned int new_reg)
+{
+ /* Once we've decided upon a register to use as base register, it must
+ no longer be used for any other purpose. */
+ if (cfun->machine->base_reg)
+ if (REGNO (cfun->machine->base_reg) == old_reg
+ || REGNO (cfun->machine->base_reg) == new_reg)
+ return false;
+
+ /* Prevent regrename from using call-saved regs which haven't
+ actually been saved. This is necessary since regrename assumes
+ the backend save/restore decisions are based on
+ df_regs_ever_live. Since we have our own routine we have to tell
+ regrename manually about it. */
+ if (GENERAL_REGNO_P (new_reg)
+ && !call_really_used_regs[new_reg]
+ && cfun_gpr_save_slot (new_reg) == 0)
+ return false;
+
+ return true;
+}
+
+/* Return nonzero if register REGNO can be used as a scratch register
+ in peephole2. */
+
+static bool
+s390_hard_regno_scratch_ok (unsigned int regno)
+{
+ /* See s390_hard_regno_rename_ok. */
+ if (GENERAL_REGNO_P (regno)
+ && !call_really_used_regs[regno]
+ && cfun_gpr_save_slot (regno) == 0)
+ return false;
+
+ return true;
+}
+
+/* Maximum number of registers to represent a value of mode MODE
+ in a register of class RCLASS. */
+
+int
+s390_class_max_nregs (enum reg_class rclass, enum machine_mode mode)
+{
+ switch (rclass)
+ {
+ case FP_REGS:
+ if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
+ return 2 * ((GET_MODE_SIZE (mode) / 2 + 8 - 1) / 8);
+ else
+ return (GET_MODE_SIZE (mode) + 8 - 1) / 8;
+ case ACCESS_REGS:
+ return (GET_MODE_SIZE (mode) + 4 - 1) / 4;
+ default:
+ break;
+ }
+ return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+}
+
+/* Return true if we use LRA instead of reload pass. */
+static bool
+s390_lra_p (void)
+{
+ return s390_lra_flag;
+}
+
+/* Return true if register FROM can be eliminated via register TO. */
+
+static bool
+s390_can_eliminate (const int from, const int to)
+{
+ /* On zSeries machines, we have not marked the base register as fixed.
+ Instead, we have an elimination rule BASE_REGNUM -> BASE_REGNUM.
+ If a function requires the base register, we say here that this
+ elimination cannot be performed. This will cause reload to free
+ up the base register (as if it were fixed). On the other hand,
+ if the current function does *not* require the base register, we
+ say here the elimination succeeds, which in turn allows reload
+ to allocate the base register for any other purpose. */
+ if (from == BASE_REGNUM && to == BASE_REGNUM)
+ {
+ if (TARGET_CPU_ZARCH)
+ {
+ s390_init_frame_layout ();
+ return cfun->machine->base_reg == NULL_RTX;
+ }
+
+ return false;
+ }
+
+ /* Everything else must point into the stack frame. */
+ gcc_assert (to == STACK_POINTER_REGNUM
+ || to == HARD_FRAME_POINTER_REGNUM);
+
+ gcc_assert (from == FRAME_POINTER_REGNUM
+ || from == ARG_POINTER_REGNUM
+ || from == RETURN_ADDRESS_POINTER_REGNUM);
+
+ /* Make sure we actually saved the return address. */
+ if (from == RETURN_ADDRESS_POINTER_REGNUM)
+ if (!crtl->calls_eh_return
+ && !cfun->stdarg
+ && !cfun_frame_layout.save_return_addr_p)
+ return false;
+
+ return true;
+}
+
+/* Return offset between register FROM and TO initially after prolog. */
+
+HOST_WIDE_INT
+s390_initial_elimination_offset (int from, int to)
+{
+ HOST_WIDE_INT offset;
+
+ /* ??? Why are we called for non-eliminable pairs? */
+ if (!s390_can_eliminate (from, to))
+ return 0;
+
+ switch (from)
+ {
+ case FRAME_POINTER_REGNUM:
+ offset = (get_frame_size()
+ + STACK_POINTER_OFFSET
+ + crtl->outgoing_args_size);
+ break;
+
+ case ARG_POINTER_REGNUM:
+ s390_init_frame_layout ();
+ offset = cfun_frame_layout.frame_size + STACK_POINTER_OFFSET;
+ break;
+
+ case RETURN_ADDRESS_POINTER_REGNUM:
+ s390_init_frame_layout ();
+
+ if (cfun_frame_layout.first_save_gpr_slot == -1)
+ {
+ /* If it turns out that for stdarg nothing went into the reg
+ save area we also do not need the return address
+ pointer. */
+ if (cfun->stdarg && !cfun_save_arg_fprs_p)
+ return 0;
+
+ gcc_unreachable ();
+ }
+
+ /* In order to make the following work it is not necessary for
+ r14 to have a save slot. It is sufficient if one other GPR
+ got one. Since the GPRs are always stored without gaps we
+ are able to calculate where the r14 save slot would
+ reside. */
+ offset = (cfun_frame_layout.frame_size + cfun_frame_layout.gprs_offset +
+ (RETURN_REGNUM - cfun_frame_layout.first_save_gpr_slot) *
+ UNITS_PER_LONG);
+ break;
+
+ case BASE_REGNUM:
+ offset = 0;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return offset;
+}
+
+/* Emit insn to save fpr REGNUM at offset OFFSET relative
+ to register BASE. Return generated insn. */
+
+static rtx
+save_fpr (rtx base, int offset, int regnum)
+{
+ rtx addr;
+ addr = gen_rtx_MEM (DFmode, plus_constant (Pmode, base, offset));
+
+ if (regnum >= 16 && regnum <= (16 + FP_ARG_NUM_REG))
+ set_mem_alias_set (addr, get_varargs_alias_set ());
+ else
+ set_mem_alias_set (addr, get_frame_alias_set ());
+
+ return emit_move_insn (addr, gen_rtx_REG (DFmode, regnum));
+}
+
+/* Emit insn to restore fpr REGNUM from offset OFFSET relative
+ to register BASE. Return generated insn. */
+
+static rtx
+restore_fpr (rtx base, int offset, int regnum)
+{
+ rtx addr;
+ addr = gen_rtx_MEM (DFmode, plus_constant (Pmode, base, offset));
+ set_mem_alias_set (addr, get_frame_alias_set ());
+
+ return emit_move_insn (gen_rtx_REG (DFmode, regnum), addr);
+}
+
+/* Return true if REGNO is a global register, but not one
+ of the special ones that need to be saved/restored in anyway. */
+
+static inline bool
+global_not_special_regno_p (int regno)
+{
+ return (global_regs[regno]
+ /* These registers are special and need to be
+ restored in any case. */
+ && !(regno == STACK_POINTER_REGNUM
+ || regno == RETURN_REGNUM
+ || regno == BASE_REGNUM
+ || (flag_pic && regno == (int)PIC_OFFSET_TABLE_REGNUM)));
+}
+
+/* Generate insn to save registers FIRST to LAST into
+ the register save area located at offset OFFSET
+ relative to register BASE. */
+
+static rtx
+save_gprs (rtx base, int offset, int first, int last)
+{
+ rtx addr, insn, note;
+ int i;
+
+ addr = plus_constant (Pmode, base, offset);
+ addr = gen_rtx_MEM (Pmode, addr);
+
+ set_mem_alias_set (addr, get_frame_alias_set ());
+
+ /* Special-case single register. */
+ if (first == last)
+ {
+ if (TARGET_64BIT)
+ insn = gen_movdi (addr, gen_rtx_REG (Pmode, first));
+ else
+ insn = gen_movsi (addr, gen_rtx_REG (Pmode, first));
+
+ if (!global_not_special_regno_p (first))
+ RTX_FRAME_RELATED_P (insn) = 1;
+ return insn;
+ }
+
+
+ insn = gen_store_multiple (addr,
+ gen_rtx_REG (Pmode, first),
+ GEN_INT (last - first + 1));
+
+ if (first <= 6 && cfun->stdarg)
+ for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
+ {
+ rtx mem = XEXP (XVECEXP (PATTERN (insn), 0, i), 0);
+
+ if (first + i <= 6)
+ set_mem_alias_set (mem, get_varargs_alias_set ());
+ }
+
+ /* We need to set the FRAME_RELATED flag on all SETs
+ inside the store-multiple pattern.
+
+ However, we must not emit DWARF records for registers 2..5
+ if they are stored for use by variable arguments ...
+
+ ??? Unfortunately, it is not enough to simply not the
+ FRAME_RELATED flags for those SETs, because the first SET
+ of the PARALLEL is always treated as if it had the flag
+ set, even if it does not. Therefore we emit a new pattern
+ without those registers as REG_FRAME_RELATED_EXPR note. */
+
+ if (first >= 6 && !global_not_special_regno_p (first))
+ {
+ rtx pat = PATTERN (insn);
+
+ for (i = 0; i < XVECLEN (pat, 0); i++)
+ if (GET_CODE (XVECEXP (pat, 0, i)) == SET
+ && !global_not_special_regno_p (REGNO (SET_SRC (XVECEXP (pat,
+ 0, i)))))
+ RTX_FRAME_RELATED_P (XVECEXP (pat, 0, i)) = 1;
+
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ else if (last >= 6)
+ {
+ int start;
+
+ for (start = first >= 6 ? first : 6; start <= last; start++)
+ if (!global_not_special_regno_p (start))
+ break;
+
+ if (start > last)
+ return insn;
+
+ addr = plus_constant (Pmode, base,
+ offset + (start - first) * UNITS_PER_LONG);
+
+ if (start == last)
+ {
+ if (TARGET_64BIT)
+ note = gen_movdi (gen_rtx_MEM (Pmode, addr),
+ gen_rtx_REG (Pmode, start));
+ else
+ note = gen_movsi (gen_rtx_MEM (Pmode, addr),
+ gen_rtx_REG (Pmode, start));
+ note = PATTERN (note);
+
+ add_reg_note (insn, REG_FRAME_RELATED_EXPR, note);
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ return insn;
+ }
+
+ note = gen_store_multiple (gen_rtx_MEM (Pmode, addr),
+ gen_rtx_REG (Pmode, start),
+ GEN_INT (last - start + 1));
+ note = PATTERN (note);
+
+ add_reg_note (insn, REG_FRAME_RELATED_EXPR, note);
+
+ for (i = 0; i < XVECLEN (note, 0); i++)
+ if (GET_CODE (XVECEXP (note, 0, i)) == SET
+ && !global_not_special_regno_p (REGNO (SET_SRC (XVECEXP (note,
+ 0, i)))))
+ RTX_FRAME_RELATED_P (XVECEXP (note, 0, i)) = 1;
+
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+
+ return insn;
+}
+
+/* Generate insn to restore registers FIRST to LAST from
+ the register save area located at offset OFFSET
+ relative to register BASE. */
+
+static rtx
+restore_gprs (rtx base, int offset, int first, int last)
+{
+ rtx addr, insn;
+
+ addr = plus_constant (Pmode, base, offset);
+ addr = gen_rtx_MEM (Pmode, addr);
+ set_mem_alias_set (addr, get_frame_alias_set ());
+
+ /* Special-case single register. */
+ if (first == last)
+ {
+ if (TARGET_64BIT)
+ insn = gen_movdi (gen_rtx_REG (Pmode, first), addr);
+ else
+ insn = gen_movsi (gen_rtx_REG (Pmode, first), addr);
+
+ RTX_FRAME_RELATED_P (insn) = 1;
+ return insn;
+ }
+
+ insn = gen_load_multiple (gen_rtx_REG (Pmode, first),
+ addr,
+ GEN_INT (last - first + 1));
+ RTX_FRAME_RELATED_P (insn) = 1;
+ return insn;
+}
+
+/* Return insn sequence to load the GOT register. */
+
+static GTY(()) rtx got_symbol;
+rtx
+s390_load_got (void)
+{
+ rtx insns;
+
+ /* We cannot use pic_offset_table_rtx here since we use this
+ function also for non-pic if __tls_get_offset is called and in
+ that case PIC_OFFSET_TABLE_REGNUM as well as pic_offset_table_rtx
+ aren't usable. */
+ rtx got_rtx = gen_rtx_REG (Pmode, 12);
+
+ if (!got_symbol)
+ {
+ got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
+ SYMBOL_REF_FLAGS (got_symbol) = SYMBOL_FLAG_LOCAL;
+ }
+
+ start_sequence ();
+
+ if (TARGET_CPU_ZARCH)
+ {
+ emit_move_insn (got_rtx, got_symbol);
+ }
+ else
+ {
+ rtx offset;
+
+ offset = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, got_symbol),
+ UNSPEC_LTREL_OFFSET);
+ offset = gen_rtx_CONST (Pmode, offset);
+ offset = force_const_mem (Pmode, offset);
+
+ emit_move_insn (got_rtx, offset);
+
+ offset = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, XEXP (offset, 0)),
+ UNSPEC_LTREL_BASE);
+ offset = gen_rtx_PLUS (Pmode, got_rtx, offset);
+
+ emit_move_insn (got_rtx, offset);
+ }
+
+ insns = get_insns ();
+ end_sequence ();
+ return insns;
+}
+
+/* This ties together stack memory (MEM with an alias set of frame_alias_set)
+ and the change to the stack pointer. */
+
+static void
+s390_emit_stack_tie (void)
+{
+ rtx mem = gen_frame_mem (BLKmode,
+ gen_rtx_REG (Pmode, STACK_POINTER_REGNUM));
+
+ emit_insn (gen_stack_tie (mem));
+}
+
+/* Copy GPRS into FPR save slots. */
+
+static void
+s390_save_gprs_to_fprs (void)
+{
+ int i;
+
+ if (!TARGET_Z10 || !TARGET_HARD_FLOAT || !crtl->is_leaf)
+ return;
+
+ for (i = 6; i < 16; i++)
+ {
+ if (FP_REGNO_P (cfun_gpr_save_slot (i)))
+ {
+ rtx insn =
+ emit_move_insn (gen_rtx_REG (DImode, cfun_gpr_save_slot (i)),
+ gen_rtx_REG (DImode, i));
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ }
+}
+
+/* Restore GPRs from FPR save slots. */
+
+static void
+s390_restore_gprs_from_fprs (void)
+{
+ int i;
+
+ if (!TARGET_Z10 || !TARGET_HARD_FLOAT || !crtl->is_leaf)
+ return;
+
+ for (i = 6; i < 16; i++)
+ {
+ if (FP_REGNO_P (cfun_gpr_save_slot (i)))
+ {
+ rtx insn =
+ emit_move_insn (gen_rtx_REG (DImode, i),
+ gen_rtx_REG (DImode, cfun_gpr_save_slot (i)));
+ df_set_regs_ever_live (i, true);
+ add_reg_note (insn, REG_CFA_RESTORE, gen_rtx_REG (DImode, i));
+ if (i == STACK_POINTER_REGNUM)
+ add_reg_note (insn, REG_CFA_DEF_CFA,
+ plus_constant (Pmode, stack_pointer_rtx,
+ STACK_POINTER_OFFSET));
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ }
+}
+
+
+/* A pass run immediately before shrink-wrapping and prologue and epilogue
+ generation. */
+
+static unsigned int
+s390_early_mach (void)
+{
+ rtx insn;
+
+ /* Try to get rid of the FPR clobbers. */
+ s390_optimize_nonescaping_tx ();
+
+ /* Re-compute register info. */
+ s390_register_info ();
+
+ /* If we're using a base register, ensure that it is always valid for
+ the first non-prologue instruction. */
+ if (cfun->machine->base_reg)
+ emit_insn_at_entry (gen_main_pool (cfun->machine->base_reg));
+
+ /* Annotate all constant pool references to let the scheduler know
+ they implicitly use the base register. */
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ if (INSN_P (insn))
+ {
+ annotate_constant_pool_refs (&PATTERN (insn));
+ df_insn_rescan (insn);
+ }
+ return 0;
+}
+
+namespace {
+
+const pass_data pass_data_s390_early_mach =
+{
+ RTL_PASS, /* type */
+ "early_mach", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ false, /* has_gate */
+ true, /* has_execute */
+ TV_MACH_DEP, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ ( TODO_df_verify | TODO_df_finish
+ | TODO_verify_rtl_sharing ), /* todo_flags_finish */
+};
+
+class pass_s390_early_mach : public rtl_opt_pass
+{
+public:
+ pass_s390_early_mach (gcc::context *ctxt)
+ : rtl_opt_pass (pass_data_s390_early_mach, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ unsigned int execute () { return s390_early_mach (); }
+
+}; // class pass_s390_early_mach
+
+} // anon namespace
+
+/* Expand the prologue into a bunch of separate insns. */
+
+void
+s390_emit_prologue (void)
+{
+ rtx insn, addr;
+ rtx temp_reg;
+ int i;
+ int offset;
+ int next_fpr = 0;
+
+ /* Choose best register to use for temp use within prologue.
+ See below for why TPF must use the register 1. */
+
+ if (!has_hard_reg_initial_val (Pmode, RETURN_REGNUM)
+ && !crtl->is_leaf
+ && !TARGET_TPF_PROFILING)
+ temp_reg = gen_rtx_REG (Pmode, RETURN_REGNUM);
+ else
+ temp_reg = gen_rtx_REG (Pmode, 1);
+
+ s390_save_gprs_to_fprs ();
+
+ /* Save call saved gprs. */
+ if (cfun_frame_layout.first_save_gpr != -1)
+ {
+ insn = save_gprs (stack_pointer_rtx,
+ cfun_frame_layout.gprs_offset +
+ UNITS_PER_LONG * (cfun_frame_layout.first_save_gpr
+ - cfun_frame_layout.first_save_gpr_slot),
+ cfun_frame_layout.first_save_gpr,
+ cfun_frame_layout.last_save_gpr);
+ emit_insn (insn);
+ }
+
+ /* Dummy insn to mark literal pool slot. */
+
+ if (cfun->machine->base_reg)
+ emit_insn (gen_main_pool (cfun->machine->base_reg));
+
+ offset = cfun_frame_layout.f0_offset;
+
+ /* Save f0 and f2. */
+ for (i = FPR0_REGNUM; i <= FPR0_REGNUM + 1; i++)
+ {
+ if (cfun_fpr_save_p (i))
+ {
+ save_fpr (stack_pointer_rtx, offset, i);
+ offset += 8;
+ }
+ else if (!TARGET_PACKED_STACK || cfun->stdarg)
+ offset += 8;
+ }
+
+ /* Save f4 and f6. */
+ offset = cfun_frame_layout.f4_offset;
+ for (i = FPR4_REGNUM; i <= FPR4_REGNUM + 1; i++)
+ {
+ if (cfun_fpr_save_p (i))
+ {
+ insn = save_fpr (stack_pointer_rtx, offset, i);
+ offset += 8;
+
+ /* If f4 and f6 are call clobbered they are saved due to
+ stdargs and therefore are not frame related. */
+ if (!call_really_used_regs[i])
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ else if (!TARGET_PACKED_STACK || call_really_used_regs[i])
+ offset += 8;
+ }
+
+ if (TARGET_PACKED_STACK
+ && cfun_save_high_fprs_p
+ && cfun_frame_layout.f8_offset + cfun_frame_layout.high_fprs * 8 > 0)
+ {
+ offset = (cfun_frame_layout.f8_offset
+ + (cfun_frame_layout.high_fprs - 1) * 8);
+
+ for (i = FPR15_REGNUM; i >= FPR8_REGNUM && offset >= 0; i--)
+ if (cfun_fpr_save_p (i))
+ {
+ insn = save_fpr (stack_pointer_rtx, offset, i);
+
+ RTX_FRAME_RELATED_P (insn) = 1;
+ offset -= 8;
+ }
+ if (offset >= cfun_frame_layout.f8_offset)
+ next_fpr = i;
+ }
+
+ if (!TARGET_PACKED_STACK)
+ next_fpr = cfun_save_high_fprs_p ? FPR15_REGNUM : 0;
+
+ if (flag_stack_usage_info)
+ current_function_static_stack_size = cfun_frame_layout.frame_size;
+
+ /* Decrement stack pointer. */
+
+ if (cfun_frame_layout.frame_size > 0)
+ {
+ rtx frame_off = GEN_INT (-cfun_frame_layout.frame_size);
+ rtx real_frame_off;
+
+ if (s390_stack_size)
+ {
+ HOST_WIDE_INT stack_guard;
+
+ if (s390_stack_guard)
+ stack_guard = s390_stack_guard;
+ else
+ {
+ /* If no value for stack guard is provided the smallest power of 2
+ larger than the current frame size is chosen. */
+ stack_guard = 1;
+ while (stack_guard < cfun_frame_layout.frame_size)
+ stack_guard <<= 1;
+ }
+
+ if (cfun_frame_layout.frame_size >= s390_stack_size)
+ {
+ warning (0, "frame size of function %qs is %wd"
+ " bytes exceeding user provided stack limit of "
+ "%d bytes. "
+ "An unconditional trap is added.",
+ current_function_name(), cfun_frame_layout.frame_size,
+ s390_stack_size);
+ emit_insn (gen_trap ());
+ }
+ else
+ {
+ /* stack_guard has to be smaller than s390_stack_size.
+ Otherwise we would emit an AND with zero which would
+ not match the test under mask pattern. */
+ if (stack_guard >= s390_stack_size)
+ {
+ warning (0, "frame size of function %qs is %wd"
+ " bytes which is more than half the stack size. "
+ "The dynamic check would not be reliable. "
+ "No check emitted for this function.",
+ current_function_name(),
+ cfun_frame_layout.frame_size);
+ }
+ else
+ {
+ HOST_WIDE_INT stack_check_mask = ((s390_stack_size - 1)
+ & ~(stack_guard - 1));
+
+ rtx t = gen_rtx_AND (Pmode, stack_pointer_rtx,
+ GEN_INT (stack_check_mask));
+ if (TARGET_64BIT)
+ emit_insn (gen_ctrapdi4 (gen_rtx_EQ (VOIDmode,
+ t, const0_rtx),
+ t, const0_rtx, const0_rtx));
+ else
+ emit_insn (gen_ctrapsi4 (gen_rtx_EQ (VOIDmode,
+ t, const0_rtx),
+ t, const0_rtx, const0_rtx));
+ }
+ }
+ }
+
+ if (s390_warn_framesize > 0
+ && cfun_frame_layout.frame_size >= s390_warn_framesize)
+ warning (0, "frame size of %qs is %wd bytes",
+ current_function_name (), cfun_frame_layout.frame_size);
+
+ if (s390_warn_dynamicstack_p && cfun->calls_alloca)
+ warning (0, "%qs uses dynamic stack allocation", current_function_name ());
+
+ /* Save incoming stack pointer into temp reg. */
+ if (TARGET_BACKCHAIN || next_fpr)
+ insn = emit_insn (gen_move_insn (temp_reg, stack_pointer_rtx));
+
+ /* Subtract frame size from stack pointer. */
+
+ if (DISP_IN_RANGE (INTVAL (frame_off)))
+ {
+ insn = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
+ gen_rtx_PLUS (Pmode, stack_pointer_rtx,
+ frame_off));
+ insn = emit_insn (insn);
+ }
+ else
+ {
+ if (!CONST_OK_FOR_K (INTVAL (frame_off)))
+ frame_off = force_const_mem (Pmode, frame_off);
+
+ insn = emit_insn (gen_add2_insn (stack_pointer_rtx, frame_off));
+ annotate_constant_pool_refs (&PATTERN (insn));
+ }
+
+ RTX_FRAME_RELATED_P (insn) = 1;
+ real_frame_off = GEN_INT (-cfun_frame_layout.frame_size);
+ add_reg_note (insn, REG_FRAME_RELATED_EXPR,
+ gen_rtx_SET (VOIDmode, stack_pointer_rtx,
+ gen_rtx_PLUS (Pmode, stack_pointer_rtx,
+ real_frame_off)));
+
+ /* Set backchain. */
+
+ if (TARGET_BACKCHAIN)
+ {
+ if (cfun_frame_layout.backchain_offset)
+ addr = gen_rtx_MEM (Pmode,
+ plus_constant (Pmode, stack_pointer_rtx,
+ cfun_frame_layout.backchain_offset));
+ else
+ addr = gen_rtx_MEM (Pmode, stack_pointer_rtx);
+ set_mem_alias_set (addr, get_frame_alias_set ());
+ insn = emit_insn (gen_move_insn (addr, temp_reg));
+ }
+
+ /* If we support non-call exceptions (e.g. for Java),
+ we need to make sure the backchain pointer is set up
+ before any possibly trapping memory access. */
+ if (TARGET_BACKCHAIN && cfun->can_throw_non_call_exceptions)
+ {
+ addr = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
+ emit_clobber (addr);
+ }
+ }
+
+ /* Save fprs 8 - 15 (64 bit ABI). */
+
+ if (cfun_save_high_fprs_p && next_fpr)
+ {
+ /* If the stack might be accessed through a different register
+ we have to make sure that the stack pointer decrement is not
+ moved below the use of the stack slots. */
+ s390_emit_stack_tie ();
+
+ insn = emit_insn (gen_add2_insn (temp_reg,
+ GEN_INT (cfun_frame_layout.f8_offset)));
+
+ offset = 0;
+
+ for (i = FPR8_REGNUM; i <= next_fpr; i++)
+ if (cfun_fpr_save_p (i))
+ {
+ rtx addr = plus_constant (Pmode, stack_pointer_rtx,
+ cfun_frame_layout.frame_size
+ + cfun_frame_layout.f8_offset
+ + offset);
+
+ insn = save_fpr (temp_reg, offset, i);
+ offset += 8;
+ RTX_FRAME_RELATED_P (insn) = 1;
+ add_reg_note (insn, REG_FRAME_RELATED_EXPR,
+ gen_rtx_SET (VOIDmode,
+ gen_rtx_MEM (DFmode, addr),
+ gen_rtx_REG (DFmode, i)));
+ }
+ }
+
+ /* Set frame pointer, if needed. */
+
+ if (frame_pointer_needed)
+ {
+ insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+
+ /* Set up got pointer, if needed. */
+
+ if (flag_pic && df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM))
+ {
+ rtx insns = s390_load_got ();
+
+ for (insn = insns; insn; insn = NEXT_INSN (insn))
+ annotate_constant_pool_refs (&PATTERN (insn));
+
+ emit_insn (insns);
+ }
+
+ if (TARGET_TPF_PROFILING)
+ {
+ /* Generate a BAS instruction to serve as a function
+ entry intercept to facilitate the use of tracing
+ algorithms located at the branch target. */
+ emit_insn (gen_prologue_tpf ());
+
+ /* Emit a blockage here so that all code
+ lies between the profiling mechanisms. */
+ emit_insn (gen_blockage ());
+ }
+}
+
+/* Expand the epilogue into a bunch of separate insns. */
+
+void
+s390_emit_epilogue (bool sibcall)
+{
+ rtx frame_pointer, return_reg, cfa_restores = NULL_RTX;
+ int area_bottom, area_top, offset = 0;
+ int next_offset;
+ rtvec p;
+ int i;
+
+ if (TARGET_TPF_PROFILING)
+ {
+
+ /* Generate a BAS instruction to serve as a function
+ entry intercept to facilitate the use of tracing
+ algorithms located at the branch target. */
+
+ /* Emit a blockage here so that all code
+ lies between the profiling mechanisms. */
+ emit_insn (gen_blockage ());
+
+ emit_insn (gen_epilogue_tpf ());
+ }
+
+ /* Check whether to use frame or stack pointer for restore. */
+
+ frame_pointer = (frame_pointer_needed
+ ? hard_frame_pointer_rtx : stack_pointer_rtx);
+
+ s390_frame_area (&area_bottom, &area_top);
+
+ /* Check whether we can access the register save area.
+ If not, increment the frame pointer as required. */
+
+ if (area_top <= area_bottom)
+ {
+ /* Nothing to restore. */
+ }
+ else if (DISP_IN_RANGE (cfun_frame_layout.frame_size + area_bottom)
+ && DISP_IN_RANGE (cfun_frame_layout.frame_size + area_top - 1))
+ {
+ /* Area is in range. */
+ offset = cfun_frame_layout.frame_size;
+ }
+ else
+ {
+ rtx insn, frame_off, cfa;
+
+ offset = area_bottom < 0 ? -area_bottom : 0;
+ frame_off = GEN_INT (cfun_frame_layout.frame_size - offset);
+
+ cfa = gen_rtx_SET (VOIDmode, frame_pointer,
+ gen_rtx_PLUS (Pmode, frame_pointer, frame_off));
+ if (DISP_IN_RANGE (INTVAL (frame_off)))
+ {
+ insn = gen_rtx_SET (VOIDmode, frame_pointer,
+ gen_rtx_PLUS (Pmode, frame_pointer, frame_off));
+ insn = emit_insn (insn);
+ }
+ else
+ {
+ if (!CONST_OK_FOR_K (INTVAL (frame_off)))
+ frame_off = force_const_mem (Pmode, frame_off);
+
+ insn = emit_insn (gen_add2_insn (frame_pointer, frame_off));
+ annotate_constant_pool_refs (&PATTERN (insn));
+ }
+ add_reg_note (insn, REG_CFA_ADJUST_CFA, cfa);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+
+ /* Restore call saved fprs. */
+
+ if (TARGET_64BIT)
+ {
+ if (cfun_save_high_fprs_p)
+ {
+ next_offset = cfun_frame_layout.f8_offset;
+ for (i = FPR8_REGNUM; i <= FPR15_REGNUM; i++)
+ {
+ if (cfun_fpr_save_p (i))
+ {
+ restore_fpr (frame_pointer,
+ offset + next_offset, i);
+ cfa_restores
+ = alloc_reg_note (REG_CFA_RESTORE,
+ gen_rtx_REG (DFmode, i), cfa_restores);
+ next_offset += 8;
+ }
+ }
+ }
+
+ }
+ else
+ {
+ next_offset = cfun_frame_layout.f4_offset;
+ /* f4, f6 */
+ for (i = FPR4_REGNUM; i <= FPR4_REGNUM + 1; i++)
+ {
+ if (cfun_fpr_save_p (i))
+ {
+ restore_fpr (frame_pointer,
+ offset + next_offset, i);
+ cfa_restores
+ = alloc_reg_note (REG_CFA_RESTORE,
+ gen_rtx_REG (DFmode, i), cfa_restores);
+ next_offset += 8;
+ }
+ else if (!TARGET_PACKED_STACK)
+ next_offset += 8;
+ }
+
+ }
+
+ /* Return register. */
+
+ return_reg = gen_rtx_REG (Pmode, RETURN_REGNUM);
+
+ /* Restore call saved gprs. */
+
+ if (cfun_frame_layout.first_restore_gpr != -1)
+ {
+ rtx insn, addr;
+ int i;
+
+ /* Check for global register and save them
+ to stack location from where they get restored. */
+
+ for (i = cfun_frame_layout.first_restore_gpr;
+ i <= cfun_frame_layout.last_restore_gpr;
+ i++)
+ {
+ if (global_not_special_regno_p (i))
+ {
+ addr = plus_constant (Pmode, frame_pointer,
+ offset + cfun_frame_layout.gprs_offset
+ + (i - cfun_frame_layout.first_save_gpr_slot)
+ * UNITS_PER_LONG);
+ addr = gen_rtx_MEM (Pmode, addr);
+ set_mem_alias_set (addr, get_frame_alias_set ());
+ emit_move_insn (addr, gen_rtx_REG (Pmode, i));
+ }
+ else
+ cfa_restores
+ = alloc_reg_note (REG_CFA_RESTORE,
+ gen_rtx_REG (Pmode, i), cfa_restores);
+ }
+
+ if (! sibcall)
+ {
+ /* Fetch return address from stack before load multiple,
+ this will do good for scheduling. */
+
+ if (cfun_frame_layout.save_return_addr_p
+ || (cfun_frame_layout.first_restore_gpr < BASE_REGNUM
+ && cfun_frame_layout.last_restore_gpr > RETURN_REGNUM))
+ {
+ int return_regnum = find_unused_clobbered_reg();
+ if (!return_regnum)
+ return_regnum = 4;
+ return_reg = gen_rtx_REG (Pmode, return_regnum);
+
+ addr = plus_constant (Pmode, frame_pointer,
+ offset + cfun_frame_layout.gprs_offset
+ + (RETURN_REGNUM
+ - cfun_frame_layout.first_save_gpr_slot)
+ * UNITS_PER_LONG);
+ addr = gen_rtx_MEM (Pmode, addr);
+ set_mem_alias_set (addr, get_frame_alias_set ());
+ emit_move_insn (return_reg, addr);
+ }
+ }
+
+ insn = restore_gprs (frame_pointer,
+ offset + cfun_frame_layout.gprs_offset
+ + (cfun_frame_layout.first_restore_gpr
+ - cfun_frame_layout.first_save_gpr_slot)
+ * UNITS_PER_LONG,
+ cfun_frame_layout.first_restore_gpr,
+ cfun_frame_layout.last_restore_gpr);
+ insn = emit_insn (insn);
+ REG_NOTES (insn) = cfa_restores;
+ add_reg_note (insn, REG_CFA_DEF_CFA,
+ plus_constant (Pmode, stack_pointer_rtx,
+ STACK_POINTER_OFFSET));
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+
+ s390_restore_gprs_from_fprs ();
+
+ if (! sibcall)
+ {
+
+ /* Return to caller. */
+
+ p = rtvec_alloc (2);
+
+ RTVEC_ELT (p, 0) = ret_rtx;
+ RTVEC_ELT (p, 1) = gen_rtx_USE (VOIDmode, return_reg);
+ emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
+ }
+}
+
+/* Implement TARGET_SET_UP_BY_PROLOGUE. */
+
+static void
+s300_set_up_by_prologue (hard_reg_set_container *regs)
+{
+ if (cfun->machine->base_reg
+ && !call_really_used_regs[REGNO (cfun->machine->base_reg)])
+ SET_HARD_REG_BIT (regs->set, REGNO (cfun->machine->base_reg));
+}
+
+/* Return true if the function can use simple_return to return outside
+ of a shrink-wrapped region. At present shrink-wrapping is supported
+ in all cases. */
+
+bool
+s390_can_use_simple_return_insn (void)
+{
+ return true;
+}
+
+/* Return true if the epilogue is guaranteed to contain only a return
+ instruction and if a direct return can therefore be used instead.
+ One of the main advantages of using direct return instructions
+ is that we can then use conditional returns. */
+
+bool
+s390_can_use_return_insn (void)
+{
+ int i;
+
+ if (!reload_completed)
+ return false;
+
+ if (crtl->profile)
+ return false;
+
+ if (TARGET_TPF_PROFILING)
+ return false;
+
+ for (i = 0; i < 16; i++)
+ if (cfun_gpr_save_slot (i))
+ return false;
+
+ if (cfun->machine->base_reg
+ && !call_really_used_regs[REGNO (cfun->machine->base_reg)])
+ return false;
+
+ return cfun_frame_layout.frame_size == 0;
+}
+
+/* Return the size in bytes of a function argument of
+ type TYPE and/or mode MODE. At least one of TYPE or
+ MODE must be specified. */
+
+static int
+s390_function_arg_size (enum machine_mode mode, const_tree type)
+{
+ if (type)
+ return int_size_in_bytes (type);
+
+ /* No type info available for some library calls ... */
+ if (mode != BLKmode)
+ return GET_MODE_SIZE (mode);
+
+ /* If we have neither type nor mode, abort */
+ gcc_unreachable ();
+}
+
+/* Return true if a function argument of type TYPE and mode MODE
+ is to be passed in a floating-point register, if available. */
+
+static bool
+s390_function_arg_float (enum machine_mode mode, const_tree type)
+{
+ int size = s390_function_arg_size (mode, type);
+ if (size > 8)
+ return false;
+
+ /* Soft-float changes the ABI: no floating-point registers are used. */
+ if (TARGET_SOFT_FLOAT)
+ return false;
+
+ /* No type info available for some library calls ... */
+ if (!type)
+ return mode == SFmode || mode == DFmode || mode == SDmode || mode == DDmode;
+
+ /* The ABI says that record types with a single member are treated
+ just like that member would be. */
+ while (TREE_CODE (type) == RECORD_TYPE)
+ {
+ tree field, single = NULL_TREE;
+
+ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
+ {
+ if (TREE_CODE (field) != FIELD_DECL)
+ continue;
+
+ if (single == NULL_TREE)
+ single = TREE_TYPE (field);
+ else
+ return false;
+ }
+
+ if (single == NULL_TREE)
+ return false;
+ else
+ type = single;
+ }
+
+ return TREE_CODE (type) == REAL_TYPE;
+}
+
+/* Return true if a function argument of type TYPE and mode MODE
+ is to be passed in an integer register, or a pair of integer
+ registers, if available. */
+
+static bool
+s390_function_arg_integer (enum machine_mode mode, const_tree type)
+{
+ int size = s390_function_arg_size (mode, type);
+ if (size > 8)
+ return false;
+
+ /* No type info available for some library calls ... */
+ if (!type)
+ return GET_MODE_CLASS (mode) == MODE_INT
+ || (TARGET_SOFT_FLOAT && SCALAR_FLOAT_MODE_P (mode));
+
+ /* We accept small integral (and similar) types. */
+ if (INTEGRAL_TYPE_P (type)
+ || POINTER_TYPE_P (type)
+ || TREE_CODE (type) == NULLPTR_TYPE
+ || TREE_CODE (type) == OFFSET_TYPE
+ || (TARGET_SOFT_FLOAT && TREE_CODE (type) == REAL_TYPE))
+ return true;
+
+ /* We also accept structs of size 1, 2, 4, 8 that are not
+ passed in floating-point registers. */
+ if (AGGREGATE_TYPE_P (type)
+ && exact_log2 (size) >= 0
+ && !s390_function_arg_float (mode, type))
+ return true;
+
+ return false;
+}
+
+/* Return 1 if a function argument of type TYPE and mode MODE
+ is to be passed by reference. The ABI specifies that only
+ structures of size 1, 2, 4, or 8 bytes are passed by value,
+ all other structures (and complex numbers) are passed by
+ reference. */
+
+static bool
+s390_pass_by_reference (cumulative_args_t ca ATTRIBUTE_UNUSED,
+ enum machine_mode mode, const_tree type,
+ bool named ATTRIBUTE_UNUSED)
+{
+ int size = s390_function_arg_size (mode, type);
+ if (size > 8)
+ return true;
+
+ if (type)
+ {
+ if (AGGREGATE_TYPE_P (type) && exact_log2 (size) < 0)
+ return 1;
+
+ if (TREE_CODE (type) == COMPLEX_TYPE
+ || TREE_CODE (type) == VECTOR_TYPE)
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Update the data in CUM to advance over an argument of mode MODE and
+ data type TYPE. (TYPE is null for libcalls where that information
+ may not be available.). The boolean NAMED specifies whether the
+ argument is a named argument (as opposed to an unnamed argument
+ matching an ellipsis). */
+
+static void
+s390_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
+ const_tree type, bool named ATTRIBUTE_UNUSED)
+{
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+
+ if (s390_function_arg_float (mode, type))
+ {
+ cum->fprs += 1;
+ }
+ else if (s390_function_arg_integer (mode, type))
+ {
+ int size = s390_function_arg_size (mode, type);
+ cum->gprs += ((size + UNITS_PER_LONG - 1) / UNITS_PER_LONG);
+ }
+ else
+ gcc_unreachable ();
+}
+
+/* Define where to put the arguments to a function.
+ Value is zero to push the argument on the stack,
+ or a hard register in which to store the argument.
+
+ MODE is the argument's machine mode.
+ TYPE is the data type of the argument (as a tree).
+ This is null for libcalls where that information may
+ not be available.
+ CUM is a variable of type CUMULATIVE_ARGS which gives info about
+ the preceding args and about the function being called.
+ NAMED is nonzero if this argument is a named parameter
+ (otherwise it is an extra parameter matching an ellipsis).
+
+ On S/390, we use general purpose registers 2 through 6 to
+ pass integer, pointer, and certain structure arguments, and
+ floating point registers 0 and 2 (0, 2, 4, and 6 on 64-bit)
+ to pass floating point arguments. All remaining arguments
+ are pushed to the stack. */
+
+static rtx
+s390_function_arg (cumulative_args_t cum_v, enum machine_mode mode,
+ const_tree type, bool named ATTRIBUTE_UNUSED)
+{
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+
+ if (s390_function_arg_float (mode, type))
+ {
+ if (cum->fprs + 1 > FP_ARG_NUM_REG)
+ return 0;
+ else
+ return gen_rtx_REG (mode, cum->fprs + 16);
+ }
+ else if (s390_function_arg_integer (mode, type))
+ {
+ int size = s390_function_arg_size (mode, type);
+ int n_gprs = (size + UNITS_PER_LONG - 1) / UNITS_PER_LONG;
+
+ if (cum->gprs + n_gprs > GP_ARG_NUM_REG)
+ return 0;
+ else if (n_gprs == 1 || UNITS_PER_WORD == UNITS_PER_LONG)
+ return gen_rtx_REG (mode, cum->gprs + 2);
+ else if (n_gprs == 2)
+ {
+ rtvec p = rtvec_alloc (2);
+
+ RTVEC_ELT (p, 0)
+ = gen_rtx_EXPR_LIST (SImode, gen_rtx_REG (SImode, cum->gprs + 2),
+ const0_rtx);
+ RTVEC_ELT (p, 1)
+ = gen_rtx_EXPR_LIST (SImode, gen_rtx_REG (SImode, cum->gprs + 3),
+ GEN_INT (4));
+
+ return gen_rtx_PARALLEL (mode, p);
+ }
+ }
+
+ /* After the real arguments, expand_call calls us once again
+ with a void_type_node type. Whatever we return here is
+ passed as operand 2 to the call expanders.
+
+ We don't need this feature ... */
+ else if (type == void_type_node)
+ return const0_rtx;
+
+ gcc_unreachable ();
+}
+
+/* Return true if return values of type TYPE should be returned
+ in a memory buffer whose address is passed by the caller as
+ hidden first argument. */
+
+static bool
+s390_return_in_memory (const_tree type, const_tree fundecl ATTRIBUTE_UNUSED)
+{
+ /* We accept small integral (and similar) types. */
+ if (INTEGRAL_TYPE_P (type)
+ || POINTER_TYPE_P (type)
+ || TREE_CODE (type) == OFFSET_TYPE
+ || TREE_CODE (type) == REAL_TYPE)
+ return int_size_in_bytes (type) > 8;
+
+ /* Aggregates and similar constructs are always returned
+ in memory. */
+ if (AGGREGATE_TYPE_P (type)
+ || TREE_CODE (type) == COMPLEX_TYPE
+ || TREE_CODE (type) == VECTOR_TYPE)
+ return true;
+
+ /* ??? We get called on all sorts of random stuff from
+ aggregate_value_p. We can't abort, but it's not clear
+ what's safe to return. Pretend it's a struct I guess. */
+ return true;
+}
+
+/* Function arguments and return values are promoted to word size. */
+
+static enum machine_mode
+s390_promote_function_mode (const_tree type, enum machine_mode mode,
+ int *punsignedp,
+ const_tree fntype ATTRIBUTE_UNUSED,
+ int for_return ATTRIBUTE_UNUSED)
+{
+ if (INTEGRAL_MODE_P (mode)
+ && GET_MODE_SIZE (mode) < UNITS_PER_LONG)
+ {
+ if (type != NULL_TREE && POINTER_TYPE_P (type))
+ *punsignedp = POINTERS_EXTEND_UNSIGNED;
+ return Pmode;
+ }
+
+ return mode;
+}
+
+/* Define where to return a (scalar) value of type RET_TYPE.
+ If RET_TYPE is null, define where to return a (scalar)
+ value of mode MODE from a libcall. */
+
+static rtx
+s390_function_and_libcall_value (enum machine_mode mode,
+ const_tree ret_type,
+ const_tree fntype_or_decl,
+ bool outgoing ATTRIBUTE_UNUSED)
+{
+ /* For normal functions perform the promotion as
+ promote_function_mode would do. */
+ if (ret_type)
+ {
+ int unsignedp = TYPE_UNSIGNED (ret_type);
+ mode = promote_function_mode (ret_type, mode, &unsignedp,
+ fntype_or_decl, 1);
+ }
+
+ gcc_assert (GET_MODE_CLASS (mode) == MODE_INT || SCALAR_FLOAT_MODE_P (mode));
+ gcc_assert (GET_MODE_SIZE (mode) <= 8);
+
+ if (TARGET_HARD_FLOAT && SCALAR_FLOAT_MODE_P (mode))
+ return gen_rtx_REG (mode, 16);
+ else if (GET_MODE_SIZE (mode) <= UNITS_PER_LONG
+ || UNITS_PER_LONG == UNITS_PER_WORD)
+ return gen_rtx_REG (mode, 2);
+ else if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_LONG)
+ {
+ /* This case is triggered when returning a 64 bit value with
+ -m31 -mzarch. Although the value would fit into a single
+ register it has to be forced into a 32 bit register pair in
+ order to match the ABI. */
+ rtvec p = rtvec_alloc (2);
+
+ RTVEC_ELT (p, 0)
+ = gen_rtx_EXPR_LIST (SImode, gen_rtx_REG (SImode, 2), const0_rtx);
+ RTVEC_ELT (p, 1)
+ = gen_rtx_EXPR_LIST (SImode, gen_rtx_REG (SImode, 3), GEN_INT (4));
+
+ return gen_rtx_PARALLEL (mode, p);
+ }
+
+ gcc_unreachable ();
+}
+
+/* Define where to return a scalar return value of type RET_TYPE. */
+
+static rtx
+s390_function_value (const_tree ret_type, const_tree fn_decl_or_type,
+ bool outgoing)
+{
+ return s390_function_and_libcall_value (TYPE_MODE (ret_type), ret_type,
+ fn_decl_or_type, outgoing);
+}
+
+/* Define where to return a scalar libcall return value of mode
+ MODE. */
+
+static rtx
+s390_libcall_value (enum machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
+{
+ return s390_function_and_libcall_value (mode, NULL_TREE,
+ NULL_TREE, true);
+}
+
+
+/* Create and return the va_list datatype.
+
+ On S/390, va_list is an array type equivalent to
+
+ typedef struct __va_list_tag
+ {
+ long __gpr;
+ long __fpr;
+ void *__overflow_arg_area;
+ void *__reg_save_area;
+ } va_list[1];
+
+ where __gpr and __fpr hold the number of general purpose
+ or floating point arguments used up to now, respectively,
+ __overflow_arg_area points to the stack location of the
+ next argument passed on the stack, and __reg_save_area
+ always points to the start of the register area in the
+ call frame of the current function. The function prologue
+ saves all registers used for argument passing into this
+ area if the function uses variable arguments. */
+
+static tree
+s390_build_builtin_va_list (void)
+{
+ tree f_gpr, f_fpr, f_ovf, f_sav, record, type_decl;
+
+ record = lang_hooks.types.make_type (RECORD_TYPE);
+
+ type_decl =
+ build_decl (BUILTINS_LOCATION,
+ TYPE_DECL, get_identifier ("__va_list_tag"), record);
+
+ f_gpr = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL, get_identifier ("__gpr"),
+ long_integer_type_node);
+ f_fpr = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL, get_identifier ("__fpr"),
+ long_integer_type_node);
+ f_ovf = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL, get_identifier ("__overflow_arg_area"),
+ ptr_type_node);
+ f_sav = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL, get_identifier ("__reg_save_area"),
+ ptr_type_node);
+
+ va_list_gpr_counter_field = f_gpr;
+ va_list_fpr_counter_field = f_fpr;
+
+ DECL_FIELD_CONTEXT (f_gpr) = record;
+ DECL_FIELD_CONTEXT (f_fpr) = record;
+ DECL_FIELD_CONTEXT (f_ovf) = record;
+ DECL_FIELD_CONTEXT (f_sav) = record;
+
+ TYPE_STUB_DECL (record) = type_decl;
+ TYPE_NAME (record) = type_decl;
+ TYPE_FIELDS (record) = f_gpr;
+ DECL_CHAIN (f_gpr) = f_fpr;
+ DECL_CHAIN (f_fpr) = f_ovf;
+ DECL_CHAIN (f_ovf) = f_sav;
+
+ layout_type (record);
+
+ /* The correct type is an array type of one element. */
+ return build_array_type (record, build_index_type (size_zero_node));
+}
+
+/* Implement va_start by filling the va_list structure VALIST.
+ STDARG_P is always true, and ignored.
+ NEXTARG points to the first anonymous stack argument.
+
+ The following global variables are used to initialize
+ the va_list structure:
+
+ crtl->args.info:
+ holds number of gprs and fprs used for named arguments.
+ crtl->args.arg_offset_rtx:
+ holds the offset of the first anonymous stack argument
+ (relative to the virtual arg pointer). */
+
+static void
+s390_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
+{
+ HOST_WIDE_INT n_gpr, n_fpr;
+ int off;
+ tree f_gpr, f_fpr, f_ovf, f_sav;
+ tree gpr, fpr, ovf, sav, t;
+
+ f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
+ f_fpr = DECL_CHAIN (f_gpr);
+ f_ovf = DECL_CHAIN (f_fpr);
+ f_sav = DECL_CHAIN (f_ovf);
+
+ valist = build_simple_mem_ref (valist);
+ gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
+ fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr, NULL_TREE);
+ ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf, NULL_TREE);
+ sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav, NULL_TREE);
+
+ /* Count number of gp and fp argument registers used. */
+
+ n_gpr = crtl->args.info.gprs;
+ n_fpr = crtl->args.info.fprs;
+
+ if (cfun->va_list_gpr_size)
+ {
+ t = build2 (MODIFY_EXPR, TREE_TYPE (gpr), gpr,
+ build_int_cst (NULL_TREE, n_gpr));
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+ }
+
+ if (cfun->va_list_fpr_size)
+ {
+ t = build2 (MODIFY_EXPR, TREE_TYPE (fpr), fpr,
+ build_int_cst (NULL_TREE, n_fpr));
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+ }
+
+ /* Find the overflow area. */
+ if (n_gpr + cfun->va_list_gpr_size > GP_ARG_NUM_REG
+ || n_fpr + cfun->va_list_fpr_size > FP_ARG_NUM_REG)
+ {
+ t = make_tree (TREE_TYPE (ovf), virtual_incoming_args_rtx);
+
+ off = INTVAL (crtl->args.arg_offset_rtx);
+ off = off < 0 ? 0 : off;
+ if (TARGET_DEBUG_ARG)
+ fprintf (stderr, "va_start: n_gpr = %d, n_fpr = %d off %d\n",
+ (int)n_gpr, (int)n_fpr, off);
+
+ t = fold_build_pointer_plus_hwi (t, off);
+
+ t = build2 (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+ }
+
+ /* Find the register save area. */
+ if ((cfun->va_list_gpr_size && n_gpr < GP_ARG_NUM_REG)
+ || (cfun->va_list_fpr_size && n_fpr < FP_ARG_NUM_REG))
+ {
+ t = make_tree (TREE_TYPE (sav), return_address_pointer_rtx);
+ t = fold_build_pointer_plus_hwi (t, -RETURN_REGNUM * UNITS_PER_LONG);
+
+ t = build2 (MODIFY_EXPR, TREE_TYPE (sav), sav, t);
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+ }
+}
+
+/* Implement va_arg by updating the va_list structure
+ VALIST as required to retrieve an argument of type
+ TYPE, and returning that argument.
+
+ Generates code equivalent to:
+
+ if (integral value) {
+ if (size <= 4 && args.gpr < 5 ||
+ size > 4 && args.gpr < 4 )
+ ret = args.reg_save_area[args.gpr+8]
+ else
+ ret = *args.overflow_arg_area++;
+ } else if (float value) {
+ if (args.fgpr < 2)
+ ret = args.reg_save_area[args.fpr+64]
+ else
+ ret = *args.overflow_arg_area++;
+ } else if (aggregate value) {
+ if (args.gpr < 5)
+ ret = *args.reg_save_area[args.gpr]
+ else
+ ret = **args.overflow_arg_area++;
+ } */
+
+static tree
+s390_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p,
+ gimple_seq *post_p ATTRIBUTE_UNUSED)
+{
+ tree f_gpr, f_fpr, f_ovf, f_sav;
+ tree gpr, fpr, ovf, sav, reg, t, u;
+ int indirect_p, size, n_reg, sav_ofs, sav_scale, max_reg;
+ tree lab_false, lab_over, addr;
+
+ f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
+ f_fpr = DECL_CHAIN (f_gpr);
+ f_ovf = DECL_CHAIN (f_fpr);
+ f_sav = DECL_CHAIN (f_ovf);
+
+ valist = build_va_arg_indirect_ref (valist);
+ gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
+ fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr, NULL_TREE);
+ sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav, NULL_TREE);
+
+ /* The tree for args* cannot be shared between gpr/fpr and ovf since
+ both appear on a lhs. */
+ valist = unshare_expr (valist);
+ ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf, NULL_TREE);
+
+ size = int_size_in_bytes (type);
+
+ if (pass_by_reference (NULL, TYPE_MODE (type), type, false))
+ {
+ if (TARGET_DEBUG_ARG)
+ {
+ fprintf (stderr, "va_arg: aggregate type");
+ debug_tree (type);
+ }
+
+ /* Aggregates are passed by reference. */
+ indirect_p = 1;
+ reg = gpr;
+ n_reg = 1;
+
+ /* kernel stack layout on 31 bit: It is assumed here that no padding
+ will be added by s390_frame_info because for va_args always an even
+ number of gprs has to be saved r15-r2 = 14 regs. */
+ sav_ofs = 2 * UNITS_PER_LONG;
+ sav_scale = UNITS_PER_LONG;
+ size = UNITS_PER_LONG;
+ max_reg = GP_ARG_NUM_REG - n_reg;
+ }
+ else if (s390_function_arg_float (TYPE_MODE (type), type))
+ {
+ if (TARGET_DEBUG_ARG)
+ {
+ fprintf (stderr, "va_arg: float type");
+ debug_tree (type);
+ }
+
+ /* FP args go in FP registers, if present. */
+ indirect_p = 0;
+ reg = fpr;
+ n_reg = 1;
+ sav_ofs = 16 * UNITS_PER_LONG;
+ sav_scale = 8;
+ max_reg = FP_ARG_NUM_REG - n_reg;
+ }
+ else
+ {
+ if (TARGET_DEBUG_ARG)
+ {
+ fprintf (stderr, "va_arg: other type");
+ debug_tree (type);
+ }
+
+ /* Otherwise into GP registers. */
+ indirect_p = 0;
+ reg = gpr;
+ n_reg = (size + UNITS_PER_LONG - 1) / UNITS_PER_LONG;
+
+ /* kernel stack layout on 31 bit: It is assumed here that no padding
+ will be added by s390_frame_info because for va_args always an even
+ number of gprs has to be saved r15-r2 = 14 regs. */
+ sav_ofs = 2 * UNITS_PER_LONG;
+
+ if (size < UNITS_PER_LONG)
+ sav_ofs += UNITS_PER_LONG - size;
+
+ sav_scale = UNITS_PER_LONG;
+ max_reg = GP_ARG_NUM_REG - n_reg;
+ }
+
+ /* Pull the value out of the saved registers ... */
+
+ lab_false = create_artificial_label (UNKNOWN_LOCATION);
+ lab_over = create_artificial_label (UNKNOWN_LOCATION);
+ addr = create_tmp_var (ptr_type_node, "addr");
+
+ t = fold_convert (TREE_TYPE (reg), size_int (max_reg));
+ t = build2 (GT_EXPR, boolean_type_node, reg, t);
+ u = build1 (GOTO_EXPR, void_type_node, lab_false);
+ t = build3 (COND_EXPR, void_type_node, t, u, NULL_TREE);
+ gimplify_and_add (t, pre_p);
+
+ t = fold_build_pointer_plus_hwi (sav, sav_ofs);
+ u = build2 (MULT_EXPR, TREE_TYPE (reg), reg,
+ fold_convert (TREE_TYPE (reg), size_int (sav_scale)));
+ t = fold_build_pointer_plus (t, u);
+
+ gimplify_assign (addr, t, pre_p);
+
+ gimple_seq_add_stmt (pre_p, gimple_build_goto (lab_over));
+
+ gimple_seq_add_stmt (pre_p, gimple_build_label (lab_false));
+
+
+ /* ... Otherwise out of the overflow area. */
+
+ t = ovf;
+ if (size < UNITS_PER_LONG)
+ t = fold_build_pointer_plus_hwi (t, UNITS_PER_LONG - size);
+
+ gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue);
+
+ gimplify_assign (addr, t, pre_p);
+
+ t = fold_build_pointer_plus_hwi (t, size);
+ gimplify_assign (ovf, t, pre_p);
+
+ gimple_seq_add_stmt (pre_p, gimple_build_label (lab_over));
+
+
+ /* Increment register save count. */
+
+ u = build2 (PREINCREMENT_EXPR, TREE_TYPE (reg), reg,
+ fold_convert (TREE_TYPE (reg), size_int (n_reg)));
+ gimplify_and_add (u, pre_p);
+
+ if (indirect_p)
+ {
+ t = build_pointer_type_for_mode (build_pointer_type (type),
+ ptr_mode, true);
+ addr = fold_convert (t, addr);
+ addr = build_va_arg_indirect_ref (addr);
+ }
+ else
+ {
+ t = build_pointer_type_for_mode (type, ptr_mode, true);
+ addr = fold_convert (t, addr);
+ }
+
+ return build_va_arg_indirect_ref (addr);
+}
+
+/* Emit rtl for the tbegin or tbegin_retry (RETRY != NULL_RTX)
+ expanders.
+ DEST - Register location where CC will be stored.
+ TDB - Pointer to a 256 byte area where to store the transaction.
+ diagnostic block. NULL if TDB is not needed.
+ RETRY - Retry count value. If non-NULL a retry loop for CC2
+ is emitted
+ CLOBBER_FPRS_P - If true clobbers for all FPRs are emitted as part
+ of the tbegin instruction pattern. */
+
+void
+s390_expand_tbegin (rtx dest, rtx tdb, rtx retry, bool clobber_fprs_p)
+{
+ rtx retry_plus_two = gen_reg_rtx (SImode);
+ rtx retry_reg = gen_reg_rtx (SImode);
+ rtx retry_label = NULL_RTX;
+
+ if (retry != NULL_RTX)
+ {
+ emit_move_insn (retry_reg, retry);
+ emit_insn (gen_addsi3 (retry_plus_two, retry_reg, const2_rtx));
+ emit_insn (gen_addsi3 (retry_reg, retry_reg, const1_rtx));
+ retry_label = gen_label_rtx ();
+ emit_label (retry_label);
+ }
+
+ if (clobber_fprs_p)
+ emit_insn (gen_tbegin_1 (gen_rtx_CONST_INT (VOIDmode, TBEGIN_MASK), tdb));
+ else
+ emit_insn (gen_tbegin_nofloat_1 (gen_rtx_CONST_INT (VOIDmode, TBEGIN_MASK),
+ tdb));
+
+ emit_move_insn (dest, gen_rtx_UNSPEC (SImode,
+ gen_rtvec (1, gen_rtx_REG (CCRAWmode,
+ CC_REGNUM)),
+ UNSPEC_CC_TO_INT));
+ if (retry != NULL_RTX)
+ {
+ const int CC0 = 1 << 3;
+ const int CC1 = 1 << 2;
+ const int CC3 = 1 << 0;
+ rtx jump;
+ rtx count = gen_reg_rtx (SImode);
+ rtx leave_label = gen_label_rtx ();
+
+ /* Exit for success and permanent failures. */
+ jump = s390_emit_jump (leave_label,
+ gen_rtx_EQ (VOIDmode,
+ gen_rtx_REG (CCRAWmode, CC_REGNUM),
+ gen_rtx_CONST_INT (VOIDmode, CC0 | CC1 | CC3)));
+ LABEL_NUSES (leave_label) = 1;
+
+ /* CC2 - transient failure. Perform retry with ppa. */
+ emit_move_insn (count, retry_plus_two);
+ emit_insn (gen_subsi3 (count, count, retry_reg));
+ emit_insn (gen_tx_assist (count));
+ jump = emit_jump_insn (gen_doloop_si64 (retry_label,
+ retry_reg,
+ retry_reg));
+ JUMP_LABEL (jump) = retry_label;
+ LABEL_NUSES (retry_label) = 1;
+ emit_label (leave_label);
+ }
+}
+
+/* Builtins. */
+
+enum s390_builtin
+{
+ S390_BUILTIN_TBEGIN,
+ S390_BUILTIN_TBEGIN_NOFLOAT,
+ S390_BUILTIN_TBEGIN_RETRY,
+ S390_BUILTIN_TBEGIN_RETRY_NOFLOAT,
+ S390_BUILTIN_TBEGINC,
+ S390_BUILTIN_TEND,
+ S390_BUILTIN_TABORT,
+ S390_BUILTIN_NON_TX_STORE,
+ S390_BUILTIN_TX_NESTING_DEPTH,
+ S390_BUILTIN_TX_ASSIST,
+
+ S390_BUILTIN_max
+};
+
+static enum insn_code const code_for_builtin[S390_BUILTIN_max] = {
+ CODE_FOR_tbegin,
+ CODE_FOR_tbegin_nofloat,
+ CODE_FOR_tbegin_retry,
+ CODE_FOR_tbegin_retry_nofloat,
+ CODE_FOR_tbeginc,
+ CODE_FOR_tend,
+ CODE_FOR_tabort,
+ CODE_FOR_ntstg,
+ CODE_FOR_etnd,
+ CODE_FOR_tx_assist
+};
+
+static void
+s390_init_builtins (void)
+{
+ tree ftype, uint64_type;
+ tree returns_twice_attr = tree_cons (get_identifier ("returns_twice"),
+ NULL, NULL);
+ tree noreturn_attr = tree_cons (get_identifier ("noreturn"), NULL, NULL);
+
+ /* void foo (void) */
+ ftype = build_function_type_list (void_type_node, NULL_TREE);
+ add_builtin_function ("__builtin_tbeginc", ftype, S390_BUILTIN_TBEGINC,
+ BUILT_IN_MD, NULL, NULL_TREE);
+
+ /* void foo (int) */
+ ftype = build_function_type_list (void_type_node, integer_type_node,
+ NULL_TREE);
+ add_builtin_function ("__builtin_tabort", ftype,
+ S390_BUILTIN_TABORT, BUILT_IN_MD, NULL, noreturn_attr);
+ add_builtin_function ("__builtin_tx_assist", ftype,
+ S390_BUILTIN_TX_ASSIST, BUILT_IN_MD, NULL, NULL_TREE);
+
+ /* int foo (void *) */
+ ftype = build_function_type_list (integer_type_node, ptr_type_node, NULL_TREE);
+ add_builtin_function ("__builtin_tbegin", ftype, S390_BUILTIN_TBEGIN,
+ BUILT_IN_MD, NULL, returns_twice_attr);
+ add_builtin_function ("__builtin_tbegin_nofloat", ftype,
+ S390_BUILTIN_TBEGIN_NOFLOAT,
+ BUILT_IN_MD, NULL, returns_twice_attr);
+
+ /* int foo (void *, int) */
+ ftype = build_function_type_list (integer_type_node, ptr_type_node,
+ integer_type_node, NULL_TREE);
+ add_builtin_function ("__builtin_tbegin_retry", ftype,
+ S390_BUILTIN_TBEGIN_RETRY,
+ BUILT_IN_MD,
+ NULL, returns_twice_attr);
+ add_builtin_function ("__builtin_tbegin_retry_nofloat", ftype,
+ S390_BUILTIN_TBEGIN_RETRY_NOFLOAT,
+ BUILT_IN_MD,
+ NULL, returns_twice_attr);
+
+ /* int foo (void) */
+ ftype = build_function_type_list (integer_type_node, NULL_TREE);
+ add_builtin_function ("__builtin_tx_nesting_depth", ftype,
+ S390_BUILTIN_TX_NESTING_DEPTH,
+ BUILT_IN_MD, NULL, NULL_TREE);
+ add_builtin_function ("__builtin_tend", ftype,
+ S390_BUILTIN_TEND, BUILT_IN_MD, NULL, NULL_TREE);
+
+ /* void foo (uint64_t *, uint64_t) */
+ if (TARGET_64BIT)
+ uint64_type = long_unsigned_type_node;
+ else
+ uint64_type = long_long_unsigned_type_node;
+
+ ftype = build_function_type_list (void_type_node,
+ build_pointer_type (uint64_type),
+ uint64_type, NULL_TREE);
+ add_builtin_function ("__builtin_non_tx_store", ftype,
+ S390_BUILTIN_NON_TX_STORE,
+ BUILT_IN_MD, NULL, NULL_TREE);
+}
+
+/* Expand an expression EXP that calls a built-in function,
+ with result going to TARGET if that's convenient
+ (and in mode MODE if that's convenient).
+ SUBTARGET may be used as the target for computing one of EXP's operands.
+ IGNORE is nonzero if the value is to be ignored. */
+
+static rtx
+s390_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
+ enum machine_mode mode ATTRIBUTE_UNUSED,
+ int ignore ATTRIBUTE_UNUSED)
+{
+#define MAX_ARGS 2
+
+ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
+ unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
+ enum insn_code icode;
+ rtx op[MAX_ARGS], pat;
+ int arity;
+ bool nonvoid;
+ tree arg;
+ call_expr_arg_iterator iter;
+
+ if (fcode >= S390_BUILTIN_max)
+ internal_error ("bad builtin fcode");
+ icode = code_for_builtin[fcode];
+ if (icode == 0)
+ internal_error ("bad builtin fcode");
+
+ if (!TARGET_HTM)
+ error ("Transactional execution builtins not enabled (-mhtm)\n");
+
+ /* Set a flag in the machine specific cfun part in order to support
+ saving/restoring of FPRs. */
+ if (fcode == S390_BUILTIN_TBEGIN || fcode == S390_BUILTIN_TBEGIN_RETRY)
+ cfun->machine->tbegin_p = true;
+
+ nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node;
+
+ arity = 0;
+ FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
+ {
+ const struct insn_operand_data *insn_op;
+
+ if (arg == error_mark_node)
+ return NULL_RTX;
+ if (arity >= MAX_ARGS)
+ return NULL_RTX;
+
+ insn_op = &insn_data[icode].operand[arity + nonvoid];
+
+ op[arity] = expand_expr (arg, NULL_RTX, insn_op->mode, EXPAND_NORMAL);
+
+ if (!(*insn_op->predicate) (op[arity], insn_op->mode))
+ {
+ if (insn_op->predicate == memory_operand)
+ {
+ /* Don't move a NULL pointer into a register. Otherwise
+ we have to rely on combine being able to move it back
+ in order to get an immediate 0 in the instruction. */
+ if (op[arity] != const0_rtx)
+ op[arity] = copy_to_mode_reg (Pmode, op[arity]);
+ op[arity] = gen_rtx_MEM (insn_op->mode, op[arity]);
+ }
+ else
+ op[arity] = copy_to_mode_reg (insn_op->mode, op[arity]);
+ }
+
+ arity++;
+ }
+
+ if (nonvoid)
+ {
+ enum machine_mode tmode = insn_data[icode].operand[0].mode;
+ if (!target
+ || GET_MODE (target) != tmode
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
+ target = gen_reg_rtx (tmode);
+ }
+
+ switch (arity)
+ {
+ case 0:
+ pat = GEN_FCN (icode) (target);
+ break;
+ case 1:
+ if (nonvoid)
+ pat = GEN_FCN (icode) (target, op[0]);
+ else
+ pat = GEN_FCN (icode) (op[0]);
+ break;
+ case 2:
+ if (nonvoid)
+ pat = GEN_FCN (icode) (target, op[0], op[1]);
+ else
+ pat = GEN_FCN (icode) (op[0], op[1]);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ if (!pat)
+ return NULL_RTX;
+ emit_insn (pat);
+
+ if (nonvoid)
+ return target;
+ else
+ return const0_rtx;
+}
+
+
+/* Output assembly code for the trampoline template to
+ stdio stream FILE.
+
+ On S/390, we use gpr 1 internally in the trampoline code;
+ gpr 0 is used to hold the static chain. */
+
+static void
+s390_asm_trampoline_template (FILE *file)
+{
+ rtx op[2];
+ op[0] = gen_rtx_REG (Pmode, 0);
+ op[1] = gen_rtx_REG (Pmode, 1);
+
+ if (TARGET_64BIT)
+ {
+ output_asm_insn ("basr\t%1,0", op); /* 2 byte */
+ output_asm_insn ("lmg\t%0,%1,14(%1)", op); /* 6 byte */
+ output_asm_insn ("br\t%1", op); /* 2 byte */
+ ASM_OUTPUT_SKIP (file, (HOST_WIDE_INT)(TRAMPOLINE_SIZE - 10));
+ }
+ else
+ {
+ output_asm_insn ("basr\t%1,0", op); /* 2 byte */
+ output_asm_insn ("lm\t%0,%1,6(%1)", op); /* 4 byte */
+ output_asm_insn ("br\t%1", op); /* 2 byte */
+ ASM_OUTPUT_SKIP (file, (HOST_WIDE_INT)(TRAMPOLINE_SIZE - 8));
+ }
+}
+
+/* Emit RTL insns to initialize the variable parts of a trampoline.
+ FNADDR is an RTX for the address of the function's pure code.
+ CXT is an RTX for the static chain value for the function. */
+
+static void
+s390_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt)
+{
+ rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
+ rtx mem;
+
+ emit_block_move (m_tramp, assemble_trampoline_template (),
+ GEN_INT (2 * UNITS_PER_LONG), BLOCK_OP_NORMAL);
+
+ mem = adjust_address (m_tramp, Pmode, 2 * UNITS_PER_LONG);
+ emit_move_insn (mem, cxt);
+ mem = adjust_address (m_tramp, Pmode, 3 * UNITS_PER_LONG);
+ emit_move_insn (mem, fnaddr);
+}
+
+/* Output assembler code to FILE to increment profiler label # LABELNO
+ for profiling a function entry. */
+
+void
+s390_function_profiler (FILE *file, int labelno)
+{
+ rtx op[7];
+
+ char label[128];
+ ASM_GENERATE_INTERNAL_LABEL (label, "LP", labelno);
+
+ fprintf (file, "# function profiler \n");
+
+ op[0] = gen_rtx_REG (Pmode, RETURN_REGNUM);
+ op[1] = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
+ op[1] = gen_rtx_MEM (Pmode, plus_constant (Pmode, op[1], UNITS_PER_LONG));
+
+ op[2] = gen_rtx_REG (Pmode, 1);
+ op[3] = gen_rtx_SYMBOL_REF (Pmode, label);
+ SYMBOL_REF_FLAGS (op[3]) = SYMBOL_FLAG_LOCAL;
+
+ op[4] = gen_rtx_SYMBOL_REF (Pmode, "_mcount");
+ if (flag_pic)
+ {
+ op[4] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op[4]), UNSPEC_PLT);
+ op[4] = gen_rtx_CONST (Pmode, op[4]);
+ }
+
+ if (TARGET_64BIT)
+ {
+ output_asm_insn ("stg\t%0,%1", op);
+ output_asm_insn ("larl\t%2,%3", op);
+ output_asm_insn ("brasl\t%0,%4", op);
+ output_asm_insn ("lg\t%0,%1", op);
+ }
+ else if (!flag_pic)
+ {
+ op[6] = gen_label_rtx ();
+
+ output_asm_insn ("st\t%0,%1", op);
+ output_asm_insn ("bras\t%2,%l6", op);
+ output_asm_insn (".long\t%4", op);
+ output_asm_insn (".long\t%3", op);
+ targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (op[6]));
+ output_asm_insn ("l\t%0,0(%2)", op);
+ output_asm_insn ("l\t%2,4(%2)", op);
+ output_asm_insn ("basr\t%0,%0", op);
+ output_asm_insn ("l\t%0,%1", op);
+ }
+ else
+ {
+ op[5] = gen_label_rtx ();
+ op[6] = gen_label_rtx ();
+
+ output_asm_insn ("st\t%0,%1", op);
+ output_asm_insn ("bras\t%2,%l6", op);
+ targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (op[5]));
+ output_asm_insn (".long\t%4-%l5", op);
+ output_asm_insn (".long\t%3-%l5", op);
+ targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (op[6]));
+ output_asm_insn ("lr\t%0,%2", op);
+ output_asm_insn ("a\t%0,0(%2)", op);
+ output_asm_insn ("a\t%2,4(%2)", op);
+ output_asm_insn ("basr\t%0,%0", op);
+ output_asm_insn ("l\t%0,%1", op);
+ }
+}
+
+/* Encode symbol attributes (local vs. global, tls model) of a SYMBOL_REF
+ into its SYMBOL_REF_FLAGS. */
+
+static void
+s390_encode_section_info (tree decl, rtx rtl, int first)
+{
+ default_encode_section_info (decl, rtl, first);
+
+ if (TREE_CODE (decl) == VAR_DECL)
+ {
+ /* If a variable has a forced alignment to < 2 bytes, mark it
+ with SYMBOL_FLAG_ALIGN1 to prevent it from being used as LARL
+ operand. */
+ if (DECL_USER_ALIGN (decl) && DECL_ALIGN (decl) < 16)
+ SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_ALIGN1;
+ if (!DECL_SIZE (decl)
+ || !DECL_ALIGN (decl)
+ || !tree_fits_shwi_p (DECL_SIZE (decl))
+ || (DECL_ALIGN (decl) <= 64
+ && DECL_ALIGN (decl) != tree_to_shwi (DECL_SIZE (decl))))
+ SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_NOT_NATURALLY_ALIGNED;
+ }
+
+ /* Literal pool references don't have a decl so they are handled
+ differently here. We rely on the information in the MEM_ALIGN
+ entry to decide upon natural alignment. */
+ if (MEM_P (rtl)
+ && GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF
+ && TREE_CONSTANT_POOL_ADDRESS_P (XEXP (rtl, 0))
+ && (MEM_ALIGN (rtl) == 0
+ || GET_MODE_BITSIZE (GET_MODE (rtl)) == 0
+ || MEM_ALIGN (rtl) < GET_MODE_BITSIZE (GET_MODE (rtl))))
+ SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_NOT_NATURALLY_ALIGNED;
+}
+
+/* Output thunk to FILE that implements a C++ virtual function call (with
+ multiple inheritance) to FUNCTION. The thunk adjusts the this pointer
+ by DELTA, and unless VCALL_OFFSET is zero, applies an additional adjustment
+ stored at VCALL_OFFSET in the vtable whose address is located at offset 0
+ relative to the resulting this pointer. */
+
+static void
+s390_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
+ HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
+ tree function)
+{
+ rtx op[10];
+ int nonlocal = 0;
+
+ /* Make sure unwind info is emitted for the thunk if needed. */
+ final_start_function (emit_barrier (), file, 1);
+
+ /* Operand 0 is the target function. */
+ op[0] = XEXP (DECL_RTL (function), 0);
+ if (flag_pic && !SYMBOL_REF_LOCAL_P (op[0]))
+ {
+ nonlocal = 1;
+ op[0] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op[0]),
+ TARGET_64BIT ? UNSPEC_PLT : UNSPEC_GOT);
+ op[0] = gen_rtx_CONST (Pmode, op[0]);
+ }
+
+ /* Operand 1 is the 'this' pointer. */
+ if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
+ op[1] = gen_rtx_REG (Pmode, 3);
+ else
+ op[1] = gen_rtx_REG (Pmode, 2);
+
+ /* Operand 2 is the delta. */
+ op[2] = GEN_INT (delta);
+
+ /* Operand 3 is the vcall_offset. */
+ op[3] = GEN_INT (vcall_offset);
+
+ /* Operand 4 is the temporary register. */
+ op[4] = gen_rtx_REG (Pmode, 1);
+
+ /* Operands 5 to 8 can be used as labels. */
+ op[5] = NULL_RTX;
+ op[6] = NULL_RTX;
+ op[7] = NULL_RTX;
+ op[8] = NULL_RTX;
+
+ /* Operand 9 can be used for temporary register. */
+ op[9] = NULL_RTX;
+
+ /* Generate code. */
+ if (TARGET_64BIT)
+ {
+ /* Setup literal pool pointer if required. */
+ if ((!DISP_IN_RANGE (delta)
+ && !CONST_OK_FOR_K (delta)
+ && !CONST_OK_FOR_Os (delta))
+ || (!DISP_IN_RANGE (vcall_offset)
+ && !CONST_OK_FOR_K (vcall_offset)
+ && !CONST_OK_FOR_Os (vcall_offset)))
+ {
+ op[5] = gen_label_rtx ();
+ output_asm_insn ("larl\t%4,%5", op);
+ }
+
+ /* Add DELTA to this pointer. */
+ if (delta)
+ {
+ if (CONST_OK_FOR_J (delta))
+ output_asm_insn ("la\t%1,%2(%1)", op);
+ else if (DISP_IN_RANGE (delta))
+ output_asm_insn ("lay\t%1,%2(%1)", op);
+ else if (CONST_OK_FOR_K (delta))
+ output_asm_insn ("aghi\t%1,%2", op);
+ else if (CONST_OK_FOR_Os (delta))
+ output_asm_insn ("agfi\t%1,%2", op);
+ else
+ {
+ op[6] = gen_label_rtx ();
+ output_asm_insn ("agf\t%1,%6-%5(%4)", op);
+ }
+ }
+
+ /* Perform vcall adjustment. */
+ if (vcall_offset)
+ {
+ if (DISP_IN_RANGE (vcall_offset))
+ {
+ output_asm_insn ("lg\t%4,0(%1)", op);
+ output_asm_insn ("ag\t%1,%3(%4)", op);
+ }
+ else if (CONST_OK_FOR_K (vcall_offset))
+ {
+ output_asm_insn ("lghi\t%4,%3", op);
+ output_asm_insn ("ag\t%4,0(%1)", op);
+ output_asm_insn ("ag\t%1,0(%4)", op);
+ }
+ else if (CONST_OK_FOR_Os (vcall_offset))
+ {
+ output_asm_insn ("lgfi\t%4,%3", op);
+ output_asm_insn ("ag\t%4,0(%1)", op);
+ output_asm_insn ("ag\t%1,0(%4)", op);
+ }
+ else
+ {
+ op[7] = gen_label_rtx ();
+ output_asm_insn ("llgf\t%4,%7-%5(%4)", op);
+ output_asm_insn ("ag\t%4,0(%1)", op);
+ output_asm_insn ("ag\t%1,0(%4)", op);
+ }
+ }
+
+ /* Jump to target. */
+ output_asm_insn ("jg\t%0", op);
+
+ /* Output literal pool if required. */
+ if (op[5])
+ {
+ output_asm_insn (".align\t4", op);
+ targetm.asm_out.internal_label (file, "L",
+ CODE_LABEL_NUMBER (op[5]));
+ }
+ if (op[6])
+ {
+ targetm.asm_out.internal_label (file, "L",
+ CODE_LABEL_NUMBER (op[6]));
+ output_asm_insn (".long\t%2", op);
+ }
+ if (op[7])
+ {
+ targetm.asm_out.internal_label (file, "L",
+ CODE_LABEL_NUMBER (op[7]));
+ output_asm_insn (".long\t%3", op);
+ }
+ }
+ else
+ {
+ /* Setup base pointer if required. */
+ if (!vcall_offset
+ || (!DISP_IN_RANGE (delta)
+ && !CONST_OK_FOR_K (delta)
+ && !CONST_OK_FOR_Os (delta))
+ || (!DISP_IN_RANGE (delta)
+ && !CONST_OK_FOR_K (vcall_offset)
+ && !CONST_OK_FOR_Os (vcall_offset)))
+ {
+ op[5] = gen_label_rtx ();
+ output_asm_insn ("basr\t%4,0", op);
+ targetm.asm_out.internal_label (file, "L",
+ CODE_LABEL_NUMBER (op[5]));
+ }
+
+ /* Add DELTA to this pointer. */
+ if (delta)
+ {
+ if (CONST_OK_FOR_J (delta))
+ output_asm_insn ("la\t%1,%2(%1)", op);
+ else if (DISP_IN_RANGE (delta))
+ output_asm_insn ("lay\t%1,%2(%1)", op);
+ else if (CONST_OK_FOR_K (delta))
+ output_asm_insn ("ahi\t%1,%2", op);
+ else if (CONST_OK_FOR_Os (delta))
+ output_asm_insn ("afi\t%1,%2", op);
+ else
+ {
+ op[6] = gen_label_rtx ();
+ output_asm_insn ("a\t%1,%6-%5(%4)", op);
+ }
+ }
+
+ /* Perform vcall adjustment. */
+ if (vcall_offset)
+ {
+ if (CONST_OK_FOR_J (vcall_offset))
+ {
+ output_asm_insn ("l\t%4,0(%1)", op);
+ output_asm_insn ("a\t%1,%3(%4)", op);
+ }
+ else if (DISP_IN_RANGE (vcall_offset))
+ {
+ output_asm_insn ("l\t%4,0(%1)", op);
+ output_asm_insn ("ay\t%1,%3(%4)", op);
+ }
+ else if (CONST_OK_FOR_K (vcall_offset))
+ {
+ output_asm_insn ("lhi\t%4,%3", op);
+ output_asm_insn ("a\t%4,0(%1)", op);
+ output_asm_insn ("a\t%1,0(%4)", op);
+ }
+ else if (CONST_OK_FOR_Os (vcall_offset))
+ {
+ output_asm_insn ("iilf\t%4,%3", op);
+ output_asm_insn ("a\t%4,0(%1)", op);
+ output_asm_insn ("a\t%1,0(%4)", op);
+ }
+ else
+ {
+ op[7] = gen_label_rtx ();
+ output_asm_insn ("l\t%4,%7-%5(%4)", op);
+ output_asm_insn ("a\t%4,0(%1)", op);
+ output_asm_insn ("a\t%1,0(%4)", op);
+ }
+
+ /* We had to clobber the base pointer register.
+ Re-setup the base pointer (with a different base). */
+ op[5] = gen_label_rtx ();
+ output_asm_insn ("basr\t%4,0", op);
+ targetm.asm_out.internal_label (file, "L",
+ CODE_LABEL_NUMBER (op[5]));
+ }
+
+ /* Jump to target. */
+ op[8] = gen_label_rtx ();
+
+ if (!flag_pic)
+ output_asm_insn ("l\t%4,%8-%5(%4)", op);
+ else if (!nonlocal)
+ output_asm_insn ("a\t%4,%8-%5(%4)", op);
+ /* We cannot call through .plt, since .plt requires %r12 loaded. */
+ else if (flag_pic == 1)
+ {
+ output_asm_insn ("a\t%4,%8-%5(%4)", op);
+ output_asm_insn ("l\t%4,%0(%4)", op);
+ }
+ else if (flag_pic == 2)
+ {
+ op[9] = gen_rtx_REG (Pmode, 0);
+ output_asm_insn ("l\t%9,%8-4-%5(%4)", op);
+ output_asm_insn ("a\t%4,%8-%5(%4)", op);
+ output_asm_insn ("ar\t%4,%9", op);
+ output_asm_insn ("l\t%4,0(%4)", op);
+ }
+
+ output_asm_insn ("br\t%4", op);
+
+ /* Output literal pool. */
+ output_asm_insn (".align\t4", op);
+
+ if (nonlocal && flag_pic == 2)
+ output_asm_insn (".long\t%0", op);
+ if (nonlocal)
+ {
+ op[0] = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
+ SYMBOL_REF_FLAGS (op[0]) = SYMBOL_FLAG_LOCAL;
+ }
+
+ targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (op[8]));
+ if (!flag_pic)
+ output_asm_insn (".long\t%0", op);
+ else
+ output_asm_insn (".long\t%0-%5", op);
+
+ if (op[6])
+ {
+ targetm.asm_out.internal_label (file, "L",
+ CODE_LABEL_NUMBER (op[6]));
+ output_asm_insn (".long\t%2", op);
+ }
+ if (op[7])
+ {
+ targetm.asm_out.internal_label (file, "L",
+ CODE_LABEL_NUMBER (op[7]));
+ output_asm_insn (".long\t%3", op);
+ }
+ }
+ final_end_function ();
+}
+
+static bool
+s390_valid_pointer_mode (enum machine_mode mode)
+{
+ return (mode == SImode || (TARGET_64BIT && mode == DImode));
+}
+
+/* Checks whether the given CALL_EXPR would use a caller
+ saved register. This is used to decide whether sibling call
+ optimization could be performed on the respective function
+ call. */
+
+static bool
+s390_call_saved_register_used (tree call_expr)
+{
+ CUMULATIVE_ARGS cum_v;
+ cumulative_args_t cum;
+ tree parameter;
+ enum machine_mode mode;
+ tree type;
+ rtx parm_rtx;
+ int reg, i;
+
+ INIT_CUMULATIVE_ARGS (cum_v, NULL, NULL, 0, 0);
+ cum = pack_cumulative_args (&cum_v);
+
+ for (i = 0; i < call_expr_nargs (call_expr); i++)
+ {
+ parameter = CALL_EXPR_ARG (call_expr, i);
+ gcc_assert (parameter);
+
+ /* For an undeclared variable passed as parameter we will get
+ an ERROR_MARK node here. */
+ if (TREE_CODE (parameter) == ERROR_MARK)
+ return true;
+
+ type = TREE_TYPE (parameter);
+ gcc_assert (type);
+
+ mode = TYPE_MODE (type);
+ gcc_assert (mode);
+
+ if (pass_by_reference (&cum_v, mode, type, true))
+ {
+ mode = Pmode;
+ type = build_pointer_type (type);
+ }
+
+ parm_rtx = s390_function_arg (cum, mode, type, 0);
+
+ s390_function_arg_advance (cum, mode, type, 0);
+
+ if (!parm_rtx)
+ continue;
+
+ if (REG_P (parm_rtx))
+ {
+ for (reg = 0;
+ reg < HARD_REGNO_NREGS (REGNO (parm_rtx), GET_MODE (parm_rtx));
+ reg++)
+ if (!call_used_regs[reg + REGNO (parm_rtx)])
+ return true;
+ }
+
+ if (GET_CODE (parm_rtx) == PARALLEL)
+ {
+ int i;
+
+ for (i = 0; i < XVECLEN (parm_rtx, 0); i++)
+ {
+ rtx r = XEXP (XVECEXP (parm_rtx, 0, i), 0);
+
+ gcc_assert (REG_P (r));
+
+ for (reg = 0;
+ reg < HARD_REGNO_NREGS (REGNO (r), GET_MODE (r));
+ reg++)
+ if (!call_used_regs[reg + REGNO (r)])
+ return true;
+ }
+ }
+
+ }
+ return false;
+}
+
+/* Return true if the given call expression can be
+ turned into a sibling call.
+ DECL holds the declaration of the function to be called whereas
+ EXP is the call expression itself. */
+
+static bool
+s390_function_ok_for_sibcall (tree decl, tree exp)
+{
+ /* The TPF epilogue uses register 1. */
+ if (TARGET_TPF_PROFILING)
+ return false;
+
+ /* The 31 bit PLT code uses register 12 (GOT pointer - caller saved)
+ which would have to be restored before the sibcall. */
+ if (!TARGET_64BIT && flag_pic && decl && !targetm.binds_local_p (decl))
+ return false;
+
+ /* Register 6 on s390 is available as an argument register but unfortunately
+ "caller saved". This makes functions needing this register for arguments
+ not suitable for sibcalls. */
+ return !s390_call_saved_register_used (exp);
+}
+
+/* Return the fixed registers used for condition codes. */
+
+static bool
+s390_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
+{
+ *p1 = CC_REGNUM;
+ *p2 = INVALID_REGNUM;
+
+ return true;
+}
+
+/* This function is used by the call expanders of the machine description.
+ It emits the call insn itself together with the necessary operations
+ to adjust the target address and returns the emitted insn.
+ ADDR_LOCATION is the target address rtx
+ TLS_CALL the location of the thread-local symbol
+ RESULT_REG the register where the result of the call should be stored
+ RETADDR_REG the register where the return address should be stored
+ If this parameter is NULL_RTX the call is considered
+ to be a sibling call. */
+
+rtx
+s390_emit_call (rtx addr_location, rtx tls_call, rtx result_reg,
+ rtx retaddr_reg)
+{
+ bool plt_call = false;
+ rtx insn;
+ rtx call;
+ rtx clobber;
+ rtvec vec;
+
+ /* Direct function calls need special treatment. */
+ if (GET_CODE (addr_location) == SYMBOL_REF)
+ {
+ /* When calling a global routine in PIC mode, we must
+ replace the symbol itself with the PLT stub. */
+ if (flag_pic && !SYMBOL_REF_LOCAL_P (addr_location))
+ {
+ if (retaddr_reg != NULL_RTX)
+ {
+ addr_location = gen_rtx_UNSPEC (Pmode,
+ gen_rtvec (1, addr_location),
+ UNSPEC_PLT);
+ addr_location = gen_rtx_CONST (Pmode, addr_location);
+ plt_call = true;
+ }
+ else
+ /* For -fpic code the PLT entries might use r12 which is
+ call-saved. Therefore we cannot do a sibcall when
+ calling directly using a symbol ref. When reaching
+ this point we decided (in s390_function_ok_for_sibcall)
+ to do a sibcall for a function pointer but one of the
+ optimizers was able to get rid of the function pointer
+ by propagating the symbol ref into the call. This
+ optimization is illegal for S/390 so we turn the direct
+ call into a indirect call again. */
+ addr_location = force_reg (Pmode, addr_location);
+ }
+
+ /* Unless we can use the bras(l) insn, force the
+ routine address into a register. */
+ if (!TARGET_SMALL_EXEC && !TARGET_CPU_ZARCH)
+ {
+ if (flag_pic)
+ addr_location = legitimize_pic_address (addr_location, 0);
+ else
+ addr_location = force_reg (Pmode, addr_location);
+ }
+ }
+
+ /* If it is already an indirect call or the code above moved the
+ SYMBOL_REF to somewhere else make sure the address can be found in
+ register 1. */
+ if (retaddr_reg == NULL_RTX
+ && GET_CODE (addr_location) != SYMBOL_REF
+ && !plt_call)
+ {
+ emit_move_insn (gen_rtx_REG (Pmode, SIBCALL_REGNUM), addr_location);
+ addr_location = gen_rtx_REG (Pmode, SIBCALL_REGNUM);
+ }
+
+ addr_location = gen_rtx_MEM (QImode, addr_location);
+ call = gen_rtx_CALL (VOIDmode, addr_location, const0_rtx);
+
+ if (result_reg != NULL_RTX)
+ call = gen_rtx_SET (VOIDmode, result_reg, call);
+
+ if (retaddr_reg != NULL_RTX)
+ {
+ clobber = gen_rtx_CLOBBER (VOIDmode, retaddr_reg);
+
+ if (tls_call != NULL_RTX)
+ vec = gen_rtvec (3, call, clobber,
+ gen_rtx_USE (VOIDmode, tls_call));
+ else
+ vec = gen_rtvec (2, call, clobber);
+
+ call = gen_rtx_PARALLEL (VOIDmode, vec);
+ }
+
+ insn = emit_call_insn (call);
+
+ /* 31-bit PLT stubs and tls calls use the GOT register implicitly. */
+ if ((!TARGET_64BIT && plt_call) || tls_call != NULL_RTX)
+ {
+ /* s390_function_ok_for_sibcall should
+ have denied sibcalls in this case. */
+ gcc_assert (retaddr_reg != NULL_RTX);
+ use_reg (&CALL_INSN_FUNCTION_USAGE (insn), gen_rtx_REG (Pmode, 12));
+ }
+ return insn;
+}
+
+/* Implement TARGET_CONDITIONAL_REGISTER_USAGE. */
+
+static void
+s390_conditional_register_usage (void)
+{
+ int i;
+
+ if (flag_pic)
+ {
+ fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
+ call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
+ }
+ if (TARGET_CPU_ZARCH)
+ {
+ fixed_regs[BASE_REGNUM] = 0;
+ call_used_regs[BASE_REGNUM] = 0;
+ fixed_regs[RETURN_REGNUM] = 0;
+ call_used_regs[RETURN_REGNUM] = 0;
+ }
+ if (TARGET_64BIT)
+ {
+ for (i = FPR8_REGNUM; i <= FPR15_REGNUM; i++)
+ call_used_regs[i] = call_really_used_regs[i] = 0;
+ }
+ else
+ {
+ call_used_regs[FPR4_REGNUM] = call_really_used_regs[FPR4_REGNUM] = 0;
+ call_used_regs[FPR6_REGNUM] = call_really_used_regs[FPR6_REGNUM] = 0;
+ }
+
+ if (TARGET_SOFT_FLOAT)
+ {
+ for (i = FPR0_REGNUM; i <= FPR15_REGNUM; i++)
+ call_used_regs[i] = fixed_regs[i] = 1;
+ }
+}
+
+/* Corresponding function to eh_return expander. */
+
+static GTY(()) rtx s390_tpf_eh_return_symbol;
+void
+s390_emit_tpf_eh_return (rtx target)
+{
+ rtx insn, reg;
+
+ if (!s390_tpf_eh_return_symbol)
+ s390_tpf_eh_return_symbol = gen_rtx_SYMBOL_REF (Pmode, "__tpf_eh_return");
+
+ reg = gen_rtx_REG (Pmode, 2);
+
+ emit_move_insn (reg, target);
+ insn = s390_emit_call (s390_tpf_eh_return_symbol, NULL_RTX, reg,
+ gen_rtx_REG (Pmode, RETURN_REGNUM));
+ use_reg (&CALL_INSN_FUNCTION_USAGE (insn), reg);
+
+ emit_move_insn (EH_RETURN_HANDLER_RTX, reg);
+}
+
+/* Rework the prologue/epilogue to avoid saving/restoring
+ registers unnecessarily. */
+
+static void
+s390_optimize_prologue (void)
+{
+ rtx insn, new_insn, next_insn;
+
+ /* Do a final recompute of the frame-related data. */
+ s390_optimize_register_info ();
+
+ /* If all special registers are in fact used, there's nothing we
+ can do, so no point in walking the insn list. */
+
+ if (cfun_frame_layout.first_save_gpr <= BASE_REGNUM
+ && cfun_frame_layout.last_save_gpr >= BASE_REGNUM
+ && (TARGET_CPU_ZARCH
+ || (cfun_frame_layout.first_save_gpr <= RETURN_REGNUM
+ && cfun_frame_layout.last_save_gpr >= RETURN_REGNUM)))
+ return;
+
+ /* Search for prologue/epilogue insns and replace them. */
+
+ for (insn = get_insns (); insn; insn = next_insn)
+ {
+ int first, last, off;
+ rtx set, base, offset;
+ rtx pat;
+
+ next_insn = NEXT_INSN (insn);
+
+ if (! NONJUMP_INSN_P (insn) || ! RTX_FRAME_RELATED_P (insn))
+ continue;
+
+ pat = PATTERN (insn);
+
+ /* Remove ldgr/lgdr instructions used for saving and restore
+ GPRs if possible. */
+ if (TARGET_Z10
+ && GET_CODE (pat) == SET
+ && GET_MODE (SET_SRC (pat)) == DImode
+ && REG_P (SET_SRC (pat))
+ && REG_P (SET_DEST (pat)))
+ {
+ int src_regno = REGNO (SET_SRC (pat));
+ int dest_regno = REGNO (SET_DEST (pat));
+ int gpr_regno;
+ int fpr_regno;
+
+ if (!((GENERAL_REGNO_P (src_regno) && FP_REGNO_P (dest_regno))
+ || (FP_REGNO_P (src_regno) && GENERAL_REGNO_P (dest_regno))))
+ continue;
+
+ gpr_regno = GENERAL_REGNO_P (src_regno) ? src_regno : dest_regno;
+ fpr_regno = FP_REGNO_P (src_regno) ? src_regno : dest_regno;
+
+ /* GPR must be call-saved, FPR must be call-clobbered. */
+ if (!call_really_used_regs[fpr_regno]
+ || call_really_used_regs[gpr_regno])
+ continue;
+
+ /* It must not happen that what we once saved in an FPR now
+ needs a stack slot. */
+ gcc_assert (cfun_gpr_save_slot (gpr_regno) != -1);
+
+ if (cfun_gpr_save_slot (gpr_regno) == 0)
+ {
+ remove_insn (insn);
+ continue;
+ }
+ }
+
+ if (GET_CODE (pat) == PARALLEL
+ && store_multiple_operation (pat, VOIDmode))
+ {
+ set = XVECEXP (pat, 0, 0);
+ first = REGNO (SET_SRC (set));
+ last = first + XVECLEN (pat, 0) - 1;
+ offset = const0_rtx;
+ base = eliminate_constant_term (XEXP (SET_DEST (set), 0), &offset);
+ off = INTVAL (offset);
+
+ if (GET_CODE (base) != REG || off < 0)
+ continue;
+ if (cfun_frame_layout.first_save_gpr != -1
+ && (cfun_frame_layout.first_save_gpr < first
+ || cfun_frame_layout.last_save_gpr > last))
+ continue;
+ if (REGNO (base) != STACK_POINTER_REGNUM
+ && REGNO (base) != HARD_FRAME_POINTER_REGNUM)
+ continue;
+ if (first > BASE_REGNUM || last < BASE_REGNUM)
+ continue;
+
+ if (cfun_frame_layout.first_save_gpr != -1)
+ {
+ new_insn = save_gprs (base,
+ off + (cfun_frame_layout.first_save_gpr
+ - first) * UNITS_PER_LONG,
+ cfun_frame_layout.first_save_gpr,
+ cfun_frame_layout.last_save_gpr);
+ new_insn = emit_insn_before (new_insn, insn);
+ INSN_ADDRESSES_NEW (new_insn, -1);
+ }
+
+ remove_insn (insn);
+ continue;
+ }
+
+ if (cfun_frame_layout.first_save_gpr == -1
+ && GET_CODE (pat) == SET
+ && GENERAL_REG_P (SET_SRC (pat))
+ && GET_CODE (SET_DEST (pat)) == MEM)
+ {
+ set = pat;
+ first = REGNO (SET_SRC (set));
+ offset = const0_rtx;
+ base = eliminate_constant_term (XEXP (SET_DEST (set), 0), &offset);
+ off = INTVAL (offset);
+
+ if (GET_CODE (base) != REG || off < 0)
+ continue;
+ if (REGNO (base) != STACK_POINTER_REGNUM
+ && REGNO (base) != HARD_FRAME_POINTER_REGNUM)
+ continue;
+
+ remove_insn (insn);
+ continue;
+ }
+
+ if (GET_CODE (pat) == PARALLEL
+ && load_multiple_operation (pat, VOIDmode))
+ {
+ set = XVECEXP (pat, 0, 0);
+ first = REGNO (SET_DEST (set));
+ last = first + XVECLEN (pat, 0) - 1;
+ offset = const0_rtx;
+ base = eliminate_constant_term (XEXP (SET_SRC (set), 0), &offset);
+ off = INTVAL (offset);
+
+ if (GET_CODE (base) != REG || off < 0)
+ continue;
+
+ if (cfun_frame_layout.first_restore_gpr != -1
+ && (cfun_frame_layout.first_restore_gpr < first
+ || cfun_frame_layout.last_restore_gpr > last))
+ continue;
+ if (REGNO (base) != STACK_POINTER_REGNUM
+ && REGNO (base) != HARD_FRAME_POINTER_REGNUM)
+ continue;
+ if (first > BASE_REGNUM || last < BASE_REGNUM)
+ continue;
+
+ if (cfun_frame_layout.first_restore_gpr != -1)
+ {
+ new_insn = restore_gprs (base,
+ off + (cfun_frame_layout.first_restore_gpr
+ - first) * UNITS_PER_LONG,
+ cfun_frame_layout.first_restore_gpr,
+ cfun_frame_layout.last_restore_gpr);
+
+ /* Remove REG_CFA_RESTOREs for registers that we no
+ longer need to save. */
+ REG_NOTES (new_insn) = REG_NOTES (insn);
+ for (rtx *ptr = &REG_NOTES (new_insn); *ptr; )
+ if (REG_NOTE_KIND (*ptr) == REG_CFA_RESTORE
+ && ((int) REGNO (XEXP (*ptr, 0))
+ < cfun_frame_layout.first_restore_gpr))
+ *ptr = XEXP (*ptr, 1);
+ else
+ ptr = &XEXP (*ptr, 1);
+ new_insn = emit_insn_before (new_insn, insn);
+ RTX_FRAME_RELATED_P (new_insn) = 1;
+ INSN_ADDRESSES_NEW (new_insn, -1);
+ }
+
+ remove_insn (insn);
+ continue;
+ }
+
+ if (cfun_frame_layout.first_restore_gpr == -1
+ && GET_CODE (pat) == SET
+ && GENERAL_REG_P (SET_DEST (pat))
+ && GET_CODE (SET_SRC (pat)) == MEM)
+ {
+ set = pat;
+ first = REGNO (SET_DEST (set));
+ offset = const0_rtx;
+ base = eliminate_constant_term (XEXP (SET_SRC (set), 0), &offset);
+ off = INTVAL (offset);
+
+ if (GET_CODE (base) != REG || off < 0)
+ continue;
+
+ if (REGNO (base) != STACK_POINTER_REGNUM
+ && REGNO (base) != HARD_FRAME_POINTER_REGNUM)
+ continue;
+
+ remove_insn (insn);
+ continue;
+ }
+ }
+}
+
+/* On z10 and later the dynamic branch prediction must see the
+ backward jump within a certain windows. If not it falls back to
+ the static prediction. This function rearranges the loop backward
+ branch in a way which makes the static prediction always correct.
+ The function returns true if it added an instruction. */
+static bool
+s390_fix_long_loop_prediction (rtx insn)
+{
+ rtx set = single_set (insn);
+ rtx code_label, label_ref, new_label;
+ rtx uncond_jump;
+ rtx cur_insn;
+ rtx tmp;
+ int distance;
+
+ /* This will exclude branch on count and branch on index patterns
+ since these are correctly statically predicted. */
+ if (!set
+ || SET_DEST (set) != pc_rtx
+ || GET_CODE (SET_SRC(set)) != IF_THEN_ELSE)
+ return false;
+
+ /* Skip conditional returns. */
+ if (ANY_RETURN_P (XEXP (SET_SRC (set), 1))
+ && XEXP (SET_SRC (set), 2) == pc_rtx)
+ return false;
+
+ label_ref = (GET_CODE (XEXP (SET_SRC (set), 1)) == LABEL_REF ?
+ XEXP (SET_SRC (set), 1) : XEXP (SET_SRC (set), 2));
+
+ gcc_assert (GET_CODE (label_ref) == LABEL_REF);
+
+ code_label = XEXP (label_ref, 0);
+
+ if (INSN_ADDRESSES (INSN_UID (code_label)) == -1
+ || INSN_ADDRESSES (INSN_UID (insn)) == -1
+ || (INSN_ADDRESSES (INSN_UID (insn))
+ - INSN_ADDRESSES (INSN_UID (code_label)) < PREDICT_DISTANCE))
+ return false;
+
+ for (distance = 0, cur_insn = PREV_INSN (insn);
+ distance < PREDICT_DISTANCE - 6;
+ distance += get_attr_length (cur_insn), cur_insn = PREV_INSN (cur_insn))
+ if (!cur_insn || JUMP_P (cur_insn) || LABEL_P (cur_insn))
+ return false;
+
+ new_label = gen_label_rtx ();
+ uncond_jump = emit_jump_insn_after (
+ gen_rtx_SET (VOIDmode, pc_rtx,
+ gen_rtx_LABEL_REF (VOIDmode, code_label)),
+ insn);
+ emit_label_after (new_label, uncond_jump);
+
+ tmp = XEXP (SET_SRC (set), 1);
+ XEXP (SET_SRC (set), 1) = XEXP (SET_SRC (set), 2);
+ XEXP (SET_SRC (set), 2) = tmp;
+ INSN_CODE (insn) = -1;
+
+ XEXP (label_ref, 0) = new_label;
+ JUMP_LABEL (insn) = new_label;
+ JUMP_LABEL (uncond_jump) = code_label;
+
+ return true;
+}
+
+/* Returns 1 if INSN reads the value of REG for purposes not related
+ to addressing of memory, and 0 otherwise. */
+static int
+s390_non_addr_reg_read_p (rtx reg, rtx insn)
+{
+ return reg_referenced_p (reg, PATTERN (insn))
+ && !reg_used_in_mem_p (REGNO (reg), PATTERN (insn));
+}
+
+/* Starting from INSN find_cond_jump looks downwards in the insn
+ stream for a single jump insn which is the last user of the
+ condition code set in INSN. */
+static rtx
+find_cond_jump (rtx insn)
+{
+ for (; insn; insn = NEXT_INSN (insn))
+ {
+ rtx ite, cc;
+
+ if (LABEL_P (insn))
+ break;
+
+ if (!JUMP_P (insn))
+ {
+ if (reg_mentioned_p (gen_rtx_REG (CCmode, CC_REGNUM), insn))
+ break;
+ continue;
+ }
+
+ /* This will be triggered by a return. */
+ if (GET_CODE (PATTERN (insn)) != SET)
+ break;
+
+ gcc_assert (SET_DEST (PATTERN (insn)) == pc_rtx);
+ ite = SET_SRC (PATTERN (insn));
+
+ if (GET_CODE (ite) != IF_THEN_ELSE)
+ break;
+
+ cc = XEXP (XEXP (ite, 0), 0);
+ if (!REG_P (cc) || !CC_REGNO_P (REGNO (cc)))
+ break;
+
+ if (find_reg_note (insn, REG_DEAD, cc))
+ return insn;
+ break;
+ }
+
+ return NULL_RTX;
+}
+
+/* Swap the condition in COND and the operands in OP0 and OP1 so that
+ the semantics does not change. If NULL_RTX is passed as COND the
+ function tries to find the conditional jump starting with INSN. */
+static void
+s390_swap_cmp (rtx cond, rtx *op0, rtx *op1, rtx insn)
+{
+ rtx tmp = *op0;
+
+ if (cond == NULL_RTX)
+ {
+ rtx jump = find_cond_jump (NEXT_INSN (insn));
+ jump = jump ? single_set (jump) : NULL_RTX;
+
+ if (jump == NULL_RTX)
+ return;
+
+ cond = XEXP (XEXP (jump, 1), 0);
+ }
+
+ *op0 = *op1;
+ *op1 = tmp;
+ PUT_CODE (cond, swap_condition (GET_CODE (cond)));
+}
+
+/* On z10, instructions of the compare-and-branch family have the
+ property to access the register occurring as second operand with
+ its bits complemented. If such a compare is grouped with a second
+ instruction that accesses the same register non-complemented, and
+ if that register's value is delivered via a bypass, then the
+ pipeline recycles, thereby causing significant performance decline.
+ This function locates such situations and exchanges the two
+ operands of the compare. The function return true whenever it
+ added an insn. */
+static bool
+s390_z10_optimize_cmp (rtx insn)
+{
+ rtx prev_insn, next_insn;
+ bool insn_added_p = false;
+ rtx cond, *op0, *op1;
+
+ if (GET_CODE (PATTERN (insn)) == PARALLEL)
+ {
+ /* Handle compare and branch and branch on count
+ instructions. */
+ rtx pattern = single_set (insn);
+
+ if (!pattern
+ || SET_DEST (pattern) != pc_rtx
+ || GET_CODE (SET_SRC (pattern)) != IF_THEN_ELSE)
+ return false;
+
+ cond = XEXP (SET_SRC (pattern), 0);
+ op0 = &XEXP (cond, 0);
+ op1 = &XEXP (cond, 1);
+ }
+ else if (GET_CODE (PATTERN (insn)) == SET)
+ {
+ rtx src, dest;
+
+ /* Handle normal compare instructions. */
+ src = SET_SRC (PATTERN (insn));
+ dest = SET_DEST (PATTERN (insn));
+
+ if (!REG_P (dest)
+ || !CC_REGNO_P (REGNO (dest))
+ || GET_CODE (src) != COMPARE)
+ return false;
+
+ /* s390_swap_cmp will try to find the conditional
+ jump when passing NULL_RTX as condition. */
+ cond = NULL_RTX;
+ op0 = &XEXP (src, 0);
+ op1 = &XEXP (src, 1);
+ }
+ else
+ return false;
+
+ if (!REG_P (*op0) || !REG_P (*op1))
+ return false;
+
+ if (GET_MODE_CLASS (GET_MODE (*op0)) != MODE_INT)
+ return false;
+
+ /* Swap the COMPARE arguments and its mask if there is a
+ conflicting access in the previous insn. */
+ prev_insn = prev_active_insn (insn);
+ if (prev_insn != NULL_RTX && INSN_P (prev_insn)
+ && reg_referenced_p (*op1, PATTERN (prev_insn)))
+ s390_swap_cmp (cond, op0, op1, insn);
+
+ /* Check if there is a conflict with the next insn. If there
+ was no conflict with the previous insn, then swap the
+ COMPARE arguments and its mask. If we already swapped
+ the operands, or if swapping them would cause a conflict
+ with the previous insn, issue a NOP after the COMPARE in
+ order to separate the two instuctions. */
+ next_insn = next_active_insn (insn);
+ if (next_insn != NULL_RTX && INSN_P (next_insn)
+ && s390_non_addr_reg_read_p (*op1, next_insn))
+ {
+ if (prev_insn != NULL_RTX && INSN_P (prev_insn)
+ && s390_non_addr_reg_read_p (*op0, prev_insn))
+ {
+ if (REGNO (*op1) == 0)
+ emit_insn_after (gen_nop1 (), insn);
+ else
+ emit_insn_after (gen_nop (), insn);
+ insn_added_p = true;
+ }
+ else
+ s390_swap_cmp (cond, op0, op1, insn);
+ }
+ return insn_added_p;
+}
+
+/* Perform machine-dependent processing. */
+
+static void
+s390_reorg (void)
+{
+ bool pool_overflow = false;
+
+ /* Make sure all splits have been performed; splits after
+ machine_dependent_reorg might confuse insn length counts. */
+ split_all_insns_noflow ();
+
+ /* Install the main literal pool and the associated base
+ register load insns.
+
+ In addition, there are two problematic situations we need
+ to correct:
+
+ - the literal pool might be > 4096 bytes in size, so that
+ some of its elements cannot be directly accessed
+
+ - a branch target might be > 64K away from the branch, so that
+ it is not possible to use a PC-relative instruction.
+
+ To fix those, we split the single literal pool into multiple
+ pool chunks, reloading the pool base register at various
+ points throughout the function to ensure it always points to
+ the pool chunk the following code expects, and / or replace
+ PC-relative branches by absolute branches.
+
+ However, the two problems are interdependent: splitting the
+ literal pool can move a branch further away from its target,
+ causing the 64K limit to overflow, and on the other hand,
+ replacing a PC-relative branch by an absolute branch means
+ we need to put the branch target address into the literal
+ pool, possibly causing it to overflow.
+
+ So, we loop trying to fix up both problems until we manage
+ to satisfy both conditions at the same time. Note that the
+ loop is guaranteed to terminate as every pass of the loop
+ strictly decreases the total number of PC-relative branches
+ in the function. (This is not completely true as there
+ might be branch-over-pool insns introduced by chunkify_start.
+ Those never need to be split however.) */
+
+ for (;;)
+ {
+ struct constant_pool *pool = NULL;
+
+ /* Collect the literal pool. */
+ if (!pool_overflow)
+ {
+ pool = s390_mainpool_start ();
+ if (!pool)
+ pool_overflow = true;
+ }
+
+ /* If literal pool overflowed, start to chunkify it. */
+ if (pool_overflow)
+ pool = s390_chunkify_start ();
+
+ /* Split out-of-range branches. If this has created new
+ literal pool entries, cancel current chunk list and
+ recompute it. zSeries machines have large branch
+ instructions, so we never need to split a branch. */
+ if (!TARGET_CPU_ZARCH && s390_split_branches ())
+ {
+ if (pool_overflow)
+ s390_chunkify_cancel (pool);
+ else
+ s390_mainpool_cancel (pool);
+
+ continue;
+ }
+
+ /* If we made it up to here, both conditions are satisfied.
+ Finish up literal pool related changes. */
+ if (pool_overflow)
+ s390_chunkify_finish (pool);
+ else
+ s390_mainpool_finish (pool);
+
+ /* We're done splitting branches. */
+ cfun->machine->split_branches_pending_p = false;
+ break;
+ }
+
+ /* Generate out-of-pool execute target insns. */
+ if (TARGET_CPU_ZARCH)
+ {
+ rtx insn, label, target;
+
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ {
+ label = s390_execute_label (insn);
+ if (!label)
+ continue;
+
+ gcc_assert (label != const0_rtx);
+
+ target = emit_label (XEXP (label, 0));
+ INSN_ADDRESSES_NEW (target, -1);
+
+ target = emit_insn (s390_execute_target (insn));
+ INSN_ADDRESSES_NEW (target, -1);
+ }
+ }
+
+ /* Try to optimize prologue and epilogue further. */
+ s390_optimize_prologue ();
+
+ /* Walk over the insns and do some >=z10 specific changes. */
+ if (s390_tune == PROCESSOR_2097_Z10
+ || s390_tune == PROCESSOR_2817_Z196
+ || s390_tune == PROCESSOR_2827_ZEC12)
+ {
+ rtx insn;
+ bool insn_added_p = false;
+
+ /* The insn lengths and addresses have to be up to date for the
+ following manipulations. */
+ shorten_branches (get_insns ());
+
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ {
+ if (!INSN_P (insn) || INSN_CODE (insn) <= 0)
+ continue;
+
+ if (JUMP_P (insn))
+ insn_added_p |= s390_fix_long_loop_prediction (insn);
+
+ if ((GET_CODE (PATTERN (insn)) == PARALLEL
+ || GET_CODE (PATTERN (insn)) == SET)
+ && s390_tune == PROCESSOR_2097_Z10)
+ insn_added_p |= s390_z10_optimize_cmp (insn);
+ }
+
+ /* Adjust branches if we added new instructions. */
+ if (insn_added_p)
+ shorten_branches (get_insns ());
+ }
+}
+
+/* Return true if INSN is a fp load insn writing register REGNO. */
+static inline bool
+s390_fpload_toreg (rtx insn, unsigned int regno)
+{
+ rtx set;
+ enum attr_type flag = s390_safe_attr_type (insn);
+
+ if (flag != TYPE_FLOADSF && flag != TYPE_FLOADDF)
+ return false;
+
+ set = single_set (insn);
+
+ if (set == NULL_RTX)
+ return false;
+
+ if (!REG_P (SET_DEST (set)) || !MEM_P (SET_SRC (set)))
+ return false;
+
+ if (REGNO (SET_DEST (set)) != regno)
+ return false;
+
+ return true;
+}
+
+/* This value describes the distance to be avoided between an
+ aritmetic fp instruction and an fp load writing the same register.
+ Z10_EARLYLOAD_DISTANCE - 1 as well as Z10_EARLYLOAD_DISTANCE + 1 is
+ fine but the exact value has to be avoided. Otherwise the FP
+ pipeline will throw an exception causing a major penalty. */
+#define Z10_EARLYLOAD_DISTANCE 7
+
+/* Rearrange the ready list in order to avoid the situation described
+ for Z10_EARLYLOAD_DISTANCE. A problematic load instruction is
+ moved to the very end of the ready list. */
+static void
+s390_z10_prevent_earlyload_conflicts (rtx *ready, int *nready_p)
+{
+ unsigned int regno;
+ int nready = *nready_p;
+ rtx tmp;
+ int i;
+ rtx insn;
+ rtx set;
+ enum attr_type flag;
+ int distance;
+
+ /* Skip DISTANCE - 1 active insns. */
+ for (insn = last_scheduled_insn, distance = Z10_EARLYLOAD_DISTANCE - 1;
+ distance > 0 && insn != NULL_RTX;
+ distance--, insn = prev_active_insn (insn))
+ if (CALL_P (insn) || JUMP_P (insn))
+ return;
+
+ if (insn == NULL_RTX)
+ return;
+
+ set = single_set (insn);
+
+ if (set == NULL_RTX || !REG_P (SET_DEST (set))
+ || GET_MODE_CLASS (GET_MODE (SET_DEST (set))) != MODE_FLOAT)
+ return;
+
+ flag = s390_safe_attr_type (insn);
+
+ if (flag == TYPE_FLOADSF || flag == TYPE_FLOADDF)
+ return;
+
+ regno = REGNO (SET_DEST (set));
+ i = nready - 1;
+
+ while (!s390_fpload_toreg (ready[i], regno) && i > 0)
+ i--;
+
+ if (!i)
+ return;
+
+ tmp = ready[i];
+ memmove (&ready[1], &ready[0], sizeof (rtx) * i);
+ ready[0] = tmp;
+}
+
+
+/* The s390_sched_state variable tracks the state of the current or
+ the last instruction group.
+
+ 0,1,2 number of instructions scheduled in the current group
+ 3 the last group is complete - normal insns
+ 4 the last group was a cracked/expanded insn */
+
+static int s390_sched_state;
+
+#define S390_OOO_SCHED_STATE_NORMAL 3
+#define S390_OOO_SCHED_STATE_CRACKED 4
+
+#define S390_OOO_SCHED_ATTR_MASK_CRACKED 0x1
+#define S390_OOO_SCHED_ATTR_MASK_EXPANDED 0x2
+#define S390_OOO_SCHED_ATTR_MASK_ENDGROUP 0x4
+#define S390_OOO_SCHED_ATTR_MASK_GROUPALONE 0x8
+
+static unsigned int
+s390_get_sched_attrmask (rtx insn)
+{
+ unsigned int mask = 0;
+
+ if (get_attr_ooo_cracked (insn))
+ mask |= S390_OOO_SCHED_ATTR_MASK_CRACKED;
+ if (get_attr_ooo_expanded (insn))
+ mask |= S390_OOO_SCHED_ATTR_MASK_EXPANDED;
+ if (get_attr_ooo_endgroup (insn))
+ mask |= S390_OOO_SCHED_ATTR_MASK_ENDGROUP;
+ if (get_attr_ooo_groupalone (insn))
+ mask |= S390_OOO_SCHED_ATTR_MASK_GROUPALONE;
+ return mask;
+}
+
+/* Return the scheduling score for INSN. The higher the score the
+ better. The score is calculated from the OOO scheduling attributes
+ of INSN and the scheduling state s390_sched_state. */
+static int
+s390_sched_score (rtx insn)
+{
+ unsigned int mask = s390_get_sched_attrmask (insn);
+ int score = 0;
+
+ switch (s390_sched_state)
+ {
+ case 0:
+ /* Try to put insns into the first slot which would otherwise
+ break a group. */
+ if ((mask & S390_OOO_SCHED_ATTR_MASK_CRACKED) != 0
+ || (mask & S390_OOO_SCHED_ATTR_MASK_EXPANDED) != 0)
+ score += 5;
+ if ((mask & S390_OOO_SCHED_ATTR_MASK_GROUPALONE) != 0)
+ score += 10;
+ case 1:
+ /* Prefer not cracked insns while trying to put together a
+ group. */
+ if ((mask & S390_OOO_SCHED_ATTR_MASK_CRACKED) == 0
+ && (mask & S390_OOO_SCHED_ATTR_MASK_EXPANDED) == 0
+ && (mask & S390_OOO_SCHED_ATTR_MASK_GROUPALONE) == 0)
+ score += 10;
+ if ((mask & S390_OOO_SCHED_ATTR_MASK_ENDGROUP) == 0)
+ score += 5;
+ break;
+ case 2:
+ /* Prefer not cracked insns while trying to put together a
+ group. */
+ if ((mask & S390_OOO_SCHED_ATTR_MASK_CRACKED) == 0
+ && (mask & S390_OOO_SCHED_ATTR_MASK_EXPANDED) == 0
+ && (mask & S390_OOO_SCHED_ATTR_MASK_GROUPALONE) == 0)
+ score += 10;
+ /* Prefer endgroup insns in the last slot. */
+ if ((mask & S390_OOO_SCHED_ATTR_MASK_ENDGROUP) != 0)
+ score += 10;
+ break;
+ case S390_OOO_SCHED_STATE_NORMAL:
+ /* Prefer not cracked insns if the last was not cracked. */
+ if ((mask & S390_OOO_SCHED_ATTR_MASK_CRACKED) == 0
+ && (mask & S390_OOO_SCHED_ATTR_MASK_EXPANDED) == 0)
+ score += 5;
+ if ((mask & S390_OOO_SCHED_ATTR_MASK_GROUPALONE) != 0)
+ score += 10;
+ break;
+ case S390_OOO_SCHED_STATE_CRACKED:
+ /* Try to keep cracked insns together to prevent them from
+ interrupting groups. */
+ if ((mask & S390_OOO_SCHED_ATTR_MASK_CRACKED) != 0
+ || (mask & S390_OOO_SCHED_ATTR_MASK_EXPANDED) != 0)
+ score += 5;
+ break;
+ }
+ return score;
+}
+
+/* This function is called via hook TARGET_SCHED_REORDER before
+ issuing one insn from list READY which contains *NREADYP entries.
+ For target z10 it reorders load instructions to avoid early load
+ conflicts in the floating point pipeline */
+static int
+s390_sched_reorder (FILE *file, int verbose,
+ rtx *ready, int *nreadyp, int clock ATTRIBUTE_UNUSED)
+{
+ if (s390_tune == PROCESSOR_2097_Z10)
+ if (reload_completed && *nreadyp > 1)
+ s390_z10_prevent_earlyload_conflicts (ready, nreadyp);
+
+ if (s390_tune == PROCESSOR_2827_ZEC12
+ && reload_completed
+ && *nreadyp > 1)
+ {
+ int i;
+ int last_index = *nreadyp - 1;
+ int max_index = -1;
+ int max_score = -1;
+ rtx tmp;
+
+ /* Just move the insn with the highest score to the top (the
+ end) of the list. A full sort is not needed since a conflict
+ in the hazard recognition cannot happen. So the top insn in
+ the ready list will always be taken. */
+ for (i = last_index; i >= 0; i--)
+ {
+ int score;
+
+ if (recog_memoized (ready[i]) < 0)
+ continue;
+
+ score = s390_sched_score (ready[i]);
+ if (score > max_score)
+ {
+ max_score = score;
+ max_index = i;
+ }
+ }
+
+ if (max_index != -1)
+ {
+ if (max_index != last_index)
+ {
+ tmp = ready[max_index];
+ ready[max_index] = ready[last_index];
+ ready[last_index] = tmp;
+
+ if (verbose > 5)
+ fprintf (file,
+ "move insn %d to the top of list\n",
+ INSN_UID (ready[last_index]));
+ }
+ else if (verbose > 5)
+ fprintf (file,
+ "best insn %d already on top\n",
+ INSN_UID (ready[last_index]));
+ }
+
+ if (verbose > 5)
+ {
+ fprintf (file, "ready list ooo attributes - sched state: %d\n",
+ s390_sched_state);
+
+ for (i = last_index; i >= 0; i--)
+ {
+ if (recog_memoized (ready[i]) < 0)
+ continue;
+ fprintf (file, "insn %d score: %d: ", INSN_UID (ready[i]),
+ s390_sched_score (ready[i]));
+#define PRINT_OOO_ATTR(ATTR) fprintf (file, "%s ", get_attr_##ATTR (ready[i]) ? #ATTR : "!" #ATTR);
+ PRINT_OOO_ATTR (ooo_cracked);
+ PRINT_OOO_ATTR (ooo_expanded);
+ PRINT_OOO_ATTR (ooo_endgroup);
+ PRINT_OOO_ATTR (ooo_groupalone);
+#undef PRINT_OOO_ATTR
+ fprintf (file, "\n");
+ }
+ }
+ }
+
+ return s390_issue_rate ();
+}
+
+
+/* This function is called via hook TARGET_SCHED_VARIABLE_ISSUE after
+ the scheduler has issued INSN. It stores the last issued insn into
+ last_scheduled_insn in order to make it available for
+ s390_sched_reorder. */
+static int
+s390_sched_variable_issue (FILE *file, int verbose, rtx insn, int more)
+{
+ last_scheduled_insn = insn;
+
+ if (s390_tune == PROCESSOR_2827_ZEC12
+ && reload_completed
+ && recog_memoized (insn) >= 0)
+ {
+ unsigned int mask = s390_get_sched_attrmask (insn);
+
+ if ((mask & S390_OOO_SCHED_ATTR_MASK_CRACKED) != 0
+ || (mask & S390_OOO_SCHED_ATTR_MASK_EXPANDED) != 0)
+ s390_sched_state = S390_OOO_SCHED_STATE_CRACKED;
+ else if ((mask & S390_OOO_SCHED_ATTR_MASK_ENDGROUP) != 0
+ || (mask & S390_OOO_SCHED_ATTR_MASK_GROUPALONE) != 0)
+ s390_sched_state = S390_OOO_SCHED_STATE_NORMAL;
+ else
+ {
+ /* Only normal insns are left (mask == 0). */
+ switch (s390_sched_state)
+ {
+ case 0:
+ case 1:
+ case 2:
+ case S390_OOO_SCHED_STATE_NORMAL:
+ if (s390_sched_state == S390_OOO_SCHED_STATE_NORMAL)
+ s390_sched_state = 1;
+ else
+ s390_sched_state++;
+
+ break;
+ case S390_OOO_SCHED_STATE_CRACKED:
+ s390_sched_state = S390_OOO_SCHED_STATE_NORMAL;
+ break;
+ }
+ }
+ if (verbose > 5)
+ {
+ fprintf (file, "insn %d: ", INSN_UID (insn));
+#define PRINT_OOO_ATTR(ATTR) \
+ fprintf (file, "%s ", get_attr_##ATTR (insn) ? #ATTR : "");
+ PRINT_OOO_ATTR (ooo_cracked);
+ PRINT_OOO_ATTR (ooo_expanded);
+ PRINT_OOO_ATTR (ooo_endgroup);
+ PRINT_OOO_ATTR (ooo_groupalone);
+#undef PRINT_OOO_ATTR
+ fprintf (file, "\n");
+ fprintf (file, "sched state: %d\n", s390_sched_state);
+ }
+ }
+
+ if (GET_CODE (PATTERN (insn)) != USE
+ && GET_CODE (PATTERN (insn)) != CLOBBER)
+ return more - 1;
+ else
+ return more;
+}
+
+static void
+s390_sched_init (FILE *file ATTRIBUTE_UNUSED,
+ int verbose ATTRIBUTE_UNUSED,
+ int max_ready ATTRIBUTE_UNUSED)
+{
+ last_scheduled_insn = NULL_RTX;
+ s390_sched_state = 0;
+}
+
+/* This function checks the whole of insn X for memory references. The
+ function always returns zero because the framework it is called
+ from would stop recursively analyzing the insn upon a return value
+ other than zero. The real result of this function is updating
+ counter variable MEM_COUNT. */
+static int
+check_dpu (rtx *x, unsigned *mem_count)
+{
+ if (*x != NULL_RTX && MEM_P (*x))
+ (*mem_count)++;
+ return 0;
+}
+
+/* This target hook implementation for TARGET_LOOP_UNROLL_ADJUST calculates
+ a new number struct loop *loop should be unrolled if tuned for cpus with
+ a built-in stride prefetcher.
+ The loop is analyzed for memory accesses by calling check_dpu for
+ each rtx of the loop. Depending on the loop_depth and the amount of
+ memory accesses a new number <=nunroll is returned to improve the
+ behaviour of the hardware prefetch unit. */
+static unsigned
+s390_loop_unroll_adjust (unsigned nunroll, struct loop *loop)
+{
+ basic_block *bbs;
+ rtx insn;
+ unsigned i;
+ unsigned mem_count = 0;
+
+ if (s390_tune != PROCESSOR_2097_Z10
+ && s390_tune != PROCESSOR_2817_Z196
+ && s390_tune != PROCESSOR_2827_ZEC12)
+ return nunroll;
+
+ /* Count the number of memory references within the loop body. */
+ bbs = get_loop_body (loop);
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ for (insn = BB_HEAD (bbs[i]); insn != BB_END (bbs[i]); insn = NEXT_INSN (insn))
+ if (INSN_P (insn) && INSN_CODE (insn) != -1)
+ for_each_rtx (&insn, (rtx_function) check_dpu, &mem_count);
+ }
+ free (bbs);
+
+ /* Prevent division by zero, and we do not need to adjust nunroll in this case. */
+ if (mem_count == 0)
+ return nunroll;
+
+ switch (loop_depth(loop))
+ {
+ case 1:
+ return MIN (nunroll, 28 / mem_count);
+ case 2:
+ return MIN (nunroll, 22 / mem_count);
+ default:
+ return MIN (nunroll, 16 / mem_count);
+ }
+}
+
+static void
+s390_option_override (void)
+{
+ unsigned int i;
+ cl_deferred_option *opt;
+ vec<cl_deferred_option> *v =
+ (vec<cl_deferred_option> *) s390_deferred_options;
+
+ if (v)
+ FOR_EACH_VEC_ELT (*v, i, opt)
+ {
+ switch (opt->opt_index)
+ {
+ case OPT_mhotpatch:
+ s390_hotpatch_trampoline_halfwords = (opt->value) ?
+ s390_hotpatch_trampoline_halfwords_default : -1;
+ break;
+ case OPT_mhotpatch_:
+ {
+ int val;
+
+ val = integral_argument (opt->arg);
+ if (val == -1)
+ {
+ /* argument is not a plain number */
+ error ("argument to %qs should be a non-negative integer",
+ "-mhotpatch=");
+ break;
+ }
+ else if (val > s390_hotpatch_trampoline_halfwords_max)
+ {
+ error ("argument to %qs is too large (max. %d)",
+ "-mhotpatch=", s390_hotpatch_trampoline_halfwords_max);
+ break;
+ }
+ s390_hotpatch_trampoline_halfwords = val;
+ break;
+ }
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ /* Set up function hooks. */
+ init_machine_status = s390_init_machine_status;
+
+ /* Architecture mode defaults according to ABI. */
+ if (!(target_flags_explicit & MASK_ZARCH))
+ {
+ if (TARGET_64BIT)
+ target_flags |= MASK_ZARCH;
+ else
+ target_flags &= ~MASK_ZARCH;
+ }
+
+ /* Set the march default in case it hasn't been specified on
+ cmdline. */
+ if (s390_arch == PROCESSOR_max)
+ {
+ s390_arch_string = TARGET_ZARCH? "z900" : "g5";
+ s390_arch = TARGET_ZARCH ? PROCESSOR_2064_Z900 : PROCESSOR_9672_G5;
+ s390_arch_flags = processor_flags_table[(int)s390_arch];
+ }
+
+ /* Determine processor to tune for. */
+ if (s390_tune == PROCESSOR_max)
+ {
+ s390_tune = s390_arch;
+ s390_tune_flags = s390_arch_flags;
+ }
+
+ /* Sanity checks. */
+ if (TARGET_ZARCH && !TARGET_CPU_ZARCH)
+ error ("z/Architecture mode not supported on %s", s390_arch_string);
+ if (TARGET_64BIT && !TARGET_ZARCH)
+ error ("64-bit ABI not supported in ESA/390 mode");
+
+ /* Use hardware DFP if available and not explicitly disabled by
+ user. E.g. with -m31 -march=z10 -mzarch */
+ if (!(target_flags_explicit & MASK_HARD_DFP) && TARGET_DFP)
+ target_flags |= MASK_HARD_DFP;
+
+ /* Enable hardware transactions if available and not explicitly
+ disabled by user. E.g. with -m31 -march=zEC12 -mzarch */
+ if (!(target_flags_explicit & MASK_OPT_HTM) && TARGET_CPU_HTM && TARGET_ZARCH)
+ target_flags |= MASK_OPT_HTM;
+
+ if (TARGET_HARD_DFP && !TARGET_DFP)
+ {
+ if (target_flags_explicit & MASK_HARD_DFP)
+ {
+ if (!TARGET_CPU_DFP)
+ error ("hardware decimal floating point instructions"
+ " not available on %s", s390_arch_string);
+ if (!TARGET_ZARCH)
+ error ("hardware decimal floating point instructions"
+ " not available in ESA/390 mode");
+ }
+ else
+ target_flags &= ~MASK_HARD_DFP;
+ }
+
+ if ((target_flags_explicit & MASK_SOFT_FLOAT) && TARGET_SOFT_FLOAT)
+ {
+ if ((target_flags_explicit & MASK_HARD_DFP) && TARGET_HARD_DFP)
+ error ("-mhard-dfp can%'t be used in conjunction with -msoft-float");
+
+ target_flags &= ~MASK_HARD_DFP;
+ }
+
+ /* Set processor cost function. */
+ switch (s390_tune)
+ {
+ case PROCESSOR_2084_Z990:
+ s390_cost = &z990_cost;
+ break;
+ case PROCESSOR_2094_Z9_109:
+ s390_cost = &z9_109_cost;
+ break;
+ case PROCESSOR_2097_Z10:
+ s390_cost = &z10_cost;
+ break;
+ case PROCESSOR_2817_Z196:
+ s390_cost = &z196_cost;
+ break;
+ case PROCESSOR_2827_ZEC12:
+ s390_cost = &zEC12_cost;
+ break;
+ default:
+ s390_cost = &z900_cost;
+ }
+
+ if (TARGET_BACKCHAIN && TARGET_PACKED_STACK && TARGET_HARD_FLOAT)
+ error ("-mbackchain -mpacked-stack -mhard-float are not supported "
+ "in combination");
+
+ if (s390_stack_size)
+ {
+ if (s390_stack_guard >= s390_stack_size)
+ error ("stack size must be greater than the stack guard value");
+ else if (s390_stack_size > 1 << 16)
+ error ("stack size must not be greater than 64k");
+ }
+ else if (s390_stack_guard)
+ error ("-mstack-guard implies use of -mstack-size");
+
+#ifdef TARGET_DEFAULT_LONG_DOUBLE_128
+ if (!(target_flags_explicit & MASK_LONG_DOUBLE_128))
+ target_flags |= MASK_LONG_DOUBLE_128;
+#endif
+
+ if (s390_tune == PROCESSOR_2097_Z10
+ || s390_tune == PROCESSOR_2817_Z196
+ || s390_tune == PROCESSOR_2827_ZEC12)
+ {
+ maybe_set_param_value (PARAM_MAX_UNROLLED_INSNS, 100,
+ global_options.x_param_values,
+ global_options_set.x_param_values);
+ maybe_set_param_value (PARAM_MAX_UNROLL_TIMES, 32,
+ global_options.x_param_values,
+ global_options_set.x_param_values);
+ maybe_set_param_value (PARAM_MAX_COMPLETELY_PEELED_INSNS, 2000,
+ global_options.x_param_values,
+ global_options_set.x_param_values);
+ maybe_set_param_value (PARAM_MAX_COMPLETELY_PEEL_TIMES, 64,
+ global_options.x_param_values,
+ global_options_set.x_param_values);
+ }
+
+ maybe_set_param_value (PARAM_MAX_PENDING_LIST_LENGTH, 256,
+ global_options.x_param_values,
+ global_options_set.x_param_values);
+ /* values for loop prefetching */
+ maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE, 256,
+ global_options.x_param_values,
+ global_options_set.x_param_values);
+ maybe_set_param_value (PARAM_L1_CACHE_SIZE, 128,
+ global_options.x_param_values,
+ global_options_set.x_param_values);
+ /* s390 has more than 2 levels and the size is much larger. Since
+ we are always running virtualized assume that we only get a small
+ part of the caches above l1. */
+ maybe_set_param_value (PARAM_L2_CACHE_SIZE, 1500,
+ global_options.x_param_values,
+ global_options_set.x_param_values);
+ maybe_set_param_value (PARAM_PREFETCH_MIN_INSN_TO_MEM_RATIO, 2,
+ global_options.x_param_values,
+ global_options_set.x_param_values);
+ maybe_set_param_value (PARAM_SIMULTANEOUS_PREFETCHES, 6,
+ global_options.x_param_values,
+ global_options_set.x_param_values);
+
+ /* This cannot reside in s390_option_optimization_table since HAVE_prefetch
+ requires the arch flags to be evaluated already. Since prefetching
+ is beneficial on s390, we enable it if available. */
+ if (flag_prefetch_loop_arrays < 0 && HAVE_prefetch && optimize >= 3)
+ flag_prefetch_loop_arrays = 1;
+
+ /* Use the alternative scheduling-pressure algorithm by default. */
+ maybe_set_param_value (PARAM_SCHED_PRESSURE_ALGORITHM, 2,
+ global_options.x_param_values,
+ global_options_set.x_param_values);
+
+ if (TARGET_TPF)
+ {
+ /* Don't emit DWARF3/4 unless specifically selected. The TPF
+ debuggers do not yet support DWARF 3/4. */
+ if (!global_options_set.x_dwarf_strict)
+ dwarf_strict = 1;
+ if (!global_options_set.x_dwarf_version)
+ dwarf_version = 2;
+ }
+
+ /* Register a target-specific optimization-and-lowering pass
+ to run immediately before prologue and epilogue generation.
+
+ Registering the pass must be done at start up. It's
+ convenient to do it here. */
+ opt_pass *new_pass = new pass_s390_early_mach (g);
+ struct register_pass_info insert_pass_s390_early_mach =
+ {
+ new_pass, /* pass */
+ "pro_and_epilogue", /* reference_pass_name */
+ 1, /* ref_pass_instance_number */
+ PASS_POS_INSERT_BEFORE /* po_op */
+ };
+ register_pass (&insert_pass_s390_early_mach);
+}
+
+/* Initialize GCC target structure. */
+
+#undef TARGET_ASM_ALIGNED_HI_OP
+#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
+#undef TARGET_ASM_ALIGNED_DI_OP
+#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
+#undef TARGET_ASM_INTEGER
+#define TARGET_ASM_INTEGER s390_assemble_integer
+
+#undef TARGET_ASM_OPEN_PAREN
+#define TARGET_ASM_OPEN_PAREN ""
+
+#undef TARGET_ASM_CLOSE_PAREN
+#define TARGET_ASM_CLOSE_PAREN ""
+
+#undef TARGET_OPTION_OVERRIDE
+#define TARGET_OPTION_OVERRIDE s390_option_override
+
+#undef TARGET_ENCODE_SECTION_INFO
+#define TARGET_ENCODE_SECTION_INFO s390_encode_section_info
+
+#undef TARGET_SCALAR_MODE_SUPPORTED_P
+#define TARGET_SCALAR_MODE_SUPPORTED_P s390_scalar_mode_supported_p
+
+#ifdef HAVE_AS_TLS
+#undef TARGET_HAVE_TLS
+#define TARGET_HAVE_TLS true
+#endif
+#undef TARGET_CANNOT_FORCE_CONST_MEM
+#define TARGET_CANNOT_FORCE_CONST_MEM s390_cannot_force_const_mem
+
+#undef TARGET_DELEGITIMIZE_ADDRESS
+#define TARGET_DELEGITIMIZE_ADDRESS s390_delegitimize_address
+
+#undef TARGET_LEGITIMIZE_ADDRESS
+#define TARGET_LEGITIMIZE_ADDRESS s390_legitimize_address
+
+#undef TARGET_RETURN_IN_MEMORY
+#define TARGET_RETURN_IN_MEMORY s390_return_in_memory
+
+#undef TARGET_INIT_BUILTINS
+#define TARGET_INIT_BUILTINS s390_init_builtins
+#undef TARGET_EXPAND_BUILTIN
+#define TARGET_EXPAND_BUILTIN s390_expand_builtin
+
+#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
+#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA s390_output_addr_const_extra
+
+#undef TARGET_ASM_OUTPUT_MI_THUNK
+#define TARGET_ASM_OUTPUT_MI_THUNK s390_output_mi_thunk
+#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
+#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
+
+#undef TARGET_SCHED_ADJUST_PRIORITY
+#define TARGET_SCHED_ADJUST_PRIORITY s390_adjust_priority
+#undef TARGET_SCHED_ISSUE_RATE
+#define TARGET_SCHED_ISSUE_RATE s390_issue_rate
+#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
+#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD s390_first_cycle_multipass_dfa_lookahead
+
+#undef TARGET_SCHED_VARIABLE_ISSUE
+#define TARGET_SCHED_VARIABLE_ISSUE s390_sched_variable_issue
+#undef TARGET_SCHED_REORDER
+#define TARGET_SCHED_REORDER s390_sched_reorder
+#undef TARGET_SCHED_INIT
+#define TARGET_SCHED_INIT s390_sched_init
+
+#undef TARGET_CANNOT_COPY_INSN_P
+#define TARGET_CANNOT_COPY_INSN_P s390_cannot_copy_insn_p
+#undef TARGET_RTX_COSTS
+#define TARGET_RTX_COSTS s390_rtx_costs
+#undef TARGET_ADDRESS_COST
+#define TARGET_ADDRESS_COST s390_address_cost
+#undef TARGET_REGISTER_MOVE_COST
+#define TARGET_REGISTER_MOVE_COST s390_register_move_cost
+#undef TARGET_MEMORY_MOVE_COST
+#define TARGET_MEMORY_MOVE_COST s390_memory_move_cost
+
+#undef TARGET_MACHINE_DEPENDENT_REORG
+#define TARGET_MACHINE_DEPENDENT_REORG s390_reorg
+
+#undef TARGET_VALID_POINTER_MODE
+#define TARGET_VALID_POINTER_MODE s390_valid_pointer_mode
+
+#undef TARGET_BUILD_BUILTIN_VA_LIST
+#define TARGET_BUILD_BUILTIN_VA_LIST s390_build_builtin_va_list
+#undef TARGET_EXPAND_BUILTIN_VA_START
+#define TARGET_EXPAND_BUILTIN_VA_START s390_va_start
+#undef TARGET_GIMPLIFY_VA_ARG_EXPR
+#define TARGET_GIMPLIFY_VA_ARG_EXPR s390_gimplify_va_arg
+
+#undef TARGET_PROMOTE_FUNCTION_MODE
+#define TARGET_PROMOTE_FUNCTION_MODE s390_promote_function_mode
+#undef TARGET_PASS_BY_REFERENCE
+#define TARGET_PASS_BY_REFERENCE s390_pass_by_reference
+
+#undef TARGET_FUNCTION_OK_FOR_SIBCALL
+#define TARGET_FUNCTION_OK_FOR_SIBCALL s390_function_ok_for_sibcall
+#undef TARGET_FUNCTION_ARG
+#define TARGET_FUNCTION_ARG s390_function_arg
+#undef TARGET_FUNCTION_ARG_ADVANCE
+#define TARGET_FUNCTION_ARG_ADVANCE s390_function_arg_advance
+#undef TARGET_FUNCTION_VALUE
+#define TARGET_FUNCTION_VALUE s390_function_value
+#undef TARGET_LIBCALL_VALUE
+#define TARGET_LIBCALL_VALUE s390_libcall_value
+
+#undef TARGET_FIXED_CONDITION_CODE_REGS
+#define TARGET_FIXED_CONDITION_CODE_REGS s390_fixed_condition_code_regs
+
+#undef TARGET_CC_MODES_COMPATIBLE
+#define TARGET_CC_MODES_COMPATIBLE s390_cc_modes_compatible
+
+#undef TARGET_INVALID_WITHIN_DOLOOP
+#define TARGET_INVALID_WITHIN_DOLOOP hook_constcharptr_const_rtx_null
+
+#ifdef HAVE_AS_TLS
+#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
+#define TARGET_ASM_OUTPUT_DWARF_DTPREL s390_output_dwarf_dtprel
+#endif
+
+#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING
+#undef TARGET_MANGLE_TYPE
+#define TARGET_MANGLE_TYPE s390_mangle_type
+#endif
+
+#undef TARGET_SCALAR_MODE_SUPPORTED_P
+#define TARGET_SCALAR_MODE_SUPPORTED_P s390_scalar_mode_supported_p
+
+#undef TARGET_PREFERRED_RELOAD_CLASS
+#define TARGET_PREFERRED_RELOAD_CLASS s390_preferred_reload_class
+
+#undef TARGET_SECONDARY_RELOAD
+#define TARGET_SECONDARY_RELOAD s390_secondary_reload
+
+#undef TARGET_LIBGCC_CMP_RETURN_MODE
+#define TARGET_LIBGCC_CMP_RETURN_MODE s390_libgcc_cmp_return_mode
+
+#undef TARGET_LIBGCC_SHIFT_COUNT_MODE
+#define TARGET_LIBGCC_SHIFT_COUNT_MODE s390_libgcc_shift_count_mode
+
+#undef TARGET_LEGITIMATE_ADDRESS_P
+#define TARGET_LEGITIMATE_ADDRESS_P s390_legitimate_address_p
+
+#undef TARGET_LEGITIMATE_CONSTANT_P
+#define TARGET_LEGITIMATE_CONSTANT_P s390_legitimate_constant_p
+
+#undef TARGET_LRA_P
+#define TARGET_LRA_P s390_lra_p
+
+#undef TARGET_CAN_ELIMINATE
+#define TARGET_CAN_ELIMINATE s390_can_eliminate
+
+#undef TARGET_CONDITIONAL_REGISTER_USAGE
+#define TARGET_CONDITIONAL_REGISTER_USAGE s390_conditional_register_usage
+
+#undef TARGET_LOOP_UNROLL_ADJUST
+#define TARGET_LOOP_UNROLL_ADJUST s390_loop_unroll_adjust
+
+#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
+#define TARGET_ASM_TRAMPOLINE_TEMPLATE s390_asm_trampoline_template
+#undef TARGET_TRAMPOLINE_INIT
+#define TARGET_TRAMPOLINE_INIT s390_trampoline_init
+
+#undef TARGET_UNWIND_WORD_MODE
+#define TARGET_UNWIND_WORD_MODE s390_unwind_word_mode
+
+#undef TARGET_CANONICALIZE_COMPARISON
+#define TARGET_CANONICALIZE_COMPARISON s390_canonicalize_comparison
+
+#undef TARGET_HARD_REGNO_SCRATCH_OK
+#define TARGET_HARD_REGNO_SCRATCH_OK s390_hard_regno_scratch_ok
+
+#undef TARGET_ATTRIBUTE_TABLE
+#define TARGET_ATTRIBUTE_TABLE s390_attribute_table
+
+#undef TARGET_CAN_INLINE_P
+#define TARGET_CAN_INLINE_P s390_can_inline_p
+
+#undef TARGET_SET_UP_BY_PROLOGUE
+#define TARGET_SET_UP_BY_PROLOGUE s300_set_up_by_prologue
+
+struct gcc_target targetm = TARGET_INITIALIZER;
+
+#include "gt-s390.h"