aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/config/rs6000/rs6000.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/config/rs6000/rs6000.h')
-rw-r--r--gcc-4.9/gcc/config/rs6000/rs6000.h2676
1 files changed, 2676 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/config/rs6000/rs6000.h b/gcc-4.9/gcc/config/rs6000/rs6000.h
new file mode 100644
index 000000000..a6afb6c37
--- /dev/null
+++ b/gcc-4.9/gcc/config/rs6000/rs6000.h
@@ -0,0 +1,2676 @@
+/* Definitions of target machine for GNU compiler, for IBM RS/6000.
+ Copyright (C) 1992-2014 Free Software Foundation, Inc.
+ Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published
+ by the Free Software Foundation; either version 3, or (at your
+ option) any later version.
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ Under Section 7 of GPL version 3, you are granted additional
+ permissions described in the GCC Runtime Library Exception, version
+ 3.1, as published by the Free Software Foundation.
+
+ You should have received a copy of the GNU General Public License and
+ a copy of the GCC Runtime Library Exception along with this program;
+ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+ <http://www.gnu.org/licenses/>. */
+
+/* Note that some other tm.h files include this one and then override
+ many of the definitions. */
+
+#ifndef RS6000_OPTS_H
+#include "config/rs6000/rs6000-opts.h"
+#endif
+
+/* Definitions for the object file format. These are set at
+ compile-time. */
+
+#define OBJECT_XCOFF 1
+#define OBJECT_ELF 2
+#define OBJECT_PEF 3
+#define OBJECT_MACHO 4
+
+#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
+#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
+#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
+#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
+
+#ifndef TARGET_AIX
+#define TARGET_AIX 0
+#endif
+
+#ifndef TARGET_AIX_OS
+#define TARGET_AIX_OS 0
+#endif
+
+/* Control whether function entry points use a "dot" symbol when
+ ABI_AIX. */
+#define DOT_SYMBOLS 1
+
+/* Default string to use for cpu if not specified. */
+#ifndef TARGET_CPU_DEFAULT
+#define TARGET_CPU_DEFAULT ((char *)0)
+#endif
+
+/* If configured for PPC405, support PPC405CR Erratum77. */
+#ifdef CONFIG_PPC405CR
+#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
+#else
+#define PPC405_ERRATUM77 0
+#endif
+
+#ifndef TARGET_PAIRED_FLOAT
+#define TARGET_PAIRED_FLOAT 0
+#endif
+
+#ifdef HAVE_AS_POPCNTB
+#define ASM_CPU_POWER5_SPEC "-mpower5"
+#else
+#define ASM_CPU_POWER5_SPEC "-mpower4"
+#endif
+
+#ifdef HAVE_AS_DFP
+#define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
+#else
+#define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
+#endif
+
+#ifdef HAVE_AS_POPCNTD
+#define ASM_CPU_POWER7_SPEC "-mpower7"
+#else
+#define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
+#endif
+
+#ifdef HAVE_AS_POWER8
+#define ASM_CPU_POWER8_SPEC "-mpower8"
+#else
+#define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
+#endif
+
+#ifdef HAVE_AS_DCI
+#define ASM_CPU_476_SPEC "-m476"
+#else
+#define ASM_CPU_476_SPEC "-mpower4"
+#endif
+
+/* Common ASM definitions used by ASM_SPEC among the various targets for
+ handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
+ provide the default assembler options if the user uses -mcpu=native, so if
+ you make changes here, make them also there. */
+#define ASM_CPU_SPEC \
+"%{!mcpu*: \
+ %{mpowerpc64*: -mppc64} \
+ %{!mpowerpc64*: %(asm_default)}} \
+%{mcpu=native: %(asm_cpu_native)} \
+%{mcpu=cell: -mcell} \
+%{mcpu=power3: -mppc64} \
+%{mcpu=power4: -mpower4} \
+%{mcpu=power5: %(asm_cpu_power5)} \
+%{mcpu=power5+: %(asm_cpu_power5)} \
+%{mcpu=power6: %(asm_cpu_power6) -maltivec} \
+%{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
+%{mcpu=power7: %(asm_cpu_power7)} \
+%{mcpu=power8: %(asm_cpu_power8)} \
+%{mcpu=a2: -ma2} \
+%{mcpu=powerpc: -mppc} \
+%{mcpu=rs64a: -mppc64} \
+%{mcpu=401: -mppc} \
+%{mcpu=403: -m403} \
+%{mcpu=405: -m405} \
+%{mcpu=405fp: -m405} \
+%{mcpu=440: -m440} \
+%{mcpu=440fp: -m440} \
+%{mcpu=464: -m440} \
+%{mcpu=464fp: -m440} \
+%{mcpu=476: %(asm_cpu_476)} \
+%{mcpu=476fp: %(asm_cpu_476)} \
+%{mcpu=505: -mppc} \
+%{mcpu=601: -m601} \
+%{mcpu=602: -mppc} \
+%{mcpu=603: -mppc} \
+%{mcpu=603e: -mppc} \
+%{mcpu=ec603e: -mppc} \
+%{mcpu=604: -mppc} \
+%{mcpu=604e: -mppc} \
+%{mcpu=620: -mppc64} \
+%{mcpu=630: -mppc64} \
+%{mcpu=740: -mppc} \
+%{mcpu=750: -mppc} \
+%{mcpu=G3: -mppc} \
+%{mcpu=7400: -mppc -maltivec} \
+%{mcpu=7450: -mppc -maltivec} \
+%{mcpu=G4: -mppc -maltivec} \
+%{mcpu=801: -mppc} \
+%{mcpu=821: -mppc} \
+%{mcpu=823: -mppc} \
+%{mcpu=860: -mppc} \
+%{mcpu=970: -mpower4 -maltivec} \
+%{mcpu=G5: -mpower4 -maltivec} \
+%{mcpu=8540: -me500} \
+%{mcpu=8548: -me500} \
+%{mcpu=e300c2: -me300} \
+%{mcpu=e300c3: -me300} \
+%{mcpu=e500mc: -me500mc} \
+%{mcpu=e500mc64: -me500mc64} \
+%{mcpu=e5500: -me5500} \
+%{mcpu=e6500: -me6500} \
+%{maltivec: -maltivec} \
+%{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
+%{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
+-many"
+
+#define CPP_DEFAULT_SPEC ""
+
+#define ASM_DEFAULT_SPEC ""
+
+/* This macro defines names of additional specifications to put in the specs
+ that can be used in various specifications like CC1_SPEC. Its definition
+ is an initializer with a subgrouping for each command option.
+
+ Each subgrouping contains a string constant, that defines the
+ specification name, and a string constant that used by the GCC driver
+ program.
+
+ Do not define this macro if it does not need to do anything. */
+
+#define SUBTARGET_EXTRA_SPECS
+
+#define EXTRA_SPECS \
+ { "cpp_default", CPP_DEFAULT_SPEC }, \
+ { "asm_cpu", ASM_CPU_SPEC }, \
+ { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
+ { "asm_default", ASM_DEFAULT_SPEC }, \
+ { "cc1_cpu", CC1_CPU_SPEC }, \
+ { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
+ { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
+ { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
+ { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
+ { "asm_cpu_476", ASM_CPU_476_SPEC }, \
+ SUBTARGET_EXTRA_SPECS
+
+/* -mcpu=native handling only makes sense with compiler running on
+ an PowerPC chip. If changing this condition, also change
+ the condition in driver-rs6000.c. */
+#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
+/* In driver-rs6000.c. */
+extern const char *host_detect_local_cpu (int argc, const char **argv);
+#define EXTRA_SPEC_FUNCTIONS \
+ { "local_cpu_detect", host_detect_local_cpu },
+#define HAVE_LOCAL_CPU_DETECT
+#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
+
+#else
+#define ASM_CPU_NATIVE_SPEC "%(asm_default)"
+#endif
+
+#ifndef CC1_CPU_SPEC
+#ifdef HAVE_LOCAL_CPU_DETECT
+#define CC1_CPU_SPEC \
+"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
+ %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
+#else
+#define CC1_CPU_SPEC ""
+#endif
+#endif
+
+/* Architecture type. */
+
+/* Define TARGET_MFCRF if the target assembler does not support the
+ optional field operand for mfcr. */
+
+#ifndef HAVE_AS_MFCRF
+#undef TARGET_MFCRF
+#define TARGET_MFCRF 0
+#endif
+
+/* Define TARGET_POPCNTB if the target assembler does not support the
+ popcount byte instruction. */
+
+#ifndef HAVE_AS_POPCNTB
+#undef TARGET_POPCNTB
+#define TARGET_POPCNTB 0
+#endif
+
+/* Define TARGET_FPRND if the target assembler does not support the
+ fp rounding instructions. */
+
+#ifndef HAVE_AS_FPRND
+#undef TARGET_FPRND
+#define TARGET_FPRND 0
+#endif
+
+/* Define TARGET_CMPB if the target assembler does not support the
+ cmpb instruction. */
+
+#ifndef HAVE_AS_CMPB
+#undef TARGET_CMPB
+#define TARGET_CMPB 0
+#endif
+
+/* Define TARGET_MFPGPR if the target assembler does not support the
+ mffpr and mftgpr instructions. */
+
+#ifndef HAVE_AS_MFPGPR
+#undef TARGET_MFPGPR
+#define TARGET_MFPGPR 0
+#endif
+
+/* Define TARGET_DFP if the target assembler does not support decimal
+ floating point instructions. */
+#ifndef HAVE_AS_DFP
+#undef TARGET_DFP
+#define TARGET_DFP 0
+#endif
+
+/* Define TARGET_POPCNTD if the target assembler does not support the
+ popcount word and double word instructions. */
+
+#ifndef HAVE_AS_POPCNTD
+#undef TARGET_POPCNTD
+#define TARGET_POPCNTD 0
+#endif
+
+/* Define the ISA 2.07 flags as 0 if the target assembler does not support the
+ waitasecond instruction. Allow -mpower8-fusion, since it does not add new
+ instructions. */
+
+#ifndef HAVE_AS_POWER8
+#undef TARGET_DIRECT_MOVE
+#undef TARGET_CRYPTO
+#undef TARGET_HTM
+#undef TARGET_P8_VECTOR
+#define TARGET_DIRECT_MOVE 0
+#define TARGET_CRYPTO 0
+#define TARGET_HTM 0
+#define TARGET_P8_VECTOR 0
+#endif
+
+/* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
+ not, generate the lwsync code as an integer constant. */
+#ifdef HAVE_AS_LWSYNC
+#define TARGET_LWSYNC_INSTRUCTION 1
+#else
+#define TARGET_LWSYNC_INSTRUCTION 0
+#endif
+
+/* Define TARGET_TLS_MARKERS if the target assembler does not support
+ arg markers for __tls_get_addr calls. */
+#ifndef HAVE_AS_TLS_MARKERS
+#undef TARGET_TLS_MARKERS
+#define TARGET_TLS_MARKERS 0
+#else
+#define TARGET_TLS_MARKERS tls_markers
+#endif
+
+#ifndef TARGET_SECURE_PLT
+#define TARGET_SECURE_PLT 0
+#endif
+
+#ifndef TARGET_CMODEL
+#define TARGET_CMODEL CMODEL_SMALL
+#endif
+
+#define TARGET_32BIT (! TARGET_64BIT)
+
+#ifndef HAVE_AS_TLS
+#define HAVE_AS_TLS 0
+#endif
+
+#ifndef TARGET_LINK_STACK
+#define TARGET_LINK_STACK 0
+#endif
+
+#ifndef SET_TARGET_LINK_STACK
+#define SET_TARGET_LINK_STACK(X) do { } while (0)
+#endif
+
+/* Return 1 for a symbol ref for a thread-local storage symbol. */
+#define RS6000_SYMBOL_REF_TLS_P(RTX) \
+ (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
+
+#ifdef IN_LIBGCC2
+/* For libgcc2 we make sure this is a compile time constant */
+#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
+#undef TARGET_POWERPC64
+#define TARGET_POWERPC64 1
+#else
+#undef TARGET_POWERPC64
+#define TARGET_POWERPC64 0
+#endif
+#else
+ /* The option machinery will define this. */
+#endif
+
+#define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
+
+/* FPU operations supported.
+ Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
+ also test TARGET_HARD_FLOAT. */
+#define TARGET_SINGLE_FLOAT 1
+#define TARGET_DOUBLE_FLOAT 1
+#define TARGET_SINGLE_FPU 0
+#define TARGET_SIMPLE_FPU 0
+#define TARGET_XILINX_FPU 0
+
+/* Recast the processor type to the cpu attribute. */
+#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
+
+/* Define generic processor types based upon current deployment. */
+#define PROCESSOR_COMMON PROCESSOR_PPC601
+#define PROCESSOR_POWERPC PROCESSOR_PPC604
+#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
+
+/* Define the default processor. This is overridden by other tm.h files. */
+#define PROCESSOR_DEFAULT PROCESSOR_PPC603
+#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
+
+/* Specify the dialect of assembler to use. Only new mnemonics are supported
+ starting with GCC 4.8, i.e. just one dialect, but for backwards
+ compatibility with older inline asm ASSEMBLER_DIALECT needs to be
+ defined. */
+#define ASSEMBLER_DIALECT 1
+
+/* Debug support */
+#define MASK_DEBUG_STACK 0x01 /* debug stack applications */
+#define MASK_DEBUG_ARG 0x02 /* debug argument handling */
+#define MASK_DEBUG_REG 0x04 /* debug register handling */
+#define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
+#define MASK_DEBUG_COST 0x10 /* debug rtx codes */
+#define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
+#define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
+#define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
+ | MASK_DEBUG_ARG \
+ | MASK_DEBUG_REG \
+ | MASK_DEBUG_ADDR \
+ | MASK_DEBUG_COST \
+ | MASK_DEBUG_TARGET \
+ | MASK_DEBUG_BUILTIN)
+
+#define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
+#define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
+#define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
+#define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
+#define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
+#define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
+#define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
+
+/* Describe the vector unit used for arithmetic operations. */
+extern enum rs6000_vector rs6000_vector_unit[];
+
+#define VECTOR_UNIT_NONE_P(MODE) \
+ (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
+
+#define VECTOR_UNIT_VSX_P(MODE) \
+ (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
+
+#define VECTOR_UNIT_P8_VECTOR_P(MODE) \
+ (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
+
+#define VECTOR_UNIT_ALTIVEC_P(MODE) \
+ (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
+
+#define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
+ (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
+ (int)VECTOR_VSX, \
+ (int)VECTOR_P8_VECTOR))
+
+/* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
+ altivec (VMX) or VSX vector instructions. P8 vector support is upwards
+ compatible, so allow it as well, rather than changing all of the uses of the
+ macro. */
+#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
+ (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
+ (int)VECTOR_ALTIVEC, \
+ (int)VECTOR_P8_VECTOR))
+
+/* Describe whether to use VSX loads or Altivec loads. For now, just use the
+ same unit as the vector unit we are using, but we may want to migrate to
+ using VSX style loads even for types handled by altivec. */
+extern enum rs6000_vector rs6000_vector_mem[];
+
+#define VECTOR_MEM_NONE_P(MODE) \
+ (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
+
+#define VECTOR_MEM_VSX_P(MODE) \
+ (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
+
+#define VECTOR_MEM_P8_VECTOR_P(MODE) \
+ (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
+
+#define VECTOR_MEM_ALTIVEC_P(MODE) \
+ (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
+
+#define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
+ (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
+ (int)VECTOR_VSX, \
+ (int)VECTOR_P8_VECTOR))
+
+#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
+ (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
+ (int)VECTOR_ALTIVEC, \
+ (int)VECTOR_P8_VECTOR))
+
+/* Return the alignment of a given vector type, which is set based on the
+ vector unit use. VSX for instance can load 32 or 64 bit aligned words
+ without problems, while Altivec requires 128-bit aligned vectors. */
+extern int rs6000_vector_align[];
+
+#define VECTOR_ALIGN(MODE) \
+ ((rs6000_vector_align[(MODE)] != 0) \
+ ? rs6000_vector_align[(MODE)] \
+ : (int)GET_MODE_BITSIZE ((MODE)))
+
+/* Determine the element order to use for vector instructions. By
+ default we use big-endian element order when targeting big-endian,
+ and little-endian element order when targeting little-endian. For
+ programs being ported from BE Power to LE Power, it can sometimes
+ be useful to use big-endian element order when targeting little-endian.
+ This is set via -maltivec=be, for example. */
+#define VECTOR_ELT_ORDER_BIG \
+ (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
+
+/* Alignment options for fields in structures for sub-targets following
+ AIX-like ABI.
+ ALIGN_POWER word-aligns FP doubles (default AIX ABI).
+ ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
+
+ Override the macro definitions when compiling libobjc to avoid undefined
+ reference to rs6000_alignment_flags due to library's use of GCC alignment
+ macros which use the macros below. */
+
+#ifndef IN_TARGET_LIBS
+#define MASK_ALIGN_POWER 0x00000000
+#define MASK_ALIGN_NATURAL 0x00000001
+#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
+#else
+#define TARGET_ALIGN_NATURAL 0
+#endif
+
+#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
+#define TARGET_IEEEQUAD rs6000_ieeequad
+#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
+#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
+
+#define TARGET_SPE_ABI 0
+#define TARGET_SPE 0
+#define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
+#define TARGET_FPRS 1
+#define TARGET_E500_SINGLE 0
+#define TARGET_E500_DOUBLE 0
+#define CHECK_E500_OPTIONS do { } while (0)
+
+/* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
+ Enable 32-bit fcfid's on any of the switches for newer ISA machines or
+ XILINX. */
+#define TARGET_FCFID (TARGET_POWERPC64 \
+ || TARGET_PPC_GPOPT /* 970/power4 */ \
+ || TARGET_POPCNTB /* ISA 2.02 */ \
+ || TARGET_CMPB /* ISA 2.05 */ \
+ || TARGET_POPCNTD /* ISA 2.06 */ \
+ || TARGET_XILINX_FPU)
+
+#define TARGET_FCTIDZ TARGET_FCFID
+#define TARGET_STFIWX TARGET_PPC_GFXOPT
+#define TARGET_LFIWAX TARGET_CMPB
+#define TARGET_LFIWZX TARGET_POPCNTD
+#define TARGET_FCFIDS TARGET_POPCNTD
+#define TARGET_FCFIDU TARGET_POPCNTD
+#define TARGET_FCFIDUS TARGET_POPCNTD
+#define TARGET_FCTIDUZ TARGET_POPCNTD
+#define TARGET_FCTIWUZ TARGET_POPCNTD
+
+#define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
+#define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
+#define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
+
+/* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
+ in power7, so conditionalize them on p8 features. TImode syncs need quad
+ memory support. */
+#define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
+ || TARGET_QUAD_MEMORY_ATOMIC \
+ || TARGET_DIRECT_MOVE)
+
+#define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
+
+/* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
+ to allocate the SDmode stack slot to get the value into the proper location
+ in the register. */
+#define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
+
+/* In switching from using target_flags to using rs6000_isa_flags, the options
+ machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
+ OPTION_MASK_<xxx> back into MASK_<xxx>. */
+#define MASK_ALTIVEC OPTION_MASK_ALTIVEC
+#define MASK_CMPB OPTION_MASK_CMPB
+#define MASK_CRYPTO OPTION_MASK_CRYPTO
+#define MASK_DFP OPTION_MASK_DFP
+#define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
+#define MASK_DLMZB OPTION_MASK_DLMZB
+#define MASK_EABI OPTION_MASK_EABI
+#define MASK_FPRND OPTION_MASK_FPRND
+#define MASK_P8_FUSION OPTION_MASK_P8_FUSION
+#define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
+#define MASK_HTM OPTION_MASK_HTM
+#define MASK_ISEL OPTION_MASK_ISEL
+#define MASK_MFCRF OPTION_MASK_MFCRF
+#define MASK_MFPGPR OPTION_MASK_MFPGPR
+#define MASK_MULHW OPTION_MASK_MULHW
+#define MASK_MULTIPLE OPTION_MASK_MULTIPLE
+#define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
+#define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
+#define MASK_POPCNTB OPTION_MASK_POPCNTB
+#define MASK_POPCNTD OPTION_MASK_POPCNTD
+#define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
+#define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
+#define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
+#define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
+#define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
+#define MASK_STRING OPTION_MASK_STRING
+#define MASK_UPDATE OPTION_MASK_UPDATE
+#define MASK_VSX OPTION_MASK_VSX
+#define MASK_VSX_TIMODE OPTION_MASK_VSX_TIMODE
+
+#ifndef IN_LIBGCC2
+#define MASK_POWERPC64 OPTION_MASK_POWERPC64
+#endif
+
+#ifdef TARGET_64BIT
+#define MASK_64BIT OPTION_MASK_64BIT
+#endif
+
+#ifdef TARGET_RELOCATABLE
+#define MASK_RELOCATABLE OPTION_MASK_RELOCATABLE
+#endif
+
+#ifdef TARGET_LITTLE_ENDIAN
+#define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
+#endif
+
+#ifdef TARGET_MINIMAL_TOC
+#define MASK_MINIMAL_TOC OPTION_MASK_MINIMAL_TOC
+#endif
+
+#ifdef TARGET_REGNAMES
+#define MASK_REGNAMES OPTION_MASK_REGNAMES
+#endif
+
+#ifdef TARGET_PROTOTYPE
+#define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
+#endif
+
+/* For power systems, we want to enable Altivec and VSX builtins even if the
+ user did not use -maltivec or -mvsx to allow the builtins to be used inside
+ of #pragma GCC target or the target attribute to change the code level for a
+ given system. The SPE and Paired builtins are only enabled if you configure
+ the compiler for those builtins, and those machines don't support altivec or
+ VSX. */
+
+#define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
+ && ((TARGET_POWERPC64 \
+ || TARGET_PPC_GPOPT /* 970/power4 */ \
+ || TARGET_POPCNTB /* ISA 2.02 */ \
+ || TARGET_CMPB /* ISA 2.05 */ \
+ || TARGET_POPCNTD /* ISA 2.06 */ \
+ || TARGET_ALTIVEC \
+ || TARGET_VSX)))
+
+/* E500 cores only support plain "sync", not lwsync. */
+#define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
+ || rs6000_cpu == PROCESSOR_PPC8548)
+
+
+/* Whether SF/DF operations are supported on the E500. */
+#define TARGET_SF_SPE (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT \
+ && !TARGET_FPRS)
+
+#define TARGET_DF_SPE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
+ && !TARGET_FPRS && TARGET_E500_DOUBLE)
+
+/* Whether SF/DF operations are supported by by the normal floating point unit
+ (or the vector/scalar unit). */
+#define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
+ && TARGET_SINGLE_FLOAT)
+
+#define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
+ && TARGET_DOUBLE_FLOAT)
+
+/* Whether SF/DF operations are supported by any hardware. */
+#define TARGET_SF_INSN (TARGET_SF_FPR || TARGET_SF_SPE)
+#define TARGET_DF_INSN (TARGET_DF_FPR || TARGET_DF_SPE)
+
+/* Which machine supports the various reciprocal estimate instructions. */
+#define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
+ && TARGET_FPRS && TARGET_SINGLE_FLOAT)
+
+#define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
+ && TARGET_DOUBLE_FLOAT \
+ && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
+
+#define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
+ && TARGET_FPRS && TARGET_SINGLE_FLOAT)
+
+#define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
+ && TARGET_DOUBLE_FLOAT \
+ && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
+
+/* Whether the various reciprocal divide/square root estimate instructions
+ exist, and whether we should automatically generate code for the instruction
+ by default. */
+#define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
+#define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
+#define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
+#define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
+
+extern unsigned char rs6000_recip_bits[];
+
+#define RS6000_RECIP_HAVE_RE_P(MODE) \
+ (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
+
+#define RS6000_RECIP_AUTO_RE_P(MODE) \
+ (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
+
+#define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
+ (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
+
+#define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
+ (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
+
+/* The default CPU for TARGET_OPTION_OVERRIDE. */
+#define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
+
+/* Target pragma. */
+#define REGISTER_TARGET_PRAGMAS() do { \
+ c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
+ targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
+ targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
+ rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
+} while (0)
+
+/* Target #defines. */
+#define TARGET_CPU_CPP_BUILTINS() \
+ rs6000_cpu_cpp_builtins (pfile)
+
+/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
+ we're compiling for. Some configurations may need to override it. */
+#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
+ do \
+ { \
+ if (BYTES_BIG_ENDIAN) \
+ { \
+ builtin_define ("__BIG_ENDIAN__"); \
+ builtin_define ("_BIG_ENDIAN"); \
+ builtin_assert ("machine=bigendian"); \
+ } \
+ else \
+ { \
+ builtin_define ("__LITTLE_ENDIAN__"); \
+ builtin_define ("_LITTLE_ENDIAN"); \
+ builtin_assert ("machine=littleendian"); \
+ } \
+ } \
+ while (0)
+
+/* Target machine storage layout. */
+
+/* Define this macro if it is advisable to hold scalars in registers
+ in a wider mode than that declared by the program. In such cases,
+ the value is constrained to be within the bounds of the declared
+ type, but kept valid in the wider mode. The signedness of the
+ extension may differ from that of the type. */
+
+#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
+ if (GET_MODE_CLASS (MODE) == MODE_INT \
+ && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
+ (MODE) = TARGET_32BIT ? SImode : DImode;
+
+/* Define this if most significant bit is lowest numbered
+ in instructions that operate on numbered bit-fields. */
+/* That is true on RS/6000. */
+#define BITS_BIG_ENDIAN 1
+
+/* Define this if most significant byte of a word is the lowest numbered. */
+/* That is true on RS/6000. */
+#define BYTES_BIG_ENDIAN 1
+
+/* Define this if most significant word of a multiword number is lowest
+ numbered.
+
+ For RS/6000 we can decide arbitrarily since there are no machine
+ instructions for them. Might as well be consistent with bits and bytes. */
+#define WORDS_BIG_ENDIAN 1
+
+/* This says that for the IBM long double the larger magnitude double
+ comes first. It's really a two element double array, and arrays
+ don't index differently between little- and big-endian. */
+#define LONG_DOUBLE_LARGE_FIRST 1
+
+#define MAX_BITS_PER_WORD 64
+
+/* Width of a word, in units (bytes). */
+#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
+#ifdef IN_LIBGCC2
+#define MIN_UNITS_PER_WORD UNITS_PER_WORD
+#else
+#define MIN_UNITS_PER_WORD 4
+#endif
+#define UNITS_PER_FP_WORD 8
+#define UNITS_PER_ALTIVEC_WORD 16
+#define UNITS_PER_VSX_WORD 16
+#define UNITS_PER_SPE_WORD 8
+#define UNITS_PER_PAIRED_WORD 8
+
+/* Type used for ptrdiff_t, as a string used in a declaration. */
+#define PTRDIFF_TYPE "int"
+
+/* Type used for size_t, as a string used in a declaration. */
+#define SIZE_TYPE "long unsigned int"
+
+/* Type used for wchar_t, as a string used in a declaration. */
+#define WCHAR_TYPE "short unsigned int"
+
+/* Width of wchar_t in bits. */
+#define WCHAR_TYPE_SIZE 16
+
+/* A C expression for the size in bits of the type `short' on the
+ target machine. If you don't define this, the default is half a
+ word. (If this would be less than one storage unit, it is
+ rounded up to one unit.) */
+#define SHORT_TYPE_SIZE 16
+
+/* A C expression for the size in bits of the type `int' on the
+ target machine. If you don't define this, the default is one
+ word. */
+#define INT_TYPE_SIZE 32
+
+/* A C expression for the size in bits of the type `long' on the
+ target machine. If you don't define this, the default is one
+ word. */
+#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
+
+/* A C expression for the size in bits of the type `long long' on the
+ target machine. If you don't define this, the default is two
+ words. */
+#define LONG_LONG_TYPE_SIZE 64
+
+/* A C expression for the size in bits of the type `float' on the
+ target machine. If you don't define this, the default is one
+ word. */
+#define FLOAT_TYPE_SIZE 32
+
+/* A C expression for the size in bits of the type `double' on the
+ target machine. If you don't define this, the default is two
+ words. */
+#define DOUBLE_TYPE_SIZE 64
+
+/* A C expression for the size in bits of the type `long double' on
+ the target machine. If you don't define this, the default is two
+ words. */
+#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
+
+/* Define this to set long double type size to use in libgcc2.c, which can
+ not depend on target_flags. */
+#ifdef __LONG_DOUBLE_128__
+#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
+#else
+#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
+#endif
+
+/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
+#define WIDEST_HARDWARE_FP_SIZE 64
+
+/* Width in bits of a pointer.
+ See also the macro `Pmode' defined below. */
+extern unsigned rs6000_pointer_size;
+#define POINTER_SIZE rs6000_pointer_size
+
+/* Allocation boundary (in *bits*) for storing arguments in argument list. */
+#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
+
+/* Boundary (in *bits*) on which stack pointer should be aligned. */
+#define STACK_BOUNDARY \
+ ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
+ ? 64 : 128)
+
+/* Allocation boundary (in *bits*) for the code of a function. */
+#define FUNCTION_BOUNDARY 32
+
+/* No data type wants to be aligned rounder than this. */
+#define BIGGEST_ALIGNMENT 128
+
+/* Alignment of field after `int : 0' in a structure. */
+#define EMPTY_FIELD_BOUNDARY 32
+
+/* Every structure's size must be a multiple of this. */
+#define STRUCTURE_SIZE_BOUNDARY 8
+
+/* A bit-field declared as `int' forces `int' alignment for the struct. */
+#define PCC_BITFIELD_TYPE_MATTERS 1
+
+enum data_align { align_abi, align_opt, align_both };
+
+/* A C expression to compute the alignment for a variables in the
+ local store. TYPE is the data type, and ALIGN is the alignment
+ that the object would ordinarily have. */
+#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
+ rs6000_data_alignment (TYPE, ALIGN, align_both)
+
+/* Make strings word-aligned so strcpy from constants will be faster. */
+#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
+ (TREE_CODE (EXP) == STRING_CST \
+ && (STRICT_ALIGNMENT || !optimize_size) \
+ && (ALIGN) < BITS_PER_WORD \
+ ? BITS_PER_WORD \
+ : (ALIGN))
+
+/* Make arrays of chars word-aligned for the same reasons. */
+#define DATA_ALIGNMENT(TYPE, ALIGN) \
+ rs6000_data_alignment (TYPE, ALIGN, align_opt)
+
+/* Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
+ 64 bits. */
+#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
+ rs6000_data_alignment (TYPE, ALIGN, align_abi)
+
+/* Nonzero if move instructions will actually fail to work
+ when given unaligned data. */
+#define STRICT_ALIGNMENT 0
+
+/* Define this macro to be the value 1 if unaligned accesses have a cost
+ many times greater than aligned accesses, for example if they are
+ emulated in a trap handler. */
+/* Altivec vector memory instructions simply ignore the low bits; SPE vector
+ memory instructions trap on unaligned accesses; VSX memory instructions are
+ aligned to 4 or 8 bytes. */
+#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
+ (STRICT_ALIGNMENT \
+ || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
+ || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode) \
+ && (ALIGN) < 32) \
+ || (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE))))
+
+
+/* Standard register usage. */
+
+/* Number of actual hardware registers.
+ The hardware registers are assigned numbers for the compiler
+ from 0 to just below FIRST_PSEUDO_REGISTER.
+ All registers that the compiler knows about must be given numbers,
+ even those that are not normally considered general registers.
+
+ RS/6000 has 32 fixed-point registers, 32 floating-point registers,
+ a count register, a link register, and 8 condition register fields,
+ which we view here as separate registers. AltiVec adds 32 vector
+ registers and a VRsave register.
+
+ In addition, the difference between the frame and argument pointers is
+ a function of the number of registers saved, so we need to have a
+ register for AP that will later be eliminated in favor of SP or FP.
+ This is a normal register, but it is fixed.
+
+ We also create a pseudo register for float/int conversions, that will
+ really represent the memory location used. It is represented here as
+ a register, in order to work around problems in allocating stack storage
+ in inline functions.
+
+ Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
+ pointer, which is eventually eliminated in favor of SP or FP.
+
+ The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
+
+#define FIRST_PSEUDO_REGISTER 117
+
+/* This must be included for pre gcc 3.0 glibc compatibility. */
+#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
+
+/* Add 32 dwarf columns for synthetic SPE registers. */
+#define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 4) + 32)
+
+/* The SPE has an additional 32 synthetic registers, with DWARF debug
+ info numbering for these registers starting at 1200. While eh_frame
+ register numbering need not be the same as the debug info numbering,
+ we choose to number these regs for eh_frame at 1200 too. This allows
+ future versions of the rs6000 backend to add hard registers and
+ continue to use the gcc hard register numbering for eh_frame. If the
+ extra SPE registers in eh_frame were numbered starting from the
+ current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
+ changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
+ avoid invalidating older SPE eh_frame info.
+
+ We must map them here to avoid huge unwinder tables mostly consisting
+ of unused space. */
+#define DWARF_REG_TO_UNWIND_COLUMN(r) \
+ ((r) > 1200 ? ((r) - 1200 + (DWARF_FRAME_REGISTERS - 32)) : (r))
+
+/* Use standard DWARF numbering for DWARF debugging information. */
+#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
+
+/* Use gcc hard register numbering for eh_frame. */
+#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
+
+/* Map register numbers held in the call frame info that gcc has
+ collected using DWARF_FRAME_REGNUM to those that should be output in
+ .debug_frame and .eh_frame. We continue to use gcc hard reg numbers
+ for .eh_frame, but use the numbers mandated by the various ABIs for
+ .debug_frame. rs6000_emit_prologue has translated any combination of
+ CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
+ the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
+#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
+ ((FOR_EH) ? (REGNO) \
+ : (REGNO) == CR2_REGNO ? 64 \
+ : DBX_REGISTER_NUMBER (REGNO))
+
+/* 1 for registers that have pervasive standard uses
+ and are not available for the register allocator.
+
+ On RS/6000, r1 is used for the stack. On Darwin, r2 is available
+ as a local register; for all other OS's r2 is the TOC pointer.
+
+ cr5 is not supposed to be used.
+
+ On System V implementations, r13 is fixed and not available for use. */
+
+#define FIXED_REGISTERS \
+ {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
+ /* AltiVec registers. */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 1, 1 \
+ , 1, 1, 1, 1, 1, 1 \
+}
+
+/* 1 for registers not available across function calls.
+ These must include the FIXED_REGISTERS and also any
+ registers that can be used without being saved.
+ The latter must include the registers where values are returned
+ and the register where structure-value addresses are passed.
+ Aside from that, you can include as many other registers as you like. */
+
+#define CALL_USED_REGISTERS \
+ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
+ /* AltiVec registers. */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 1, 1 \
+ , 1, 1, 1, 1, 1, 1 \
+}
+
+/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
+ the entire set of `FIXED_REGISTERS' be included.
+ (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
+ This macro is optional. If not specified, it defaults to the value
+ of `CALL_USED_REGISTERS'. */
+
+#define CALL_REALLY_USED_REGISTERS \
+ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
+ /* AltiVec registers. */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0 \
+ , 0, 0, 0, 0, 0, 0 \
+}
+
+#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
+
+#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
+#define FIRST_SAVED_FP_REGNO (14+32)
+#define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
+
+/* List the order in which to allocate registers. Each register must be
+ listed once, even those in FIXED_REGISTERS.
+
+ We allocate in the following order:
+ fp0 (not saved or used for anything)
+ fp13 - fp2 (not saved; incoming fp arg registers)
+ fp1 (not saved; return value)
+ fp31 - fp14 (saved; order given to save least number)
+ cr7, cr6 (not saved or special)
+ cr1 (not saved, but used for FP operations)
+ cr0 (not saved, but used for arithmetic operations)
+ cr4, cr3, cr2 (saved)
+ r9 (not saved; best for TImode)
+ r10, r8-r4 (not saved; highest first for less conflict with params)
+ r3 (not saved; return value register)
+ r11 (not saved; later alloc to help shrink-wrap)
+ r0 (not saved; cannot be base reg)
+ r31 - r13 (saved; order given to save least number)
+ r12 (not saved; if used for DImode or DFmode would use r13)
+ ctr (not saved; when we have the choice ctr is better)
+ lr (saved)
+ cr5, r1, r2, ap, ca (fixed)
+ v0 - v1 (not saved or used for anything)
+ v13 - v3 (not saved; incoming vector arg registers)
+ v2 (not saved; incoming vector arg reg; return value)
+ v19 - v14 (not saved or used for anything)
+ v31 - v20 (saved; order given to save least number)
+ vrsave, vscr (fixed)
+ spe_acc, spefscr (fixed)
+ sfp (fixed)
+ tfhar (fixed)
+ tfiar (fixed)
+ texasr (fixed)
+*/
+
+#if FIXED_R2 == 1
+#define MAYBE_R2_AVAILABLE
+#define MAYBE_R2_FIXED 2,
+#else
+#define MAYBE_R2_AVAILABLE 2,
+#define MAYBE_R2_FIXED
+#endif
+
+#if FIXED_R13 == 1
+#define EARLY_R12 12,
+#define LATE_R12
+#else
+#define EARLY_R12
+#define LATE_R12 12,
+#endif
+
+#define REG_ALLOC_ORDER \
+ {32, \
+ /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
+ /* not use fr14 which is a saved register. */ \
+ 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
+ 33, \
+ 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
+ 50, 49, 48, 47, 46, \
+ 75, 74, 69, 68, 72, 71, 70, \
+ MAYBE_R2_AVAILABLE \
+ 9, 10, 8, 7, 6, 5, 4, \
+ 3, EARLY_R12 11, 0, \
+ 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
+ 18, 17, 16, 15, 14, 13, LATE_R12 \
+ 66, 65, \
+ 73, 1, MAYBE_R2_FIXED 67, 76, \
+ /* AltiVec registers. */ \
+ 77, 78, \
+ 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
+ 79, \
+ 96, 95, 94, 93, 92, 91, \
+ 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
+ 109, 110, \
+ 111, 112, 113, 114, 115, 116 \
+}
+
+/* True if register is floating-point. */
+#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
+
+/* True if register is a condition register. */
+#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
+
+/* True if register is a condition register, but not cr0. */
+#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
+
+/* True if register is an integer register. */
+#define INT_REGNO_P(N) \
+ ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
+
+/* SPE SIMD registers are just the GPRs. */
+#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
+
+/* PAIRED SIMD registers are just the FPRs. */
+#define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
+
+/* True if register is the CA register. */
+#define CA_REGNO_P(N) ((N) == CA_REGNO)
+
+/* True if register is an AltiVec register. */
+#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
+
+/* True if register is a VSX register. */
+#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
+
+/* Alternate name for any vector register supporting floating point, no matter
+ which instruction set(s) are available. */
+#define VFLOAT_REGNO_P(N) \
+ (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
+
+/* Alternate name for any vector register supporting integer, no matter which
+ instruction set(s) are available. */
+#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
+
+/* Alternate name for any vector register supporting logical operations, no
+ matter which instruction set(s) are available. Allow GPRs as well as the
+ vector registers. */
+#define VLOGICAL_REGNO_P(N) \
+ (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
+ || (TARGET_VSX && FP_REGNO_P (N))) \
+
+/* Return number of consecutive hard regs needed starting at reg REGNO
+ to hold something of mode MODE. */
+
+#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
+
+/* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
+ enough space to account for vectors in FP regs. However, TFmode/TDmode
+ should not use VSX instructions to do a caller save. */
+#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
+ (TARGET_VSX \
+ && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
+ && FP_REGNO_P (REGNO) \
+ ? V2DFmode \
+ : ((MODE) == TFmode && FP_REGNO_P (REGNO)) \
+ ? DFmode \
+ : ((MODE) == TDmode && FP_REGNO_P (REGNO)) \
+ ? DImode \
+ : choose_hard_reg_mode ((REGNO), (NREGS), false))
+
+#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
+ (((TARGET_32BIT && TARGET_POWERPC64 \
+ && (GET_MODE_SIZE (MODE) > 4) \
+ && INT_REGNO_P (REGNO)) ? 1 : 0) \
+ || (TARGET_VSX && FP_REGNO_P (REGNO) \
+ && GET_MODE_SIZE (MODE) > 8 && ((MODE) != TDmode) \
+ && ((MODE) != TFmode)))
+
+#define VSX_VECTOR_MODE(MODE) \
+ ((MODE) == V4SFmode \
+ || (MODE) == V2DFmode) \
+
+#define ALTIVEC_VECTOR_MODE(MODE) \
+ ((MODE) == V16QImode \
+ || (MODE) == V8HImode \
+ || (MODE) == V4SFmode \
+ || (MODE) == V4SImode)
+
+#define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
+ (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
+ || (MODE) == V2DImode || (MODE) == V1TImode)
+
+#define SPE_VECTOR_MODE(MODE) \
+ ((MODE) == V4HImode \
+ || (MODE) == V2SFmode \
+ || (MODE) == V1DImode \
+ || (MODE) == V2SImode)
+
+#define PAIRED_VECTOR_MODE(MODE) \
+ ((MODE) == V2SFmode)
+
+/* Value is TRUE if hard register REGNO can hold a value of
+ machine-mode MODE. */
+#define HARD_REGNO_MODE_OK(REGNO, MODE) \
+ rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
+
+/* Value is 1 if it is a good idea to tie two pseudo registers
+ when one has mode MODE1 and one has mode MODE2.
+ If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
+ for any hard reg, then this must be 0 for correct output.
+
+ PTImode cannot tie with other modes because PTImode is restricted to even
+ GPR registers, and TImode can go in any GPR as well as VSX registers (PR
+ 57744). */
+#define MODES_TIEABLE_P(MODE1, MODE2) \
+ ((MODE1) == PTImode \
+ ? (MODE2) == PTImode \
+ : (MODE2) == PTImode \
+ ? 0 \
+ : SCALAR_FLOAT_MODE_P (MODE1) \
+ ? SCALAR_FLOAT_MODE_P (MODE2) \
+ : SCALAR_FLOAT_MODE_P (MODE2) \
+ ? 0 \
+ : GET_MODE_CLASS (MODE1) == MODE_CC \
+ ? GET_MODE_CLASS (MODE2) == MODE_CC \
+ : GET_MODE_CLASS (MODE2) == MODE_CC \
+ ? 0 \
+ : SPE_VECTOR_MODE (MODE1) \
+ ? SPE_VECTOR_MODE (MODE2) \
+ : SPE_VECTOR_MODE (MODE2) \
+ ? 0 \
+ : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
+ ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
+ : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
+ ? 0 \
+ : 1)
+
+/* Post-reload, we can't use any new AltiVec registers, as we already
+ emitted the vrsave mask. */
+
+#define HARD_REGNO_RENAME_OK(SRC, DST) \
+ (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
+
+/* Specify the cost of a branch insn; roughly the number of extra insns that
+ should be added to avoid a branch.
+
+ Set this to 3 on the RS/6000 since that is roughly the average cost of an
+ unscheduled conditional branch. */
+
+#define BRANCH_COST(speed_p, predictable_p) 3
+
+/* Override BRANCH_COST heuristic which empirically produces worse
+ performance for removing short circuiting from the logical ops. */
+
+#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
+
+/* A fixed register used at epilogue generation to address SPE registers
+ with negative offsets. The 64-bit load/store instructions on the SPE
+ only take positive offsets (and small ones at that), so we need to
+ reserve a register for consing up negative offsets. */
+
+#define FIXED_SCRATCH 0
+
+/* Specify the registers used for certain standard purposes.
+ The values of these macros are register numbers. */
+
+/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
+/* #define PC_REGNUM */
+
+/* Register to use for pushing function arguments. */
+#define STACK_POINTER_REGNUM 1
+
+/* Base register for access to local variables of the function. */
+#define HARD_FRAME_POINTER_REGNUM 31
+
+/* Base register for access to local variables of the function. */
+#define FRAME_POINTER_REGNUM 113
+
+/* Base register for access to arguments of the function. */
+#define ARG_POINTER_REGNUM 67
+
+/* Place to put static chain when calling a function that requires it. */
+#define STATIC_CHAIN_REGNUM 11
+
+
+/* Define the classes of registers for register constraints in the
+ machine description. Also define ranges of constants.
+
+ One of the classes must always be named ALL_REGS and include all hard regs.
+ If there is more than one class, another class must be named NO_REGS
+ and contain no registers.
+
+ The name GENERAL_REGS must be the name of a class (or an alias for
+ another name such as ALL_REGS). This is the class of registers
+ that is allowed by "g" or "r" in a register constraint.
+ Also, registers outside this class are allocated only when
+ instructions express preferences for them.
+
+ The classes must be numbered in nondecreasing order; that is,
+ a larger-numbered class must never be contained completely
+ in a smaller-numbered class.
+
+ For any two classes, it is very desirable that there be another
+ class that represents their union. */
+
+/* The RS/6000 has three types of registers, fixed-point, floating-point, and
+ condition registers, plus three special registers, CTR, and the link
+ register. AltiVec adds a vector register class. VSX registers overlap the
+ FPR registers and the Altivec registers.
+
+ However, r0 is special in that it cannot be used as a base register.
+ So make a class for registers valid as base registers.
+
+ Also, cr0 is the only condition code register that can be used in
+ arithmetic insns, so make a separate class for it. */
+
+enum reg_class
+{
+ NO_REGS,
+ BASE_REGS,
+ GENERAL_REGS,
+ FLOAT_REGS,
+ ALTIVEC_REGS,
+ VSX_REGS,
+ VRSAVE_REGS,
+ VSCR_REGS,
+ SPE_ACC_REGS,
+ SPEFSCR_REGS,
+ SPR_REGS,
+ NON_SPECIAL_REGS,
+ LINK_REGS,
+ CTR_REGS,
+ LINK_OR_CTR_REGS,
+ SPECIAL_REGS,
+ SPEC_OR_GEN_REGS,
+ CR0_REGS,
+ CR_REGS,
+ NON_FLOAT_REGS,
+ CA_REGS,
+ ALL_REGS,
+ LIM_REG_CLASSES
+};
+
+#define N_REG_CLASSES (int) LIM_REG_CLASSES
+
+/* Give names of register classes as strings for dump file. */
+
+#define REG_CLASS_NAMES \
+{ \
+ "NO_REGS", \
+ "BASE_REGS", \
+ "GENERAL_REGS", \
+ "FLOAT_REGS", \
+ "ALTIVEC_REGS", \
+ "VSX_REGS", \
+ "VRSAVE_REGS", \
+ "VSCR_REGS", \
+ "SPE_ACC_REGS", \
+ "SPEFSCR_REGS", \
+ "SPR_REGS", \
+ "NON_SPECIAL_REGS", \
+ "LINK_REGS", \
+ "CTR_REGS", \
+ "LINK_OR_CTR_REGS", \
+ "SPECIAL_REGS", \
+ "SPEC_OR_GEN_REGS", \
+ "CR0_REGS", \
+ "CR_REGS", \
+ "NON_FLOAT_REGS", \
+ "CA_REGS", \
+ "ALL_REGS" \
+}
+
+/* Define which registers fit in which classes.
+ This is an initializer for a vector of HARD_REG_SET
+ of length N_REG_CLASSES. */
+
+#define REG_CLASS_CONTENTS \
+{ \
+ { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
+ { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
+ { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
+ { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
+ { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
+ { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, /* VSX_REGS */ \
+ { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
+ { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
+ { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
+ { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
+ { 0x00000000, 0x00000000, 0x00000000, 0x00040000 }, /* SPR_REGS */ \
+ { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
+ { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
+ { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
+ { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
+ { 0x00000000, 0x00000000, 0x00000006, 0x00002000 }, /* SPECIAL_REGS */ \
+ { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
+ { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
+ { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
+ { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000 }, /* NON_FLOAT_REGS */ \
+ { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* CA_REGS */ \
+ { 0xffffffff, 0xffffffff, 0xfffffffe, 0x0007ffff } /* ALL_REGS */ \
+}
+
+/* The same information, inverted:
+ Return the class number of the smallest class containing
+ reg number REGNO. This could be a conditional expression
+ or could index an array. */
+
+extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
+
+#if ENABLE_CHECKING
+#define REGNO_REG_CLASS(REGNO) \
+ (gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)), \
+ rs6000_regno_regclass[(REGNO)])
+
+#else
+#define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)]
+#endif
+
+/* Register classes for various constraints that are based on the target
+ switches. */
+enum r6000_reg_class_enum {
+ RS6000_CONSTRAINT_d, /* fpr registers for double values */
+ RS6000_CONSTRAINT_f, /* fpr registers for single values */
+ RS6000_CONSTRAINT_v, /* Altivec registers */
+ RS6000_CONSTRAINT_wa, /* Any VSX register */
+ RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
+ RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
+ RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
+ RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
+ RS6000_CONSTRAINT_wm, /* VSX register for direct move */
+ RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
+ RS6000_CONSTRAINT_ws, /* VSX register for DF */
+ RS6000_CONSTRAINT_wt, /* VSX register for TImode */
+ RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
+ RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
+ RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
+ RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
+ RS6000_CONSTRAINT_wy, /* VSX register for SF */
+ RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
+ RS6000_CONSTRAINT_MAX
+};
+
+extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
+
+/* The class value for index registers, and the one for base regs. */
+#define INDEX_REG_CLASS GENERAL_REGS
+#define BASE_REG_CLASS BASE_REGS
+
+/* Return whether a given register class can hold VSX objects. */
+#define VSX_REG_CLASS_P(CLASS) \
+ ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
+
+/* Given an rtx X being reloaded into a reg required to be
+ in class CLASS, return the class of reg to actually use.
+ In general this is just CLASS; but on some machines
+ in some cases it is preferable to use a more restrictive class.
+
+ On the RS/6000, we have to return NO_REGS when we want to reload a
+ floating-point CONST_DOUBLE to force it to be copied to memory.
+
+ We also don't want to reload integer values into floating-point
+ registers if we can at all help it. In fact, this can
+ cause reload to die, if it tries to generate a reload of CTR
+ into a FP register and discovers it doesn't have the memory location
+ required.
+
+ ??? Would it be a good idea to have reload do the converse, that is
+ try to reload floating modes into FP registers if possible?
+ */
+
+#define PREFERRED_RELOAD_CLASS(X,CLASS) \
+ rs6000_preferred_reload_class_ptr (X, CLASS)
+
+/* Return the register class of a scratch register needed to copy IN into
+ or out of a register in CLASS in MODE. If it can be done directly,
+ NO_REGS is returned. */
+
+#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
+ rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
+
+/* If we are copying between FP or AltiVec registers and anything
+ else, we need a memory location. The exception is when we are
+ targeting ppc64 and the move to/from fpr to gpr instructions
+ are available.*/
+
+#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
+ rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
+
+/* For cpus that cannot load/store SDmode values from the 64-bit
+ FP registers without using a full 64-bit load/store, we need
+ to allocate a full 64-bit stack slot for them. */
+
+#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
+ rs6000_secondary_memory_needed_rtx (MODE)
+
+/* Specify the mode to be used for memory when a secondary memory
+ location is needed. For cpus that cannot load/store SDmode values
+ from the 64-bit FP registers without using a full 64-bit
+ load/store, we need a wider mode. */
+#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
+ rs6000_secondary_memory_needed_mode (MODE)
+
+/* Return the maximum number of consecutive registers
+ needed to represent mode MODE in a register of class CLASS.
+
+ On RS/6000, this is the size of MODE in words, except in the FP regs, where
+ a single reg is enough for two words, unless we have VSX, where the FP
+ registers can hold 128 bits. */
+#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
+
+/* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
+
+#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
+ rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
+
+/* Stack layout; function entry, exit and calling. */
+
+/* Define this if pushing a word on the stack
+ makes the stack pointer a smaller address. */
+#define STACK_GROWS_DOWNWARD
+
+/* Offsets recorded in opcodes are a multiple of this alignment factor. */
+#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
+
+/* Define this to nonzero if the nominal address of the stack frame
+ is at the high-address end of the local variables;
+ that is, each additional local variable allocated
+ goes at a more negative offset in the frame.
+
+ On the RS/6000, we grow upwards, from the area after the outgoing
+ arguments. */
+#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
+ || (flag_sanitize & SANITIZE_ADDRESS) != 0)
+
+/* Size of the fixed area on the stack */
+#define RS6000_SAVE_AREA \
+ ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
+ << (TARGET_64BIT ? 1 : 0))
+
+/* Stack offset for toc save slot. */
+#define RS6000_TOC_SAVE_SLOT \
+ ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
+
+/* Align an address */
+#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
+
+/* Offset within stack frame to start allocating local variables at.
+ If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
+ first local allocated. Otherwise, it is the offset to the BEGINNING
+ of the first local allocated.
+
+ On the RS/6000, the frame pointer is the same as the stack pointer,
+ except for dynamic allocations. So we start after the fixed area and
+ outgoing parameter area. */
+
+#define STARTING_FRAME_OFFSET \
+ (FRAME_GROWS_DOWNWARD \
+ ? 0 \
+ : (RS6000_ALIGN (crtl->outgoing_args_size, \
+ (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
+ + RS6000_SAVE_AREA))
+
+/* Offset from the stack pointer register to an item dynamically
+ allocated on the stack, e.g., by `alloca'.
+
+ The default value for this macro is `STACK_POINTER_OFFSET' plus the
+ length of the outgoing arguments. The default is correct for most
+ machines. See `function.c' for details. */
+#define STACK_DYNAMIC_OFFSET(FUNDECL) \
+ (RS6000_ALIGN (crtl->outgoing_args_size, \
+ (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
+ + (STACK_POINTER_OFFSET))
+
+/* If we generate an insn to push BYTES bytes,
+ this says how many the stack pointer really advances by.
+ On RS/6000, don't define this because there are no push insns. */
+/* #define PUSH_ROUNDING(BYTES) */
+
+/* Offset of first parameter from the argument pointer register value.
+ On the RS/6000, we define the argument pointer to the start of the fixed
+ area. */
+#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
+
+/* Offset from the argument pointer register value to the top of
+ stack. This is different from FIRST_PARM_OFFSET because of the
+ register save area. */
+#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
+
+/* Define this if stack space is still allocated for a parameter passed
+ in a register. The value is the number of bytes allocated to this
+ area. */
+#define REG_PARM_STACK_SPACE(FNDECL) rs6000_reg_parm_stack_space((FNDECL))
+
+/* Define this if the above stack space is to be considered part of the
+ space allocated by the caller. */
+#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
+
+/* This is the difference between the logical top of stack and the actual sp.
+
+ For the RS/6000, sp points past the fixed area. */
+#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
+
+/* Define this if the maximum size of all the outgoing args is to be
+ accumulated and pushed during the prologue. The amount can be
+ found in the variable crtl->outgoing_args_size. */
+#define ACCUMULATE_OUTGOING_ARGS 1
+
+/* Define how to find the value returned by a library function
+ assuming the value has mode MODE. */
+
+#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
+
+/* DRAFT_V4_STRUCT_RET defaults off. */
+#define DRAFT_V4_STRUCT_RET 0
+
+/* Let TARGET_RETURN_IN_MEMORY control what happens. */
+#define DEFAULT_PCC_STRUCT_RETURN 0
+
+/* Mode of stack savearea.
+ FUNCTION is VOIDmode because calling convention maintains SP.
+ BLOCK needs Pmode for SP.
+ NONLOCAL needs twice Pmode to maintain both backchain and SP. */
+#define STACK_SAVEAREA_MODE(LEVEL) \
+ (LEVEL == SAVE_FUNCTION ? VOIDmode \
+ : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
+
+/* Minimum and maximum general purpose registers used to hold arguments. */
+#define GP_ARG_MIN_REG 3
+#define GP_ARG_MAX_REG 10
+#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
+
+/* Minimum and maximum floating point registers used to hold arguments. */
+#define FP_ARG_MIN_REG 33
+#define FP_ARG_AIX_MAX_REG 45
+#define FP_ARG_V4_MAX_REG 40
+#define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
+ ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
+#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
+
+/* Minimum and maximum AltiVec registers used to hold arguments. */
+#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
+#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
+#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
+
+/* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
+#define AGGR_ARG_NUM_REG 8
+
+/* Return registers */
+#define GP_ARG_RETURN GP_ARG_MIN_REG
+#define FP_ARG_RETURN FP_ARG_MIN_REG
+#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
+#define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
+ : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
+#define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? ALTIVEC_ARG_RETURN \
+ : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
+
+/* Flags for the call/call_value rtl operations set up by function_arg */
+#define CALL_NORMAL 0x00000000 /* no special processing */
+/* Bits in 0x00000001 are unused. */
+#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
+#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
+#define CALL_LONG 0x00000008 /* always call indirect */
+#define CALL_LIBCALL 0x00000010 /* libcall */
+
+/* We don't have prologue and epilogue functions to save/restore
+ everything for most ABIs. */
+#define WORLD_SAVE_P(INFO) 0
+
+/* 1 if N is a possible register number for a function value
+ as seen by the caller.
+
+ On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
+#define FUNCTION_VALUE_REGNO_P(N) \
+ ((N) == GP_ARG_RETURN \
+ || ((N) >= FP_ARG_RETURN && (N) <= FP_ARG_MAX_RETURN \
+ && TARGET_HARD_FLOAT && TARGET_FPRS) \
+ || ((N) >= ALTIVEC_ARG_RETURN && (N) <= ALTIVEC_ARG_MAX_RETURN \
+ && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
+
+/* 1 if N is a possible register number for function argument passing.
+ On RS/6000, these are r3-r10 and fp1-fp13.
+ On AltiVec, v2 - v13 are used for passing vectors. */
+#define FUNCTION_ARG_REGNO_P(N) \
+ ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
+ || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
+ && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
+ || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
+ && TARGET_HARD_FLOAT && TARGET_FPRS))
+
+/* Define a data type for recording info about an argument list
+ during the scan of that argument list. This data type should
+ hold all necessary information about the function itself
+ and about the args processed so far, enough to enable macros
+ such as FUNCTION_ARG to determine where the next arg should go.
+
+ On the RS/6000, this is a structure. The first element is the number of
+ total argument words, the second is used to store the next
+ floating-point register number, and the third says how many more args we
+ have prototype types for.
+
+ For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
+ the next available GP register, `fregno' is the next available FP
+ register, and `words' is the number of words used on the stack.
+
+ The varargs/stdarg support requires that this structure's size
+ be a multiple of sizeof(int). */
+
+typedef struct rs6000_args
+{
+ int words; /* # words used for passing GP registers */
+ int fregno; /* next available FP register */
+ int vregno; /* next available AltiVec register */
+ int nargs_prototype; /* # args left in the current prototype */
+ int prototype; /* Whether a prototype was defined */
+ int stdarg; /* Whether function is a stdarg function. */
+ int call_cookie; /* Do special things for this call */
+ int sysv_gregno; /* next available GP register */
+ int intoffset; /* running offset in struct (darwin64) */
+ int use_stack; /* any part of struct on stack (darwin64) */
+ int floats_in_gpr; /* count of SFmode floats taking up
+ GPR space (darwin64) */
+ int named; /* false for varargs params */
+ int escapes; /* if function visible outside tu */
+} CUMULATIVE_ARGS;
+
+/* Initialize a variable CUM of type CUMULATIVE_ARGS
+ for a call to a function whose data type is FNTYPE.
+ For a library call, FNTYPE is 0. */
+
+#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
+ init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
+ N_NAMED_ARGS, FNDECL, VOIDmode)
+
+/* Similar, but when scanning the definition of a procedure. We always
+ set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
+
+#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
+ init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
+ 1000, current_function_decl, VOIDmode)
+
+/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
+
+#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
+ init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
+ 0, NULL_TREE, MODE)
+
+/* If defined, a C expression which determines whether, and in which
+ direction, to pad out an argument with extra space. The value
+ should be of type `enum direction': either `upward' to pad above
+ the argument, `downward' to pad below, or `none' to inhibit
+ padding. */
+
+#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
+
+#define PAD_VARARGS_DOWN \
+ (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
+
+/* Output assembler code to FILE to increment profiler label # LABELNO
+ for profiling a function entry. */
+
+#define FUNCTION_PROFILER(FILE, LABELNO) \
+ output_function_profiler ((FILE), (LABELNO));
+
+/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
+ the stack pointer does not matter. No definition is equivalent to
+ always zero.
+
+ On the RS/6000, this is nonzero because we can restore the stack from
+ its backpointer, which we maintain. */
+#define EXIT_IGNORE_STACK 1
+
+/* Define this macro as a C expression that is nonzero for registers
+ that are used by the epilogue or the return' pattern. The stack
+ and frame pointer registers are already be assumed to be used as
+ needed. */
+
+#define EPILOGUE_USES(REGNO) \
+ ((reload_completed && (REGNO) == LR_REGNO) \
+ || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
+ || (crtl->calls_eh_return \
+ && TARGET_AIX \
+ && (REGNO) == 2))
+
+
+/* Length in units of the trampoline for entering a nested function. */
+
+#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
+
+/* Definitions for __builtin_return_address and __builtin_frame_address.
+ __builtin_return_address (0) should give link register (65), enable
+ this. */
+/* This should be uncommented, so that the link register is used, but
+ currently this would result in unmatched insns and spilling fixed
+ registers so we'll leave it for another day. When these problems are
+ taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
+ (mrs) */
+/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
+
+/* Number of bytes into the frame return addresses can be found. See
+ rs6000_stack_info in rs6000.c for more information on how the different
+ abi's store the return address. */
+#define RETURN_ADDRESS_OFFSET \
+ ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
+
+/* The current return address is in link register (65). The return address
+ of anything farther back is accessed normally at an offset of 8 from the
+ frame pointer. */
+#define RETURN_ADDR_RTX(COUNT, FRAME) \
+ (rs6000_return_addr (COUNT, FRAME))
+
+
+/* Definitions for register eliminations.
+
+ We have two registers that can be eliminated on the RS/6000. First, the
+ frame pointer register can often be eliminated in favor of the stack
+ pointer register. Secondly, the argument pointer register can always be
+ eliminated; it is replaced with either the stack or frame pointer.
+
+ In addition, we use the elimination mechanism to see if r30 is needed
+ Initially we assume that it isn't. If it is, we spill it. This is done
+ by making it an eliminable register. We replace it with itself so that
+ if it isn't needed, then existing uses won't be modified. */
+
+/* This is an array of structures. Each structure initializes one pair
+ of eliminable registers. The "from" register number is given first,
+ followed by "to". Eliminations of the same "from" register are listed
+ in order of preference. */
+#define ELIMINABLE_REGS \
+{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
+ { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
+ { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
+
+/* Define the offset between two registers, one to be eliminated, and the other
+ its replacement, at the start of a routine. */
+#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
+ ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
+
+/* Addressing modes, and classification of registers for them. */
+
+#define HAVE_PRE_DECREMENT 1
+#define HAVE_PRE_INCREMENT 1
+#define HAVE_PRE_MODIFY_DISP 1
+#define HAVE_PRE_MODIFY_REG 1
+
+/* Macros to check register numbers against specific register classes. */
+
+/* These assume that REGNO is a hard or pseudo reg number.
+ They give nonzero only if REGNO is a hard reg of the suitable class
+ or a pseudo reg currently allocated to a suitable hard reg.
+ Since they use reg_renumber, they are safe only once reg_renumber
+ has been allocated, which happens in reginfo.c during register
+ allocation. */
+
+#define REGNO_OK_FOR_INDEX_P(REGNO) \
+((REGNO) < FIRST_PSEUDO_REGISTER \
+ ? (REGNO) <= 31 || (REGNO) == 67 \
+ || (REGNO) == FRAME_POINTER_REGNUM \
+ : (reg_renumber[REGNO] >= 0 \
+ && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
+ || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
+
+#define REGNO_OK_FOR_BASE_P(REGNO) \
+((REGNO) < FIRST_PSEUDO_REGISTER \
+ ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
+ || (REGNO) == FRAME_POINTER_REGNUM \
+ : (reg_renumber[REGNO] > 0 \
+ && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
+ || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
+
+/* Nonzero if X is a hard reg that can be used as an index
+ or if it is a pseudo reg in the non-strict case. */
+#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
+ ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
+ || REGNO_OK_FOR_INDEX_P (REGNO (X)))
+
+/* Nonzero if X is a hard reg that can be used as a base reg
+ or if it is a pseudo reg in the non-strict case. */
+#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
+ ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
+ || REGNO_OK_FOR_BASE_P (REGNO (X)))
+
+
+/* Maximum number of registers that can appear in a valid memory address. */
+
+#define MAX_REGS_PER_ADDRESS 2
+
+/* Recognize any constant value that is a valid address. */
+
+#define CONSTANT_ADDRESS_P(X) \
+ (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
+ || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
+ || GET_CODE (X) == HIGH)
+
+#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
+#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
+ && EASY_VECTOR_15((n) >> 1) \
+ && ((n) & 1) == 0)
+
+#define EASY_VECTOR_MSB(n,mode) \
+ (((unsigned HOST_WIDE_INT)n) == \
+ ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
+
+
+/* Try a machine-dependent way of reloading an illegitimate address
+ operand. If we find one, push the reload and jump to WIN. This
+ macro is used in only one place: `find_reloads_address' in reload.c.
+
+ Implemented on rs6000 by rs6000_legitimize_reload_address.
+ Note that (X) is evaluated twice; this is safe in current usage. */
+
+#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
+do { \
+ int win; \
+ (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
+ (int)(TYPE), (IND_LEVELS), &win); \
+ if ( win ) \
+ goto WIN; \
+} while (0)
+
+#define FIND_BASE_TERM rs6000_find_base_term
+
+/* The register number of the register used to address a table of
+ static data addresses in memory. In some cases this register is
+ defined by a processor's "application binary interface" (ABI).
+ When this macro is defined, RTL is generated for this register
+ once, as with the stack pointer and frame pointer registers. If
+ this macro is not defined, it is up to the machine-dependent files
+ to allocate such a register (if necessary). */
+
+#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
+#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
+
+#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
+
+/* Define this macro if the register defined by
+ `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
+ this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
+
+/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
+
+/* A C expression that is nonzero if X is a legitimate immediate
+ operand on the target machine when generating position independent
+ code. You can assume that X satisfies `CONSTANT_P', so you need
+ not check this. You can also assume FLAG_PIC is true, so you need
+ not check it either. You need not define this macro if all
+ constants (including `SYMBOL_REF') can be immediate operands when
+ generating position independent code. */
+
+/* #define LEGITIMATE_PIC_OPERAND_P (X) */
+
+/* Define this if some processing needs to be done immediately before
+ emitting code for an insn. */
+
+#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
+ rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
+
+/* Specify the machine mode that this machine uses
+ for the index in the tablejump instruction. */
+#define CASE_VECTOR_MODE SImode
+
+/* Define as C expression which evaluates to nonzero if the tablejump
+ instruction expects the table to contain offsets from the address of the
+ table.
+ Do not define this if the table should contain absolute addresses. */
+#define CASE_VECTOR_PC_RELATIVE 1
+
+/* Define this as 1 if `char' should by default be signed; else as 0. */
+#define DEFAULT_SIGNED_CHAR 0
+
+/* An integer expression for the size in bits of the largest integer machine
+ mode that should actually be used. */
+
+/* Allow pairs of registers to be used, which is the intent of the default. */
+#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
+
+/* Max number of bytes we can move from memory to memory
+ in one reasonably fast instruction. */
+#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
+#define MAX_MOVE_MAX 8
+
+/* Nonzero if access to memory by bytes is no faster than for words.
+ Also nonzero if doing byte operations (specifically shifts) in registers
+ is undesirable. */
+#define SLOW_BYTE_ACCESS 1
+
+/* Define if operations between registers always perform the operation
+ on the full register even if a narrower mode is specified. */
+#define WORD_REGISTER_OPERATIONS
+
+/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
+ will either zero-extend or sign-extend. The value of this macro should
+ be the code that says which one of the two operations is implicitly
+ done, UNKNOWN if none. */
+#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
+
+/* Define if loading short immediate values into registers sign extends. */
+#define SHORT_IMMEDIATES_SIGN_EXTEND
+
+/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
+ is done just by pretending it is already truncated. */
+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
+
+/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
+#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
+ ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
+
+/* The CTZ patterns return -1 for input of zero. */
+#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
+
+/* Specify the machine mode that pointers have.
+ After generation of rtl, the compiler makes no further distinction
+ between pointers and any other objects of this machine mode. */
+extern unsigned rs6000_pmode;
+#define Pmode ((enum machine_mode)rs6000_pmode)
+
+/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
+#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
+
+/* Mode of a function address in a call instruction (for indexing purposes).
+ Doesn't matter on RS/6000. */
+#define FUNCTION_MODE SImode
+
+/* Define this if addresses of constant functions
+ shouldn't be put through pseudo regs where they can be cse'd.
+ Desirable on machines where ordinary constants are expensive
+ but a CALL with constant address is cheap. */
+#define NO_FUNCTION_CSE
+
+/* Define this to be nonzero if shift instructions ignore all but the low-order
+ few bits.
+
+ The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
+ have been dropped from the PowerPC architecture. */
+#define SHIFT_COUNT_TRUNCATED 0
+
+/* Adjust the length of an INSN. LENGTH is the currently-computed length and
+ should be adjusted to reflect any required changes. This macro is used when
+ there is some systematic length adjustment required that would be difficult
+ to express in the length attribute. */
+
+/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
+
+/* Given a comparison code (EQ, NE, etc.) and the first operand of a
+ COMPARE, return the mode to be used for the comparison. For
+ floating-point, CCFPmode should be used. CCUNSmode should be used
+ for unsigned comparisons. CCEQmode should be used when we are
+ doing an inequality comparison on the result of a
+ comparison. CCmode should be used in all other cases. */
+
+#define SELECT_CC_MODE(OP,X,Y) \
+ (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
+ : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
+ : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
+ ? CCEQmode : CCmode))
+
+/* Can the condition code MODE be safely reversed? This is safe in
+ all cases on this port, because at present it doesn't use the
+ trapping FP comparisons (fcmpo). */
+#define REVERSIBLE_CC_MODE(MODE) 1
+
+/* Given a condition code and a mode, return the inverse condition. */
+#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
+
+
+/* Control the assembler format that we output. */
+
+/* A C string constant describing how to begin a comment in the target
+ assembler language. The compiler assumes that the comment will end at
+ the end of the line. */
+#define ASM_COMMENT_START " #"
+
+/* Flag to say the TOC is initialized */
+extern int toc_initialized;
+
+/* Macro to output a special constant pool entry. Go to WIN if we output
+ it. Otherwise, it is written the usual way.
+
+ On the RS/6000, toc entries are handled this way. */
+
+#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
+{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
+ { \
+ output_toc (FILE, X, LABELNO, MODE); \
+ goto WIN; \
+ } \
+}
+
+#ifdef HAVE_GAS_WEAK
+#define RS6000_WEAK 1
+#else
+#define RS6000_WEAK 0
+#endif
+
+#if RS6000_WEAK
+/* Used in lieu of ASM_WEAKEN_LABEL. */
+#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
+ do \
+ { \
+ fputs ("\t.weak\t", (FILE)); \
+ RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
+ if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
+ && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
+ { \
+ if (TARGET_XCOFF) \
+ fputs ("[DS]", (FILE)); \
+ fputs ("\n\t.weak\t.", (FILE)); \
+ RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
+ } \
+ fputc ('\n', (FILE)); \
+ if (VAL) \
+ { \
+ ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
+ if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
+ && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
+ { \
+ fputs ("\t.set\t.", (FILE)); \
+ RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
+ fputs (",.", (FILE)); \
+ RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
+ fputc ('\n', (FILE)); \
+ } \
+ } \
+ } \
+ while (0)
+#endif
+
+#if HAVE_GAS_WEAKREF
+#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
+ do \
+ { \
+ fputs ("\t.weakref\t", (FILE)); \
+ RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
+ fputs (", ", (FILE)); \
+ RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
+ if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
+ && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
+ { \
+ fputs ("\n\t.weakref\t.", (FILE)); \
+ RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
+ fputs (", .", (FILE)); \
+ RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
+ } \
+ fputc ('\n', (FILE)); \
+ } while (0)
+#endif
+
+/* This implements the `alias' attribute. */
+#undef ASM_OUTPUT_DEF_FROM_DECLS
+#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
+ do \
+ { \
+ const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
+ const char *name = IDENTIFIER_POINTER (TARGET); \
+ if (TREE_CODE (DECL) == FUNCTION_DECL \
+ && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
+ { \
+ if (TREE_PUBLIC (DECL)) \
+ { \
+ if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
+ { \
+ fputs ("\t.globl\t.", FILE); \
+ RS6000_OUTPUT_BASENAME (FILE, alias); \
+ putc ('\n', FILE); \
+ } \
+ } \
+ else if (TARGET_XCOFF) \
+ { \
+ if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
+ { \
+ fputs ("\t.lglobl\t.", FILE); \
+ RS6000_OUTPUT_BASENAME (FILE, alias); \
+ putc ('\n', FILE); \
+ fputs ("\t.lglobl\t", FILE); \
+ RS6000_OUTPUT_BASENAME (FILE, alias); \
+ putc ('\n', FILE); \
+ } \
+ } \
+ fputs ("\t.set\t.", FILE); \
+ RS6000_OUTPUT_BASENAME (FILE, alias); \
+ fputs (",.", FILE); \
+ RS6000_OUTPUT_BASENAME (FILE, name); \
+ fputc ('\n', FILE); \
+ } \
+ ASM_OUTPUT_DEF (FILE, alias, name); \
+ } \
+ while (0)
+
+#define TARGET_ASM_FILE_START rs6000_file_start
+
+/* Output to assembler file text saying following lines
+ may contain character constants, extra white space, comments, etc. */
+
+#define ASM_APP_ON ""
+
+/* Output to assembler file text saying following lines
+ no longer contain unusual constructs. */
+
+#define ASM_APP_OFF ""
+
+/* How to refer to registers in assembler output.
+ This sequence is indexed by compiler's hard-register-number (see above). */
+
+extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
+
+#define REGISTER_NAMES \
+{ \
+ &rs6000_reg_names[ 0][0], /* r0 */ \
+ &rs6000_reg_names[ 1][0], /* r1 */ \
+ &rs6000_reg_names[ 2][0], /* r2 */ \
+ &rs6000_reg_names[ 3][0], /* r3 */ \
+ &rs6000_reg_names[ 4][0], /* r4 */ \
+ &rs6000_reg_names[ 5][0], /* r5 */ \
+ &rs6000_reg_names[ 6][0], /* r6 */ \
+ &rs6000_reg_names[ 7][0], /* r7 */ \
+ &rs6000_reg_names[ 8][0], /* r8 */ \
+ &rs6000_reg_names[ 9][0], /* r9 */ \
+ &rs6000_reg_names[10][0], /* r10 */ \
+ &rs6000_reg_names[11][0], /* r11 */ \
+ &rs6000_reg_names[12][0], /* r12 */ \
+ &rs6000_reg_names[13][0], /* r13 */ \
+ &rs6000_reg_names[14][0], /* r14 */ \
+ &rs6000_reg_names[15][0], /* r15 */ \
+ &rs6000_reg_names[16][0], /* r16 */ \
+ &rs6000_reg_names[17][0], /* r17 */ \
+ &rs6000_reg_names[18][0], /* r18 */ \
+ &rs6000_reg_names[19][0], /* r19 */ \
+ &rs6000_reg_names[20][0], /* r20 */ \
+ &rs6000_reg_names[21][0], /* r21 */ \
+ &rs6000_reg_names[22][0], /* r22 */ \
+ &rs6000_reg_names[23][0], /* r23 */ \
+ &rs6000_reg_names[24][0], /* r24 */ \
+ &rs6000_reg_names[25][0], /* r25 */ \
+ &rs6000_reg_names[26][0], /* r26 */ \
+ &rs6000_reg_names[27][0], /* r27 */ \
+ &rs6000_reg_names[28][0], /* r28 */ \
+ &rs6000_reg_names[29][0], /* r29 */ \
+ &rs6000_reg_names[30][0], /* r30 */ \
+ &rs6000_reg_names[31][0], /* r31 */ \
+ \
+ &rs6000_reg_names[32][0], /* fr0 */ \
+ &rs6000_reg_names[33][0], /* fr1 */ \
+ &rs6000_reg_names[34][0], /* fr2 */ \
+ &rs6000_reg_names[35][0], /* fr3 */ \
+ &rs6000_reg_names[36][0], /* fr4 */ \
+ &rs6000_reg_names[37][0], /* fr5 */ \
+ &rs6000_reg_names[38][0], /* fr6 */ \
+ &rs6000_reg_names[39][0], /* fr7 */ \
+ &rs6000_reg_names[40][0], /* fr8 */ \
+ &rs6000_reg_names[41][0], /* fr9 */ \
+ &rs6000_reg_names[42][0], /* fr10 */ \
+ &rs6000_reg_names[43][0], /* fr11 */ \
+ &rs6000_reg_names[44][0], /* fr12 */ \
+ &rs6000_reg_names[45][0], /* fr13 */ \
+ &rs6000_reg_names[46][0], /* fr14 */ \
+ &rs6000_reg_names[47][0], /* fr15 */ \
+ &rs6000_reg_names[48][0], /* fr16 */ \
+ &rs6000_reg_names[49][0], /* fr17 */ \
+ &rs6000_reg_names[50][0], /* fr18 */ \
+ &rs6000_reg_names[51][0], /* fr19 */ \
+ &rs6000_reg_names[52][0], /* fr20 */ \
+ &rs6000_reg_names[53][0], /* fr21 */ \
+ &rs6000_reg_names[54][0], /* fr22 */ \
+ &rs6000_reg_names[55][0], /* fr23 */ \
+ &rs6000_reg_names[56][0], /* fr24 */ \
+ &rs6000_reg_names[57][0], /* fr25 */ \
+ &rs6000_reg_names[58][0], /* fr26 */ \
+ &rs6000_reg_names[59][0], /* fr27 */ \
+ &rs6000_reg_names[60][0], /* fr28 */ \
+ &rs6000_reg_names[61][0], /* fr29 */ \
+ &rs6000_reg_names[62][0], /* fr30 */ \
+ &rs6000_reg_names[63][0], /* fr31 */ \
+ \
+ &rs6000_reg_names[64][0], /* was mq */ \
+ &rs6000_reg_names[65][0], /* lr */ \
+ &rs6000_reg_names[66][0], /* ctr */ \
+ &rs6000_reg_names[67][0], /* ap */ \
+ \
+ &rs6000_reg_names[68][0], /* cr0 */ \
+ &rs6000_reg_names[69][0], /* cr1 */ \
+ &rs6000_reg_names[70][0], /* cr2 */ \
+ &rs6000_reg_names[71][0], /* cr3 */ \
+ &rs6000_reg_names[72][0], /* cr4 */ \
+ &rs6000_reg_names[73][0], /* cr5 */ \
+ &rs6000_reg_names[74][0], /* cr6 */ \
+ &rs6000_reg_names[75][0], /* cr7 */ \
+ \
+ &rs6000_reg_names[76][0], /* ca */ \
+ \
+ &rs6000_reg_names[77][0], /* v0 */ \
+ &rs6000_reg_names[78][0], /* v1 */ \
+ &rs6000_reg_names[79][0], /* v2 */ \
+ &rs6000_reg_names[80][0], /* v3 */ \
+ &rs6000_reg_names[81][0], /* v4 */ \
+ &rs6000_reg_names[82][0], /* v5 */ \
+ &rs6000_reg_names[83][0], /* v6 */ \
+ &rs6000_reg_names[84][0], /* v7 */ \
+ &rs6000_reg_names[85][0], /* v8 */ \
+ &rs6000_reg_names[86][0], /* v9 */ \
+ &rs6000_reg_names[87][0], /* v10 */ \
+ &rs6000_reg_names[88][0], /* v11 */ \
+ &rs6000_reg_names[89][0], /* v12 */ \
+ &rs6000_reg_names[90][0], /* v13 */ \
+ &rs6000_reg_names[91][0], /* v14 */ \
+ &rs6000_reg_names[92][0], /* v15 */ \
+ &rs6000_reg_names[93][0], /* v16 */ \
+ &rs6000_reg_names[94][0], /* v17 */ \
+ &rs6000_reg_names[95][0], /* v18 */ \
+ &rs6000_reg_names[96][0], /* v19 */ \
+ &rs6000_reg_names[97][0], /* v20 */ \
+ &rs6000_reg_names[98][0], /* v21 */ \
+ &rs6000_reg_names[99][0], /* v22 */ \
+ &rs6000_reg_names[100][0], /* v23 */ \
+ &rs6000_reg_names[101][0], /* v24 */ \
+ &rs6000_reg_names[102][0], /* v25 */ \
+ &rs6000_reg_names[103][0], /* v26 */ \
+ &rs6000_reg_names[104][0], /* v27 */ \
+ &rs6000_reg_names[105][0], /* v28 */ \
+ &rs6000_reg_names[106][0], /* v29 */ \
+ &rs6000_reg_names[107][0], /* v30 */ \
+ &rs6000_reg_names[108][0], /* v31 */ \
+ &rs6000_reg_names[109][0], /* vrsave */ \
+ &rs6000_reg_names[110][0], /* vscr */ \
+ &rs6000_reg_names[111][0], /* spe_acc */ \
+ &rs6000_reg_names[112][0], /* spefscr */ \
+ &rs6000_reg_names[113][0], /* sfp */ \
+ &rs6000_reg_names[114][0], /* tfhar */ \
+ &rs6000_reg_names[115][0], /* tfiar */ \
+ &rs6000_reg_names[116][0], /* texasr */ \
+}
+
+/* Table of additional register names to use in user input. */
+
+#define ADDITIONAL_REGISTER_NAMES \
+ {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
+ {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
+ {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
+ {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
+ {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
+ {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
+ {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
+ {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
+ {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
+ {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
+ {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
+ {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
+ {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
+ {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
+ {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
+ {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
+ {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
+ {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
+ {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
+ {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
+ {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
+ {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
+ {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
+ {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
+ {"vrsave", 109}, {"vscr", 110}, \
+ {"spe_acc", 111}, {"spefscr", 112}, \
+ /* no additional names for: lr, ctr, ap */ \
+ {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
+ {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
+ {"cc", 68}, {"sp", 1}, {"toc", 2}, \
+ /* CA is only part of XER, but we do not model the other parts (yet). */ \
+ {"xer", 76}, \
+ /* VSX registers overlaid on top of FR, Altivec registers */ \
+ {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
+ {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
+ {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
+ {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
+ {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
+ {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
+ {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
+ {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
+ {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
+ {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
+ {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
+ {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
+ {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
+ {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
+ {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
+ {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
+ /* Transactional Memory Facility (HTM) Registers. */ \
+ {"tfhar", 114}, {"tfiar", 115}, {"texasr", 116} }
+
+/* This is how to output an element of a case-vector that is relative. */
+
+#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
+ do { char buf[100]; \
+ fputs ("\t.long ", FILE); \
+ ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
+ assemble_name (FILE, buf); \
+ putc ('-', FILE); \
+ ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
+ assemble_name (FILE, buf); \
+ putc ('\n', FILE); \
+ } while (0)
+
+/* This is how to output an assembler line
+ that says to advance the location counter
+ to a multiple of 2**LOG bytes. */
+
+#define ASM_OUTPUT_ALIGN(FILE,LOG) \
+ if ((LOG) != 0) \
+ fprintf (FILE, "\t.align %d\n", (LOG))
+
+/* How to align the given loop. */
+#define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
+
+/* Alignment guaranteed by __builtin_malloc. */
+/* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
+ However, specifying the stronger guarantee currently leads to
+ a regression in SPEC CPU2006 437.leslie3d. The stronger
+ guarantee should be implemented here once that's fixed. */
+#define MALLOC_ABI_ALIGNMENT (64)
+
+/* Pick up the return address upon entry to a procedure. Used for
+ dwarf2 unwind information. This also enables the table driven
+ mechanism. */
+
+#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
+#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
+
+/* Describe how we implement __builtin_eh_return. */
+#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
+#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
+
+/* Print operand X (an rtx) in assembler syntax to file FILE.
+ CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
+ For `%' followed by punctuation, CODE is the punctuation and X is null. */
+
+#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
+
+/* Define which CODE values are valid. */
+
+#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
+
+/* Print a memory address as an operand to reference that memory location. */
+
+#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
+
+/* For switching between functions with different target attributes. */
+#define SWITCHABLE_TARGET 1
+
+/* uncomment for disabling the corresponding default options */
+/* #define MACHINE_no_sched_interblock */
+/* #define MACHINE_no_sched_speculative */
+/* #define MACHINE_no_sched_speculative_load */
+
+/* General flags. */
+extern int frame_pointer_needed;
+
+/* Classification of the builtin functions as to which switches enable the
+ builtin, and what attributes it should have. We used to use the target
+ flags macros, but we've run out of bits, so we now map the options into new
+ settings used here. */
+
+/* Builtin attributes. */
+#define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
+#define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
+#define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
+#define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
+#define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
+#define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
+#define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
+#define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
+#define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
+
+#define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
+#define RS6000_BTC_CONST 0x00000100 /* uses no global state. */
+#define RS6000_BTC_PURE 0x00000200 /* reads global state/mem. */
+#define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
+#define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
+
+/* Miscellaneous information. */
+#define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
+#define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
+#define RS6000_BTC_OVERLOADED 0x04000000 /* function is overloaded. */
+#define RS6000_BTC_32BIT 0x08000000 /* function references SPRs. */
+#define RS6000_BTC_64BIT 0x10000000 /* function references SPRs. */
+#define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
+
+/* Convenience macros to document the instruction type. */
+#define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
+#define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
+
+/* Builtin targets. For now, we reuse the masks for those options that are in
+ target flags, and pick two random bits for SPE and paired which aren't in
+ target_flags. */
+#define RS6000_BTM_ALWAYS 0 /* Always enabled. */
+#define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
+#define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
+#define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
+#define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
+#define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
+#define RS6000_BTM_SPE MASK_STRING /* E500 */
+#define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
+#define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
+#define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
+#define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
+#define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
+#define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
+#define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
+
+#define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
+ | RS6000_BTM_VSX \
+ | RS6000_BTM_P8_VECTOR \
+ | RS6000_BTM_CRYPTO \
+ | RS6000_BTM_FRE \
+ | RS6000_BTM_FRES \
+ | RS6000_BTM_FRSQRTE \
+ | RS6000_BTM_FRSQRTES \
+ | RS6000_BTM_HTM \
+ | RS6000_BTM_POPCNTD \
+ | RS6000_BTM_CELL)
+
+/* Define builtin enum index. */
+
+#undef RS6000_BUILTIN_1
+#undef RS6000_BUILTIN_2
+#undef RS6000_BUILTIN_3
+#undef RS6000_BUILTIN_A
+#undef RS6000_BUILTIN_D
+#undef RS6000_BUILTIN_E
+#undef RS6000_BUILTIN_H
+#undef RS6000_BUILTIN_P
+#undef RS6000_BUILTIN_Q
+#undef RS6000_BUILTIN_S
+#undef RS6000_BUILTIN_X
+
+#define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
+#define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
+#define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
+#define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
+#define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
+#define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
+#define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
+#define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
+#define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
+#define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
+#define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
+
+enum rs6000_builtins
+{
+#include "rs6000-builtin.def"
+
+ RS6000_BUILTIN_COUNT
+};
+
+#undef RS6000_BUILTIN_1
+#undef RS6000_BUILTIN_2
+#undef RS6000_BUILTIN_3
+#undef RS6000_BUILTIN_A
+#undef RS6000_BUILTIN_D
+#undef RS6000_BUILTIN_E
+#undef RS6000_BUILTIN_H
+#undef RS6000_BUILTIN_P
+#undef RS6000_BUILTIN_Q
+#undef RS6000_BUILTIN_S
+#undef RS6000_BUILTIN_X
+
+enum rs6000_builtin_type_index
+{
+ RS6000_BTI_NOT_OPAQUE,
+ RS6000_BTI_opaque_V2SI,
+ RS6000_BTI_opaque_V2SF,
+ RS6000_BTI_opaque_p_V2SI,
+ RS6000_BTI_opaque_V4SI,
+ RS6000_BTI_V16QI,
+ RS6000_BTI_V1TI,
+ RS6000_BTI_V2SI,
+ RS6000_BTI_V2SF,
+ RS6000_BTI_V2DI,
+ RS6000_BTI_V2DF,
+ RS6000_BTI_V4HI,
+ RS6000_BTI_V4SI,
+ RS6000_BTI_V4SF,
+ RS6000_BTI_V8HI,
+ RS6000_BTI_unsigned_V16QI,
+ RS6000_BTI_unsigned_V1TI,
+ RS6000_BTI_unsigned_V8HI,
+ RS6000_BTI_unsigned_V4SI,
+ RS6000_BTI_unsigned_V2DI,
+ RS6000_BTI_bool_char, /* __bool char */
+ RS6000_BTI_bool_short, /* __bool short */
+ RS6000_BTI_bool_int, /* __bool int */
+ RS6000_BTI_bool_long, /* __bool long */
+ RS6000_BTI_pixel, /* __pixel */
+ RS6000_BTI_bool_V16QI, /* __vector __bool char */
+ RS6000_BTI_bool_V8HI, /* __vector __bool short */
+ RS6000_BTI_bool_V4SI, /* __vector __bool int */
+ RS6000_BTI_bool_V2DI, /* __vector __bool long */
+ RS6000_BTI_pixel_V8HI, /* __vector __pixel */
+ RS6000_BTI_long, /* long_integer_type_node */
+ RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
+ RS6000_BTI_long_long, /* long_long_integer_type_node */
+ RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
+ RS6000_BTI_INTQI, /* intQI_type_node */
+ RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
+ RS6000_BTI_INTHI, /* intHI_type_node */
+ RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
+ RS6000_BTI_INTSI, /* intSI_type_node */
+ RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
+ RS6000_BTI_INTDI, /* intDI_type_node */
+ RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
+ RS6000_BTI_INTTI, /* intTI_type_node */
+ RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
+ RS6000_BTI_float, /* float_type_node */
+ RS6000_BTI_double, /* double_type_node */
+ RS6000_BTI_void, /* void_type_node */
+ RS6000_BTI_MAX
+};
+
+
+#define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
+#define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
+#define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
+#define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
+#define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
+#define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
+#define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
+#define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
+#define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
+#define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
+#define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
+#define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
+#define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
+#define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
+#define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
+#define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
+#define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
+#define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
+#define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
+#define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
+#define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
+#define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
+#define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
+#define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
+#define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
+#define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
+#define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
+#define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
+#define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
+
+#define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
+#define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
+#define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
+#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
+#define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
+#define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
+#define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
+#define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
+#define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
+#define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
+#define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
+#define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
+#define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
+#define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
+#define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
+#define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
+#define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
+
+extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
+extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
+