aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/config/avr/avr.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/config/avr/avr.c')
-rw-r--r--gcc-4.9/gcc/config/avr/avr.c12522
1 files changed, 12522 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/config/avr/avr.c b/gcc-4.9/gcc/config/avr/avr.c
new file mode 100644
index 000000000..8ca7de0b3
--- /dev/null
+++ b/gcc-4.9/gcc/config/avr/avr.c
@@ -0,0 +1,12522 @@
+/* Subroutines for insn-output.c for ATMEL AVR micro controllers
+ Copyright (C) 1998-2014 Free Software Foundation, Inc.
+ Contributed by Denis Chertykov (chertykov@gmail.com)
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3, or (at your option)
+ any later version.
+
+ GCC is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING3. If not see
+ <http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "insn-config.h"
+#include "conditions.h"
+#include "insn-attr.h"
+#include "insn-codes.h"
+#include "flags.h"
+#include "reload.h"
+#include "tree.h"
+#include "print-tree.h"
+#include "calls.h"
+#include "stor-layout.h"
+#include "stringpool.h"
+#include "output.h"
+#include "expr.h"
+#include "c-family/c-common.h"
+#include "diagnostic-core.h"
+#include "obstack.h"
+#include "function.h"
+#include "recog.h"
+#include "optabs.h"
+#include "ggc.h"
+#include "langhooks.h"
+#include "tm_p.h"
+#include "target.h"
+#include "target-def.h"
+#include "params.h"
+#include "df.h"
+
+/* Maximal allowed offset for an address in the LD command */
+#define MAX_LD_OFFSET(MODE) (64 - (signed)GET_MODE_SIZE (MODE))
+
+/* Return true if STR starts with PREFIX and false, otherwise. */
+#define STR_PREFIX_P(STR,PREFIX) (0 == strncmp (STR, PREFIX, strlen (PREFIX)))
+
+/* The 4 bits starting at SECTION_MACH_DEP are reserved to store the
+ address space where data is to be located.
+ As the only non-generic address spaces are all located in flash,
+ this can be used to test if data shall go into some .progmem* section.
+ This must be the rightmost field of machine dependent section flags. */
+#define AVR_SECTION_PROGMEM (0xf * SECTION_MACH_DEP)
+
+/* Similar 4-bit region for SYMBOL_REF_FLAGS. */
+#define AVR_SYMBOL_FLAG_PROGMEM (0xf * SYMBOL_FLAG_MACH_DEP)
+
+/* Similar 4-bit region in SYMBOL_REF_FLAGS:
+ Set address-space AS in SYMBOL_REF_FLAGS of SYM */
+#define AVR_SYMBOL_SET_ADDR_SPACE(SYM,AS) \
+ do { \
+ SYMBOL_REF_FLAGS (sym) &= ~AVR_SYMBOL_FLAG_PROGMEM; \
+ SYMBOL_REF_FLAGS (sym) |= (AS) * SYMBOL_FLAG_MACH_DEP; \
+ } while (0)
+
+/* Read address-space from SYMBOL_REF_FLAGS of SYM */
+#define AVR_SYMBOL_GET_ADDR_SPACE(SYM) \
+ ((SYMBOL_REF_FLAGS (sym) & AVR_SYMBOL_FLAG_PROGMEM) \
+ / SYMBOL_FLAG_MACH_DEP)
+
+/* Known address spaces. The order must be the same as in the respective
+ enum from avr.h (or designated initialized must be used). */
+const avr_addrspace_t avr_addrspace[ADDR_SPACE_COUNT] =
+{
+ { ADDR_SPACE_RAM, 0, 2, "", 0, NULL },
+ { ADDR_SPACE_FLASH, 1, 2, "__flash", 0, ".progmem.data" },
+ { ADDR_SPACE_FLASH1, 1, 2, "__flash1", 1, ".progmem1.data" },
+ { ADDR_SPACE_FLASH2, 1, 2, "__flash2", 2, ".progmem2.data" },
+ { ADDR_SPACE_FLASH3, 1, 2, "__flash3", 3, ".progmem3.data" },
+ { ADDR_SPACE_FLASH4, 1, 2, "__flash4", 4, ".progmem4.data" },
+ { ADDR_SPACE_FLASH5, 1, 2, "__flash5", 5, ".progmem5.data" },
+ { ADDR_SPACE_MEMX, 1, 3, "__memx", 0, ".progmemx.data" },
+};
+
+
+/* Holding RAM addresses of some SFRs used by the compiler and that
+ are unique over all devices in an architecture like 'avr4'. */
+
+typedef struct
+{
+ /* SREG: The processor status */
+ int sreg;
+
+ /* RAMPX, RAMPY, RAMPD and CCP of XMEGA */
+ int ccp;
+ int rampd;
+ int rampx;
+ int rampy;
+
+ /* RAMPZ: The high byte of 24-bit address used with ELPM */
+ int rampz;
+
+ /* SP: The stack pointer and its low and high byte */
+ int sp_l;
+ int sp_h;
+} avr_addr_t;
+
+static avr_addr_t avr_addr;
+
+
+/* Prototypes for local helper functions. */
+
+static const char* out_movqi_r_mr (rtx, rtx[], int*);
+static const char* out_movhi_r_mr (rtx, rtx[], int*);
+static const char* out_movsi_r_mr (rtx, rtx[], int*);
+static const char* out_movqi_mr_r (rtx, rtx[], int*);
+static const char* out_movhi_mr_r (rtx, rtx[], int*);
+static const char* out_movsi_mr_r (rtx, rtx[], int*);
+
+static int get_sequence_length (rtx insns);
+static int sequent_regs_live (void);
+static const char *ptrreg_to_str (int);
+static const char *cond_string (enum rtx_code);
+static int avr_num_arg_regs (enum machine_mode, const_tree);
+static int avr_operand_rtx_cost (rtx, enum machine_mode, enum rtx_code,
+ int, bool);
+static void output_reload_in_const (rtx*, rtx, int*, bool);
+static struct machine_function * avr_init_machine_status (void);
+
+
+/* Prototypes for hook implementors if needed before their implementation. */
+
+static bool avr_rtx_costs (rtx, int, int, int, int*, bool);
+
+
+/* Allocate registers from r25 to r8 for parameters for function calls. */
+#define FIRST_CUM_REG 26
+
+/* Implicit target register of LPM instruction (R0) */
+extern GTY(()) rtx lpm_reg_rtx;
+rtx lpm_reg_rtx;
+
+/* (Implicit) address register of LPM instruction (R31:R30 = Z) */
+extern GTY(()) rtx lpm_addr_reg_rtx;
+rtx lpm_addr_reg_rtx;
+
+/* Temporary register RTX (reg:QI TMP_REGNO) */
+extern GTY(()) rtx tmp_reg_rtx;
+rtx tmp_reg_rtx;
+
+/* Zeroed register RTX (reg:QI ZERO_REGNO) */
+extern GTY(()) rtx zero_reg_rtx;
+rtx zero_reg_rtx;
+
+/* RTXs for all general purpose registers as QImode */
+extern GTY(()) rtx all_regs_rtx[32];
+rtx all_regs_rtx[32];
+
+/* SREG, the processor status */
+extern GTY(()) rtx sreg_rtx;
+rtx sreg_rtx;
+
+/* RAMP* special function registers */
+extern GTY(()) rtx rampd_rtx;
+extern GTY(()) rtx rampx_rtx;
+extern GTY(()) rtx rampy_rtx;
+extern GTY(()) rtx rampz_rtx;
+rtx rampd_rtx;
+rtx rampx_rtx;
+rtx rampy_rtx;
+rtx rampz_rtx;
+
+/* RTX containing the strings "" and "e", respectively */
+static GTY(()) rtx xstring_empty;
+static GTY(()) rtx xstring_e;
+
+/* Current architecture. */
+const avr_arch_t *avr_current_arch;
+
+/* Current device. */
+const avr_mcu_t *avr_current_device;
+
+/* Section to put switch tables in. */
+static GTY(()) section *progmem_swtable_section;
+
+/* Unnamed sections associated to __attribute__((progmem)) aka. PROGMEM
+ or to address space __flash* or __memx. Only used as singletons inside
+ avr_asm_select_section, but it must not be local there because of GTY. */
+static GTY(()) section *progmem_section[ADDR_SPACE_COUNT];
+
+/* Condition for insns/expanders from avr-dimode.md. */
+bool avr_have_dimode = true;
+
+/* To track if code will use .bss and/or .data. */
+bool avr_need_clear_bss_p = false;
+bool avr_need_copy_data_p = false;
+
+
+/* Transform UP into lowercase and write the result to LO.
+ You must provide enough space for LO. Return LO. */
+
+static char*
+avr_tolower (char *lo, const char *up)
+{
+ char *lo0 = lo;
+
+ for (; *up; up++, lo++)
+ *lo = TOLOWER (*up);
+
+ *lo = '\0';
+
+ return lo0;
+}
+
+
+/* Custom function to count number of set bits. */
+
+static inline int
+avr_popcount (unsigned int val)
+{
+ int pop = 0;
+
+ while (val)
+ {
+ val &= val-1;
+ pop++;
+ }
+
+ return pop;
+}
+
+
+/* Constraint helper function. XVAL is a CONST_INT or a CONST_DOUBLE.
+ Return true if the least significant N_BYTES bytes of XVAL all have a
+ popcount in POP_MASK and false, otherwise. POP_MASK represents a subset
+ of integers which contains an integer N iff bit N of POP_MASK is set. */
+
+bool
+avr_popcount_each_byte (rtx xval, int n_bytes, int pop_mask)
+{
+ int i;
+
+ enum machine_mode mode = GET_MODE (xval);
+
+ if (VOIDmode == mode)
+ mode = SImode;
+
+ for (i = 0; i < n_bytes; i++)
+ {
+ rtx xval8 = simplify_gen_subreg (QImode, xval, mode, i);
+ unsigned int val8 = UINTVAL (xval8) & GET_MODE_MASK (QImode);
+
+ if (0 == (pop_mask & (1 << avr_popcount (val8))))
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Access some RTX as INT_MODE. If X is a CONST_FIXED we can get
+ the bit representation of X by "casting" it to CONST_INT. */
+
+rtx
+avr_to_int_mode (rtx x)
+{
+ enum machine_mode mode = GET_MODE (x);
+
+ return VOIDmode == mode
+ ? x
+ : simplify_gen_subreg (int_mode_for_mode (mode), x, mode, 0);
+}
+
+
+/* Implement `TARGET_OPTION_OVERRIDE'. */
+
+static void
+avr_option_override (void)
+{
+ flag_delete_null_pointer_checks = 0;
+
+ /* caller-save.c looks for call-clobbered hard registers that are assigned
+ to pseudos that cross calls and tries so save-restore them around calls
+ in order to reduce the number of stack slots needed.
+
+ This might lead to situations where reload is no more able to cope
+ with the challenge of AVR's very few address registers and fails to
+ perform the requested spills. */
+
+ if (avr_strict_X)
+ flag_caller_saves = 0;
+
+ /* Unwind tables currently require a frame pointer for correctness,
+ see toplev.c:process_options(). */
+
+ if ((flag_unwind_tables
+ || flag_non_call_exceptions
+ || flag_asynchronous_unwind_tables)
+ && !ACCUMULATE_OUTGOING_ARGS)
+ {
+ flag_omit_frame_pointer = 0;
+ }
+
+ if (flag_pic == 1)
+ warning (OPT_fpic, "-fpic is not supported");
+ if (flag_pic == 2)
+ warning (OPT_fPIC, "-fPIC is not supported");
+ if (flag_pie == 1)
+ warning (OPT_fpie, "-fpie is not supported");
+ if (flag_pie == 2)
+ warning (OPT_fPIE, "-fPIE is not supported");
+
+ avr_current_device = &avr_mcu_types[avr_mcu_index];
+ avr_current_arch = &avr_arch_types[avr_current_device->arch];
+
+ /* RAM addresses of some SFRs common to all devices in respective arch. */
+
+ /* SREG: Status Register containing flags like I (global IRQ) */
+ avr_addr.sreg = 0x3F + avr_current_arch->sfr_offset;
+
+ /* RAMPZ: Address' high part when loading via ELPM */
+ avr_addr.rampz = 0x3B + avr_current_arch->sfr_offset;
+
+ avr_addr.rampy = 0x3A + avr_current_arch->sfr_offset;
+ avr_addr.rampx = 0x39 + avr_current_arch->sfr_offset;
+ avr_addr.rampd = 0x38 + avr_current_arch->sfr_offset;
+ avr_addr.ccp = 0x34 + avr_current_arch->sfr_offset;
+
+ /* SP: Stack Pointer (SP_H:SP_L) */
+ avr_addr.sp_l = 0x3D + avr_current_arch->sfr_offset;
+ avr_addr.sp_h = avr_addr.sp_l + 1;
+
+ init_machine_status = avr_init_machine_status;
+
+ avr_log_set_avr_log();
+}
+
+/* Function to set up the backend function structure. */
+
+static struct machine_function *
+avr_init_machine_status (void)
+{
+ return ggc_alloc_cleared_machine_function ();
+}
+
+
+/* Implement `INIT_EXPANDERS'. */
+/* The function works like a singleton. */
+
+void
+avr_init_expanders (void)
+{
+ int regno;
+
+ for (regno = 0; regno < 32; regno ++)
+ all_regs_rtx[regno] = gen_rtx_REG (QImode, regno);
+
+ lpm_reg_rtx = all_regs_rtx[LPM_REGNO];
+ tmp_reg_rtx = all_regs_rtx[TMP_REGNO];
+ zero_reg_rtx = all_regs_rtx[ZERO_REGNO];
+
+ lpm_addr_reg_rtx = gen_rtx_REG (HImode, REG_Z);
+
+ sreg_rtx = gen_rtx_MEM (QImode, GEN_INT (avr_addr.sreg));
+ rampd_rtx = gen_rtx_MEM (QImode, GEN_INT (avr_addr.rampd));
+ rampx_rtx = gen_rtx_MEM (QImode, GEN_INT (avr_addr.rampx));
+ rampy_rtx = gen_rtx_MEM (QImode, GEN_INT (avr_addr.rampy));
+ rampz_rtx = gen_rtx_MEM (QImode, GEN_INT (avr_addr.rampz));
+
+ xstring_empty = gen_rtx_CONST_STRING (VOIDmode, "");
+ xstring_e = gen_rtx_CONST_STRING (VOIDmode, "e");
+}
+
+
+/* Implement `REGNO_REG_CLASS'. */
+/* Return register class for register R. */
+
+enum reg_class
+avr_regno_reg_class (int r)
+{
+ static const enum reg_class reg_class_tab[] =
+ {
+ R0_REG,
+ /* r1 - r15 */
+ NO_LD_REGS, NO_LD_REGS, NO_LD_REGS,
+ NO_LD_REGS, NO_LD_REGS, NO_LD_REGS, NO_LD_REGS,
+ NO_LD_REGS, NO_LD_REGS, NO_LD_REGS, NO_LD_REGS,
+ NO_LD_REGS, NO_LD_REGS, NO_LD_REGS, NO_LD_REGS,
+ /* r16 - r23 */
+ SIMPLE_LD_REGS, SIMPLE_LD_REGS, SIMPLE_LD_REGS, SIMPLE_LD_REGS,
+ SIMPLE_LD_REGS, SIMPLE_LD_REGS, SIMPLE_LD_REGS, SIMPLE_LD_REGS,
+ /* r24, r25 */
+ ADDW_REGS, ADDW_REGS,
+ /* X: r26, 27 */
+ POINTER_X_REGS, POINTER_X_REGS,
+ /* Y: r28, r29 */
+ POINTER_Y_REGS, POINTER_Y_REGS,
+ /* Z: r30, r31 */
+ POINTER_Z_REGS, POINTER_Z_REGS,
+ /* SP: SPL, SPH */
+ STACK_REG, STACK_REG
+ };
+
+ if (r <= 33)
+ return reg_class_tab[r];
+
+ return ALL_REGS;
+}
+
+
+/* Implement `TARGET_SCALAR_MODE_SUPPORTED_P'. */
+
+static bool
+avr_scalar_mode_supported_p (enum machine_mode mode)
+{
+ if (ALL_FIXED_POINT_MODE_P (mode))
+ return true;
+
+ if (PSImode == mode)
+ return true;
+
+ return default_scalar_mode_supported_p (mode);
+}
+
+
+/* Return TRUE if DECL is a VAR_DECL located in flash and FALSE, otherwise. */
+
+static bool
+avr_decl_flash_p (tree decl)
+{
+ if (TREE_CODE (decl) != VAR_DECL
+ || TREE_TYPE (decl) == error_mark_node)
+ {
+ return false;
+ }
+
+ return !ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (TREE_TYPE (decl)));
+}
+
+
+/* Return TRUE if DECL is a VAR_DECL located in the 24-bit flash
+ address space and FALSE, otherwise. */
+
+static bool
+avr_decl_memx_p (tree decl)
+{
+ if (TREE_CODE (decl) != VAR_DECL
+ || TREE_TYPE (decl) == error_mark_node)
+ {
+ return false;
+ }
+
+ return (ADDR_SPACE_MEMX == TYPE_ADDR_SPACE (TREE_TYPE (decl)));
+}
+
+
+/* Return TRUE if X is a MEM rtx located in flash and FALSE, otherwise. */
+
+bool
+avr_mem_flash_p (rtx x)
+{
+ return (MEM_P (x)
+ && !ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x)));
+}
+
+
+/* Return TRUE if X is a MEM rtx located in the 24-bit flash
+ address space and FALSE, otherwise. */
+
+bool
+avr_mem_memx_p (rtx x)
+{
+ return (MEM_P (x)
+ && ADDR_SPACE_MEMX == MEM_ADDR_SPACE (x));
+}
+
+
+/* A helper for the subsequent function attribute used to dig for
+ attribute 'name' in a FUNCTION_DECL or FUNCTION_TYPE */
+
+static inline int
+avr_lookup_function_attribute1 (const_tree func, const char *name)
+{
+ if (FUNCTION_DECL == TREE_CODE (func))
+ {
+ if (NULL_TREE != lookup_attribute (name, DECL_ATTRIBUTES (func)))
+ {
+ return true;
+ }
+
+ func = TREE_TYPE (func);
+ }
+
+ gcc_assert (TREE_CODE (func) == FUNCTION_TYPE
+ || TREE_CODE (func) == METHOD_TYPE);
+
+ return NULL_TREE != lookup_attribute (name, TYPE_ATTRIBUTES (func));
+}
+
+/* Return nonzero if FUNC is a naked function. */
+
+static int
+avr_naked_function_p (tree func)
+{
+ return avr_lookup_function_attribute1 (func, "naked");
+}
+
+/* Return nonzero if FUNC is an interrupt function as specified
+ by the "interrupt" attribute. */
+
+static int
+avr_interrupt_function_p (tree func)
+{
+ return avr_lookup_function_attribute1 (func, "interrupt");
+}
+
+/* Return nonzero if FUNC is a signal function as specified
+ by the "signal" attribute. */
+
+static int
+avr_signal_function_p (tree func)
+{
+ return avr_lookup_function_attribute1 (func, "signal");
+}
+
+/* Return nonzero if FUNC is an OS_task function. */
+
+static int
+avr_OS_task_function_p (tree func)
+{
+ return avr_lookup_function_attribute1 (func, "OS_task");
+}
+
+/* Return nonzero if FUNC is an OS_main function. */
+
+static int
+avr_OS_main_function_p (tree func)
+{
+ return avr_lookup_function_attribute1 (func, "OS_main");
+}
+
+
+/* Implement `TARGET_SET_CURRENT_FUNCTION'. */
+/* Sanity cheching for above function attributes. */
+
+static void
+avr_set_current_function (tree decl)
+{
+ location_t loc;
+ const char *isr;
+
+ if (decl == NULL_TREE
+ || current_function_decl == NULL_TREE
+ || current_function_decl == error_mark_node
+ || ! cfun->machine
+ || cfun->machine->attributes_checked_p)
+ return;
+
+ loc = DECL_SOURCE_LOCATION (decl);
+
+ cfun->machine->is_naked = avr_naked_function_p (decl);
+ cfun->machine->is_signal = avr_signal_function_p (decl);
+ cfun->machine->is_interrupt = avr_interrupt_function_p (decl);
+ cfun->machine->is_OS_task = avr_OS_task_function_p (decl);
+ cfun->machine->is_OS_main = avr_OS_main_function_p (decl);
+
+ isr = cfun->machine->is_interrupt ? "interrupt" : "signal";
+
+ /* Too much attributes make no sense as they request conflicting features. */
+
+ if (cfun->machine->is_OS_task + cfun->machine->is_OS_main
+ + (cfun->machine->is_signal || cfun->machine->is_interrupt) > 1)
+ error_at (loc, "function attributes %qs, %qs and %qs are mutually"
+ " exclusive", "OS_task", "OS_main", isr);
+
+ /* 'naked' will hide effects of 'OS_task' and 'OS_main'. */
+
+ if (cfun->machine->is_naked
+ && (cfun->machine->is_OS_task || cfun->machine->is_OS_main))
+ warning_at (loc, OPT_Wattributes, "function attributes %qs and %qs have"
+ " no effect on %qs function", "OS_task", "OS_main", "naked");
+
+ if (cfun->machine->is_interrupt || cfun->machine->is_signal)
+ {
+ tree args = TYPE_ARG_TYPES (TREE_TYPE (decl));
+ tree ret = TREE_TYPE (TREE_TYPE (decl));
+ const char *name;
+
+ name = DECL_ASSEMBLER_NAME_SET_P (decl)
+ ? IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl))
+ : IDENTIFIER_POINTER (DECL_NAME (decl));
+
+ /* Skip a leading '*' that might still prefix the assembler name,
+ e.g. in non-LTO runs. */
+
+ name = default_strip_name_encoding (name);
+
+ /* Silently ignore 'signal' if 'interrupt' is present. AVR-LibC startet
+ using this when it switched from SIGNAL and INTERRUPT to ISR. */
+
+ if (cfun->machine->is_interrupt)
+ cfun->machine->is_signal = 0;
+
+ /* Interrupt handlers must be void __vector (void) functions. */
+
+ if (args && TREE_CODE (TREE_VALUE (args)) != VOID_TYPE)
+ error_at (loc, "%qs function cannot have arguments", isr);
+
+ if (TREE_CODE (ret) != VOID_TYPE)
+ error_at (loc, "%qs function cannot return a value", isr);
+
+ /* If the function has the 'signal' or 'interrupt' attribute, ensure
+ that the name of the function is "__vector_NN" so as to catch
+ when the user misspells the vector name. */
+
+ if (!STR_PREFIX_P (name, "__vector"))
+ warning_at (loc, 0, "%qs appears to be a misspelled %s handler",
+ name, isr);
+ }
+
+ /* Don't print the above diagnostics more than once. */
+
+ cfun->machine->attributes_checked_p = 1;
+}
+
+
+/* Implement `ACCUMULATE_OUTGOING_ARGS'. */
+
+int
+avr_accumulate_outgoing_args (void)
+{
+ if (!cfun)
+ return TARGET_ACCUMULATE_OUTGOING_ARGS;
+
+ /* FIXME: For setjmp and in avr_builtin_setjmp_frame_value we don't know
+ what offset is correct. In some cases it is relative to
+ virtual_outgoing_args_rtx and in others it is relative to
+ virtual_stack_vars_rtx. For example code see
+ gcc.c-torture/execute/built-in-setjmp.c
+ gcc.c-torture/execute/builtins/sprintf-chk.c */
+
+ return (TARGET_ACCUMULATE_OUTGOING_ARGS
+ && !(cfun->calls_setjmp
+ || cfun->has_nonlocal_label));
+}
+
+
+/* Report contribution of accumulated outgoing arguments to stack size. */
+
+static inline int
+avr_outgoing_args_size (void)
+{
+ return ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0;
+}
+
+
+/* Implement `STARTING_FRAME_OFFSET'. */
+/* This is the offset from the frame pointer register to the first stack slot
+ that contains a variable living in the frame. */
+
+int
+avr_starting_frame_offset (void)
+{
+ return 1 + avr_outgoing_args_size ();
+}
+
+
+/* Return the number of hard registers to push/pop in the prologue/epilogue
+ of the current function, and optionally store these registers in SET. */
+
+static int
+avr_regs_to_save (HARD_REG_SET *set)
+{
+ int reg, count;
+ int int_or_sig_p = cfun->machine->is_interrupt || cfun->machine->is_signal;
+
+ if (set)
+ CLEAR_HARD_REG_SET (*set);
+ count = 0;
+
+ /* No need to save any registers if the function never returns or
+ has the "OS_task" or "OS_main" attribute. */
+
+ if (TREE_THIS_VOLATILE (current_function_decl)
+ || cfun->machine->is_OS_task
+ || cfun->machine->is_OS_main)
+ return 0;
+
+ for (reg = 0; reg < 32; reg++)
+ {
+ /* Do not push/pop __tmp_reg__, __zero_reg__, as well as
+ any global register variables. */
+
+ if (fixed_regs[reg])
+ continue;
+
+ if ((int_or_sig_p && !crtl->is_leaf && call_used_regs[reg])
+ || (df_regs_ever_live_p (reg)
+ && (int_or_sig_p || !call_used_regs[reg])
+ /* Don't record frame pointer registers here. They are treated
+ indivitually in prologue. */
+ && !(frame_pointer_needed
+ && (reg == REG_Y || reg == (REG_Y+1)))))
+ {
+ if (set)
+ SET_HARD_REG_BIT (*set, reg);
+ count++;
+ }
+ }
+ return count;
+}
+
+
+/* Implement `TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS' */
+
+static bool
+avr_allocate_stack_slots_for_args (void)
+{
+ return !cfun->machine->is_naked;
+}
+
+
+/* Return true if register FROM can be eliminated via register TO. */
+
+static bool
+avr_can_eliminate (const int from, const int to)
+{
+ return ((frame_pointer_needed && to == FRAME_POINTER_REGNUM)
+ || !frame_pointer_needed);
+}
+
+
+/* Implement `TARGET_WARN_FUNC_RETURN'. */
+
+static bool
+avr_warn_func_return (tree decl)
+{
+ /* Naked functions are implemented entirely in assembly, including the
+ return sequence, so suppress warnings about this. */
+
+ return !avr_naked_function_p (decl);
+}
+
+/* Compute offset between arg_pointer and frame_pointer. */
+
+int
+avr_initial_elimination_offset (int from, int to)
+{
+ if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
+ return 0;
+ else
+ {
+ int offset = frame_pointer_needed ? 2 : 0;
+ int avr_pc_size = AVR_HAVE_EIJMP_EICALL ? 3 : 2;
+
+ offset += avr_regs_to_save (NULL);
+ return (get_frame_size () + avr_outgoing_args_size()
+ + avr_pc_size + 1 + offset);
+ }
+}
+
+
+/* Helper for the function below. */
+
+static void
+avr_adjust_type_node (tree *node, enum machine_mode mode, int sat_p)
+{
+ *node = make_node (FIXED_POINT_TYPE);
+ TYPE_SATURATING (*node) = sat_p;
+ TYPE_UNSIGNED (*node) = UNSIGNED_FIXED_POINT_MODE_P (mode);
+ TYPE_IBIT (*node) = GET_MODE_IBIT (mode);
+ TYPE_FBIT (*node) = GET_MODE_FBIT (mode);
+ TYPE_PRECISION (*node) = GET_MODE_BITSIZE (mode);
+ TYPE_ALIGN (*node) = 8;
+ SET_TYPE_MODE (*node, mode);
+
+ layout_type (*node);
+}
+
+
+/* Implement `TARGET_BUILD_BUILTIN_VA_LIST'. */
+
+static tree
+avr_build_builtin_va_list (void)
+{
+ /* avr-modes.def adjusts [U]TA to be 64-bit modes with 48 fractional bits.
+ This is more appropriate for the 8-bit machine AVR than 128-bit modes.
+ The ADJUST_IBIT/FBIT are handled in toplev:init_adjust_machine_modes()
+ which is auto-generated by genmodes, but the compiler assigns [U]DAmode
+ to the long long accum modes instead of the desired [U]TAmode.
+
+ Fix this now, right after node setup in tree.c:build_common_tree_nodes().
+ This must run before c-cppbuiltin.c:builtin_define_fixed_point_constants()
+ which built-in defines macros like __ULLACCUM_FBIT__ that are used by
+ libgcc to detect IBIT and FBIT. */
+
+ avr_adjust_type_node (&ta_type_node, TAmode, 0);
+ avr_adjust_type_node (&uta_type_node, UTAmode, 0);
+ avr_adjust_type_node (&sat_ta_type_node, TAmode, 1);
+ avr_adjust_type_node (&sat_uta_type_node, UTAmode, 1);
+
+ unsigned_long_long_accum_type_node = uta_type_node;
+ long_long_accum_type_node = ta_type_node;
+ sat_unsigned_long_long_accum_type_node = sat_uta_type_node;
+ sat_long_long_accum_type_node = sat_ta_type_node;
+
+ /* Dispatch to the default handler. */
+
+ return std_build_builtin_va_list ();
+}
+
+
+/* Implement `TARGET_BUILTIN_SETJMP_FRAME_VALUE'. */
+/* Actual start of frame is virtual_stack_vars_rtx this is offset from
+ frame pointer by +STARTING_FRAME_OFFSET.
+ Using saved frame = virtual_stack_vars_rtx - STARTING_FRAME_OFFSET
+ avoids creating add/sub of offset in nonlocal goto and setjmp. */
+
+static rtx
+avr_builtin_setjmp_frame_value (void)
+{
+ rtx xval = gen_reg_rtx (Pmode);
+ emit_insn (gen_subhi3 (xval, virtual_stack_vars_rtx,
+ gen_int_mode (STARTING_FRAME_OFFSET, Pmode)));
+ return xval;
+}
+
+
+/* Return contents of MEM at frame pointer + stack size + 1 (+2 if 3-byte PC).
+ This is return address of function. */
+
+rtx
+avr_return_addr_rtx (int count, rtx tem)
+{
+ rtx r;
+
+ /* Can only return this function's return address. Others not supported. */
+ if (count)
+ return NULL;
+
+ if (AVR_3_BYTE_PC)
+ {
+ r = gen_rtx_SYMBOL_REF (Pmode, ".L__stack_usage+2");
+ warning (0, "%<builtin_return_address%> contains only 2 bytes"
+ " of address");
+ }
+ else
+ r = gen_rtx_SYMBOL_REF (Pmode, ".L__stack_usage+1");
+
+ r = gen_rtx_PLUS (Pmode, tem, r);
+ r = gen_frame_mem (Pmode, memory_address (Pmode, r));
+ r = gen_rtx_ROTATE (HImode, r, GEN_INT (8));
+ return r;
+}
+
+/* Return 1 if the function epilogue is just a single "ret". */
+
+int
+avr_simple_epilogue (void)
+{
+ return (! frame_pointer_needed
+ && get_frame_size () == 0
+ && avr_outgoing_args_size() == 0
+ && avr_regs_to_save (NULL) == 0
+ && ! cfun->machine->is_interrupt
+ && ! cfun->machine->is_signal
+ && ! cfun->machine->is_naked
+ && ! TREE_THIS_VOLATILE (current_function_decl));
+}
+
+/* This function checks sequence of live registers. */
+
+static int
+sequent_regs_live (void)
+{
+ int reg;
+ int live_seq = 0;
+ int cur_seq = 0;
+
+ for (reg = 0; reg < 18; ++reg)
+ {
+ if (fixed_regs[reg])
+ {
+ /* Don't recognize sequences that contain global register
+ variables. */
+
+ if (live_seq != 0)
+ return 0;
+ else
+ continue;
+ }
+
+ if (!call_used_regs[reg])
+ {
+ if (df_regs_ever_live_p (reg))
+ {
+ ++live_seq;
+ ++cur_seq;
+ }
+ else
+ cur_seq = 0;
+ }
+ }
+
+ if (!frame_pointer_needed)
+ {
+ if (df_regs_ever_live_p (REG_Y))
+ {
+ ++live_seq;
+ ++cur_seq;
+ }
+ else
+ cur_seq = 0;
+
+ if (df_regs_ever_live_p (REG_Y+1))
+ {
+ ++live_seq;
+ ++cur_seq;
+ }
+ else
+ cur_seq = 0;
+ }
+ else
+ {
+ cur_seq += 2;
+ live_seq += 2;
+ }
+ return (cur_seq == live_seq) ? live_seq : 0;
+}
+
+/* Obtain the length sequence of insns. */
+
+int
+get_sequence_length (rtx insns)
+{
+ rtx insn;
+ int length;
+
+ for (insn = insns, length = 0; insn; insn = NEXT_INSN (insn))
+ length += get_attr_length (insn);
+
+ return length;
+}
+
+
+/* Implement `INCOMING_RETURN_ADDR_RTX'. */
+
+rtx
+avr_incoming_return_addr_rtx (void)
+{
+ /* The return address is at the top of the stack. Note that the push
+ was via post-decrement, which means the actual address is off by one. */
+ return gen_frame_mem (HImode, plus_constant (Pmode, stack_pointer_rtx, 1));
+}
+
+/* Helper for expand_prologue. Emit a push of a byte register. */
+
+static void
+emit_push_byte (unsigned regno, bool frame_related_p)
+{
+ rtx mem, reg, insn;
+
+ mem = gen_rtx_POST_DEC (HImode, stack_pointer_rtx);
+ mem = gen_frame_mem (QImode, mem);
+ reg = gen_rtx_REG (QImode, regno);
+
+ insn = emit_insn (gen_rtx_SET (VOIDmode, mem, reg));
+ if (frame_related_p)
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ cfun->machine->stack_usage++;
+}
+
+
+/* Helper for expand_prologue. Emit a push of a SFR via tmp_reg.
+ SFR is a MEM representing the memory location of the SFR.
+ If CLR_P then clear the SFR after the push using zero_reg. */
+
+static void
+emit_push_sfr (rtx sfr, bool frame_related_p, bool clr_p)
+{
+ rtx insn;
+
+ gcc_assert (MEM_P (sfr));
+
+ /* IN __tmp_reg__, IO(SFR) */
+ insn = emit_move_insn (tmp_reg_rtx, sfr);
+ if (frame_related_p)
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ /* PUSH __tmp_reg__ */
+ emit_push_byte (TMP_REGNO, frame_related_p);
+
+ if (clr_p)
+ {
+ /* OUT IO(SFR), __zero_reg__ */
+ insn = emit_move_insn (sfr, const0_rtx);
+ if (frame_related_p)
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+}
+
+static void
+avr_prologue_setup_frame (HOST_WIDE_INT size, HARD_REG_SET set)
+{
+ rtx insn;
+ bool isr_p = cfun->machine->is_interrupt || cfun->machine->is_signal;
+ int live_seq = sequent_regs_live ();
+
+ HOST_WIDE_INT size_max
+ = (HOST_WIDE_INT) GET_MODE_MASK (AVR_HAVE_8BIT_SP ? QImode : Pmode);
+
+ bool minimize = (TARGET_CALL_PROLOGUES
+ && size < size_max
+ && live_seq
+ && !isr_p
+ && !cfun->machine->is_OS_task
+ && !cfun->machine->is_OS_main);
+
+ if (minimize
+ && (frame_pointer_needed
+ || avr_outgoing_args_size() > 8
+ || (AVR_2_BYTE_PC && live_seq > 6)
+ || live_seq > 7))
+ {
+ rtx pattern;
+ int first_reg, reg, offset;
+
+ emit_move_insn (gen_rtx_REG (HImode, REG_X),
+ gen_int_mode (size, HImode));
+
+ pattern = gen_call_prologue_saves (gen_int_mode (live_seq, HImode),
+ gen_int_mode (live_seq+size, HImode));
+ insn = emit_insn (pattern);
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ /* Describe the effect of the unspec_volatile call to prologue_saves.
+ Note that this formulation assumes that add_reg_note pushes the
+ notes to the front. Thus we build them in the reverse order of
+ how we want dwarf2out to process them. */
+
+ /* The function does always set frame_pointer_rtx, but whether that
+ is going to be permanent in the function is frame_pointer_needed. */
+
+ add_reg_note (insn, REG_CFA_ADJUST_CFA,
+ gen_rtx_SET (VOIDmode, (frame_pointer_needed
+ ? frame_pointer_rtx
+ : stack_pointer_rtx),
+ plus_constant (Pmode, stack_pointer_rtx,
+ -(size + live_seq))));
+
+ /* Note that live_seq always contains r28+r29, but the other
+ registers to be saved are all below 18. */
+
+ first_reg = 18 - (live_seq - 2);
+
+ for (reg = 29, offset = -live_seq + 1;
+ reg >= first_reg;
+ reg = (reg == 28 ? 17 : reg - 1), ++offset)
+ {
+ rtx m, r;
+
+ m = gen_rtx_MEM (QImode, plus_constant (Pmode, stack_pointer_rtx,
+ offset));
+ r = gen_rtx_REG (QImode, reg);
+ add_reg_note (insn, REG_CFA_OFFSET, gen_rtx_SET (VOIDmode, m, r));
+ }
+
+ cfun->machine->stack_usage += size + live_seq;
+ }
+ else /* !minimize */
+ {
+ int reg;
+
+ for (reg = 0; reg < 32; ++reg)
+ if (TEST_HARD_REG_BIT (set, reg))
+ emit_push_byte (reg, true);
+
+ if (frame_pointer_needed
+ && (!(cfun->machine->is_OS_task || cfun->machine->is_OS_main)))
+ {
+ /* Push frame pointer. Always be consistent about the
+ ordering of pushes -- epilogue_restores expects the
+ register pair to be pushed low byte first. */
+
+ emit_push_byte (REG_Y, true);
+ emit_push_byte (REG_Y + 1, true);
+ }
+
+ if (frame_pointer_needed
+ && size == 0)
+ {
+ insn = emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+
+ if (size != 0)
+ {
+ /* Creating a frame can be done by direct manipulation of the
+ stack or via the frame pointer. These two methods are:
+ fp = sp
+ fp -= size
+ sp = fp
+ or
+ sp -= size
+ fp = sp (*)
+ the optimum method depends on function type, stack and
+ frame size. To avoid a complex logic, both methods are
+ tested and shortest is selected.
+
+ There is also the case where SIZE != 0 and no frame pointer is
+ needed; this can occur if ACCUMULATE_OUTGOING_ARGS is on.
+ In that case, insn (*) is not needed in that case.
+ We use the X register as scratch. This is save because in X
+ is call-clobbered.
+ In an interrupt routine, the case of SIZE != 0 together with
+ !frame_pointer_needed can only occur if the function is not a
+ leaf function and thus X has already been saved. */
+
+ int irq_state = -1;
+ HOST_WIDE_INT size_cfa = size, neg_size;
+ rtx fp_plus_insns, fp, my_fp;
+
+ gcc_assert (frame_pointer_needed
+ || !isr_p
+ || !crtl->is_leaf);
+
+ fp = my_fp = (frame_pointer_needed
+ ? frame_pointer_rtx
+ : gen_rtx_REG (Pmode, REG_X));
+
+ if (AVR_HAVE_8BIT_SP)
+ {
+ /* The high byte (r29) does not change:
+ Prefer SUBI (1 cycle) over SBIW (2 cycles, same size). */
+
+ my_fp = all_regs_rtx[FRAME_POINTER_REGNUM];
+ }
+
+ /* Cut down size and avoid size = 0 so that we don't run
+ into ICE like PR52488 in the remainder. */
+
+ if (size > size_max)
+ {
+ /* Don't error so that insane code from newlib still compiles
+ and does not break building newlib. As PR51345 is implemented
+ now, there are multilib variants with -msp8.
+
+ If user wants sanity checks he can use -Wstack-usage=
+ or similar options.
+
+ For CFA we emit the original, non-saturated size so that
+ the generic machinery is aware of the real stack usage and
+ will print the above diagnostic as expected. */
+
+ size = size_max;
+ }
+
+ size = trunc_int_for_mode (size, GET_MODE (my_fp));
+ neg_size = trunc_int_for_mode (-size, GET_MODE (my_fp));
+
+ /************ Method 1: Adjust frame pointer ************/
+
+ start_sequence ();
+
+ /* Normally, the dwarf2out frame-related-expr interpreter does
+ not expect to have the CFA change once the frame pointer is
+ set up. Thus, we avoid marking the move insn below and
+ instead indicate that the entire operation is complete after
+ the frame pointer subtraction is done. */
+
+ insn = emit_move_insn (fp, stack_pointer_rtx);
+ if (frame_pointer_needed)
+ {
+ RTX_FRAME_RELATED_P (insn) = 1;
+ add_reg_note (insn, REG_CFA_ADJUST_CFA,
+ gen_rtx_SET (VOIDmode, fp, stack_pointer_rtx));
+ }
+
+ insn = emit_move_insn (my_fp, plus_constant (GET_MODE (my_fp),
+ my_fp, neg_size));
+
+ if (frame_pointer_needed)
+ {
+ RTX_FRAME_RELATED_P (insn) = 1;
+ add_reg_note (insn, REG_CFA_ADJUST_CFA,
+ gen_rtx_SET (VOIDmode, fp,
+ plus_constant (Pmode, fp,
+ -size_cfa)));
+ }
+
+ /* Copy to stack pointer. Note that since we've already
+ changed the CFA to the frame pointer this operation
+ need not be annotated if frame pointer is needed.
+ Always move through unspec, see PR50063.
+ For meaning of irq_state see movhi_sp_r insn. */
+
+ if (cfun->machine->is_interrupt)
+ irq_state = 1;
+
+ if (TARGET_NO_INTERRUPTS
+ || cfun->machine->is_signal
+ || cfun->machine->is_OS_main)
+ irq_state = 0;
+
+ if (AVR_HAVE_8BIT_SP)
+ irq_state = 2;
+
+ insn = emit_insn (gen_movhi_sp_r (stack_pointer_rtx,
+ fp, GEN_INT (irq_state)));
+ if (!frame_pointer_needed)
+ {
+ RTX_FRAME_RELATED_P (insn) = 1;
+ add_reg_note (insn, REG_CFA_ADJUST_CFA,
+ gen_rtx_SET (VOIDmode, stack_pointer_rtx,
+ plus_constant (Pmode,
+ stack_pointer_rtx,
+ -size_cfa)));
+ }
+
+ fp_plus_insns = get_insns ();
+ end_sequence ();
+
+ /************ Method 2: Adjust Stack pointer ************/
+
+ /* Stack adjustment by means of RCALL . and/or PUSH __TMP_REG__
+ can only handle specific offsets. */
+
+ if (avr_sp_immediate_operand (gen_int_mode (-size, HImode), HImode))
+ {
+ rtx sp_plus_insns;
+
+ start_sequence ();
+
+ insn = emit_move_insn (stack_pointer_rtx,
+ plus_constant (Pmode, stack_pointer_rtx,
+ -size));
+ RTX_FRAME_RELATED_P (insn) = 1;
+ add_reg_note (insn, REG_CFA_ADJUST_CFA,
+ gen_rtx_SET (VOIDmode, stack_pointer_rtx,
+ plus_constant (Pmode,
+ stack_pointer_rtx,
+ -size_cfa)));
+ if (frame_pointer_needed)
+ {
+ insn = emit_move_insn (fp, stack_pointer_rtx);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+
+ sp_plus_insns = get_insns ();
+ end_sequence ();
+
+ /************ Use shortest method ************/
+
+ emit_insn (get_sequence_length (sp_plus_insns)
+ < get_sequence_length (fp_plus_insns)
+ ? sp_plus_insns
+ : fp_plus_insns);
+ }
+ else
+ {
+ emit_insn (fp_plus_insns);
+ }
+
+ cfun->machine->stack_usage += size_cfa;
+ } /* !minimize && size != 0 */
+ } /* !minimize */
+}
+
+
+/* Output function prologue. */
+
+void
+avr_expand_prologue (void)
+{
+ HARD_REG_SET set;
+ HOST_WIDE_INT size;
+
+ size = get_frame_size() + avr_outgoing_args_size();
+
+ cfun->machine->stack_usage = 0;
+
+ /* Prologue: naked. */
+ if (cfun->machine->is_naked)
+ {
+ return;
+ }
+
+ avr_regs_to_save (&set);
+
+ if (cfun->machine->is_interrupt || cfun->machine->is_signal)
+ {
+ /* Enable interrupts. */
+ if (cfun->machine->is_interrupt)
+ emit_insn (gen_enable_interrupt ());
+
+ /* Push zero reg. */
+ emit_push_byte (ZERO_REGNO, true);
+
+ /* Push tmp reg. */
+ emit_push_byte (TMP_REGNO, true);
+
+ /* Push SREG. */
+ /* ??? There's no dwarf2 column reserved for SREG. */
+ emit_push_sfr (sreg_rtx, false, false /* clr */);
+
+ /* Clear zero reg. */
+ emit_move_insn (zero_reg_rtx, const0_rtx);
+
+ /* Prevent any attempt to delete the setting of ZERO_REG! */
+ emit_use (zero_reg_rtx);
+
+ /* Push and clear RAMPD/X/Y/Z if present and low-part register is used.
+ ??? There are no dwarf2 columns reserved for RAMPD/X/Y/Z. */
+
+ if (AVR_HAVE_RAMPD)
+ emit_push_sfr (rampd_rtx, false /* frame-related */, true /* clr */);
+
+ if (AVR_HAVE_RAMPX
+ && TEST_HARD_REG_BIT (set, REG_X)
+ && TEST_HARD_REG_BIT (set, REG_X + 1))
+ {
+ emit_push_sfr (rampx_rtx, false /* frame-related */, true /* clr */);
+ }
+
+ if (AVR_HAVE_RAMPY
+ && (frame_pointer_needed
+ || (TEST_HARD_REG_BIT (set, REG_Y)
+ && TEST_HARD_REG_BIT (set, REG_Y + 1))))
+ {
+ emit_push_sfr (rampy_rtx, false /* frame-related */, true /* clr */);
+ }
+
+ if (AVR_HAVE_RAMPZ
+ && TEST_HARD_REG_BIT (set, REG_Z)
+ && TEST_HARD_REG_BIT (set, REG_Z + 1))
+ {
+ emit_push_sfr (rampz_rtx, false /* frame-related */, AVR_HAVE_RAMPD);
+ }
+ } /* is_interrupt is_signal */
+
+ avr_prologue_setup_frame (size, set);
+
+ if (flag_stack_usage_info)
+ current_function_static_stack_size = cfun->machine->stack_usage;
+}
+
+
+/* Implement `TARGET_ASM_FUNCTION_END_PROLOGUE'. */
+/* Output summary at end of function prologue. */
+
+static void
+avr_asm_function_end_prologue (FILE *file)
+{
+ if (cfun->machine->is_naked)
+ {
+ fputs ("/* prologue: naked */\n", file);
+ }
+ else
+ {
+ if (cfun->machine->is_interrupt)
+ {
+ fputs ("/* prologue: Interrupt */\n", file);
+ }
+ else if (cfun->machine->is_signal)
+ {
+ fputs ("/* prologue: Signal */\n", file);
+ }
+ else
+ fputs ("/* prologue: function */\n", file);
+ }
+
+ if (ACCUMULATE_OUTGOING_ARGS)
+ fprintf (file, "/* outgoing args size = %d */\n",
+ avr_outgoing_args_size());
+
+ fprintf (file, "/* frame size = " HOST_WIDE_INT_PRINT_DEC " */\n",
+ get_frame_size());
+ fprintf (file, "/* stack size = %d */\n",
+ cfun->machine->stack_usage);
+ /* Create symbol stack offset here so all functions have it. Add 1 to stack
+ usage for offset so that SP + .L__stack_offset = return address. */
+ fprintf (file, ".L__stack_usage = %d\n", cfun->machine->stack_usage);
+}
+
+
+/* Implement `EPILOGUE_USES'. */
+
+int
+avr_epilogue_uses (int regno ATTRIBUTE_UNUSED)
+{
+ if (reload_completed
+ && cfun->machine
+ && (cfun->machine->is_interrupt || cfun->machine->is_signal))
+ return 1;
+ return 0;
+}
+
+/* Helper for avr_expand_epilogue. Emit a pop of a byte register. */
+
+static void
+emit_pop_byte (unsigned regno)
+{
+ rtx mem, reg;
+
+ mem = gen_rtx_PRE_INC (HImode, stack_pointer_rtx);
+ mem = gen_frame_mem (QImode, mem);
+ reg = gen_rtx_REG (QImode, regno);
+
+ emit_insn (gen_rtx_SET (VOIDmode, reg, mem));
+}
+
+/* Output RTL epilogue. */
+
+void
+avr_expand_epilogue (bool sibcall_p)
+{
+ int reg;
+ int live_seq;
+ HARD_REG_SET set;
+ int minimize;
+ HOST_WIDE_INT size;
+ bool isr_p = cfun->machine->is_interrupt || cfun->machine->is_signal;
+
+ size = get_frame_size() + avr_outgoing_args_size();
+
+ /* epilogue: naked */
+ if (cfun->machine->is_naked)
+ {
+ gcc_assert (!sibcall_p);
+
+ emit_jump_insn (gen_return ());
+ return;
+ }
+
+ avr_regs_to_save (&set);
+ live_seq = sequent_regs_live ();
+
+ minimize = (TARGET_CALL_PROLOGUES
+ && live_seq
+ && !isr_p
+ && !cfun->machine->is_OS_task
+ && !cfun->machine->is_OS_main);
+
+ if (minimize
+ && (live_seq > 4
+ || frame_pointer_needed
+ || size))
+ {
+ /* Get rid of frame. */
+
+ if (!frame_pointer_needed)
+ {
+ emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
+ }
+
+ if (size)
+ {
+ emit_move_insn (frame_pointer_rtx,
+ plus_constant (Pmode, frame_pointer_rtx, size));
+ }
+
+ emit_insn (gen_epilogue_restores (gen_int_mode (live_seq, HImode)));
+ return;
+ }
+
+ if (size)
+ {
+ /* Try two methods to adjust stack and select shortest. */
+
+ int irq_state = -1;
+ rtx fp, my_fp;
+ rtx fp_plus_insns;
+ HOST_WIDE_INT size_max;
+
+ gcc_assert (frame_pointer_needed
+ || !isr_p
+ || !crtl->is_leaf);
+
+ fp = my_fp = (frame_pointer_needed
+ ? frame_pointer_rtx
+ : gen_rtx_REG (Pmode, REG_X));
+
+ if (AVR_HAVE_8BIT_SP)
+ {
+ /* The high byte (r29) does not change:
+ Prefer SUBI (1 cycle) over SBIW (2 cycles). */
+
+ my_fp = all_regs_rtx[FRAME_POINTER_REGNUM];
+ }
+
+ /* For rationale see comment in prologue generation. */
+
+ size_max = (HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (my_fp));
+ if (size > size_max)
+ size = size_max;
+ size = trunc_int_for_mode (size, GET_MODE (my_fp));
+
+ /********** Method 1: Adjust fp register **********/
+
+ start_sequence ();
+
+ if (!frame_pointer_needed)
+ emit_move_insn (fp, stack_pointer_rtx);
+
+ emit_move_insn (my_fp, plus_constant (GET_MODE (my_fp), my_fp, size));
+
+ /* Copy to stack pointer. */
+
+ if (TARGET_NO_INTERRUPTS)
+ irq_state = 0;
+
+ if (AVR_HAVE_8BIT_SP)
+ irq_state = 2;
+
+ emit_insn (gen_movhi_sp_r (stack_pointer_rtx, fp,
+ GEN_INT (irq_state)));
+
+ fp_plus_insns = get_insns ();
+ end_sequence ();
+
+ /********** Method 2: Adjust Stack pointer **********/
+
+ if (avr_sp_immediate_operand (gen_int_mode (size, HImode), HImode))
+ {
+ rtx sp_plus_insns;
+
+ start_sequence ();
+
+ emit_move_insn (stack_pointer_rtx,
+ plus_constant (Pmode, stack_pointer_rtx, size));
+
+ sp_plus_insns = get_insns ();
+ end_sequence ();
+
+ /************ Use shortest method ************/
+
+ emit_insn (get_sequence_length (sp_plus_insns)
+ < get_sequence_length (fp_plus_insns)
+ ? sp_plus_insns
+ : fp_plus_insns);
+ }
+ else
+ emit_insn (fp_plus_insns);
+ } /* size != 0 */
+
+ if (frame_pointer_needed
+ && !(cfun->machine->is_OS_task || cfun->machine->is_OS_main))
+ {
+ /* Restore previous frame_pointer. See avr_expand_prologue for
+ rationale for not using pophi. */
+
+ emit_pop_byte (REG_Y + 1);
+ emit_pop_byte (REG_Y);
+ }
+
+ /* Restore used registers. */
+
+ for (reg = 31; reg >= 0; --reg)
+ if (TEST_HARD_REG_BIT (set, reg))
+ emit_pop_byte (reg);
+
+ if (isr_p)
+ {
+ /* Restore RAMPZ/Y/X/D using tmp_reg as scratch.
+ The conditions to restore them must be tha same as in prologue. */
+
+ if (AVR_HAVE_RAMPZ
+ && TEST_HARD_REG_BIT (set, REG_Z)
+ && TEST_HARD_REG_BIT (set, REG_Z + 1))
+ {
+ emit_pop_byte (TMP_REGNO);
+ emit_move_insn (rampz_rtx, tmp_reg_rtx);
+ }
+
+ if (AVR_HAVE_RAMPY
+ && (frame_pointer_needed
+ || (TEST_HARD_REG_BIT (set, REG_Y)
+ && TEST_HARD_REG_BIT (set, REG_Y + 1))))
+ {
+ emit_pop_byte (TMP_REGNO);
+ emit_move_insn (rampy_rtx, tmp_reg_rtx);
+ }
+
+ if (AVR_HAVE_RAMPX
+ && TEST_HARD_REG_BIT (set, REG_X)
+ && TEST_HARD_REG_BIT (set, REG_X + 1))
+ {
+ emit_pop_byte (TMP_REGNO);
+ emit_move_insn (rampx_rtx, tmp_reg_rtx);
+ }
+
+ if (AVR_HAVE_RAMPD)
+ {
+ emit_pop_byte (TMP_REGNO);
+ emit_move_insn (rampd_rtx, tmp_reg_rtx);
+ }
+
+ /* Restore SREG using tmp_reg as scratch. */
+
+ emit_pop_byte (TMP_REGNO);
+ emit_move_insn (sreg_rtx, tmp_reg_rtx);
+
+ /* Restore tmp REG. */
+ emit_pop_byte (TMP_REGNO);
+
+ /* Restore zero REG. */
+ emit_pop_byte (ZERO_REGNO);
+ }
+
+ if (!sibcall_p)
+ emit_jump_insn (gen_return ());
+}
+
+
+/* Implement `TARGET_ASM_FUNCTION_BEGIN_EPILOGUE'. */
+
+static void
+avr_asm_function_begin_epilogue (FILE *file)
+{
+ fprintf (file, "/* epilogue start */\n");
+}
+
+
+/* Implement `TARGET_CANNOT_MODITY_JUMPS_P'. */
+
+static bool
+avr_cannot_modify_jumps_p (void)
+{
+
+ /* Naked Functions must not have any instructions after
+ their epilogue, see PR42240 */
+
+ if (reload_completed
+ && cfun->machine
+ && cfun->machine->is_naked)
+ {
+ return true;
+ }
+
+ return false;
+}
+
+
+/* Implement `TARGET_MODE_DEPENDENT_ADDRESS_P'. */
+
+static bool
+avr_mode_dependent_address_p (const_rtx addr ATTRIBUTE_UNUSED, addr_space_t as)
+{
+ /* FIXME: Non-generic addresses are not mode-dependent in themselves.
+ This hook just serves to hack around PR rtl-optimization/52543 by
+ claiming that non-generic addresses were mode-dependent so that
+ lower-subreg.c will skip these addresses. lower-subreg.c sets up fake
+ RTXes to probe SET and MEM costs and assumes that MEM is always in the
+ generic address space which is not true. */
+
+ return !ADDR_SPACE_GENERIC_P (as);
+}
+
+
+/* Helper function for `avr_legitimate_address_p'. */
+
+static inline bool
+avr_reg_ok_for_addr_p (rtx reg, addr_space_t as,
+ RTX_CODE outer_code, bool strict)
+{
+ return (REG_P (reg)
+ && (avr_regno_mode_code_ok_for_base_p (REGNO (reg), QImode,
+ as, outer_code, UNKNOWN)
+ || (!strict
+ && REGNO (reg) >= FIRST_PSEUDO_REGISTER)));
+}
+
+
+/* Return nonzero if X (an RTX) is a legitimate memory address on the target
+ machine for a memory operand of mode MODE. */
+
+static bool
+avr_legitimate_address_p (enum machine_mode mode, rtx x, bool strict)
+{
+ bool ok = CONSTANT_ADDRESS_P (x);
+
+ switch (GET_CODE (x))
+ {
+ case REG:
+ ok = avr_reg_ok_for_addr_p (x, ADDR_SPACE_GENERIC,
+ MEM, strict);
+
+ if (strict
+ && GET_MODE_SIZE (mode) > 4
+ && REG_X == REGNO (x))
+ {
+ ok = false;
+ }
+ break;
+
+ case POST_INC:
+ case PRE_DEC:
+ ok = avr_reg_ok_for_addr_p (XEXP (x, 0), ADDR_SPACE_GENERIC,
+ GET_CODE (x), strict);
+ break;
+
+ case PLUS:
+ {
+ rtx reg = XEXP (x, 0);
+ rtx op1 = XEXP (x, 1);
+
+ if (REG_P (reg)
+ && CONST_INT_P (op1)
+ && INTVAL (op1) >= 0)
+ {
+ bool fit = IN_RANGE (INTVAL (op1), 0, MAX_LD_OFFSET (mode));
+
+ if (fit)
+ {
+ ok = (! strict
+ || avr_reg_ok_for_addr_p (reg, ADDR_SPACE_GENERIC,
+ PLUS, strict));
+
+ if (reg == frame_pointer_rtx
+ || reg == arg_pointer_rtx)
+ {
+ ok = true;
+ }
+ }
+ else if (frame_pointer_needed
+ && reg == frame_pointer_rtx)
+ {
+ ok = true;
+ }
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ if (avr_log.legitimate_address_p)
+ {
+ avr_edump ("\n%?: ret=%d, mode=%m strict=%d "
+ "reload_completed=%d reload_in_progress=%d %s:",
+ ok, mode, strict, reload_completed, reload_in_progress,
+ reg_renumber ? "(reg_renumber)" : "");
+
+ if (GET_CODE (x) == PLUS
+ && REG_P (XEXP (x, 0))
+ && CONST_INT_P (XEXP (x, 1))
+ && IN_RANGE (INTVAL (XEXP (x, 1)), 0, MAX_LD_OFFSET (mode))
+ && reg_renumber)
+ {
+ avr_edump ("(r%d ---> r%d)", REGNO (XEXP (x, 0)),
+ true_regnum (XEXP (x, 0)));
+ }
+
+ avr_edump ("\n%r\n", x);
+ }
+
+ return ok;
+}
+
+
+/* Former implementation of TARGET_LEGITIMIZE_ADDRESS,
+ now only a helper for avr_addr_space_legitimize_address. */
+/* Attempts to replace X with a valid
+ memory address for an operand of mode MODE */
+
+static rtx
+avr_legitimize_address (rtx x, rtx oldx, enum machine_mode mode)
+{
+ bool big_offset_p = false;
+
+ x = oldx;
+
+ if (GET_CODE (oldx) == PLUS
+ && REG_P (XEXP (oldx, 0)))
+ {
+ if (REG_P (XEXP (oldx, 1)))
+ x = force_reg (GET_MODE (oldx), oldx);
+ else if (CONST_INT_P (XEXP (oldx, 1)))
+ {
+ int offs = INTVAL (XEXP (oldx, 1));
+ if (frame_pointer_rtx != XEXP (oldx, 0)
+ && offs > MAX_LD_OFFSET (mode))
+ {
+ big_offset_p = true;
+ x = force_reg (GET_MODE (oldx), oldx);
+ }
+ }
+ }
+
+ if (avr_log.legitimize_address)
+ {
+ avr_edump ("\n%?: mode=%m\n %r\n", mode, oldx);
+
+ if (x != oldx)
+ avr_edump (" %s --> %r\n", big_offset_p ? "(big offset)" : "", x);
+ }
+
+ return x;
+}
+
+
+/* Implement `LEGITIMIZE_RELOAD_ADDRESS'. */
+/* This will allow register R26/27 to be used where it is no worse than normal
+ base pointers R28/29 or R30/31. For example, if base offset is greater
+ than 63 bytes or for R++ or --R addressing. */
+
+rtx
+avr_legitimize_reload_address (rtx *px, enum machine_mode mode,
+ int opnum, int type, int addr_type,
+ int ind_levels ATTRIBUTE_UNUSED,
+ rtx (*mk_memloc)(rtx,int))
+{
+ rtx x = *px;
+
+ if (avr_log.legitimize_reload_address)
+ avr_edump ("\n%?:%m %r\n", mode, x);
+
+ if (1 && (GET_CODE (x) == POST_INC
+ || GET_CODE (x) == PRE_DEC))
+ {
+ push_reload (XEXP (x, 0), XEXP (x, 0), &XEXP (x, 0), &XEXP (x, 0),
+ POINTER_REGS, GET_MODE (x), GET_MODE (x), 0, 0,
+ opnum, RELOAD_OTHER);
+
+ if (avr_log.legitimize_reload_address)
+ avr_edump (" RCLASS.1 = %R\n IN = %r\n OUT = %r\n",
+ POINTER_REGS, XEXP (x, 0), XEXP (x, 0));
+
+ return x;
+ }
+
+ if (GET_CODE (x) == PLUS
+ && REG_P (XEXP (x, 0))
+ && 0 == reg_equiv_constant (REGNO (XEXP (x, 0)))
+ && CONST_INT_P (XEXP (x, 1))
+ && INTVAL (XEXP (x, 1)) >= 1)
+ {
+ bool fit = INTVAL (XEXP (x, 1)) <= MAX_LD_OFFSET (mode);
+
+ if (fit)
+ {
+ if (reg_equiv_address (REGNO (XEXP (x, 0))) != 0)
+ {
+ int regno = REGNO (XEXP (x, 0));
+ rtx mem = mk_memloc (x, regno);
+
+ push_reload (XEXP (mem, 0), NULL_RTX, &XEXP (mem, 0), NULL,
+ POINTER_REGS, Pmode, VOIDmode, 0, 0,
+ 1, (enum reload_type) addr_type);
+
+ if (avr_log.legitimize_reload_address)
+ avr_edump (" RCLASS.2 = %R\n IN = %r\n OUT = %r\n",
+ POINTER_REGS, XEXP (mem, 0), NULL_RTX);
+
+ push_reload (mem, NULL_RTX, &XEXP (x, 0), NULL,
+ BASE_POINTER_REGS, GET_MODE (x), VOIDmode, 0, 0,
+ opnum, (enum reload_type) type);
+
+ if (avr_log.legitimize_reload_address)
+ avr_edump (" RCLASS.2 = %R\n IN = %r\n OUT = %r\n",
+ BASE_POINTER_REGS, mem, NULL_RTX);
+
+ return x;
+ }
+ }
+ else if (! (frame_pointer_needed
+ && XEXP (x, 0) == frame_pointer_rtx))
+ {
+ push_reload (x, NULL_RTX, px, NULL,
+ POINTER_REGS, GET_MODE (x), VOIDmode, 0, 0,
+ opnum, (enum reload_type) type);
+
+ if (avr_log.legitimize_reload_address)
+ avr_edump (" RCLASS.3 = %R\n IN = %r\n OUT = %r\n",
+ POINTER_REGS, x, NULL_RTX);
+
+ return x;
+ }
+ }
+
+ return NULL_RTX;
+}
+
+
+/* Implement `TARGET_SECONDARY_RELOAD' */
+
+static reg_class_t
+avr_secondary_reload (bool in_p, rtx x,
+ reg_class_t reload_class ATTRIBUTE_UNUSED,
+ enum machine_mode mode, secondary_reload_info *sri)
+{
+ if (in_p
+ && MEM_P (x)
+ && !ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
+ && ADDR_SPACE_MEMX != MEM_ADDR_SPACE (x))
+ {
+ /* For the non-generic 16-bit spaces we need a d-class scratch. */
+
+ switch (mode)
+ {
+ default:
+ gcc_unreachable();
+
+ case QImode: sri->icode = CODE_FOR_reload_inqi; break;
+ case QQmode: sri->icode = CODE_FOR_reload_inqq; break;
+ case UQQmode: sri->icode = CODE_FOR_reload_inuqq; break;
+
+ case HImode: sri->icode = CODE_FOR_reload_inhi; break;
+ case HQmode: sri->icode = CODE_FOR_reload_inhq; break;
+ case HAmode: sri->icode = CODE_FOR_reload_inha; break;
+ case UHQmode: sri->icode = CODE_FOR_reload_inuhq; break;
+ case UHAmode: sri->icode = CODE_FOR_reload_inuha; break;
+
+ case PSImode: sri->icode = CODE_FOR_reload_inpsi; break;
+
+ case SImode: sri->icode = CODE_FOR_reload_insi; break;
+ case SFmode: sri->icode = CODE_FOR_reload_insf; break;
+ case SQmode: sri->icode = CODE_FOR_reload_insq; break;
+ case SAmode: sri->icode = CODE_FOR_reload_insa; break;
+ case USQmode: sri->icode = CODE_FOR_reload_inusq; break;
+ case USAmode: sri->icode = CODE_FOR_reload_inusa; break;
+ }
+ }
+
+ return NO_REGS;
+}
+
+
+/* Helper function to print assembler resp. track instruction
+ sequence lengths. Always return "".
+
+ If PLEN == NULL:
+ Output assembler code from template TPL with operands supplied
+ by OPERANDS. This is just forwarding to output_asm_insn.
+
+ If PLEN != NULL:
+ If N_WORDS >= 0 Add N_WORDS to *PLEN.
+ If N_WORDS < 0 Set *PLEN to -N_WORDS.
+ Don't output anything.
+*/
+
+static const char*
+avr_asm_len (const char* tpl, rtx* operands, int* plen, int n_words)
+{
+ if (NULL == plen)
+ {
+ output_asm_insn (tpl, operands);
+ }
+ else
+ {
+ if (n_words < 0)
+ *plen = -n_words;
+ else
+ *plen += n_words;
+ }
+
+ return "";
+}
+
+
+/* Return a pointer register name as a string. */
+
+static const char*
+ptrreg_to_str (int regno)
+{
+ switch (regno)
+ {
+ case REG_X: return "X";
+ case REG_Y: return "Y";
+ case REG_Z: return "Z";
+ default:
+ output_operand_lossage ("address operand requires constraint for"
+ " X, Y, or Z register");
+ }
+ return NULL;
+}
+
+/* Return the condition name as a string.
+ Used in conditional jump constructing */
+
+static const char*
+cond_string (enum rtx_code code)
+{
+ switch (code)
+ {
+ case NE:
+ return "ne";
+ case EQ:
+ return "eq";
+ case GE:
+ if (cc_prev_status.flags & CC_OVERFLOW_UNUSABLE)
+ return "pl";
+ else
+ return "ge";
+ case LT:
+ if (cc_prev_status.flags & CC_OVERFLOW_UNUSABLE)
+ return "mi";
+ else
+ return "lt";
+ case GEU:
+ return "sh";
+ case LTU:
+ return "lo";
+ default:
+ gcc_unreachable ();
+ }
+
+ return "";
+}
+
+
+/* Implement `TARGET_PRINT_OPERAND_ADDRESS'. */
+/* Output ADDR to FILE as address. */
+
+static void
+avr_print_operand_address (FILE *file, rtx addr)
+{
+ switch (GET_CODE (addr))
+ {
+ case REG:
+ fprintf (file, ptrreg_to_str (REGNO (addr)));
+ break;
+
+ case PRE_DEC:
+ fprintf (file, "-%s", ptrreg_to_str (REGNO (XEXP (addr, 0))));
+ break;
+
+ case POST_INC:
+ fprintf (file, "%s+", ptrreg_to_str (REGNO (XEXP (addr, 0))));
+ break;
+
+ default:
+ if (CONSTANT_ADDRESS_P (addr)
+ && text_segment_operand (addr, VOIDmode))
+ {
+ rtx x = addr;
+ if (GET_CODE (x) == CONST)
+ x = XEXP (x, 0);
+ if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x,1)) == CONST_INT)
+ {
+ /* Assembler gs() will implant word address. Make offset
+ a byte offset inside gs() for assembler. This is
+ needed because the more logical (constant+gs(sym)) is not
+ accepted by gas. For 128K and smaller devices this is ok.
+ For large devices it will create a trampoline to offset
+ from symbol which may not be what the user really wanted. */
+
+ fprintf (file, "gs(");
+ output_addr_const (file, XEXP (x,0));
+ fprintf (file, "+" HOST_WIDE_INT_PRINT_DEC ")",
+ 2 * INTVAL (XEXP (x, 1)));
+ if (AVR_3_BYTE_PC)
+ if (warning (0, "pointer offset from symbol maybe incorrect"))
+ {
+ output_addr_const (stderr, addr);
+ fprintf(stderr,"\n");
+ }
+ }
+ else
+ {
+ fprintf (file, "gs(");
+ output_addr_const (file, addr);
+ fprintf (file, ")");
+ }
+ }
+ else
+ output_addr_const (file, addr);
+ }
+}
+
+
+/* Implement `TARGET_PRINT_OPERAND_PUNCT_VALID_P'. */
+
+static bool
+avr_print_operand_punct_valid_p (unsigned char code)
+{
+ return code == '~' || code == '!';
+}
+
+
+/* Implement `TARGET_PRINT_OPERAND'. */
+/* Output X as assembler operand to file FILE.
+ For a description of supported %-codes, see top of avr.md. */
+
+static void
+avr_print_operand (FILE *file, rtx x, int code)
+{
+ int abcd = 0;
+
+ if (code >= 'A' && code <= 'D')
+ abcd = code - 'A';
+
+ if (code == '~')
+ {
+ if (!AVR_HAVE_JMP_CALL)
+ fputc ('r', file);
+ }
+ else if (code == '!')
+ {
+ if (AVR_HAVE_EIJMP_EICALL)
+ fputc ('e', file);
+ }
+ else if (code == 't'
+ || code == 'T')
+ {
+ static int t_regno = -1;
+ static int t_nbits = -1;
+
+ if (REG_P (x) && t_regno < 0 && code == 'T')
+ {
+ t_regno = REGNO (x);
+ t_nbits = GET_MODE_BITSIZE (GET_MODE (x));
+ }
+ else if (CONST_INT_P (x) && t_regno >= 0
+ && IN_RANGE (INTVAL (x), 0, t_nbits - 1))
+ {
+ int bpos = INTVAL (x);
+
+ fprintf (file, "%s", reg_names[t_regno + bpos / 8]);
+ if (code == 'T')
+ fprintf (file, ",%d", bpos % 8);
+
+ t_regno = -1;
+ }
+ else
+ fatal_insn ("operands to %T/%t must be reg + const_int:", x);
+ }
+ else if (REG_P (x))
+ {
+ if (x == zero_reg_rtx)
+ fprintf (file, "__zero_reg__");
+ else if (code == 'r' && REGNO (x) < 32)
+ fprintf (file, "%d", (int) REGNO (x));
+ else
+ fprintf (file, reg_names[REGNO (x) + abcd]);
+ }
+ else if (CONST_INT_P (x))
+ {
+ HOST_WIDE_INT ival = INTVAL (x);
+
+ if ('i' != code)
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, ival + abcd);
+ else if (low_io_address_operand (x, VOIDmode)
+ || high_io_address_operand (x, VOIDmode))
+ {
+ if (AVR_HAVE_RAMPZ && ival == avr_addr.rampz)
+ fprintf (file, "__RAMPZ__");
+ else if (AVR_HAVE_RAMPY && ival == avr_addr.rampy)
+ fprintf (file, "__RAMPY__");
+ else if (AVR_HAVE_RAMPX && ival == avr_addr.rampx)
+ fprintf (file, "__RAMPX__");
+ else if (AVR_HAVE_RAMPD && ival == avr_addr.rampd)
+ fprintf (file, "__RAMPD__");
+ else if (AVR_XMEGA && ival == avr_addr.ccp)
+ fprintf (file, "__CCP__");
+ else if (ival == avr_addr.sreg) fprintf (file, "__SREG__");
+ else if (ival == avr_addr.sp_l) fprintf (file, "__SP_L__");
+ else if (ival == avr_addr.sp_h) fprintf (file, "__SP_H__");
+ else
+ {
+ fprintf (file, HOST_WIDE_INT_PRINT_HEX,
+ ival - avr_current_arch->sfr_offset);
+ }
+ }
+ else
+ fatal_insn ("bad address, not an I/O address:", x);
+ }
+ else if (MEM_P (x))
+ {
+ rtx addr = XEXP (x, 0);
+
+ if (code == 'm')
+ {
+ if (!CONSTANT_P (addr))
+ fatal_insn ("bad address, not a constant:", addr);
+ /* Assembler template with m-code is data - not progmem section */
+ if (text_segment_operand (addr, VOIDmode))
+ if (warning (0, "accessing data memory with"
+ " program memory address"))
+ {
+ output_addr_const (stderr, addr);
+ fprintf(stderr,"\n");
+ }
+ output_addr_const (file, addr);
+ }
+ else if (code == 'i')
+ {
+ avr_print_operand (file, addr, 'i');
+ }
+ else if (code == 'o')
+ {
+ if (GET_CODE (addr) != PLUS)
+ fatal_insn ("bad address, not (reg+disp):", addr);
+
+ avr_print_operand (file, XEXP (addr, 1), 0);
+ }
+ else if (code == 'p' || code == 'r')
+ {
+ if (GET_CODE (addr) != POST_INC && GET_CODE (addr) != PRE_DEC)
+ fatal_insn ("bad address, not post_inc or pre_dec:", addr);
+
+ if (code == 'p')
+ avr_print_operand_address (file, XEXP (addr, 0)); /* X, Y, Z */
+ else
+ avr_print_operand (file, XEXP (addr, 0), 0); /* r26, r28, r30 */
+ }
+ else if (GET_CODE (addr) == PLUS)
+ {
+ avr_print_operand_address (file, XEXP (addr,0));
+ if (REGNO (XEXP (addr, 0)) == REG_X)
+ fatal_insn ("internal compiler error. Bad address:"
+ ,addr);
+ fputc ('+', file);
+ avr_print_operand (file, XEXP (addr,1), code);
+ }
+ else
+ avr_print_operand_address (file, addr);
+ }
+ else if (code == 'i')
+ {
+ fatal_insn ("bad address, not an I/O address:", x);
+ }
+ else if (code == 'x')
+ {
+ /* Constant progmem address - like used in jmp or call */
+ if (0 == text_segment_operand (x, VOIDmode))
+ if (warning (0, "accessing program memory"
+ " with data memory address"))
+ {
+ output_addr_const (stderr, x);
+ fprintf(stderr,"\n");
+ }
+ /* Use normal symbol for direct address no linker trampoline needed */
+ output_addr_const (file, x);
+ }
+ else if (CONST_FIXED_P (x))
+ {
+ HOST_WIDE_INT ival = INTVAL (avr_to_int_mode (x));
+ if (code != 0)
+ output_operand_lossage ("Unsupported code '%c' for fixed-point:",
+ code);
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, ival);
+ }
+ else if (GET_CODE (x) == CONST_DOUBLE)
+ {
+ long val;
+ REAL_VALUE_TYPE rv;
+ if (GET_MODE (x) != SFmode)
+ fatal_insn ("internal compiler error. Unknown mode:", x);
+ REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
+ REAL_VALUE_TO_TARGET_SINGLE (rv, val);
+ fprintf (file, "0x%lx", val);
+ }
+ else if (GET_CODE (x) == CONST_STRING)
+ fputs (XSTR (x, 0), file);
+ else if (code == 'j')
+ fputs (cond_string (GET_CODE (x)), file);
+ else if (code == 'k')
+ fputs (cond_string (reverse_condition (GET_CODE (x))), file);
+ else
+ avr_print_operand_address (file, x);
+}
+
+
+/* Worker function for `NOTICE_UPDATE_CC'. */
+/* Update the condition code in the INSN. */
+
+void
+avr_notice_update_cc (rtx body ATTRIBUTE_UNUSED, rtx insn)
+{
+ rtx set;
+ enum attr_cc cc = get_attr_cc (insn);
+
+ switch (cc)
+ {
+ default:
+ break;
+
+ case CC_PLUS:
+ case CC_LDI:
+ {
+ rtx *op = recog_data.operand;
+ int len_dummy, icc;
+
+ /* Extract insn's operands. */
+ extract_constrain_insn_cached (insn);
+
+ switch (cc)
+ {
+ default:
+ gcc_unreachable();
+
+ case CC_PLUS:
+ avr_out_plus (insn, op, &len_dummy, &icc);
+ cc = (enum attr_cc) icc;
+ break;
+
+ case CC_LDI:
+
+ cc = (op[1] == CONST0_RTX (GET_MODE (op[0]))
+ && reg_overlap_mentioned_p (op[0], zero_reg_rtx))
+ /* Loading zero-reg with 0 uses CLR and thus clobbers cc0. */
+ ? CC_CLOBBER
+ /* Any other "r,rL" combination does not alter cc0. */
+ : CC_NONE;
+
+ break;
+ } /* inner switch */
+
+ break;
+ }
+ } /* outer swicth */
+
+ switch (cc)
+ {
+ default:
+ /* Special values like CC_OUT_PLUS from above have been
+ mapped to "standard" CC_* values so we never come here. */
+
+ gcc_unreachable();
+ break;
+
+ case CC_NONE:
+ /* Insn does not affect CC at all. */
+ break;
+
+ case CC_SET_N:
+ CC_STATUS_INIT;
+ break;
+
+ case CC_SET_ZN:
+ set = single_set (insn);
+ CC_STATUS_INIT;
+ if (set)
+ {
+ cc_status.flags |= CC_NO_OVERFLOW;
+ cc_status.value1 = SET_DEST (set);
+ }
+ break;
+
+ case CC_SET_CZN:
+ /* Insn sets the Z,N,C flags of CC to recog_operand[0].
+ The V flag may or may not be known but that's ok because
+ alter_cond will change tests to use EQ/NE. */
+ set = single_set (insn);
+ CC_STATUS_INIT;
+ if (set)
+ {
+ cc_status.value1 = SET_DEST (set);
+ cc_status.flags |= CC_OVERFLOW_UNUSABLE;
+ }
+ break;
+
+ case CC_COMPARE:
+ set = single_set (insn);
+ CC_STATUS_INIT;
+ if (set)
+ cc_status.value1 = SET_SRC (set);
+ break;
+
+ case CC_CLOBBER:
+ /* Insn doesn't leave CC in a usable state. */
+ CC_STATUS_INIT;
+ break;
+ }
+}
+
+/* Choose mode for jump insn:
+ 1 - relative jump in range -63 <= x <= 62 ;
+ 2 - relative jump in range -2046 <= x <= 2045 ;
+ 3 - absolute jump (only for ATmega[16]03). */
+
+int
+avr_jump_mode (rtx x, rtx insn)
+{
+ int dest_addr = INSN_ADDRESSES (INSN_UID (GET_CODE (x) == LABEL_REF
+ ? XEXP (x, 0) : x));
+ int cur_addr = INSN_ADDRESSES (INSN_UID (insn));
+ int jump_distance = cur_addr - dest_addr;
+
+ if (-63 <= jump_distance && jump_distance <= 62)
+ return 1;
+ else if (-2046 <= jump_distance && jump_distance <= 2045)
+ return 2;
+ else if (AVR_HAVE_JMP_CALL)
+ return 3;
+
+ return 2;
+}
+
+/* Return an AVR condition jump commands.
+ X is a comparison RTX.
+ LEN is a number returned by avr_jump_mode function.
+ If REVERSE nonzero then condition code in X must be reversed. */
+
+const char*
+ret_cond_branch (rtx x, int len, int reverse)
+{
+ RTX_CODE cond = reverse ? reverse_condition (GET_CODE (x)) : GET_CODE (x);
+
+ switch (cond)
+ {
+ case GT:
+ if (cc_prev_status.flags & CC_OVERFLOW_UNUSABLE)
+ return (len == 1 ? ("breq .+2" CR_TAB
+ "brpl %0") :
+ len == 2 ? ("breq .+4" CR_TAB
+ "brmi .+2" CR_TAB
+ "rjmp %0") :
+ ("breq .+6" CR_TAB
+ "brmi .+4" CR_TAB
+ "jmp %0"));
+
+ else
+ return (len == 1 ? ("breq .+2" CR_TAB
+ "brge %0") :
+ len == 2 ? ("breq .+4" CR_TAB
+ "brlt .+2" CR_TAB
+ "rjmp %0") :
+ ("breq .+6" CR_TAB
+ "brlt .+4" CR_TAB
+ "jmp %0"));
+ case GTU:
+ return (len == 1 ? ("breq .+2" CR_TAB
+ "brsh %0") :
+ len == 2 ? ("breq .+4" CR_TAB
+ "brlo .+2" CR_TAB
+ "rjmp %0") :
+ ("breq .+6" CR_TAB
+ "brlo .+4" CR_TAB
+ "jmp %0"));
+ case LE:
+ if (cc_prev_status.flags & CC_OVERFLOW_UNUSABLE)
+ return (len == 1 ? ("breq %0" CR_TAB
+ "brmi %0") :
+ len == 2 ? ("breq .+2" CR_TAB
+ "brpl .+2" CR_TAB
+ "rjmp %0") :
+ ("breq .+2" CR_TAB
+ "brpl .+4" CR_TAB
+ "jmp %0"));
+ else
+ return (len == 1 ? ("breq %0" CR_TAB
+ "brlt %0") :
+ len == 2 ? ("breq .+2" CR_TAB
+ "brge .+2" CR_TAB
+ "rjmp %0") :
+ ("breq .+2" CR_TAB
+ "brge .+4" CR_TAB
+ "jmp %0"));
+ case LEU:
+ return (len == 1 ? ("breq %0" CR_TAB
+ "brlo %0") :
+ len == 2 ? ("breq .+2" CR_TAB
+ "brsh .+2" CR_TAB
+ "rjmp %0") :
+ ("breq .+2" CR_TAB
+ "brsh .+4" CR_TAB
+ "jmp %0"));
+ default:
+ if (reverse)
+ {
+ switch (len)
+ {
+ case 1:
+ return "br%k1 %0";
+ case 2:
+ return ("br%j1 .+2" CR_TAB
+ "rjmp %0");
+ default:
+ return ("br%j1 .+4" CR_TAB
+ "jmp %0");
+ }
+ }
+ else
+ {
+ switch (len)
+ {
+ case 1:
+ return "br%j1 %0";
+ case 2:
+ return ("br%k1 .+2" CR_TAB
+ "rjmp %0");
+ default:
+ return ("br%k1 .+4" CR_TAB
+ "jmp %0");
+ }
+ }
+ }
+ return "";
+}
+
+
+/* Worker function for `FINAL_PRESCAN_INSN'. */
+/* Output insn cost for next insn. */
+
+void
+avr_final_prescan_insn (rtx insn, rtx *operand ATTRIBUTE_UNUSED,
+ int num_operands ATTRIBUTE_UNUSED)
+{
+ if (avr_log.rtx_costs)
+ {
+ rtx set = single_set (insn);
+
+ if (set)
+ fprintf (asm_out_file, "/* DEBUG: cost = %d. */\n",
+ set_src_cost (SET_SRC (set), optimize_insn_for_speed_p ()));
+ else
+ fprintf (asm_out_file, "/* DEBUG: pattern-cost = %d. */\n",
+ rtx_cost (PATTERN (insn), INSN, 0,
+ optimize_insn_for_speed_p()));
+ }
+}
+
+/* Return 0 if undefined, 1 if always true or always false. */
+
+int
+avr_simplify_comparison_p (enum machine_mode mode, RTX_CODE op, rtx x)
+{
+ unsigned int max = (mode == QImode ? 0xff :
+ mode == HImode ? 0xffff :
+ mode == PSImode ? 0xffffff :
+ mode == SImode ? 0xffffffff : 0);
+ if (max && op && CONST_INT_P (x))
+ {
+ if (unsigned_condition (op) != op)
+ max >>= 1;
+
+ if (max != (INTVAL (x) & max)
+ && INTVAL (x) != 0xff)
+ return 1;
+ }
+ return 0;
+}
+
+
+/* Worker function for `FUNCTION_ARG_REGNO_P'. */
+/* Returns nonzero if REGNO is the number of a hard
+ register in which function arguments are sometimes passed. */
+
+int
+avr_function_arg_regno_p(int r)
+{
+ return (r >= 8 && r <= 25);
+}
+
+
+/* Worker function for `INIT_CUMULATIVE_ARGS'. */
+/* Initializing the variable cum for the state at the beginning
+ of the argument list. */
+
+void
+avr_init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype, rtx libname,
+ tree fndecl ATTRIBUTE_UNUSED)
+{
+ cum->nregs = 18;
+ cum->regno = FIRST_CUM_REG;
+ if (!libname && stdarg_p (fntype))
+ cum->nregs = 0;
+
+ /* Assume the calle may be tail called */
+
+ cfun->machine->sibcall_fails = 0;
+}
+
+/* Returns the number of registers to allocate for a function argument. */
+
+static int
+avr_num_arg_regs (enum machine_mode mode, const_tree type)
+{
+ int size;
+
+ if (mode == BLKmode)
+ size = int_size_in_bytes (type);
+ else
+ size = GET_MODE_SIZE (mode);
+
+ /* Align all function arguments to start in even-numbered registers.
+ Odd-sized arguments leave holes above them. */
+
+ return (size + 1) & ~1;
+}
+
+
+/* Implement `TARGET_FUNCTION_ARG'. */
+/* Controls whether a function argument is passed
+ in a register, and which register. */
+
+static rtx
+avr_function_arg (cumulative_args_t cum_v, enum machine_mode mode,
+ const_tree type, bool named ATTRIBUTE_UNUSED)
+{
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+ int bytes = avr_num_arg_regs (mode, type);
+
+ if (cum->nregs && bytes <= cum->nregs)
+ return gen_rtx_REG (mode, cum->regno - bytes);
+
+ return NULL_RTX;
+}
+
+
+/* Implement `TARGET_FUNCTION_ARG_ADVANCE'. */
+/* Update the summarizer variable CUM to advance past an argument
+ in the argument list. */
+
+static void
+avr_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
+ const_tree type, bool named ATTRIBUTE_UNUSED)
+{
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+ int bytes = avr_num_arg_regs (mode, type);
+
+ cum->nregs -= bytes;
+ cum->regno -= bytes;
+
+ /* A parameter is being passed in a call-saved register. As the original
+ contents of these regs has to be restored before leaving the function,
+ a function must not pass arguments in call-saved regs in order to get
+ tail-called. */
+
+ if (cum->regno >= 8
+ && cum->nregs >= 0
+ && !call_used_regs[cum->regno])
+ {
+ /* FIXME: We ship info on failing tail-call in struct machine_function.
+ This uses internals of calls.c:expand_call() and the way args_so_far
+ is used. targetm.function_ok_for_sibcall() needs to be extended to
+ pass &args_so_far, too. At present, CUMULATIVE_ARGS is target
+ dependent so that such an extension is not wanted. */
+
+ cfun->machine->sibcall_fails = 1;
+ }
+
+ /* Test if all registers needed by the ABI are actually available. If the
+ user has fixed a GPR needed to pass an argument, an (implicit) function
+ call will clobber that fixed register. See PR45099 for an example. */
+
+ if (cum->regno >= 8
+ && cum->nregs >= 0)
+ {
+ int regno;
+
+ for (regno = cum->regno; regno < cum->regno + bytes; regno++)
+ if (fixed_regs[regno])
+ warning (0, "fixed register %s used to pass parameter to function",
+ reg_names[regno]);
+ }
+
+ if (cum->nregs <= 0)
+ {
+ cum->nregs = 0;
+ cum->regno = FIRST_CUM_REG;
+ }
+}
+
+/* Implement `TARGET_FUNCTION_OK_FOR_SIBCALL' */
+/* Decide whether we can make a sibling call to a function. DECL is the
+ declaration of the function being targeted by the call and EXP is the
+ CALL_EXPR representing the call. */
+
+static bool
+avr_function_ok_for_sibcall (tree decl_callee, tree exp_callee)
+{
+ tree fntype_callee;
+
+ /* Tail-calling must fail if callee-saved regs are used to pass
+ function args. We must not tail-call when `epilogue_restores'
+ is used. Unfortunately, we cannot tell at this point if that
+ actually will happen or not, and we cannot step back from
+ tail-calling. Thus, we inhibit tail-calling with -mcall-prologues. */
+
+ if (cfun->machine->sibcall_fails
+ || TARGET_CALL_PROLOGUES)
+ {
+ return false;
+ }
+
+ fntype_callee = TREE_TYPE (CALL_EXPR_FN (exp_callee));
+
+ if (decl_callee)
+ {
+ decl_callee = TREE_TYPE (decl_callee);
+ }
+ else
+ {
+ decl_callee = fntype_callee;
+
+ while (FUNCTION_TYPE != TREE_CODE (decl_callee)
+ && METHOD_TYPE != TREE_CODE (decl_callee))
+ {
+ decl_callee = TREE_TYPE (decl_callee);
+ }
+ }
+
+ /* Ensure that caller and callee have compatible epilogues */
+
+ if (cfun->machine->is_interrupt
+ || cfun->machine->is_signal
+ || cfun->machine->is_naked
+ || avr_naked_function_p (decl_callee)
+ /* FIXME: For OS_task and OS_main, this might be over-conservative. */
+ || (avr_OS_task_function_p (decl_callee)
+ != cfun->machine->is_OS_task)
+ || (avr_OS_main_function_p (decl_callee)
+ != cfun->machine->is_OS_main))
+ {
+ return false;
+ }
+
+ return true;
+}
+
+/***********************************************************************
+ Functions for outputting various mov's for a various modes
+************************************************************************/
+
+/* Return true if a value of mode MODE is read from flash by
+ __load_* function from libgcc. */
+
+bool
+avr_load_libgcc_p (rtx op)
+{
+ enum machine_mode mode = GET_MODE (op);
+ int n_bytes = GET_MODE_SIZE (mode);
+
+ return (n_bytes > 2
+ && !AVR_HAVE_LPMX
+ && avr_mem_flash_p (op));
+}
+
+/* Return true if a value of mode MODE is read by __xload_* function. */
+
+bool
+avr_xload_libgcc_p (enum machine_mode mode)
+{
+ int n_bytes = GET_MODE_SIZE (mode);
+
+ return (n_bytes > 1
+ || avr_current_device->n_flash > 1);
+}
+
+
+/* Fixme: This is a hack because secondary reloads don't works as expected.
+
+ Find an unused d-register to be used as scratch in INSN.
+ EXCLUDE is either NULL_RTX or some register. In the case where EXCLUDE
+ is a register, skip all possible return values that overlap EXCLUDE.
+ The policy for the returned register is similar to that of
+ `reg_unused_after', i.e. the returned register may overlap the SET_DEST
+ of INSN.
+
+ Return a QImode d-register or NULL_RTX if nothing found. */
+
+static rtx
+avr_find_unused_d_reg (rtx insn, rtx exclude)
+{
+ int regno;
+ bool isr_p = (avr_interrupt_function_p (current_function_decl)
+ || avr_signal_function_p (current_function_decl));
+
+ for (regno = 16; regno < 32; regno++)
+ {
+ rtx reg = all_regs_rtx[regno];
+
+ if ((exclude
+ && reg_overlap_mentioned_p (exclude, reg))
+ || fixed_regs[regno])
+ {
+ continue;
+ }
+
+ /* Try non-live register */
+
+ if (!df_regs_ever_live_p (regno)
+ && (TREE_THIS_VOLATILE (current_function_decl)
+ || cfun->machine->is_OS_task
+ || cfun->machine->is_OS_main
+ || (!isr_p && call_used_regs[regno])))
+ {
+ return reg;
+ }
+
+ /* Any live register can be used if it is unused after.
+ Prologue/epilogue will care for it as needed. */
+
+ if (df_regs_ever_live_p (regno)
+ && reg_unused_after (insn, reg))
+ {
+ return reg;
+ }
+ }
+
+ return NULL_RTX;
+}
+
+
+/* Helper function for the next function in the case where only restricted
+ version of LPM instruction is available. */
+
+static const char*
+avr_out_lpm_no_lpmx (rtx insn, rtx *xop, int *plen)
+{
+ rtx dest = xop[0];
+ rtx addr = xop[1];
+ int n_bytes = GET_MODE_SIZE (GET_MODE (dest));
+ int regno_dest;
+
+ regno_dest = REGNO (dest);
+
+ /* The implicit target register of LPM. */
+ xop[3] = lpm_reg_rtx;
+
+ switch (GET_CODE (addr))
+ {
+ default:
+ gcc_unreachable();
+
+ case REG:
+
+ gcc_assert (REG_Z == REGNO (addr));
+
+ switch (n_bytes)
+ {
+ default:
+ gcc_unreachable();
+
+ case 1:
+ avr_asm_len ("%4lpm", xop, plen, 1);
+
+ if (regno_dest != LPM_REGNO)
+ avr_asm_len ("mov %0,%3", xop, plen, 1);
+
+ return "";
+
+ case 2:
+ if (REGNO (dest) == REG_Z)
+ return avr_asm_len ("%4lpm" CR_TAB
+ "push %3" CR_TAB
+ "adiw %2,1" CR_TAB
+ "%4lpm" CR_TAB
+ "mov %B0,%3" CR_TAB
+ "pop %A0", xop, plen, 6);
+
+ avr_asm_len ("%4lpm" CR_TAB
+ "mov %A0,%3" CR_TAB
+ "adiw %2,1" CR_TAB
+ "%4lpm" CR_TAB
+ "mov %B0,%3", xop, plen, 5);
+
+ if (!reg_unused_after (insn, addr))
+ avr_asm_len ("sbiw %2,1", xop, plen, 1);
+
+ break; /* 2 */
+ }
+
+ break; /* REG */
+
+ case POST_INC:
+
+ gcc_assert (REG_Z == REGNO (XEXP (addr, 0))
+ && n_bytes <= 4);
+
+ if (regno_dest == LPM_REGNO)
+ avr_asm_len ("%4lpm" CR_TAB
+ "adiw %2,1", xop, plen, 2);
+ else
+ avr_asm_len ("%4lpm" CR_TAB
+ "mov %A0,%3" CR_TAB
+ "adiw %2,1", xop, plen, 3);
+
+ if (n_bytes >= 2)
+ avr_asm_len ("%4lpm" CR_TAB
+ "mov %B0,%3" CR_TAB
+ "adiw %2,1", xop, plen, 3);
+
+ if (n_bytes >= 3)
+ avr_asm_len ("%4lpm" CR_TAB
+ "mov %C0,%3" CR_TAB
+ "adiw %2,1", xop, plen, 3);
+
+ if (n_bytes >= 4)
+ avr_asm_len ("%4lpm" CR_TAB
+ "mov %D0,%3" CR_TAB
+ "adiw %2,1", xop, plen, 3);
+
+ break; /* POST_INC */
+
+ } /* switch CODE (addr) */
+
+ return "";
+}
+
+
+/* If PLEN == NULL: Ouput instructions to load a value from a memory location
+ OP[1] in AS1 to register OP[0].
+ If PLEN != 0 set *PLEN to the length in words of the instruction sequence.
+ Return "". */
+
+const char*
+avr_out_lpm (rtx insn, rtx *op, int *plen)
+{
+ rtx xop[7];
+ rtx dest = op[0];
+ rtx src = SET_SRC (single_set (insn));
+ rtx addr;
+ int n_bytes = GET_MODE_SIZE (GET_MODE (dest));
+ int segment;
+ RTX_CODE code;
+ addr_space_t as = MEM_ADDR_SPACE (src);
+
+ if (plen)
+ *plen = 0;
+
+ if (MEM_P (dest))
+ {
+ warning (0, "writing to address space %qs not supported",
+ avr_addrspace[MEM_ADDR_SPACE (dest)].name);
+
+ return "";
+ }
+
+ addr = XEXP (src, 0);
+ code = GET_CODE (addr);
+
+ gcc_assert (REG_P (dest));
+ gcc_assert (REG == code || POST_INC == code);
+
+ xop[0] = dest;
+ xop[1] = addr;
+ xop[2] = lpm_addr_reg_rtx;
+ xop[4] = xstring_empty;
+ xop[5] = tmp_reg_rtx;
+ xop[6] = XEXP (rampz_rtx, 0);
+
+ segment = avr_addrspace[as].segment;
+
+ /* Set RAMPZ as needed. */
+
+ if (segment)
+ {
+ xop[4] = GEN_INT (segment);
+ xop[3] = avr_find_unused_d_reg (insn, lpm_addr_reg_rtx);
+
+ if (xop[3] != NULL_RTX)
+ {
+ avr_asm_len ("ldi %3,%4" CR_TAB
+ "out %i6,%3", xop, plen, 2);
+ }
+ else if (segment == 1)
+ {
+ avr_asm_len ("clr %5" CR_TAB
+ "inc %5" CR_TAB
+ "out %i6,%5", xop, plen, 3);
+ }
+ else
+ {
+ avr_asm_len ("mov %5,%2" CR_TAB
+ "ldi %2,%4" CR_TAB
+ "out %i6,%2" CR_TAB
+ "mov %2,%5", xop, plen, 4);
+ }
+
+ xop[4] = xstring_e;
+
+ if (!AVR_HAVE_ELPMX)
+ return avr_out_lpm_no_lpmx (insn, xop, plen);
+ }
+ else if (!AVR_HAVE_LPMX)
+ {
+ return avr_out_lpm_no_lpmx (insn, xop, plen);
+ }
+
+ /* We have [E]LPMX: Output reading from Flash the comfortable way. */
+
+ switch (GET_CODE (addr))
+ {
+ default:
+ gcc_unreachable();
+
+ case REG:
+
+ gcc_assert (REG_Z == REGNO (addr));
+
+ switch (n_bytes)
+ {
+ default:
+ gcc_unreachable();
+
+ case 1:
+ return avr_asm_len ("%4lpm %0,%a2", xop, plen, 1);
+
+ case 2:
+ if (REGNO (dest) == REG_Z)
+ return avr_asm_len ("%4lpm %5,%a2+" CR_TAB
+ "%4lpm %B0,%a2" CR_TAB
+ "mov %A0,%5", xop, plen, 3);
+ else
+ {
+ avr_asm_len ("%4lpm %A0,%a2+" CR_TAB
+ "%4lpm %B0,%a2", xop, plen, 2);
+
+ if (!reg_unused_after (insn, addr))
+ avr_asm_len ("sbiw %2,1", xop, plen, 1);
+ }
+
+ break; /* 2 */
+
+ case 3:
+
+ avr_asm_len ("%4lpm %A0,%a2+" CR_TAB
+ "%4lpm %B0,%a2+" CR_TAB
+ "%4lpm %C0,%a2", xop, plen, 3);
+
+ if (!reg_unused_after (insn, addr))
+ avr_asm_len ("sbiw %2,2", xop, plen, 1);
+
+ break; /* 3 */
+
+ case 4:
+
+ avr_asm_len ("%4lpm %A0,%a2+" CR_TAB
+ "%4lpm %B0,%a2+", xop, plen, 2);
+
+ if (REGNO (dest) == REG_Z - 2)
+ return avr_asm_len ("%4lpm %5,%a2+" CR_TAB
+ "%4lpm %C0,%a2" CR_TAB
+ "mov %D0,%5", xop, plen, 3);
+ else
+ {
+ avr_asm_len ("%4lpm %C0,%a2+" CR_TAB
+ "%4lpm %D0,%a2", xop, plen, 2);
+
+ if (!reg_unused_after (insn, addr))
+ avr_asm_len ("sbiw %2,3", xop, plen, 1);
+ }
+
+ break; /* 4 */
+ } /* n_bytes */
+
+ break; /* REG */
+
+ case POST_INC:
+
+ gcc_assert (REG_Z == REGNO (XEXP (addr, 0))
+ && n_bytes <= 4);
+
+ avr_asm_len ("%4lpm %A0,%a2+", xop, plen, 1);
+ if (n_bytes >= 2) avr_asm_len ("%4lpm %B0,%a2+", xop, plen, 1);
+ if (n_bytes >= 3) avr_asm_len ("%4lpm %C0,%a2+", xop, plen, 1);
+ if (n_bytes >= 4) avr_asm_len ("%4lpm %D0,%a2+", xop, plen, 1);
+
+ break; /* POST_INC */
+
+ } /* switch CODE (addr) */
+
+ if (xop[4] == xstring_e && AVR_HAVE_RAMPD)
+ {
+ /* Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM. */
+
+ xop[0] = zero_reg_rtx;
+ avr_asm_len ("out %i6,%0", xop, plen, 1);
+ }
+
+ return "";
+}
+
+
+/* Worker function for xload_8 insn. */
+
+const char*
+avr_out_xload (rtx insn ATTRIBUTE_UNUSED, rtx *op, int *plen)
+{
+ rtx xop[4];
+
+ xop[0] = op[0];
+ xop[1] = op[1];
+ xop[2] = lpm_addr_reg_rtx;
+ xop[3] = AVR_HAVE_LPMX ? op[0] : lpm_reg_rtx;
+
+ avr_asm_len (AVR_HAVE_LPMX ? "lpm %3,%a2" : "lpm", xop, plen, -1);
+
+ avr_asm_len ("sbrc %1,7" CR_TAB
+ "ld %3,%a2", xop, plen, 2);
+
+ if (REGNO (xop[0]) != REGNO (xop[3]))
+ avr_asm_len ("mov %0,%3", xop, plen, 1);
+
+ return "";
+}
+
+
+const char*
+output_movqi (rtx insn, rtx operands[], int *plen)
+{
+ rtx dest = operands[0];
+ rtx src = operands[1];
+
+ if (avr_mem_flash_p (src)
+ || avr_mem_flash_p (dest))
+ {
+ return avr_out_lpm (insn, operands, plen);
+ }
+
+ gcc_assert (1 == GET_MODE_SIZE (GET_MODE (dest)));
+
+ if (REG_P (dest))
+ {
+ if (REG_P (src)) /* mov r,r */
+ {
+ if (test_hard_reg_class (STACK_REG, dest))
+ return avr_asm_len ("out %0,%1", operands, plen, -1);
+ else if (test_hard_reg_class (STACK_REG, src))
+ return avr_asm_len ("in %0,%1", operands, plen, -1);
+
+ return avr_asm_len ("mov %0,%1", operands, plen, -1);
+ }
+ else if (CONSTANT_P (src))
+ {
+ output_reload_in_const (operands, NULL_RTX, plen, false);
+ return "";
+ }
+ else if (MEM_P (src))
+ return out_movqi_r_mr (insn, operands, plen); /* mov r,m */
+ }
+ else if (MEM_P (dest))
+ {
+ rtx xop[2];
+
+ xop[0] = dest;
+ xop[1] = src == CONST0_RTX (GET_MODE (dest)) ? zero_reg_rtx : src;
+
+ return out_movqi_mr_r (insn, xop, plen);
+ }
+
+ return "";
+}
+
+
+const char *
+output_movhi (rtx insn, rtx xop[], int *plen)
+{
+ rtx dest = xop[0];
+ rtx src = xop[1];
+
+ gcc_assert (GET_MODE_SIZE (GET_MODE (dest)) == 2);
+
+ if (avr_mem_flash_p (src)
+ || avr_mem_flash_p (dest))
+ {
+ return avr_out_lpm (insn, xop, plen);
+ }
+
+ gcc_assert (2 == GET_MODE_SIZE (GET_MODE (dest)));
+
+ if (REG_P (dest))
+ {
+ if (REG_P (src)) /* mov r,r */
+ {
+ if (test_hard_reg_class (STACK_REG, dest))
+ {
+ if (AVR_HAVE_8BIT_SP)
+ return avr_asm_len ("out __SP_L__,%A1", xop, plen, -1);
+
+ if (AVR_XMEGA)
+ return avr_asm_len ("out __SP_L__,%A1" CR_TAB
+ "out __SP_H__,%B1", xop, plen, -2);
+
+ /* Use simple load of SP if no interrupts are used. */
+
+ return TARGET_NO_INTERRUPTS
+ ? avr_asm_len ("out __SP_H__,%B1" CR_TAB
+ "out __SP_L__,%A1", xop, plen, -2)
+ : avr_asm_len ("in __tmp_reg__,__SREG__" CR_TAB
+ "cli" CR_TAB
+ "out __SP_H__,%B1" CR_TAB
+ "out __SREG__,__tmp_reg__" CR_TAB
+ "out __SP_L__,%A1", xop, plen, -5);
+ }
+ else if (test_hard_reg_class (STACK_REG, src))
+ {
+ return !AVR_HAVE_SPH
+ ? avr_asm_len ("in %A0,__SP_L__" CR_TAB
+ "clr %B0", xop, plen, -2)
+
+ : avr_asm_len ("in %A0,__SP_L__" CR_TAB
+ "in %B0,__SP_H__", xop, plen, -2);
+ }
+
+ return AVR_HAVE_MOVW
+ ? avr_asm_len ("movw %0,%1", xop, plen, -1)
+
+ : avr_asm_len ("mov %A0,%A1" CR_TAB
+ "mov %B0,%B1", xop, plen, -2);
+ } /* REG_P (src) */
+ else if (CONSTANT_P (src))
+ {
+ return output_reload_inhi (xop, NULL, plen);
+ }
+ else if (MEM_P (src))
+ {
+ return out_movhi_r_mr (insn, xop, plen); /* mov r,m */
+ }
+ }
+ else if (MEM_P (dest))
+ {
+ rtx xop[2];
+
+ xop[0] = dest;
+ xop[1] = src == CONST0_RTX (GET_MODE (dest)) ? zero_reg_rtx : src;
+
+ return out_movhi_mr_r (insn, xop, plen);
+ }
+
+ fatal_insn ("invalid insn:", insn);
+
+ return "";
+}
+
+static const char*
+out_movqi_r_mr (rtx insn, rtx op[], int *plen)
+{
+ rtx dest = op[0];
+ rtx src = op[1];
+ rtx x = XEXP (src, 0);
+
+ if (CONSTANT_ADDRESS_P (x))
+ {
+ return optimize > 0 && io_address_operand (x, QImode)
+ ? avr_asm_len ("in %0,%i1", op, plen, -1)
+ : avr_asm_len ("lds %0,%m1", op, plen, -2);
+ }
+ else if (GET_CODE (x) == PLUS
+ && REG_P (XEXP (x, 0))
+ && CONST_INT_P (XEXP (x, 1)))
+ {
+ /* memory access by reg+disp */
+
+ int disp = INTVAL (XEXP (x, 1));
+
+ if (disp - GET_MODE_SIZE (GET_MODE (src)) >= 63)
+ {
+ if (REGNO (XEXP (x, 0)) != REG_Y)
+ fatal_insn ("incorrect insn:",insn);
+
+ if (disp <= 63 + MAX_LD_OFFSET (GET_MODE (src)))
+ return avr_asm_len ("adiw r28,%o1-63" CR_TAB
+ "ldd %0,Y+63" CR_TAB
+ "sbiw r28,%o1-63", op, plen, -3);
+
+ return avr_asm_len ("subi r28,lo8(-%o1)" CR_TAB
+ "sbci r29,hi8(-%o1)" CR_TAB
+ "ld %0,Y" CR_TAB
+ "subi r28,lo8(%o1)" CR_TAB
+ "sbci r29,hi8(%o1)", op, plen, -5);
+ }
+ else if (REGNO (XEXP (x, 0)) == REG_X)
+ {
+ /* This is a paranoid case LEGITIMIZE_RELOAD_ADDRESS must exclude
+ it but I have this situation with extremal optimizing options. */
+
+ avr_asm_len ("adiw r26,%o1" CR_TAB
+ "ld %0,X", op, plen, -2);
+
+ if (!reg_overlap_mentioned_p (dest, XEXP (x,0))
+ && !reg_unused_after (insn, XEXP (x,0)))
+ {
+ avr_asm_len ("sbiw r26,%o1", op, plen, 1);
+ }
+
+ return "";
+ }
+
+ return avr_asm_len ("ldd %0,%1", op, plen, -1);
+ }
+
+ return avr_asm_len ("ld %0,%1", op, plen, -1);
+}
+
+static const char*
+out_movhi_r_mr (rtx insn, rtx op[], int *plen)
+{
+ rtx dest = op[0];
+ rtx src = op[1];
+ rtx base = XEXP (src, 0);
+ int reg_dest = true_regnum (dest);
+ int reg_base = true_regnum (base);
+ /* "volatile" forces reading low byte first, even if less efficient,
+ for correct operation with 16-bit I/O registers. */
+ int mem_volatile_p = MEM_VOLATILE_P (src);
+
+ if (reg_base > 0)
+ {
+ if (reg_dest == reg_base) /* R = (R) */
+ return avr_asm_len ("ld __tmp_reg__,%1+" CR_TAB
+ "ld %B0,%1" CR_TAB
+ "mov %A0,__tmp_reg__", op, plen, -3);
+
+ if (reg_base != REG_X)
+ return avr_asm_len ("ld %A0,%1" CR_TAB
+ "ldd %B0,%1+1", op, plen, -2);
+
+ avr_asm_len ("ld %A0,X+" CR_TAB
+ "ld %B0,X", op, plen, -2);
+
+ if (!reg_unused_after (insn, base))
+ avr_asm_len ("sbiw r26,1", op, plen, 1);
+
+ return "";
+ }
+ else if (GET_CODE (base) == PLUS) /* (R + i) */
+ {
+ int disp = INTVAL (XEXP (base, 1));
+ int reg_base = true_regnum (XEXP (base, 0));
+
+ if (disp > MAX_LD_OFFSET (GET_MODE (src)))
+ {
+ if (REGNO (XEXP (base, 0)) != REG_Y)
+ fatal_insn ("incorrect insn:",insn);
+
+ return disp <= 63 + MAX_LD_OFFSET (GET_MODE (src))
+ ? avr_asm_len ("adiw r28,%o1-62" CR_TAB
+ "ldd %A0,Y+62" CR_TAB
+ "ldd %B0,Y+63" CR_TAB
+ "sbiw r28,%o1-62", op, plen, -4)
+
+ : avr_asm_len ("subi r28,lo8(-%o1)" CR_TAB
+ "sbci r29,hi8(-%o1)" CR_TAB
+ "ld %A0,Y" CR_TAB
+ "ldd %B0,Y+1" CR_TAB
+ "subi r28,lo8(%o1)" CR_TAB
+ "sbci r29,hi8(%o1)", op, plen, -6);
+ }
+
+ /* This is a paranoid case. LEGITIMIZE_RELOAD_ADDRESS must exclude
+ it but I have this situation with extremal
+ optimization options. */
+
+ if (reg_base == REG_X)
+ return reg_base == reg_dest
+ ? avr_asm_len ("adiw r26,%o1" CR_TAB
+ "ld __tmp_reg__,X+" CR_TAB
+ "ld %B0,X" CR_TAB
+ "mov %A0,__tmp_reg__", op, plen, -4)
+
+ : avr_asm_len ("adiw r26,%o1" CR_TAB
+ "ld %A0,X+" CR_TAB
+ "ld %B0,X" CR_TAB
+ "sbiw r26,%o1+1", op, plen, -4);
+
+ return reg_base == reg_dest
+ ? avr_asm_len ("ldd __tmp_reg__,%A1" CR_TAB
+ "ldd %B0,%B1" CR_TAB
+ "mov %A0,__tmp_reg__", op, plen, -3)
+
+ : avr_asm_len ("ldd %A0,%A1" CR_TAB
+ "ldd %B0,%B1", op, plen, -2);
+ }
+ else if (GET_CODE (base) == PRE_DEC) /* (--R) */
+ {
+ if (reg_overlap_mentioned_p (dest, XEXP (base, 0)))
+ fatal_insn ("incorrect insn:", insn);
+
+ if (!mem_volatile_p)
+ return avr_asm_len ("ld %B0,%1" CR_TAB
+ "ld %A0,%1", op, plen, -2);
+
+ return REGNO (XEXP (base, 0)) == REG_X
+ ? avr_asm_len ("sbiw r26,2" CR_TAB
+ "ld %A0,X+" CR_TAB
+ "ld %B0,X" CR_TAB
+ "sbiw r26,1", op, plen, -4)
+
+ : avr_asm_len ("sbiw %r1,2" CR_TAB
+ "ld %A0,%p1" CR_TAB
+ "ldd %B0,%p1+1", op, plen, -3);
+ }
+ else if (GET_CODE (base) == POST_INC) /* (R++) */
+ {
+ if (reg_overlap_mentioned_p (dest, XEXP (base, 0)))
+ fatal_insn ("incorrect insn:", insn);
+
+ return avr_asm_len ("ld %A0,%1" CR_TAB
+ "ld %B0,%1", op, plen, -2);
+ }
+ else if (CONSTANT_ADDRESS_P (base))
+ {
+ return optimize > 0 && io_address_operand (base, HImode)
+ ? avr_asm_len ("in %A0,%i1" CR_TAB
+ "in %B0,%i1+1", op, plen, -2)
+
+ : avr_asm_len ("lds %A0,%m1" CR_TAB
+ "lds %B0,%m1+1", op, plen, -4);
+ }
+
+ fatal_insn ("unknown move insn:",insn);
+ return "";
+}
+
+static const char*
+out_movsi_r_mr (rtx insn, rtx op[], int *l)
+{
+ rtx dest = op[0];
+ rtx src = op[1];
+ rtx base = XEXP (src, 0);
+ int reg_dest = true_regnum (dest);
+ int reg_base = true_regnum (base);
+ int tmp;
+
+ if (!l)
+ l = &tmp;
+
+ if (reg_base > 0)
+ {
+ if (reg_base == REG_X) /* (R26) */
+ {
+ if (reg_dest == REG_X)
+ /* "ld r26,-X" is undefined */
+ return *l=7, ("adiw r26,3" CR_TAB
+ "ld r29,X" CR_TAB
+ "ld r28,-X" CR_TAB
+ "ld __tmp_reg__,-X" CR_TAB
+ "sbiw r26,1" CR_TAB
+ "ld r26,X" CR_TAB
+ "mov r27,__tmp_reg__");
+ else if (reg_dest == REG_X - 2)
+ return *l=5, ("ld %A0,X+" CR_TAB
+ "ld %B0,X+" CR_TAB
+ "ld __tmp_reg__,X+" CR_TAB
+ "ld %D0,X" CR_TAB
+ "mov %C0,__tmp_reg__");
+ else if (reg_unused_after (insn, base))
+ return *l=4, ("ld %A0,X+" CR_TAB
+ "ld %B0,X+" CR_TAB
+ "ld %C0,X+" CR_TAB
+ "ld %D0,X");
+ else
+ return *l=5, ("ld %A0,X+" CR_TAB
+ "ld %B0,X+" CR_TAB
+ "ld %C0,X+" CR_TAB
+ "ld %D0,X" CR_TAB
+ "sbiw r26,3");
+ }
+ else
+ {
+ if (reg_dest == reg_base)
+ return *l=5, ("ldd %D0,%1+3" CR_TAB
+ "ldd %C0,%1+2" CR_TAB
+ "ldd __tmp_reg__,%1+1" CR_TAB
+ "ld %A0,%1" CR_TAB
+ "mov %B0,__tmp_reg__");
+ else if (reg_base == reg_dest + 2)
+ return *l=5, ("ld %A0,%1" CR_TAB
+ "ldd %B0,%1+1" CR_TAB
+ "ldd __tmp_reg__,%1+2" CR_TAB
+ "ldd %D0,%1+3" CR_TAB
+ "mov %C0,__tmp_reg__");
+ else
+ return *l=4, ("ld %A0,%1" CR_TAB
+ "ldd %B0,%1+1" CR_TAB
+ "ldd %C0,%1+2" CR_TAB
+ "ldd %D0,%1+3");
+ }
+ }
+ else if (GET_CODE (base) == PLUS) /* (R + i) */
+ {
+ int disp = INTVAL (XEXP (base, 1));
+
+ if (disp > MAX_LD_OFFSET (GET_MODE (src)))
+ {
+ if (REGNO (XEXP (base, 0)) != REG_Y)
+ fatal_insn ("incorrect insn:",insn);
+
+ if (disp <= 63 + MAX_LD_OFFSET (GET_MODE (src)))
+ return *l = 6, ("adiw r28,%o1-60" CR_TAB
+ "ldd %A0,Y+60" CR_TAB
+ "ldd %B0,Y+61" CR_TAB
+ "ldd %C0,Y+62" CR_TAB
+ "ldd %D0,Y+63" CR_TAB
+ "sbiw r28,%o1-60");
+
+ return *l = 8, ("subi r28,lo8(-%o1)" CR_TAB
+ "sbci r29,hi8(-%o1)" CR_TAB
+ "ld %A0,Y" CR_TAB
+ "ldd %B0,Y+1" CR_TAB
+ "ldd %C0,Y+2" CR_TAB
+ "ldd %D0,Y+3" CR_TAB
+ "subi r28,lo8(%o1)" CR_TAB
+ "sbci r29,hi8(%o1)");
+ }
+
+ reg_base = true_regnum (XEXP (base, 0));
+ if (reg_base == REG_X)
+ {
+ /* R = (X + d) */
+ if (reg_dest == REG_X)
+ {
+ *l = 7;
+ /* "ld r26,-X" is undefined */
+ return ("adiw r26,%o1+3" CR_TAB
+ "ld r29,X" CR_TAB
+ "ld r28,-X" CR_TAB
+ "ld __tmp_reg__,-X" CR_TAB
+ "sbiw r26,1" CR_TAB
+ "ld r26,X" CR_TAB
+ "mov r27,__tmp_reg__");
+ }
+ *l = 6;
+ if (reg_dest == REG_X - 2)
+ return ("adiw r26,%o1" CR_TAB
+ "ld r24,X+" CR_TAB
+ "ld r25,X+" CR_TAB
+ "ld __tmp_reg__,X+" CR_TAB
+ "ld r27,X" CR_TAB
+ "mov r26,__tmp_reg__");
+
+ return ("adiw r26,%o1" CR_TAB
+ "ld %A0,X+" CR_TAB
+ "ld %B0,X+" CR_TAB
+ "ld %C0,X+" CR_TAB
+ "ld %D0,X" CR_TAB
+ "sbiw r26,%o1+3");
+ }
+ if (reg_dest == reg_base)
+ return *l=5, ("ldd %D0,%D1" CR_TAB
+ "ldd %C0,%C1" CR_TAB
+ "ldd __tmp_reg__,%B1" CR_TAB
+ "ldd %A0,%A1" CR_TAB
+ "mov %B0,__tmp_reg__");
+ else if (reg_dest == reg_base - 2)
+ return *l=5, ("ldd %A0,%A1" CR_TAB
+ "ldd %B0,%B1" CR_TAB
+ "ldd __tmp_reg__,%C1" CR_TAB
+ "ldd %D0,%D1" CR_TAB
+ "mov %C0,__tmp_reg__");
+ return *l=4, ("ldd %A0,%A1" CR_TAB
+ "ldd %B0,%B1" CR_TAB
+ "ldd %C0,%C1" CR_TAB
+ "ldd %D0,%D1");
+ }
+ else if (GET_CODE (base) == PRE_DEC) /* (--R) */
+ return *l=4, ("ld %D0,%1" CR_TAB
+ "ld %C0,%1" CR_TAB
+ "ld %B0,%1" CR_TAB
+ "ld %A0,%1");
+ else if (GET_CODE (base) == POST_INC) /* (R++) */
+ return *l=4, ("ld %A0,%1" CR_TAB
+ "ld %B0,%1" CR_TAB
+ "ld %C0,%1" CR_TAB
+ "ld %D0,%1");
+ else if (CONSTANT_ADDRESS_P (base))
+ return *l=8, ("lds %A0,%m1" CR_TAB
+ "lds %B0,%m1+1" CR_TAB
+ "lds %C0,%m1+2" CR_TAB
+ "lds %D0,%m1+3");
+
+ fatal_insn ("unknown move insn:",insn);
+ return "";
+}
+
+static const char*
+out_movsi_mr_r (rtx insn, rtx op[], int *l)
+{
+ rtx dest = op[0];
+ rtx src = op[1];
+ rtx base = XEXP (dest, 0);
+ int reg_base = true_regnum (base);
+ int reg_src = true_regnum (src);
+ int tmp;
+
+ if (!l)
+ l = &tmp;
+
+ if (CONSTANT_ADDRESS_P (base))
+ return *l=8,("sts %m0,%A1" CR_TAB
+ "sts %m0+1,%B1" CR_TAB
+ "sts %m0+2,%C1" CR_TAB
+ "sts %m0+3,%D1");
+ if (reg_base > 0) /* (r) */
+ {
+ if (reg_base == REG_X) /* (R26) */
+ {
+ if (reg_src == REG_X)
+ {
+ /* "st X+,r26" is undefined */
+ if (reg_unused_after (insn, base))
+ return *l=6, ("mov __tmp_reg__,r27" CR_TAB
+ "st X,r26" CR_TAB
+ "adiw r26,1" CR_TAB
+ "st X+,__tmp_reg__" CR_TAB
+ "st X+,r28" CR_TAB
+ "st X,r29");
+ else
+ return *l=7, ("mov __tmp_reg__,r27" CR_TAB
+ "st X,r26" CR_TAB
+ "adiw r26,1" CR_TAB
+ "st X+,__tmp_reg__" CR_TAB
+ "st X+,r28" CR_TAB
+ "st X,r29" CR_TAB
+ "sbiw r26,3");
+ }
+ else if (reg_base == reg_src + 2)
+ {
+ if (reg_unused_after (insn, base))
+ return *l=7, ("mov __zero_reg__,%C1" CR_TAB
+ "mov __tmp_reg__,%D1" CR_TAB
+ "st %0+,%A1" CR_TAB
+ "st %0+,%B1" CR_TAB
+ "st %0+,__zero_reg__" CR_TAB
+ "st %0,__tmp_reg__" CR_TAB
+ "clr __zero_reg__");
+ else
+ return *l=8, ("mov __zero_reg__,%C1" CR_TAB
+ "mov __tmp_reg__,%D1" CR_TAB
+ "st %0+,%A1" CR_TAB
+ "st %0+,%B1" CR_TAB
+ "st %0+,__zero_reg__" CR_TAB
+ "st %0,__tmp_reg__" CR_TAB
+ "clr __zero_reg__" CR_TAB
+ "sbiw r26,3");
+ }
+ return *l=5, ("st %0+,%A1" CR_TAB
+ "st %0+,%B1" CR_TAB
+ "st %0+,%C1" CR_TAB
+ "st %0,%D1" CR_TAB
+ "sbiw r26,3");
+ }
+ else
+ return *l=4, ("st %0,%A1" CR_TAB
+ "std %0+1,%B1" CR_TAB
+ "std %0+2,%C1" CR_TAB
+ "std %0+3,%D1");
+ }
+ else if (GET_CODE (base) == PLUS) /* (R + i) */
+ {
+ int disp = INTVAL (XEXP (base, 1));
+ reg_base = REGNO (XEXP (base, 0));
+ if (disp > MAX_LD_OFFSET (GET_MODE (dest)))
+ {
+ if (reg_base != REG_Y)
+ fatal_insn ("incorrect insn:",insn);
+
+ if (disp <= 63 + MAX_LD_OFFSET (GET_MODE (dest)))
+ return *l = 6, ("adiw r28,%o0-60" CR_TAB
+ "std Y+60,%A1" CR_TAB
+ "std Y+61,%B1" CR_TAB
+ "std Y+62,%C1" CR_TAB
+ "std Y+63,%D1" CR_TAB
+ "sbiw r28,%o0-60");
+
+ return *l = 8, ("subi r28,lo8(-%o0)" CR_TAB
+ "sbci r29,hi8(-%o0)" CR_TAB
+ "st Y,%A1" CR_TAB
+ "std Y+1,%B1" CR_TAB
+ "std Y+2,%C1" CR_TAB
+ "std Y+3,%D1" CR_TAB
+ "subi r28,lo8(%o0)" CR_TAB
+ "sbci r29,hi8(%o0)");
+ }
+ if (reg_base == REG_X)
+ {
+ /* (X + d) = R */
+ if (reg_src == REG_X)
+ {
+ *l = 9;
+ return ("mov __tmp_reg__,r26" CR_TAB
+ "mov __zero_reg__,r27" CR_TAB
+ "adiw r26,%o0" CR_TAB
+ "st X+,__tmp_reg__" CR_TAB
+ "st X+,__zero_reg__" CR_TAB
+ "st X+,r28" CR_TAB
+ "st X,r29" CR_TAB
+ "clr __zero_reg__" CR_TAB
+ "sbiw r26,%o0+3");
+ }
+ else if (reg_src == REG_X - 2)
+ {
+ *l = 9;
+ return ("mov __tmp_reg__,r26" CR_TAB
+ "mov __zero_reg__,r27" CR_TAB
+ "adiw r26,%o0" CR_TAB
+ "st X+,r24" CR_TAB
+ "st X+,r25" CR_TAB
+ "st X+,__tmp_reg__" CR_TAB
+ "st X,__zero_reg__" CR_TAB
+ "clr __zero_reg__" CR_TAB
+ "sbiw r26,%o0+3");
+ }
+ *l = 6;
+ return ("adiw r26,%o0" CR_TAB
+ "st X+,%A1" CR_TAB
+ "st X+,%B1" CR_TAB
+ "st X+,%C1" CR_TAB
+ "st X,%D1" CR_TAB
+ "sbiw r26,%o0+3");
+ }
+ return *l=4, ("std %A0,%A1" CR_TAB
+ "std %B0,%B1" CR_TAB
+ "std %C0,%C1" CR_TAB
+ "std %D0,%D1");
+ }
+ else if (GET_CODE (base) == PRE_DEC) /* (--R) */
+ return *l=4, ("st %0,%D1" CR_TAB
+ "st %0,%C1" CR_TAB
+ "st %0,%B1" CR_TAB
+ "st %0,%A1");
+ else if (GET_CODE (base) == POST_INC) /* (R++) */
+ return *l=4, ("st %0,%A1" CR_TAB
+ "st %0,%B1" CR_TAB
+ "st %0,%C1" CR_TAB
+ "st %0,%D1");
+ fatal_insn ("unknown move insn:",insn);
+ return "";
+}
+
+const char *
+output_movsisf (rtx insn, rtx operands[], int *l)
+{
+ int dummy;
+ rtx dest = operands[0];
+ rtx src = operands[1];
+ int *real_l = l;
+
+ if (avr_mem_flash_p (src)
+ || avr_mem_flash_p (dest))
+ {
+ return avr_out_lpm (insn, operands, real_l);
+ }
+
+ if (!l)
+ l = &dummy;
+
+ gcc_assert (4 == GET_MODE_SIZE (GET_MODE (dest)));
+ if (REG_P (dest))
+ {
+ if (REG_P (src)) /* mov r,r */
+ {
+ if (true_regnum (dest) > true_regnum (src))
+ {
+ if (AVR_HAVE_MOVW)
+ {
+ *l = 2;
+ return ("movw %C0,%C1" CR_TAB
+ "movw %A0,%A1");
+ }
+ *l = 4;
+ return ("mov %D0,%D1" CR_TAB
+ "mov %C0,%C1" CR_TAB
+ "mov %B0,%B1" CR_TAB
+ "mov %A0,%A1");
+ }
+ else
+ {
+ if (AVR_HAVE_MOVW)
+ {
+ *l = 2;
+ return ("movw %A0,%A1" CR_TAB
+ "movw %C0,%C1");
+ }
+ *l = 4;
+ return ("mov %A0,%A1" CR_TAB
+ "mov %B0,%B1" CR_TAB
+ "mov %C0,%C1" CR_TAB
+ "mov %D0,%D1");
+ }
+ }
+ else if (CONSTANT_P (src))
+ {
+ return output_reload_insisf (operands, NULL_RTX, real_l);
+ }
+ else if (MEM_P (src))
+ return out_movsi_r_mr (insn, operands, real_l); /* mov r,m */
+ }
+ else if (MEM_P (dest))
+ {
+ const char *templ;
+
+ if (src == CONST0_RTX (GET_MODE (dest)))
+ operands[1] = zero_reg_rtx;
+
+ templ = out_movsi_mr_r (insn, operands, real_l);
+
+ if (!real_l)
+ output_asm_insn (templ, operands);
+
+ operands[1] = src;
+ return "";
+ }
+ fatal_insn ("invalid insn:", insn);
+ return "";
+}
+
+
+/* Handle loads of 24-bit types from memory to register. */
+
+static const char*
+avr_out_load_psi (rtx insn, rtx *op, int *plen)
+{
+ rtx dest = op[0];
+ rtx src = op[1];
+ rtx base = XEXP (src, 0);
+ int reg_dest = true_regnum (dest);
+ int reg_base = true_regnum (base);
+
+ if (reg_base > 0)
+ {
+ if (reg_base == REG_X) /* (R26) */
+ {
+ if (reg_dest == REG_X)
+ /* "ld r26,-X" is undefined */
+ return avr_asm_len ("adiw r26,2" CR_TAB
+ "ld r28,X" CR_TAB
+ "ld __tmp_reg__,-X" CR_TAB
+ "sbiw r26,1" CR_TAB
+ "ld r26,X" CR_TAB
+ "mov r27,__tmp_reg__", op, plen, -6);
+ else
+ {
+ avr_asm_len ("ld %A0,X+" CR_TAB
+ "ld %B0,X+" CR_TAB
+ "ld %C0,X", op, plen, -3);
+
+ if (reg_dest != REG_X - 2
+ && !reg_unused_after (insn, base))
+ {
+ avr_asm_len ("sbiw r26,2", op, plen, 1);
+ }
+
+ return "";
+ }
+ }
+ else /* reg_base != REG_X */
+ {
+ if (reg_dest == reg_base)
+ return avr_asm_len ("ldd %C0,%1+2" CR_TAB
+ "ldd __tmp_reg__,%1+1" CR_TAB
+ "ld %A0,%1" CR_TAB
+ "mov %B0,__tmp_reg__", op, plen, -4);
+ else
+ return avr_asm_len ("ld %A0,%1" CR_TAB
+ "ldd %B0,%1+1" CR_TAB
+ "ldd %C0,%1+2", op, plen, -3);
+ }
+ }
+ else if (GET_CODE (base) == PLUS) /* (R + i) */
+ {
+ int disp = INTVAL (XEXP (base, 1));
+
+ if (disp > MAX_LD_OFFSET (GET_MODE (src)))
+ {
+ if (REGNO (XEXP (base, 0)) != REG_Y)
+ fatal_insn ("incorrect insn:",insn);
+
+ if (disp <= 63 + MAX_LD_OFFSET (GET_MODE (src)))
+ return avr_asm_len ("adiw r28,%o1-61" CR_TAB
+ "ldd %A0,Y+61" CR_TAB
+ "ldd %B0,Y+62" CR_TAB
+ "ldd %C0,Y+63" CR_TAB
+ "sbiw r28,%o1-61", op, plen, -5);
+
+ return avr_asm_len ("subi r28,lo8(-%o1)" CR_TAB
+ "sbci r29,hi8(-%o1)" CR_TAB
+ "ld %A0,Y" CR_TAB
+ "ldd %B0,Y+1" CR_TAB
+ "ldd %C0,Y+2" CR_TAB
+ "subi r28,lo8(%o1)" CR_TAB
+ "sbci r29,hi8(%o1)", op, plen, -7);
+ }
+
+ reg_base = true_regnum (XEXP (base, 0));
+ if (reg_base == REG_X)
+ {
+ /* R = (X + d) */
+ if (reg_dest == REG_X)
+ {
+ /* "ld r26,-X" is undefined */
+ return avr_asm_len ("adiw r26,%o1+2" CR_TAB
+ "ld r28,X" CR_TAB
+ "ld __tmp_reg__,-X" CR_TAB
+ "sbiw r26,1" CR_TAB
+ "ld r26,X" CR_TAB
+ "mov r27,__tmp_reg__", op, plen, -6);
+ }
+
+ avr_asm_len ("adiw r26,%o1" CR_TAB
+ "ld %A0,X+" CR_TAB
+ "ld %B0,X+" CR_TAB
+ "ld %C0,X", op, plen, -4);
+
+ if (reg_dest != REG_W
+ && !reg_unused_after (insn, XEXP (base, 0)))
+ avr_asm_len ("sbiw r26,%o1+2", op, plen, 1);
+
+ return "";
+ }
+
+ if (reg_dest == reg_base)
+ return avr_asm_len ("ldd %C0,%C1" CR_TAB
+ "ldd __tmp_reg__,%B1" CR_TAB
+ "ldd %A0,%A1" CR_TAB
+ "mov %B0,__tmp_reg__", op, plen, -4);
+
+ return avr_asm_len ("ldd %A0,%A1" CR_TAB
+ "ldd %B0,%B1" CR_TAB
+ "ldd %C0,%C1", op, plen, -3);
+ }
+ else if (GET_CODE (base) == PRE_DEC) /* (--R) */
+ return avr_asm_len ("ld %C0,%1" CR_TAB
+ "ld %B0,%1" CR_TAB
+ "ld %A0,%1", op, plen, -3);
+ else if (GET_CODE (base) == POST_INC) /* (R++) */
+ return avr_asm_len ("ld %A0,%1" CR_TAB
+ "ld %B0,%1" CR_TAB
+ "ld %C0,%1", op, plen, -3);
+
+ else if (CONSTANT_ADDRESS_P (base))
+ return avr_asm_len ("lds %A0,%m1" CR_TAB
+ "lds %B0,%m1+1" CR_TAB
+ "lds %C0,%m1+2", op, plen , -6);
+
+ fatal_insn ("unknown move insn:",insn);
+ return "";
+}
+
+/* Handle store of 24-bit type from register or zero to memory. */
+
+static const char*
+avr_out_store_psi (rtx insn, rtx *op, int *plen)
+{
+ rtx dest = op[0];
+ rtx src = op[1];
+ rtx base = XEXP (dest, 0);
+ int reg_base = true_regnum (base);
+
+ if (CONSTANT_ADDRESS_P (base))
+ return avr_asm_len ("sts %m0,%A1" CR_TAB
+ "sts %m0+1,%B1" CR_TAB
+ "sts %m0+2,%C1", op, plen, -6);
+
+ if (reg_base > 0) /* (r) */
+ {
+ if (reg_base == REG_X) /* (R26) */
+ {
+ gcc_assert (!reg_overlap_mentioned_p (base, src));
+
+ avr_asm_len ("st %0+,%A1" CR_TAB
+ "st %0+,%B1" CR_TAB
+ "st %0,%C1", op, plen, -3);
+
+ if (!reg_unused_after (insn, base))
+ avr_asm_len ("sbiw r26,2", op, plen, 1);
+
+ return "";
+ }
+ else
+ return avr_asm_len ("st %0,%A1" CR_TAB
+ "std %0+1,%B1" CR_TAB
+ "std %0+2,%C1", op, plen, -3);
+ }
+ else if (GET_CODE (base) == PLUS) /* (R + i) */
+ {
+ int disp = INTVAL (XEXP (base, 1));
+ reg_base = REGNO (XEXP (base, 0));
+
+ if (disp > MAX_LD_OFFSET (GET_MODE (dest)))
+ {
+ if (reg_base != REG_Y)
+ fatal_insn ("incorrect insn:",insn);
+
+ if (disp <= 63 + MAX_LD_OFFSET (GET_MODE (dest)))
+ return avr_asm_len ("adiw r28,%o0-61" CR_TAB
+ "std Y+61,%A1" CR_TAB
+ "std Y+62,%B1" CR_TAB
+ "std Y+63,%C1" CR_TAB
+ "sbiw r28,%o0-60", op, plen, -5);
+
+ return avr_asm_len ("subi r28,lo8(-%o0)" CR_TAB
+ "sbci r29,hi8(-%o0)" CR_TAB
+ "st Y,%A1" CR_TAB
+ "std Y+1,%B1" CR_TAB
+ "std Y+2,%C1" CR_TAB
+ "subi r28,lo8(%o0)" CR_TAB
+ "sbci r29,hi8(%o0)", op, plen, -7);
+ }
+ if (reg_base == REG_X)
+ {
+ /* (X + d) = R */
+ gcc_assert (!reg_overlap_mentioned_p (XEXP (base, 0), src));
+
+ avr_asm_len ("adiw r26,%o0" CR_TAB
+ "st X+,%A1" CR_TAB
+ "st X+,%B1" CR_TAB
+ "st X,%C1", op, plen, -4);
+
+ if (!reg_unused_after (insn, XEXP (base, 0)))
+ avr_asm_len ("sbiw r26,%o0+2", op, plen, 1);
+
+ return "";
+ }
+
+ return avr_asm_len ("std %A0,%A1" CR_TAB
+ "std %B0,%B1" CR_TAB
+ "std %C0,%C1", op, plen, -3);
+ }
+ else if (GET_CODE (base) == PRE_DEC) /* (--R) */
+ return avr_asm_len ("st %0,%C1" CR_TAB
+ "st %0,%B1" CR_TAB
+ "st %0,%A1", op, plen, -3);
+ else if (GET_CODE (base) == POST_INC) /* (R++) */
+ return avr_asm_len ("st %0,%A1" CR_TAB
+ "st %0,%B1" CR_TAB
+ "st %0,%C1", op, plen, -3);
+
+ fatal_insn ("unknown move insn:",insn);
+ return "";
+}
+
+
+/* Move around 24-bit stuff. */
+
+const char *
+avr_out_movpsi (rtx insn, rtx *op, int *plen)
+{
+ rtx dest = op[0];
+ rtx src = op[1];
+
+ if (avr_mem_flash_p (src)
+ || avr_mem_flash_p (dest))
+ {
+ return avr_out_lpm (insn, op, plen);
+ }
+
+ if (register_operand (dest, VOIDmode))
+ {
+ if (register_operand (src, VOIDmode)) /* mov r,r */
+ {
+ if (true_regnum (dest) > true_regnum (src))
+ {
+ avr_asm_len ("mov %C0,%C1", op, plen, -1);
+
+ if (AVR_HAVE_MOVW)
+ return avr_asm_len ("movw %A0,%A1", op, plen, 1);
+ else
+ return avr_asm_len ("mov %B0,%B1" CR_TAB
+ "mov %A0,%A1", op, plen, 2);
+ }
+ else
+ {
+ if (AVR_HAVE_MOVW)
+ avr_asm_len ("movw %A0,%A1", op, plen, -1);
+ else
+ avr_asm_len ("mov %A0,%A1" CR_TAB
+ "mov %B0,%B1", op, plen, -2);
+
+ return avr_asm_len ("mov %C0,%C1", op, plen, 1);
+ }
+ }
+ else if (CONSTANT_P (src))
+ {
+ return avr_out_reload_inpsi (op, NULL_RTX, plen);
+ }
+ else if (MEM_P (src))
+ return avr_out_load_psi (insn, op, plen); /* mov r,m */
+ }
+ else if (MEM_P (dest))
+ {
+ rtx xop[2];
+
+ xop[0] = dest;
+ xop[1] = src == CONST0_RTX (GET_MODE (dest)) ? zero_reg_rtx : src;
+
+ return avr_out_store_psi (insn, xop, plen);
+ }
+
+ fatal_insn ("invalid insn:", insn);
+ return "";
+}
+
+
+static const char*
+out_movqi_mr_r (rtx insn, rtx op[], int *plen)
+{
+ rtx dest = op[0];
+ rtx src = op[1];
+ rtx x = XEXP (dest, 0);
+
+ if (CONSTANT_ADDRESS_P (x))
+ {
+ return optimize > 0 && io_address_operand (x, QImode)
+ ? avr_asm_len ("out %i0,%1", op, plen, -1)
+ : avr_asm_len ("sts %m0,%1", op, plen, -2);
+ }
+ else if (GET_CODE (x) == PLUS
+ && REG_P (XEXP (x, 0))
+ && CONST_INT_P (XEXP (x, 1)))
+ {
+ /* memory access by reg+disp */
+
+ int disp = INTVAL (XEXP (x, 1));
+
+ if (disp - GET_MODE_SIZE (GET_MODE (dest)) >= 63)
+ {
+ if (REGNO (XEXP (x, 0)) != REG_Y)
+ fatal_insn ("incorrect insn:",insn);
+
+ if (disp <= 63 + MAX_LD_OFFSET (GET_MODE (dest)))
+ return avr_asm_len ("adiw r28,%o0-63" CR_TAB
+ "std Y+63,%1" CR_TAB
+ "sbiw r28,%o0-63", op, plen, -3);
+
+ return avr_asm_len ("subi r28,lo8(-%o0)" CR_TAB
+ "sbci r29,hi8(-%o0)" CR_TAB
+ "st Y,%1" CR_TAB
+ "subi r28,lo8(%o0)" CR_TAB
+ "sbci r29,hi8(%o0)", op, plen, -5);
+ }
+ else if (REGNO (XEXP (x,0)) == REG_X)
+ {
+ if (reg_overlap_mentioned_p (src, XEXP (x, 0)))
+ {
+ avr_asm_len ("mov __tmp_reg__,%1" CR_TAB
+ "adiw r26,%o0" CR_TAB
+ "st X,__tmp_reg__", op, plen, -3);
+ }
+ else
+ {
+ avr_asm_len ("adiw r26,%o0" CR_TAB
+ "st X,%1", op, plen, -2);
+ }
+
+ if (!reg_unused_after (insn, XEXP (x,0)))
+ avr_asm_len ("sbiw r26,%o0", op, plen, 1);
+
+ return "";
+ }
+
+ return avr_asm_len ("std %0,%1", op, plen, -1);
+ }
+
+ return avr_asm_len ("st %0,%1", op, plen, -1);
+}
+
+
+/* Helper for the next function for XMEGA. It does the same
+ but with low byte first. */
+
+static const char*
+avr_out_movhi_mr_r_xmega (rtx insn, rtx op[], int *plen)
+{
+ rtx dest = op[0];
+ rtx src = op[1];
+ rtx base = XEXP (dest, 0);
+ int reg_base = true_regnum (base);
+ int reg_src = true_regnum (src);
+
+ /* "volatile" forces writing low byte first, even if less efficient,
+ for correct operation with 16-bit I/O registers like SP. */
+ int mem_volatile_p = MEM_VOLATILE_P (dest);
+
+ if (CONSTANT_ADDRESS_P (base))
+ return optimize > 0 && io_address_operand (base, HImode)
+ ? avr_asm_len ("out %i0,%A1" CR_TAB
+ "out %i0+1,%B1", op, plen, -2)
+
+ : avr_asm_len ("sts %m0,%A1" CR_TAB
+ "sts %m0+1,%B1", op, plen, -4);
+
+ if (reg_base > 0)
+ {
+ if (reg_base != REG_X)
+ return avr_asm_len ("st %0,%A1" CR_TAB
+ "std %0+1,%B1", op, plen, -2);
+
+ if (reg_src == REG_X)
+ /* "st X+,r26" and "st -X,r26" are undefined. */
+ avr_asm_len ("mov __tmp_reg__,r27" CR_TAB
+ "st X,r26" CR_TAB
+ "adiw r26,1" CR_TAB
+ "st X,__tmp_reg__", op, plen, -4);
+ else
+ avr_asm_len ("st X+,%A1" CR_TAB
+ "st X,%B1", op, plen, -2);
+
+ return reg_unused_after (insn, base)
+ ? ""
+ : avr_asm_len ("sbiw r26,1", op, plen, 1);
+ }
+ else if (GET_CODE (base) == PLUS)
+ {
+ int disp = INTVAL (XEXP (base, 1));
+ reg_base = REGNO (XEXP (base, 0));
+ if (disp > MAX_LD_OFFSET (GET_MODE (dest)))
+ {
+ if (reg_base != REG_Y)
+ fatal_insn ("incorrect insn:",insn);
+
+ return disp <= 63 + MAX_LD_OFFSET (GET_MODE (dest))
+ ? avr_asm_len ("adiw r28,%o0-62" CR_TAB
+ "std Y+62,%A1" CR_TAB
+ "std Y+63,%B1" CR_TAB
+ "sbiw r28,%o0-62", op, plen, -4)
+
+ : avr_asm_len ("subi r28,lo8(-%o0)" CR_TAB
+ "sbci r29,hi8(-%o0)" CR_TAB
+ "st Y,%A1" CR_TAB
+ "std Y+1,%B1" CR_TAB
+ "subi r28,lo8(%o0)" CR_TAB
+ "sbci r29,hi8(%o0)", op, plen, -6);
+ }
+
+ if (reg_base != REG_X)
+ return avr_asm_len ("std %A0,%A1" CR_TAB
+ "std %B0,%B1", op, plen, -2);
+ /* (X + d) = R */
+ return reg_src == REG_X
+ ? avr_asm_len ("mov __tmp_reg__,r26" CR_TAB
+ "mov __zero_reg__,r27" CR_TAB
+ "adiw r26,%o0" CR_TAB
+ "st X+,__tmp_reg__" CR_TAB
+ "st X,__zero_reg__" CR_TAB
+ "clr __zero_reg__" CR_TAB
+ "sbiw r26,%o0+1", op, plen, -7)
+
+ : avr_asm_len ("adiw r26,%o0" CR_TAB
+ "st X+,%A1" CR_TAB
+ "st X,%B1" CR_TAB
+ "sbiw r26,%o0+1", op, plen, -4);
+ }
+ else if (GET_CODE (base) == PRE_DEC) /* (--R) */
+ {
+ if (!mem_volatile_p)
+ return avr_asm_len ("st %0,%B1" CR_TAB
+ "st %0,%A1", op, plen, -2);
+
+ return REGNO (XEXP (base, 0)) == REG_X
+ ? avr_asm_len ("sbiw r26,2" CR_TAB
+ "st X+,%A1" CR_TAB
+ "st X,%B1" CR_TAB
+ "sbiw r26,1", op, plen, -4)
+
+ : avr_asm_len ("sbiw %r0,2" CR_TAB
+ "st %p0,%A1" CR_TAB
+ "std %p0+1,%B1", op, plen, -3);
+ }
+ else if (GET_CODE (base) == POST_INC) /* (R++) */
+ {
+ return avr_asm_len ("st %0,%A1" CR_TAB
+ "st %0,%B1", op, plen, -2);
+
+ }
+ fatal_insn ("unknown move insn:",insn);
+ return "";
+}
+
+
+static const char*
+out_movhi_mr_r (rtx insn, rtx op[], int *plen)
+{
+ rtx dest = op[0];
+ rtx src = op[1];
+ rtx base = XEXP (dest, 0);
+ int reg_base = true_regnum (base);
+ int reg_src = true_regnum (src);
+ int mem_volatile_p;
+
+ /* "volatile" forces writing high-byte first (no-xmega) resp.
+ low-byte first (xmega) even if less efficient, for correct
+ operation with 16-bit I/O registers like. */
+
+ if (AVR_XMEGA)
+ return avr_out_movhi_mr_r_xmega (insn, op, plen);
+
+ mem_volatile_p = MEM_VOLATILE_P (dest);
+
+ if (CONSTANT_ADDRESS_P (base))
+ return optimize > 0 && io_address_operand (base, HImode)
+ ? avr_asm_len ("out %i0+1,%B1" CR_TAB
+ "out %i0,%A1", op, plen, -2)
+
+ : avr_asm_len ("sts %m0+1,%B1" CR_TAB
+ "sts %m0,%A1", op, plen, -4);
+
+ if (reg_base > 0)
+ {
+ if (reg_base != REG_X)
+ return avr_asm_len ("std %0+1,%B1" CR_TAB
+ "st %0,%A1", op, plen, -2);
+
+ if (reg_src == REG_X)
+ /* "st X+,r26" and "st -X,r26" are undefined. */
+ return !mem_volatile_p && reg_unused_after (insn, src)
+ ? avr_asm_len ("mov __tmp_reg__,r27" CR_TAB
+ "st X,r26" CR_TAB
+ "adiw r26,1" CR_TAB
+ "st X,__tmp_reg__", op, plen, -4)
+
+ : avr_asm_len ("mov __tmp_reg__,r27" CR_TAB
+ "adiw r26,1" CR_TAB
+ "st X,__tmp_reg__" CR_TAB
+ "sbiw r26,1" CR_TAB
+ "st X,r26", op, plen, -5);
+
+ return !mem_volatile_p && reg_unused_after (insn, base)
+ ? avr_asm_len ("st X+,%A1" CR_TAB
+ "st X,%B1", op, plen, -2)
+ : avr_asm_len ("adiw r26,1" CR_TAB
+ "st X,%B1" CR_TAB
+ "st -X,%A1", op, plen, -3);
+ }
+ else if (GET_CODE (base) == PLUS)
+ {
+ int disp = INTVAL (XEXP (base, 1));
+ reg_base = REGNO (XEXP (base, 0));
+ if (disp > MAX_LD_OFFSET (GET_MODE (dest)))
+ {
+ if (reg_base != REG_Y)
+ fatal_insn ("incorrect insn:",insn);
+
+ return disp <= 63 + MAX_LD_OFFSET (GET_MODE (dest))
+ ? avr_asm_len ("adiw r28,%o0-62" CR_TAB
+ "std Y+63,%B1" CR_TAB
+ "std Y+62,%A1" CR_TAB
+ "sbiw r28,%o0-62", op, plen, -4)
+
+ : avr_asm_len ("subi r28,lo8(-%o0)" CR_TAB
+ "sbci r29,hi8(-%o0)" CR_TAB
+ "std Y+1,%B1" CR_TAB
+ "st Y,%A1" CR_TAB
+ "subi r28,lo8(%o0)" CR_TAB
+ "sbci r29,hi8(%o0)", op, plen, -6);
+ }
+
+ if (reg_base != REG_X)
+ return avr_asm_len ("std %B0,%B1" CR_TAB
+ "std %A0,%A1", op, plen, -2);
+ /* (X + d) = R */
+ return reg_src == REG_X
+ ? avr_asm_len ("mov __tmp_reg__,r26" CR_TAB
+ "mov __zero_reg__,r27" CR_TAB
+ "adiw r26,%o0+1" CR_TAB
+ "st X,__zero_reg__" CR_TAB
+ "st -X,__tmp_reg__" CR_TAB
+ "clr __zero_reg__" CR_TAB
+ "sbiw r26,%o0", op, plen, -7)
+
+ : avr_asm_len ("adiw r26,%o0+1" CR_TAB
+ "st X,%B1" CR_TAB
+ "st -X,%A1" CR_TAB
+ "sbiw r26,%o0", op, plen, -4);
+ }
+ else if (GET_CODE (base) == PRE_DEC) /* (--R) */
+ {
+ return avr_asm_len ("st %0,%B1" CR_TAB
+ "st %0,%A1", op, plen, -2);
+ }
+ else if (GET_CODE (base) == POST_INC) /* (R++) */
+ {
+ if (!mem_volatile_p)
+ return avr_asm_len ("st %0,%A1" CR_TAB
+ "st %0,%B1", op, plen, -2);
+
+ return REGNO (XEXP (base, 0)) == REG_X
+ ? avr_asm_len ("adiw r26,1" CR_TAB
+ "st X,%B1" CR_TAB
+ "st -X,%A1" CR_TAB
+ "adiw r26,2", op, plen, -4)
+
+ : avr_asm_len ("std %p0+1,%B1" CR_TAB
+ "st %p0,%A1" CR_TAB
+ "adiw %r0,2", op, plen, -3);
+ }
+ fatal_insn ("unknown move insn:",insn);
+ return "";
+}
+
+/* Return 1 if frame pointer for current function required. */
+
+static bool
+avr_frame_pointer_required_p (void)
+{
+ return (cfun->calls_alloca
+ || cfun->calls_setjmp
+ || cfun->has_nonlocal_label
+ || crtl->args.info.nregs == 0
+ || get_frame_size () > 0);
+}
+
+/* Returns the condition of compare insn INSN, or UNKNOWN. */
+
+static RTX_CODE
+compare_condition (rtx insn)
+{
+ rtx next = next_real_insn (insn);
+
+ if (next && JUMP_P (next))
+ {
+ rtx pat = PATTERN (next);
+ rtx src = SET_SRC (pat);
+
+ if (IF_THEN_ELSE == GET_CODE (src))
+ return GET_CODE (XEXP (src, 0));
+ }
+
+ return UNKNOWN;
+}
+
+
+/* Returns true iff INSN is a tst insn that only tests the sign. */
+
+static bool
+compare_sign_p (rtx insn)
+{
+ RTX_CODE cond = compare_condition (insn);
+ return (cond == GE || cond == LT);
+}
+
+
+/* Returns true iff the next insn is a JUMP_INSN with a condition
+ that needs to be swapped (GT, GTU, LE, LEU). */
+
+static bool
+compare_diff_p (rtx insn)
+{
+ RTX_CODE cond = compare_condition (insn);
+ return (cond == GT || cond == GTU || cond == LE || cond == LEU) ? cond : 0;
+}
+
+/* Returns true iff INSN is a compare insn with the EQ or NE condition. */
+
+static bool
+compare_eq_p (rtx insn)
+{
+ RTX_CODE cond = compare_condition (insn);
+ return (cond == EQ || cond == NE);
+}
+
+
+/* Output compare instruction
+
+ compare (XOP[0], XOP[1])
+
+ for a register XOP[0] and a compile-time constant XOP[1]. Return "".
+ XOP[2] is an 8-bit scratch register as needed.
+
+ PLEN == NULL: Output instructions.
+ PLEN != NULL: Set *PLEN to the length (in words) of the sequence.
+ Don't output anything. */
+
+const char*
+avr_out_compare (rtx insn, rtx *xop, int *plen)
+{
+ /* Register to compare and value to compare against. */
+ rtx xreg = xop[0];
+ rtx xval = xop[1];
+
+ /* MODE of the comparison. */
+ enum machine_mode mode;
+
+ /* Number of bytes to operate on. */
+ int i, n_bytes = GET_MODE_SIZE (GET_MODE (xreg));
+
+ /* Value (0..0xff) held in clobber register xop[2] or -1 if unknown. */
+ int clobber_val = -1;
+
+ /* Map fixed mode operands to integer operands with the same binary
+ representation. They are easier to handle in the remainder. */
+
+ if (CONST_FIXED_P (xval))
+ {
+ xreg = avr_to_int_mode (xop[0]);
+ xval = avr_to_int_mode (xop[1]);
+ }
+
+ mode = GET_MODE (xreg);
+
+ gcc_assert (REG_P (xreg));
+ gcc_assert ((CONST_INT_P (xval) && n_bytes <= 4)
+ || (const_double_operand (xval, VOIDmode) && n_bytes == 8));
+
+ if (plen)
+ *plen = 0;
+
+ /* Comparisons == +/-1 and != +/-1 can be done similar to camparing
+ against 0 by ORing the bytes. This is one instruction shorter.
+ Notice that 64-bit comparisons are always against reg:ALL8 18 (ACC_A)
+ and therefore don't use this. */
+
+ if (!test_hard_reg_class (LD_REGS, xreg)
+ && compare_eq_p (insn)
+ && reg_unused_after (insn, xreg))
+ {
+ if (xval == const1_rtx)
+ {
+ avr_asm_len ("dec %A0" CR_TAB
+ "or %A0,%B0", xop, plen, 2);
+
+ if (n_bytes >= 3)
+ avr_asm_len ("or %A0,%C0", xop, plen, 1);
+
+ if (n_bytes >= 4)
+ avr_asm_len ("or %A0,%D0", xop, plen, 1);
+
+ return "";
+ }
+ else if (xval == constm1_rtx)
+ {
+ if (n_bytes >= 4)
+ avr_asm_len ("and %A0,%D0", xop, plen, 1);
+
+ if (n_bytes >= 3)
+ avr_asm_len ("and %A0,%C0", xop, plen, 1);
+
+ return avr_asm_len ("and %A0,%B0" CR_TAB
+ "com %A0", xop, plen, 2);
+ }
+ }
+
+ for (i = 0; i < n_bytes; i++)
+ {
+ /* We compare byte-wise. */
+ rtx reg8 = simplify_gen_subreg (QImode, xreg, mode, i);
+ rtx xval8 = simplify_gen_subreg (QImode, xval, mode, i);
+
+ /* 8-bit value to compare with this byte. */
+ unsigned int val8 = UINTVAL (xval8) & GET_MODE_MASK (QImode);
+
+ /* Registers R16..R31 can operate with immediate. */
+ bool ld_reg_p = test_hard_reg_class (LD_REGS, reg8);
+
+ xop[0] = reg8;
+ xop[1] = gen_int_mode (val8, QImode);
+
+ /* Word registers >= R24 can use SBIW/ADIW with 0..63. */
+
+ if (i == 0
+ && test_hard_reg_class (ADDW_REGS, reg8))
+ {
+ int val16 = trunc_int_for_mode (INTVAL (xval), HImode);
+
+ if (IN_RANGE (val16, 0, 63)
+ && (val8 == 0
+ || reg_unused_after (insn, xreg)))
+ {
+ avr_asm_len ("sbiw %0,%1", xop, plen, 1);
+ i++;
+ continue;
+ }
+
+ if (n_bytes == 2
+ && IN_RANGE (val16, -63, -1)
+ && compare_eq_p (insn)
+ && reg_unused_after (insn, xreg))
+ {
+ return avr_asm_len ("adiw %0,%n1", xop, plen, 1);
+ }
+ }
+
+ /* Comparing against 0 is easy. */
+
+ if (val8 == 0)
+ {
+ avr_asm_len (i == 0
+ ? "cp %0,__zero_reg__"
+ : "cpc %0,__zero_reg__", xop, plen, 1);
+ continue;
+ }
+
+ /* Upper registers can compare and subtract-with-carry immediates.
+ Notice that compare instructions do the same as respective subtract
+ instruction; the only difference is that comparisons don't write
+ the result back to the target register. */
+
+ if (ld_reg_p)
+ {
+ if (i == 0)
+ {
+ avr_asm_len ("cpi %0,%1", xop, plen, 1);
+ continue;
+ }
+ else if (reg_unused_after (insn, xreg))
+ {
+ avr_asm_len ("sbci %0,%1", xop, plen, 1);
+ continue;
+ }
+ }
+
+ /* Must load the value into the scratch register. */
+
+ gcc_assert (REG_P (xop[2]));
+
+ if (clobber_val != (int) val8)
+ avr_asm_len ("ldi %2,%1", xop, plen, 1);
+ clobber_val = (int) val8;
+
+ avr_asm_len (i == 0
+ ? "cp %0,%2"
+ : "cpc %0,%2", xop, plen, 1);
+ }
+
+ return "";
+}
+
+
+/* Prepare operands of compare_const_di2 to be used with avr_out_compare. */
+
+const char*
+avr_out_compare64 (rtx insn, rtx *op, int *plen)
+{
+ rtx xop[3];
+
+ xop[0] = gen_rtx_REG (DImode, 18);
+ xop[1] = op[0];
+ xop[2] = op[1];
+
+ return avr_out_compare (insn, xop, plen);
+}
+
+/* Output test instruction for HImode. */
+
+const char*
+avr_out_tsthi (rtx insn, rtx *op, int *plen)
+{
+ if (compare_sign_p (insn))
+ {
+ avr_asm_len ("tst %B0", op, plen, -1);
+ }
+ else if (reg_unused_after (insn, op[0])
+ && compare_eq_p (insn))
+ {
+ /* Faster than sbiw if we can clobber the operand. */
+ avr_asm_len ("or %A0,%B0", op, plen, -1);
+ }
+ else
+ {
+ avr_out_compare (insn, op, plen);
+ }
+
+ return "";
+}
+
+
+/* Output test instruction for PSImode. */
+
+const char*
+avr_out_tstpsi (rtx insn, rtx *op, int *plen)
+{
+ if (compare_sign_p (insn))
+ {
+ avr_asm_len ("tst %C0", op, plen, -1);
+ }
+ else if (reg_unused_after (insn, op[0])
+ && compare_eq_p (insn))
+ {
+ /* Faster than sbiw if we can clobber the operand. */
+ avr_asm_len ("or %A0,%B0" CR_TAB
+ "or %A0,%C0", op, plen, -2);
+ }
+ else
+ {
+ avr_out_compare (insn, op, plen);
+ }
+
+ return "";
+}
+
+
+/* Output test instruction for SImode. */
+
+const char*
+avr_out_tstsi (rtx insn, rtx *op, int *plen)
+{
+ if (compare_sign_p (insn))
+ {
+ avr_asm_len ("tst %D0", op, plen, -1);
+ }
+ else if (reg_unused_after (insn, op[0])
+ && compare_eq_p (insn))
+ {
+ /* Faster than sbiw if we can clobber the operand. */
+ avr_asm_len ("or %A0,%B0" CR_TAB
+ "or %A0,%C0" CR_TAB
+ "or %A0,%D0", op, plen, -3);
+ }
+ else
+ {
+ avr_out_compare (insn, op, plen);
+ }
+
+ return "";
+}
+
+
+/* Generate asm equivalent for various shifts. This only handles cases
+ that are not already carefully hand-optimized in ?sh??i3_out.
+
+ OPERANDS[0] resp. %0 in TEMPL is the operand to be shifted.
+ OPERANDS[2] is the shift count as CONST_INT, MEM or REG.
+ OPERANDS[3] is a QImode scratch register from LD regs if
+ available and SCRATCH, otherwise (no scratch available)
+
+ TEMPL is an assembler template that shifts by one position.
+ T_LEN is the length of this template. */
+
+void
+out_shift_with_cnt (const char *templ, rtx insn, rtx operands[],
+ int *plen, int t_len)
+{
+ bool second_label = true;
+ bool saved_in_tmp = false;
+ bool use_zero_reg = false;
+ rtx op[5];
+
+ op[0] = operands[0];
+ op[1] = operands[1];
+ op[2] = operands[2];
+ op[3] = operands[3];
+
+ if (plen)
+ *plen = 0;
+
+ if (CONST_INT_P (operands[2]))
+ {
+ bool scratch = (GET_CODE (PATTERN (insn)) == PARALLEL
+ && REG_P (operands[3]));
+ int count = INTVAL (operands[2]);
+ int max_len = 10; /* If larger than this, always use a loop. */
+
+ if (count <= 0)
+ return;
+
+ if (count < 8 && !scratch)
+ use_zero_reg = true;
+
+ if (optimize_size)
+ max_len = t_len + (scratch ? 3 : (use_zero_reg ? 4 : 5));
+
+ if (t_len * count <= max_len)
+ {
+ /* Output shifts inline with no loop - faster. */
+
+ while (count-- > 0)
+ avr_asm_len (templ, op, plen, t_len);
+
+ return;
+ }
+
+ if (scratch)
+ {
+ avr_asm_len ("ldi %3,%2", op, plen, 1);
+ }
+ else if (use_zero_reg)
+ {
+ /* Hack to save one word: use __zero_reg__ as loop counter.
+ Set one bit, then shift in a loop until it is 0 again. */
+
+ op[3] = zero_reg_rtx;
+
+ avr_asm_len ("set" CR_TAB
+ "bld %3,%2-1", op, plen, 2);
+ }
+ else
+ {
+ /* No scratch register available, use one from LD_REGS (saved in
+ __tmp_reg__) that doesn't overlap with registers to shift. */
+
+ op[3] = all_regs_rtx[((REGNO (op[0]) - 1) & 15) + 16];
+ op[4] = tmp_reg_rtx;
+ saved_in_tmp = true;
+
+ avr_asm_len ("mov %4,%3" CR_TAB
+ "ldi %3,%2", op, plen, 2);
+ }
+
+ second_label = false;
+ }
+ else if (MEM_P (op[2]))
+ {
+ rtx op_mov[2];
+
+ op_mov[0] = op[3] = tmp_reg_rtx;
+ op_mov[1] = op[2];
+
+ out_movqi_r_mr (insn, op_mov, plen);
+ }
+ else if (register_operand (op[2], QImode))
+ {
+ op[3] = op[2];
+
+ if (!reg_unused_after (insn, op[2])
+ || reg_overlap_mentioned_p (op[0], op[2]))
+ {
+ op[3] = tmp_reg_rtx;
+ avr_asm_len ("mov %3,%2", op, plen, 1);
+ }
+ }
+ else
+ fatal_insn ("bad shift insn:", insn);
+
+ if (second_label)
+ avr_asm_len ("rjmp 2f", op, plen, 1);
+
+ avr_asm_len ("1:", op, plen, 0);
+ avr_asm_len (templ, op, plen, t_len);
+
+ if (second_label)
+ avr_asm_len ("2:", op, plen, 0);
+
+ avr_asm_len (use_zero_reg ? "lsr %3" : "dec %3", op, plen, 1);
+ avr_asm_len (second_label ? "brpl 1b" : "brne 1b", op, plen, 1);
+
+ if (saved_in_tmp)
+ avr_asm_len ("mov %3,%4", op, plen, 1);
+}
+
+
+/* 8bit shift left ((char)x << i) */
+
+const char *
+ashlqi3_out (rtx insn, rtx operands[], int *len)
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ int k;
+
+ if (!len)
+ len = &k;
+
+ switch (INTVAL (operands[2]))
+ {
+ default:
+ if (INTVAL (operands[2]) < 8)
+ break;
+
+ *len = 1;
+ return "clr %0";
+
+ case 1:
+ *len = 1;
+ return "lsl %0";
+
+ case 2:
+ *len = 2;
+ return ("lsl %0" CR_TAB
+ "lsl %0");
+
+ case 3:
+ *len = 3;
+ return ("lsl %0" CR_TAB
+ "lsl %0" CR_TAB
+ "lsl %0");
+
+ case 4:
+ if (test_hard_reg_class (LD_REGS, operands[0]))
+ {
+ *len = 2;
+ return ("swap %0" CR_TAB
+ "andi %0,0xf0");
+ }
+ *len = 4;
+ return ("lsl %0" CR_TAB
+ "lsl %0" CR_TAB
+ "lsl %0" CR_TAB
+ "lsl %0");
+
+ case 5:
+ if (test_hard_reg_class (LD_REGS, operands[0]))
+ {
+ *len = 3;
+ return ("swap %0" CR_TAB
+ "lsl %0" CR_TAB
+ "andi %0,0xe0");
+ }
+ *len = 5;
+ return ("lsl %0" CR_TAB
+ "lsl %0" CR_TAB
+ "lsl %0" CR_TAB
+ "lsl %0" CR_TAB
+ "lsl %0");
+
+ case 6:
+ if (test_hard_reg_class (LD_REGS, operands[0]))
+ {
+ *len = 4;
+ return ("swap %0" CR_TAB
+ "lsl %0" CR_TAB
+ "lsl %0" CR_TAB
+ "andi %0,0xc0");
+ }
+ *len = 6;
+ return ("lsl %0" CR_TAB
+ "lsl %0" CR_TAB
+ "lsl %0" CR_TAB
+ "lsl %0" CR_TAB
+ "lsl %0" CR_TAB
+ "lsl %0");
+
+ case 7:
+ *len = 3;
+ return ("ror %0" CR_TAB
+ "clr %0" CR_TAB
+ "ror %0");
+ }
+ }
+ else if (CONSTANT_P (operands[2]))
+ fatal_insn ("internal compiler error. Incorrect shift:", insn);
+
+ out_shift_with_cnt ("lsl %0",
+ insn, operands, len, 1);
+ return "";
+}
+
+
+/* 16bit shift left ((short)x << i) */
+
+const char *
+ashlhi3_out (rtx insn, rtx operands[], int *len)
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ int scratch = (GET_CODE (PATTERN (insn)) == PARALLEL);
+ int ldi_ok = test_hard_reg_class (LD_REGS, operands[0]);
+ int k;
+ int *t = len;
+
+ if (!len)
+ len = &k;
+
+ switch (INTVAL (operands[2]))
+ {
+ default:
+ if (INTVAL (operands[2]) < 16)
+ break;
+
+ *len = 2;
+ return ("clr %B0" CR_TAB
+ "clr %A0");
+
+ case 4:
+ if (optimize_size && scratch)
+ break; /* 5 */
+ if (ldi_ok)
+ {
+ *len = 6;
+ return ("swap %A0" CR_TAB
+ "swap %B0" CR_TAB
+ "andi %B0,0xf0" CR_TAB
+ "eor %B0,%A0" CR_TAB
+ "andi %A0,0xf0" CR_TAB
+ "eor %B0,%A0");
+ }
+ if (scratch)
+ {
+ *len = 7;
+ return ("swap %A0" CR_TAB
+ "swap %B0" CR_TAB
+ "ldi %3,0xf0" CR_TAB
+ "and %B0,%3" CR_TAB
+ "eor %B0,%A0" CR_TAB
+ "and %A0,%3" CR_TAB
+ "eor %B0,%A0");
+ }
+ break; /* optimize_size ? 6 : 8 */
+
+ case 5:
+ if (optimize_size)
+ break; /* scratch ? 5 : 6 */
+ if (ldi_ok)
+ {
+ *len = 8;
+ return ("lsl %A0" CR_TAB
+ "rol %B0" CR_TAB
+ "swap %A0" CR_TAB
+ "swap %B0" CR_TAB
+ "andi %B0,0xf0" CR_TAB
+ "eor %B0,%A0" CR_TAB
+ "andi %A0,0xf0" CR_TAB
+ "eor %B0,%A0");
+ }
+ if (scratch)
+ {
+ *len = 9;
+ return ("lsl %A0" CR_TAB
+ "rol %B0" CR_TAB
+ "swap %A0" CR_TAB
+ "swap %B0" CR_TAB
+ "ldi %3,0xf0" CR_TAB
+ "and %B0,%3" CR_TAB
+ "eor %B0,%A0" CR_TAB
+ "and %A0,%3" CR_TAB
+ "eor %B0,%A0");
+ }
+ break; /* 10 */
+
+ case 6:
+ if (optimize_size)
+ break; /* scratch ? 5 : 6 */
+ *len = 9;
+ return ("clr __tmp_reg__" CR_TAB
+ "lsr %B0" CR_TAB
+ "ror %A0" CR_TAB
+ "ror __tmp_reg__" CR_TAB
+ "lsr %B0" CR_TAB
+ "ror %A0" CR_TAB
+ "ror __tmp_reg__" CR_TAB
+ "mov %B0,%A0" CR_TAB
+ "mov %A0,__tmp_reg__");
+
+ case 7:
+ *len = 5;
+ return ("lsr %B0" CR_TAB
+ "mov %B0,%A0" CR_TAB
+ "clr %A0" CR_TAB
+ "ror %B0" CR_TAB
+ "ror %A0");
+
+ case 8:
+ return *len = 2, ("mov %B0,%A1" CR_TAB
+ "clr %A0");
+
+ case 9:
+ *len = 3;
+ return ("mov %B0,%A0" CR_TAB
+ "clr %A0" CR_TAB
+ "lsl %B0");
+
+ case 10:
+ *len = 4;
+ return ("mov %B0,%A0" CR_TAB
+ "clr %A0" CR_TAB
+ "lsl %B0" CR_TAB
+ "lsl %B0");
+
+ case 11:
+ *len = 5;
+ return ("mov %B0,%A0" CR_TAB
+ "clr %A0" CR_TAB
+ "lsl %B0" CR_TAB
+ "lsl %B0" CR_TAB
+ "lsl %B0");
+
+ case 12:
+ if (ldi_ok)
+ {
+ *len = 4;
+ return ("mov %B0,%A0" CR_TAB
+ "clr %A0" CR_TAB
+ "swap %B0" CR_TAB
+ "andi %B0,0xf0");
+ }
+ if (scratch)
+ {
+ *len = 5;
+ return ("mov %B0,%A0" CR_TAB
+ "clr %A0" CR_TAB
+ "swap %B0" CR_TAB
+ "ldi %3,0xf0" CR_TAB
+ "and %B0,%3");
+ }
+ *len = 6;
+ return ("mov %B0,%A0" CR_TAB
+ "clr %A0" CR_TAB
+ "lsl %B0" CR_TAB
+ "lsl %B0" CR_TAB
+ "lsl %B0" CR_TAB
+ "lsl %B0");
+
+ case 13:
+ if (ldi_ok)
+ {
+ *len = 5;
+ return ("mov %B0,%A0" CR_TAB
+ "clr %A0" CR_TAB
+ "swap %B0" CR_TAB
+ "lsl %B0" CR_TAB
+ "andi %B0,0xe0");
+ }
+ if (AVR_HAVE_MUL && scratch)
+ {
+ *len = 5;
+ return ("ldi %3,0x20" CR_TAB
+ "mul %A0,%3" CR_TAB
+ "mov %B0,r0" CR_TAB
+ "clr %A0" CR_TAB
+ "clr __zero_reg__");
+ }
+ if (optimize_size && scratch)
+ break; /* 5 */
+ if (scratch)
+ {
+ *len = 6;
+ return ("mov %B0,%A0" CR_TAB
+ "clr %A0" CR_TAB
+ "swap %B0" CR_TAB
+ "lsl %B0" CR_TAB
+ "ldi %3,0xe0" CR_TAB
+ "and %B0,%3");
+ }
+ if (AVR_HAVE_MUL)
+ {
+ *len = 6;
+ return ("set" CR_TAB
+ "bld r1,5" CR_TAB
+ "mul %A0,r1" CR_TAB
+ "mov %B0,r0" CR_TAB
+ "clr %A0" CR_TAB
+ "clr __zero_reg__");
+ }
+ *len = 7;
+ return ("mov %B0,%A0" CR_TAB
+ "clr %A0" CR_TAB
+ "lsl %B0" CR_TAB
+ "lsl %B0" CR_TAB
+ "lsl %B0" CR_TAB
+ "lsl %B0" CR_TAB
+ "lsl %B0");
+
+ case 14:
+ if (AVR_HAVE_MUL && ldi_ok)
+ {
+ *len = 5;
+ return ("ldi %B0,0x40" CR_TAB
+ "mul %A0,%B0" CR_TAB
+ "mov %B0,r0" CR_TAB
+ "clr %A0" CR_TAB
+ "clr __zero_reg__");
+ }
+ if (AVR_HAVE_MUL && scratch)
+ {
+ *len = 5;
+ return ("ldi %3,0x40" CR_TAB
+ "mul %A0,%3" CR_TAB
+ "mov %B0,r0" CR_TAB
+ "clr %A0" CR_TAB
+ "clr __zero_reg__");
+ }
+ if (optimize_size && ldi_ok)
+ {
+ *len = 5;
+ return ("mov %B0,%A0" CR_TAB
+ "ldi %A0,6" "\n1:\t"
+ "lsl %B0" CR_TAB
+ "dec %A0" CR_TAB
+ "brne 1b");
+ }
+ if (optimize_size && scratch)
+ break; /* 5 */
+ *len = 6;
+ return ("clr %B0" CR_TAB
+ "lsr %A0" CR_TAB
+ "ror %B0" CR_TAB
+ "lsr %A0" CR_TAB
+ "ror %B0" CR_TAB
+ "clr %A0");
+
+ case 15:
+ *len = 4;
+ return ("clr %B0" CR_TAB
+ "lsr %A0" CR_TAB
+ "ror %B0" CR_TAB
+ "clr %A0");
+ }
+ len = t;
+ }
+ out_shift_with_cnt ("lsl %A0" CR_TAB
+ "rol %B0", insn, operands, len, 2);
+ return "";
+}
+
+
+/* 24-bit shift left */
+
+const char*
+avr_out_ashlpsi3 (rtx insn, rtx *op, int *plen)
+{
+ if (plen)
+ *plen = 0;
+
+ if (CONST_INT_P (op[2]))
+ {
+ switch (INTVAL (op[2]))
+ {
+ default:
+ if (INTVAL (op[2]) < 24)
+ break;
+
+ return avr_asm_len ("clr %A0" CR_TAB
+ "clr %B0" CR_TAB
+ "clr %C0", op, plen, 3);
+
+ case 8:
+ {
+ int reg0 = REGNO (op[0]);
+ int reg1 = REGNO (op[1]);
+
+ if (reg0 >= reg1)
+ return avr_asm_len ("mov %C0,%B1" CR_TAB
+ "mov %B0,%A1" CR_TAB
+ "clr %A0", op, plen, 3);
+ else
+ return avr_asm_len ("clr %A0" CR_TAB
+ "mov %B0,%A1" CR_TAB
+ "mov %C0,%B1", op, plen, 3);
+ }
+
+ case 16:
+ {
+ int reg0 = REGNO (op[0]);
+ int reg1 = REGNO (op[1]);
+
+ if (reg0 + 2 != reg1)
+ avr_asm_len ("mov %C0,%A0", op, plen, 1);
+
+ return avr_asm_len ("clr %B0" CR_TAB
+ "clr %A0", op, plen, 2);
+ }
+
+ case 23:
+ return avr_asm_len ("clr %C0" CR_TAB
+ "lsr %A0" CR_TAB
+ "ror %C0" CR_TAB
+ "clr %B0" CR_TAB
+ "clr %A0", op, plen, 5);
+ }
+ }
+
+ out_shift_with_cnt ("lsl %A0" CR_TAB
+ "rol %B0" CR_TAB
+ "rol %C0", insn, op, plen, 3);
+ return "";
+}
+
+
+/* 32bit shift left ((long)x << i) */
+
+const char *
+ashlsi3_out (rtx insn, rtx operands[], int *len)
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ int k;
+ int *t = len;
+
+ if (!len)
+ len = &k;
+
+ switch (INTVAL (operands[2]))
+ {
+ default:
+ if (INTVAL (operands[2]) < 32)
+ break;
+
+ if (AVR_HAVE_MOVW)
+ return *len = 3, ("clr %D0" CR_TAB
+ "clr %C0" CR_TAB
+ "movw %A0,%C0");
+ *len = 4;
+ return ("clr %D0" CR_TAB
+ "clr %C0" CR_TAB
+ "clr %B0" CR_TAB
+ "clr %A0");
+
+ case 8:
+ {
+ int reg0 = true_regnum (operands[0]);
+ int reg1 = true_regnum (operands[1]);
+ *len = 4;
+ if (reg0 >= reg1)
+ return ("mov %D0,%C1" CR_TAB
+ "mov %C0,%B1" CR_TAB
+ "mov %B0,%A1" CR_TAB
+ "clr %A0");
+ else
+ return ("clr %A0" CR_TAB
+ "mov %B0,%A1" CR_TAB
+ "mov %C0,%B1" CR_TAB
+ "mov %D0,%C1");
+ }
+
+ case 16:
+ {
+ int reg0 = true_regnum (operands[0]);
+ int reg1 = true_regnum (operands[1]);
+ if (reg0 + 2 == reg1)
+ return *len = 2, ("clr %B0" CR_TAB
+ "clr %A0");
+ if (AVR_HAVE_MOVW)
+ return *len = 3, ("movw %C0,%A1" CR_TAB
+ "clr %B0" CR_TAB
+ "clr %A0");
+ else
+ return *len = 4, ("mov %C0,%A1" CR_TAB
+ "mov %D0,%B1" CR_TAB
+ "clr %B0" CR_TAB
+ "clr %A0");
+ }
+
+ case 24:
+ *len = 4;
+ return ("mov %D0,%A1" CR_TAB
+ "clr %C0" CR_TAB
+ "clr %B0" CR_TAB
+ "clr %A0");
+
+ case 31:
+ *len = 6;
+ return ("clr %D0" CR_TAB
+ "lsr %A0" CR_TAB
+ "ror %D0" CR_TAB
+ "clr %C0" CR_TAB
+ "clr %B0" CR_TAB
+ "clr %A0");
+ }
+ len = t;
+ }
+ out_shift_with_cnt ("lsl %A0" CR_TAB
+ "rol %B0" CR_TAB
+ "rol %C0" CR_TAB
+ "rol %D0", insn, operands, len, 4);
+ return "";
+}
+
+/* 8bit arithmetic shift right ((signed char)x >> i) */
+
+const char *
+ashrqi3_out (rtx insn, rtx operands[], int *len)
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ int k;
+
+ if (!len)
+ len = &k;
+
+ switch (INTVAL (operands[2]))
+ {
+ case 1:
+ *len = 1;
+ return "asr %0";
+
+ case 2:
+ *len = 2;
+ return ("asr %0" CR_TAB
+ "asr %0");
+
+ case 3:
+ *len = 3;
+ return ("asr %0" CR_TAB
+ "asr %0" CR_TAB
+ "asr %0");
+
+ case 4:
+ *len = 4;
+ return ("asr %0" CR_TAB
+ "asr %0" CR_TAB
+ "asr %0" CR_TAB
+ "asr %0");
+
+ case 5:
+ *len = 5;
+ return ("asr %0" CR_TAB
+ "asr %0" CR_TAB
+ "asr %0" CR_TAB
+ "asr %0" CR_TAB
+ "asr %0");
+
+ case 6:
+ *len = 4;
+ return ("bst %0,6" CR_TAB
+ "lsl %0" CR_TAB
+ "sbc %0,%0" CR_TAB
+ "bld %0,0");
+
+ default:
+ if (INTVAL (operands[2]) < 8)
+ break;
+
+ /* fall through */
+
+ case 7:
+ *len = 2;
+ return ("lsl %0" CR_TAB
+ "sbc %0,%0");
+ }
+ }
+ else if (CONSTANT_P (operands[2]))
+ fatal_insn ("internal compiler error. Incorrect shift:", insn);
+
+ out_shift_with_cnt ("asr %0",
+ insn, operands, len, 1);
+ return "";
+}
+
+
+/* 16bit arithmetic shift right ((signed short)x >> i) */
+
+const char *
+ashrhi3_out (rtx insn, rtx operands[], int *len)
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ int scratch = (GET_CODE (PATTERN (insn)) == PARALLEL);
+ int ldi_ok = test_hard_reg_class (LD_REGS, operands[0]);
+ int k;
+ int *t = len;
+
+ if (!len)
+ len = &k;
+
+ switch (INTVAL (operands[2]))
+ {
+ case 4:
+ case 5:
+ /* XXX try to optimize this too? */
+ break;
+
+ case 6:
+ if (optimize_size)
+ break; /* scratch ? 5 : 6 */
+ *len = 8;
+ return ("mov __tmp_reg__,%A0" CR_TAB
+ "mov %A0,%B0" CR_TAB
+ "lsl __tmp_reg__" CR_TAB
+ "rol %A0" CR_TAB
+ "sbc %B0,%B0" CR_TAB
+ "lsl __tmp_reg__" CR_TAB
+ "rol %A0" CR_TAB
+ "rol %B0");
+
+ case 7:
+ *len = 4;
+ return ("lsl %A0" CR_TAB
+ "mov %A0,%B0" CR_TAB
+ "rol %A0" CR_TAB
+ "sbc %B0,%B0");
+
+ case 8:
+ {
+ int reg0 = true_regnum (operands[0]);
+ int reg1 = true_regnum (operands[1]);
+
+ if (reg0 == reg1)
+ return *len = 3, ("mov %A0,%B0" CR_TAB
+ "lsl %B0" CR_TAB
+ "sbc %B0,%B0");
+ else
+ return *len = 4, ("mov %A0,%B1" CR_TAB
+ "clr %B0" CR_TAB
+ "sbrc %A0,7" CR_TAB
+ "dec %B0");
+ }
+
+ case 9:
+ *len = 4;
+ return ("mov %A0,%B0" CR_TAB
+ "lsl %B0" CR_TAB
+ "sbc %B0,%B0" CR_TAB
+ "asr %A0");
+
+ case 10:
+ *len = 5;
+ return ("mov %A0,%B0" CR_TAB
+ "lsl %B0" CR_TAB
+ "sbc %B0,%B0" CR_TAB
+ "asr %A0" CR_TAB
+ "asr %A0");
+
+ case 11:
+ if (AVR_HAVE_MUL && ldi_ok)
+ {
+ *len = 5;
+ return ("ldi %A0,0x20" CR_TAB
+ "muls %B0,%A0" CR_TAB
+ "mov %A0,r1" CR_TAB
+ "sbc %B0,%B0" CR_TAB
+ "clr __zero_reg__");
+ }
+ if (optimize_size && scratch)
+ break; /* 5 */
+ *len = 6;
+ return ("mov %A0,%B0" CR_TAB
+ "lsl %B0" CR_TAB
+ "sbc %B0,%B0" CR_TAB
+ "asr %A0" CR_TAB
+ "asr %A0" CR_TAB
+ "asr %A0");
+
+ case 12:
+ if (AVR_HAVE_MUL && ldi_ok)
+ {
+ *len = 5;
+ return ("ldi %A0,0x10" CR_TAB
+ "muls %B0,%A0" CR_TAB
+ "mov %A0,r1" CR_TAB
+ "sbc %B0,%B0" CR_TAB
+ "clr __zero_reg__");
+ }
+ if (optimize_size && scratch)
+ break; /* 5 */
+ *len = 7;
+ return ("mov %A0,%B0" CR_TAB
+ "lsl %B0" CR_TAB
+ "sbc %B0,%B0" CR_TAB
+ "asr %A0" CR_TAB
+ "asr %A0" CR_TAB
+ "asr %A0" CR_TAB
+ "asr %A0");
+
+ case 13:
+ if (AVR_HAVE_MUL && ldi_ok)
+ {
+ *len = 5;
+ return ("ldi %A0,0x08" CR_TAB
+ "muls %B0,%A0" CR_TAB
+ "mov %A0,r1" CR_TAB
+ "sbc %B0,%B0" CR_TAB
+ "clr __zero_reg__");
+ }
+ if (optimize_size)
+ break; /* scratch ? 5 : 7 */
+ *len = 8;
+ return ("mov %A0,%B0" CR_TAB
+ "lsl %B0" CR_TAB
+ "sbc %B0,%B0" CR_TAB
+ "asr %A0" CR_TAB
+ "asr %A0" CR_TAB
+ "asr %A0" CR_TAB
+ "asr %A0" CR_TAB
+ "asr %A0");
+
+ case 14:
+ *len = 5;
+ return ("lsl %B0" CR_TAB
+ "sbc %A0,%A0" CR_TAB
+ "lsl %B0" CR_TAB
+ "mov %B0,%A0" CR_TAB
+ "rol %A0");
+
+ default:
+ if (INTVAL (operands[2]) < 16)
+ break;
+
+ /* fall through */
+
+ case 15:
+ return *len = 3, ("lsl %B0" CR_TAB
+ "sbc %A0,%A0" CR_TAB
+ "mov %B0,%A0");
+ }
+ len = t;
+ }
+ out_shift_with_cnt ("asr %B0" CR_TAB
+ "ror %A0", insn, operands, len, 2);
+ return "";
+}
+
+
+/* 24-bit arithmetic shift right */
+
+const char*
+avr_out_ashrpsi3 (rtx insn, rtx *op, int *plen)
+{
+ int dest = REGNO (op[0]);
+ int src = REGNO (op[1]);
+
+ if (CONST_INT_P (op[2]))
+ {
+ if (plen)
+ *plen = 0;
+
+ switch (INTVAL (op[2]))
+ {
+ case 8:
+ if (dest <= src)
+ return avr_asm_len ("mov %A0,%B1" CR_TAB
+ "mov %B0,%C1" CR_TAB
+ "clr %C0" CR_TAB
+ "sbrc %B0,7" CR_TAB
+ "dec %C0", op, plen, 5);
+ else
+ return avr_asm_len ("clr %C0" CR_TAB
+ "sbrc %C1,7" CR_TAB
+ "dec %C0" CR_TAB
+ "mov %B0,%C1" CR_TAB
+ "mov %A0,%B1", op, plen, 5);
+
+ case 16:
+ if (dest != src + 2)
+ avr_asm_len ("mov %A0,%C1", op, plen, 1);
+
+ return avr_asm_len ("clr %B0" CR_TAB
+ "sbrc %A0,7" CR_TAB
+ "com %B0" CR_TAB
+ "mov %C0,%B0", op, plen, 4);
+
+ default:
+ if (INTVAL (op[2]) < 24)
+ break;
+
+ /* fall through */
+
+ case 23:
+ return avr_asm_len ("lsl %C0" CR_TAB
+ "sbc %A0,%A0" CR_TAB
+ "mov %B0,%A0" CR_TAB
+ "mov %C0,%A0", op, plen, 4);
+ } /* switch */
+ }
+
+ out_shift_with_cnt ("asr %C0" CR_TAB
+ "ror %B0" CR_TAB
+ "ror %A0", insn, op, plen, 3);
+ return "";
+}
+
+
+/* 32-bit arithmetic shift right ((signed long)x >> i) */
+
+const char *
+ashrsi3_out (rtx insn, rtx operands[], int *len)
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ int k;
+ int *t = len;
+
+ if (!len)
+ len = &k;
+
+ switch (INTVAL (operands[2]))
+ {
+ case 8:
+ {
+ int reg0 = true_regnum (operands[0]);
+ int reg1 = true_regnum (operands[1]);
+ *len=6;
+ if (reg0 <= reg1)
+ return ("mov %A0,%B1" CR_TAB
+ "mov %B0,%C1" CR_TAB
+ "mov %C0,%D1" CR_TAB
+ "clr %D0" CR_TAB
+ "sbrc %C0,7" CR_TAB
+ "dec %D0");
+ else
+ return ("clr %D0" CR_TAB
+ "sbrc %D1,7" CR_TAB
+ "dec %D0" CR_TAB
+ "mov %C0,%D1" CR_TAB
+ "mov %B0,%C1" CR_TAB
+ "mov %A0,%B1");
+ }
+
+ case 16:
+ {
+ int reg0 = true_regnum (operands[0]);
+ int reg1 = true_regnum (operands[1]);
+
+ if (reg0 == reg1 + 2)
+ return *len = 4, ("clr %D0" CR_TAB
+ "sbrc %B0,7" CR_TAB
+ "com %D0" CR_TAB
+ "mov %C0,%D0");
+ if (AVR_HAVE_MOVW)
+ return *len = 5, ("movw %A0,%C1" CR_TAB
+ "clr %D0" CR_TAB
+ "sbrc %B0,7" CR_TAB
+ "com %D0" CR_TAB
+ "mov %C0,%D0");
+ else
+ return *len = 6, ("mov %B0,%D1" CR_TAB
+ "mov %A0,%C1" CR_TAB
+ "clr %D0" CR_TAB
+ "sbrc %B0,7" CR_TAB
+ "com %D0" CR_TAB
+ "mov %C0,%D0");
+ }
+
+ case 24:
+ return *len = 6, ("mov %A0,%D1" CR_TAB
+ "clr %D0" CR_TAB
+ "sbrc %A0,7" CR_TAB
+ "com %D0" CR_TAB
+ "mov %B0,%D0" CR_TAB
+ "mov %C0,%D0");
+
+ default:
+ if (INTVAL (operands[2]) < 32)
+ break;
+
+ /* fall through */
+
+ case 31:
+ if (AVR_HAVE_MOVW)
+ return *len = 4, ("lsl %D0" CR_TAB
+ "sbc %A0,%A0" CR_TAB
+ "mov %B0,%A0" CR_TAB
+ "movw %C0,%A0");
+ else
+ return *len = 5, ("lsl %D0" CR_TAB
+ "sbc %A0,%A0" CR_TAB
+ "mov %B0,%A0" CR_TAB
+ "mov %C0,%A0" CR_TAB
+ "mov %D0,%A0");
+ }
+ len = t;
+ }
+ out_shift_with_cnt ("asr %D0" CR_TAB
+ "ror %C0" CR_TAB
+ "ror %B0" CR_TAB
+ "ror %A0", insn, operands, len, 4);
+ return "";
+}
+
+/* 8-bit logic shift right ((unsigned char)x >> i) */
+
+const char *
+lshrqi3_out (rtx insn, rtx operands[], int *len)
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ int k;
+
+ if (!len)
+ len = &k;
+
+ switch (INTVAL (operands[2]))
+ {
+ default:
+ if (INTVAL (operands[2]) < 8)
+ break;
+
+ *len = 1;
+ return "clr %0";
+
+ case 1:
+ *len = 1;
+ return "lsr %0";
+
+ case 2:
+ *len = 2;
+ return ("lsr %0" CR_TAB
+ "lsr %0");
+ case 3:
+ *len = 3;
+ return ("lsr %0" CR_TAB
+ "lsr %0" CR_TAB
+ "lsr %0");
+
+ case 4:
+ if (test_hard_reg_class (LD_REGS, operands[0]))
+ {
+ *len=2;
+ return ("swap %0" CR_TAB
+ "andi %0,0x0f");
+ }
+ *len = 4;
+ return ("lsr %0" CR_TAB
+ "lsr %0" CR_TAB
+ "lsr %0" CR_TAB
+ "lsr %0");
+
+ case 5:
+ if (test_hard_reg_class (LD_REGS, operands[0]))
+ {
+ *len = 3;
+ return ("swap %0" CR_TAB
+ "lsr %0" CR_TAB
+ "andi %0,0x7");
+ }
+ *len = 5;
+ return ("lsr %0" CR_TAB
+ "lsr %0" CR_TAB
+ "lsr %0" CR_TAB
+ "lsr %0" CR_TAB
+ "lsr %0");
+
+ case 6:
+ if (test_hard_reg_class (LD_REGS, operands[0]))
+ {
+ *len = 4;
+ return ("swap %0" CR_TAB
+ "lsr %0" CR_TAB
+ "lsr %0" CR_TAB
+ "andi %0,0x3");
+ }
+ *len = 6;
+ return ("lsr %0" CR_TAB
+ "lsr %0" CR_TAB
+ "lsr %0" CR_TAB
+ "lsr %0" CR_TAB
+ "lsr %0" CR_TAB
+ "lsr %0");
+
+ case 7:
+ *len = 3;
+ return ("rol %0" CR_TAB
+ "clr %0" CR_TAB
+ "rol %0");
+ }
+ }
+ else if (CONSTANT_P (operands[2]))
+ fatal_insn ("internal compiler error. Incorrect shift:", insn);
+
+ out_shift_with_cnt ("lsr %0",
+ insn, operands, len, 1);
+ return "";
+}
+
+/* 16-bit logic shift right ((unsigned short)x >> i) */
+
+const char *
+lshrhi3_out (rtx insn, rtx operands[], int *len)
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ int scratch = (GET_CODE (PATTERN (insn)) == PARALLEL);
+ int ldi_ok = test_hard_reg_class (LD_REGS, operands[0]);
+ int k;
+ int *t = len;
+
+ if (!len)
+ len = &k;
+
+ switch (INTVAL (operands[2]))
+ {
+ default:
+ if (INTVAL (operands[2]) < 16)
+ break;
+
+ *len = 2;
+ return ("clr %B0" CR_TAB
+ "clr %A0");
+
+ case 4:
+ if (optimize_size && scratch)
+ break; /* 5 */
+ if (ldi_ok)
+ {
+ *len = 6;
+ return ("swap %B0" CR_TAB
+ "swap %A0" CR_TAB
+ "andi %A0,0x0f" CR_TAB
+ "eor %A0,%B0" CR_TAB
+ "andi %B0,0x0f" CR_TAB
+ "eor %A0,%B0");
+ }
+ if (scratch)
+ {
+ *len = 7;
+ return ("swap %B0" CR_TAB
+ "swap %A0" CR_TAB
+ "ldi %3,0x0f" CR_TAB
+ "and %A0,%3" CR_TAB
+ "eor %A0,%B0" CR_TAB
+ "and %B0,%3" CR_TAB
+ "eor %A0,%B0");
+ }
+ break; /* optimize_size ? 6 : 8 */
+
+ case 5:
+ if (optimize_size)
+ break; /* scratch ? 5 : 6 */
+ if (ldi_ok)
+ {
+ *len = 8;
+ return ("lsr %B0" CR_TAB
+ "ror %A0" CR_TAB
+ "swap %B0" CR_TAB
+ "swap %A0" CR_TAB
+ "andi %A0,0x0f" CR_TAB
+ "eor %A0,%B0" CR_TAB
+ "andi %B0,0x0f" CR_TAB
+ "eor %A0,%B0");
+ }
+ if (scratch)
+ {
+ *len = 9;
+ return ("lsr %B0" CR_TAB
+ "ror %A0" CR_TAB
+ "swap %B0" CR_TAB
+ "swap %A0" CR_TAB
+ "ldi %3,0x0f" CR_TAB
+ "and %A0,%3" CR_TAB
+ "eor %A0,%B0" CR_TAB
+ "and %B0,%3" CR_TAB
+ "eor %A0,%B0");
+ }
+ break; /* 10 */
+
+ case 6:
+ if (optimize_size)
+ break; /* scratch ? 5 : 6 */
+ *len = 9;
+ return ("clr __tmp_reg__" CR_TAB
+ "lsl %A0" CR_TAB
+ "rol %B0" CR_TAB
+ "rol __tmp_reg__" CR_TAB
+ "lsl %A0" CR_TAB
+ "rol %B0" CR_TAB
+ "rol __tmp_reg__" CR_TAB
+ "mov %A0,%B0" CR_TAB
+ "mov %B0,__tmp_reg__");
+
+ case 7:
+ *len = 5;
+ return ("lsl %A0" CR_TAB
+ "mov %A0,%B0" CR_TAB
+ "rol %A0" CR_TAB
+ "sbc %B0,%B0" CR_TAB
+ "neg %B0");
+
+ case 8:
+ return *len = 2, ("mov %A0,%B1" CR_TAB
+ "clr %B0");
+
+ case 9:
+ *len = 3;
+ return ("mov %A0,%B0" CR_TAB
+ "clr %B0" CR_TAB
+ "lsr %A0");
+
+ case 10:
+ *len = 4;
+ return ("mov %A0,%B0" CR_TAB
+ "clr %B0" CR_TAB
+ "lsr %A0" CR_TAB
+ "lsr %A0");
+
+ case 11:
+ *len = 5;
+ return ("mov %A0,%B0" CR_TAB
+ "clr %B0" CR_TAB
+ "lsr %A0" CR_TAB
+ "lsr %A0" CR_TAB
+ "lsr %A0");
+
+ case 12:
+ if (ldi_ok)
+ {
+ *len = 4;
+ return ("mov %A0,%B0" CR_TAB
+ "clr %B0" CR_TAB
+ "swap %A0" CR_TAB
+ "andi %A0,0x0f");
+ }
+ if (scratch)
+ {
+ *len = 5;
+ return ("mov %A0,%B0" CR_TAB
+ "clr %B0" CR_TAB
+ "swap %A0" CR_TAB
+ "ldi %3,0x0f" CR_TAB
+ "and %A0,%3");
+ }
+ *len = 6;
+ return ("mov %A0,%B0" CR_TAB
+ "clr %B0" CR_TAB
+ "lsr %A0" CR_TAB
+ "lsr %A0" CR_TAB
+ "lsr %A0" CR_TAB
+ "lsr %A0");
+
+ case 13:
+ if (ldi_ok)
+ {
+ *len = 5;
+ return ("mov %A0,%B0" CR_TAB
+ "clr %B0" CR_TAB
+ "swap %A0" CR_TAB
+ "lsr %A0" CR_TAB
+ "andi %A0,0x07");
+ }
+ if (AVR_HAVE_MUL && scratch)
+ {
+ *len = 5;
+ return ("ldi %3,0x08" CR_TAB
+ "mul %B0,%3" CR_TAB
+ "mov %A0,r1" CR_TAB
+ "clr %B0" CR_TAB
+ "clr __zero_reg__");
+ }
+ if (optimize_size && scratch)
+ break; /* 5 */
+ if (scratch)
+ {
+ *len = 6;
+ return ("mov %A0,%B0" CR_TAB
+ "clr %B0" CR_TAB
+ "swap %A0" CR_TAB
+ "lsr %A0" CR_TAB
+ "ldi %3,0x07" CR_TAB
+ "and %A0,%3");
+ }
+ if (AVR_HAVE_MUL)
+ {
+ *len = 6;
+ return ("set" CR_TAB
+ "bld r1,3" CR_TAB
+ "mul %B0,r1" CR_TAB
+ "mov %A0,r1" CR_TAB
+ "clr %B0" CR_TAB
+ "clr __zero_reg__");
+ }
+ *len = 7;
+ return ("mov %A0,%B0" CR_TAB
+ "clr %B0" CR_TAB
+ "lsr %A0" CR_TAB
+ "lsr %A0" CR_TAB
+ "lsr %A0" CR_TAB
+ "lsr %A0" CR_TAB
+ "lsr %A0");
+
+ case 14:
+ if (AVR_HAVE_MUL && ldi_ok)
+ {
+ *len = 5;
+ return ("ldi %A0,0x04" CR_TAB
+ "mul %B0,%A0" CR_TAB
+ "mov %A0,r1" CR_TAB
+ "clr %B0" CR_TAB
+ "clr __zero_reg__");
+ }
+ if (AVR_HAVE_MUL && scratch)
+ {
+ *len = 5;
+ return ("ldi %3,0x04" CR_TAB
+ "mul %B0,%3" CR_TAB
+ "mov %A0,r1" CR_TAB
+ "clr %B0" CR_TAB
+ "clr __zero_reg__");
+ }
+ if (optimize_size && ldi_ok)
+ {
+ *len = 5;
+ return ("mov %A0,%B0" CR_TAB
+ "ldi %B0,6" "\n1:\t"
+ "lsr %A0" CR_TAB
+ "dec %B0" CR_TAB
+ "brne 1b");
+ }
+ if (optimize_size && scratch)
+ break; /* 5 */
+ *len = 6;
+ return ("clr %A0" CR_TAB
+ "lsl %B0" CR_TAB
+ "rol %A0" CR_TAB
+ "lsl %B0" CR_TAB
+ "rol %A0" CR_TAB
+ "clr %B0");
+
+ case 15:
+ *len = 4;
+ return ("clr %A0" CR_TAB
+ "lsl %B0" CR_TAB
+ "rol %A0" CR_TAB
+ "clr %B0");
+ }
+ len = t;
+ }
+ out_shift_with_cnt ("lsr %B0" CR_TAB
+ "ror %A0", insn, operands, len, 2);
+ return "";
+}
+
+
+/* 24-bit logic shift right */
+
+const char*
+avr_out_lshrpsi3 (rtx insn, rtx *op, int *plen)
+{
+ int dest = REGNO (op[0]);
+ int src = REGNO (op[1]);
+
+ if (CONST_INT_P (op[2]))
+ {
+ if (plen)
+ *plen = 0;
+
+ switch (INTVAL (op[2]))
+ {
+ case 8:
+ if (dest <= src)
+ return avr_asm_len ("mov %A0,%B1" CR_TAB
+ "mov %B0,%C1" CR_TAB
+ "clr %C0", op, plen, 3);
+ else
+ return avr_asm_len ("clr %C0" CR_TAB
+ "mov %B0,%C1" CR_TAB
+ "mov %A0,%B1", op, plen, 3);
+
+ case 16:
+ if (dest != src + 2)
+ avr_asm_len ("mov %A0,%C1", op, plen, 1);
+
+ return avr_asm_len ("clr %B0" CR_TAB
+ "clr %C0", op, plen, 2);
+
+ default:
+ if (INTVAL (op[2]) < 24)
+ break;
+
+ /* fall through */
+
+ case 23:
+ return avr_asm_len ("clr %A0" CR_TAB
+ "sbrc %C0,7" CR_TAB
+ "inc %A0" CR_TAB
+ "clr %B0" CR_TAB
+ "clr %C0", op, plen, 5);
+ } /* switch */
+ }
+
+ out_shift_with_cnt ("lsr %C0" CR_TAB
+ "ror %B0" CR_TAB
+ "ror %A0", insn, op, plen, 3);
+ return "";
+}
+
+
+/* 32-bit logic shift right ((unsigned int)x >> i) */
+
+const char *
+lshrsi3_out (rtx insn, rtx operands[], int *len)
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ int k;
+ int *t = len;
+
+ if (!len)
+ len = &k;
+
+ switch (INTVAL (operands[2]))
+ {
+ default:
+ if (INTVAL (operands[2]) < 32)
+ break;
+
+ if (AVR_HAVE_MOVW)
+ return *len = 3, ("clr %D0" CR_TAB
+ "clr %C0" CR_TAB
+ "movw %A0,%C0");
+ *len = 4;
+ return ("clr %D0" CR_TAB
+ "clr %C0" CR_TAB
+ "clr %B0" CR_TAB
+ "clr %A0");
+
+ case 8:
+ {
+ int reg0 = true_regnum (operands[0]);
+ int reg1 = true_regnum (operands[1]);
+ *len = 4;
+ if (reg0 <= reg1)
+ return ("mov %A0,%B1" CR_TAB
+ "mov %B0,%C1" CR_TAB
+ "mov %C0,%D1" CR_TAB
+ "clr %D0");
+ else
+ return ("clr %D0" CR_TAB
+ "mov %C0,%D1" CR_TAB
+ "mov %B0,%C1" CR_TAB
+ "mov %A0,%B1");
+ }
+
+ case 16:
+ {
+ int reg0 = true_regnum (operands[0]);
+ int reg1 = true_regnum (operands[1]);
+
+ if (reg0 == reg1 + 2)
+ return *len = 2, ("clr %C0" CR_TAB
+ "clr %D0");
+ if (AVR_HAVE_MOVW)
+ return *len = 3, ("movw %A0,%C1" CR_TAB
+ "clr %C0" CR_TAB
+ "clr %D0");
+ else
+ return *len = 4, ("mov %B0,%D1" CR_TAB
+ "mov %A0,%C1" CR_TAB
+ "clr %C0" CR_TAB
+ "clr %D0");
+ }
+
+ case 24:
+ return *len = 4, ("mov %A0,%D1" CR_TAB
+ "clr %B0" CR_TAB
+ "clr %C0" CR_TAB
+ "clr %D0");
+
+ case 31:
+ *len = 6;
+ return ("clr %A0" CR_TAB
+ "sbrc %D0,7" CR_TAB
+ "inc %A0" CR_TAB
+ "clr %B0" CR_TAB
+ "clr %C0" CR_TAB
+ "clr %D0");
+ }
+ len = t;
+ }
+ out_shift_with_cnt ("lsr %D0" CR_TAB
+ "ror %C0" CR_TAB
+ "ror %B0" CR_TAB
+ "ror %A0", insn, operands, len, 4);
+ return "";
+}
+
+
+/* Output addition of register XOP[0] and compile time constant XOP[2].
+ CODE == PLUS: perform addition by using ADD instructions or
+ CODE == MINUS: perform addition by using SUB instructions:
+
+ XOP[0] = XOP[0] + XOP[2]
+
+ Or perform addition/subtraction with register XOP[2] depending on CODE:
+
+ XOP[0] = XOP[0] +/- XOP[2]
+
+ If PLEN == NULL, print assembler instructions to perform the operation;
+ otherwise, set *PLEN to the length of the instruction sequence (in words)
+ printed with PLEN == NULL. XOP[3] is an 8-bit scratch register or NULL_RTX.
+ Set *PCC to effect on cc0 according to respective CC_* insn attribute.
+
+ CODE_SAT == UNKNOWN: Perform ordinary, non-saturating operation.
+ CODE_SAT != UNKNOWN: Perform operation and saturate according to CODE_SAT.
+ If CODE_SAT != UNKNOWN then SIGN contains the sign of the summand resp.
+ the subtrahend in the original insn, provided it is a compile time constant.
+ In all other cases, SIGN is 0.
+
+ If OUT_LABEL is true, print the final 0: label which is needed for
+ saturated addition / subtraction. The only case where OUT_LABEL = false
+ is useful is for saturated addition / subtraction performed during
+ fixed-point rounding, cf. `avr_out_round'. */
+
+static void
+avr_out_plus_1 (rtx *xop, int *plen, enum rtx_code code, int *pcc,
+ enum rtx_code code_sat, int sign, bool out_label)
+{
+ /* MODE of the operation. */
+ enum machine_mode mode = GET_MODE (xop[0]);
+
+ /* INT_MODE of the same size. */
+ enum machine_mode imode = int_mode_for_mode (mode);
+
+ /* Number of bytes to operate on. */
+ int i, n_bytes = GET_MODE_SIZE (mode);
+
+ /* Value (0..0xff) held in clobber register op[3] or -1 if unknown. */
+ int clobber_val = -1;
+
+ /* op[0]: 8-bit destination register
+ op[1]: 8-bit const int
+ op[2]: 8-bit scratch register */
+ rtx op[3];
+
+ /* Started the operation? Before starting the operation we may skip
+ adding 0. This is no more true after the operation started because
+ carry must be taken into account. */
+ bool started = false;
+
+ /* Value to add. There are two ways to add VAL: R += VAL and R -= -VAL. */
+ rtx xval = xop[2];
+
+ /* Output a BRVC instruction. Only needed with saturation. */
+ bool out_brvc = true;
+
+ if (plen)
+ *plen = 0;
+
+ if (REG_P (xop[2]))
+ {
+ *pcc = MINUS == code ? (int) CC_SET_CZN : (int) CC_SET_N;
+
+ for (i = 0; i < n_bytes; i++)
+ {
+ /* We operate byte-wise on the destination. */
+ op[0] = simplify_gen_subreg (QImode, xop[0], mode, i);
+ op[1] = simplify_gen_subreg (QImode, xop[2], mode, i);
+
+ if (i == 0)
+ avr_asm_len (code == PLUS ? "add %0,%1" : "sub %0,%1",
+ op, plen, 1);
+ else
+ avr_asm_len (code == PLUS ? "adc %0,%1" : "sbc %0,%1",
+ op, plen, 1);
+ }
+
+ if (reg_overlap_mentioned_p (xop[0], xop[2]))
+ {
+ gcc_assert (REGNO (xop[0]) == REGNO (xop[2]));
+
+ if (MINUS == code)
+ return;
+ }
+
+ goto saturate;
+ }
+
+ /* Except in the case of ADIW with 16-bit register (see below)
+ addition does not set cc0 in a usable way. */
+
+ *pcc = (MINUS == code) ? CC_SET_CZN : CC_CLOBBER;
+
+ if (CONST_FIXED_P (xval))
+ xval = avr_to_int_mode (xval);
+
+ /* Adding/Subtracting zero is a no-op. */
+
+ if (xval == const0_rtx)
+ {
+ *pcc = CC_NONE;
+ return;
+ }
+
+ if (MINUS == code)
+ xval = simplify_unary_operation (NEG, imode, xval, imode);
+
+ op[2] = xop[3];
+
+ if (SS_PLUS == code_sat && MINUS == code
+ && sign < 0
+ && 0x80 == (INTVAL (simplify_gen_subreg (QImode, xval, imode, n_bytes-1))
+ & GET_MODE_MASK (QImode)))
+ {
+ /* We compute x + 0x80 by means of SUB instructions. We negated the
+ constant subtrahend above and are left with x - (-128) so that we
+ need something like SUBI r,128 which does not exist because SUBI sets
+ V according to the sign of the subtrahend. Notice the only case
+ where this must be done is when NEG overflowed in case [2s] because
+ the V computation needs the right sign of the subtrahend. */
+
+ rtx msb = simplify_gen_subreg (QImode, xop[0], mode, n_bytes-1);
+
+ avr_asm_len ("subi %0,128" CR_TAB
+ "brmi 0f", &msb, plen, 2);
+ out_brvc = false;
+
+ goto saturate;
+ }
+
+ for (i = 0; i < n_bytes; i++)
+ {
+ /* We operate byte-wise on the destination. */
+ rtx reg8 = simplify_gen_subreg (QImode, xop[0], mode, i);
+ rtx xval8 = simplify_gen_subreg (QImode, xval, imode, i);
+
+ /* 8-bit value to operate with this byte. */
+ unsigned int val8 = UINTVAL (xval8) & GET_MODE_MASK (QImode);
+
+ /* Registers R16..R31 can operate with immediate. */
+ bool ld_reg_p = test_hard_reg_class (LD_REGS, reg8);
+
+ op[0] = reg8;
+ op[1] = gen_int_mode (val8, QImode);
+
+ /* To get usable cc0 no low-bytes must have been skipped. */
+
+ if (i && !started)
+ *pcc = CC_CLOBBER;
+
+ if (!started
+ && i % 2 == 0
+ && i + 2 <= n_bytes
+ && test_hard_reg_class (ADDW_REGS, reg8))
+ {
+ rtx xval16 = simplify_gen_subreg (HImode, xval, imode, i);
+ unsigned int val16 = UINTVAL (xval16) & GET_MODE_MASK (HImode);
+
+ /* Registers R24, X, Y, Z can use ADIW/SBIW with constants < 64
+ i.e. operate word-wise. */
+
+ if (val16 < 64)
+ {
+ if (val16 != 0)
+ {
+ started = true;
+ avr_asm_len (code == PLUS ? "adiw %0,%1" : "sbiw %0,%1",
+ op, plen, 1);
+
+ if (n_bytes == 2 && PLUS == code)
+ *pcc = CC_SET_ZN;
+ }
+
+ i++;
+ continue;
+ }
+ }
+
+ if (val8 == 0)
+ {
+ if (started)
+ avr_asm_len (code == PLUS
+ ? "adc %0,__zero_reg__" : "sbc %0,__zero_reg__",
+ op, plen, 1);
+ continue;
+ }
+ else if ((val8 == 1 || val8 == 0xff)
+ && UNKNOWN == code_sat
+ && !started
+ && i == n_bytes - 1)
+ {
+ avr_asm_len ((code == PLUS) ^ (val8 == 1) ? "dec %0" : "inc %0",
+ op, plen, 1);
+ break;
+ }
+
+ switch (code)
+ {
+ case PLUS:
+
+ gcc_assert (plen != NULL || (op[2] && REG_P (op[2])));
+
+ if (plen != NULL && UNKNOWN != code_sat)
+ {
+ /* This belongs to the x + 0x80 corner case. The code with
+ ADD instruction is not smaller, thus make this case
+ expensive so that the caller won't pick it. */
+
+ *plen += 10;
+ break;
+ }
+
+ if (clobber_val != (int) val8)
+ avr_asm_len ("ldi %2,%1", op, plen, 1);
+ clobber_val = (int) val8;
+
+ avr_asm_len (started ? "adc %0,%2" : "add %0,%2", op, plen, 1);
+
+ break; /* PLUS */
+
+ case MINUS:
+
+ if (ld_reg_p)
+ avr_asm_len (started ? "sbci %0,%1" : "subi %0,%1", op, plen, 1);
+ else
+ {
+ gcc_assert (plen != NULL || REG_P (op[2]));
+
+ if (clobber_val != (int) val8)
+ avr_asm_len ("ldi %2,%1", op, plen, 1);
+ clobber_val = (int) val8;
+
+ avr_asm_len (started ? "sbc %0,%2" : "sub %0,%2", op, plen, 1);
+ }
+
+ break; /* MINUS */
+
+ default:
+ /* Unknown code */
+ gcc_unreachable();
+ }
+
+ started = true;
+
+ } /* for all sub-bytes */
+
+ saturate:
+
+ if (UNKNOWN == code_sat)
+ return;
+
+ *pcc = (int) CC_CLOBBER;
+
+ /* Vanilla addition/subtraction is done. We are left with saturation.
+
+ We have to compute A = A <op> B where A is a register and
+ B is a register or a non-zero compile time constant CONST.
+ A is register class "r" if unsigned && B is REG. Otherwise, A is in "d".
+ B stands for the original operand $2 in INSN. In the case of B = CONST,
+ SIGN in { -1, 1 } is the sign of B. Otherwise, SIGN is 0.
+
+ CODE is the instruction flavor we use in the asm sequence to perform <op>.
+
+
+ unsigned
+ operation | code | sat if | b is | sat value | case
+ -----------------+-------+----------+--------------+-----------+-------
+ + as a + b | add | C == 1 | const, reg | u+ = 0xff | [1u]
+ + as a - (-b) | sub | C == 0 | const | u+ = 0xff | [2u]
+ - as a - b | sub | C == 1 | const, reg | u- = 0 | [3u]
+ - as a + (-b) | add | C == 0 | const | u- = 0 | [4u]
+
+
+ signed
+ operation | code | sat if | b is | sat value | case
+ -----------------+-------+----------+--------------+-----------+-------
+ + as a + b | add | V == 1 | const, reg | s+ | [1s]
+ + as a - (-b) | sub | V == 1 | const | s+ | [2s]
+ - as a - b | sub | V == 1 | const, reg | s- | [3s]
+ - as a + (-b) | add | V == 1 | const | s- | [4s]
+
+ s+ = b < 0 ? -0x80 : 0x7f
+ s- = b < 0 ? 0x7f : -0x80
+
+ The cases a - b actually perform a - (-(-b)) if B is CONST.
+ */
+
+ op[0] = simplify_gen_subreg (QImode, xop[0], mode, n_bytes-1);
+ op[1] = n_bytes > 1
+ ? simplify_gen_subreg (QImode, xop[0], mode, n_bytes-2)
+ : NULL_RTX;
+
+ bool need_copy = true;
+ int len_call = 1 + AVR_HAVE_JMP_CALL;
+
+ switch (code_sat)
+ {
+ default:
+ gcc_unreachable();
+
+ case SS_PLUS:
+ case SS_MINUS:
+
+ if (out_brvc)
+ avr_asm_len ("brvc 0f", op, plen, 1);
+
+ if (reg_overlap_mentioned_p (xop[0], xop[2]))
+ {
+ /* [1s,reg] */
+
+ if (n_bytes == 1)
+ avr_asm_len ("ldi %0,0x7f" CR_TAB
+ "adc %0,__zero_reg__", op, plen, 2);
+ else
+ avr_asm_len ("ldi %0,0x7f" CR_TAB
+ "ldi %1,0xff" CR_TAB
+ "adc %1,__zero_reg__" CR_TAB
+ "adc %0,__zero_reg__", op, plen, 4);
+ }
+ else if (sign == 0 && PLUS == code)
+ {
+ /* [1s,reg] */
+
+ op[2] = simplify_gen_subreg (QImode, xop[2], mode, n_bytes-1);
+
+ if (n_bytes == 1)
+ avr_asm_len ("ldi %0,0x80" CR_TAB
+ "sbrs %2,7" CR_TAB
+ "dec %0", op, plen, 3);
+ else
+ avr_asm_len ("ldi %0,0x80" CR_TAB
+ "cp %2,%0" CR_TAB
+ "sbc %1,%1" CR_TAB
+ "sbci %0,0", op, plen, 4);
+ }
+ else if (sign == 0 && MINUS == code)
+ {
+ /* [3s,reg] */
+
+ op[2] = simplify_gen_subreg (QImode, xop[2], mode, n_bytes-1);
+
+ if (n_bytes == 1)
+ avr_asm_len ("ldi %0,0x7f" CR_TAB
+ "sbrs %2,7" CR_TAB
+ "inc %0", op, plen, 3);
+ else
+ avr_asm_len ("ldi %0,0x7f" CR_TAB
+ "cp %0,%2" CR_TAB
+ "sbc %1,%1" CR_TAB
+ "sbci %0,-1", op, plen, 4);
+ }
+ else if ((sign < 0) ^ (SS_MINUS == code_sat))
+ {
+ /* [1s,const,B < 0] [2s,B < 0] */
+ /* [3s,const,B > 0] [4s,B > 0] */
+
+ if (n_bytes == 8)
+ {
+ avr_asm_len ("%~call __clr_8", op, plen, len_call);
+ need_copy = false;
+ }
+
+ avr_asm_len ("ldi %0,0x80", op, plen, 1);
+ if (n_bytes > 1 && need_copy)
+ avr_asm_len ("clr %1", op, plen, 1);
+ }
+ else if ((sign > 0) ^ (SS_MINUS == code_sat))
+ {
+ /* [1s,const,B > 0] [2s,B > 0] */
+ /* [3s,const,B < 0] [4s,B < 0] */
+
+ if (n_bytes == 8)
+ {
+ avr_asm_len ("sec" CR_TAB
+ "%~call __sbc_8", op, plen, 1 + len_call);
+ need_copy = false;
+ }
+
+ avr_asm_len ("ldi %0,0x7f", op, plen, 1);
+ if (n_bytes > 1 && need_copy)
+ avr_asm_len ("ldi %1,0xff", op, plen, 1);
+ }
+ else
+ gcc_unreachable();
+
+ break;
+
+ case US_PLUS:
+ /* [1u] : [2u] */
+
+ avr_asm_len (PLUS == code ? "brcc 0f" : "brcs 0f", op, plen, 1);
+
+ if (n_bytes == 8)
+ {
+ if (MINUS == code)
+ avr_asm_len ("sec", op, plen, 1);
+ avr_asm_len ("%~call __sbc_8", op, plen, len_call);
+
+ need_copy = false;
+ }
+ else
+ {
+ if (MINUS == code && !test_hard_reg_class (LD_REGS, op[0]))
+ avr_asm_len ("sec" CR_TAB "sbc %0,%0", op, plen, 2);
+ else
+ avr_asm_len (PLUS == code ? "sbc %0,%0" : "ldi %0,0xff",
+ op, plen, 1);
+ }
+ break; /* US_PLUS */
+
+ case US_MINUS:
+ /* [4u] : [3u] */
+
+ avr_asm_len (PLUS == code ? "brcs 0f" : "brcc 0f", op, plen, 1);
+
+ if (n_bytes == 8)
+ {
+ avr_asm_len ("%~call __clr_8", op, plen, len_call);
+ need_copy = false;
+ }
+ else
+ avr_asm_len ("clr %0", op, plen, 1);
+
+ break;
+ }
+
+ /* We set the MSB in the unsigned case and the 2 MSBs in the signed case.
+ Now copy the right value to the LSBs. */
+
+ if (need_copy && n_bytes > 1)
+ {
+ if (US_MINUS == code_sat || US_PLUS == code_sat)
+ {
+ avr_asm_len ("mov %1,%0", op, plen, 1);
+
+ if (n_bytes > 2)
+ {
+ op[0] = xop[0];
+ if (AVR_HAVE_MOVW)
+ avr_asm_len ("movw %0,%1", op, plen, 1);
+ else
+ avr_asm_len ("mov %A0,%1" CR_TAB
+ "mov %B0,%1", op, plen, 2);
+ }
+ }
+ else if (n_bytes > 2)
+ {
+ op[0] = xop[0];
+ avr_asm_len ("mov %A0,%1" CR_TAB
+ "mov %B0,%1", op, plen, 2);
+ }
+ }
+
+ if (need_copy && n_bytes == 8)
+ {
+ if (AVR_HAVE_MOVW)
+ avr_asm_len ("movw %r0+2,%0" CR_TAB
+ "movw %r0+4,%0", xop, plen, 2);
+ else
+ avr_asm_len ("mov %r0+2,%0" CR_TAB
+ "mov %r0+3,%0" CR_TAB
+ "mov %r0+4,%0" CR_TAB
+ "mov %r0+5,%0", xop, plen, 4);
+ }
+
+ if (out_label)
+ avr_asm_len ("0:", op, plen, 0);
+}
+
+
+/* Output addition/subtraction of register XOP[0] and a constant XOP[2] that
+ is ont a compile-time constant:
+
+ XOP[0] = XOP[0] +/- XOP[2]
+
+ This is a helper for the function below. The only insns that need this
+ are additions/subtraction for pointer modes, i.e. HImode and PSImode. */
+
+static const char*
+avr_out_plus_symbol (rtx *xop, enum rtx_code code, int *plen, int *pcc)
+{
+ enum machine_mode mode = GET_MODE (xop[0]);
+
+ /* Only pointer modes want to add symbols. */
+
+ gcc_assert (mode == HImode || mode == PSImode);
+
+ *pcc = MINUS == code ? (int) CC_SET_CZN : (int) CC_SET_N;
+
+ avr_asm_len (PLUS == code
+ ? "subi %A0,lo8(-(%2))" CR_TAB "sbci %B0,hi8(-(%2))"
+ : "subi %A0,lo8(%2)" CR_TAB "sbci %B0,hi8(%2)",
+ xop, plen, -2);
+
+ if (PSImode == mode)
+ avr_asm_len (PLUS == code
+ ? "sbci %C0,hlo8(-(%2))"
+ : "sbci %C0,hlo8(%2)", xop, plen, 1);
+ return "";
+}
+
+
+/* Prepare operands of addition/subtraction to be used with avr_out_plus_1.
+
+ INSN is a single_set insn or an insn pattern with a binary operation as
+ SET_SRC that is one of: PLUS, SS_PLUS, US_PLUS, MINUS, SS_MINUS, US_MINUS.
+
+ XOP are the operands of INSN. In the case of 64-bit operations with
+ constant XOP[] has just one element: The summand/subtrahend in XOP[0].
+ The non-saturating insns up to 32 bits may or may not supply a "d" class
+ scratch as XOP[3].
+
+ If PLEN == NULL output the instructions.
+ If PLEN != NULL set *PLEN to the length of the sequence in words.
+
+ PCC is a pointer to store the instructions' effect on cc0.
+ PCC may be NULL.
+
+ PLEN and PCC default to NULL.
+
+ OUT_LABEL defaults to TRUE. For a description, see AVR_OUT_PLUS_1.
+
+ Return "" */
+
+const char*
+avr_out_plus (rtx insn, rtx *xop, int *plen, int *pcc, bool out_label)
+{
+ int cc_plus, cc_minus, cc_dummy;
+ int len_plus, len_minus;
+ rtx op[4];
+ rtx xpattern = INSN_P (insn) ? single_set (insn) : insn;
+ rtx xdest = SET_DEST (xpattern);
+ enum machine_mode mode = GET_MODE (xdest);
+ enum machine_mode imode = int_mode_for_mode (mode);
+ int n_bytes = GET_MODE_SIZE (mode);
+ enum rtx_code code_sat = GET_CODE (SET_SRC (xpattern));
+ enum rtx_code code
+ = (PLUS == code_sat || SS_PLUS == code_sat || US_PLUS == code_sat
+ ? PLUS : MINUS);
+
+ if (!pcc)
+ pcc = &cc_dummy;
+
+ /* PLUS and MINUS don't saturate: Use modular wrap-around. */
+
+ if (PLUS == code_sat || MINUS == code_sat)
+ code_sat = UNKNOWN;
+
+ if (n_bytes <= 4 && REG_P (xop[2]))
+ {
+ avr_out_plus_1 (xop, plen, code, pcc, code_sat, 0, out_label);
+ return "";
+ }
+
+ if (8 == n_bytes)
+ {
+ op[0] = gen_rtx_REG (DImode, ACC_A);
+ op[1] = gen_rtx_REG (DImode, ACC_A);
+ op[2] = avr_to_int_mode (xop[0]);
+ }
+ else
+ {
+ if (!REG_P (xop[2])
+ && !CONST_INT_P (xop[2])
+ && !CONST_FIXED_P (xop[2]))
+ {
+ return avr_out_plus_symbol (xop, code, plen, pcc);
+ }
+
+ op[0] = avr_to_int_mode (xop[0]);
+ op[1] = avr_to_int_mode (xop[1]);
+ op[2] = avr_to_int_mode (xop[2]);
+ }
+
+ /* Saturations and 64-bit operations don't have a clobber operand.
+ For the other cases, the caller will provide a proper XOP[3]. */
+
+ xpattern = INSN_P (insn) ? PATTERN (insn) : insn;
+ op[3] = PARALLEL == GET_CODE (xpattern) ? xop[3] : NULL_RTX;
+
+ /* Saturation will need the sign of the original operand. */
+
+ rtx xmsb = simplify_gen_subreg (QImode, op[2], imode, n_bytes-1);
+ int sign = INTVAL (xmsb) < 0 ? -1 : 1;
+
+ /* If we subtract and the subtrahend is a constant, then negate it
+ so that avr_out_plus_1 can be used. */
+
+ if (MINUS == code)
+ op[2] = simplify_unary_operation (NEG, imode, op[2], imode);
+
+ /* Work out the shortest sequence. */
+
+ avr_out_plus_1 (op, &len_minus, MINUS, &cc_minus, code_sat, sign, out_label);
+ avr_out_plus_1 (op, &len_plus, PLUS, &cc_plus, code_sat, sign, out_label);
+
+ if (plen)
+ {
+ *plen = (len_minus <= len_plus) ? len_minus : len_plus;
+ *pcc = (len_minus <= len_plus) ? cc_minus : cc_plus;
+ }
+ else if (len_minus <= len_plus)
+ avr_out_plus_1 (op, NULL, MINUS, pcc, code_sat, sign, out_label);
+ else
+ avr_out_plus_1 (op, NULL, PLUS, pcc, code_sat, sign, out_label);
+
+ return "";
+}
+
+
+/* Output bit operation (IOR, AND, XOR) with register XOP[0] and compile
+ time constant XOP[2]:
+
+ XOP[0] = XOP[0] <op> XOP[2]
+
+ and return "". If PLEN == NULL, print assembler instructions to perform the
+ operation; otherwise, set *PLEN to the length of the instruction sequence
+ (in words) printed with PLEN == NULL. XOP[3] is either an 8-bit clobber
+ register or SCRATCH if no clobber register is needed for the operation.
+ INSN is an INSN_P or a pattern of an insn. */
+
+const char*
+avr_out_bitop (rtx insn, rtx *xop, int *plen)
+{
+ /* CODE and MODE of the operation. */
+ rtx xpattern = INSN_P (insn) ? single_set (insn) : insn;
+ enum rtx_code code = GET_CODE (SET_SRC (xpattern));
+ enum machine_mode mode = GET_MODE (xop[0]);
+
+ /* Number of bytes to operate on. */
+ int i, n_bytes = GET_MODE_SIZE (mode);
+
+ /* Value of T-flag (0 or 1) or -1 if unknow. */
+ int set_t = -1;
+
+ /* Value (0..0xff) held in clobber register op[3] or -1 if unknown. */
+ int clobber_val = -1;
+
+ /* op[0]: 8-bit destination register
+ op[1]: 8-bit const int
+ op[2]: 8-bit clobber register or SCRATCH
+ op[3]: 8-bit register containing 0xff or NULL_RTX */
+ rtx op[4];
+
+ op[2] = xop[3];
+ op[3] = NULL_RTX;
+
+ if (plen)
+ *plen = 0;
+
+ for (i = 0; i < n_bytes; i++)
+ {
+ /* We operate byte-wise on the destination. */
+ rtx reg8 = simplify_gen_subreg (QImode, xop[0], mode, i);
+ rtx xval8 = simplify_gen_subreg (QImode, xop[2], mode, i);
+
+ /* 8-bit value to operate with this byte. */
+ unsigned int val8 = UINTVAL (xval8) & GET_MODE_MASK (QImode);
+
+ /* Number of bits set in the current byte of the constant. */
+ int pop8 = avr_popcount (val8);
+
+ /* Registers R16..R31 can operate with immediate. */
+ bool ld_reg_p = test_hard_reg_class (LD_REGS, reg8);
+
+ op[0] = reg8;
+ op[1] = GEN_INT (val8);
+
+ switch (code)
+ {
+ case IOR:
+
+ if (0 == pop8)
+ continue;
+ else if (ld_reg_p)
+ avr_asm_len ("ori %0,%1", op, plen, 1);
+ else if (1 == pop8)
+ {
+ if (set_t != 1)
+ avr_asm_len ("set", op, plen, 1);
+ set_t = 1;
+
+ op[1] = GEN_INT (exact_log2 (val8));
+ avr_asm_len ("bld %0,%1", op, plen, 1);
+ }
+ else if (8 == pop8)
+ {
+ if (op[3] != NULL_RTX)
+ avr_asm_len ("mov %0,%3", op, plen, 1);
+ else
+ avr_asm_len ("clr %0" CR_TAB
+ "dec %0", op, plen, 2);
+
+ op[3] = op[0];
+ }
+ else
+ {
+ if (clobber_val != (int) val8)
+ avr_asm_len ("ldi %2,%1", op, plen, 1);
+ clobber_val = (int) val8;
+
+ avr_asm_len ("or %0,%2", op, plen, 1);
+ }
+
+ continue; /* IOR */
+
+ case AND:
+
+ if (8 == pop8)
+ continue;
+ else if (0 == pop8)
+ avr_asm_len ("clr %0", op, plen, 1);
+ else if (ld_reg_p)
+ avr_asm_len ("andi %0,%1", op, plen, 1);
+ else if (7 == pop8)
+ {
+ if (set_t != 0)
+ avr_asm_len ("clt", op, plen, 1);
+ set_t = 0;
+
+ op[1] = GEN_INT (exact_log2 (GET_MODE_MASK (QImode) & ~val8));
+ avr_asm_len ("bld %0,%1", op, plen, 1);
+ }
+ else
+ {
+ if (clobber_val != (int) val8)
+ avr_asm_len ("ldi %2,%1", op, plen, 1);
+ clobber_val = (int) val8;
+
+ avr_asm_len ("and %0,%2", op, plen, 1);
+ }
+
+ continue; /* AND */
+
+ case XOR:
+
+ if (0 == pop8)
+ continue;
+ else if (8 == pop8)
+ avr_asm_len ("com %0", op, plen, 1);
+ else if (ld_reg_p && val8 == (1 << 7))
+ avr_asm_len ("subi %0,%1", op, plen, 1);
+ else
+ {
+ if (clobber_val != (int) val8)
+ avr_asm_len ("ldi %2,%1", op, plen, 1);
+ clobber_val = (int) val8;
+
+ avr_asm_len ("eor %0,%2", op, plen, 1);
+ }
+
+ continue; /* XOR */
+
+ default:
+ /* Unknown rtx_code */
+ gcc_unreachable();
+ }
+ } /* for all sub-bytes */
+
+ return "";
+}
+
+
+/* PLEN == NULL: Output code to add CONST_INT OP[0] to SP.
+ PLEN != NULL: Set *PLEN to the length of that sequence.
+ Return "". */
+
+const char*
+avr_out_addto_sp (rtx *op, int *plen)
+{
+ int pc_len = AVR_2_BYTE_PC ? 2 : 3;
+ int addend = INTVAL (op[0]);
+
+ if (plen)
+ *plen = 0;
+
+ if (addend < 0)
+ {
+ if (flag_verbose_asm || flag_print_asm_name)
+ avr_asm_len (ASM_COMMENT_START "SP -= %n0", op, plen, 0);
+
+ while (addend <= -pc_len)
+ {
+ addend += pc_len;
+ avr_asm_len ("rcall .", op, plen, 1);
+ }
+
+ while (addend++ < 0)
+ avr_asm_len ("push __zero_reg__", op, plen, 1);
+ }
+ else if (addend > 0)
+ {
+ if (flag_verbose_asm || flag_print_asm_name)
+ avr_asm_len (ASM_COMMENT_START "SP += %0", op, plen, 0);
+
+ while (addend-- > 0)
+ avr_asm_len ("pop __tmp_reg__", op, plen, 1);
+ }
+
+ return "";
+}
+
+
+/* Outputs instructions needed for fixed point type conversion.
+ This includes converting between any fixed point type, as well
+ as converting to any integer type. Conversion between integer
+ types is not supported.
+
+ Converting signed fractional types requires a bit shift if converting
+ to or from any unsigned fractional type because the decimal place is
+ shifted by 1 bit. When the destination is a signed fractional, the sign
+ is stored in either the carry or T bit. */
+
+const char*
+avr_out_fract (rtx insn, rtx operands[], bool intsigned, int *plen)
+{
+ size_t i;
+ rtx xop[6];
+ RTX_CODE shift = UNKNOWN;
+ bool sign_in_carry = false;
+ bool msb_in_carry = false;
+ bool lsb_in_tmp_reg = false;
+ bool lsb_in_carry = false;
+ bool frac_rounded = false;
+ const char *code_ashift = "lsl %0";
+
+
+#define MAY_CLOBBER(RR) \
+ /* Shorthand used below. */ \
+ ((sign_bytes \
+ && IN_RANGE (RR, dest.regno_msb - sign_bytes + 1, dest.regno_msb)) \
+ || (offset && IN_RANGE (RR, dest.regno, dest.regno_msb)) \
+ || (reg_unused_after (insn, all_regs_rtx[RR]) \
+ && !IN_RANGE (RR, dest.regno, dest.regno_msb)))
+
+ struct
+ {
+ /* bytes : Length of operand in bytes.
+ ibyte : Length of integral part in bytes.
+ fbyte, fbit : Length of fractional part in bytes, bits. */
+
+ bool sbit;
+ unsigned fbit, bytes, ibyte, fbyte;
+ unsigned regno, regno_msb;
+ } dest, src, *val[2] = { &dest, &src };
+
+ if (plen)
+ *plen = 0;
+
+ /* Step 0: Determine information on source and destination operand we
+ ====== will need in the remainder. */
+
+ for (i = 0; i < sizeof (val) / sizeof (*val); i++)
+ {
+ enum machine_mode mode;
+
+ xop[i] = operands[i];
+
+ mode = GET_MODE (xop[i]);
+
+ val[i]->bytes = GET_MODE_SIZE (mode);
+ val[i]->regno = REGNO (xop[i]);
+ val[i]->regno_msb = REGNO (xop[i]) + val[i]->bytes - 1;
+
+ if (SCALAR_INT_MODE_P (mode))
+ {
+ val[i]->sbit = intsigned;
+ val[i]->fbit = 0;
+ }
+ else if (ALL_SCALAR_FIXED_POINT_MODE_P (mode))
+ {
+ val[i]->sbit = SIGNED_SCALAR_FIXED_POINT_MODE_P (mode);
+ val[i]->fbit = GET_MODE_FBIT (mode);
+ }
+ else
+ fatal_insn ("unsupported fixed-point conversion", insn);
+
+ val[i]->fbyte = (1 + val[i]->fbit) / BITS_PER_UNIT;
+ val[i]->ibyte = val[i]->bytes - val[i]->fbyte;
+ }
+
+ // Byte offset of the decimal point taking into account different place
+ // of the decimal point in input and output and different register numbers
+ // of input and output.
+ int offset = dest.regno - src.regno + dest.fbyte - src.fbyte;
+
+ // Number of destination bytes that will come from sign / zero extension.
+ int sign_bytes = (dest.ibyte - src.ibyte) * (dest.ibyte > src.ibyte);
+
+ // Number of bytes at the low end to be filled with zeros.
+ int zero_bytes = (dest.fbyte - src.fbyte) * (dest.fbyte > src.fbyte);
+
+ // Do we have a 16-Bit register that is cleared?
+ rtx clrw = NULL_RTX;
+
+ bool sign_extend = src.sbit && sign_bytes;
+
+ if (0 == dest.fbit % 8 && 7 == src.fbit % 8)
+ shift = ASHIFT;
+ else if (7 == dest.fbit % 8 && 0 == src.fbit % 8)
+ shift = ASHIFTRT;
+ else if (dest.fbit % 8 == src.fbit % 8)
+ shift = UNKNOWN;
+ else
+ gcc_unreachable();
+
+ /* If we need to round the fraction part, we might need to save/round it
+ before clobbering any of it in Step 1. Also, we might to want to do
+ the rounding now to make use of LD_REGS. */
+ if (SCALAR_INT_MODE_P (GET_MODE (xop[0]))
+ && SCALAR_ACCUM_MODE_P (GET_MODE (xop[1]))
+ && !TARGET_FRACT_CONV_TRUNC)
+ {
+ bool overlap
+ = (src.regno <=
+ (offset ? dest.regno_msb - sign_bytes : dest.regno + zero_bytes - 1)
+ && dest.regno - offset -1 >= dest.regno);
+ unsigned s0 = dest.regno - offset -1;
+ bool use_src = true;
+ unsigned sn;
+ unsigned copied_msb = src.regno_msb;
+ bool have_carry = false;
+
+ if (src.ibyte > dest.ibyte)
+ copied_msb -= src.ibyte - dest.ibyte;
+
+ for (sn = s0; sn <= copied_msb; sn++)
+ if (!IN_RANGE (sn, dest.regno, dest.regno_msb)
+ && !reg_unused_after (insn, all_regs_rtx[sn]))
+ use_src = false;
+ if (use_src && TEST_HARD_REG_BIT (reg_class_contents[LD_REGS], s0))
+ {
+ avr_asm_len ("tst %0" CR_TAB "brpl 0f",
+ &all_regs_rtx[src.regno_msb], plen, 2);
+ sn = src.regno;
+ if (sn < s0)
+ {
+ if (TEST_HARD_REG_BIT (reg_class_contents[LD_REGS], sn))
+ avr_asm_len ("cpi %0,1", &all_regs_rtx[sn], plen, 1);
+ else
+ avr_asm_len ("sec" CR_TAB "cpc %0,__zero_reg__",
+ &all_regs_rtx[sn], plen, 2);
+ have_carry = true;
+ }
+ while (++sn < s0)
+ avr_asm_len ("cpc %0,__zero_reg__", &all_regs_rtx[sn], plen, 1);
+ avr_asm_len (have_carry ? "sbci %0,128" : "subi %0,129",
+ &all_regs_rtx[s0], plen, 1);
+ for (sn = src.regno + src.fbyte; sn <= copied_msb; sn++)
+ avr_asm_len ("sbci %0,255", &all_regs_rtx[sn], plen, 1);
+ avr_asm_len ("\n0:", NULL, plen, 0);
+ frac_rounded = true;
+ }
+ else if (use_src && overlap)
+ {
+ avr_asm_len ("clr __tmp_reg__" CR_TAB
+ "sbrc %1,0" CR_TAB "dec __tmp_reg__", xop, plen, 1);
+ sn = src.regno;
+ if (sn < s0)
+ {
+ avr_asm_len ("add %0,__tmp_reg__", &all_regs_rtx[sn], plen, 1);
+ have_carry = true;
+ }
+ while (++sn < s0)
+ avr_asm_len ("adc %0,__tmp_reg__", &all_regs_rtx[sn], plen, 1);
+ if (have_carry)
+ avr_asm_len ("clt" CR_TAB "bld __tmp_reg__,7" CR_TAB
+ "adc %0,__tmp_reg__",
+ &all_regs_rtx[s0], plen, 1);
+ else
+ avr_asm_len ("lsr __tmp_reg" CR_TAB "add %0,__tmp_reg__",
+ &all_regs_rtx[s0], plen, 2);
+ for (sn = src.regno + src.fbyte; sn <= copied_msb; sn++)
+ avr_asm_len ("adc %0,__zero_reg__", &all_regs_rtx[sn], plen, 1);
+ frac_rounded = true;
+ }
+ else if (overlap)
+ {
+ bool use_src
+ = (TEST_HARD_REG_BIT (reg_class_contents[LD_REGS], s0)
+ && (IN_RANGE (s0, dest.regno, dest.regno_msb)
+ || reg_unused_after (insn, all_regs_rtx[s0])));
+ xop[2] = all_regs_rtx[s0];
+ unsigned sn = src.regno;
+ if (!use_src || sn == s0)
+ avr_asm_len ("mov __tmp_reg__,%2", xop, plen, 1);
+ /* We need to consider to-be-discarded bits
+ if the value is negative. */
+ if (sn < s0)
+ {
+ avr_asm_len ("tst %0" CR_TAB "brpl 0f",
+ &all_regs_rtx[src.regno_msb], plen, 2);
+ /* Test to-be-discarded bytes for any nozero bits.
+ ??? Could use OR or SBIW to test two registers at once. */
+ if (sn < s0)
+ avr_asm_len ("cp %0,__zero_reg__", &all_regs_rtx[sn], plen, 1);
+ while (++sn < s0)
+ avr_asm_len ("cpc %0,__zero_reg__", &all_regs_rtx[sn], plen, 1);
+ /* Set bit 0 in __tmp_reg__ if any of the lower bits was set. */
+ if (use_src)
+ avr_asm_len ("breq 0f" CR_TAB
+ "ori %2,1" "\n0:\t" "mov __tmp_reg__,%2",
+ xop, plen, 3);
+ else
+ avr_asm_len ("breq 0f" CR_TAB
+ "set" CR_TAB "bld __tmp_reg__,0\n0:",
+ xop, plen, 3);
+ }
+ lsb_in_tmp_reg = true;
+ }
+ }
+
+ /* Step 1: Clear bytes at the low end and copy payload bits from source
+ ====== to destination. */
+
+ int step = offset < 0 ? 1 : -1;
+ unsigned d0 = offset < 0 ? dest.regno : dest.regno_msb;
+
+ // We cleared at least that number of registers.
+ int clr_n = 0;
+
+ for (; d0 >= dest.regno && d0 <= dest.regno_msb; d0 += step)
+ {
+ // Next regno of destination is needed for MOVW
+ unsigned d1 = d0 + step;
+
+ // Current and next regno of source
+ signed s0 = d0 - offset;
+ signed s1 = s0 + step;
+
+ // Must current resp. next regno be CLRed? This applies to the low
+ // bytes of the destination that have no associated source bytes.
+ bool clr0 = s0 < (signed) src.regno;
+ bool clr1 = s1 < (signed) src.regno && d1 >= dest.regno;
+
+ // First gather what code to emit (if any) and additional step to
+ // apply if a MOVW is in use. xop[2] is destination rtx and xop[3]
+ // is the source rtx for the current loop iteration.
+ const char *code = NULL;
+ int stepw = 0;
+
+ if (clr0)
+ {
+ if (AVR_HAVE_MOVW && clr1 && clrw)
+ {
+ xop[2] = all_regs_rtx[d0 & ~1];
+ xop[3] = clrw;
+ code = "movw %2,%3";
+ stepw = step;
+ }
+ else
+ {
+ xop[2] = all_regs_rtx[d0];
+ code = "clr %2";
+
+ if (++clr_n >= 2
+ && !clrw
+ && d0 % 2 == (step > 0))
+ {
+ clrw = all_regs_rtx[d0 & ~1];
+ }
+ }
+ }
+ else if (offset && s0 <= (signed) src.regno_msb)
+ {
+ int movw = AVR_HAVE_MOVW && offset % 2 == 0
+ && d0 % 2 == (offset > 0)
+ && d1 <= dest.regno_msb && d1 >= dest.regno
+ && s1 <= (signed) src.regno_msb && s1 >= (signed) src.regno;
+
+ xop[2] = all_regs_rtx[d0 & ~movw];
+ xop[3] = all_regs_rtx[s0 & ~movw];
+ code = movw ? "movw %2,%3" : "mov %2,%3";
+ stepw = step * movw;
+ }
+
+ if (code)
+ {
+ if (sign_extend && shift != ASHIFT && !sign_in_carry
+ && (d0 == src.regno_msb || d0 + stepw == src.regno_msb))
+ {
+ /* We are going to override the sign bit. If we sign-extend,
+ store the sign in the Carry flag. This is not needed if
+ the destination will be ASHIFT is the remainder because
+ the ASHIFT will set Carry without extra instruction. */
+
+ avr_asm_len ("lsl %0", &all_regs_rtx[src.regno_msb], plen, 1);
+ sign_in_carry = true;
+ }
+
+ unsigned src_msb = dest.regno_msb - sign_bytes - offset + 1;
+
+ if (!sign_extend && shift == ASHIFTRT && !msb_in_carry
+ && src.ibyte > dest.ibyte
+ && (d0 == src_msb || d0 + stepw == src_msb))
+ {
+ /* We are going to override the MSB. If we shift right,
+ store the MSB in the Carry flag. This is only needed if
+ we don't sign-extend becaue with sign-extension the MSB
+ (the sign) will be produced by the sign extension. */
+
+ avr_asm_len ("lsr %0", &all_regs_rtx[src_msb], plen, 1);
+ msb_in_carry = true;
+ }
+
+ unsigned src_lsb = dest.regno - offset -1;
+
+ if (shift == ASHIFT && src.fbyte > dest.fbyte && !lsb_in_carry
+ && !lsb_in_tmp_reg
+ && (d0 == src_lsb || d0 + stepw == src_lsb))
+ {
+ /* We are going to override the new LSB; store it into carry. */
+
+ avr_asm_len ("lsl %0", &all_regs_rtx[src_lsb], plen, 1);
+ code_ashift = "rol %0";
+ lsb_in_carry = true;
+ }
+
+ avr_asm_len (code, xop, plen, 1);
+ d0 += stepw;
+ }
+ }
+
+ /* Step 2: Shift destination left by 1 bit position. This might be needed
+ ====== for signed input and unsigned output. */
+
+ if (shift == ASHIFT && src.fbyte > dest.fbyte && !lsb_in_carry)
+ {
+ unsigned s0 = dest.regno - offset -1;
+
+ /* n1169 4.1.4 says:
+ "Conversions from a fixed-point to an integer type round toward zero."
+ Hence, converting a fract type to integer only gives a non-zero result
+ for -1. */
+ if (SCALAR_INT_MODE_P (GET_MODE (xop[0]))
+ && SCALAR_FRACT_MODE_P (GET_MODE (xop[1]))
+ && !TARGET_FRACT_CONV_TRUNC)
+ {
+ gcc_assert (s0 == src.regno_msb);
+ /* Check if the input is -1. We do that by checking if negating
+ the input causes an integer overflow. */
+ unsigned sn = src.regno;
+ avr_asm_len ("cp __zero_reg__,%0", &all_regs_rtx[sn++], plen, 1);
+ while (sn <= s0)
+ avr_asm_len ("cpc __zero_reg__,%0", &all_regs_rtx[sn++], plen, 1);
+
+ /* Overflow goes with set carry. Clear carry otherwise. */
+ avr_asm_len ("brvs 0f" CR_TAB "clc\n0:", NULL, plen, 2);
+ }
+ /* Likewise, when converting from accumulator types to integer, we
+ need to round up negative values. */
+ else if (SCALAR_INT_MODE_P (GET_MODE (xop[0]))
+ && SCALAR_ACCUM_MODE_P (GET_MODE (xop[1]))
+ && !TARGET_FRACT_CONV_TRUNC
+ && !frac_rounded)
+ {
+ bool have_carry = false;
+
+ xop[2] = all_regs_rtx[s0];
+ if (!lsb_in_tmp_reg && !MAY_CLOBBER (s0))
+ avr_asm_len ("mov __tmp_reg__,%2", xop, plen, 1);
+ avr_asm_len ("tst %0" CR_TAB "brpl 0f",
+ &all_regs_rtx[src.regno_msb], plen, 2);
+ if (!lsb_in_tmp_reg)
+ {
+ unsigned sn = src.regno;
+ if (sn < s0)
+ {
+ avr_asm_len ("cp __zero_reg__,%0", &all_regs_rtx[sn],
+ plen, 1);
+ have_carry = true;
+ }
+ while (++sn < s0)
+ avr_asm_len ("cpc __zero_reg__,%0", &all_regs_rtx[sn], plen, 1);
+ lsb_in_tmp_reg = !MAY_CLOBBER (s0);
+ }
+ /* Add in C and the rounding value 127. */
+ /* If the destination msb is a sign byte, and in LD_REGS,
+ grab it as a temporary. */
+ if (sign_bytes
+ && TEST_HARD_REG_BIT (reg_class_contents[LD_REGS],
+ dest.regno_msb))
+ {
+ xop[3] = all_regs_rtx[dest.regno_msb];
+ avr_asm_len ("ldi %3,127", xop, plen, 1);
+ avr_asm_len ((have_carry && lsb_in_tmp_reg ? "adc __tmp_reg__,%3"
+ : have_carry ? "adc %2,%3"
+ : lsb_in_tmp_reg ? "add __tmp_reg__,%3"
+ : "add %2,%3"),
+ xop, plen, 1);
+ }
+ else
+ {
+ /* Fall back to use __zero_reg__ as a temporary. */
+ avr_asm_len ("dec __zero_reg__", NULL, plen, 1);
+ if (have_carry)
+ avr_asm_len ("clt" CR_TAB "bld __zero_reg__,7", NULL, plen, 2);
+ else
+ avr_asm_len ("lsr __zero_reg__", NULL, plen, 1);
+ avr_asm_len ((have_carry && lsb_in_tmp_reg
+ ? "adc __tmp_reg__,__zero_reg__"
+ : have_carry ? "adc %2,__zero_reg__"
+ : lsb_in_tmp_reg ? "add __tmp_reg__,__zero_reg__"
+ : "add %2,__zero_reg__"),
+ xop, plen, 1);
+ avr_asm_len ("eor __zero_reg__,__zero_reg__", NULL, plen, 1);
+ }
+ for (d0 = dest.regno + zero_bytes;
+ d0 <= dest.regno_msb - sign_bytes; d0++)
+ avr_asm_len ("adc %0,__zero_reg__", &all_regs_rtx[d0], plen, 1);
+ avr_asm_len (lsb_in_tmp_reg
+ ? "\n0:\t" "lsl __tmp_reg__" : "\n0:\t" "lsl %2",
+ xop, plen, 1);
+ }
+ else if (MAY_CLOBBER (s0))
+ avr_asm_len ("lsl %0", &all_regs_rtx[s0], plen, 1);
+ else
+ avr_asm_len ("mov __tmp_reg__,%0" CR_TAB
+ "lsl __tmp_reg__", &all_regs_rtx[s0], plen, 2);
+
+ code_ashift = "rol %0";
+ lsb_in_carry = true;
+ }
+
+ if (shift == ASHIFT)
+ {
+ for (d0 = dest.regno + zero_bytes;
+ d0 <= dest.regno_msb - sign_bytes; d0++)
+ {
+ avr_asm_len (code_ashift, &all_regs_rtx[d0], plen, 1);
+ code_ashift = "rol %0";
+ }
+
+ lsb_in_carry = false;
+ sign_in_carry = true;
+ }
+
+ /* Step 4a: Store MSB in carry if we don't already have it or will produce
+ ======= it in sign-extension below. */
+
+ if (!sign_extend && shift == ASHIFTRT && !msb_in_carry
+ && src.ibyte > dest.ibyte)
+ {
+ unsigned s0 = dest.regno_msb - sign_bytes - offset + 1;
+
+ if (MAY_CLOBBER (s0))
+ avr_asm_len ("lsr %0", &all_regs_rtx[s0], plen, 1);
+ else
+ avr_asm_len ("mov __tmp_reg__,%0" CR_TAB
+ "lsr __tmp_reg__", &all_regs_rtx[s0], plen, 2);
+
+ msb_in_carry = true;
+ }
+
+ /* Step 3: Sign-extend or zero-extend the destination as needed.
+ ====== */
+
+ if (sign_extend && !sign_in_carry)
+ {
+ unsigned s0 = src.regno_msb;
+
+ if (MAY_CLOBBER (s0))
+ avr_asm_len ("lsl %0", &all_regs_rtx[s0], plen, 1);
+ else
+ avr_asm_len ("mov __tmp_reg__,%0" CR_TAB
+ "lsl __tmp_reg__", &all_regs_rtx[s0], plen, 2);
+
+ sign_in_carry = true;
+ }
+
+ gcc_assert (sign_in_carry + msb_in_carry + lsb_in_carry <= 1);
+
+ unsigned copies = 0;
+ rtx movw = sign_extend ? NULL_RTX : clrw;
+
+ for (d0 = dest.regno_msb - sign_bytes + 1; d0 <= dest.regno_msb; d0++)
+ {
+ if (AVR_HAVE_MOVW && movw
+ && d0 % 2 == 0 && d0 + 1 <= dest.regno_msb)
+ {
+ xop[2] = all_regs_rtx[d0];
+ xop[3] = movw;
+ avr_asm_len ("movw %2,%3", xop, plen, 1);
+ d0++;
+ }
+ else
+ {
+ avr_asm_len (sign_extend ? "sbc %0,%0" : "clr %0",
+ &all_regs_rtx[d0], plen, 1);
+
+ if (++copies >= 2 && !movw && d0 % 2 == 1)
+ movw = all_regs_rtx[d0-1];
+ }
+ } /* for */
+
+
+ /* Step 4: Right shift the destination. This might be needed for
+ ====== conversions from unsigned to signed. */
+
+ if (shift == ASHIFTRT)
+ {
+ const char *code_ashiftrt = "lsr %0";
+
+ if (sign_extend || msb_in_carry)
+ code_ashiftrt = "ror %0";
+
+ if (src.sbit && src.ibyte == dest.ibyte)
+ code_ashiftrt = "asr %0";
+
+ for (d0 = dest.regno_msb - sign_bytes;
+ d0 >= dest.regno + zero_bytes - 1 && d0 >= dest.regno; d0--)
+ {
+ avr_asm_len (code_ashiftrt, &all_regs_rtx[d0], plen, 1);
+ code_ashiftrt = "ror %0";
+ }
+ }
+
+#undef MAY_CLOBBER
+
+ return "";
+}
+
+
+/* Output fixed-point rounding. XOP[0] = XOP[1] is the operand to round.
+ XOP[2] is the rounding point, a CONST_INT. The function prints the
+ instruction sequence if PLEN = NULL and computes the length in words
+ of the sequence if PLEN != NULL. Most of this function deals with
+ preparing operands for calls to `avr_out_plus' and `avr_out_bitop'. */
+
+const char*
+avr_out_round (rtx insn ATTRIBUTE_UNUSED, rtx *xop, int *plen)
+{
+ enum machine_mode mode = GET_MODE (xop[0]);
+ enum machine_mode imode = int_mode_for_mode (mode);
+ // The smallest fractional bit not cleared by the rounding is 2^(-RP).
+ int fbit = (int) GET_MODE_FBIT (mode);
+ double_int i_add = double_int_zero.set_bit (fbit-1 - INTVAL (xop[2]));
+ // Lengths of PLUS and AND parts.
+ int len_add = 0, *plen_add = plen ? &len_add : NULL;
+ int len_and = 0, *plen_and = plen ? &len_and : NULL;
+
+ // Add-Saturate 1/2 * 2^(-RP). Don't print the label "0:" when printing
+ // the saturated addition so that we can emit the "rjmp 1f" before the
+ // "0:" below.
+
+ rtx xadd = const_fixed_from_double_int (i_add, mode);
+ rtx xpattern, xsrc, op[4];
+
+ xsrc = SIGNED_FIXED_POINT_MODE_P (mode)
+ ? gen_rtx_SS_PLUS (mode, xop[1], xadd)
+ : gen_rtx_US_PLUS (mode, xop[1], xadd);
+ xpattern = gen_rtx_SET (VOIDmode, xop[0], xsrc);
+
+ op[0] = xop[0];
+ op[1] = xop[1];
+ op[2] = xadd;
+ avr_out_plus (xpattern, op, plen_add, NULL, false /* Don't print "0:" */);
+
+ avr_asm_len ("rjmp 1f" CR_TAB
+ "0:", NULL, plen_add, 1);
+
+ // Keep all bits from RP and higher: ... 2^(-RP)
+ // Clear all bits from RP+1 and lower: 2^(-RP-1) ...
+ // Rounding point ^^^^^^^
+ // Added above ^^^^^^^^^
+ rtx xreg = simplify_gen_subreg (imode, xop[0], mode, 0);
+ rtx xmask = immed_double_int_const (-i_add - i_add, imode);
+
+ xpattern = gen_rtx_SET (VOIDmode, xreg, gen_rtx_AND (imode, xreg, xmask));
+
+ op[0] = xreg;
+ op[1] = xreg;
+ op[2] = xmask;
+ op[3] = gen_rtx_SCRATCH (QImode);
+ avr_out_bitop (xpattern, op, plen_and);
+ avr_asm_len ("1:", NULL, plen, 0);
+
+ if (plen)
+ *plen = len_add + len_and;
+
+ return "";
+}
+
+
+/* Create RTL split patterns for byte sized rotate expressions. This
+ produces a series of move instructions and considers overlap situations.
+ Overlapping non-HImode operands need a scratch register. */
+
+bool
+avr_rotate_bytes (rtx operands[])
+{
+ int i, j;
+ enum machine_mode mode = GET_MODE (operands[0]);
+ bool overlapped = reg_overlap_mentioned_p (operands[0], operands[1]);
+ bool same_reg = rtx_equal_p (operands[0], operands[1]);
+ int num = INTVAL (operands[2]);
+ rtx scratch = operands[3];
+ /* Work out if byte or word move is needed. Odd byte rotates need QImode.
+ Word move if no scratch is needed, otherwise use size of scratch. */
+ enum machine_mode move_mode = QImode;
+ int move_size, offset, size;
+
+ if (num & 0xf)
+ move_mode = QImode;
+ else if ((mode == SImode && !same_reg) || !overlapped)
+ move_mode = HImode;
+ else
+ move_mode = GET_MODE (scratch);
+
+ /* Force DI rotate to use QI moves since other DI moves are currently split
+ into QI moves so forward propagation works better. */
+ if (mode == DImode)
+ move_mode = QImode;
+ /* Make scratch smaller if needed. */
+ if (SCRATCH != GET_CODE (scratch)
+ && HImode == GET_MODE (scratch)
+ && QImode == move_mode)
+ scratch = simplify_gen_subreg (move_mode, scratch, HImode, 0);
+
+ move_size = GET_MODE_SIZE (move_mode);
+ /* Number of bytes/words to rotate. */
+ offset = (num >> 3) / move_size;
+ /* Number of moves needed. */
+ size = GET_MODE_SIZE (mode) / move_size;
+ /* Himode byte swap is special case to avoid a scratch register. */
+ if (mode == HImode && same_reg)
+ {
+ /* HImode byte swap, using xor. This is as quick as using scratch. */
+ rtx src, dst;
+ src = simplify_gen_subreg (move_mode, operands[1], mode, 0);
+ dst = simplify_gen_subreg (move_mode, operands[0], mode, 1);
+ if (!rtx_equal_p (dst, src))
+ {
+ emit_move_insn (dst, gen_rtx_XOR (QImode, dst, src));
+ emit_move_insn (src, gen_rtx_XOR (QImode, src, dst));
+ emit_move_insn (dst, gen_rtx_XOR (QImode, dst, src));
+ }
+ }
+ else
+ {
+#define MAX_SIZE 8 /* GET_MODE_SIZE (DImode) / GET_MODE_SIZE (QImode) */
+ /* Create linked list of moves to determine move order. */
+ struct {
+ rtx src, dst;
+ int links;
+ } move[MAX_SIZE + 8];
+ int blocked, moves;
+
+ gcc_assert (size <= MAX_SIZE);
+ /* Generate list of subreg moves. */
+ for (i = 0; i < size; i++)
+ {
+ int from = i;
+ int to = (from + offset) % size;
+ move[i].src = simplify_gen_subreg (move_mode, operands[1],
+ mode, from * move_size);
+ move[i].dst = simplify_gen_subreg (move_mode, operands[0],
+ mode, to * move_size);
+ move[i].links = -1;
+ }
+ /* Mark dependence where a dst of one move is the src of another move.
+ The first move is a conflict as it must wait until second is
+ performed. We ignore moves to self - we catch this later. */
+ if (overlapped)
+ for (i = 0; i < size; i++)
+ if (reg_overlap_mentioned_p (move[i].dst, operands[1]))
+ for (j = 0; j < size; j++)
+ if (j != i && rtx_equal_p (move[j].src, move[i].dst))
+ {
+ /* The dst of move i is the src of move j. */
+ move[i].links = j;
+ break;
+ }
+
+ blocked = -1;
+ moves = 0;
+ /* Go through move list and perform non-conflicting moves. As each
+ non-overlapping move is made, it may remove other conflicts
+ so the process is repeated until no conflicts remain. */
+ do
+ {
+ blocked = -1;
+ moves = 0;
+ /* Emit move where dst is not also a src or we have used that
+ src already. */
+ for (i = 0; i < size; i++)
+ if (move[i].src != NULL_RTX)
+ {
+ if (move[i].links == -1
+ || move[move[i].links].src == NULL_RTX)
+ {
+ moves++;
+ /* Ignore NOP moves to self. */
+ if (!rtx_equal_p (move[i].dst, move[i].src))
+ emit_move_insn (move[i].dst, move[i].src);
+
+ /* Remove conflict from list. */
+ move[i].src = NULL_RTX;
+ }
+ else
+ blocked = i;
+ }
+
+ /* Check for deadlock. This is when no moves occurred and we have
+ at least one blocked move. */
+ if (moves == 0 && blocked != -1)
+ {
+ /* Need to use scratch register to break deadlock.
+ Add move to put dst of blocked move into scratch.
+ When this move occurs, it will break chain deadlock.
+ The scratch register is substituted for real move. */
+
+ gcc_assert (SCRATCH != GET_CODE (scratch));
+
+ move[size].src = move[blocked].dst;
+ move[size].dst = scratch;
+ /* Scratch move is never blocked. */
+ move[size].links = -1;
+ /* Make sure we have valid link. */
+ gcc_assert (move[blocked].links != -1);
+ /* Replace src of blocking move with scratch reg. */
+ move[move[blocked].links].src = scratch;
+ /* Make dependent on scratch move occurring. */
+ move[blocked].links = size;
+ size=size+1;
+ }
+ }
+ while (blocked != -1);
+ }
+ return true;
+}
+
+
+/* Worker function for `ADJUST_INSN_LENGTH'. */
+/* Modifies the length assigned to instruction INSN
+ LEN is the initially computed length of the insn. */
+
+int
+avr_adjust_insn_length (rtx insn, int len)
+{
+ rtx *op = recog_data.operand;
+ enum attr_adjust_len adjust_len;
+
+ /* Some complex insns don't need length adjustment and therefore
+ the length need not/must not be adjusted for these insns.
+ It is easier to state this in an insn attribute "adjust_len" than
+ to clutter up code here... */
+
+ if (-1 == recog_memoized (insn))
+ {
+ return len;
+ }
+
+ /* Read from insn attribute "adjust_len" if/how length is to be adjusted. */
+
+ adjust_len = get_attr_adjust_len (insn);
+
+ if (adjust_len == ADJUST_LEN_NO)
+ {
+ /* Nothing to adjust: The length from attribute "length" is fine.
+ This is the default. */
+
+ return len;
+ }
+
+ /* Extract insn's operands. */
+
+ extract_constrain_insn_cached (insn);
+
+ /* Dispatch to right function. */
+
+ switch (adjust_len)
+ {
+ case ADJUST_LEN_RELOAD_IN16: output_reload_inhi (op, op[2], &len); break;
+ case ADJUST_LEN_RELOAD_IN24: avr_out_reload_inpsi (op, op[2], &len); break;
+ case ADJUST_LEN_RELOAD_IN32: output_reload_insisf (op, op[2], &len); break;
+
+ case ADJUST_LEN_OUT_BITOP: avr_out_bitop (insn, op, &len); break;
+
+ case ADJUST_LEN_PLUS: avr_out_plus (insn, op, &len); break;
+ case ADJUST_LEN_ADDTO_SP: avr_out_addto_sp (op, &len); break;
+
+ case ADJUST_LEN_MOV8: output_movqi (insn, op, &len); break;
+ case ADJUST_LEN_MOV16: output_movhi (insn, op, &len); break;
+ case ADJUST_LEN_MOV24: avr_out_movpsi (insn, op, &len); break;
+ case ADJUST_LEN_MOV32: output_movsisf (insn, op, &len); break;
+ case ADJUST_LEN_MOVMEM: avr_out_movmem (insn, op, &len); break;
+ case ADJUST_LEN_XLOAD: avr_out_xload (insn, op, &len); break;
+ case ADJUST_LEN_LPM: avr_out_lpm (insn, op, &len); break;
+
+ case ADJUST_LEN_SFRACT: avr_out_fract (insn, op, true, &len); break;
+ case ADJUST_LEN_UFRACT: avr_out_fract (insn, op, false, &len); break;
+ case ADJUST_LEN_ROUND: avr_out_round (insn, op, &len); break;
+
+ case ADJUST_LEN_TSTHI: avr_out_tsthi (insn, op, &len); break;
+ case ADJUST_LEN_TSTPSI: avr_out_tstpsi (insn, op, &len); break;
+ case ADJUST_LEN_TSTSI: avr_out_tstsi (insn, op, &len); break;
+ case ADJUST_LEN_COMPARE: avr_out_compare (insn, op, &len); break;
+ case ADJUST_LEN_COMPARE64: avr_out_compare64 (insn, op, &len); break;
+
+ case ADJUST_LEN_LSHRQI: lshrqi3_out (insn, op, &len); break;
+ case ADJUST_LEN_LSHRHI: lshrhi3_out (insn, op, &len); break;
+ case ADJUST_LEN_LSHRSI: lshrsi3_out (insn, op, &len); break;
+
+ case ADJUST_LEN_ASHRQI: ashrqi3_out (insn, op, &len); break;
+ case ADJUST_LEN_ASHRHI: ashrhi3_out (insn, op, &len); break;
+ case ADJUST_LEN_ASHRSI: ashrsi3_out (insn, op, &len); break;
+
+ case ADJUST_LEN_ASHLQI: ashlqi3_out (insn, op, &len); break;
+ case ADJUST_LEN_ASHLHI: ashlhi3_out (insn, op, &len); break;
+ case ADJUST_LEN_ASHLSI: ashlsi3_out (insn, op, &len); break;
+
+ case ADJUST_LEN_ASHLPSI: avr_out_ashlpsi3 (insn, op, &len); break;
+ case ADJUST_LEN_ASHRPSI: avr_out_ashrpsi3 (insn, op, &len); break;
+ case ADJUST_LEN_LSHRPSI: avr_out_lshrpsi3 (insn, op, &len); break;
+
+ case ADJUST_LEN_CALL: len = AVR_HAVE_JMP_CALL ? 2 : 1; break;
+
+ case ADJUST_LEN_INSERT_BITS: avr_out_insert_bits (op, &len); break;
+
+ default:
+ gcc_unreachable();
+ }
+
+ return len;
+}
+
+/* Return nonzero if register REG dead after INSN. */
+
+int
+reg_unused_after (rtx insn, rtx reg)
+{
+ return (dead_or_set_p (insn, reg)
+ || (REG_P(reg) && _reg_unused_after (insn, reg)));
+}
+
+/* Return nonzero if REG is not used after INSN.
+ We assume REG is a reload reg, and therefore does
+ not live past labels. It may live past calls or jumps though. */
+
+int
+_reg_unused_after (rtx insn, rtx reg)
+{
+ enum rtx_code code;
+ rtx set;
+
+ /* If the reg is set by this instruction, then it is safe for our
+ case. Disregard the case where this is a store to memory, since
+ we are checking a register used in the store address. */
+ set = single_set (insn);
+ if (set && GET_CODE (SET_DEST (set)) != MEM
+ && reg_overlap_mentioned_p (reg, SET_DEST (set)))
+ return 1;
+
+ while ((insn = NEXT_INSN (insn)))
+ {
+ rtx set;
+ code = GET_CODE (insn);
+
+#if 0
+ /* If this is a label that existed before reload, then the register
+ if dead here. However, if this is a label added by reorg, then
+ the register may still be live here. We can't tell the difference,
+ so we just ignore labels completely. */
+ if (code == CODE_LABEL)
+ return 1;
+ /* else */
+#endif
+
+ if (!INSN_P (insn))
+ continue;
+
+ if (code == JUMP_INSN)
+ return 0;
+
+ /* If this is a sequence, we must handle them all at once.
+ We could have for instance a call that sets the target register,
+ and an insn in a delay slot that uses the register. In this case,
+ we must return 0. */
+ else if (code == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
+ {
+ int i;
+ int retval = 0;
+
+ for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
+ {
+ rtx this_insn = XVECEXP (PATTERN (insn), 0, i);
+ rtx set = single_set (this_insn);
+
+ if (CALL_P (this_insn))
+ code = CALL_INSN;
+ else if (JUMP_P (this_insn))
+ {
+ if (INSN_ANNULLED_BRANCH_P (this_insn))
+ return 0;
+ code = JUMP_INSN;
+ }
+
+ if (set && reg_overlap_mentioned_p (reg, SET_SRC (set)))
+ return 0;
+ if (set && reg_overlap_mentioned_p (reg, SET_DEST (set)))
+ {
+ if (GET_CODE (SET_DEST (set)) != MEM)
+ retval = 1;
+ else
+ return 0;
+ }
+ if (set == 0
+ && reg_overlap_mentioned_p (reg, PATTERN (this_insn)))
+ return 0;
+ }
+ if (retval == 1)
+ return 1;
+ else if (code == JUMP_INSN)
+ return 0;
+ }
+
+ if (code == CALL_INSN)
+ {
+ rtx tem;
+ for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
+ if (GET_CODE (XEXP (tem, 0)) == USE
+ && REG_P (XEXP (XEXP (tem, 0), 0))
+ && reg_overlap_mentioned_p (reg, XEXP (XEXP (tem, 0), 0)))
+ return 0;
+ if (call_used_regs[REGNO (reg)])
+ return 1;
+ }
+
+ set = single_set (insn);
+
+ if (set && reg_overlap_mentioned_p (reg, SET_SRC (set)))
+ return 0;
+ if (set && reg_overlap_mentioned_p (reg, SET_DEST (set)))
+ return GET_CODE (SET_DEST (set)) != MEM;
+ if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
+ return 0;
+ }
+ return 1;
+}
+
+
+/* Implement `TARGET_ASM_INTEGER'. */
+/* Target hook for assembling integer objects. The AVR version needs
+ special handling for references to certain labels. */
+
+static bool
+avr_assemble_integer (rtx x, unsigned int size, int aligned_p)
+{
+ if (size == POINTER_SIZE / BITS_PER_UNIT && aligned_p
+ && text_segment_operand (x, VOIDmode))
+ {
+ fputs ("\t.word\tgs(", asm_out_file);
+ output_addr_const (asm_out_file, x);
+ fputs (")\n", asm_out_file);
+
+ return true;
+ }
+ else if (GET_MODE (x) == PSImode)
+ {
+ /* This needs binutils 2.23+, see PR binutils/13503 */
+
+ fputs ("\t.byte\tlo8(", asm_out_file);
+ output_addr_const (asm_out_file, x);
+ fputs (")" ASM_COMMENT_START "need binutils PR13503\n", asm_out_file);
+
+ fputs ("\t.byte\thi8(", asm_out_file);
+ output_addr_const (asm_out_file, x);
+ fputs (")" ASM_COMMENT_START "need binutils PR13503\n", asm_out_file);
+
+ fputs ("\t.byte\thh8(", asm_out_file);
+ output_addr_const (asm_out_file, x);
+ fputs (")" ASM_COMMENT_START "need binutils PR13503\n", asm_out_file);
+
+ return true;
+ }
+ else if (CONST_FIXED_P (x))
+ {
+ unsigned n;
+
+ /* varasm fails to handle big fixed modes that don't fit in hwi. */
+
+ for (n = 0; n < size; n++)
+ {
+ rtx xn = simplify_gen_subreg (QImode, x, GET_MODE (x), n);
+ default_assemble_integer (xn, 1, aligned_p);
+ }
+
+ return true;
+ }
+
+ return default_assemble_integer (x, size, aligned_p);
+}
+
+
+/* Implement `TARGET_CLASS_LIKELY_SPILLED_P'. */
+/* Return value is nonzero if pseudos that have been
+ assigned to registers of class CLASS would likely be spilled
+ because registers of CLASS are needed for spill registers. */
+
+static bool
+avr_class_likely_spilled_p (reg_class_t c)
+{
+ return (c != ALL_REGS && c != ADDW_REGS);
+}
+
+
+/* Valid attributes:
+ progmem - Put data to program memory.
+ signal - Make a function to be hardware interrupt.
+ After function prologue interrupts remain disabled.
+ interrupt - Make a function to be hardware interrupt. Before function
+ prologue interrupts are enabled by means of SEI.
+ naked - Don't generate function prologue/epilogue and RET
+ instruction. */
+
+/* Handle a "progmem" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+avr_handle_progmem_attribute (tree *node, tree name,
+ tree args ATTRIBUTE_UNUSED,
+ int flags ATTRIBUTE_UNUSED,
+ bool *no_add_attrs)
+{
+ if (DECL_P (*node))
+ {
+ if (TREE_CODE (*node) == TYPE_DECL)
+ {
+ /* This is really a decl attribute, not a type attribute,
+ but try to handle it for GCC 3.0 backwards compatibility. */
+
+ tree type = TREE_TYPE (*node);
+ tree attr = tree_cons (name, args, TYPE_ATTRIBUTES (type));
+ tree newtype = build_type_attribute_variant (type, attr);
+
+ TYPE_MAIN_VARIANT (newtype) = TYPE_MAIN_VARIANT (type);
+ TREE_TYPE (*node) = newtype;
+ *no_add_attrs = true;
+ }
+ else if (TREE_STATIC (*node) || DECL_EXTERNAL (*node))
+ {
+ *no_add_attrs = false;
+ }
+ else
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored",
+ name);
+ *no_add_attrs = true;
+ }
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+avr_handle_fndecl_attribute (tree *node, tree name,
+ tree args ATTRIBUTE_UNUSED,
+ int flags ATTRIBUTE_UNUSED,
+ bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning (OPT_Wattributes, "%qE attribute only applies to functions",
+ name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+static tree
+avr_handle_fntype_attribute (tree *node, tree name,
+ tree args ATTRIBUTE_UNUSED,
+ int flags ATTRIBUTE_UNUSED,
+ bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_TYPE)
+ {
+ warning (OPT_Wattributes, "%qE attribute only applies to functions",
+ name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+
+/* AVR attributes. */
+static const struct attribute_spec
+avr_attribute_table[] =
+{
+ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
+ affects_type_identity } */
+ { "progmem", 0, 0, false, false, false, avr_handle_progmem_attribute,
+ false },
+ { "signal", 0, 0, true, false, false, avr_handle_fndecl_attribute,
+ false },
+ { "interrupt", 0, 0, true, false, false, avr_handle_fndecl_attribute,
+ false },
+ { "naked", 0, 0, false, true, true, avr_handle_fntype_attribute,
+ false },
+ { "OS_task", 0, 0, false, true, true, avr_handle_fntype_attribute,
+ false },
+ { "OS_main", 0, 0, false, true, true, avr_handle_fntype_attribute,
+ false },
+ { NULL, 0, 0, false, false, false, NULL, false }
+};
+
+
+/* Look if DECL shall be placed in program memory space by
+ means of attribute `progmem' or some address-space qualifier.
+ Return non-zero if DECL is data that must end up in Flash and
+ zero if the data lives in RAM (.bss, .data, .rodata, ...).
+
+ Return 2 if DECL is located in 24-bit flash address-space
+ Return 1 if DECL is located in 16-bit flash address-space
+ Return -1 if attribute `progmem' occurs in DECL or ATTRIBUTES
+ Return 0 otherwise */
+
+int
+avr_progmem_p (tree decl, tree attributes)
+{
+ tree a;
+
+ if (TREE_CODE (decl) != VAR_DECL)
+ return 0;
+
+ if (avr_decl_memx_p (decl))
+ return 2;
+
+ if (avr_decl_flash_p (decl))
+ return 1;
+
+ if (NULL_TREE
+ != lookup_attribute ("progmem", attributes))
+ return -1;
+
+ a = decl;
+
+ do
+ a = TREE_TYPE(a);
+ while (TREE_CODE (a) == ARRAY_TYPE);
+
+ if (a == error_mark_node)
+ return 0;
+
+ if (NULL_TREE != lookup_attribute ("progmem", TYPE_ATTRIBUTES (a)))
+ return -1;
+
+ return 0;
+}
+
+
+/* Scan type TYP for pointer references to address space ASn.
+ Return ADDR_SPACE_GENERIC (i.e. 0) if all pointers targeting
+ the AS are also declared to be CONST.
+ Otherwise, return the respective address space, i.e. a value != 0. */
+
+static addr_space_t
+avr_nonconst_pointer_addrspace (tree typ)
+{
+ while (ARRAY_TYPE == TREE_CODE (typ))
+ typ = TREE_TYPE (typ);
+
+ if (POINTER_TYPE_P (typ))
+ {
+ addr_space_t as;
+ tree target = TREE_TYPE (typ);
+
+ /* Pointer to function: Test the function's return type. */
+
+ if (FUNCTION_TYPE == TREE_CODE (target))
+ return avr_nonconst_pointer_addrspace (TREE_TYPE (target));
+
+ /* "Ordinary" pointers... */
+
+ while (TREE_CODE (target) == ARRAY_TYPE)
+ target = TREE_TYPE (target);
+
+ /* Pointers to non-generic address space must be const.
+ Refuse address spaces outside the device's flash. */
+
+ as = TYPE_ADDR_SPACE (target);
+
+ if (!ADDR_SPACE_GENERIC_P (as)
+ && (!TYPE_READONLY (target)
+ || avr_addrspace[as].segment >= avr_current_device->n_flash))
+ {
+ return as;
+ }
+
+ /* Scan pointer's target type. */
+
+ return avr_nonconst_pointer_addrspace (target);
+ }
+
+ return ADDR_SPACE_GENERIC;
+}
+
+
+/* Sanity check NODE so that all pointers targeting non-generic address spaces
+ go along with CONST qualifier. Writing to these address spaces should
+ be detected and complained about as early as possible. */
+
+static bool
+avr_pgm_check_var_decl (tree node)
+{
+ const char *reason = NULL;
+
+ addr_space_t as = ADDR_SPACE_GENERIC;
+
+ gcc_assert (as == 0);
+
+ if (avr_log.progmem)
+ avr_edump ("%?: %t\n", node);
+
+ switch (TREE_CODE (node))
+ {
+ default:
+ break;
+
+ case VAR_DECL:
+ if (as = avr_nonconst_pointer_addrspace (TREE_TYPE (node)), as)
+ reason = "variable";
+ break;
+
+ case PARM_DECL:
+ if (as = avr_nonconst_pointer_addrspace (TREE_TYPE (node)), as)
+ reason = "function parameter";
+ break;
+
+ case FIELD_DECL:
+ if (as = avr_nonconst_pointer_addrspace (TREE_TYPE (node)), as)
+ reason = "structure field";
+ break;
+
+ case FUNCTION_DECL:
+ if (as = avr_nonconst_pointer_addrspace (TREE_TYPE (TREE_TYPE (node))),
+ as)
+ reason = "return type of function";
+ break;
+
+ case POINTER_TYPE:
+ if (as = avr_nonconst_pointer_addrspace (node), as)
+ reason = "pointer";
+ break;
+ }
+
+ if (reason)
+ {
+ if (avr_addrspace[as].segment >= avr_current_device->n_flash)
+ {
+ if (TYPE_P (node))
+ error ("%qT uses address space %qs beyond flash of %qs",
+ node, avr_addrspace[as].name, avr_current_device->name);
+ else
+ error ("%s %q+D uses address space %qs beyond flash of %qs",
+ reason, node, avr_addrspace[as].name,
+ avr_current_device->name);
+ }
+ else
+ {
+ if (TYPE_P (node))
+ error ("pointer targeting address space %qs must be const in %qT",
+ avr_addrspace[as].name, node);
+ else
+ error ("pointer targeting address space %qs must be const"
+ " in %s %q+D",
+ avr_addrspace[as].name, reason, node);
+ }
+ }
+
+ return reason == NULL;
+}
+
+
+/* Add the section attribute if the variable is in progmem. */
+
+static void
+avr_insert_attributes (tree node, tree *attributes)
+{
+ avr_pgm_check_var_decl (node);
+
+ if (TREE_CODE (node) == VAR_DECL
+ && (TREE_STATIC (node) || DECL_EXTERNAL (node))
+ && avr_progmem_p (node, *attributes))
+ {
+ addr_space_t as;
+ tree node0 = node;
+
+ /* For C++, we have to peel arrays in order to get correct
+ determination of readonlyness. */
+
+ do
+ node0 = TREE_TYPE (node0);
+ while (TREE_CODE (node0) == ARRAY_TYPE);
+
+ if (error_mark_node == node0)
+ return;
+
+ as = TYPE_ADDR_SPACE (TREE_TYPE (node));
+
+ if (avr_addrspace[as].segment >= avr_current_device->n_flash)
+ {
+ error ("variable %q+D located in address space %qs"
+ " beyond flash of %qs",
+ node, avr_addrspace[as].name, avr_current_device->name);
+ }
+
+ if (!TYPE_READONLY (node0)
+ && !TREE_READONLY (node))
+ {
+ const char *reason = "__attribute__((progmem))";
+
+ if (!ADDR_SPACE_GENERIC_P (as))
+ reason = avr_addrspace[as].name;
+
+ if (avr_log.progmem)
+ avr_edump ("\n%?: %t\n%t\n", node, node0);
+
+ error ("variable %q+D must be const in order to be put into"
+ " read-only section by means of %qs", node, reason);
+ }
+ }
+}
+
+
+/* Implement `ASM_OUTPUT_ALIGNED_DECL_LOCAL'. */
+/* Implement `ASM_OUTPUT_ALIGNED_DECL_COMMON'. */
+/* Track need of __do_clear_bss. */
+
+void
+avr_asm_output_aligned_decl_common (FILE * stream,
+ const_tree decl ATTRIBUTE_UNUSED,
+ const char *name,
+ unsigned HOST_WIDE_INT size,
+ unsigned int align, bool local_p)
+{
+ /* __gnu_lto_v1 etc. are just markers for the linker injected by toplev.c.
+ There is no need to trigger __do_clear_bss code for them. */
+
+ if (!STR_PREFIX_P (name, "__gnu_lto"))
+ avr_need_clear_bss_p = true;
+
+ if (local_p)
+ ASM_OUTPUT_ALIGNED_LOCAL (stream, name, size, align);
+ else
+ ASM_OUTPUT_ALIGNED_COMMON (stream, name, size, align);
+}
+
+
+/* Unnamed section callback for data_section
+ to track need of __do_copy_data. */
+
+static void
+avr_output_data_section_asm_op (const void *data)
+{
+ avr_need_copy_data_p = true;
+
+ /* Dispatch to default. */
+ output_section_asm_op (data);
+}
+
+
+/* Unnamed section callback for bss_section
+ to track need of __do_clear_bss. */
+
+static void
+avr_output_bss_section_asm_op (const void *data)
+{
+ avr_need_clear_bss_p = true;
+
+ /* Dispatch to default. */
+ output_section_asm_op (data);
+}
+
+
+/* Unnamed section callback for progmem*.data sections. */
+
+static void
+avr_output_progmem_section_asm_op (const void *data)
+{
+ fprintf (asm_out_file, "\t.section\t%s,\"a\",@progbits\n",
+ (const char*) data);
+}
+
+
+/* Implement `TARGET_ASM_INIT_SECTIONS'. */
+
+static void
+avr_asm_init_sections (void)
+{
+ /* Set up a section for jump tables. Alignment is handled by
+ ASM_OUTPUT_BEFORE_CASE_LABEL. */
+
+ if (AVR_HAVE_JMP_CALL)
+ {
+ progmem_swtable_section
+ = get_unnamed_section (0, output_section_asm_op,
+ "\t.section\t.progmem.gcc_sw_table"
+ ",\"a\",@progbits");
+ }
+ else
+ {
+ progmem_swtable_section
+ = get_unnamed_section (SECTION_CODE, output_section_asm_op,
+ "\t.section\t.progmem.gcc_sw_table"
+ ",\"ax\",@progbits");
+ }
+
+ /* Override section callbacks to keep track of `avr_need_clear_bss_p'
+ resp. `avr_need_copy_data_p'. */
+
+ readonly_data_section->unnamed.callback = avr_output_data_section_asm_op;
+ data_section->unnamed.callback = avr_output_data_section_asm_op;
+ bss_section->unnamed.callback = avr_output_bss_section_asm_op;
+}
+
+
+/* Implement `TARGET_ASM_FUNCTION_RODATA_SECTION'. */
+
+static section*
+avr_asm_function_rodata_section (tree decl)
+{
+ /* If a function is unused and optimized out by -ffunction-sections
+ and --gc-sections, ensure that the same will happen for its jump
+ tables by putting them into individual sections. */
+
+ unsigned int flags;
+ section * frodata;
+
+ /* Get the frodata section from the default function in varasm.c
+ but treat function-associated data-like jump tables as code
+ rather than as user defined data. AVR has no constant pools. */
+ {
+ int fdata = flag_data_sections;
+
+ flag_data_sections = flag_function_sections;
+ frodata = default_function_rodata_section (decl);
+ flag_data_sections = fdata;
+ flags = frodata->common.flags;
+ }
+
+ if (frodata != readonly_data_section
+ && flags & SECTION_NAMED)
+ {
+ /* Adjust section flags and replace section name prefix. */
+
+ unsigned int i;
+
+ static const char* const prefix[] =
+ {
+ ".rodata", ".progmem.gcc_sw_table",
+ ".gnu.linkonce.r.", ".gnu.linkonce.t."
+ };
+
+ for (i = 0; i < sizeof (prefix) / sizeof (*prefix); i += 2)
+ {
+ const char * old_prefix = prefix[i];
+ const char * new_prefix = prefix[i+1];
+ const char * name = frodata->named.name;
+
+ if (STR_PREFIX_P (name, old_prefix))
+ {
+ const char *rname = ACONCAT ((new_prefix,
+ name + strlen (old_prefix), NULL));
+ flags &= ~SECTION_CODE;
+ flags |= AVR_HAVE_JMP_CALL ? 0 : SECTION_CODE;
+
+ return get_section (rname, flags, frodata->named.decl);
+ }
+ }
+ }
+
+ return progmem_swtable_section;
+}
+
+
+/* Implement `TARGET_ASM_NAMED_SECTION'. */
+/* Track need of __do_clear_bss, __do_copy_data for named sections. */
+
+static void
+avr_asm_named_section (const char *name, unsigned int flags, tree decl)
+{
+ if (flags & AVR_SECTION_PROGMEM)
+ {
+ addr_space_t as = (flags & AVR_SECTION_PROGMEM) / SECTION_MACH_DEP;
+ const char *old_prefix = ".rodata";
+ const char *new_prefix = avr_addrspace[as].section_name;
+
+ if (STR_PREFIX_P (name, old_prefix))
+ {
+ const char *sname = ACONCAT ((new_prefix,
+ name + strlen (old_prefix), NULL));
+ default_elf_asm_named_section (sname, flags, decl);
+ return;
+ }
+
+ default_elf_asm_named_section (new_prefix, flags, decl);
+ return;
+ }
+
+ if (!avr_need_copy_data_p)
+ avr_need_copy_data_p = (STR_PREFIX_P (name, ".data")
+ || STR_PREFIX_P (name, ".rodata")
+ || STR_PREFIX_P (name, ".gnu.linkonce.d"));
+
+ if (!avr_need_clear_bss_p)
+ avr_need_clear_bss_p = STR_PREFIX_P (name, ".bss");
+
+ default_elf_asm_named_section (name, flags, decl);
+}
+
+
+/* Implement `TARGET_SECTION_TYPE_FLAGS'. */
+
+static unsigned int
+avr_section_type_flags (tree decl, const char *name, int reloc)
+{
+ unsigned int flags = default_section_type_flags (decl, name, reloc);
+
+ if (STR_PREFIX_P (name, ".noinit"))
+ {
+ if (decl && TREE_CODE (decl) == VAR_DECL
+ && DECL_INITIAL (decl) == NULL_TREE)
+ flags |= SECTION_BSS; /* @nobits */
+ else
+ warning (0, "only uninitialized variables can be placed in the "
+ ".noinit section");
+ }
+
+ if (decl && DECL_P (decl)
+ && avr_progmem_p (decl, DECL_ATTRIBUTES (decl)))
+ {
+ addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (decl));
+
+ /* Attribute progmem puts data in generic address space.
+ Set section flags as if it was in __flash to get the right
+ section prefix in the remainder. */
+
+ if (ADDR_SPACE_GENERIC_P (as))
+ as = ADDR_SPACE_FLASH;
+
+ flags |= as * SECTION_MACH_DEP;
+ flags &= ~SECTION_WRITE;
+ flags &= ~SECTION_BSS;
+ }
+
+ return flags;
+}
+
+
+/* Implement `TARGET_ENCODE_SECTION_INFO'. */
+
+static void
+avr_encode_section_info (tree decl, rtx rtl, int new_decl_p)
+{
+ /* In avr_handle_progmem_attribute, DECL_INITIAL is not yet
+ readily available, see PR34734. So we postpone the warning
+ about uninitialized data in program memory section until here. */
+
+ if (new_decl_p
+ && decl && DECL_P (decl)
+ && NULL_TREE == DECL_INITIAL (decl)
+ && !DECL_EXTERNAL (decl)
+ && avr_progmem_p (decl, DECL_ATTRIBUTES (decl)))
+ {
+ warning (OPT_Wuninitialized,
+ "uninitialized variable %q+D put into "
+ "program memory area", decl);
+ }
+
+ default_encode_section_info (decl, rtl, new_decl_p);
+
+ if (decl && DECL_P (decl)
+ && TREE_CODE (decl) != FUNCTION_DECL
+ && MEM_P (rtl)
+ && SYMBOL_REF == GET_CODE (XEXP (rtl, 0)))
+ {
+ rtx sym = XEXP (rtl, 0);
+ tree type = TREE_TYPE (decl);
+ if (type == error_mark_node)
+ return;
+ addr_space_t as = TYPE_ADDR_SPACE (type);
+
+ /* PSTR strings are in generic space but located in flash:
+ patch address space. */
+
+ if (-1 == avr_progmem_p (decl, DECL_ATTRIBUTES (decl)))
+ as = ADDR_SPACE_FLASH;
+
+ AVR_SYMBOL_SET_ADDR_SPACE (sym, as);
+ }
+}
+
+
+/* Implement `TARGET_ASM_SELECT_SECTION' */
+
+static section *
+avr_asm_select_section (tree decl, int reloc, unsigned HOST_WIDE_INT align)
+{
+ section * sect = default_elf_select_section (decl, reloc, align);
+
+ if (decl && DECL_P (decl)
+ && avr_progmem_p (decl, DECL_ATTRIBUTES (decl)))
+ {
+ addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (decl));
+
+ /* __progmem__ goes in generic space but shall be allocated to
+ .progmem.data */
+
+ if (ADDR_SPACE_GENERIC_P (as))
+ as = ADDR_SPACE_FLASH;
+
+ if (sect->common.flags & SECTION_NAMED)
+ {
+ const char * name = sect->named.name;
+ const char * old_prefix = ".rodata";
+ const char * new_prefix = avr_addrspace[as].section_name;
+
+ if (STR_PREFIX_P (name, old_prefix))
+ {
+ const char *sname = ACONCAT ((new_prefix,
+ name + strlen (old_prefix), NULL));
+ return get_section (sname, sect->common.flags, sect->named.decl);
+ }
+ }
+
+ if (!progmem_section[as])
+ {
+ progmem_section[as]
+ = get_unnamed_section (0, avr_output_progmem_section_asm_op,
+ avr_addrspace[as].section_name);
+ }
+
+ return progmem_section[as];
+ }
+
+ return sect;
+}
+
+/* Implement `TARGET_ASM_FILE_START'. */
+/* Outputs some text at the start of each assembler file. */
+
+static void
+avr_file_start (void)
+{
+ int sfr_offset = avr_current_arch->sfr_offset;
+
+ if (avr_current_arch->asm_only)
+ error ("MCU %qs supported for assembler only", avr_current_device->name);
+
+ default_file_start ();
+
+ /* Print I/O addresses of some SFRs used with IN and OUT. */
+
+ if (AVR_HAVE_SPH)
+ fprintf (asm_out_file, "__SP_H__ = 0x%02x\n", avr_addr.sp_h - sfr_offset);
+
+ fprintf (asm_out_file, "__SP_L__ = 0x%02x\n", avr_addr.sp_l - sfr_offset);
+ fprintf (asm_out_file, "__SREG__ = 0x%02x\n", avr_addr.sreg - sfr_offset);
+ if (AVR_HAVE_RAMPZ)
+ fprintf (asm_out_file, "__RAMPZ__ = 0x%02x\n", avr_addr.rampz - sfr_offset);
+ if (AVR_HAVE_RAMPY)
+ fprintf (asm_out_file, "__RAMPY__ = 0x%02x\n", avr_addr.rampy - sfr_offset);
+ if (AVR_HAVE_RAMPX)
+ fprintf (asm_out_file, "__RAMPX__ = 0x%02x\n", avr_addr.rampx - sfr_offset);
+ if (AVR_HAVE_RAMPD)
+ fprintf (asm_out_file, "__RAMPD__ = 0x%02x\n", avr_addr.rampd - sfr_offset);
+ if (AVR_XMEGA)
+ fprintf (asm_out_file, "__CCP__ = 0x%02x\n", avr_addr.ccp - sfr_offset);
+ fprintf (asm_out_file, "__tmp_reg__ = %d\n", TMP_REGNO);
+ fprintf (asm_out_file, "__zero_reg__ = %d\n", ZERO_REGNO);
+}
+
+
+/* Implement `TARGET_ASM_FILE_END'. */
+/* Outputs to the stdio stream FILE some
+ appropriate text to go at the end of an assembler file. */
+
+static void
+avr_file_end (void)
+{
+ /* Output these only if there is anything in the
+ .data* / .rodata* / .gnu.linkonce.* resp. .bss* or COMMON
+ input section(s) - some code size can be saved by not
+ linking in the initialization code from libgcc if resp.
+ sections are empty, see PR18145. */
+
+ if (avr_need_copy_data_p)
+ fputs (".global __do_copy_data\n", asm_out_file);
+
+ if (avr_need_clear_bss_p)
+ fputs (".global __do_clear_bss\n", asm_out_file);
+}
+
+
+/* Worker function for `ADJUST_REG_ALLOC_ORDER'. */
+/* Choose the order in which to allocate hard registers for
+ pseudo-registers local to a basic block.
+
+ Store the desired register order in the array `reg_alloc_order'.
+ Element 0 should be the register to allocate first; element 1, the
+ next register; and so on. */
+
+void
+avr_adjust_reg_alloc_order (void)
+{
+ unsigned int i;
+ static const int order_0[] =
+ {
+ 24, 25,
+ 18, 19, 20, 21, 22, 23,
+ 30, 31,
+ 26, 27, 28, 29,
+ 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2,
+ 0, 1,
+ 32, 33, 34, 35
+ };
+ static const int order_1[] =
+ {
+ 18, 19, 20, 21, 22, 23, 24, 25,
+ 30, 31,
+ 26, 27, 28, 29,
+ 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2,
+ 0, 1,
+ 32, 33, 34, 35
+ };
+ static const int order_2[] =
+ {
+ 25, 24, 23, 22, 21, 20, 19, 18,
+ 30, 31,
+ 26, 27, 28, 29,
+ 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2,
+ 1, 0,
+ 32, 33, 34, 35
+ };
+
+ const int *order = (TARGET_ORDER_1 ? order_1 :
+ TARGET_ORDER_2 ? order_2 :
+ order_0);
+ for (i = 0; i < ARRAY_SIZE (order_0); ++i)
+ reg_alloc_order[i] = order[i];
+}
+
+
+/* Implement `TARGET_REGISTER_MOVE_COST' */
+
+static int
+avr_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
+ reg_class_t from, reg_class_t to)
+{
+ return (from == STACK_REG ? 6
+ : to == STACK_REG ? 12
+ : 2);
+}
+
+
+/* Implement `TARGET_MEMORY_MOVE_COST' */
+
+static int
+avr_memory_move_cost (enum machine_mode mode,
+ reg_class_t rclass ATTRIBUTE_UNUSED,
+ bool in ATTRIBUTE_UNUSED)
+{
+ return (mode == QImode ? 2
+ : mode == HImode ? 4
+ : mode == SImode ? 8
+ : mode == SFmode ? 8
+ : 16);
+}
+
+
+/* Mutually recursive subroutine of avr_rtx_cost for calculating the
+ cost of an RTX operand given its context. X is the rtx of the
+ operand, MODE is its mode, and OUTER is the rtx_code of this
+ operand's parent operator. */
+
+static int
+avr_operand_rtx_cost (rtx x, enum machine_mode mode, enum rtx_code outer,
+ int opno, bool speed)
+{
+ enum rtx_code code = GET_CODE (x);
+ int total;
+
+ switch (code)
+ {
+ case REG:
+ case SUBREG:
+ return 0;
+
+ case CONST_INT:
+ case CONST_FIXED:
+ case CONST_DOUBLE:
+ return COSTS_N_INSNS (GET_MODE_SIZE (mode));
+
+ default:
+ break;
+ }
+
+ total = 0;
+ avr_rtx_costs (x, code, outer, opno, &total, speed);
+ return total;
+}
+
+/* Worker function for AVR backend's rtx_cost function.
+ X is rtx expression whose cost is to be calculated.
+ Return true if the complete cost has been computed.
+ Return false if subexpressions should be scanned.
+ In either case, *TOTAL contains the cost result. */
+
+static bool
+avr_rtx_costs_1 (rtx x, int codearg, int outer_code ATTRIBUTE_UNUSED,
+ int opno ATTRIBUTE_UNUSED, int *total, bool speed)
+{
+ enum rtx_code code = (enum rtx_code) codearg;
+ enum machine_mode mode = GET_MODE (x);
+ HOST_WIDE_INT val;
+
+ switch (code)
+ {
+ case CONST_INT:
+ case CONST_FIXED:
+ case CONST_DOUBLE:
+ case SYMBOL_REF:
+ case CONST:
+ case LABEL_REF:
+ /* Immediate constants are as cheap as registers. */
+ *total = 0;
+ return true;
+
+ case MEM:
+ *total = COSTS_N_INSNS (GET_MODE_SIZE (mode));
+ return true;
+
+ case NEG:
+ switch (mode)
+ {
+ case QImode:
+ case SFmode:
+ *total = COSTS_N_INSNS (1);
+ break;
+
+ case HImode:
+ case PSImode:
+ case SImode:
+ *total = COSTS_N_INSNS (2 * GET_MODE_SIZE (mode) - 1);
+ break;
+
+ default:
+ return false;
+ }
+ *total += avr_operand_rtx_cost (XEXP (x, 0), mode, code, 0, speed);
+ return true;
+
+ case ABS:
+ switch (mode)
+ {
+ case QImode:
+ case SFmode:
+ *total = COSTS_N_INSNS (1);
+ break;
+
+ default:
+ return false;
+ }
+ *total += avr_operand_rtx_cost (XEXP (x, 0), mode, code, 0, speed);
+ return true;
+
+ case NOT:
+ *total = COSTS_N_INSNS (GET_MODE_SIZE (mode));
+ *total += avr_operand_rtx_cost (XEXP (x, 0), mode, code, 0, speed);
+ return true;
+
+ case ZERO_EXTEND:
+ *total = COSTS_N_INSNS (GET_MODE_SIZE (mode)
+ - GET_MODE_SIZE (GET_MODE (XEXP (x, 0))));
+ *total += avr_operand_rtx_cost (XEXP (x, 0), mode, code, 0, speed);
+ return true;
+
+ case SIGN_EXTEND:
+ *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) + 2
+ - GET_MODE_SIZE (GET_MODE (XEXP (x, 0))));
+ *total += avr_operand_rtx_cost (XEXP (x, 0), mode, code, 0, speed);
+ return true;
+
+ case PLUS:
+ switch (mode)
+ {
+ case QImode:
+ if (AVR_HAVE_MUL
+ && MULT == GET_CODE (XEXP (x, 0))
+ && register_operand (XEXP (x, 1), QImode))
+ {
+ /* multiply-add */
+ *total = COSTS_N_INSNS (speed ? 4 : 3);
+ /* multiply-add with constant: will be split and load constant. */
+ if (CONST_INT_P (XEXP (XEXP (x, 0), 1)))
+ *total = COSTS_N_INSNS (1) + *total;
+ return true;
+ }
+ *total = COSTS_N_INSNS (1);
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1, speed);
+ break;
+
+ case HImode:
+ if (AVR_HAVE_MUL
+ && (MULT == GET_CODE (XEXP (x, 0))
+ || ASHIFT == GET_CODE (XEXP (x, 0)))
+ && register_operand (XEXP (x, 1), HImode)
+ && (ZERO_EXTEND == GET_CODE (XEXP (XEXP (x, 0), 0))
+ || SIGN_EXTEND == GET_CODE (XEXP (XEXP (x, 0), 0))))
+ {
+ /* multiply-add */
+ *total = COSTS_N_INSNS (speed ? 5 : 4);
+ /* multiply-add with constant: will be split and load constant. */
+ if (CONST_INT_P (XEXP (XEXP (x, 0), 1)))
+ *total = COSTS_N_INSNS (1) + *total;
+ return true;
+ }
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ {
+ *total = COSTS_N_INSNS (2);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ else if (INTVAL (XEXP (x, 1)) >= -63 && INTVAL (XEXP (x, 1)) <= 63)
+ *total = COSTS_N_INSNS (1);
+ else
+ *total = COSTS_N_INSNS (2);
+ break;
+
+ case PSImode:
+ if (!CONST_INT_P (XEXP (x, 1)))
+ {
+ *total = COSTS_N_INSNS (3);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ else if (INTVAL (XEXP (x, 1)) >= -63 && INTVAL (XEXP (x, 1)) <= 63)
+ *total = COSTS_N_INSNS (2);
+ else
+ *total = COSTS_N_INSNS (3);
+ break;
+
+ case SImode:
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ {
+ *total = COSTS_N_INSNS (4);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ else if (INTVAL (XEXP (x, 1)) >= -63 && INTVAL (XEXP (x, 1)) <= 63)
+ *total = COSTS_N_INSNS (1);
+ else
+ *total = COSTS_N_INSNS (4);
+ break;
+
+ default:
+ return false;
+ }
+ *total += avr_operand_rtx_cost (XEXP (x, 0), mode, code, 0, speed);
+ return true;
+
+ case MINUS:
+ if (AVR_HAVE_MUL
+ && QImode == mode
+ && register_operand (XEXP (x, 0), QImode)
+ && MULT == GET_CODE (XEXP (x, 1)))
+ {
+ /* multiply-sub */
+ *total = COSTS_N_INSNS (speed ? 4 : 3);
+ /* multiply-sub with constant: will be split and load constant. */
+ if (CONST_INT_P (XEXP (XEXP (x, 1), 1)))
+ *total = COSTS_N_INSNS (1) + *total;
+ return true;
+ }
+ if (AVR_HAVE_MUL
+ && HImode == mode
+ && register_operand (XEXP (x, 0), HImode)
+ && (MULT == GET_CODE (XEXP (x, 1))
+ || ASHIFT == GET_CODE (XEXP (x, 1)))
+ && (ZERO_EXTEND == GET_CODE (XEXP (XEXP (x, 1), 0))
+ || SIGN_EXTEND == GET_CODE (XEXP (XEXP (x, 1), 0))))
+ {
+ /* multiply-sub */
+ *total = COSTS_N_INSNS (speed ? 5 : 4);
+ /* multiply-sub with constant: will be split and load constant. */
+ if (CONST_INT_P (XEXP (XEXP (x, 1), 1)))
+ *total = COSTS_N_INSNS (1) + *total;
+ return true;
+ }
+ /* FALLTHRU */
+ case AND:
+ case IOR:
+ *total = COSTS_N_INSNS (GET_MODE_SIZE (mode));
+ *total += avr_operand_rtx_cost (XEXP (x, 0), mode, code, 0, speed);
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1, speed);
+ return true;
+
+ case XOR:
+ *total = COSTS_N_INSNS (GET_MODE_SIZE (mode));
+ *total += avr_operand_rtx_cost (XEXP (x, 0), mode, code, 0, speed);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1, speed);
+ return true;
+
+ case MULT:
+ switch (mode)
+ {
+ case QImode:
+ if (AVR_HAVE_MUL)
+ *total = COSTS_N_INSNS (!speed ? 3 : 4);
+ else if (!speed)
+ *total = COSTS_N_INSNS (AVR_HAVE_JMP_CALL ? 2 : 1);
+ else
+ return false;
+ break;
+
+ case HImode:
+ if (AVR_HAVE_MUL)
+ {
+ rtx op0 = XEXP (x, 0);
+ rtx op1 = XEXP (x, 1);
+ enum rtx_code code0 = GET_CODE (op0);
+ enum rtx_code code1 = GET_CODE (op1);
+ bool ex0 = SIGN_EXTEND == code0 || ZERO_EXTEND == code0;
+ bool ex1 = SIGN_EXTEND == code1 || ZERO_EXTEND == code1;
+
+ if (ex0
+ && (u8_operand (op1, HImode)
+ || s8_operand (op1, HImode)))
+ {
+ *total = COSTS_N_INSNS (!speed ? 4 : 6);
+ return true;
+ }
+ if (ex0
+ && register_operand (op1, HImode))
+ {
+ *total = COSTS_N_INSNS (!speed ? 5 : 8);
+ return true;
+ }
+ else if (ex0 || ex1)
+ {
+ *total = COSTS_N_INSNS (!speed ? 3 : 5);
+ return true;
+ }
+ else if (register_operand (op0, HImode)
+ && (u8_operand (op1, HImode)
+ || s8_operand (op1, HImode)))
+ {
+ *total = COSTS_N_INSNS (!speed ? 6 : 9);
+ return true;
+ }
+ else
+ *total = COSTS_N_INSNS (!speed ? 7 : 10);
+ }
+ else if (!speed)
+ *total = COSTS_N_INSNS (AVR_HAVE_JMP_CALL ? 2 : 1);
+ else
+ return false;
+ break;
+
+ case PSImode:
+ if (!speed)
+ *total = COSTS_N_INSNS (AVR_HAVE_JMP_CALL ? 2 : 1);
+ else
+ *total = 10;
+ break;
+
+ case SImode:
+ if (AVR_HAVE_MUL)
+ {
+ if (!speed)
+ {
+ /* Add some additional costs besides CALL like moves etc. */
+
+ *total = COSTS_N_INSNS (AVR_HAVE_JMP_CALL ? 5 : 4);
+ }
+ else
+ {
+ /* Just a rough estimate. Even with -O2 we don't want bulky
+ code expanded inline. */
+
+ *total = COSTS_N_INSNS (25);
+ }
+ }
+ else
+ {
+ if (speed)
+ *total = COSTS_N_INSNS (300);
+ else
+ /* Add some additional costs besides CALL like moves etc. */
+ *total = COSTS_N_INSNS (AVR_HAVE_JMP_CALL ? 5 : 4);
+ }
+
+ return true;
+
+ default:
+ return false;
+ }
+ *total += avr_operand_rtx_cost (XEXP (x, 0), mode, code, 0, speed);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1, speed);
+ return true;
+
+ case DIV:
+ case MOD:
+ case UDIV:
+ case UMOD:
+ if (!speed)
+ *total = COSTS_N_INSNS (AVR_HAVE_JMP_CALL ? 2 : 1);
+ else
+ *total = COSTS_N_INSNS (15 * GET_MODE_SIZE (mode));
+ *total += avr_operand_rtx_cost (XEXP (x, 0), mode, code, 0, speed);
+ /* For div/mod with const-int divisor we have at least the cost of
+ loading the divisor. */
+ if (CONST_INT_P (XEXP (x, 1)))
+ *total += COSTS_N_INSNS (GET_MODE_SIZE (mode));
+ /* Add some overall penaly for clobbering and moving around registers */
+ *total += COSTS_N_INSNS (2);
+ return true;
+
+ case ROTATE:
+ switch (mode)
+ {
+ case QImode:
+ if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) == 4)
+ *total = COSTS_N_INSNS (1);
+
+ break;
+
+ case HImode:
+ if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) == 8)
+ *total = COSTS_N_INSNS (3);
+
+ break;
+
+ case SImode:
+ if (CONST_INT_P (XEXP (x, 1)))
+ switch (INTVAL (XEXP (x, 1)))
+ {
+ case 8:
+ case 24:
+ *total = COSTS_N_INSNS (5);
+ break;
+ case 16:
+ *total = COSTS_N_INSNS (AVR_HAVE_MOVW ? 4 : 6);
+ break;
+ }
+ break;
+
+ default:
+ return false;
+ }
+ *total += avr_operand_rtx_cost (XEXP (x, 0), mode, code, 0, speed);
+ return true;
+
+ case ASHIFT:
+ switch (mode)
+ {
+ case QImode:
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ {
+ *total = COSTS_N_INSNS (!speed ? 4 : 17);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ else
+ {
+ val = INTVAL (XEXP (x, 1));
+ if (val == 7)
+ *total = COSTS_N_INSNS (3);
+ else if (val >= 0 && val <= 7)
+ *total = COSTS_N_INSNS (val);
+ else
+ *total = COSTS_N_INSNS (1);
+ }
+ break;
+
+ case HImode:
+ if (AVR_HAVE_MUL)
+ {
+ if (const_2_to_7_operand (XEXP (x, 1), HImode)
+ && (SIGN_EXTEND == GET_CODE (XEXP (x, 0))
+ || ZERO_EXTEND == GET_CODE (XEXP (x, 0))))
+ {
+ *total = COSTS_N_INSNS (!speed ? 4 : 6);
+ return true;
+ }
+ }
+
+ if (const1_rtx == (XEXP (x, 1))
+ && SIGN_EXTEND == GET_CODE (XEXP (x, 0)))
+ {
+ *total = COSTS_N_INSNS (2);
+ return true;
+ }
+
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ {
+ *total = COSTS_N_INSNS (!speed ? 5 : 41);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ else
+ switch (INTVAL (XEXP (x, 1)))
+ {
+ case 0:
+ *total = 0;
+ break;
+ case 1:
+ case 8:
+ *total = COSTS_N_INSNS (2);
+ break;
+ case 9:
+ *total = COSTS_N_INSNS (3);
+ break;
+ case 2:
+ case 3:
+ case 10:
+ case 15:
+ *total = COSTS_N_INSNS (4);
+ break;
+ case 7:
+ case 11:
+ case 12:
+ *total = COSTS_N_INSNS (5);
+ break;
+ case 4:
+ *total = COSTS_N_INSNS (!speed ? 5 : 8);
+ break;
+ case 6:
+ *total = COSTS_N_INSNS (!speed ? 5 : 9);
+ break;
+ case 5:
+ *total = COSTS_N_INSNS (!speed ? 5 : 10);
+ break;
+ default:
+ *total = COSTS_N_INSNS (!speed ? 5 : 41);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ break;
+
+ case PSImode:
+ if (!CONST_INT_P (XEXP (x, 1)))
+ {
+ *total = COSTS_N_INSNS (!speed ? 6 : 73);
+ }
+ else
+ switch (INTVAL (XEXP (x, 1)))
+ {
+ case 0:
+ *total = 0;
+ break;
+ case 1:
+ case 8:
+ case 16:
+ *total = COSTS_N_INSNS (3);
+ break;
+ case 23:
+ *total = COSTS_N_INSNS (5);
+ break;
+ default:
+ *total = COSTS_N_INSNS (!speed ? 5 : 3 * INTVAL (XEXP (x, 1)));
+ break;
+ }
+ break;
+
+ case SImode:
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ {
+ *total = COSTS_N_INSNS (!speed ? 7 : 113);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ else
+ switch (INTVAL (XEXP (x, 1)))
+ {
+ case 0:
+ *total = 0;
+ break;
+ case 24:
+ *total = COSTS_N_INSNS (3);
+ break;
+ case 1:
+ case 8:
+ case 16:
+ *total = COSTS_N_INSNS (4);
+ break;
+ case 31:
+ *total = COSTS_N_INSNS (6);
+ break;
+ case 2:
+ *total = COSTS_N_INSNS (!speed ? 7 : 8);
+ break;
+ default:
+ *total = COSTS_N_INSNS (!speed ? 7 : 113);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ break;
+
+ default:
+ return false;
+ }
+ *total += avr_operand_rtx_cost (XEXP (x, 0), mode, code, 0, speed);
+ return true;
+
+ case ASHIFTRT:
+ switch (mode)
+ {
+ case QImode:
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ {
+ *total = COSTS_N_INSNS (!speed ? 4 : 17);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ else
+ {
+ val = INTVAL (XEXP (x, 1));
+ if (val == 6)
+ *total = COSTS_N_INSNS (4);
+ else if (val == 7)
+ *total = COSTS_N_INSNS (2);
+ else if (val >= 0 && val <= 7)
+ *total = COSTS_N_INSNS (val);
+ else
+ *total = COSTS_N_INSNS (1);
+ }
+ break;
+
+ case HImode:
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ {
+ *total = COSTS_N_INSNS (!speed ? 5 : 41);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ else
+ switch (INTVAL (XEXP (x, 1)))
+ {
+ case 0:
+ *total = 0;
+ break;
+ case 1:
+ *total = COSTS_N_INSNS (2);
+ break;
+ case 15:
+ *total = COSTS_N_INSNS (3);
+ break;
+ case 2:
+ case 7:
+ case 8:
+ case 9:
+ *total = COSTS_N_INSNS (4);
+ break;
+ case 10:
+ case 14:
+ *total = COSTS_N_INSNS (5);
+ break;
+ case 11:
+ *total = COSTS_N_INSNS (!speed ? 5 : 6);
+ break;
+ case 12:
+ *total = COSTS_N_INSNS (!speed ? 5 : 7);
+ break;
+ case 6:
+ case 13:
+ *total = COSTS_N_INSNS (!speed ? 5 : 8);
+ break;
+ default:
+ *total = COSTS_N_INSNS (!speed ? 5 : 41);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ break;
+
+ case PSImode:
+ if (!CONST_INT_P (XEXP (x, 1)))
+ {
+ *total = COSTS_N_INSNS (!speed ? 6 : 73);
+ }
+ else
+ switch (INTVAL (XEXP (x, 1)))
+ {
+ case 0:
+ *total = 0;
+ break;
+ case 1:
+ *total = COSTS_N_INSNS (3);
+ break;
+ case 16:
+ case 8:
+ *total = COSTS_N_INSNS (5);
+ break;
+ case 23:
+ *total = COSTS_N_INSNS (4);
+ break;
+ default:
+ *total = COSTS_N_INSNS (!speed ? 5 : 3 * INTVAL (XEXP (x, 1)));
+ break;
+ }
+ break;
+
+ case SImode:
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ {
+ *total = COSTS_N_INSNS (!speed ? 7 : 113);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ else
+ switch (INTVAL (XEXP (x, 1)))
+ {
+ case 0:
+ *total = 0;
+ break;
+ case 1:
+ *total = COSTS_N_INSNS (4);
+ break;
+ case 8:
+ case 16:
+ case 24:
+ *total = COSTS_N_INSNS (6);
+ break;
+ case 2:
+ *total = COSTS_N_INSNS (!speed ? 7 : 8);
+ break;
+ case 31:
+ *total = COSTS_N_INSNS (AVR_HAVE_MOVW ? 4 : 5);
+ break;
+ default:
+ *total = COSTS_N_INSNS (!speed ? 7 : 113);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ break;
+
+ default:
+ return false;
+ }
+ *total += avr_operand_rtx_cost (XEXP (x, 0), mode, code, 0, speed);
+ return true;
+
+ case LSHIFTRT:
+ switch (mode)
+ {
+ case QImode:
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ {
+ *total = COSTS_N_INSNS (!speed ? 4 : 17);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ else
+ {
+ val = INTVAL (XEXP (x, 1));
+ if (val == 7)
+ *total = COSTS_N_INSNS (3);
+ else if (val >= 0 && val <= 7)
+ *total = COSTS_N_INSNS (val);
+ else
+ *total = COSTS_N_INSNS (1);
+ }
+ break;
+
+ case HImode:
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ {
+ *total = COSTS_N_INSNS (!speed ? 5 : 41);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ else
+ switch (INTVAL (XEXP (x, 1)))
+ {
+ case 0:
+ *total = 0;
+ break;
+ case 1:
+ case 8:
+ *total = COSTS_N_INSNS (2);
+ break;
+ case 9:
+ *total = COSTS_N_INSNS (3);
+ break;
+ case 2:
+ case 10:
+ case 15:
+ *total = COSTS_N_INSNS (4);
+ break;
+ case 7:
+ case 11:
+ *total = COSTS_N_INSNS (5);
+ break;
+ case 3:
+ case 12:
+ case 13:
+ case 14:
+ *total = COSTS_N_INSNS (!speed ? 5 : 6);
+ break;
+ case 4:
+ *total = COSTS_N_INSNS (!speed ? 5 : 7);
+ break;
+ case 5:
+ case 6:
+ *total = COSTS_N_INSNS (!speed ? 5 : 9);
+ break;
+ default:
+ *total = COSTS_N_INSNS (!speed ? 5 : 41);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ break;
+
+ case PSImode:
+ if (!CONST_INT_P (XEXP (x, 1)))
+ {
+ *total = COSTS_N_INSNS (!speed ? 6 : 73);
+ }
+ else
+ switch (INTVAL (XEXP (x, 1)))
+ {
+ case 0:
+ *total = 0;
+ break;
+ case 1:
+ case 8:
+ case 16:
+ *total = COSTS_N_INSNS (3);
+ break;
+ case 23:
+ *total = COSTS_N_INSNS (5);
+ break;
+ default:
+ *total = COSTS_N_INSNS (!speed ? 5 : 3 * INTVAL (XEXP (x, 1)));
+ break;
+ }
+ break;
+
+ case SImode:
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ {
+ *total = COSTS_N_INSNS (!speed ? 7 : 113);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ else
+ switch (INTVAL (XEXP (x, 1)))
+ {
+ case 0:
+ *total = 0;
+ break;
+ case 1:
+ *total = COSTS_N_INSNS (4);
+ break;
+ case 2:
+ *total = COSTS_N_INSNS (!speed ? 7 : 8);
+ break;
+ case 8:
+ case 16:
+ case 24:
+ *total = COSTS_N_INSNS (4);
+ break;
+ case 31:
+ *total = COSTS_N_INSNS (6);
+ break;
+ default:
+ *total = COSTS_N_INSNS (!speed ? 7 : 113);
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1,
+ speed);
+ }
+ break;
+
+ default:
+ return false;
+ }
+ *total += avr_operand_rtx_cost (XEXP (x, 0), mode, code, 0, speed);
+ return true;
+
+ case COMPARE:
+ switch (GET_MODE (XEXP (x, 0)))
+ {
+ case QImode:
+ *total = COSTS_N_INSNS (1);
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1, speed);
+ break;
+
+ case HImode:
+ *total = COSTS_N_INSNS (2);
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1, speed);
+ else if (INTVAL (XEXP (x, 1)) != 0)
+ *total += COSTS_N_INSNS (1);
+ break;
+
+ case PSImode:
+ *total = COSTS_N_INSNS (3);
+ if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
+ *total += COSTS_N_INSNS (2);
+ break;
+
+ case SImode:
+ *total = COSTS_N_INSNS (4);
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ *total += avr_operand_rtx_cost (XEXP (x, 1), mode, code, 1, speed);
+ else if (INTVAL (XEXP (x, 1)) != 0)
+ *total += COSTS_N_INSNS (3);
+ break;
+
+ default:
+ return false;
+ }
+ *total += avr_operand_rtx_cost (XEXP (x, 0), mode, code, 0, speed);
+ return true;
+
+ case TRUNCATE:
+ if (AVR_HAVE_MUL
+ && LSHIFTRT == GET_CODE (XEXP (x, 0))
+ && MULT == GET_CODE (XEXP (XEXP (x, 0), 0))
+ && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
+ {
+ if (QImode == mode || HImode == mode)
+ {
+ *total = COSTS_N_INSNS (2);
+ return true;
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+ return false;
+}
+
+
+/* Implement `TARGET_RTX_COSTS'. */
+
+static bool
+avr_rtx_costs (rtx x, int codearg, int outer_code,
+ int opno, int *total, bool speed)
+{
+ bool done = avr_rtx_costs_1 (x, codearg, outer_code,
+ opno, total, speed);
+
+ if (avr_log.rtx_costs)
+ {
+ avr_edump ("\n%?=%b (%s) total=%d, outer=%C:\n%r\n",
+ done, speed ? "speed" : "size", *total, outer_code, x);
+ }
+
+ return done;
+}
+
+
+/* Implement `TARGET_ADDRESS_COST'. */
+
+static int
+avr_address_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
+ addr_space_t as ATTRIBUTE_UNUSED,
+ bool speed ATTRIBUTE_UNUSED)
+{
+ int cost = 4;
+
+ if (GET_CODE (x) == PLUS
+ && CONST_INT_P (XEXP (x, 1))
+ && (REG_P (XEXP (x, 0))
+ || GET_CODE (XEXP (x, 0)) == SUBREG))
+ {
+ if (INTVAL (XEXP (x, 1)) >= 61)
+ cost = 18;
+ }
+ else if (CONSTANT_ADDRESS_P (x))
+ {
+ if (optimize > 0
+ && io_address_operand (x, QImode))
+ cost = 2;
+ }
+
+ if (avr_log.address_cost)
+ avr_edump ("\n%?: %d = %r\n", cost, x);
+
+ return cost;
+}
+
+/* Test for extra memory constraint 'Q'.
+ It's a memory address based on Y or Z pointer with valid displacement. */
+
+int
+extra_constraint_Q (rtx x)
+{
+ int ok = 0;
+
+ if (GET_CODE (XEXP (x,0)) == PLUS
+ && REG_P (XEXP (XEXP (x,0), 0))
+ && GET_CODE (XEXP (XEXP (x,0), 1)) == CONST_INT
+ && (INTVAL (XEXP (XEXP (x,0), 1))
+ <= MAX_LD_OFFSET (GET_MODE (x))))
+ {
+ rtx xx = XEXP (XEXP (x,0), 0);
+ int regno = REGNO (xx);
+
+ ok = (/* allocate pseudos */
+ regno >= FIRST_PSEUDO_REGISTER
+ /* strictly check */
+ || regno == REG_Z || regno == REG_Y
+ /* XXX frame & arg pointer checks */
+ || xx == frame_pointer_rtx
+ || xx == arg_pointer_rtx);
+
+ if (avr_log.constraints)
+ avr_edump ("\n%?=%d reload_completed=%d reload_in_progress=%d\n %r\n",
+ ok, reload_completed, reload_in_progress, x);
+ }
+
+ return ok;
+}
+
+/* Convert condition code CONDITION to the valid AVR condition code. */
+
+RTX_CODE
+avr_normalize_condition (RTX_CODE condition)
+{
+ switch (condition)
+ {
+ case GT:
+ return GE;
+ case GTU:
+ return GEU;
+ case LE:
+ return LT;
+ case LEU:
+ return LTU;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Helper function for `avr_reorg'. */
+
+static rtx
+avr_compare_pattern (rtx insn)
+{
+ rtx pattern = single_set (insn);
+
+ if (pattern
+ && NONJUMP_INSN_P (insn)
+ && SET_DEST (pattern) == cc0_rtx
+ && GET_CODE (SET_SRC (pattern)) == COMPARE)
+ {
+ enum machine_mode mode0 = GET_MODE (XEXP (SET_SRC (pattern), 0));
+ enum machine_mode mode1 = GET_MODE (XEXP (SET_SRC (pattern), 1));
+
+ /* The 64-bit comparisons have fixed operands ACC_A and ACC_B.
+ They must not be swapped, thus skip them. */
+
+ if ((mode0 == VOIDmode || GET_MODE_SIZE (mode0) <= 4)
+ && (mode1 == VOIDmode || GET_MODE_SIZE (mode1) <= 4))
+ return pattern;
+ }
+
+ return NULL_RTX;
+}
+
+/* Helper function for `avr_reorg'. */
+
+/* Expansion of switch/case decision trees leads to code like
+
+ cc0 = compare (Reg, Num)
+ if (cc0 == 0)
+ goto L1
+
+ cc0 = compare (Reg, Num)
+ if (cc0 > 0)
+ goto L2
+
+ The second comparison is superfluous and can be deleted.
+ The second jump condition can be transformed from a
+ "difficult" one to a "simple" one because "cc0 > 0" and
+ "cc0 >= 0" will have the same effect here.
+
+ This function relies on the way switch/case is being expaned
+ as binary decision tree. For example code see PR 49903.
+
+ Return TRUE if optimization performed.
+ Return FALSE if nothing changed.
+
+ INSN1 is a comparison, i.e. avr_compare_pattern != 0.
+
+ We don't want to do this in text peephole because it is
+ tedious to work out jump offsets there and the second comparison
+ might have been transormed by `avr_reorg'.
+
+ RTL peephole won't do because peephole2 does not scan across
+ basic blocks. */
+
+static bool
+avr_reorg_remove_redundant_compare (rtx insn1)
+{
+ rtx comp1, ifelse1, xcond1, branch1;
+ rtx comp2, ifelse2, xcond2, branch2, insn2;
+ enum rtx_code code;
+ rtx jump, target, cond;
+
+ /* Look out for: compare1 - branch1 - compare2 - branch2 */
+
+ branch1 = next_nonnote_nondebug_insn (insn1);
+ if (!branch1 || !JUMP_P (branch1))
+ return false;
+
+ insn2 = next_nonnote_nondebug_insn (branch1);
+ if (!insn2 || !avr_compare_pattern (insn2))
+ return false;
+
+ branch2 = next_nonnote_nondebug_insn (insn2);
+ if (!branch2 || !JUMP_P (branch2))
+ return false;
+
+ comp1 = avr_compare_pattern (insn1);
+ comp2 = avr_compare_pattern (insn2);
+ xcond1 = single_set (branch1);
+ xcond2 = single_set (branch2);
+
+ if (!comp1 || !comp2
+ || !rtx_equal_p (comp1, comp2)
+ || !xcond1 || SET_DEST (xcond1) != pc_rtx
+ || !xcond2 || SET_DEST (xcond2) != pc_rtx
+ || IF_THEN_ELSE != GET_CODE (SET_SRC (xcond1))
+ || IF_THEN_ELSE != GET_CODE (SET_SRC (xcond2)))
+ {
+ return false;
+ }
+
+ comp1 = SET_SRC (comp1);
+ ifelse1 = SET_SRC (xcond1);
+ ifelse2 = SET_SRC (xcond2);
+
+ /* comp<n> is COMPARE now and ifelse<n> is IF_THEN_ELSE. */
+
+ if (EQ != GET_CODE (XEXP (ifelse1, 0))
+ || !REG_P (XEXP (comp1, 0))
+ || !CONST_INT_P (XEXP (comp1, 1))
+ || XEXP (ifelse1, 2) != pc_rtx
+ || XEXP (ifelse2, 2) != pc_rtx
+ || LABEL_REF != GET_CODE (XEXP (ifelse1, 1))
+ || LABEL_REF != GET_CODE (XEXP (ifelse2, 1))
+ || !COMPARISON_P (XEXP (ifelse2, 0))
+ || cc0_rtx != XEXP (XEXP (ifelse1, 0), 0)
+ || cc0_rtx != XEXP (XEXP (ifelse2, 0), 0)
+ || const0_rtx != XEXP (XEXP (ifelse1, 0), 1)
+ || const0_rtx != XEXP (XEXP (ifelse2, 0), 1))
+ {
+ return false;
+ }
+
+ /* We filtered the insn sequence to look like
+
+ (set (cc0)
+ (compare (reg:M N)
+ (const_int VAL)))
+ (set (pc)
+ (if_then_else (eq (cc0)
+ (const_int 0))
+ (label_ref L1)
+ (pc)))
+
+ (set (cc0)
+ (compare (reg:M N)
+ (const_int VAL)))
+ (set (pc)
+ (if_then_else (CODE (cc0)
+ (const_int 0))
+ (label_ref L2)
+ (pc)))
+ */
+
+ code = GET_CODE (XEXP (ifelse2, 0));
+
+ /* Map GT/GTU to GE/GEU which is easier for AVR.
+ The first two instructions compare/branch on EQ
+ so we may replace the difficult
+
+ if (x == VAL) goto L1;
+ if (x > VAL) goto L2;
+
+ with easy
+
+ if (x == VAL) goto L1;
+ if (x >= VAL) goto L2;
+
+ Similarly, replace LE/LEU by LT/LTU. */
+
+ switch (code)
+ {
+ case EQ:
+ case LT: case LTU:
+ case GE: case GEU:
+ break;
+
+ case LE: case LEU:
+ case GT: case GTU:
+ code = avr_normalize_condition (code);
+ break;
+
+ default:
+ return false;
+ }
+
+ /* Wrap the branches into UNSPECs so they won't be changed or
+ optimized in the remainder. */
+
+ target = XEXP (XEXP (ifelse1, 1), 0);
+ cond = XEXP (ifelse1, 0);
+ jump = emit_jump_insn_after (gen_branch_unspec (target, cond), insn1);
+
+ JUMP_LABEL (jump) = JUMP_LABEL (branch1);
+
+ target = XEXP (XEXP (ifelse2, 1), 0);
+ cond = gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
+ jump = emit_jump_insn_after (gen_branch_unspec (target, cond), insn2);
+
+ JUMP_LABEL (jump) = JUMP_LABEL (branch2);
+
+ /* The comparisons in insn1 and insn2 are exactly the same;
+ insn2 is superfluous so delete it. */
+
+ delete_insn (insn2);
+ delete_insn (branch1);
+ delete_insn (branch2);
+
+ return true;
+}
+
+
+/* Implement `TARGET_MACHINE_DEPENDENT_REORG'. */
+/* Optimize conditional jumps. */
+
+static void
+avr_reorg (void)
+{
+ rtx insn = get_insns();
+
+ for (insn = next_real_insn (insn); insn; insn = next_real_insn (insn))
+ {
+ rtx pattern = avr_compare_pattern (insn);
+
+ if (!pattern)
+ continue;
+
+ if (optimize
+ && avr_reorg_remove_redundant_compare (insn))
+ {
+ continue;
+ }
+
+ if (compare_diff_p (insn))
+ {
+ /* Now we work under compare insn with difficult branch. */
+
+ rtx next = next_real_insn (insn);
+ rtx pat = PATTERN (next);
+
+ pattern = SET_SRC (pattern);
+
+ if (true_regnum (XEXP (pattern, 0)) >= 0
+ && true_regnum (XEXP (pattern, 1)) >= 0)
+ {
+ rtx x = XEXP (pattern, 0);
+ rtx src = SET_SRC (pat);
+ rtx t = XEXP (src,0);
+ PUT_CODE (t, swap_condition (GET_CODE (t)));
+ XEXP (pattern, 0) = XEXP (pattern, 1);
+ XEXP (pattern, 1) = x;
+ INSN_CODE (next) = -1;
+ }
+ else if (true_regnum (XEXP (pattern, 0)) >= 0
+ && XEXP (pattern, 1) == const0_rtx)
+ {
+ /* This is a tst insn, we can reverse it. */
+ rtx src = SET_SRC (pat);
+ rtx t = XEXP (src,0);
+
+ PUT_CODE (t, swap_condition (GET_CODE (t)));
+ XEXP (pattern, 1) = XEXP (pattern, 0);
+ XEXP (pattern, 0) = const0_rtx;
+ INSN_CODE (next) = -1;
+ INSN_CODE (insn) = -1;
+ }
+ else if (true_regnum (XEXP (pattern, 0)) >= 0
+ && CONST_INT_P (XEXP (pattern, 1)))
+ {
+ rtx x = XEXP (pattern, 1);
+ rtx src = SET_SRC (pat);
+ rtx t = XEXP (src,0);
+ enum machine_mode mode = GET_MODE (XEXP (pattern, 0));
+
+ if (avr_simplify_comparison_p (mode, GET_CODE (t), x))
+ {
+ XEXP (pattern, 1) = gen_int_mode (INTVAL (x) + 1, mode);
+ PUT_CODE (t, avr_normalize_condition (GET_CODE (t)));
+ INSN_CODE (next) = -1;
+ INSN_CODE (insn) = -1;
+ }
+ }
+ }
+ }
+}
+
+/* Returns register number for function return value.*/
+
+static inline unsigned int
+avr_ret_register (void)
+{
+ return 24;
+}
+
+
+/* Implement `TARGET_FUNCTION_VALUE_REGNO_P'. */
+
+static bool
+avr_function_value_regno_p (const unsigned int regno)
+{
+ return (regno == avr_ret_register ());
+}
+
+
+/* Implement `TARGET_LIBCALL_VALUE'. */
+/* Create an RTX representing the place where a
+ library function returns a value of mode MODE. */
+
+static rtx
+avr_libcall_value (enum machine_mode mode,
+ const_rtx func ATTRIBUTE_UNUSED)
+{
+ int offs = GET_MODE_SIZE (mode);
+
+ if (offs <= 4)
+ offs = (offs + 1) & ~1;
+
+ return gen_rtx_REG (mode, avr_ret_register () + 2 - offs);
+}
+
+
+/* Implement `TARGET_FUNCTION_VALUE'. */
+/* Create an RTX representing the place where a
+ function returns a value of data type VALTYPE. */
+
+static rtx
+avr_function_value (const_tree type,
+ const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
+ bool outgoing ATTRIBUTE_UNUSED)
+{
+ unsigned int offs;
+
+ if (TYPE_MODE (type) != BLKmode)
+ return avr_libcall_value (TYPE_MODE (type), NULL_RTX);
+
+ offs = int_size_in_bytes (type);
+ if (offs < 2)
+ offs = 2;
+ if (offs > 2 && offs < GET_MODE_SIZE (SImode))
+ offs = GET_MODE_SIZE (SImode);
+ else if (offs > GET_MODE_SIZE (SImode) && offs < GET_MODE_SIZE (DImode))
+ offs = GET_MODE_SIZE (DImode);
+
+ return gen_rtx_REG (BLKmode, avr_ret_register () + 2 - offs);
+}
+
+int
+test_hard_reg_class (enum reg_class rclass, rtx x)
+{
+ int regno = true_regnum (x);
+ if (regno < 0)
+ return 0;
+
+ if (TEST_HARD_REG_CLASS (rclass, regno))
+ return 1;
+
+ return 0;
+}
+
+
+/* Helper for jump_over_one_insn_p: Test if INSN is a 2-word instruction
+ and thus is suitable to be skipped by CPSE, SBRC, etc. */
+
+static bool
+avr_2word_insn_p (rtx insn)
+{
+ if (avr_current_device->errata_skip
+ || !insn
+ || 2 != get_attr_length (insn))
+ {
+ return false;
+ }
+
+ switch (INSN_CODE (insn))
+ {
+ default:
+ return false;
+
+ case CODE_FOR_movqi_insn:
+ case CODE_FOR_movuqq_insn:
+ case CODE_FOR_movqq_insn:
+ {
+ rtx set = single_set (insn);
+ rtx src = SET_SRC (set);
+ rtx dest = SET_DEST (set);
+
+ /* Factor out LDS and STS from movqi_insn. */
+
+ if (MEM_P (dest)
+ && (REG_P (src) || src == CONST0_RTX (GET_MODE (dest))))
+ {
+ return CONSTANT_ADDRESS_P (XEXP (dest, 0));
+ }
+ else if (REG_P (dest)
+ && MEM_P (src))
+ {
+ return CONSTANT_ADDRESS_P (XEXP (src, 0));
+ }
+
+ return false;
+ }
+
+ case CODE_FOR_call_insn:
+ case CODE_FOR_call_value_insn:
+ return true;
+ }
+}
+
+
+int
+jump_over_one_insn_p (rtx insn, rtx dest)
+{
+ int uid = INSN_UID (GET_CODE (dest) == LABEL_REF
+ ? XEXP (dest, 0)
+ : dest);
+ int jump_addr = INSN_ADDRESSES (INSN_UID (insn));
+ int dest_addr = INSN_ADDRESSES (uid);
+ int jump_offset = dest_addr - jump_addr - get_attr_length (insn);
+
+ return (jump_offset == 1
+ || (jump_offset == 2
+ && avr_2word_insn_p (next_active_insn (insn))));
+}
+
+
+/* Worker function for `HARD_REGNO_MODE_OK'. */
+/* Returns 1 if a value of mode MODE can be stored starting with hard
+ register number REGNO. On the enhanced core, anything larger than
+ 1 byte must start in even numbered register for "movw" to work
+ (this way we don't have to check for odd registers everywhere). */
+
+int
+avr_hard_regno_mode_ok (int regno, enum machine_mode mode)
+{
+ /* NOTE: 8-bit values must not be disallowed for R28 or R29.
+ Disallowing QI et al. in these regs might lead to code like
+ (set (subreg:QI (reg:HI 28) n) ...)
+ which will result in wrong code because reload does not
+ handle SUBREGs of hard regsisters like this.
+ This could be fixed in reload. However, it appears
+ that fixing reload is not wanted by reload people. */
+
+ /* Any GENERAL_REGS register can hold 8-bit values. */
+
+ if (GET_MODE_SIZE (mode) == 1)
+ return 1;
+
+ /* FIXME: Ideally, the following test is not needed.
+ However, it turned out that it can reduce the number
+ of spill fails. AVR and it's poor endowment with
+ address registers is extreme stress test for reload. */
+
+ if (GET_MODE_SIZE (mode) >= 4
+ && regno >= REG_X)
+ return 0;
+
+ /* All modes larger than 8 bits should start in an even register. */
+
+ return !(regno & 1);
+}
+
+
+/* Implement `HARD_REGNO_CALL_PART_CLOBBERED'. */
+
+int
+avr_hard_regno_call_part_clobbered (unsigned regno, enum machine_mode mode)
+{
+ /* FIXME: This hook gets called with MODE:REGNO combinations that don't
+ represent valid hard registers like, e.g. HI:29. Returning TRUE
+ for such registers can lead to performance degradation as mentioned
+ in PR53595. Thus, report invalid hard registers as FALSE. */
+
+ if (!avr_hard_regno_mode_ok (regno, mode))
+ return 0;
+
+ /* Return true if any of the following boundaries is crossed:
+ 17/18, 27/28 and 29/30. */
+
+ return ((regno < 18 && regno + GET_MODE_SIZE (mode) > 18)
+ || (regno < REG_Y && regno + GET_MODE_SIZE (mode) > REG_Y)
+ || (regno < REG_Z && regno + GET_MODE_SIZE (mode) > REG_Z));
+}
+
+
+/* Implement `MODE_CODE_BASE_REG_CLASS'. */
+
+enum reg_class
+avr_mode_code_base_reg_class (enum machine_mode mode ATTRIBUTE_UNUSED,
+ addr_space_t as, RTX_CODE outer_code,
+ RTX_CODE index_code ATTRIBUTE_UNUSED)
+{
+ if (!ADDR_SPACE_GENERIC_P (as))
+ {
+ return POINTER_Z_REGS;
+ }
+
+ if (!avr_strict_X)
+ return reload_completed ? BASE_POINTER_REGS : POINTER_REGS;
+
+ return PLUS == outer_code ? BASE_POINTER_REGS : POINTER_REGS;
+}
+
+
+/* Implement `REGNO_MODE_CODE_OK_FOR_BASE_P'. */
+
+bool
+avr_regno_mode_code_ok_for_base_p (int regno,
+ enum machine_mode mode ATTRIBUTE_UNUSED,
+ addr_space_t as ATTRIBUTE_UNUSED,
+ RTX_CODE outer_code,
+ RTX_CODE index_code ATTRIBUTE_UNUSED)
+{
+ bool ok = false;
+
+ if (!ADDR_SPACE_GENERIC_P (as))
+ {
+ if (regno < FIRST_PSEUDO_REGISTER
+ && regno == REG_Z)
+ {
+ return true;
+ }
+
+ if (reg_renumber)
+ {
+ regno = reg_renumber[regno];
+
+ if (regno == REG_Z)
+ {
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+ if (regno < FIRST_PSEUDO_REGISTER
+ && (regno == REG_X
+ || regno == REG_Y
+ || regno == REG_Z
+ || regno == ARG_POINTER_REGNUM))
+ {
+ ok = true;
+ }
+ else if (reg_renumber)
+ {
+ regno = reg_renumber[regno];
+
+ if (regno == REG_X
+ || regno == REG_Y
+ || regno == REG_Z
+ || regno == ARG_POINTER_REGNUM)
+ {
+ ok = true;
+ }
+ }
+
+ if (avr_strict_X
+ && PLUS == outer_code
+ && regno == REG_X)
+ {
+ ok = false;
+ }
+
+ return ok;
+}
+
+
+/* A helper for `output_reload_insisf' and `output_reload_inhi'. */
+/* Set 32-bit register OP[0] to compile-time constant OP[1].
+ CLOBBER_REG is a QI clobber register or NULL_RTX.
+ LEN == NULL: output instructions.
+ LEN != NULL: set *LEN to the length of the instruction sequence
+ (in words) printed with LEN = NULL.
+ If CLEAR_P is true, OP[0] had been cleard to Zero already.
+ If CLEAR_P is false, nothing is known about OP[0].
+
+ The effect on cc0 is as follows:
+
+ Load 0 to any register except ZERO_REG : NONE
+ Load ld register with any value : NONE
+ Anything else: : CLOBBER */
+
+static void
+output_reload_in_const (rtx *op, rtx clobber_reg, int *len, bool clear_p)
+{
+ rtx src = op[1];
+ rtx dest = op[0];
+ rtx xval, xdest[4];
+ int ival[4];
+ int clobber_val = 1234;
+ bool cooked_clobber_p = false;
+ bool set_p = false;
+ enum machine_mode mode = GET_MODE (dest);
+ int n, n_bytes = GET_MODE_SIZE (mode);
+
+ gcc_assert (REG_P (dest)
+ && CONSTANT_P (src));
+
+ if (len)
+ *len = 0;
+
+ /* (REG:SI 14) is special: It's neither in LD_REGS nor in NO_LD_REGS
+ but has some subregs that are in LD_REGS. Use the MSB (REG:QI 17). */
+
+ if (REGNO (dest) < 16
+ && REGNO (dest) + GET_MODE_SIZE (mode) > 16)
+ {
+ clobber_reg = all_regs_rtx[REGNO (dest) + n_bytes - 1];
+ }
+
+ /* We might need a clobber reg but don't have one. Look at the value to
+ be loaded more closely. A clobber is only needed if it is a symbol
+ or contains a byte that is neither 0, -1 or a power of 2. */
+
+ if (NULL_RTX == clobber_reg
+ && !test_hard_reg_class (LD_REGS, dest)
+ && (! (CONST_INT_P (src) || CONST_FIXED_P (src) || CONST_DOUBLE_P (src))
+ || !avr_popcount_each_byte (src, n_bytes,
+ (1 << 0) | (1 << 1) | (1 << 8))))
+ {
+ /* We have no clobber register but need one. Cook one up.
+ That's cheaper than loading from constant pool. */
+
+ cooked_clobber_p = true;
+ clobber_reg = all_regs_rtx[REG_Z + 1];
+ avr_asm_len ("mov __tmp_reg__,%0", &clobber_reg, len, 1);
+ }
+
+ /* Now start filling DEST from LSB to MSB. */
+
+ for (n = 0; n < n_bytes; n++)
+ {
+ int ldreg_p;
+ bool done_byte = false;
+ int j;
+ rtx xop[3];
+
+ /* Crop the n-th destination byte. */
+
+ xdest[n] = simplify_gen_subreg (QImode, dest, mode, n);
+ ldreg_p = test_hard_reg_class (LD_REGS, xdest[n]);
+
+ if (!CONST_INT_P (src)
+ && !CONST_FIXED_P (src)
+ && !CONST_DOUBLE_P (src))
+ {
+ static const char* const asm_code[][2] =
+ {
+ { "ldi %2,lo8(%1)" CR_TAB "mov %0,%2", "ldi %0,lo8(%1)" },
+ { "ldi %2,hi8(%1)" CR_TAB "mov %0,%2", "ldi %0,hi8(%1)" },
+ { "ldi %2,hlo8(%1)" CR_TAB "mov %0,%2", "ldi %0,hlo8(%1)" },
+ { "ldi %2,hhi8(%1)" CR_TAB "mov %0,%2", "ldi %0,hhi8(%1)" }
+ };
+
+ xop[0] = xdest[n];
+ xop[1] = src;
+ xop[2] = clobber_reg;
+
+ avr_asm_len (asm_code[n][ldreg_p], xop, len, ldreg_p ? 1 : 2);
+
+ continue;
+ }
+
+ /* Crop the n-th source byte. */
+
+ xval = simplify_gen_subreg (QImode, src, mode, n);
+ ival[n] = INTVAL (xval);
+
+ /* Look if we can reuse the low word by means of MOVW. */
+
+ if (n == 2
+ && n_bytes >= 4
+ && AVR_HAVE_MOVW)
+ {
+ rtx lo16 = simplify_gen_subreg (HImode, src, mode, 0);
+ rtx hi16 = simplify_gen_subreg (HImode, src, mode, 2);
+
+ if (INTVAL (lo16) == INTVAL (hi16))
+ {
+ if (0 != INTVAL (lo16)
+ || !clear_p)
+ {
+ avr_asm_len ("movw %C0,%A0", &op[0], len, 1);
+ }
+
+ break;
+ }
+ }
+
+ /* Don't use CLR so that cc0 is set as expected. */
+
+ if (ival[n] == 0)
+ {
+ if (!clear_p)
+ avr_asm_len (ldreg_p ? "ldi %0,0"
+ : ZERO_REGNO == REGNO (xdest[n]) ? "clr %0"
+ : "mov %0,__zero_reg__",
+ &xdest[n], len, 1);
+ continue;
+ }
+
+ if (clobber_val == ival[n]
+ && REGNO (clobber_reg) == REGNO (xdest[n]))
+ {
+ continue;
+ }
+
+ /* LD_REGS can use LDI to move a constant value */
+
+ if (ldreg_p)
+ {
+ xop[0] = xdest[n];
+ xop[1] = xval;
+ avr_asm_len ("ldi %0,lo8(%1)", xop, len, 1);
+ continue;
+ }
+
+ /* Try to reuse value already loaded in some lower byte. */
+
+ for (j = 0; j < n; j++)
+ if (ival[j] == ival[n])
+ {
+ xop[0] = xdest[n];
+ xop[1] = xdest[j];
+
+ avr_asm_len ("mov %0,%1", xop, len, 1);
+ done_byte = true;
+ break;
+ }
+
+ if (done_byte)
+ continue;
+
+ /* Need no clobber reg for -1: Use CLR/DEC */
+
+ if (-1 == ival[n])
+ {
+ if (!clear_p)
+ avr_asm_len ("clr %0", &xdest[n], len, 1);
+
+ avr_asm_len ("dec %0", &xdest[n], len, 1);
+ continue;
+ }
+ else if (1 == ival[n])
+ {
+ if (!clear_p)
+ avr_asm_len ("clr %0", &xdest[n], len, 1);
+
+ avr_asm_len ("inc %0", &xdest[n], len, 1);
+ continue;
+ }
+
+ /* Use T flag or INC to manage powers of 2 if we have
+ no clobber reg. */
+
+ if (NULL_RTX == clobber_reg
+ && single_one_operand (xval, QImode))
+ {
+ xop[0] = xdest[n];
+ xop[1] = GEN_INT (exact_log2 (ival[n] & GET_MODE_MASK (QImode)));
+
+ gcc_assert (constm1_rtx != xop[1]);
+
+ if (!set_p)
+ {
+ set_p = true;
+ avr_asm_len ("set", xop, len, 1);
+ }
+
+ if (!clear_p)
+ avr_asm_len ("clr %0", xop, len, 1);
+
+ avr_asm_len ("bld %0,%1", xop, len, 1);
+ continue;
+ }
+
+ /* We actually need the LD_REGS clobber reg. */
+
+ gcc_assert (NULL_RTX != clobber_reg);
+
+ xop[0] = xdest[n];
+ xop[1] = xval;
+ xop[2] = clobber_reg;
+ clobber_val = ival[n];
+
+ avr_asm_len ("ldi %2,lo8(%1)" CR_TAB
+ "mov %0,%2", xop, len, 2);
+ }
+
+ /* If we cooked up a clobber reg above, restore it. */
+
+ if (cooked_clobber_p)
+ {
+ avr_asm_len ("mov %0,__tmp_reg__", &clobber_reg, len, 1);
+ }
+}
+
+
+/* Reload the constant OP[1] into the HI register OP[0].
+ CLOBBER_REG is a QI clobber reg needed to move vast majority of consts
+ into a NO_LD_REGS register. If CLOBBER_REG is NULL_RTX we either don't
+ need a clobber reg or have to cook one up.
+
+ PLEN == NULL: Output instructions.
+ PLEN != NULL: Output nothing. Set *PLEN to number of words occupied
+ by the insns printed.
+
+ Return "". */
+
+const char*
+output_reload_inhi (rtx *op, rtx clobber_reg, int *plen)
+{
+ output_reload_in_const (op, clobber_reg, plen, false);
+ return "";
+}
+
+
+/* Reload a SI or SF compile time constant OP[1] into the register OP[0].
+ CLOBBER_REG is a QI clobber reg needed to move vast majority of consts
+ into a NO_LD_REGS register. If CLOBBER_REG is NULL_RTX we either don't
+ need a clobber reg or have to cook one up.
+
+ LEN == NULL: Output instructions.
+
+ LEN != NULL: Output nothing. Set *LEN to number of words occupied
+ by the insns printed.
+
+ Return "". */
+
+const char *
+output_reload_insisf (rtx *op, rtx clobber_reg, int *len)
+{
+ if (AVR_HAVE_MOVW
+ && !test_hard_reg_class (LD_REGS, op[0])
+ && (CONST_INT_P (op[1])
+ || CONST_FIXED_P (op[1])
+ || CONST_DOUBLE_P (op[1])))
+ {
+ int len_clr, len_noclr;
+
+ /* In some cases it is better to clear the destination beforehand, e.g.
+
+ CLR R2 CLR R3 MOVW R4,R2 INC R2
+
+ is shorther than
+
+ CLR R2 INC R2 CLR R3 CLR R4 CLR R5
+
+ We find it too tedious to work that out in the print function.
+ Instead, we call the print function twice to get the lengths of
+ both methods and use the shortest one. */
+
+ output_reload_in_const (op, clobber_reg, &len_clr, true);
+ output_reload_in_const (op, clobber_reg, &len_noclr, false);
+
+ if (len_noclr - len_clr == 4)
+ {
+ /* Default needs 4 CLR instructions: clear register beforehand. */
+
+ avr_asm_len ("mov %A0,__zero_reg__" CR_TAB
+ "mov %B0,__zero_reg__" CR_TAB
+ "movw %C0,%A0", &op[0], len, 3);
+
+ output_reload_in_const (op, clobber_reg, len, true);
+
+ if (len)
+ *len += 3;
+
+ return "";
+ }
+ }
+
+ /* Default: destination not pre-cleared. */
+
+ output_reload_in_const (op, clobber_reg, len, false);
+ return "";
+}
+
+const char*
+avr_out_reload_inpsi (rtx *op, rtx clobber_reg, int *len)
+{
+ output_reload_in_const (op, clobber_reg, len, false);
+ return "";
+}
+
+
+/* Worker function for `ASM_OUTPUT_ADDR_VEC_ELT'. */
+
+void
+avr_output_addr_vec_elt (FILE *stream, int value)
+{
+ if (AVR_HAVE_JMP_CALL)
+ fprintf (stream, "\t.word gs(.L%d)\n", value);
+ else
+ fprintf (stream, "\trjmp .L%d\n", value);
+}
+
+
+/* Implement `TARGET_HARD_REGNO_SCRATCH_OK'. */
+/* Returns true if SCRATCH are safe to be allocated as a scratch
+ registers (for a define_peephole2) in the current function. */
+
+static bool
+avr_hard_regno_scratch_ok (unsigned int regno)
+{
+ /* Interrupt functions can only use registers that have already been saved
+ by the prologue, even if they would normally be call-clobbered. */
+
+ if ((cfun->machine->is_interrupt || cfun->machine->is_signal)
+ && !df_regs_ever_live_p (regno))
+ return false;
+
+ /* Don't allow hard registers that might be part of the frame pointer.
+ Some places in the compiler just test for [HARD_]FRAME_POINTER_REGNUM
+ and don't care for a frame pointer that spans more than one register. */
+
+ if ((!reload_completed || frame_pointer_needed)
+ && (regno == REG_Y || regno == REG_Y + 1))
+ {
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Worker function for `HARD_REGNO_RENAME_OK'. */
+/* Return nonzero if register OLD_REG can be renamed to register NEW_REG. */
+
+int
+avr_hard_regno_rename_ok (unsigned int old_reg,
+ unsigned int new_reg)
+{
+ /* Interrupt functions can only use registers that have already been
+ saved by the prologue, even if they would normally be
+ call-clobbered. */
+
+ if ((cfun->machine->is_interrupt || cfun->machine->is_signal)
+ && !df_regs_ever_live_p (new_reg))
+ return 0;
+
+ /* Don't allow hard registers that might be part of the frame pointer.
+ Some places in the compiler just test for [HARD_]FRAME_POINTER_REGNUM
+ and don't care for a frame pointer that spans more than one register. */
+
+ if ((!reload_completed || frame_pointer_needed)
+ && (old_reg == REG_Y || old_reg == REG_Y + 1
+ || new_reg == REG_Y || new_reg == REG_Y + 1))
+ {
+ return 0;
+ }
+
+ return 1;
+}
+
+/* Output a branch that tests a single bit of a register (QI, HI, SI or DImode)
+ or memory location in the I/O space (QImode only).
+
+ Operand 0: comparison operator (must be EQ or NE, compare bit to zero).
+ Operand 1: register operand to test, or CONST_INT memory address.
+ Operand 2: bit number.
+ Operand 3: label to jump to if the test is true. */
+
+const char*
+avr_out_sbxx_branch (rtx insn, rtx operands[])
+{
+ enum rtx_code comp = GET_CODE (operands[0]);
+ bool long_jump = get_attr_length (insn) >= 4;
+ bool reverse = long_jump || jump_over_one_insn_p (insn, operands[3]);
+
+ if (comp == GE)
+ comp = EQ;
+ else if (comp == LT)
+ comp = NE;
+
+ if (reverse)
+ comp = reverse_condition (comp);
+
+ switch (GET_CODE (operands[1]))
+ {
+ default:
+ gcc_unreachable();
+
+ case CONST_INT:
+
+ if (low_io_address_operand (operands[1], QImode))
+ {
+ if (comp == EQ)
+ output_asm_insn ("sbis %i1,%2", operands);
+ else
+ output_asm_insn ("sbic %i1,%2", operands);
+ }
+ else
+ {
+ output_asm_insn ("in __tmp_reg__,%i1", operands);
+ if (comp == EQ)
+ output_asm_insn ("sbrs __tmp_reg__,%2", operands);
+ else
+ output_asm_insn ("sbrc __tmp_reg__,%2", operands);
+ }
+
+ break; /* CONST_INT */
+
+ case REG:
+
+ if (comp == EQ)
+ output_asm_insn ("sbrs %T1%T2", operands);
+ else
+ output_asm_insn ("sbrc %T1%T2", operands);
+
+ break; /* REG */
+ } /* switch */
+
+ if (long_jump)
+ return ("rjmp .+4" CR_TAB
+ "jmp %x3");
+
+ if (!reverse)
+ return "rjmp %x3";
+
+ return "";
+}
+
+/* Worker function for `TARGET_ASM_CONSTRUCTOR'. */
+
+static void
+avr_asm_out_ctor (rtx symbol, int priority)
+{
+ fputs ("\t.global __do_global_ctors\n", asm_out_file);
+ default_ctor_section_asm_out_constructor (symbol, priority);
+}
+
+
+/* Worker function for `TARGET_ASM_DESTRUCTOR'. */
+
+static void
+avr_asm_out_dtor (rtx symbol, int priority)
+{
+ fputs ("\t.global __do_global_dtors\n", asm_out_file);
+ default_dtor_section_asm_out_destructor (symbol, priority);
+}
+
+
+/* Worker function for `TARGET_RETURN_IN_MEMORY'. */
+
+static bool
+avr_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
+{
+ if (TYPE_MODE (type) == BLKmode)
+ {
+ HOST_WIDE_INT size = int_size_in_bytes (type);
+ return (size == -1 || size > 8);
+ }
+ else
+ return false;
+}
+
+
+/* Implement `CASE_VALUES_THRESHOLD'. */
+/* Supply the default for --param case-values-threshold=0 */
+
+static unsigned int
+avr_case_values_threshold (void)
+{
+ /* The exact break-even point between a jump table and an if-else tree
+ depends on several factors not available here like, e.g. if 8-bit
+ comparisons can be used in the if-else tree or not, on the
+ range of the case values, if the case value can be reused, on the
+ register allocation, etc. '7' appears to be a good choice. */
+
+ return 7;
+}
+
+
+/* Implement `TARGET_ADDR_SPACE_ADDRESS_MODE'. */
+
+static enum machine_mode
+avr_addr_space_address_mode (addr_space_t as)
+{
+ return avr_addrspace[as].pointer_size == 3 ? PSImode : HImode;
+}
+
+
+/* Implement `TARGET_ADDR_SPACE_POINTER_MODE'. */
+
+static enum machine_mode
+avr_addr_space_pointer_mode (addr_space_t as)
+{
+ return avr_addr_space_address_mode (as);
+}
+
+
+/* Helper for following function. */
+
+static bool
+avr_reg_ok_for_pgm_addr (rtx reg, bool strict)
+{
+ gcc_assert (REG_P (reg));
+
+ if (strict)
+ {
+ return REGNO (reg) == REG_Z;
+ }
+
+ /* Avoid combine to propagate hard regs. */
+
+ if (can_create_pseudo_p()
+ && REGNO (reg) < REG_Z)
+ {
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Implement `TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P'. */
+
+static bool
+avr_addr_space_legitimate_address_p (enum machine_mode mode, rtx x,
+ bool strict, addr_space_t as)
+{
+ bool ok = false;
+
+ switch (as)
+ {
+ default:
+ gcc_unreachable();
+
+ case ADDR_SPACE_GENERIC:
+ return avr_legitimate_address_p (mode, x, strict);
+
+ case ADDR_SPACE_FLASH:
+ case ADDR_SPACE_FLASH1:
+ case ADDR_SPACE_FLASH2:
+ case ADDR_SPACE_FLASH3:
+ case ADDR_SPACE_FLASH4:
+ case ADDR_SPACE_FLASH5:
+
+ switch (GET_CODE (x))
+ {
+ case REG:
+ ok = avr_reg_ok_for_pgm_addr (x, strict);
+ break;
+
+ case POST_INC:
+ ok = avr_reg_ok_for_pgm_addr (XEXP (x, 0), strict);
+ break;
+
+ default:
+ break;
+ }
+
+ break; /* FLASH */
+
+ case ADDR_SPACE_MEMX:
+ if (REG_P (x))
+ ok = (!strict
+ && can_create_pseudo_p());
+
+ if (LO_SUM == GET_CODE (x))
+ {
+ rtx hi = XEXP (x, 0);
+ rtx lo = XEXP (x, 1);
+
+ ok = (REG_P (hi)
+ && (!strict || REGNO (hi) < FIRST_PSEUDO_REGISTER)
+ && REG_P (lo)
+ && REGNO (lo) == REG_Z);
+ }
+
+ break; /* MEMX */
+ }
+
+ if (avr_log.legitimate_address_p)
+ {
+ avr_edump ("\n%?: ret=%b, mode=%m strict=%d "
+ "reload_completed=%d reload_in_progress=%d %s:",
+ ok, mode, strict, reload_completed, reload_in_progress,
+ reg_renumber ? "(reg_renumber)" : "");
+
+ if (GET_CODE (x) == PLUS
+ && REG_P (XEXP (x, 0))
+ && CONST_INT_P (XEXP (x, 1))
+ && IN_RANGE (INTVAL (XEXP (x, 1)), 0, MAX_LD_OFFSET (mode))
+ && reg_renumber)
+ {
+ avr_edump ("(r%d ---> r%d)", REGNO (XEXP (x, 0)),
+ true_regnum (XEXP (x, 0)));
+ }
+
+ avr_edump ("\n%r\n", x);
+ }
+
+ return ok;
+}
+
+
+/* Implement `TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS'. */
+
+static rtx
+avr_addr_space_legitimize_address (rtx x, rtx old_x,
+ enum machine_mode mode, addr_space_t as)
+{
+ if (ADDR_SPACE_GENERIC_P (as))
+ return avr_legitimize_address (x, old_x, mode);
+
+ if (avr_log.legitimize_address)
+ {
+ avr_edump ("\n%?: mode=%m\n %r\n", mode, old_x);
+ }
+
+ return old_x;
+}
+
+
+/* Implement `TARGET_ADDR_SPACE_CONVERT'. */
+
+static rtx
+avr_addr_space_convert (rtx src, tree type_from, tree type_to)
+{
+ addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (type_from));
+ addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type_to));
+
+ if (avr_log.progmem)
+ avr_edump ("\n%!: op = %r\nfrom = %t\nto = %t\n",
+ src, type_from, type_to);
+
+ /* Up-casting from 16-bit to 24-bit pointer. */
+
+ if (as_from != ADDR_SPACE_MEMX
+ && as_to == ADDR_SPACE_MEMX)
+ {
+ int msb;
+ rtx sym = src;
+ rtx reg = gen_reg_rtx (PSImode);
+
+ while (CONST == GET_CODE (sym) || PLUS == GET_CODE (sym))
+ sym = XEXP (sym, 0);
+
+ /* Look at symbol flags: avr_encode_section_info set the flags
+ also if attribute progmem was seen so that we get the right
+ promotion for, e.g. PSTR-like strings that reside in generic space
+ but are located in flash. In that case we patch the incoming
+ address space. */
+
+ if (SYMBOL_REF == GET_CODE (sym)
+ && ADDR_SPACE_FLASH == AVR_SYMBOL_GET_ADDR_SPACE (sym))
+ {
+ as_from = ADDR_SPACE_FLASH;
+ }
+
+ /* Linearize memory: RAM has bit 23 set. */
+
+ msb = ADDR_SPACE_GENERIC_P (as_from)
+ ? 0x80
+ : avr_addrspace[as_from].segment;
+
+ src = force_reg (Pmode, src);
+
+ emit_insn (msb == 0
+ ? gen_zero_extendhipsi2 (reg, src)
+ : gen_n_extendhipsi2 (reg, gen_int_mode (msb, QImode), src));
+
+ return reg;
+ }
+
+ /* Down-casting from 24-bit to 16-bit throws away the high byte. */
+
+ if (as_from == ADDR_SPACE_MEMX
+ && as_to != ADDR_SPACE_MEMX)
+ {
+ rtx new_src = gen_reg_rtx (Pmode);
+
+ src = force_reg (PSImode, src);
+
+ emit_move_insn (new_src,
+ simplify_gen_subreg (Pmode, src, PSImode, 0));
+ return new_src;
+ }
+
+ return src;
+}
+
+
+/* Implement `TARGET_ADDR_SPACE_SUBSET_P'. */
+
+static bool
+avr_addr_space_subset_p (addr_space_t subset ATTRIBUTE_UNUSED,
+ addr_space_t superset ATTRIBUTE_UNUSED)
+{
+ /* Allow any kind of pointer mess. */
+
+ return true;
+}
+
+
+/* Implement `TARGET_CONVERT_TO_TYPE'. */
+
+static tree
+avr_convert_to_type (tree type, tree expr)
+{
+ /* Print a diagnose for pointer conversion that changes the address
+ space of the pointer target to a non-enclosing address space,
+ provided -Waddr-space-convert is on.
+
+ FIXME: Filter out cases where the target object is known to
+ be located in the right memory, like in
+
+ (const __flash*) PSTR ("text")
+
+ Also try to distinguish between explicit casts requested by
+ the user and implicit casts like
+
+ void f (const __flash char*);
+
+ void g (const char *p)
+ {
+ f ((const __flash*) p);
+ }
+
+ under the assumption that an explicit casts means that the user
+ knows what he is doing, e.g. interface with PSTR or old style
+ code with progmem and pgm_read_xxx.
+ */
+
+ if (avr_warn_addr_space_convert
+ && expr != error_mark_node
+ && POINTER_TYPE_P (type)
+ && POINTER_TYPE_P (TREE_TYPE (expr)))
+ {
+ addr_space_t as_old = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (expr)));
+ addr_space_t as_new = TYPE_ADDR_SPACE (TREE_TYPE (type));
+
+ if (avr_log.progmem)
+ avr_edump ("%?: type = %t\nexpr = %t\n\n", type, expr);
+
+ if (as_new != ADDR_SPACE_MEMX
+ && as_new != as_old)
+ {
+ location_t loc = EXPR_LOCATION (expr);
+ const char *name_old = avr_addrspace[as_old].name;
+ const char *name_new = avr_addrspace[as_new].name;
+
+ warning (OPT_Waddr_space_convert,
+ "conversion from address space %qs to address space %qs",
+ ADDR_SPACE_GENERIC_P (as_old) ? "generic" : name_old,
+ ADDR_SPACE_GENERIC_P (as_new) ? "generic" : name_new);
+
+ return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, expr);
+ }
+ }
+
+ return NULL_TREE;
+}
+
+
+/* Worker function for movmemhi expander.
+ XOP[0] Destination as MEM:BLK
+ XOP[1] Source " "
+ XOP[2] # Bytes to copy
+
+ Return TRUE if the expansion is accomplished.
+ Return FALSE if the operand compination is not supported. */
+
+bool
+avr_emit_movmemhi (rtx *xop)
+{
+ HOST_WIDE_INT count;
+ enum machine_mode loop_mode;
+ addr_space_t as = MEM_ADDR_SPACE (xop[1]);
+ rtx loop_reg, addr1, a_src, a_dest, insn, xas;
+ rtx a_hi8 = NULL_RTX;
+
+ if (avr_mem_flash_p (xop[0]))
+ return false;
+
+ if (!CONST_INT_P (xop[2]))
+ return false;
+
+ count = INTVAL (xop[2]);
+ if (count <= 0)
+ return false;
+
+ a_src = XEXP (xop[1], 0);
+ a_dest = XEXP (xop[0], 0);
+
+ if (PSImode == GET_MODE (a_src))
+ {
+ gcc_assert (as == ADDR_SPACE_MEMX);
+
+ loop_mode = (count < 0x100) ? QImode : HImode;
+ loop_reg = gen_rtx_REG (loop_mode, 24);
+ emit_move_insn (loop_reg, gen_int_mode (count, loop_mode));
+
+ addr1 = simplify_gen_subreg (HImode, a_src, PSImode, 0);
+ a_hi8 = simplify_gen_subreg (QImode, a_src, PSImode, 2);
+ }
+ else
+ {
+ int segment = avr_addrspace[as].segment;
+
+ if (segment
+ && avr_current_device->n_flash > 1)
+ {
+ a_hi8 = GEN_INT (segment);
+ emit_move_insn (rampz_rtx, a_hi8 = copy_to_mode_reg (QImode, a_hi8));
+ }
+ else if (!ADDR_SPACE_GENERIC_P (as))
+ {
+ as = ADDR_SPACE_FLASH;
+ }
+
+ addr1 = a_src;
+
+ loop_mode = (count <= 0x100) ? QImode : HImode;
+ loop_reg = copy_to_mode_reg (loop_mode, gen_int_mode (count, loop_mode));
+ }
+
+ xas = GEN_INT (as);
+
+ /* FIXME: Register allocator might come up with spill fails if it is left
+ on its own. Thus, we allocate the pointer registers by hand:
+ Z = source address
+ X = destination address */
+
+ emit_move_insn (lpm_addr_reg_rtx, addr1);
+ emit_move_insn (gen_rtx_REG (HImode, REG_X), a_dest);
+
+ /* FIXME: Register allocator does a bad job and might spill address
+ register(s) inside the loop leading to additional move instruction
+ to/from stack which could clobber tmp_reg. Thus, do *not* emit
+ load and store as separate insns. Instead, we perform the copy
+ by means of one monolithic insn. */
+
+ gcc_assert (TMP_REGNO == LPM_REGNO);
+
+ if (as != ADDR_SPACE_MEMX)
+ {
+ /* Load instruction ([E]LPM or LD) is known at compile time:
+ Do the copy-loop inline. */
+
+ rtx (*fun) (rtx, rtx, rtx)
+ = QImode == loop_mode ? gen_movmem_qi : gen_movmem_hi;
+
+ insn = fun (xas, loop_reg, loop_reg);
+ }
+ else
+ {
+ rtx (*fun) (rtx, rtx)
+ = QImode == loop_mode ? gen_movmemx_qi : gen_movmemx_hi;
+
+ emit_move_insn (gen_rtx_REG (QImode, 23), a_hi8);
+
+ insn = fun (xas, GEN_INT (avr_addr.rampz));
+ }
+
+ set_mem_addr_space (SET_SRC (XVECEXP (insn, 0, 0)), as);
+ emit_insn (insn);
+
+ return true;
+}
+
+
+/* Print assembler for movmem_qi, movmem_hi insns...
+ $0 : Address Space
+ $1, $2 : Loop register
+ Z : Source address
+ X : Destination address
+*/
+
+const char*
+avr_out_movmem (rtx insn ATTRIBUTE_UNUSED, rtx *op, int *plen)
+{
+ addr_space_t as = (addr_space_t) INTVAL (op[0]);
+ enum machine_mode loop_mode = GET_MODE (op[1]);
+ bool sbiw_p = test_hard_reg_class (ADDW_REGS, op[1]);
+ rtx xop[3];
+
+ if (plen)
+ *plen = 0;
+
+ xop[0] = op[0];
+ xop[1] = op[1];
+ xop[2] = tmp_reg_rtx;
+
+ /* Loop label */
+
+ avr_asm_len ("0:", xop, plen, 0);
+
+ /* Load with post-increment */
+
+ switch (as)
+ {
+ default:
+ gcc_unreachable();
+
+ case ADDR_SPACE_GENERIC:
+
+ avr_asm_len ("ld %2,Z+", xop, plen, 1);
+ break;
+
+ case ADDR_SPACE_FLASH:
+
+ if (AVR_HAVE_LPMX)
+ avr_asm_len ("lpm %2,Z+", xop, plen, 1);
+ else
+ avr_asm_len ("lpm" CR_TAB
+ "adiw r30,1", xop, plen, 2);
+ break;
+
+ case ADDR_SPACE_FLASH1:
+ case ADDR_SPACE_FLASH2:
+ case ADDR_SPACE_FLASH3:
+ case ADDR_SPACE_FLASH4:
+ case ADDR_SPACE_FLASH5:
+
+ if (AVR_HAVE_ELPMX)
+ avr_asm_len ("elpm %2,Z+", xop, plen, 1);
+ else
+ avr_asm_len ("elpm" CR_TAB
+ "adiw r30,1", xop, plen, 2);
+ break;
+ }
+
+ /* Store with post-increment */
+
+ avr_asm_len ("st X+,%2", xop, plen, 1);
+
+ /* Decrement loop-counter and set Z-flag */
+
+ if (QImode == loop_mode)
+ {
+ avr_asm_len ("dec %1", xop, plen, 1);
+ }
+ else if (sbiw_p)
+ {
+ avr_asm_len ("sbiw %1,1", xop, plen, 1);
+ }
+ else
+ {
+ avr_asm_len ("subi %A1,1" CR_TAB
+ "sbci %B1,0", xop, plen, 2);
+ }
+
+ /* Loop until zero */
+
+ return avr_asm_len ("brne 0b", xop, plen, 1);
+}
+
+
+
+/* Helper for __builtin_avr_delay_cycles */
+
+static rtx
+avr_mem_clobber (void)
+{
+ rtx mem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
+ MEM_VOLATILE_P (mem) = 1;
+ return mem;
+}
+
+static void
+avr_expand_delay_cycles (rtx operands0)
+{
+ unsigned HOST_WIDE_INT cycles = UINTVAL (operands0) & GET_MODE_MASK (SImode);
+ unsigned HOST_WIDE_INT cycles_used;
+ unsigned HOST_WIDE_INT loop_count;
+
+ if (IN_RANGE (cycles, 83886082, 0xFFFFFFFF))
+ {
+ loop_count = ((cycles - 9) / 6) + 1;
+ cycles_used = ((loop_count - 1) * 6) + 9;
+ emit_insn (gen_delay_cycles_4 (gen_int_mode (loop_count, SImode),
+ avr_mem_clobber()));
+ cycles -= cycles_used;
+ }
+
+ if (IN_RANGE (cycles, 262145, 83886081))
+ {
+ loop_count = ((cycles - 7) / 5) + 1;
+ if (loop_count > 0xFFFFFF)
+ loop_count = 0xFFFFFF;
+ cycles_used = ((loop_count - 1) * 5) + 7;
+ emit_insn (gen_delay_cycles_3 (gen_int_mode (loop_count, SImode),
+ avr_mem_clobber()));
+ cycles -= cycles_used;
+ }
+
+ if (IN_RANGE (cycles, 768, 262144))
+ {
+ loop_count = ((cycles - 5) / 4) + 1;
+ if (loop_count > 0xFFFF)
+ loop_count = 0xFFFF;
+ cycles_used = ((loop_count - 1) * 4) + 5;
+ emit_insn (gen_delay_cycles_2 (gen_int_mode (loop_count, HImode),
+ avr_mem_clobber()));
+ cycles -= cycles_used;
+ }
+
+ if (IN_RANGE (cycles, 6, 767))
+ {
+ loop_count = cycles / 3;
+ if (loop_count > 255)
+ loop_count = 255;
+ cycles_used = loop_count * 3;
+ emit_insn (gen_delay_cycles_1 (gen_int_mode (loop_count, QImode),
+ avr_mem_clobber()));
+ cycles -= cycles_used;
+ }
+
+ while (cycles >= 2)
+ {
+ emit_insn (gen_nopv (GEN_INT(2)));
+ cycles -= 2;
+ }
+
+ if (cycles == 1)
+ {
+ emit_insn (gen_nopv (GEN_INT(1)));
+ cycles--;
+ }
+}
+
+
+/* Compute the image of x under f, i.e. perform x --> f(x) */
+
+static int
+avr_map (unsigned int f, int x)
+{
+ return x < 8 ? (f >> (4 * x)) & 0xf : 0;
+}
+
+
+/* Return some metrics of map A. */
+
+enum
+ {
+ /* Number of fixed points in { 0 ... 7 } */
+ MAP_FIXED_0_7,
+
+ /* Size of preimage of non-fixed points in { 0 ... 7 } */
+ MAP_NONFIXED_0_7,
+
+ /* Mask representing the fixed points in { 0 ... 7 } */
+ MAP_MASK_FIXED_0_7,
+
+ /* Size of the preimage of { 0 ... 7 } */
+ MAP_PREIMAGE_0_7,
+
+ /* Mask that represents the preimage of { f } */
+ MAP_MASK_PREIMAGE_F
+ };
+
+static unsigned
+avr_map_metric (unsigned int a, int mode)
+{
+ unsigned i, metric = 0;
+
+ for (i = 0; i < 8; i++)
+ {
+ unsigned ai = avr_map (a, i);
+
+ if (mode == MAP_FIXED_0_7)
+ metric += ai == i;
+ else if (mode == MAP_NONFIXED_0_7)
+ metric += ai < 8 && ai != i;
+ else if (mode == MAP_MASK_FIXED_0_7)
+ metric |= ((unsigned) (ai == i)) << i;
+ else if (mode == MAP_PREIMAGE_0_7)
+ metric += ai < 8;
+ else if (mode == MAP_MASK_PREIMAGE_F)
+ metric |= ((unsigned) (ai == 0xf)) << i;
+ else
+ gcc_unreachable();
+ }
+
+ return metric;
+}
+
+
+/* Return true if IVAL has a 0xf in its hexadecimal representation
+ and false, otherwise. Only nibbles 0..7 are taken into account.
+ Used as constraint helper for C0f and Cxf. */
+
+bool
+avr_has_nibble_0xf (rtx ival)
+{
+ unsigned int map = UINTVAL (ival) & GET_MODE_MASK (SImode);
+ return 0 != avr_map_metric (map, MAP_MASK_PREIMAGE_F);
+}
+
+
+/* We have a set of bits that are mapped by a function F.
+ Try to decompose F by means of a second function G so that
+
+ F = F o G^-1 o G
+
+ and
+
+ cost (F o G^-1) + cost (G) < cost (F)
+
+ Example: Suppose builtin insert_bits supplies us with the map
+ F = 0x3210ffff. Instead of doing 4 bit insertions to get the high
+ nibble of the result, we can just as well rotate the bits before inserting
+ them and use the map 0x7654ffff which is cheaper than the original map.
+ For this example G = G^-1 = 0x32107654 and F o G^-1 = 0x7654ffff. */
+
+typedef struct
+{
+ /* tree code of binary function G */
+ enum tree_code code;
+
+ /* The constant second argument of G */
+ int arg;
+
+ /* G^-1, the inverse of G (*, arg) */
+ unsigned ginv;
+
+ /* The cost of appplying G (*, arg) */
+ int cost;
+
+ /* The composition F o G^-1 (*, arg) for some function F */
+ unsigned int map;
+
+ /* For debug purpose only */
+ const char *str;
+} avr_map_op_t;
+
+static const avr_map_op_t avr_map_op[] =
+ {
+ { LROTATE_EXPR, 0, 0x76543210, 0, 0, "id" },
+ { LROTATE_EXPR, 1, 0x07654321, 2, 0, "<<<" },
+ { LROTATE_EXPR, 2, 0x10765432, 4, 0, "<<<" },
+ { LROTATE_EXPR, 3, 0x21076543, 4, 0, "<<<" },
+ { LROTATE_EXPR, 4, 0x32107654, 1, 0, "<<<" },
+ { LROTATE_EXPR, 5, 0x43210765, 3, 0, "<<<" },
+ { LROTATE_EXPR, 6, 0x54321076, 5, 0, "<<<" },
+ { LROTATE_EXPR, 7, 0x65432107, 3, 0, "<<<" },
+ { RSHIFT_EXPR, 1, 0x6543210c, 1, 0, ">>" },
+ { RSHIFT_EXPR, 1, 0x7543210c, 1, 0, ">>" },
+ { RSHIFT_EXPR, 2, 0x543210cc, 2, 0, ">>" },
+ { RSHIFT_EXPR, 2, 0x643210cc, 2, 0, ">>" },
+ { RSHIFT_EXPR, 2, 0x743210cc, 2, 0, ">>" },
+ { LSHIFT_EXPR, 1, 0xc7654321, 1, 0, "<<" },
+ { LSHIFT_EXPR, 2, 0xcc765432, 2, 0, "<<" }
+ };
+
+
+/* Try to decompose F as F = (F o G^-1) o G as described above.
+ The result is a struct representing F o G^-1 and G.
+ If result.cost < 0 then such a decomposition does not exist. */
+
+static avr_map_op_t
+avr_map_decompose (unsigned int f, const avr_map_op_t *g, bool val_const_p)
+{
+ int i;
+ bool val_used_p = 0 != avr_map_metric (f, MAP_MASK_PREIMAGE_F);
+ avr_map_op_t f_ginv = *g;
+ unsigned int ginv = g->ginv;
+
+ f_ginv.cost = -1;
+
+ /* Step 1: Computing F o G^-1 */
+
+ for (i = 7; i >= 0; i--)
+ {
+ int x = avr_map (f, i);
+
+ if (x <= 7)
+ {
+ x = avr_map (ginv, x);
+
+ /* The bit is no element of the image of G: no avail (cost = -1) */
+
+ if (x > 7)
+ return f_ginv;
+ }
+
+ f_ginv.map = (f_ginv.map << 4) + x;
+ }
+
+ /* Step 2: Compute the cost of the operations.
+ The overall cost of doing an operation prior to the insertion is
+ the cost of the insertion plus the cost of the operation. */
+
+ /* Step 2a: Compute cost of F o G^-1 */
+
+ if (0 == avr_map_metric (f_ginv.map, MAP_NONFIXED_0_7))
+ {
+ /* The mapping consists only of fixed points and can be folded
+ to AND/OR logic in the remainder. Reasonable cost is 3. */
+
+ f_ginv.cost = 2 + (val_used_p && !val_const_p);
+ }
+ else
+ {
+ rtx xop[4];
+
+ /* Get the cost of the insn by calling the output worker with some
+ fake values. Mimic effect of reloading xop[3]: Unused operands
+ are mapped to 0 and used operands are reloaded to xop[0]. */
+
+ xop[0] = all_regs_rtx[24];
+ xop[1] = gen_int_mode (f_ginv.map, SImode);
+ xop[2] = all_regs_rtx[25];
+ xop[3] = val_used_p ? xop[0] : const0_rtx;
+
+ avr_out_insert_bits (xop, &f_ginv.cost);
+
+ f_ginv.cost += val_const_p && val_used_p ? 1 : 0;
+ }
+
+ /* Step 2b: Add cost of G */
+
+ f_ginv.cost += g->cost;
+
+ if (avr_log.builtin)
+ avr_edump (" %s%d=%d", g->str, g->arg, f_ginv.cost);
+
+ return f_ginv;
+}
+
+
+/* Insert bits from XOP[1] into XOP[0] according to MAP.
+ XOP[0] and XOP[1] don't overlap.
+ If FIXP_P = true: Move all bits according to MAP using BLD/BST sequences.
+ If FIXP_P = false: Just move the bit if its position in the destination
+ is different to its source position. */
+
+static void
+avr_move_bits (rtx *xop, unsigned int map, bool fixp_p, int *plen)
+{
+ int bit_dest, b;
+
+ /* T-flag contains this bit of the source, i.e. of XOP[1] */
+ int t_bit_src = -1;
+
+ /* We order the operations according to the requested source bit b. */
+
+ for (b = 0; b < 8; b++)
+ for (bit_dest = 0; bit_dest < 8; bit_dest++)
+ {
+ int bit_src = avr_map (map, bit_dest);
+
+ if (b != bit_src
+ || bit_src >= 8
+ /* Same position: No need to copy as requested by FIXP_P. */
+ || (bit_dest == bit_src && !fixp_p))
+ continue;
+
+ if (t_bit_src != bit_src)
+ {
+ /* Source bit is not yet in T: Store it to T. */
+
+ t_bit_src = bit_src;
+
+ xop[3] = GEN_INT (bit_src);
+ avr_asm_len ("bst %T1%T3", xop, plen, 1);
+ }
+
+ /* Load destination bit with T. */
+
+ xop[3] = GEN_INT (bit_dest);
+ avr_asm_len ("bld %T0%T3", xop, plen, 1);
+ }
+}
+
+
+/* PLEN == 0: Print assembler code for `insert_bits'.
+ PLEN != 0: Compute code length in bytes.
+
+ OP[0]: Result
+ OP[1]: The mapping composed of nibbles. If nibble no. N is
+ 0: Bit N of result is copied from bit OP[2].0
+ ... ...
+ 7: Bit N of result is copied from bit OP[2].7
+ 0xf: Bit N of result is copied from bit OP[3].N
+ OP[2]: Bits to be inserted
+ OP[3]: Target value */
+
+const char*
+avr_out_insert_bits (rtx *op, int *plen)
+{
+ unsigned int map = UINTVAL (op[1]) & GET_MODE_MASK (SImode);
+ unsigned mask_fixed;
+ bool fixp_p = true;
+ rtx xop[4];
+
+ xop[0] = op[0];
+ xop[1] = op[2];
+ xop[2] = op[3];
+
+ gcc_assert (REG_P (xop[2]) || CONST_INT_P (xop[2]));
+
+ if (plen)
+ *plen = 0;
+ else if (flag_print_asm_name)
+ fprintf (asm_out_file, ASM_COMMENT_START "map = 0x%08x\n", map);
+
+ /* If MAP has fixed points it might be better to initialize the result
+ with the bits to be inserted instead of moving all bits by hand. */
+
+ mask_fixed = avr_map_metric (map, MAP_MASK_FIXED_0_7);
+
+ if (REGNO (xop[0]) == REGNO (xop[1]))
+ {
+ /* Avoid early-clobber conflicts */
+
+ avr_asm_len ("mov __tmp_reg__,%1", xop, plen, 1);
+ xop[1] = tmp_reg_rtx;
+ fixp_p = false;
+ }
+
+ if (avr_map_metric (map, MAP_MASK_PREIMAGE_F))
+ {
+ /* XOP[2] is used and reloaded to XOP[0] already */
+
+ int n_fix = 0, n_nofix = 0;
+
+ gcc_assert (REG_P (xop[2]));
+
+ /* Get the code size of the bit insertions; once with all bits
+ moved and once with fixed points omitted. */
+
+ avr_move_bits (xop, map, true, &n_fix);
+ avr_move_bits (xop, map, false, &n_nofix);
+
+ if (fixp_p && n_fix - n_nofix > 3)
+ {
+ xop[3] = gen_int_mode (~mask_fixed, QImode);
+
+ avr_asm_len ("eor %0,%1" CR_TAB
+ "andi %0,%3" CR_TAB
+ "eor %0,%1", xop, plen, 3);
+ fixp_p = false;
+ }
+ }
+ else
+ {
+ /* XOP[2] is unused */
+
+ if (fixp_p && mask_fixed)
+ {
+ avr_asm_len ("mov %0,%1", xop, plen, 1);
+ fixp_p = false;
+ }
+ }
+
+ /* Move/insert remaining bits. */
+
+ avr_move_bits (xop, map, fixp_p, plen);
+
+ return "";
+}
+
+
+/* IDs for all the AVR builtins. */
+
+enum avr_builtin_id
+ {
+#define DEF_BUILTIN(NAME, N_ARGS, TYPE, CODE, LIBNAME) \
+ AVR_BUILTIN_ ## NAME,
+#include "builtins.def"
+#undef DEF_BUILTIN
+
+ AVR_BUILTIN_COUNT
+ };
+
+struct GTY(()) avr_builtin_description
+{
+ enum insn_code icode;
+ int n_args;
+ tree fndecl;
+};
+
+
+/* Notice that avr_bdesc[] and avr_builtin_id are initialized in such a way
+ that a built-in's ID can be used to access the built-in by means of
+ avr_bdesc[ID] */
+
+static GTY(()) struct avr_builtin_description
+avr_bdesc[AVR_BUILTIN_COUNT] =
+ {
+#define DEF_BUILTIN(NAME, N_ARGS, TYPE, ICODE, LIBNAME) \
+ { (enum insn_code) CODE_FOR_ ## ICODE, N_ARGS, NULL_TREE },
+#include "builtins.def"
+#undef DEF_BUILTIN
+ };
+
+
+/* Implement `TARGET_BUILTIN_DECL'. */
+
+static tree
+avr_builtin_decl (unsigned id, bool initialize_p ATTRIBUTE_UNUSED)
+{
+ if (id < AVR_BUILTIN_COUNT)
+ return avr_bdesc[id].fndecl;
+
+ return error_mark_node;
+}
+
+
+static void
+avr_init_builtin_int24 (void)
+{
+ tree int24_type = make_signed_type (GET_MODE_BITSIZE (PSImode));
+ tree uint24_type = make_unsigned_type (GET_MODE_BITSIZE (PSImode));
+
+ lang_hooks.types.register_builtin_type (int24_type, "__int24");
+ lang_hooks.types.register_builtin_type (uint24_type, "__uint24");
+}
+
+
+/* Implement `TARGET_INIT_BUILTINS' */
+/* Set up all builtin functions for this target. */
+
+static void
+avr_init_builtins (void)
+{
+ tree void_ftype_void
+ = build_function_type_list (void_type_node, NULL_TREE);
+ tree uchar_ftype_uchar
+ = build_function_type_list (unsigned_char_type_node,
+ unsigned_char_type_node,
+ NULL_TREE);
+ tree uint_ftype_uchar_uchar
+ = build_function_type_list (unsigned_type_node,
+ unsigned_char_type_node,
+ unsigned_char_type_node,
+ NULL_TREE);
+ tree int_ftype_char_char
+ = build_function_type_list (integer_type_node,
+ char_type_node,
+ char_type_node,
+ NULL_TREE);
+ tree int_ftype_char_uchar
+ = build_function_type_list (integer_type_node,
+ char_type_node,
+ unsigned_char_type_node,
+ NULL_TREE);
+ tree void_ftype_ulong
+ = build_function_type_list (void_type_node,
+ long_unsigned_type_node,
+ NULL_TREE);
+
+ tree uchar_ftype_ulong_uchar_uchar
+ = build_function_type_list (unsigned_char_type_node,
+ long_unsigned_type_node,
+ unsigned_char_type_node,
+ unsigned_char_type_node,
+ NULL_TREE);
+
+ tree const_memx_void_node
+ = build_qualified_type (void_type_node,
+ TYPE_QUAL_CONST
+ | ENCODE_QUAL_ADDR_SPACE (ADDR_SPACE_MEMX));
+
+ tree const_memx_ptr_type_node
+ = build_pointer_type_for_mode (const_memx_void_node, PSImode, false);
+
+ tree char_ftype_const_memx_ptr
+ = build_function_type_list (char_type_node,
+ const_memx_ptr_type_node,
+ NULL);
+
+#define ITYP(T) \
+ lang_hooks.types.type_for_size (TYPE_PRECISION (T), TYPE_UNSIGNED (T))
+
+#define FX_FTYPE_FX(fx) \
+ tree fx##r_ftype_##fx##r \
+ = build_function_type_list (node_##fx##r, node_##fx##r, NULL); \
+ tree fx##k_ftype_##fx##k \
+ = build_function_type_list (node_##fx##k, node_##fx##k, NULL)
+
+#define FX_FTYPE_FX_INT(fx) \
+ tree fx##r_ftype_##fx##r_int \
+ = build_function_type_list (node_##fx##r, node_##fx##r, \
+ integer_type_node, NULL); \
+ tree fx##k_ftype_##fx##k_int \
+ = build_function_type_list (node_##fx##k, node_##fx##k, \
+ integer_type_node, NULL)
+
+#define INT_FTYPE_FX(fx) \
+ tree int_ftype_##fx##r \
+ = build_function_type_list (integer_type_node, node_##fx##r, NULL); \
+ tree int_ftype_##fx##k \
+ = build_function_type_list (integer_type_node, node_##fx##k, NULL)
+
+#define INTX_FTYPE_FX(fx) \
+ tree int##fx##r_ftype_##fx##r \
+ = build_function_type_list (ITYP (node_##fx##r), node_##fx##r, NULL); \
+ tree int##fx##k_ftype_##fx##k \
+ = build_function_type_list (ITYP (node_##fx##k), node_##fx##k, NULL)
+
+#define FX_FTYPE_INTX(fx) \
+ tree fx##r_ftype_int##fx##r \
+ = build_function_type_list (node_##fx##r, ITYP (node_##fx##r), NULL); \
+ tree fx##k_ftype_int##fx##k \
+ = build_function_type_list (node_##fx##k, ITYP (node_##fx##k), NULL)
+
+ tree node_hr = short_fract_type_node;
+ tree node_nr = fract_type_node;
+ tree node_lr = long_fract_type_node;
+ tree node_llr = long_long_fract_type_node;
+
+ tree node_uhr = unsigned_short_fract_type_node;
+ tree node_unr = unsigned_fract_type_node;
+ tree node_ulr = unsigned_long_fract_type_node;
+ tree node_ullr = unsigned_long_long_fract_type_node;
+
+ tree node_hk = short_accum_type_node;
+ tree node_nk = accum_type_node;
+ tree node_lk = long_accum_type_node;
+ tree node_llk = long_long_accum_type_node;
+
+ tree node_uhk = unsigned_short_accum_type_node;
+ tree node_unk = unsigned_accum_type_node;
+ tree node_ulk = unsigned_long_accum_type_node;
+ tree node_ullk = unsigned_long_long_accum_type_node;
+
+
+ /* For absfx builtins. */
+
+ FX_FTYPE_FX (h);
+ FX_FTYPE_FX (n);
+ FX_FTYPE_FX (l);
+ FX_FTYPE_FX (ll);
+
+ /* For roundfx builtins. */
+
+ FX_FTYPE_FX_INT (h);
+ FX_FTYPE_FX_INT (n);
+ FX_FTYPE_FX_INT (l);
+ FX_FTYPE_FX_INT (ll);
+
+ FX_FTYPE_FX_INT (uh);
+ FX_FTYPE_FX_INT (un);
+ FX_FTYPE_FX_INT (ul);
+ FX_FTYPE_FX_INT (ull);
+
+ /* For countlsfx builtins. */
+
+ INT_FTYPE_FX (h);
+ INT_FTYPE_FX (n);
+ INT_FTYPE_FX (l);
+ INT_FTYPE_FX (ll);
+
+ INT_FTYPE_FX (uh);
+ INT_FTYPE_FX (un);
+ INT_FTYPE_FX (ul);
+ INT_FTYPE_FX (ull);
+
+ /* For bitsfx builtins. */
+
+ INTX_FTYPE_FX (h);
+ INTX_FTYPE_FX (n);
+ INTX_FTYPE_FX (l);
+ INTX_FTYPE_FX (ll);
+
+ INTX_FTYPE_FX (uh);
+ INTX_FTYPE_FX (un);
+ INTX_FTYPE_FX (ul);
+ INTX_FTYPE_FX (ull);
+
+ /* For fxbits builtins. */
+
+ FX_FTYPE_INTX (h);
+ FX_FTYPE_INTX (n);
+ FX_FTYPE_INTX (l);
+ FX_FTYPE_INTX (ll);
+
+ FX_FTYPE_INTX (uh);
+ FX_FTYPE_INTX (un);
+ FX_FTYPE_INTX (ul);
+ FX_FTYPE_INTX (ull);
+
+
+#define DEF_BUILTIN(NAME, N_ARGS, TYPE, CODE, LIBNAME) \
+ { \
+ int id = AVR_BUILTIN_ ## NAME; \
+ const char *Name = "__builtin_avr_" #NAME; \
+ char *name = (char*) alloca (1 + strlen (Name)); \
+ \
+ gcc_assert (id < AVR_BUILTIN_COUNT); \
+ avr_bdesc[id].fndecl \
+ = add_builtin_function (avr_tolower (name, Name), TYPE, id, \
+ BUILT_IN_MD, LIBNAME, NULL_TREE); \
+ }
+#include "builtins.def"
+#undef DEF_BUILTIN
+
+ avr_init_builtin_int24 ();
+}
+
+
+/* Subroutine of avr_expand_builtin to expand vanilla builtins
+ with non-void result and 1 ... 3 arguments. */
+
+static rtx
+avr_default_expand_builtin (enum insn_code icode, tree exp, rtx target)
+{
+ rtx pat, xop[3];
+ int n, n_args = call_expr_nargs (exp);
+ enum machine_mode tmode = insn_data[icode].operand[0].mode;
+
+ gcc_assert (n_args >= 1 && n_args <= 3);
+
+ if (target == NULL_RTX
+ || GET_MODE (target) != tmode
+ || !insn_data[icode].operand[0].predicate (target, tmode))
+ {
+ target = gen_reg_rtx (tmode);
+ }
+
+ for (n = 0; n < n_args; n++)
+ {
+ tree arg = CALL_EXPR_ARG (exp, n);
+ rtx op = expand_expr (arg, NULL_RTX, VOIDmode, EXPAND_NORMAL);
+ enum machine_mode opmode = GET_MODE (op);
+ enum machine_mode mode = insn_data[icode].operand[n+1].mode;
+
+ if ((opmode == SImode || opmode == VOIDmode) && mode == HImode)
+ {
+ opmode = HImode;
+ op = gen_lowpart (HImode, op);
+ }
+
+ /* In case the insn wants input operands in modes different from
+ the result, abort. */
+
+ gcc_assert (opmode == mode || opmode == VOIDmode);
+
+ if (!insn_data[icode].operand[n+1].predicate (op, mode))
+ op = copy_to_mode_reg (mode, op);
+
+ xop[n] = op;
+ }
+
+ switch (n_args)
+ {
+ case 1: pat = GEN_FCN (icode) (target, xop[0]); break;
+ case 2: pat = GEN_FCN (icode) (target, xop[0], xop[1]); break;
+ case 3: pat = GEN_FCN (icode) (target, xop[0], xop[1], xop[2]); break;
+
+ default:
+ gcc_unreachable();
+ }
+
+ if (pat == NULL_RTX)
+ return NULL_RTX;
+
+ emit_insn (pat);
+
+ return target;
+}
+
+
+/* Implement `TARGET_EXPAND_BUILTIN'. */
+/* Expand an expression EXP that calls a built-in function,
+ with result going to TARGET if that's convenient
+ (and in mode MODE if that's convenient).
+ SUBTARGET may be used as the target for computing one of EXP's operands.
+ IGNORE is nonzero if the value is to be ignored. */
+
+static rtx
+avr_expand_builtin (tree exp, rtx target,
+ rtx subtarget ATTRIBUTE_UNUSED,
+ enum machine_mode mode ATTRIBUTE_UNUSED,
+ int ignore)
+{
+ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
+ const char *bname = IDENTIFIER_POINTER (DECL_NAME (fndecl));
+ unsigned int id = DECL_FUNCTION_CODE (fndecl);
+ const struct avr_builtin_description *d = &avr_bdesc[id];
+ tree arg0;
+ rtx op0;
+
+ gcc_assert (id < AVR_BUILTIN_COUNT);
+
+ switch (id)
+ {
+ case AVR_BUILTIN_NOP:
+ emit_insn (gen_nopv (GEN_INT(1)));
+ return 0;
+
+ case AVR_BUILTIN_DELAY_CYCLES:
+ {
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);
+
+ if (!CONST_INT_P (op0))
+ error ("%s expects a compile time integer constant", bname);
+ else
+ avr_expand_delay_cycles (op0);
+
+ return NULL_RTX;
+ }
+
+ case AVR_BUILTIN_INSERT_BITS:
+ {
+ arg0 = CALL_EXPR_ARG (exp, 0);
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);
+
+ if (!CONST_INT_P (op0))
+ {
+ error ("%s expects a compile time long integer constant"
+ " as first argument", bname);
+ return target;
+ }
+
+ break;
+ }
+
+ case AVR_BUILTIN_ROUNDHR: case AVR_BUILTIN_ROUNDUHR:
+ case AVR_BUILTIN_ROUNDR: case AVR_BUILTIN_ROUNDUR:
+ case AVR_BUILTIN_ROUNDLR: case AVR_BUILTIN_ROUNDULR:
+ case AVR_BUILTIN_ROUNDLLR: case AVR_BUILTIN_ROUNDULLR:
+
+ case AVR_BUILTIN_ROUNDHK: case AVR_BUILTIN_ROUNDUHK:
+ case AVR_BUILTIN_ROUNDK: case AVR_BUILTIN_ROUNDUK:
+ case AVR_BUILTIN_ROUNDLK: case AVR_BUILTIN_ROUNDULK:
+ case AVR_BUILTIN_ROUNDLLK: case AVR_BUILTIN_ROUNDULLK:
+
+ /* Warn about odd rounding. Rounding points >= FBIT will have
+ no effect. */
+
+ if (TREE_CODE (CALL_EXPR_ARG (exp, 1)) != INTEGER_CST)
+ break;
+
+ int rbit = (int) TREE_INT_CST_LOW (CALL_EXPR_ARG (exp, 1));
+
+ if (rbit >= (int) GET_MODE_FBIT (mode))
+ {
+ warning (OPT_Wextra, "rounding to %d bits has no effect for "
+ "fixed-point value with %d fractional bits",
+ rbit, GET_MODE_FBIT (mode));
+
+ return expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX, mode,
+ EXPAND_NORMAL);
+ }
+ else if (rbit <= - (int) GET_MODE_IBIT (mode))
+ {
+ warning (0, "rounding result will always be 0");
+ return CONST0_RTX (mode);
+ }
+
+ /* The rounding points RP satisfies now: -IBIT < RP < FBIT.
+
+ TR 18037 only specifies results for RP > 0. However, the
+ remaining cases of -IBIT < RP <= 0 can easily be supported
+ without any additional overhead. */
+
+ break; /* round */
+ }
+
+ /* No fold found and no insn: Call support function from libgcc. */
+
+ if (d->icode == CODE_FOR_nothing
+ && DECL_ASSEMBLER_NAME (get_callee_fndecl (exp)) != NULL_TREE)
+ {
+ return expand_call (exp, target, ignore);
+ }
+
+ /* No special treatment needed: vanilla expand. */
+
+ gcc_assert (d->icode != CODE_FOR_nothing);
+ gcc_assert (d->n_args == call_expr_nargs (exp));
+
+ if (d->n_args == 0)
+ {
+ emit_insn ((GEN_FCN (d->icode)) (target));
+ return NULL_RTX;
+ }
+
+ return avr_default_expand_builtin (d->icode, exp, target);
+}
+
+
+/* Helper for `avr_fold_builtin' that folds absfx (FIXED_CST). */
+
+static tree
+avr_fold_absfx (tree tval)
+{
+ if (FIXED_CST != TREE_CODE (tval))
+ return NULL_TREE;
+
+ /* Our fixed-points have no padding: Use double_int payload directly. */
+
+ FIXED_VALUE_TYPE fval = TREE_FIXED_CST (tval);
+ unsigned int bits = GET_MODE_BITSIZE (fval.mode);
+ double_int ival = fval.data.sext (bits);
+
+ if (!ival.is_negative())
+ return tval;
+
+ /* ISO/IEC TR 18037, 7.18a.6.2: The absfx functions are saturating. */
+
+ fval.data = (ival == double_int::min_value (bits, false).sext (bits))
+ ? double_int::max_value (bits, false)
+ : -ival;
+
+ return build_fixed (TREE_TYPE (tval), fval);
+}
+
+
+/* Implement `TARGET_FOLD_BUILTIN'. */
+
+static tree
+avr_fold_builtin (tree fndecl, int n_args ATTRIBUTE_UNUSED, tree *arg,
+ bool ignore ATTRIBUTE_UNUSED)
+{
+ unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
+ tree val_type = TREE_TYPE (TREE_TYPE (fndecl));
+
+ if (!optimize)
+ return NULL_TREE;
+
+ switch (fcode)
+ {
+ default:
+ break;
+
+ case AVR_BUILTIN_SWAP:
+ {
+ return fold_build2 (LROTATE_EXPR, val_type, arg[0],
+ build_int_cst (val_type, 4));
+ }
+
+ case AVR_BUILTIN_ABSHR:
+ case AVR_BUILTIN_ABSR:
+ case AVR_BUILTIN_ABSLR:
+ case AVR_BUILTIN_ABSLLR:
+
+ case AVR_BUILTIN_ABSHK:
+ case AVR_BUILTIN_ABSK:
+ case AVR_BUILTIN_ABSLK:
+ case AVR_BUILTIN_ABSLLK:
+ /* GCC is not good with folding ABS for fixed-point. Do it by hand. */
+
+ return avr_fold_absfx (arg[0]);
+
+ case AVR_BUILTIN_BITSHR: case AVR_BUILTIN_HRBITS:
+ case AVR_BUILTIN_BITSHK: case AVR_BUILTIN_HKBITS:
+ case AVR_BUILTIN_BITSUHR: case AVR_BUILTIN_UHRBITS:
+ case AVR_BUILTIN_BITSUHK: case AVR_BUILTIN_UHKBITS:
+
+ case AVR_BUILTIN_BITSR: case AVR_BUILTIN_RBITS:
+ case AVR_BUILTIN_BITSK: case AVR_BUILTIN_KBITS:
+ case AVR_BUILTIN_BITSUR: case AVR_BUILTIN_URBITS:
+ case AVR_BUILTIN_BITSUK: case AVR_BUILTIN_UKBITS:
+
+ case AVR_BUILTIN_BITSLR: case AVR_BUILTIN_LRBITS:
+ case AVR_BUILTIN_BITSLK: case AVR_BUILTIN_LKBITS:
+ case AVR_BUILTIN_BITSULR: case AVR_BUILTIN_ULRBITS:
+ case AVR_BUILTIN_BITSULK: case AVR_BUILTIN_ULKBITS:
+
+ case AVR_BUILTIN_BITSLLR: case AVR_BUILTIN_LLRBITS:
+ case AVR_BUILTIN_BITSLLK: case AVR_BUILTIN_LLKBITS:
+ case AVR_BUILTIN_BITSULLR: case AVR_BUILTIN_ULLRBITS:
+ case AVR_BUILTIN_BITSULLK: case AVR_BUILTIN_ULLKBITS:
+
+ gcc_assert (TYPE_PRECISION (val_type)
+ == TYPE_PRECISION (TREE_TYPE (arg[0])));
+
+ return build1 (VIEW_CONVERT_EXPR, val_type, arg[0]);
+
+ case AVR_BUILTIN_INSERT_BITS:
+ {
+ tree tbits = arg[1];
+ tree tval = arg[2];
+ tree tmap;
+ tree map_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
+ unsigned int map;
+ bool changed = false;
+ unsigned i;
+ avr_map_op_t best_g;
+
+ if (TREE_CODE (arg[0]) != INTEGER_CST)
+ {
+ /* No constant as first argument: Don't fold this and run into
+ error in avr_expand_builtin. */
+
+ break;
+ }
+
+ tmap = double_int_to_tree (map_type, tree_to_double_int (arg[0]));
+ map = TREE_INT_CST_LOW (tmap);
+
+ if (TREE_CODE (tval) != INTEGER_CST
+ && 0 == avr_map_metric (map, MAP_MASK_PREIMAGE_F))
+ {
+ /* There are no F in the map, i.e. 3rd operand is unused.
+ Replace that argument with some constant to render
+ respective input unused. */
+
+ tval = build_int_cst (val_type, 0);
+ changed = true;
+ }
+
+ if (TREE_CODE (tbits) != INTEGER_CST
+ && 0 == avr_map_metric (map, MAP_PREIMAGE_0_7))
+ {
+ /* Similar for the bits to be inserted. If they are unused,
+ we can just as well pass 0. */
+
+ tbits = build_int_cst (val_type, 0);
+ }
+
+ if (TREE_CODE (tbits) == INTEGER_CST)
+ {
+ /* Inserting bits known at compile time is easy and can be
+ performed by AND and OR with appropriate masks. */
+
+ int bits = TREE_INT_CST_LOW (tbits);
+ int mask_ior = 0, mask_and = 0xff;
+
+ for (i = 0; i < 8; i++)
+ {
+ int mi = avr_map (map, i);
+
+ if (mi < 8)
+ {
+ if (bits & (1 << mi)) mask_ior |= (1 << i);
+ else mask_and &= ~(1 << i);
+ }
+ }
+
+ tval = fold_build2 (BIT_IOR_EXPR, val_type, tval,
+ build_int_cst (val_type, mask_ior));
+ return fold_build2 (BIT_AND_EXPR, val_type, tval,
+ build_int_cst (val_type, mask_and));
+ }
+
+ if (changed)
+ return build_call_expr (fndecl, 3, tmap, tbits, tval);
+
+ /* If bits don't change their position we can use vanilla logic
+ to merge the two arguments. */
+
+ if (0 == avr_map_metric (map, MAP_NONFIXED_0_7))
+ {
+ int mask_f = avr_map_metric (map, MAP_MASK_PREIMAGE_F);
+ tree tres, tmask = build_int_cst (val_type, mask_f ^ 0xff);
+
+ tres = fold_build2 (BIT_XOR_EXPR, val_type, tbits, tval);
+ tres = fold_build2 (BIT_AND_EXPR, val_type, tres, tmask);
+ return fold_build2 (BIT_XOR_EXPR, val_type, tres, tval);
+ }
+
+ /* Try to decomposing map to reduce overall cost. */
+
+ if (avr_log.builtin)
+ avr_edump ("\n%?: %x\n%?: ROL cost: ", map);
+
+ best_g = avr_map_op[0];
+ best_g.cost = 1000;
+
+ for (i = 0; i < sizeof (avr_map_op) / sizeof (*avr_map_op); i++)
+ {
+ avr_map_op_t g
+ = avr_map_decompose (map, avr_map_op + i,
+ TREE_CODE (tval) == INTEGER_CST);
+
+ if (g.cost >= 0 && g.cost < best_g.cost)
+ best_g = g;
+ }
+
+ if (avr_log.builtin)
+ avr_edump ("\n");
+
+ if (best_g.arg == 0)
+ /* No optimization found */
+ break;
+
+ /* Apply operation G to the 2nd argument. */
+
+ if (avr_log.builtin)
+ avr_edump ("%?: using OP(%s%d, %x) cost %d\n",
+ best_g.str, best_g.arg, best_g.map, best_g.cost);
+
+ /* Do right-shifts arithmetically: They copy the MSB instead of
+ shifting in a non-usable value (0) as with logic right-shift. */
+
+ tbits = fold_convert (signed_char_type_node, tbits);
+ tbits = fold_build2 (best_g.code, signed_char_type_node, tbits,
+ build_int_cst (val_type, best_g.arg));
+ tbits = fold_convert (val_type, tbits);
+
+ /* Use map o G^-1 instead of original map to undo the effect of G. */
+
+ tmap = double_int_to_tree (map_type,
+ double_int::from_uhwi (best_g.map));
+
+ return build_call_expr (fndecl, 3, tmap, tbits, tval);
+ } /* AVR_BUILTIN_INSERT_BITS */
+ }
+
+ return NULL_TREE;
+}
+
+
+
+/* Initialize the GCC target structure. */
+
+#undef TARGET_ASM_ALIGNED_HI_OP
+#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
+#undef TARGET_ASM_ALIGNED_SI_OP
+#define TARGET_ASM_ALIGNED_SI_OP "\t.long\t"
+#undef TARGET_ASM_UNALIGNED_HI_OP
+#define TARGET_ASM_UNALIGNED_HI_OP "\t.word\t"
+#undef TARGET_ASM_UNALIGNED_SI_OP
+#define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
+#undef TARGET_ASM_INTEGER
+#define TARGET_ASM_INTEGER avr_assemble_integer
+#undef TARGET_ASM_FILE_START
+#define TARGET_ASM_FILE_START avr_file_start
+#undef TARGET_ASM_FILE_END
+#define TARGET_ASM_FILE_END avr_file_end
+
+#undef TARGET_ASM_FUNCTION_END_PROLOGUE
+#define TARGET_ASM_FUNCTION_END_PROLOGUE avr_asm_function_end_prologue
+#undef TARGET_ASM_FUNCTION_BEGIN_EPILOGUE
+#define TARGET_ASM_FUNCTION_BEGIN_EPILOGUE avr_asm_function_begin_epilogue
+
+#undef TARGET_FUNCTION_VALUE
+#define TARGET_FUNCTION_VALUE avr_function_value
+#undef TARGET_LIBCALL_VALUE
+#define TARGET_LIBCALL_VALUE avr_libcall_value
+#undef TARGET_FUNCTION_VALUE_REGNO_P
+#define TARGET_FUNCTION_VALUE_REGNO_P avr_function_value_regno_p
+
+#undef TARGET_ATTRIBUTE_TABLE
+#define TARGET_ATTRIBUTE_TABLE avr_attribute_table
+#undef TARGET_INSERT_ATTRIBUTES
+#define TARGET_INSERT_ATTRIBUTES avr_insert_attributes
+#undef TARGET_SECTION_TYPE_FLAGS
+#define TARGET_SECTION_TYPE_FLAGS avr_section_type_flags
+
+#undef TARGET_ASM_NAMED_SECTION
+#define TARGET_ASM_NAMED_SECTION avr_asm_named_section
+#undef TARGET_ASM_INIT_SECTIONS
+#define TARGET_ASM_INIT_SECTIONS avr_asm_init_sections
+#undef TARGET_ENCODE_SECTION_INFO
+#define TARGET_ENCODE_SECTION_INFO avr_encode_section_info
+#undef TARGET_ASM_SELECT_SECTION
+#define TARGET_ASM_SELECT_SECTION avr_asm_select_section
+
+#undef TARGET_REGISTER_MOVE_COST
+#define TARGET_REGISTER_MOVE_COST avr_register_move_cost
+#undef TARGET_MEMORY_MOVE_COST
+#define TARGET_MEMORY_MOVE_COST avr_memory_move_cost
+#undef TARGET_RTX_COSTS
+#define TARGET_RTX_COSTS avr_rtx_costs
+#undef TARGET_ADDRESS_COST
+#define TARGET_ADDRESS_COST avr_address_cost
+#undef TARGET_MACHINE_DEPENDENT_REORG
+#define TARGET_MACHINE_DEPENDENT_REORG avr_reorg
+#undef TARGET_FUNCTION_ARG
+#define TARGET_FUNCTION_ARG avr_function_arg
+#undef TARGET_FUNCTION_ARG_ADVANCE
+#define TARGET_FUNCTION_ARG_ADVANCE avr_function_arg_advance
+
+#undef TARGET_SET_CURRENT_FUNCTION
+#define TARGET_SET_CURRENT_FUNCTION avr_set_current_function
+
+#undef TARGET_RETURN_IN_MEMORY
+#define TARGET_RETURN_IN_MEMORY avr_return_in_memory
+
+#undef TARGET_STRICT_ARGUMENT_NAMING
+#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
+
+#undef TARGET_BUILTIN_SETJMP_FRAME_VALUE
+#define TARGET_BUILTIN_SETJMP_FRAME_VALUE avr_builtin_setjmp_frame_value
+
+#undef TARGET_HARD_REGNO_SCRATCH_OK
+#define TARGET_HARD_REGNO_SCRATCH_OK avr_hard_regno_scratch_ok
+#undef TARGET_CASE_VALUES_THRESHOLD
+#define TARGET_CASE_VALUES_THRESHOLD avr_case_values_threshold
+
+#undef TARGET_FRAME_POINTER_REQUIRED
+#define TARGET_FRAME_POINTER_REQUIRED avr_frame_pointer_required_p
+#undef TARGET_CAN_ELIMINATE
+#define TARGET_CAN_ELIMINATE avr_can_eliminate
+
+#undef TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS
+#define TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS avr_allocate_stack_slots_for_args
+
+#undef TARGET_WARN_FUNC_RETURN
+#define TARGET_WARN_FUNC_RETURN avr_warn_func_return
+
+#undef TARGET_CLASS_LIKELY_SPILLED_P
+#define TARGET_CLASS_LIKELY_SPILLED_P avr_class_likely_spilled_p
+
+#undef TARGET_OPTION_OVERRIDE
+#define TARGET_OPTION_OVERRIDE avr_option_override
+
+#undef TARGET_CANNOT_MODIFY_JUMPS_P
+#define TARGET_CANNOT_MODIFY_JUMPS_P avr_cannot_modify_jumps_p
+
+#undef TARGET_FUNCTION_OK_FOR_SIBCALL
+#define TARGET_FUNCTION_OK_FOR_SIBCALL avr_function_ok_for_sibcall
+
+#undef TARGET_INIT_BUILTINS
+#define TARGET_INIT_BUILTINS avr_init_builtins
+
+#undef TARGET_BUILTIN_DECL
+#define TARGET_BUILTIN_DECL avr_builtin_decl
+
+#undef TARGET_EXPAND_BUILTIN
+#define TARGET_EXPAND_BUILTIN avr_expand_builtin
+
+#undef TARGET_FOLD_BUILTIN
+#define TARGET_FOLD_BUILTIN avr_fold_builtin
+
+#undef TARGET_ASM_FUNCTION_RODATA_SECTION
+#define TARGET_ASM_FUNCTION_RODATA_SECTION avr_asm_function_rodata_section
+
+#undef TARGET_SCALAR_MODE_SUPPORTED_P
+#define TARGET_SCALAR_MODE_SUPPORTED_P avr_scalar_mode_supported_p
+
+#undef TARGET_BUILD_BUILTIN_VA_LIST
+#define TARGET_BUILD_BUILTIN_VA_LIST avr_build_builtin_va_list
+
+#undef TARGET_FIXED_POINT_SUPPORTED_P
+#define TARGET_FIXED_POINT_SUPPORTED_P hook_bool_void_true
+
+#undef TARGET_CONVERT_TO_TYPE
+#define TARGET_CONVERT_TO_TYPE avr_convert_to_type
+
+#undef TARGET_ADDR_SPACE_SUBSET_P
+#define TARGET_ADDR_SPACE_SUBSET_P avr_addr_space_subset_p
+
+#undef TARGET_ADDR_SPACE_CONVERT
+#define TARGET_ADDR_SPACE_CONVERT avr_addr_space_convert
+
+#undef TARGET_ADDR_SPACE_ADDRESS_MODE
+#define TARGET_ADDR_SPACE_ADDRESS_MODE avr_addr_space_address_mode
+
+#undef TARGET_ADDR_SPACE_POINTER_MODE
+#define TARGET_ADDR_SPACE_POINTER_MODE avr_addr_space_pointer_mode
+
+#undef TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P
+#define TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P \
+ avr_addr_space_legitimate_address_p
+
+#undef TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS
+#define TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS avr_addr_space_legitimize_address
+
+#undef TARGET_MODE_DEPENDENT_ADDRESS_P
+#define TARGET_MODE_DEPENDENT_ADDRESS_P avr_mode_dependent_address_p
+
+#undef TARGET_SECONDARY_RELOAD
+#define TARGET_SECONDARY_RELOAD avr_secondary_reload
+
+#undef TARGET_PRINT_OPERAND
+#define TARGET_PRINT_OPERAND avr_print_operand
+#undef TARGET_PRINT_OPERAND_ADDRESS
+#define TARGET_PRINT_OPERAND_ADDRESS avr_print_operand_address
+#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
+#define TARGET_PRINT_OPERAND_PUNCT_VALID_P avr_print_operand_punct_valid_p
+
+struct gcc_target targetm = TARGET_INITIALIZER;
+
+
+#include "gt-avr.h"