aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/config/picochip/picochip.md
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/config/picochip/picochip.md')
-rw-r--r--gcc-4.9/gcc/config/picochip/picochip.md2623
1 files changed, 2623 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/config/picochip/picochip.md b/gcc-4.9/gcc/config/picochip/picochip.md
new file mode 100644
index 000000000..f565c665a
--- /dev/null
+++ b/gcc-4.9/gcc/config/picochip/picochip.md
@@ -0,0 +1,2623 @@
+;; GCC machine description for picochip
+;; Copyright (C) 2008-2014 Free Software Foundation, Inc.
+;; Contributed by Picochip Ltd (http://www.picochip.com)
+;; Maintained by Daniel Towner (dant@picochip.com) and Hariharan
+;; Sandanagobalane (hariharan@picochip.com)
+;;
+;; This file is part of GCC.
+;;
+;; GCC is free software; you can redistribute it and/or modify
+;; it under the terms of the GNU General Public License as published by
+;; the Free Software Foundation; either version 3, or (at your option)
+;; any later version.
+;;
+;; GCC is distributed in the hope that it will be useful,
+;; but WITHOUT ANY WARRANTY; without even the implied warranty of
+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+;; GNU General Public License for more details.
+;;
+;; You should have received a copy of the GNU General Public License
+;; along with GCC; see the file COPYING3. If not, see
+;; <http://www.gnu.org/licenses/>.
+
+;; -------------------------------------------------------------------------
+
+;; In addition to the normal output operand formats, the following
+;; letter formats are also available:
+;;
+;; The following can be used for constants, or the constant part of a
+;; memory offset.
+;; Q - Output constant unaltered (byte mode).
+;; M - Alias for Q, which only works with memory operands.
+;; H - Divide constant by 2 (i.e., HImode is 2 bytes)
+;; S - Divide constant by 4 (i.e., SImode is 4 bytes)
+;;
+;; The following can be used for two part addresses (i.e., base +
+;; offset or base[offset]).
+;; o - Output offset only.
+;; b - Output base only.
+;;
+;; The following are used on SI registers and constants
+;; R - Output register pair (i.e., R[n:m])
+;; L - Output lower word/register
+;; U - Output upper word/register
+;;
+;; The following are used on DI mode registers.
+;; X - Output 3rd register
+;; Y - Output 4th register
+;;
+;; Miscellaneous
+;; | - Output VLIW separator
+;; r - Output register value of memory operand.
+;; I - Output an opcode (e.g., ADD for plus, LSL for lshift)
+;; i - Output an opcode in symbolic notation (e.g., + for plus)
+
+;; Define the length of an instruction. Used to allow different types
+;; of branches to be used for different branch offsets. Default to 6
+;; bytes, which is the longest possible single instruction.
+(define_attr "length" "" (const_int 6))
+
+;; Define some constants which are used in conjuction with branch
+;; scheduling. Branches must be 10-bit signed, which equates to
+;; [-512,511]. However, to compensate for the lack of branch alignment
+;; these offsets are reduced by a factor of 2.
+
+(define_constants
+ [
+ (MIN_BRANCH_OFFSET -256)
+ (MAX_BRANCH_OFFSET 255)
+ (SHORT_BRANCH_LENGTH 6) ; The size of a schedulable short branch.
+ (LONG_BRANCH_LENGTH 16) ; The size of an expanded JMP?? macro.
+ ]
+)
+
+;; Define identifiers for various special instructions. These
+;; instructions may then be used in RTL expansions, or builtins.
+(define_constants
+ [
+ ; Special instruction builtins.
+ (UNSPEC_SBC 0) ; Sign-bit count
+ (UNSPEC_ADDS 1) ; Saturating addition
+ (UNSPEC_SUBS 2) ; Saturating subtraction
+ (UNSPEC_BREV 3) ; Bit reversal
+
+ ; Special internal instructions (only used by compiler)
+ (UNSPEC_COPYSW 5) ; Get status word
+ (UNSPEC_ADDC 6) ; Add with carry.
+
+ ; Scalar port communication builtins
+ (UNSPEC_PUT 7) ; Communication (put): port[op0] := op1
+ (UNSPEC_GET 8) ; Communication (get): op0 := get_port[op1]
+ (UNSPEC_TESTPORT 9) ; Communication (test): op0 := testport[op1]
+
+ ; Array port communication builtins. These all take extra
+ ; arguments giving information about the array access being used.
+ (UNSPEC_PUT_ARRAY 10) ; Array put
+ (UNSPEC_GET_ARRAY 11) ; Array get
+ (UNSPEC_TESTPORT_ARRAY 12) ; Array test port
+
+ ;; Array port expansions
+ (UNSPEC_CALL_GET_ARRAY 13) ;
+ (UNSPEC_CALL_PUT_ARRAY 14) ;
+ (UNSPEC_CALL_TESTPORT_ARRAY 15) ;
+
+ ; Array port low-level fn calls
+ (UNSPEC_CALL_GET_FN 16)
+ (UNSPEC_CALL_TESTPORT_FN 17)
+
+ ; Halt instruction.
+ (UNSPEC_HALT 18)
+
+ ; Internal TSTPORT instruction, used to generate a single TSTPORT
+ ; instruction for use in the testport branch split.
+ (UNSPEC_INTERNAL_TESTPORT 19)
+ ]
+)
+
+;; Register ID's
+(define_constants
+ [
+ (LINK_REGNUM 12) ; Function link register.
+ (CC_REGNUM 17) ; Condition flags.
+ (ACC_REGNUM 16) ; Condition flags.
+ ]
+)
+
+;;============================================================================
+;; Predicates and constraints
+;;============================================================================
+
+(include "predicates.md")
+(include "constraints.md")
+
+;;============================================================================
+;; First operand shifting patterns. These allow certain instructions
+;; (e.g., add, and, or, xor, sub) to apply a shift-by-constant to
+;; their first operand.
+;;
+;; Note that only the first operand is matched by the shift, to ensure
+;; that non-commutative instructions (like subtract) work
+;; properly. When a commutative instruction, with a shift in the
+;; second operand is found, the compiler will reorder the operands to
+;; match.
+;;============================================================================
+
+(define_insn "*firstOpGenericAshift"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (match_operator:HI 1 "picochip_first_op_shift_operator"
+ [(ashift:HI
+ (match_operand:HI 2 "register_operand" "r")
+ (match_operand:HI 3 "picochip_J_operand" "J"))
+ (match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "%I1.0 [LSL %2,%3],%4,%0\t// %0 := (%2 << %3) %i1 %4"
+ [(set_attr "type" "picoAlu")
+ ;; A long constant must be used if the operator instruction doesn't
+ ;; accept immediates, or if the constant is too big to fit the
+ ;; immediate. Note that the following condition is written in the
+ ;; way which uses the least number of predicates.
+ (set (attr "longConstant")
+ (cond [(ior (match_operand 4 "register_operand")
+ (and (match_operand 1 "picochip_first_op_shift_operator_imm")
+ (match_operand 1 "picochip_J_operand")))
+ (const_string "false")]
+ (const_string "true")))])
+
+;; During combine, ashift gets converted into a multiply, necessitating the following pattern.
+;; Note that we do a log_2(imm) to get the actual LSL operand.
+
+(define_insn "*firstOpGenericAshift"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (match_operator:HI 1 "picochip_first_op_shift_operator"
+ [(mult:HI
+ (match_operand:HI 2 "register_operand" "r")
+ (match_operand:HI 3 "power_of_2_imm_operand" "n"))
+ (match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "%I1.0 [LSL %2,%P3],%4,%0\t// %0 := (%2 << %3) %i1 %4"
+ [(set_attr "type" "picoAlu")
+ ;; A long constant must be used if the operator instruction doesn't
+ ;; accept immediates, or if the constant is too big to fit the
+ ;; immediate. Note that the following condition is written in the
+ ;; way which uses the least number of predicates.
+ (set (attr "longConstant")
+ (cond [(ior (match_operand 4 "register_operand")
+ (and (match_operand 1 "picochip_first_op_shift_operator_imm")
+ (match_operand 1 "picochip_J_operand")))
+ (const_string "false")]
+ (const_string "true")))])
+
+(define_insn "*firstOpGenericAshiftrt"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (match_operator:HI 1 "picochip_first_op_shift_operator"
+ [(ashiftrt:HI
+ (match_operand:HI 2 "register_operand" "r")
+ (match_operand:HI 3 "picochip_J_operand" "J"))
+ (match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "%I1.0 [ASR %2,%3],%4,%0\t// %0 := (%2 >>{arith} %3) %i1 %4"
+ [(set_attr "type" "picoAlu")
+ ;; A long constant must be used if the operator instruction doesn't
+ ;; accept immediates, or if the constant is too big to fit the
+ ;; immediate. Note that the following condition is written in the
+ ;; way which uses the least number of predicates.
+ (set (attr "longConstant")
+ (cond [(ior (match_operand 4 "register_operand")
+ (and (match_operand 1 "picochip_first_op_shift_operator_imm")
+ (match_operand 1 "picochip_J_operand")))
+ (const_string "false")]
+ (const_string "true")))])
+
+(define_insn "*firstOpGenericLshiftrt"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (match_operator:HI 1 "picochip_first_op_shift_operator"
+ [(lshiftrt:HI
+ (match_operand:HI 2 "register_operand" "r")
+ (match_operand:HI 3 "picochip_J_operand" "J"))
+ (match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "%I1.0 [LSR %2,%3],%4,%0\t// %0 := (%2 >> %3) %i1 %4"
+ [(set_attr "type" "picoAlu")
+ ;; A long constant must be used if the operator instruction doesn't
+ ;; accept immediates, or if the constant is too big to fit the
+ ;; immediate. Note that the following condition is written in the
+ ;; way which uses the least number of predicates.
+ (set (attr "longConstant")
+ (cond [(ior (match_operand 4 "register_operand")
+ (and (match_operand 1 "picochip_first_op_shift_operator_imm")
+ (match_operand 1 "picochip_J_operand")))
+ (const_string "false")]
+ (const_string "true")))])
+
+;;===========================================================================
+;; Jump instructions.
+;;===========================================================================
+
+(define_insn "indirect_jump"
+ [(set (pc) (match_operand:HI 0 "register_operand" "r"))]
+ ""
+ "JR (%0)\t// Indirect_jump to %0 %>"
+ [(set_attr "type" "realBranch")
+ (set_attr "length" "3")])
+
+(define_insn "jump"
+ [(set (pc)
+ (label_ref (match_operand 0 "" "")))]
+ ""
+ "* return picochip_output_jump(insn);"
+ [(set (attr "length")
+ (if_then_else
+ (and (ge (minus (match_dup 0) (pc)) (const_int MIN_BRANCH_OFFSET))
+ (le (minus (match_dup 0) (pc)) (const_int MAX_BRANCH_OFFSET)))
+ (const_int SHORT_BRANCH_LENGTH)
+ (const_int LONG_BRANCH_LENGTH)))
+ (set (attr "type")
+ (if_then_else
+ (eq_attr "length" "6")
+ (const_string "realBranch")
+ (const_string "unknown")))])
+
+(define_insn "*fn_return"
+ [(return)
+ (use (reg:HI LINK_REGNUM))]
+ ""
+ "JR (R12)\t// Return to caller %>"
+ [(set_attr "length" "2")
+ (set_attr "type" "realBranch")
+ (set_attr "longConstant" "false")])
+
+;; Peephole either 2 LDWs or STWs into LDL/STL.
+(define_peephole2
+ [(set (match_operand:HI 0 "register_operand" "")
+ (match_operand:HI 1 "memory_operand" ""))
+ (set (match_operand:HI 2 "register_operand" "")
+ (match_operand:HI 3 "memory_operand" ""))]
+ "ok_to_peephole_ldw(operands[0],operands[1],operands[2],operands[3])"
+ [(set (match_dup 4) (match_dup 5))]
+ "{
+ operands[4] = gen_min_reg(operands[0],operands[2]);
+ operands[5] = gen_SImode_mem(operands[1],operands[3]);
+ }")
+
+(define_peephole2
+ [(set (match_operand:HI 0 "memory_operand" "")
+ (match_operand:HI 1 "register_operand" ""))
+ (set (match_operand:HI 2 "memory_operand" "")
+ (match_operand:HI 3 "register_operand" ""))]
+ "ok_to_peephole_stw(operands[0],operands[1],operands[2],operands[3])"
+ [(set (match_dup 4) (match_dup 5))]
+ "{
+ operands[4] = gen_SImode_mem(operands[0],operands[2]);
+ operands[5] = gen_min_reg(operands[1],operands[3]);
+ }")
+
+
+;; We have instructions like add,subtract,ior,and that set condition
+;; codes if they are executed on slot 0. If we have
+;; add a = b + c
+;; if (a!=0)
+;; {}
+;; We would have RTL sequence like
+;; add.# rb,rc,ra # will be replaced by slot no, after scheduling
+;; sub.0 ra,0,r15
+;; bnz
+;; Instead, we can just do
+;; add.0 rb,rc,ra
+;; bnz
+
+(define_peephole2
+ [(parallel [(set (match_operand:HI 0 "register_operand" "")
+ (plus:HI (match_operand:HI 1 "register_operand" "")
+ (match_operand:HI 2 "general_operand" "")))
+ (clobber (reg:CC CC_REGNUM))])
+ (parallel [(set (pc)
+ (if_then_else
+ (match_operator:CC 3 "picochip_peephole_comparison_operator"
+ [(match_dup 0) (const_int 0)])
+ (label_ref (match_operand 6 "" ""))
+ (pc)))
+ (clobber (reg:CC CC_REGNUM))])]
+ ""
+ [(parallel [(set (match_dup 0)
+ (plus:HI (match_dup 1) (match_dup 2)))
+ (set (reg:CC CC_REGNUM)
+ (match_op_dup 3 [(const_int 0) (const_int 0)]))])
+ (parallel [(set (pc)
+ (if_then_else
+ (match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
+ (label_ref (match_dup 6))
+ (pc)))
+ (use (match_dup 7))])]
+ "{
+ operands[7] = GEN_INT(0);
+ }")
+
+(define_peephole2
+ [(parallel [(set (match_operand:HI 0 "register_operand" "")
+ (plus:HI (match_operand:HI 1 "register_operand" "")
+ (match_operand:HI 2 "general_operand" "")))
+ (clobber (reg:CC CC_REGNUM))])
+ (set (reg:CC CC_REGNUM)
+ (match_operator:CC 3 "picochip_peephole_comparison_operator"
+ [(match_dup 0) (const_int 0)]))
+ (parallel [(set (pc)
+ (if_then_else
+ (match_operator 4 "comparison_operator"
+ [(reg:CC CC_REGNUM) (const_int 0)])
+ (label_ref (match_operand 5 "" ""))
+ (pc)))
+ (use (match_operand:HI 6 "const_int_operand" ""))])]
+ ""
+ [(parallel [(set (match_dup 0)
+ (plus:HI (match_dup 1) (match_dup 2)))
+ (set (reg:CC CC_REGNUM)
+ (match_op_dup 3 [(const_int 0) (const_int 0)]))])
+ (parallel [(set (pc)
+ (if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
+ (label_ref (match_dup 5))
+ (pc)))
+ (use (match_dup 6))])]
+ "{
+ operands[7] = GEN_INT(0);
+ }")
+
+
+;; If peephole happens before the cbranch split
+
+(define_peephole2
+ [(parallel [(set (match_operand:HI 0 "register_operand" "")
+ (minus:HI (match_operand:HI 1 "general_operand" "")
+ (match_operand:HI 2 "register_operand" "")))
+ (clobber (reg:CC CC_REGNUM))])
+ (parallel [(set (pc)
+ (if_then_else
+ (match_operator:CC 3 "picochip_peephole_comparison_operator"
+ [(match_dup 0) (const_int 0)])
+ (label_ref (match_operand 6 "" ""))
+ (pc)))
+ (clobber (reg:CC CC_REGNUM))])]
+ ""
+ [(parallel [(set (match_dup 0)
+ (minus:HI (match_dup 1) (match_dup 2)))
+ (set (reg:CC CC_REGNUM)
+ (match_op_dup 3 [(const_int 0) (const_int 0)]))])
+ (parallel [(set (pc)
+ (if_then_else
+ (match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
+ (label_ref (match_dup 6))
+ (pc)))
+ (use (match_dup 7))])]
+ "{
+ operands[7] = GEN_INT(0);
+ }")
+
+
+;; If peephole happens after the cbranch split
+
+(define_peephole2
+ [(parallel [(set (match_operand:HI 0 "register_operand" "")
+ (minus:HI (match_operand:HI 1 "general_operand" "")
+ (match_operand:HI 2 "register_operand" "")))
+ (clobber (reg:CC CC_REGNUM))])
+ (set (reg:CC CC_REGNUM)
+ (match_operator:CC 3 "picochip_peephole_comparison_operator"
+ [(match_dup 0) (const_int 0)]))
+ (parallel [(set (pc)
+ (if_then_else
+ (match_operator 4 "comparison_operator"
+ [(reg:CC CC_REGNUM) (const_int 0)])
+ (label_ref (match_operand 5 "" ""))
+ (pc)))
+ (use (match_operand:HI 6 "const_int_operand" ""))])]
+ ""
+ [(parallel [(set (match_dup 0)
+ (minus:HI (match_dup 1) (match_dup 2)))
+ (set (reg:CC CC_REGNUM)
+ (match_op_dup 3 [(const_int 0) (const_int 0)]))])
+ (parallel [(set (pc)
+ (if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
+ (label_ref (match_dup 5))
+ (pc)))
+ (use (match_dup 6))])]
+ "{
+ operands[7] = GEN_INT(0);
+ }")
+
+;; If peephole happens before the cbranch split
+
+(define_peephole2
+ [(parallel[(set (match_operand:HI 0 "register_operand" "")
+ (and:HI (match_operand:HI 1 "register_operand" "")
+ (match_operand:HI 2 "general_operand" "")))
+ (clobber (reg:CC CC_REGNUM))])
+ (parallel [(set (pc)
+ (if_then_else
+ (match_operator:CC 3 "picochip_peephole_comparison_operator"
+ [(match_dup 0) (const_int 0)])
+ (label_ref (match_operand 6 "" ""))
+ (pc)))
+ (clobber (reg:CC CC_REGNUM))])]
+ ""
+ [(parallel [(set (match_dup 0)
+ (and:HI (match_dup 1) (match_dup 2)))
+ (set (reg:CC CC_REGNUM)
+ (match_op_dup 3 [(const_int 0) (const_int 0)]))])
+ (parallel [(set (pc)
+ (if_then_else
+ (match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
+ (label_ref (match_dup 6))
+ (pc)))
+ (use (match_dup 7))])]
+ "{
+ operands[7] = GEN_INT(0);
+ }")
+
+(define_peephole2
+ [(parallel[(set (match_operand:HI 0 "register_operand" "")
+ (and:HI (match_operand:HI 1 "register_operand" "")
+ (match_operand:HI 2 "general_operand" "")))
+ (clobber (reg:CC CC_REGNUM))])
+ (set (reg:CC CC_REGNUM)
+ (match_operator:CC 3 "picochip_peephole_comparison_operator"
+ [(match_dup 0) (const_int 0)]))
+ (parallel [(set (pc)
+ (if_then_else
+ (match_operator 4 "comparison_operator"
+ [(reg:CC CC_REGNUM) (const_int 0)])
+ (label_ref (match_operand 5 "" ""))
+ (pc)))
+ (use (match_operand:HI 6 "const_int_operand" ""))])]
+ ""
+ [(parallel [(set (match_dup 0)
+ (and:HI (match_dup 1) (match_dup 2)))
+ (set (reg:CC CC_REGNUM)
+ (match_op_dup 3 [(const_int 0) (const_int 0)]))])
+ (parallel [(set (pc)
+ (if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
+ (label_ref (match_dup 5))
+ (pc)))
+ (use (match_dup 6))])]
+ "{
+ operands[7] = GEN_INT(0);
+ }")
+
+;; If peephole happens before the cbranch split
+
+(define_peephole2
+ [(parallel[(set (match_operand:HI 0 "register_operand" "")
+ (ior:HI (match_operand:HI 1 "register_operand" "")
+ (match_operand:HI 2 "general_operand" "")))
+ (clobber (reg:CC CC_REGNUM))])
+ (parallel [(set (pc)
+ (if_then_else
+ (match_operator:CC 3 "picochip_peephole_comparison_operator"
+ [(match_dup 0) (const_int 0)])
+ (label_ref (match_operand 6 "" ""))
+ (pc)))
+ (clobber (reg:CC CC_REGNUM))])]
+ ""
+ [(parallel [(set (match_dup 0)
+ (ior:HI (match_dup 1) (match_dup 2)))
+ (set (reg:CC CC_REGNUM)
+ (match_op_dup 3 [(const_int 0) (const_int 0)]))])
+ (parallel [(set (pc)
+ (if_then_else
+ (match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
+ (label_ref (match_dup 6))
+ (pc)))
+ (use (match_dup 7))])]
+ "{
+ operands[7] = GEN_INT(0);
+ }")
+
+(define_peephole2
+ [(parallel[(set (match_operand:HI 0 "register_operand" "")
+ (ior:HI (match_operand:HI 1 "register_operand" "")
+ (match_operand:HI 2 "general_operand" "")))
+ (clobber (reg:CC CC_REGNUM))])
+ (set (reg:CC CC_REGNUM)
+ (match_operator:CC 3 "picochip_peephole_comparison_operator"
+ [(match_dup 0) (const_int 0)]))
+ (parallel [(set (pc)
+ (if_then_else
+ (match_operator 4 "comparison_operator"
+ [(reg:CC CC_REGNUM) (const_int 0)])
+ (label_ref (match_operand 5 "" ""))
+ (pc)))
+ (use (match_operand:HI 6 "const_int_operand" ""))])]
+ ""
+ [(parallel [(set (match_dup 0)
+ (ior:HI (match_dup 1) (match_dup 2)))
+ (set (reg:CC CC_REGNUM)
+ (match_op_dup 3 [(const_int 0) (const_int 0)]))])
+ (parallel [(set (pc)
+ (if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
+ (label_ref (match_dup 5))
+ (pc)))
+ (use (match_dup 6))])]
+ "{
+ operands[7] = GEN_INT(0);
+ }")
+
+;; Conditional branch (HI). This is split into separate compare and
+;; branch instructions if scheduling is enabled. The branch
+;; instruction is supplied with the type of comparison on which the
+;; branch should occur.
+
+(define_insn_and_split "cbranchhi4"
+ [(set (pc)
+ (if_then_else
+ (match_operator 0 "ordered_comparison_operator"
+ [(match_operand:HI 1 "register_operand" "r")
+ (match_operand:HI 2 "picochip_comparison_operand" "ri")])
+ (label_ref (match_operand 3 "" ""))
+ (pc)))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "* return picochip_output_cbranch(operands);"
+ "reload_completed
+ && (picochip_schedule_type != DFA_TYPE_NONE || flag_delayed_branch)"
+ [(const_int 0)]
+ "{
+ rtx const_int_opnd;
+ const_int_opnd = GEN_INT(GET_CODE(operands[0]));
+ if (picochip_supported_comparison_operator (operands[0], HImode))
+ emit_insn (gen_supported_compare (operands[0], operands[1], operands[2]));
+ else
+ emit_insn (gen_compare (operands[0], operands[1], operands[2]));
+ emit_jump_insn (gen_branch (operands[3], const_int_opnd, operands[0]));
+ }")
+
+;; The only difference between this and the next pattern is that the next pattern
+;; might introduce subtracts whose first operand is a constant. This would have to
+;; be a longConstant. But, we know that such a situation wouldnt arise for supported
+;; comparison operator and hence this pattern assumes that the second constraint combo
+;; would still generate a normal instruction.
+
+(define_insn "supported_compare"
+ [(set (reg:CC CC_REGNUM)
+ (match_operator:CC 0 "picochip_supported_comparison_operator"
+ [(match_operand:HI 1 "register_operand" "r,r,r")
+ (match_operand:HI 2 "picochip_comparison_operand" "r,J,i")]))]
+ ""
+ "* return picochip_output_compare(operands);"
+ [; Must be picoAlu because it sets the condition flags.
+ (set_attr "type" "picoAlu,picoAlu,picoAlu")
+ (set_attr "longConstant" "false,false,true")
+ (set_attr "length" "2,2,4")
+ ])
+
+;; This pattern was added to match the previous pattern. When doing if-convert
+;; the pattern generated using movhicc does not have a eq:CC but only a eq for
+;; operator. If this pattern were not to be there, Gcc decides not to use
+;; movhicc at all. Whereas, in Gcc 4.4, it seems to be cleverer.
+(define_insn "*supported_compare1"
+ [(set (reg:CC CC_REGNUM)
+ (match_operator 0 "picochip_supported_comparison_operator"
+ [(match_operand:HI 1 "register_operand" "r,r,r")
+ (match_operand:HI 2 "picochip_comparison_operand" "r,J,i")]))]
+ ""
+ "* return picochip_output_compare(operands);"
+ [; Must be picoAlu because it sets the condition flags.
+ (set_attr "type" "picoAlu,picoAlu,picoAlu")
+ (set_attr "longConstant" "false,false,true")
+ (set_attr "length" "2,2,4")
+ ])
+
+(define_insn "compare"
+ [(set (reg:CC CC_REGNUM)
+ (match_operator:CC 0 "comparison_operator"
+ [(match_operand:HI 1 "register_operand" "r,r,r")
+ (match_operand:HI 2 "picochip_comparison_operand" "r,M,i")]))]
+ ""
+ "* return picochip_output_compare(operands);"
+ [; Must be picoAlu because it sets the condition flags.
+ (set_attr "type" "picoAlu,picoAlu,picoAlu")
+ (set_attr "longConstant" "false,true,true")
+ (set_attr "length" "2,4,4")
+ ])
+
+; Match a branch instruction, created from a tstport/cbranch split.
+; We use a "use" clause so GCC doesnt try to use this pattern generally.
+(define_insn "branch"
+ [(set (pc)
+ (if_then_else
+ (match_operator 2 "comparison_operator"
+ [(reg:CC CC_REGNUM) (const_int 0)])
+ (label_ref (match_operand 0 "" ""))
+ (pc)))
+ (use (match_operand:HI 1 "const_int_operand" ""))]
+ ""
+ "* return picochip_output_branch(operands, insn);"
+ [(set (attr "length")
+ (if_then_else
+ (and (ge (minus (match_dup 0) (pc)) (const_int MIN_BRANCH_OFFSET))
+ (le (minus (match_dup 0) (pc)) (const_int MAX_BRANCH_OFFSET)))
+ (const_int SHORT_BRANCH_LENGTH)
+ (const_int LONG_BRANCH_LENGTH)))
+ (set (attr "type")
+ (if_then_else
+ (eq_attr "length" "6")
+ (const_string "realBranch")
+ (const_string "unknown")))])
+
+;; If a movqi is used which accesses memory on a machine which doesn't
+;; have byte addressing, synthesise the instruction using word load/store
+;; operations. The movqi's that are required during reload phase are
+;; handled using reload_inqi/reload_outqi.
+
+(define_expand "movqi"
+ [(set (match_operand:QI 0 "nonimmediate_operand" "")
+ (match_operand:QI 1 "general_operand" ""))]
+ ""
+{
+
+ if (!reload_completed &&
+ !TARGET_HAS_BYTE_ACCESS &&
+ (MEM == GET_CODE(operands[0]) || MEM == GET_CODE(operands[1])))
+ {
+ rtx address;
+ rtx wordAddress;
+ rtx const1;
+ rtx shiftVal;
+ rtx loadedValue;
+ rtx addressMask;
+ rtx topByteValue;
+ rtx signExtendedValue;
+
+
+ warn_of_byte_access();
+
+ /* Load the constant 1 into a register. */
+ const1 = gen_reg_rtx(HImode);
+ emit_insn(gen_rtx_SET(HImode, const1, GEN_INT(1)));
+
+ /* Load the address mask with the bitwise complement of 1. */
+ addressMask = gen_reg_rtx(HImode);
+ emit_insn(gen_rtx_SET(HImode, addressMask, GEN_INT(-2)));
+
+ /* Handle loads first, in case we are dealing with a mem := mem
+ * instruction. */
+ if (MEM == GET_CODE(operands[1]))
+ {
+ /* Loads work as follows. The entire word containing the desired byte
+ * is loaded. The bottom bit of the address indicates which
+ * byte is required. The desired byte is moved into the most
+ * significant byte, and then an arithmetic shift right
+ * invoked to achieve sign extension. The desired byte is
+ * moved to the MSB by XOR'ing the bottom address bit by 1,
+ * multiplying the result by 8, and then shifting left by
+ * that amount. Note that shifts only operate on the bottom
+ * 4-bits of the source offset, so although the XOR may
+ * produce a value which has its upper bits set, only bit 4
+ * (i.e., the inverted, shifted bottom address bit) actually
+ * gets used.
+ */
+
+ /* Ensure the address is in a register. */
+ address = gen_reg_rtx(HImode);
+ emit_insn(gen_rtx_SET(HImode, address, XEXP(operands[1], 0)));
+
+ /* Compute the word address by masking out the bottom bit. */
+ wordAddress = gen_reg_rtx(HImode);
+ emit_insn(gen_andhi3(wordAddress, address, addressMask));
+
+ /* Compute the shift value. This is the bottom address bit,
+ * inverted, and multiplied by 8. */
+ shiftVal = gen_reg_rtx(HImode);
+ emit_insn(gen_xorhi3(shiftVal, address, const1));
+ emit_insn(gen_ashlhi3(shiftVal, shiftVal, GEN_INT(3)));
+
+ /* Emit the memory load. */
+ loadedValue = gen_reg_rtx(HImode);
+ emit_insn(gen_rtx_SET(HImode, loadedValue, gen_rtx_MEM(HImode, wordAddress)));
+
+ /* Shift the desired byte to the most significant byte. */
+ topByteValue = gen_reg_rtx (HImode);
+ emit_insn (gen_ashlhi3 (topByteValue, loadedValue, shiftVal));
+
+ /* Sign extend the top-byte back into the bottom byte. */
+ signExtendedValue = gen_reg_rtx(HImode);
+ emit_insn(gen_ashrhi3(signExtendedValue, topByteValue, GEN_INT(8)));
+
+ /* Final extraction of QI mode register. */
+ operands[1] = gen_rtx_SUBREG(QImode, signExtendedValue, 0);
+
+ }
+
+ if (MEM == GET_CODE(operands[0]) && GET_CODE(operands[1]) != MEM)
+ {
+ rtx zeroingByteMask;
+ rtx temp;
+ rtx tempHiMode;
+ rtx lsbByteMask;
+
+ /* Get the address. */
+ address = gen_reg_rtx(HImode);
+ emit_insn(gen_rtx_SET(HImode, address, XEXP(operands[0], 0)));
+
+ /* Compute the word aligned address. */
+ wordAddress = gen_reg_rtx(HImode);
+ emit_insn(gen_andhi3(wordAddress, address, addressMask));
+
+ /* Compute the shift value. */
+ shiftVal = gen_reg_rtx(HImode);
+ emit_insn(gen_andhi3(shiftVal, address, const1));
+ emit_insn(gen_ashlhi3(shiftVal, shiftVal, GEN_INT(3)));
+
+ /* Emit the memory load. */
+ loadedValue = gen_reg_rtx(HImode);
+ emit_insn(gen_rtx_SET(HImode, loadedValue, gen_rtx_MEM(HImode, wordAddress)));
+
+ /* Zero out the destination bits by AND'ing with 0xFF00
+ * shifted appropriately. */
+ zeroingByteMask = gen_reg_rtx(HImode);
+ emit_insn(gen_rtx_SET(HImode, zeroingByteMask, GEN_INT(-256)));
+ emit_insn(gen_lshrhi3(zeroingByteMask, zeroingByteMask, shiftVal));
+ emit_insn(gen_andhi3(loadedValue, loadedValue, zeroingByteMask));
+
+ /* Grab the incoming QI register, and ensure that the top bits
+ * are zeroed out. This is because the register may be
+ * storing a signed value, in which case the top-bits will be
+ * sign bits. These must be removed to ensure that the
+ * read-modify-write (which uses an OR) doesn't pick up those
+ * bits, instead of the original memory value which is being
+ * modified.
+ */
+ tempHiMode = simplify_gen_subreg(HImode, operands[1], QImode, 0);
+ temp = gen_reg_rtx(HImode);
+ emit_insn(gen_rtx_SET(HImode, temp, tempHiMode));
+ lsbByteMask = gen_reg_rtx (HImode);
+ emit_insn (gen_rtx_SET (HImode, lsbByteMask, GEN_INT (0xFF)));
+ emit_insn (gen_andhi3 (temp, temp, lsbByteMask));
+
+ /* Shift the incoming byte value by the appropriate amount,
+ * and OR into the load value. */
+ emit_insn(gen_ashlhi3(temp, temp, shiftVal));
+ emit_insn(gen_iorhi3(loadedValue, loadedValue, temp));
+
+ /* Rewrite the original assignment, to assign the new value
+ * to the word address. */
+ operands[0] = gen_rtx_MEM(HImode, wordAddress);
+ operands[1] = loadedValue;
+
+ }
+
+ }
+})
+
+(define_insn "*movqi_sign_extend"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (sign_extend:HI (match_operand:QI 1 "memory_operand" "a,m")))]
+ "TARGET_HAS_BYTE_ACCESS"
+ "@
+ LDB (%a1),%0\t\t// %0 = Mem(%a1)
+ LDB %a1,%0\t\t// %0 = Mem(%M1{byte})"
+ [(set_attr "type" "mem,mem")
+ (set_attr "longConstant" "true,false")
+ (set_attr "length" "4,4")])
+
+;; movqi instructions for machines with and without byte access.
+(define_insn "*movqi_byte"
+ [(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,r,r,r,a,m")
+ (match_operand:QI 1 "general_operand" "r,a,m,I,i,r,r"))]
+ "TARGET_HAS_BYTE_ACCESS"
+ "@
+ COPY.%# %1, %0\t// %0 := %1
+ LDB (%a1),%0\t\t// %0 = Mem(%a1)
+ LDB %a1,%0\t\t// %0 = Mem(%M1{byte})
+ COPY.%# %1,%0\t\t// %0 := #%1 (QI) (short constant)
+ COPY.%# %1,%0\t\t// %0 := #%1 (QI) (long constant)
+ STB %1,(%a0)\t\t// Mem(%a0) := %1
+ STB %1,%a0\t\t// Mem(%M0{byte}) := %1"
+ [(set_attr "type" "basicAlu,mem,mem,basicAlu,basicAlu,mem,mem")
+ (set_attr "longConstant" "false,true,false,false,true,true,false")
+ (set_attr "length" "2,4,4,2,4,4,4")])
+
+;; Machines which don't have byte access can copy registers, and load
+;; constants, but can't access memory. The define_expand for movqi
+;; should already have rewritten memory accesses using word
+;; operations. The exception is qi reloads, which are handled using
+;; the reload_? patterns.
+(define_insn "*movqi_nobyte"
+ [(set (match_operand:QI 0 "register_operand" "=r,r")
+ (match_operand:QI 1 "picochip_register_or_immediate_operand" "r,i"))]
+ "!TARGET_HAS_BYTE_ACCESS"
+ "@
+ COPY.%# %1,%0\t// %0 := %1
+ COPY.%# %1,%0\t\t// %0 := #%1 (QI)")
+
+(define_insn "movhi"
+ [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,a,m,r,r")
+ (match_operand:HI 1 "general_operand" "r,a,m,r,r,I,i"))]
+ ""
+ "@
+ COPY.%# %1,%0\t\t// %0 := %1
+ LDW (%a1),%0\t\t// %0 := Mem(%a1)
+ LDW %a1,%0\t\t// %0 = Mem(%M1{byte})
+ STW %1,(%a0)\t\t// Mem(%a0) := %1
+ STW %1,%a0\t\t// Mem(%M0{byte}) := %1
+ COPY.%# %1,%0\t// %0 := %1 (short constant)
+ COPY.%# %1,%0\t// %0 := %1 (long constant)"
+ [(set_attr "type" "basicAlu,mem,mem,mem,mem,basicAlu,basicAlu")
+ (set_attr "longConstant" "false,true,false,true,false,false,true")
+ (set_attr "length" "2,4,4,4,4,2,4")])
+
+(define_insn "movsi"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r,r,a,m")
+ (match_operand:SI 1 "general_operand" "r,a,m,i,r,r"))]
+ ""
+ "@
+ // %R0 := %R1 (SI)\n\tCOPY.%# %L1,%L0 %| COPY.1 %U1,%U0
+ LDL (%a1),%R0\t\t// %R0 = Mem(%a1)
+ LDL %a1,%R0\t\t// %R0 = Mem(%M1{byte})
+ // %R0 := #%1 (SI)\n\tCOPY.%# %L1,%L0 %| COPY.%# %U1,%U0
+ STL %R1,(%a0)\t\t// Mem(%a0) := %R1
+ STL %R1,%a0\t\t// Mem(%M0{byte}) := %R1"
+ [(set_attr "type" "unknown,mem,mem,unknown,mem,mem")
+ (set_attr "longConstant" "false,true,false,true,false,false")
+ (set_attr "length" "4,4,4,6,4,4")])
+
+; Split an SI mode register copy into separate HI mode copies, which
+; can be VLIW'd with other instructions. Only split the instruction
+; when VLIW scheduling is enabled. Splitting the instruction saves
+; some code space.
+;
+; This is predicated in reload_completed. This ensures that the
+; instructions aren't broken up too early which can result in the
+; SImode code being converted into inefficient HI mode code.
+
+(define_split
+ [(set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "register_operand" ""))]
+ "reload_completed && picochip_schedule_type == DFA_TYPE_SPEED"
+ [(set (match_dup 2) (match_dup 3))
+ (set (match_dup 4) (match_dup 5))]
+ "{
+ operands[2] = gen_lowpart (HImode, operands[0]);
+ operands[3] = gen_lowpart (HImode, operands[1]);
+ operands[4] = gen_highpart (HImode, operands[0]);
+ operands[5] = gen_highpart (HImode, operands[1]);
+ }")
+
+; SI Mode split for load constant.
+(define_split
+ [(set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))]
+ "reload_completed"
+ [(set (match_dup 2) (match_dup 3))
+ (set (match_dup 4) (match_dup 5))]
+ "{
+ operands[2] = gen_lowpart (HImode, operands[0]);
+ operands[3] = picochip_get_low_const(operands[1]);
+ operands[4] = gen_highpart (HImode, operands[0]);
+ operands[5] = picochip_get_high_const(operands[1]);
+ }")
+
+(define_insn "movsf"
+ [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,m")
+ (match_operand:SF 1 "general_operand" "r,m,i,r"))]
+ ""
+ "@
+ // %R0 := %R1 (SF)\n\tCOPY.%# %L1,%L0 %| COPY.1 %U1,%U0
+ LDL %a1,%R0\t\t// %R0 :={SF} Mem(%M1{byte})
+ // %R0 := #%1 (SF)\n\tCOPY.%# %L1,%L0\n\tCOPY.%# %U1,%U0
+ STL %R1,%a0\t\t// Mem(%M0{byte}) :={SF} %R1")
+
+;; memcpy pattern
+;; 0 = destination (mem:BLK ...)
+;; 1 = source (mem:BLK ...)
+;; 2 = count
+;; 3 = alignment
+(define_expand "movmemhi"
+ [(match_operand 0 "memory_operand" "")
+ (match_operand 1 "memory_operand" "")
+ (match_operand:HI 2 "immediate_operand" "")
+ (match_operand 3 "" "")]
+ "picochip_schedule_type != DFA_TYPE_NONE"
+ "if (picochip_expand_movmemhi(operands)) DONE; FAIL;"
+)
+
+;;===========================================================================
+;; NOP
+;;===========================================================================
+
+;; No-operation (NOP)
+(define_insn "nop"
+ [(const_int 0)]
+ ""
+ "NOP\t// nop"
+ [(set_attr "length" "1")])
+
+;;===========================================================================
+;; Function Calls. Define expands are used to ensure that the correct
+;; type of pattern is emitted, and then the define_insn's match the
+;; pattern using the correct types.
+;;
+;; Note: The comments output as part of these instructions are detected by
+;; the linker. Don't change the comments!
+;;===========================================================================
+
+(define_expand "call"
+ [(parallel [(call (match_operand:QI 0 "memory_operand" "")
+ (match_operand 1 "const_int_operand" ""))
+ (clobber (reg:HI LINK_REGNUM))])]
+ ""
+ "")
+
+(define_insn "call_for_divmod"
+ [(call (match_operand:QI 0 "memory_operand" "")
+ (match_operand 1 "const_int_operand" ""))]
+ ""
+ "JL (%M0)\t// fn_call %M0%>"
+ [(set_attr "length" "4")
+ (set_attr "type" "realBranch")
+ (set_attr "longConstant" "true")])
+
+(define_insn "*call_using_symbol"
+ [(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
+ (match_operand 1 "const_int_operand" ""))
+ (clobber (reg:HI LINK_REGNUM))]
+ ""
+ "JL (%M0)\t// fn_call %M0%>"
+ [(set_attr "length" "4")
+ (set_attr "type" "realBranch")
+ (set_attr "longConstant" "true")])
+
+(define_insn "*call_using_register"
+ [(call (mem:QI (match_operand:HI 0 "register_operand" "r"))
+ (match_operand 1 "const_int_operand" ""))
+ (clobber (reg:HI LINK_REGNUM))]
+ ""
+ "JL (%r0)\t// fn_call_unknown %r0%>"
+ [(set_attr "length" "2")
+ (set_attr "type" "realBranch")
+ (set_attr "longConstant" "false")])
+
+(define_expand "call_value"
+ [(parallel [(set (match_operand:HI 0 "" "")
+ (call:HI (match_operand:QI 1 "memory_operand" "g")
+ (match_operand 2 "const_int_operand" "")))
+ (clobber (reg:HI LINK_REGNUM))])]
+ ""
+ "")
+
+(define_insn "*call_value_using_symbol"
+ [(set (match_operand:HI 0 "" "")
+ (call:HI (mem:QI (match_operand:HI 1 "immediate_operand" "i"))
+ (match_operand 2 "const_int_operand" "")))
+ (clobber (reg:HI LINK_REGNUM))]
+ ""
+ "JL (%M1)\t// fn_call %M1 (value return)%>"
+ [(set_attr "length" "4")
+ (set_attr "type" "realBranch")
+ (set_attr "longConstant" "true")])
+
+(define_insn "*call_value_using_register"
+ [(set (match_operand:HI 0 "" "")
+ (call:HI (mem:QI (match_operand:HI 1 "register_operand" "r"))
+ (match_operand 2 "const_int_operand" "")))
+ (clobber (reg:HI LINK_REGNUM))]
+ ""
+ "JL (%r1)// fn_call_unknown %r1 (value return)%>"
+ [(set_attr "length" "2")
+ (set_attr "type" "realBranch")
+ (set_attr "longConstant" "false")])
+
+;;===========================================================================
+;; Addition
+;;===========================================================================
+
+;; Note that the addition of a negative value is transformed into the
+;; subtraction of a positive value, so that the add/sub immediate slot
+;; can make better use of the 4-bit range.
+
+(define_insn "addhi3"
+ [(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
+ (plus:HI (match_operand:HI 1 "register_operand" "r,r,r,r")
+ (match_operand:HI 2 "general_operand" "r,M,n,i")))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ { if (CONST_INT == GET_CODE(operands[2]) &&
+ INTVAL(operands[2]) > -16 &&
+ INTVAL(operands[2]) < 0)
+ return "SUB.%# %1,-(%2),%0\t// %0 := %1 + %2 (HI)";
+ else
+ return "ADD.%# %1,%2,%0\t// %0 := %1 + %2 (HI)";
+ }
+ [(set_attr "type" "basicAlu,basicAlu,basicAlu,basicAlu")
+ (set_attr "longConstant" "false,false,true,true")
+ (set_attr "length" "2,2,4,4")]
+ )
+
+
+;; If we peepholed the compare instruction out, we need to make sure the add
+;; goes in slot 0. This pattern is just to accomplish that.
+
+(define_insn "addhi3_with_use_clause"
+ [(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
+ (plus:HI (match_operand:HI 1 "register_operand" "r,r,r,r")
+ (match_operand:HI 2 "general_operand" "r,M,n,i")))
+ (set (reg:CC CC_REGNUM)
+ (match_operator:CC 3 "picochip_peephole_comparison_operator"
+ [(const_int 0)
+ (const_int 0)]))]
+ ""
+ { if (CONST_INT == GET_CODE(operands[2]) &&
+ INTVAL(operands[2]) > -16 &&
+ INTVAL(operands[2]) < 0)
+ return "SUB.0 %1,-(%2),%0\t// %0 := %1 + %2 (HI)";
+ else
+ return "ADD.0 %1,%2,%0\t// %0 := %1 + %2 (HI)";
+ }
+ [(set_attr "type" "picoAlu,picoAlu,picoAlu,picoAlu")
+ (set_attr "longConstant" "false,false,true,true")
+ (set_attr "length" "2,2,4,4")]
+ )
+
+;; Match an addition in which the first operand has been shifted
+;; (e.g., the comms array functions can emit such instructions).
+(define_insn "*addWith1stOpShift"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (plus:HI (ashift:HI (match_operand:HI 1 "register_operand" "r,r")
+ (match_operand:HI 2 "const_int_operand" ""))
+ (match_operand:HI 3 "immediate_operand" "I,i")))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "ADD.0 [LSL %1,%2],%3,%0\t// %0 := (%1 << %2) + %3"
+ [(set_attr "type" "picoAlu,picoAlu")
+ (set_attr "longConstant" "false,true")])
+
+(define_insn_and_split "addsi3"
+ [(set (match_operand:SI 0 "register_operand" "=r,r")
+ (plus:SI (match_operand:SI 1 "register_operand" "r,r")
+ (match_operand:SI 2 "general_operand" "r,i")))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "// %0 := %1 + %2 (SI)\n\tADD.0 %L1,%L2,%L0\n\tADDC.0 %U1,%U2,%U0"
+ "reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
+ [(match_dup 4)
+ (match_dup 5)]
+ "
+{
+ rtx op0_high = gen_highpart (HImode, operands[0]);
+ rtx op1_high = gen_highpart (HImode, operands[1]);
+ rtx op0_low = gen_lowpart (HImode, operands[0]);
+ rtx op1_low = gen_lowpart (HImode, operands[1]);
+ rtx op2_high, op2_low;
+
+ if (CONST_INT == GET_CODE(operands[2]))
+ {
+ op2_high = picochip_get_high_const(operands[2]);
+ op2_low = picochip_get_low_const(operands[2]);
+ } else {
+ op2_high = gen_highpart (HImode, operands[2]);
+ op2_low = gen_lowpart (HImode, operands[2]);
+ }
+
+ operands[4] = gen_add_multi_lower (op0_low, op1_low, op2_low);
+ operands[5] = gen_add_multi_upper (op0_high, op1_high, op2_high);
+
+}")
+
+;; Perform the lowest part of a multi-part addition (SI/DI). This sets
+;; the flags, so is an picoAlu instruction (we could use a
+;; conventional addhi, but the addhi is better off being a treated as
+;; a basicAlu instruction, rather than a picoAlu instruction).
+(define_insn "add_multi_lower"
+ [(set (match_operand:HI 0 "register_operand" "=r,r,r")
+ (plus:HI (match_operand:HI 1 "register_operand" "r,r,r")
+ (match_operand:HI 2 "general_operand" "r,M,i")))
+ (set (reg:CC CC_REGNUM)
+ (compare:CC (plus:HI (match_dup 1)
+ (match_dup 2))
+ (const_int 0)))]
+ ""
+ { if (CONST_INT == GET_CODE(operands[2]) &&
+ INTVAL(operands[2]) > -16 &&
+ INTVAL(operands[2]) < 0)
+ return "SUB.%# %1,-(%2),%0\t// %0+carry := %1 + %2 (low multi-part)";
+ else
+ return "ADD.%# %1,%2,%0\t// %0+carry := %1 + %2 (low multi-part)";
+ }
+ [(set_attr "type" "picoAlu,picoAlu,picoAlu")
+ (set_attr "longConstant" "false,false,true")
+ (set_attr "length" "2,2,4")])
+
+;; Perform the central part of a multi-part addition (DI). This uses
+;; the CC register, and also sets the CC register, so needs to be
+;; placed in the first ALU slot. Note that the ADDC must
+;; use the long constant to represent immediates.
+(define_insn "add_multi_mid"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (plus:HI (match_operand:HI 1 "register_operand" "r,r")
+ (plus:HI (match_operand:HI 2 "general_operand" "r,i")
+ (reg:CC CC_REGNUM))))
+ (set (reg:CC CC_REGNUM)
+ (compare:CC (plus:HI (match_dup 1)
+ (match_dup 2))
+ (const_int 0)))]
+ ""
+ "ADDC.%# %1,%2,%0\t// %0+carry := carry + %1 + %2 (mid multi-part)"
+ [(set_attr "type" "picoAlu,picoAlu")
+ (set_attr "longConstant" "false,true")
+ (set_attr "length" "2,4")])
+
+;; Perform the highest part of a multi-part addition (SI/DI). This
+;; uses the CC register, but doesn't require any registers to be set,
+;; so may be scheduled in either of the ALU's. Note that the ADDC must
+;; use the long constant to represent immediates.
+(define_insn "add_multi_upper"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (plus:HI (match_operand:HI 1 "register_operand" "r,r")
+ (plus:HI (match_operand:HI 2 "general_operand" "r,i")
+ (reg:CC CC_REGNUM))))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "ADDC.%# %1,%2,%0\t// %0 := carry + %1 + %2 (high multi-part)"
+ [(set_attr "type" "basicAlu,basicAlu")
+ (set_attr "longConstant" "false,true")
+ (set_attr "length" "2,4")])
+
+;; The lea instruction is a special type of add operation, which looks
+;; like a movhi (reg := address). It expands into reg := fp +
+;; offset. Ideally there should be two variants, which take different
+;; sized offsets (i.e., using the long constant, or not, as
+;; appropriate). However, the address operand may have arbitrary
+;; values added to it later (i.e., the AP will be eliminated, possibly
+;; converting a small offset into a long offset), so a long offset is
+;; always assumed.
+
+;; Note that the lea can use an addition, and hence may modify the CC
+;; register. This upsets scheduling, so instead the lea is placed in
+;; ALU 1 where it cannot modify CC.
+
+(define_insn "*lea_add"
+ [(set (match_operand:HI 0 "nonimmediate_operand" "=r")
+ (plus:HI (match_operand:HI 1 "register_operand" "r")
+ (match_operand:HI 2 "immediate_operand" "i")))]
+ ""
+ "ADD.1 %1,%2,%0\t// lea (add)")
+
+;; Note that, though this instruction looks similar to movhi pattern,
+;; "p" constraint cannot be specified for operands other than
+;; address_operand, hence the extra pattern below.
+(define_insn "*lea_move"
+ [(set (match_operand:HI 0 "nonimmediate_operand" "=r")
+ (match_operand:HI 1 "address_operand" "p"))]
+ ""
+ {
+ if (REG == GET_CODE(operands[1]))
+ return "COPY.1 %1,%0\t// %0 := %1 (lea)";
+ else
+ return "ADD.1 %b1,%o1,%0\t\t// %0 := %b1 + %o1 (lea)";
+ }
+ [(set_attr "type" "nonCcAlu")
+ (set_attr "longConstant" "true")
+ (set_attr "length" "4")])
+
+
+;;===========================================================================
+;; Subtraction. Note that these patterns never take immediate second
+;; operands, since those cases are handled by canonicalising the
+;; instruction into the addition of a negative costant.
+;; But, if the first operand needs to be a negative constant, it
+;; is supported here.
+;;===========================================================================
+
+(define_insn "subhi3"
+ [(set (match_operand:HI 0 "register_operand" "=r,r,r")
+ (minus:HI (match_operand:HI 1 "general_operand" "r,I,i")
+ (match_operand:HI 2 "register_operand" "r,r,r")))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "SUB.%# %1,%2,%0 // %0 := %1 - %2 (HI)"
+ [(set_attr "type" "basicAlu,basicAlu,basicAlu")
+ (set_attr "longConstant" "false,true,true")
+ (set_attr "length" "2,4,4")])
+
+;; If we peepholed the compare instruction out, we need to make sure the
+;; sub goes in slot 0. This pattern is just to accomplish that.
+
+(define_insn "subhi3_with_use_clause"
+ [(set (match_operand:HI 0 "register_operand" "=r,r,r")
+ (minus:HI (match_operand:HI 1 "general_operand" "r,I,i")
+ (match_operand:HI 2 "register_operand" "r,r,r")))
+ (set (reg:CC CC_REGNUM)
+ (match_operator:CC 3 "picochip_peephole_comparison_operator"
+ [(const_int 0)
+ (const_int 0)]))]
+ ""
+ "SUB.0 %1,%2,%0 // %0 := %1 - %2 (HI)"
+ [(set_attr "type" "picoAlu,picoAlu,picoAlu")
+ (set_attr "longConstant" "false,true,true")
+ (set_attr "length" "2,4,4")])
+
+(define_insn_and_split "subsi3"
+ [(set (match_operand:SI 0 "register_operand" "=r,r")
+ (minus:SI (match_operand:SI 1 "general_operand" "r,i")
+ (match_operand:SI 2 "register_operand" "r,r")))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "// %0 := %1 - %2 (SI)\n\tSUB.%# %L1,%L2,%L0\n\tSUBB.%# %U1,%U2,%U0"
+ "reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
+ [(match_dup 4)
+ (match_dup 5)]
+ "
+{
+ rtx op0_high = gen_highpart (HImode, operands[0]);
+ rtx op0_low = gen_lowpart (HImode, operands[0]);
+ rtx op2_high = gen_highpart (HImode, operands[2]);
+ rtx op2_low = gen_lowpart (HImode, operands[2]);
+ rtx op1_high,op1_low;
+
+ if (CONST_INT == GET_CODE(operands[1]))
+ {
+ op1_high = picochip_get_high_const(operands[1]);
+ op1_low = picochip_get_low_const(operands[1]);
+ } else {
+ op1_high = gen_highpart (HImode, operands[1]);
+ op1_low = gen_lowpart (HImode, operands[1]);
+ }
+
+
+ operands[4] = gen_sub_multi_lower (op0_low, op1_low, op2_low);
+ operands[5] = gen_sub_multi_upper (op0_high, op1_high, op2_high);
+
+}")
+
+;; Match the patterns emitted by the multi-part subtraction splitting.
+;; This sets the CC register, so it needs to go into slot 0.
+(define_insn "sub_multi_lower"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (minus:HI (match_operand:HI 1 "general_operand" "r,i")
+ (match_operand:HI 2 "register_operand" "r,r")))
+ (set (reg:CC CC_REGNUM)
+ (compare:CC (minus:HI (match_dup 1) (match_dup 2))
+ (const_int 0)))]
+ ""
+ "SUB.%# %1,%2,%0\t// %0+carry := %1 - %2 (lower SI)"
+ [(set_attr "type" "picoAlu,picoAlu")
+ (set_attr "longConstant" "false,true")
+ (set_attr "length" "2,4")])
+
+;; Perform the central part of a multi-part addition (DI). This uses
+;; the CC register, and also sets the CC register, so needs to be
+;; placed in the first ALU.
+(define_insn "sub_multi_mid"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (minus:HI (match_operand:HI 1 "general_operand" "r,i")
+ (minus:HI (match_operand:HI 2 "register_operand" "r,r")
+ (reg:CC CC_REGNUM))))
+ (set (reg:CC CC_REGNUM)
+ (compare:CC (minus:HI (match_dup 1)
+ (match_dup 2))
+ (const_int 0)))]
+ ""
+ "SUBB.%# %1,%2,%0\t// %0+carry := carry - %1 - %2 (mid multi-part)"
+ [(set_attr "type" "picoAlu,picoAlu")
+ (set_attr "longConstant" "false,true")
+ (set_attr "length" "2,4")])
+
+(define_insn "sub_multi_upper"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (minus:HI (match_operand:HI 1 "general_operand" "r,i")
+ (minus:HI (match_operand:HI 2 "register_operand" "r,r")
+ (reg:CC CC_REGNUM))))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "SUBB.%# %1,%2,%0\t// %0 := carry - %1 - %2 (upper SI)"
+ [(set_attr "type" "basicAlu,basicAlu")
+ (set_attr "longConstant" "false,true")
+ (set_attr "length" "2,4")])
+
+;;===========================================================================
+;; Multiplication (signed)
+;;===========================================================================
+
+(define_insn "multiply_machi"
+ [(set (reg:HI ACC_REGNUM)
+ (mult:HI (match_operand:HI 0 "register_operand" "r,r")
+ (match_operand:HI 1
+ "picochip_register_or_immediate_operand" "r,i")))]
+ "TARGET_HAS_MAC_UNIT"
+ "MUL %0,%1,acc0\t// acc0 := %0 * %1 (signed)"
+ [(set_attr "length" "3,5")
+ (set_attr "type" "mac,mac")
+ (set_attr "longConstant" "false,true")])
+
+(define_expand "mulhi3"
+ [(set (match_operand:HI 0 "register_operand" "")
+ (mult:HI (match_operand:HI 1 "register_operand" "")
+ (match_operand:HI 2 "picochip_register_or_immediate_operand" "")))]
+ "TARGET_HAS_MULTIPLY"
+ "")
+
+;; Different types of mulhi, depending on the AE type. If the AE has MUL unit,
+;; use the following pattern.
+(define_insn "*mulhi3_mul"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (mult:HI (match_operand:HI 1 "register_operand" "r,r")
+ (match_operand:HI 2
+ "picochip_register_or_immediate_operand" "r,i")))]
+ "TARGET_HAS_MUL_UNIT"
+ "MULL %1,%2,%0 // %0 := %1 * %2 (HI)"
+ [(set_attr "length" "3,5")
+ (set_attr "type" "mul,mul")
+ (set_attr "longConstant" "false,true")])
+
+;; If the AE has MAC unit, instead, use the following pattern.
+(define_insn_and_split "*mulhi3_mac"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (mult:HI (match_operand:HI 1 "register_operand" "r,r")
+ (match_operand:HI 2
+ "picochip_register_or_immediate_operand" "r,i")))]
+ "TARGET_HAS_MAC_UNIT"
+ "// %0 := %1 * %2\n\tMUL %1,%2,acc0\n\tREADACC acc0,frac,%0"
+ "TARGET_HAS_MAC_UNIT && reload_completed"
+ [(match_dup 3)
+ (match_dup 4)]
+ "
+{
+ rtx const_rtx = GEN_INT(0);
+ operands[3] = (gen_multiply_machi(operands[1], operands[2]));
+ operands[4] = (gen_movhi_mac(operands[0],const_rtx));
+} "
+)
+
+(define_insn "umultiply_machisi"
+ [(set (reg:SI ACC_REGNUM)
+ (mult:SI (zero_extend:SI (match_operand:HI 0 "register_operand" "r"))
+ (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))))]
+ "TARGET_HAS_MAC_UNIT"
+ "MULUU %0,%1,acc0\t// acc0 := %0 * %1 (unsigned)"
+ [(set_attr "length" "3")
+ (set_attr "type" "mac")
+ (set_attr "longConstant" "false")])
+
+(define_insn "multiply_machisi"
+ [(set (reg:SI ACC_REGNUM)
+ (mult:SI (sign_extend:SI (match_operand:HI 0 "register_operand" "r,r"))
+ (sign_extend:SI (match_operand:HI 1
+ "picochip_register_or_immediate_operand" "r,i"))))]
+ "TARGET_HAS_MAC_UNIT"
+ "MUL %0,%1,acc0\t// acc0 := %0 * %1 (signed)"
+ [(set_attr "length" "3,5")
+ (set_attr "type" "mac,mac")
+ (set_attr "longConstant" "false,true")])
+
+;; We want to prevent GCC from thinking ACC is a normal register and using
+;; this pattern. We want it to be used only when you use MAC unit
+;; multiplication. Added a "use" clause for that sake.
+(define_insn "movsi_mac"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (reg:SI ACC_REGNUM))
+ (use (match_operand:SI 1 "const_int_operand" ""))]
+ "TARGET_HAS_MAC_UNIT"
+ "READACC32 acc0,%R0 \t// %0 := acc0 "
+ [(set_attr "length" "3")
+ (set_attr "type" "mac")
+ (set_attr "longConstant" "false")])
+
+;; We want to prevent GCC from thinking ACC is a normal register and using
+;; this pattern. We want it to be used only when you use MAC unit
+;; multiplication. Added a "use" clause for that sake.
+(define_insn "movhi_mac"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (reg:HI ACC_REGNUM) )
+ (use (match_operand:HI 1 "const_int_operand" ""))]
+ "TARGET_HAS_MAC_UNIT"
+ "READACC acc0,frac,%0 \t// %0 := acc0 "
+ [(set_attr "length" "3")
+ (set_attr "type" "mac")
+ (set_attr "longConstant" "false")])
+
+;; 16-bit to 32-bit widening signed multiplication.
+(define_expand "mulhisi3"
+ [(set (match_operand:SI 0 "register_operand" "=&r")
+ (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
+ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
+ "TARGET_HAS_MULTIPLY"
+ ""
+)
+
+(define_insn_and_split "*mulhisi3_mul"
+ [(set (match_operand:SI 0 "register_operand" "=&r")
+ (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
+ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
+ "TARGET_HAS_MUL_UNIT"
+ "// %0 := %1 * %2 (HI->SI)\;MULL %1,%2,%L0\;MULH %1,%2,%U0";
+ "TARGET_HAS_MUL_UNIT && reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
+ [(match_dup 3)
+ (match_dup 4)]
+ "
+{
+ rtx op0_high = gen_highpart (HImode, operands[0]);
+ rtx op0_low = gen_lowpart (HImode, operands[0]);
+ operands[3] = gen_mulhisi3_mul_lower(op0_low,operands[1],operands[2]);
+ operands[4] = gen_mulhisi3_mul_higher(op0_high,operands[1],operands[2]);
+}
+ "
+)
+
+(define_insn "mulhisi3_mul_lower"
+ [(set (match_operand:HI 0 "register_operand" "=&r")
+ (subreg:HI
+ (mult:SI
+ (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
+ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) 0))]
+ "TARGET_HAS_MUL_UNIT"
+ "MULL %1,%2,%0"
+ [(set_attr "length" "3")
+ (set_attr "type" "mul")
+ (set_attr "longConstant" "false")])
+
+(define_insn "mulhisi3_mul_higher"
+ [(set (match_operand:HI 0 "register_operand" "=&r")
+ (subreg:HI
+ (mult:SI
+ (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
+ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) 2))]
+ "TARGET_HAS_MUL_UNIT"
+ "MULH %1,%2,%0"
+ [(set_attr "length" "3")
+ (set_attr "type" "mul")
+ (set_attr "longConstant" "false")])
+
+(define_insn_and_split "*mulhisi3_mac"
+ [(set (match_operand:SI 0 "register_operand" "=&r")
+ (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
+ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
+ "TARGET_HAS_MAC_UNIT"
+ "// %0 := %1 * %2 (HI->SI) STAN2\;MUL %1,%2,acc0\;READACC32 acc0,%R0";
+ "TARGET_HAS_MAC_UNIT && reload_completed"
+ [(match_dup 3)
+ (match_dup 4)]
+ "
+{
+ rtx const_rtx = gen_int_mode(0,SImode);
+ operands[3] = (gen_multiply_machisi(operands[1], operands[2]));
+ operands[4] = (gen_movsi_mac(operands[0],const_rtx));
+} "
+)
+
+;;===========================================================================
+;; Widening multiplication (unsigned)
+;;===========================================================================
+
+(define_expand "umulhisi3"
+ [(set (match_operand:SI 0 "register_operand" "=&r")
+ (mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
+ (zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
+ "TARGET_HAS_MULTIPLY"
+ ""
+)
+
+(define_insn_and_split "*umulhisi3_mul"
+ [(set (match_operand:SI 0 "register_operand" "=&r")
+ (mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
+ (zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
+ "TARGET_HAS_MUL_UNIT"
+ "// %0 := %1 * %2 (uHI->uSI Type 1)\;MULUL %1,%2,%L0\n\tMULUH %1,%2,%U0";
+ "TARGET_HAS_MUL_UNIT && reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
+ [(match_dup 3)
+ (match_dup 4)]
+ "
+{
+ rtx op0_high = gen_highpart (HImode, operands[0]);
+ rtx op0_low = gen_lowpart (HImode, operands[0]);
+ operands[3] = gen_umulhisi3_mul_lower(op0_low,operands[1],operands[2]);
+ operands[4] = gen_umulhisi3_mul_higher(op0_high,operands[1],operands[2]);
+}
+ "
+ )
+
+(define_insn "umulhisi3_mul_lower"
+ [(set (match_operand:HI 0 "register_operand" "=&r")
+ (subreg:HI
+ (mult:SI
+ (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
+ (zero_extend:SI (match_operand:HI 2 "register_operand" "r"))) 0))]
+ "TARGET_HAS_MUL_UNIT"
+ "MULUL %1,%2,%0"
+ [(set_attr "length" "3")
+ (set_attr "type" "mul")
+ (set_attr "longConstant" "false")])
+
+(define_insn "umulhisi3_mul_higher"
+ [(set (match_operand:HI 0 "register_operand" "=&r")
+ (subreg:HI
+ (mult:SI
+ (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
+ (zero_extend:SI (match_operand:HI 2 "register_operand" "r"))) 2))]
+ "TARGET_HAS_MUL_UNIT"
+ "MULUH %1,%2,%0"
+ [(set_attr "length" "3")
+ (set_attr "type" "mul")
+ (set_attr "longConstant" "false")])
+
+(define_insn_and_split "*umulhisi3_mac"
+ [(set (match_operand:SI 0 "register_operand" "=&r")
+ (mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
+ (zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
+ "TARGET_HAS_MAC_UNIT"
+ "// %0 := %1 * %2 (uHI->uSI Type 3)\;MULUU %1,%2,acc0\;READACC32 acc0,%R0";
+ "TARGET_HAS_MAC_UNIT && reload_completed"
+ [(match_dup 3)
+ (match_dup 4)]
+ "
+{
+ rtx const_rtx = gen_int_mode(0,SImode);
+ operands[3] = (gen_umultiply_machisi(operands[1], operands[2]));
+ operands[4] = (gen_movsi_mac(operands[0],const_rtx));
+} "
+)
+
+;;===========================================================================
+;; Division (signed)
+;;===========================================================================
+
+;; Perform a divmod operation as a function call. This results in some
+;; registers being clobbered (r0-6, r12 - ignore r13,14 as these are
+;; known not to be affected).
+(define_expand "divmodhi4"
+ [
+ ; Copy the inputs to r0 and r1.
+ (set (reg:HI 0) (match_operand:HI 1 "register_operand" ""))
+ (set (reg:HI 1) (match_operand:HI 2 "register_operand" ""))
+ ; Make the function call - note that r12 (link) is clobbered. Note also
+ ; that an explicit call is generated. This ensures that gcc notices that
+ ; any function containing a div/mod is not a leaf function.
+ (parallel [(match_dup 4)
+ (set (reg:HI 0) (div:HI (reg:HI 0) (reg:HI 1)))
+ (set (reg:HI 1) (mod:HI (reg:HI 0) (reg:HI 1)))
+ (clobber (reg:HI 2))
+ (clobber (reg:HI 3))
+ (clobber (reg:HI 4))
+ (clobber (reg:HI 5))
+ (clobber (reg:HI 12))
+ (clobber (reg:CC CC_REGNUM))
+ ])
+ ; Set the quotient (returned in register 0)
+ (set (match_operand:HI 0 "register_operand" "") (reg:HI 0))
+ ; Set the remainder (returned in register 1)
+ (set (match_operand:HI 3 "register_operand" "") (reg:HI 1))]
+ ""
+{
+ rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_divmodhi4");
+ operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
+})
+
+; Match a call to divmodhi4. As this is a call, the link register
+; (r12), and registers r0-5 must be clobbered. Ignore clobbering of
+; r13/4 as these aren't used by the divide function).
+(define_insn "*divmodhi4_call"
+ [(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
+ (match_operand 1 "const_int_operand" ""))
+ (set (reg:HI 0) (div:HI (reg:HI 0) (reg:HI 1)))
+ (set (reg:HI 1) (mod:HI (reg:HI 0) (reg:HI 1)))
+ (clobber (reg:HI 2))
+ (clobber (reg:HI 3))
+ (clobber (reg:HI 4))
+ (clobber (reg:HI 5))
+ (clobber (reg:HI 12))
+ (clobber (reg:CC CC_REGNUM))
+]
+ ""
+ "JL (%0)\t// call %0%>"
+ [(set_attr "length" "4")
+ (set_attr "longConstant" "true")
+ (set_attr "type" "call")])
+
+;; Perform a udivmod operation as a function call. This results in some
+;; registers being clobbered (r0-6, r12 - ignore r13,14 as these are
+;; known not to be affected).
+(define_expand "udivmodhi4"
+ [
+ ; Copy the inputs to r0 and r1.
+ (set (reg:HI 0) (match_operand:HI 1 "register_operand" ""))
+ (set (reg:HI 1) (match_operand:HI 2 "register_operand" ""))
+ ; Make the function call - note that r12 (link) is clobbered. Note also
+ ; that an explicit call is generated. This ensures that gcc notices that
+ ; any function containing a div/mod is not a leaf function.
+ (parallel [(match_dup 4)
+ (set (reg:HI 0) (udiv:HI (reg:HI 0) (reg:HI 1)))
+ (set (reg:HI 1) (umod:HI (reg:HI 0) (reg:HI 1)))
+ (clobber (reg:HI 2))
+ (clobber (reg:HI 3))
+ (clobber (reg:HI 4))
+ (clobber (reg:HI 5))
+ (clobber (reg:HI 12))
+ (clobber (reg:CC CC_REGNUM))
+ ])
+ ; Set the quotient (returned in register 0)
+ (set (match_operand:HI 0 "register_operand" "") (reg:HI 0))
+ ; Set the remainder (returned in register 1)
+ (set (match_operand:HI 3 "register_operand" "") (reg:HI 1))]
+ ""
+{
+ rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_udivmodhi4");
+ operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
+})
+
+; Match a call to udivmodhi4. As this is a call, the link register
+; (r12), and registers r0-5 must be clobbered. Ignore clobbering of
+; r13/4 as these aren't used by the divide function).
+(define_insn "*udivmodhi4_call"
+ [(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
+ (match_operand 1 "const_int_operand" ""))
+ (set (reg:HI 0) (udiv:HI (reg:HI 0) (reg:HI 1)))
+ (set (reg:HI 1) (umod:HI (reg:HI 0) (reg:HI 1)))
+ (clobber (reg:HI 2))
+ (clobber (reg:HI 3))
+ (clobber (reg:HI 4))
+ (clobber (reg:HI 5))
+ (clobber (reg:HI 12))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "JL (%0)\t// call %0%>"
+ [(set_attr "length" "4")
+ (set_attr "longConstant" "true")
+ (set_attr "type" "call")])
+
+(define_expand "udivmodsi4"
+ [
+ ; Make the function call
+ (set (reg:SI 0) (match_operand:SI 1 "register_operand" ""))
+ (set (reg:SI 2) (match_operand:SI 2 "register_operand" ""))
+ (parallel [
+ (match_dup 4)
+ (set (reg:SI 4) (udiv:SI (reg:SI 0) (reg:SI 2)))
+ (set (reg:SI 6) (umod:SI (reg:SI 0) (reg:SI 2)))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 2))
+ (clobber (reg:HI 12))
+ (clobber (reg:CC CC_REGNUM))])
+ (set (match_operand:SI 0 "register_operand" "") (reg:SI 4))
+ (set (match_operand:SI 3 "register_operand" "") (reg:SI 6))]
+ ""
+{
+ rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_udivmodsi4");
+ operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
+})
+
+(define_insn "*udivmodsi4_call"
+ [(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
+ (match_operand 1 "const_int_operand" ""))
+ (set (reg:SI 4) (udiv:SI (reg:SI 0) (reg:SI 2)))
+ (set (reg:SI 6) (umod:SI (reg:SI 0) (reg:SI 2)))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 2))
+ (clobber (reg:HI 12))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "JL (%0)\t// call %0%>"
+ [(set_attr "length" "4")
+ (set_attr "longConstant" "true")
+ (set_attr "type" "call")])
+
+(define_expand "divmodsi4"
+ [
+ ; Make the function call
+ (set (reg:SI 0) (match_operand:SI 1 "register_operand" ""))
+ (set (reg:SI 2) (match_operand:SI 2 "register_operand" ""))
+ (parallel [
+ (match_dup 4)
+ (set (reg:SI 4) (div:SI (reg:SI 0) (reg:SI 2)))
+ (set (reg:SI 6) (mod:SI (reg:SI 0) (reg:SI 2)))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 2))
+ (clobber (reg:HI 12))
+ (clobber (reg:CC CC_REGNUM))])
+ (set (match_operand:SI 0 "register_operand" "") (reg:SI 4))
+ (set (match_operand:SI 3 "register_operand" "") (reg:SI 6))]
+ ""
+{
+ rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_divmodsi4");
+ operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
+})
+
+(define_insn "*divmodsi4_call"
+ [(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
+ (match_operand 1 "const_int_operand" ""))
+ (set (reg:SI 4) (div:SI (reg:SI 0) (reg:SI 2)))
+ (set (reg:SI 6) (mod:SI (reg:SI 0) (reg:SI 2)))
+ (clobber (reg:SI 0))
+ (clobber (reg:SI 2))
+ (clobber (reg:HI 12))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "JL (%0)\t// call %0%>"
+ [(set_attr "length" "4")
+ (set_attr "longConstant" "true")
+ (set_attr "type" "call")])
+
+;;===========================================================================
+;; Bitwise AND. The QI/SI mode instructions are automatically
+;; synthesised from the HI mode instruction.
+;;===========================================================================
+
+(define_insn "andhi3"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (and:HI (match_operand:HI 1 "register_operand" "r,r")
+ (match_operand:HI 2 "general_operand" "r,n")))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "AND.%# %1,%2,%0 // %0 := %1 AND %2 (HI)"
+ [(set_attr "type" "basicAlu,basicAlu")
+ (set_attr "longConstant" "false,true")
+ (set_attr "length" "3,5")])
+
+;; If we peepholed the compare instruction out, we need to make sure the
+;; "and" goes in slot 0. This pattern is just to accomplish that.
+
+(define_insn "andhi3_with_use_clause"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (and:HI (match_operand:HI 1 "register_operand" "r,r")
+ (match_operand:HI 2 "general_operand" "r,n")))
+ (set (reg:CC CC_REGNUM)
+ (match_operator:CC 3 "picochip_peephole_comparison_operator"
+ [(const_int 0)
+ (const_int 0)]))]
+ ""
+ "AND.0 %1,%2,%0 // %0 := %1 AND %2 (HI)"
+ [(set_attr "type" "picoAlu,picoAlu")
+ (set_attr "longConstant" "false,true")
+ (set_attr "length" "3,5")])
+
+;;===========================================================================
+;; Bitwise inclusive-OR. The QI mode instruction is automatically
+;; synthesised from the HI mode instruction.
+;;===========================================================================
+
+(define_insn "iorhi3"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (ior:HI (match_operand:HI 1 "register_operand" "r,r")
+ (match_operand:HI 2 "register_operand" "r,n")))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "OR.%# %1,%2,%0 // %0 := %1 IOR %2 (HI)"
+ [(set_attr "type" "basicAlu,basicAlu")
+ (set_attr "longConstant" "false,true")
+ (set_attr "length" "3,5")])
+
+(define_insn "iorhi3_with_use_clause"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (ior:HI (match_operand:HI 1 "register_operand" "r,r")
+ (match_operand:HI 2 "general_operand" "r,n")))
+ (set (reg:CC CC_REGNUM)
+ (match_operator:CC 3 "picochip_peephole_comparison_operator"
+ [(const_int 0)
+ (const_int 0)]))]
+ ""
+ "OR.0 %1,%2,%0 // %0 := %1 IOR %2 (HI)"
+ [(set_attr "type" "picoAlu,picoAlu")
+ (set_attr "longConstant" "false,true")
+ (set_attr "length" "3,5")])
+
+;;===========================================================================
+;; Bitwise exclusive-OR. The QI/SI mode instructions are automatically
+;; synthesised from the HI mode instruction.
+;;===========================================================================
+
+(define_insn "xorhi3"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (xor:HI (match_operand:HI 1 "register_operand" "r,r")
+ (match_operand:HI 2 "picochip_register_or_immediate_operand" "r,n")))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "XOR.%# %1,%2,%0 // %0 := %1 XOR %2 (HI)"
+ [(set_attr "type" "basicAlu,basicAlu")
+ (set_attr "longConstant" "false,true")
+ (set_attr "length" "3,5")])
+
+;;===========================================================================
+;; Arithmetic shift left.
+;;===========================================================================
+
+(define_insn "ashlhi3"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (ashift:HI (match_operand:HI 1 "register_operand" "r,r")
+ (match_operand:HI 2 "general_operand" "r,J")))]
+ ""
+ "LSL.%# %1,%2,%0 // %0 := %1 << %2"
+ [(set_attr "type" "picoAlu,basicAlu")
+ (set_attr "length" "3,3")])
+
+;;===========================================================================
+;; Arithmetic shift right.
+;;===========================================================================
+
+(define_insn "builtin_asri"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (ashiftrt:HI (match_operand:HI 1 "register_operand" "r")
+ (match_operand:HI 2 "immediate_operand" "")))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "ASR.%# %1,%2,%0\t// %0 = %1 >>{arith} %2"
+ [(set_attr "type" "basicAlu")
+ (set_attr "length" "3")])
+
+;; The picoChip ISA doesn't have a variable arithmetic shift right, so
+;; synthesise it. Shifts by constants are directly supported.
+
+(define_expand "ashrhi3"
+ [(match_operand:HI 0 "register_operand" "")
+ (match_operand:HI 1 "register_operand" "")
+ (match_operand:HI 2 "picochip_register_or_immediate_operand" "")]
+ ""
+{
+ if (GET_CODE(operands[2]) == CONST_INT)
+ /* Shift by constant is easy. */
+ emit_insn (gen_builtin_asri (operands[0], operands[1], operands[2]));
+ else
+ {
+ /* Synthesise a variable shift. */
+
+ rtx tmp1;
+ rtx tmp2;
+ rtx tmp3;
+ rtx minus_one;
+ rtx tmp4;
+
+ /* Fill a temporary with the sign bits. */
+ tmp1 = gen_reg_rtx (HImode);
+ emit_insn (gen_builtin_asri (tmp1, operands[1], GEN_INT(15)));
+
+ /* Shift the unsigned value. */
+ tmp2 = gen_reg_rtx (HImode);
+ emit_insn (gen_lshrhi3 (tmp2, operands[1], operands[2]));
+
+ /* The word of sign bits must be shifted back to the left, to zero
+ * out the unwanted lower bits. The amount to shift left by is (15 -
+ * count). Since the shifts are computed modulo 16 (i.e., only the
+ * lower 4 bits of the count are used), the shift amount (15 - count)
+ * is equivalent to !count. */
+ tmp3 = gen_reg_rtx (HImode);
+ minus_one = GEN_INT (-1);
+ emit_insn (gen_xorhi3 (tmp3, operands[2], minus_one));
+ tmp4 = gen_reg_rtx (HImode);
+ emit_insn (gen_ashlhi3 (tmp4, tmp1, tmp3));
+
+ /* Combine the sign bits with the shifted value. */
+ emit_insn (gen_iorhi3 (operands[0], tmp2, tmp4));
+
+ }
+ DONE;
+})
+
+;;===========================================================================
+;; Logical shift right.
+;;===========================================================================
+
+(define_insn "lshrhi3"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (lshiftrt:HI (match_operand:HI 1 "register_operand" "r,r")
+ (match_operand:HI 2 "general_operand" "r,J")))]
+ ""
+ "LSR.%# %1,%2,%0 // %0 := %1 >> %2"
+ [(set_attr "type" "picoAlu,basicAlu")
+ (set_attr "length" "3,3")])
+
+;;===========================================================================
+;; Negate.
+;;===========================================================================
+
+;; Negations are performed by subtracting from the constant 0, which
+;; is loaded into a register. By using a register containing 0, the
+;; chances of being able to CSE with another 0 value are increased.
+
+(define_expand "neghi2"
+ [(set (match_dup 2) (match_dup 3))
+ (parallel [(set (match_operand:HI 0 "register_operand" "=r")
+ (minus:HI (match_dup 2)
+ (match_operand:HI 1 "register_operand" "r")))
+ (clobber (reg:CC CC_REGNUM))])]
+ ""
+ "operands[2] = gen_reg_rtx(HImode);
+ operands[3] = GEN_INT(0x00000000);")
+
+(define_expand "negsi2"
+ [(set (match_dup 2) (match_dup 3))
+ (parallel [(set (match_operand:SI 0 "register_operand" "=r")
+ (minus:SI (match_dup 2)
+ (match_operand:SI 1 "register_operand" "r")))
+ (clobber (reg:CC CC_REGNUM))])]
+ ""
+ "operands[2] = gen_reg_rtx(SImode);
+ operands[3] = GEN_INT(0x00000000);")
+
+;;===========================================================================
+;; Absolute value. Taken from the Hacker's Delight, page 17. The second of the
+;; four options given there produces the smallest, fastest code.
+;;===========================================================================
+
+(define_insn_and_split "abshi2"
+ [(set (match_operand:HI 0 "register_operand" "")
+ (abs:HI (match_operand:HI 1 "register_operand" "")))]
+ ""
+ "#"
+ ""
+ [(parallel [(set (match_dup 2)
+ (plus:HI (ashiftrt:HI (match_dup 1) (const_int 15))
+ (match_dup 1)))
+ (clobber (reg:CC CC_REGNUM))])
+ (parallel [(set (match_dup 0)
+ (xor:HI (ashiftrt:HI (match_dup 1) (const_int 15))
+ (match_dup 2)))
+ (clobber (reg:CC CC_REGNUM))])]
+{
+ operands[2] = gen_reg_rtx (HImode);
+})
+
+;;===========================================================================
+;; Bitwise complement. Use auto-synthesised variant for SI mode. Though this
+;; internally uses xor, the compiler doesnt automatically synthesize it using
+;; xor, if this pattern was removed.
+;;===========================================================================
+
+(define_insn "one_cmplhi2"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (not:HI (match_operand:HI 1 "register_operand" "0")))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "XOR.%# %1,-1,%0 // %0 := ~%1"
+ [(set_attr "type" "basicAlu")
+ (set_attr "longConstant" "true")
+ (set_attr "length" "5")])
+
+;;===========================================================================
+;; Count leading zeros. The special sign-bit-count instruction can be used
+;; to help us here.
+;; op1:=clz(op1)
+;; The code works by checking to see if the top bit is set. If it is,
+;; then there are no leading zeros. If the top bit is cleared, then
+;; the SBC instruction is used to determine how many more leading
+;; zeros are present, and adding one more for the initial zero.
+;;===========================================================================
+
+(define_insn "clzhi2"
+ [(set (match_operand:HI 0 "register_operand" "=&r")
+ (clz:HI (match_operand:HI 1 "register_operand" "r")))]
+ ""
+ "// Count leading zeros\;SBC %1,%0\;ASR.0 %1,15,r15 %| ADD.1 %0,1,%0\;COPYNE 0,%0"
+ [(set_attr "length" "11")])
+
+;;===========================================================================
+;; Count trailing zeros. This can be achieved efficiently by reversing
+;; using the bitrev instruction, and then counting the leading zeros as
+;; described above.
+;;===========================================================================
+
+(define_insn "ctzhi2"
+ [(set (match_operand:HI 0 "register_operand" "=&r")
+ (ctz:HI (match_operand:HI 1 "register_operand" "r")))]
+ ""
+ "// Count trailing zeros\;BREV %1,%0\;SBC %0,%0\;AND.0 %1,0x0001,r15 %| ADD.1 %0,1,%0\;COPYNE 0,%0"
+ [(set_attr "length" "15")])
+
+;;===========================================================================
+;; Find the first set bit, starting from the least significant bit position.
+;; This is very similar to the ctz function, except that the bit index is one
+;; greater than the number of trailing zeros (i.e., SBC + 2), and the
+;; result of ffs on the zero value is defined.
+;;===========================================================================
+
+(define_insn "ffshi2"
+ [(set (match_operand:HI 0 "register_operand" "=&r")
+ (ffs:HI (match_operand:HI 1 "register_operand" "r")))]
+ ""
+ "// First first bit\;BREV %1,%0\;SBC %0,%0\;AND.0 %1,0x0001,r15 %| ADD.1 %0,2,%0\;COPYNE 1,%0\;SUB.0 %1,0x0000,r15\;COPYEQ 0,%0"
+ [(set_attr "length" "20")])
+
+;;===========================================================================
+;; Tablejump Instruction. Jump to an absolute address.
+;;===========================================================================
+
+(define_insn "tablejump"
+ [(set (pc) (unspec:HI [(match_operand:HI 0 "register_operand" "r")] 1))
+ (use (label_ref (match_operand 1 "" "")))
+ (clobber (match_dup 0))]
+ ""
+ "JR (%0)\t // Table jump to %0 %>"
+ [(set_attr "length" "2")
+ (set_attr "type" "realBranch")])
+
+;; Given the memory address of a QImode value, and a scratch register,
+;; store the memory operand into the given output operand. The scratch
+;; operand will not conflict with either of the operands. The other
+;; two operands may conflict with each other.
+
+(define_insn "synthesised_loadqi_unaligned"
+ [(set (match_operand:QI 0 "register_operand" "=r")
+ (match_operand:QI 1 "memory_operand" "m"))
+ (clobber (match_operand:HI 2 "register_operand" "=&r"))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "// Synthesised loadqi %0 = Mem(%1) (Scratch %2)\n\tAND.0 %1,-2,%2\n\tLDW (%2)0,%0 %| AND.0 %1,1,%2\n\tLSL.0 %2,3,%2\n\tSUB.0 8,%2,%2\n\tLSL.0 %0,%2,%0\n\tASR.0 %0,8,%0"
+ ; Approximate length only. Probably a little shorter than this.
+ [(set_attr "length" "40")])
+
+;; Given a memory operand whose alignment is known (the HImode aligned
+;; base is operand 0, and the number of bits by which to shift is in
+;; operand 5),
+(define_expand "synthesised_storeqi_aligned"
+ [; s1 = mem_op
+ (set (match_operand:HI 2 "register_operand" "")
+ (match_operand:HI 0 "memory_operand" ""))
+ ; s1 = s1 and mask
+ (parallel [(set (match_dup 2) (and:HI (match_dup 2) (match_dup 5)))
+ (clobber (reg:CC CC_REGNUM))])
+ ; s2 = source << bitShift
+ (set (match_dup 3)
+ (ashift:HI (subreg:HI (match_operand:QI 1 "register_operand" "") 0)
+ (match_operand:HI 4 "const_int_operand" "")))
+ ; s1 = s1 or s2
+ (parallel [(set (match_dup 2) (ior:HI (match_dup 2) (match_dup 3)))
+ (clobber (reg:CC CC_REGNUM))])
+ ; mem_op = s1
+ (set (match_dup 0) (match_dup 2))]
+ "!TARGET_HAS_BYTE_ACCESS"
+{
+ /* Create the byte mask 0xFF00. */
+ operands[5] = gen_int_mode(((~0xFF) >> INTVAL (operands[4])), HImode);
+})
+
+;; Reload instructions. See picochip_secondary_reload for an
+;; explanation of why an SI mode register is used as a scratch. The
+;; memory operand must be stored in a register (i.e., it can't be an
+;; offset to another register - this would require another scratch
+;; register into which the address of the offset could be computed).
+
+(define_expand "reload_inqi"
+ [(parallel [(match_operand:QI 0 "register_operand" "=&r")
+ (match_operand:QI 1 "memory_operand" "m")
+ (match_operand:SI 2 "register_operand" "=&r")])]
+ "!TARGET_HAS_BYTE_ACCESS"
+{
+ rtx scratch, seq;
+
+ /* Get the scratch register. Given an SI mode value, we have a
+ choice of two HI mode scratch registers, so we can be sure that at
+ least one of the scratch registers will be different to the output
+ register, operand[0]. */
+
+ if (REGNO (operands[0]) == REGNO (operands[2]))
+ scratch = gen_rtx_REG (HImode, REGNO (operands[2]) + 1);
+ else
+ scratch = gen_rtx_REG (HImode, REGNO (operands[2]));
+
+ /* Ensure that the scratch doesn't overlap either of the other
+ two operands - however, the other two may overlap each
+ other. */
+ gcc_assert (REGNO(scratch) != REGNO(operands[0]));
+ gcc_assert (REGNO(scratch) != REGNO(operands[1]));
+
+ gcc_assert (GET_CODE (operands[1]) == MEM);
+
+ if (picochip_word_aligned_memory_reference(XEXP(operands[1], 0)))
+ {
+ /* Aligned reloads are easy, since they can use word-loads. */
+ seq = gen_synthesised_loadqi_aligned(operands[0], operands[1], scratch);
+ }
+ else
+ {
+ /* Emit the instruction using a define_insn. */
+ seq = gen_synthesised_loadqi_unaligned(operands[0], operands[1], scratch);
+ }
+ emit_insn (seq);
+
+ DONE;
+
+})
+
+(define_expand "reload_outqi"
+ [(parallel [(match_operand 0 "memory_operand" "=m")
+ (match_operand:QI 1 "register_operand" "r")
+ (match_operand:SI 2 "register_operand" "=&r")])]
+ "!TARGET_HAS_BYTE_ACCESS"
+{
+ rtx scratch1 = gen_rtx_REG(HImode, REGNO(operands[2]));
+ rtx scratch2 = gen_rtx_REG(HImode, REGNO(operands[2]) + 1);
+ rtx seq;
+
+ gcc_assert (GET_CODE (operands[0]) == MEM);
+
+ if (picochip_word_aligned_memory_reference(XEXP(operands[0], 0)))
+ {
+ rtx alignedAddr, bitShift;
+
+ /* Convert the address of the known alignment into two operands
+ * representing the aligned base address, and the number of shift bits
+ * required to access the required value. */
+ picochip_get_hi_aligned_mem(operands[0], &alignedAddr, &bitShift);
+
+ /* Emit an aligned store of the source, with the given bit offset. */
+ seq = gen_synthesised_storeqi_aligned(alignedAddr, operands[1], scratch1, scratch2, bitShift);
+
+ }
+ else
+ {
+ /* This isnt exercised at all. Moreover, with new devices, byte access
+ is available in all variants. */
+ gcc_unreachable();
+ }
+
+ emit_insn (seq);
+ DONE;
+
+})
+
+;; Perform a byte load of an alignable memory operand.
+; op0 = register to load. op1 = memory operand from which to load
+; op2 = op1, aligned to HI, op3 = const bit shift required to extract byte,
+; op4 = INTVAL(8 - op3)
+(define_expand "synthesised_loadqi_aligned"
+ [; Load memory operand into register
+ (set (match_operand:HI 2 "register_operand" "=r")
+ (match_dup 3))
+ ; Shift required byte into top byte of word.
+ (set (match_dup 2)
+ (ashift:HI (match_dup 2)
+ (match_dup 4)))
+ ; Arithmetic shift of byte to sign extend, and move to lowest register.
+ (parallel[(set (subreg:HI (match_dup 0) 0)
+ (ashiftrt:HI (match_dup 2)
+ (const_int 8)))
+ (clobber (reg:CC CC_REGNUM))])
+ (use (match_operand:QI 1 "picochip_alignable_memory_operand" "g"))]
+ "!TARGET_HAS_BYTE_ACCESS"
+{
+ rtx alignedAddr, bitShift;
+
+ /* Convert the address of the known alignment into two operands
+ * representing the aligned base address, and the number of shift bits
+ * required to access the required value. */
+ picochip_get_hi_aligned_mem(operands[1], &alignedAddr, &bitShift);
+
+ operands[3] = alignedAddr;
+ operands[4] = GEN_INT(8 - INTVAL(bitShift));
+})
+
+;;============================================================================
+;; Special instructions.
+;;============================================================================
+
+; Count sign-bits.
+(define_insn "sbc"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (unspec:HI [(match_operand:HI 1 "register_operand" "r")]
+ UNSPEC_SBC))]
+ ""
+ "SBC %1,%0\t\t// %0 := SBC(%1)"
+ [(set_attr "type" "picoAlu")
+ (set_attr "length" "2")])
+
+; Bit reversal.
+(define_insn "brev"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (unspec:HI [(match_operand:HI 1 "register_operand" "r")]
+ UNSPEC_BREV))]
+ ""
+ "BREV %1,%0\t\t// %0 := BREV(%1)"
+ [(set_attr "length" "2")
+ (set_attr "type" "picoAlu")])
+
+; Byte swap.
+(define_insn "bswaphi2"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (bswap:HI (match_operand:HI 1 "register_operand" "r")))]
+ ""
+ "BYTESWAP %1,%0\t\t// %0 := ByteSwap(%1)"
+ [(set_attr "length" "2")
+ (set_attr "type" "picoAlu")])
+
+; Read status word.
+(define_insn "copysw"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (unspec_volatile:HI [(reg:CC CC_REGNUM)] UNSPEC_COPYSW))]
+ ""
+ "COPYSW.%# %0\t// %0 := Flags"
+ [(set_attr "type" "basicAlu")
+ (set_attr "length" "2")])
+
+; Saturating addition.
+(define_insn "sataddhi3"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (unspec:HI [(match_operand:HI 1 "register_operand" "r")
+ (match_operand:HI 2 "register_operand" "r")]
+ UNSPEC_ADDS))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "ADDS %1,%2,%0\t// %0 := sat(%1 + %2)"
+ [(set_attr "type" "picoAlu")
+ (set_attr "length" "3")])
+
+; Saturating subtraction.
+(define_insn "satsubhi3"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (unspec:HI [(match_operand:HI 1 "register_operand" "r")
+ (match_operand:HI 2 "register_operand" "r")]
+ UNSPEC_SUBS))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "SUBS %1,%2,%0\t// %0 := sat(%1 - %2)"
+ [(set_attr "type" "picoAlu")
+ (set_attr "length" "3")])
+
+(define_insn "halt"
+ [(unspec_volatile [(match_operand:HI 0 "const_int_operand" "i")]
+ UNSPEC_HALT)]
+ ""
+ "HALT\t// (id %0)"
+ [(set_attr "length" "1")
+ (set_attr "type" "unknown")])
+
+(define_insn "internal_testport"
+ [(set (reg:CC CC_REGNUM)
+ (unspec_volatile:CC [(match_operand:HI 0 "const_int_operand" "i")]
+ UNSPEC_INTERNAL_TESTPORT))]
+ ""
+ "TSTPORT %0"
+ [(set_attr "length" "2")
+ (set_attr "longConstant" "false")
+ (set_attr "type" "picoAlu")])
+
+;;============================================================================
+;; Communications builtins.
+;;
+;; Each builtin comes in two forms: a single port version, which maps
+;; to a single instruction, and an array port version. The array port
+;; version is treated as a special type of instruction, which is then
+;; split into a number of smaller instructions, if the index of the
+;; port can't be converted into a constant. When the RTL split is
+;; performed, a function call is emitted, in which the index of the
+;; port to use is used to compute the address of the function to call
+;; (i.e., each array port is a function in its own right, and the
+;; functions are stored as an array which is then indexed to determine
+;; the correct function). The communication function port array is
+;; created by the linker if and only if it is required (in a
+;; collect2-like manner).
+;;============================================================================
+
+; Simple scalar get.
+(define_insn "commsGet"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (unspec_volatile:SI
+ [(match_operand:HI 1 "immediate_operand" "n")]
+ UNSPEC_GET))]
+ ""
+ "GET %1,%R0\t// %R0 := PORT(%1)"
+ [(set_attr "type" "comms")
+ (set_attr "length" "2")])
+
+; Entry point for array get (the actual port index is computed as the
+; sum of the index, and the base).
+;
+; op0 - Destination
+; op1 - Requested port index
+; op2 - size of port array (constant)
+; op3 - base index of port array (constant)
+
+(define_expand "commsArrayGet"
+ [(parallel
+ [(set (reg:SI 0)
+ (unspec_volatile:SI [(match_operand:HI 1 "general_operand" "")
+ (match_operand:HI 2 "immediate_operand" "")
+ (match_operand:HI 3 "immediate_operand" "")]
+ UNSPEC_CALL_GET_ARRAY))
+ (clobber (reg:HI LINK_REGNUM))])
+ (set (match_operand:SI 0 "register_operand" "") (reg:SI 0))]
+ ""
+ "")
+
+;; The actual array get instruction. When the array index is a constant,
+;; an exact instruction may be generated. When the index is variable,
+;; a call to a special function is generated. This code could be
+;; split into individual RTL instructions, but it is so rarely
+;; used, that we won't bother.
+(define_insn "*commsArrayGetInstruction"
+ [(set (reg:SI 0)
+ (unspec_volatile:SI [(match_operand:HI 0 "general_operand" "r,i")
+ (match_operand:HI 1 "immediate_operand" "")
+ (match_operand:HI 2 "immediate_operand" "")]
+ UNSPEC_CALL_GET_ARRAY))
+ (clobber (reg:HI LINK_REGNUM))]
+ ""
+{
+ return picochip_output_get_array (which_alternative, operands);
+})
+
+; Scalar Put instruction.
+(define_insn "commsPut"
+ [(unspec_volatile [(match_operand:HI 0 "const_int_operand" "")
+ (match_operand:SI 1 "register_operand" "r")]
+ UNSPEC_PUT)]
+ ""
+ "PUT %R1,%0\t// PORT(%0) := %R1"
+ [(set_attr "type" "comms")
+ (set_attr "length" "2")])
+
+; Entry point for array put. The operands accepted are:
+; op0 - Value to put
+; op1 - Requested port index
+; op2 - size of port array
+; op3 - base index of port array
+; The arguments are marshalled into the fixed registers, so that
+; the actual put instruction can expand into a call if necessary
+; (e.g., if the index is variable at run-time).
+
+(define_expand "commsArrayPut"
+ [(set (reg:SI 0) (match_operand:SI 0 "general_operand" ""))
+ (parallel
+ [(unspec_volatile [(match_operand:HI 1 "general_operand" "")
+ (match_operand:HI 2 "immediate_operand" "")
+ (match_operand:HI 3 "immediate_operand" "")]
+ UNSPEC_CALL_PUT_ARRAY)
+ (use (reg:SI 0))
+ (clobber (reg:HI LINK_REGNUM))])]
+ ""
+ "")
+
+;; The actual array put instruction. When the array index is a constant,
+;; an exact instruction may be generated. When the index is variable,
+;; a call to a special function is generated. This code could be
+;; split into individual RTL instructions, but it is so rarely
+;; used, that we won't bother.
+(define_insn "*commsArrayPutInstruction"
+ [(unspec_volatile [(match_operand:HI 0 "general_operand" "r,i")
+ (match_operand:HI 1 "immediate_operand" "")
+ (match_operand:HI 2 "immediate_operand" "")]
+ UNSPEC_CALL_PUT_ARRAY)
+ (use (reg:SI 0))
+ (clobber (reg:HI LINK_REGNUM))]
+ ""
+{
+ return picochip_output_put_array (which_alternative, operands);
+})
+
+;; Scalar test port instruction.
+(define_insn "commsTestPort"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (unspec_volatile:HI [(match_operand:HI 1 "const_int_operand" "")]
+ UNSPEC_TESTPORT))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "// %0 := TestPort(%1)\;COPY.1 0,%0 %| TSTPORT %1\;COPYEQ 1,%0"
+ [(set_attr "length" "9")])
+
+; Entry point for array tstport (the actual port index is computed as the
+; sum of the index, and the base).
+;
+; op0 - Test value.
+; op1 - Requested port index
+; op2 - size of port array (constant)
+; op3 - base index of port array (constant)
+
+(define_expand "commsArrayTestPort"
+ [(parallel
+ [(set (match_operand:HI 0 "register_operand" "")
+ (unspec_volatile:HI [(match_operand:HI 1 "general_operand" "")
+ (match_operand:HI 2 "immediate_operand" "")
+ (match_operand:HI 3 "immediate_operand" "")]
+ UNSPEC_CALL_TESTPORT_ARRAY))
+ (clobber (reg:HI LINK_REGNUM))])]
+ ""
+ "")
+
+;; The actual array testport instruction. When the array index is a constant,
+;; an exact instruction may be generated. When the index is variable,
+;; a call to a special function is generated. This code could be
+;; split into individual RTL instructions, but it is so rarely
+;; used, that we won't bother.
+(define_insn "*commsArrayTestportInstruction"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (unspec_volatile:HI [(match_operand:HI 1 "general_operand" "r,i")
+ (match_operand:HI 2 "immediate_operand" "")
+ (match_operand:HI 3 "immediate_operand" "")]
+ UNSPEC_CALL_TESTPORT_ARRAY))
+ (clobber (reg:HI LINK_REGNUM))]
+ ""
+{
+ return picochip_output_testport_array (which_alternative, operands);
+})
+
+;; Merge a TSTPORT instruction with the branch to which it
+;; relates. Often the TSTPORT function (generated by a built-in), is
+;; used to control conditional execution. The normal sequence of
+;; instructions would be:
+;; TSTPORT p
+;; COPYSW temp
+;; AND temp, 0x0008, temp
+;; SUB temp,0,discard
+;; BEQ label
+;; This can be made more efficient by detecting the special case where
+;; the result of a TSTPORT is used to branch, to allow the following
+;; RTL sequence to be generated instead:
+;; TSTPORT p
+;; BEQ label
+;; A big saving in cycles and bytes!
+
+(define_insn_and_split "tstport_branch"
+ [(set (pc)
+ (if_then_else
+ (match_operator 0 "comparison_operator"
+ [(unspec_volatile:HI
+ [(match_operand:HI 1 "const_int_operand" "")]
+ UNSPEC_TESTPORT)
+ (const_int 0)])
+ (label_ref (match_operand 2 "" ""))
+ (pc)))
+ (clobber (reg:CC CC_REGNUM))]
+ ""
+ "#"
+ ""
+ [(set (reg:CC CC_REGNUM)
+ (unspec_volatile:CC [(match_dup 1)] UNSPEC_INTERNAL_TESTPORT))
+ (parallel [(set (pc)
+ (if_then_else
+ (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
+ (label_ref (match_dup 2))
+ (pc)))
+ (use (match_dup 3))])]
+ "{
+ /* Note that the sense of the branch is reversed, since we are
+ * comparing flag != 0. */
+ gcc_assert (GET_CODE(operands[0]) == NE || GET_CODE(operands[0]) == EQ);
+ operands[4] = gen_rtx_fmt_ee(reverse_condition(GET_CODE(operands[0])),
+ GET_MODE(operands[0]), XEXP(operands[0], 0), XEXP(operands[0], 1));
+ operands[3] = GEN_INT (0);
+ }")
+
+;;============================================================================
+;; Epilogue/Epilogue expansion.
+;;============================================================================
+
+(define_expand "prologue"
+ [(clobber (const_int 0))]
+ ""
+{
+ picochip_expand_prologue ();
+ DONE;
+})
+
+(define_expand "epilogue"
+ [(use (const_int 0))]
+ ""
+{
+ picochip_expand_epilogue (FALSE);
+ DONE;
+})
+
+;;============================================================================
+;; Trap instruction. This is used to indicate an error. For the
+;; picoChip processors this is handled by calling a HALT instruction,
+;; which stops the processor.
+;;============================================================================
+
+(define_insn "trap"
+ [(trap_if (const_int 1) (const_int 6))]
+ ""
+ "HALT\t// (Trap)"
+ [(set_attr "length" "2")])
+
+;;============================================================================
+;; Conditional copy instructions. Only equal/not-equal comparisons are
+;; supported. All other types of comparison remain as branch
+;; sequences.
+;;============================================================================
+
+;; Define expand seems to consider the resulting two instructions to be
+;; independent. With a split, guarded by reload, it works correctly.
+(define_expand "movhicc"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (if_then_else:HI (match_operand:HI 1 "" "")
+ (match_operand:HI 2 "register_operand" "0,0")
+ (match_operand:HI 3 "picochip_register_or_immediate_operand" "r,i")))]
+ ""
+ {if (!picochip_check_conditional_copy (operands))
+ FAIL;
+ })
+
+(define_insn_and_split "*checked_movhicc"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (if_then_else:HI (match_operator 1 "picochip_peephole_comparison_operator"
+ [(match_operand:HI 4 "register_operand" "r,r")
+ (match_operand:HI 5 "picochip_comparison_operand" "r,i")])
+ (match_operand:HI 2 "register_operand" "0,0")
+ (match_operand:HI 3 "picochip_register_or_immediate_operand" "r,i")))]
+ ""
+ "#"
+ "reload_completed"
+ [(set (reg:CC CC_REGNUM) (match_dup 1))
+ (parallel [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (if_then_else:HI (match_op_dup:HI 1 [(reg:CC CC_REGNUM) (const_int 0)])
+ (match_operand:HI 2 "picochip_register_or_immediate_operand" "0,0")
+ (match_operand:HI 3 "picochip_register_or_immediate_operand" "r,i")))
+ (use (match_dup 6))])]
+ "{
+ operands[6] = GEN_INT(GET_CODE(operands[0]));
+ }")
+
+;; We dont do any checks here. But this pattern is used only when movhicc
+;; was checked. Put a "use" clause to make sure.
+(define_insn "*conditional_copy"
+ [(set (match_operand:HI 0 "register_operand" "=r,r")
+ (if_then_else:HI
+ (match_operator:HI 4 "picochip_peephole_comparison_operator"
+ [(reg:CC CC_REGNUM) (const_int 0)])
+ (match_operand:HI 1 "register_operand" "0,0")
+ (match_operand:HI 2 "picochip_register_or_immediate_operand" "r,i")))
+ (use (match_operand:HI 3 "const_int_operand" ""))]
+ ""
+{
+
+ gcc_assert (GET_CODE(operands[4]) == EQ || GET_CODE(operands[4]) == NE);
+ /* Note that the comparison is reversed as the pattern matches
+ the *else* part of the if_then_else */
+ switch (GET_CODE(operands[4]))
+ {
+ case EQ: return "COPYNE %2,%0\t// if (NE) %0 := %2";
+ case NE: return "COPYEQ %2,%0\t// if (EQ) %0 := %2";
+ default:
+ gcc_unreachable();
+ }
+}
+ [(set_attr "length" "2")
+ (set_attr "type" "picoAlu,picoAlu")
+ (set_attr "longConstant" "false,true")])
+
+;;============================================================================
+;; Scheduling, including delay slot scheduling.
+;;============================================================================
+
+(automata_option "v")
+(automata_option "ndfa")
+
+;; Define each VLIW slot as a CPU resource. Note the three flavours of
+;; branch. `realBranch' is an actual branch instruction. `macroBranch'
+;; is a directive to the assembler, which may expand into multiple
+;; instructions. `call' is an actual branch instruction, but one which
+;; sets the link register, and hence can't be scheduled alongside
+;; other instructions which set the link register. When the DFA
+;; scheduler is fixed to prevent it scheduling a JL with an R12
+;; setting register, the call type branches can be replaced by
+;; realBranch types instead.
+
+(define_attr "type"
+ "picoAlu,basicAlu,nonCcAlu,mem,call,realBranch,macroBranch,mul,mac,app,comms,unknown"
+ (const_string "unknown"))
+
+(define_attr "schedType" "none,space,speed"
+ (const (symbol_ref "(enum attr_schedType) picochip_schedule_type")))
+
+;; Define whether an instruction uses a long constant.
+
+(define_attr "longConstant"
+ "true,false" (const_string "false"))
+
+;; Define three EU slots.
+(define_query_cpu_unit "slot0,slot1,slot2")
+
+;; Pull in the pipeline descriptions for speed or space scheduling.
+(include "dfa_speed.md")
+(include "dfa_space.md")
+
+; Unknown instructions are assumed to take a single cycle, and use all
+; slots. This enables them to actually output a sequence of
+; instructions without any limitation. For the purposes of
+; scheduling, unknown instructions are a pain, and should be removed
+; completely. This means that RTL patterns should always be used to
+; reduce complex sequences of instructions to individual instructions.
+(define_insn_reservation "unknownInsn" 1
+ (eq_attr "type" "unknown")
+ "(slot0+slot1+slot2)")
+
+; Allow any non-branch instructions to be placed in the branch
+; slot. Branch slots are always executed.
+(define_delay (eq_attr "type" "realBranch,call")
+ [(eq_attr "type" "!realBranch,macroBranch,call,unknown") (nil) (nil)])