aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/config/alpha/alpha.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/config/alpha/alpha.c')
-rw-r--r--gcc-4.9/gcc/config/alpha/alpha.c9898
1 files changed, 9898 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/config/alpha/alpha.c b/gcc-4.9/gcc/config/alpha/alpha.c
new file mode 100644
index 000000000..df4cc1b1c
--- /dev/null
+++ b/gcc-4.9/gcc/config/alpha/alpha.c
@@ -0,0 +1,9898 @@
+/* Subroutines used for code generation on the DEC Alpha.
+ Copyright (C) 1992-2014 Free Software Foundation, Inc.
+ Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "tree.h"
+#include "stor-layout.h"
+#include "calls.h"
+#include "varasm.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "insn-config.h"
+#include "conditions.h"
+#include "output.h"
+#include "insn-attr.h"
+#include "flags.h"
+#include "recog.h"
+#include "expr.h"
+#include "optabs.h"
+#include "reload.h"
+#include "obstack.h"
+#include "except.h"
+#include "function.h"
+#include "diagnostic-core.h"
+#include "ggc.h"
+#include "tm_p.h"
+#include "target.h"
+#include "target-def.h"
+#include "common/common-target.h"
+#include "debug.h"
+#include "langhooks.h"
+#include "splay-tree.h"
+#include "pointer-set.h"
+#include "hash-table.h"
+#include "vec.h"
+#include "basic-block.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-fold.h"
+#include "tree-eh.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimplify.h"
+#include "gimple-ssa.h"
+#include "stringpool.h"
+#include "tree-ssanames.h"
+#include "tree-stdarg.h"
+#include "tm-constrs.h"
+#include "df.h"
+#include "libfuncs.h"
+#include "opts.h"
+#include "params.h"
+
+/* Specify which cpu to schedule for. */
+enum processor_type alpha_tune;
+
+/* Which cpu we're generating code for. */
+enum processor_type alpha_cpu;
+
+static const char * const alpha_cpu_name[] =
+{
+ "ev4", "ev5", "ev6"
+};
+
+/* Specify how accurate floating-point traps need to be. */
+
+enum alpha_trap_precision alpha_tp;
+
+/* Specify the floating-point rounding mode. */
+
+enum alpha_fp_rounding_mode alpha_fprm;
+
+/* Specify which things cause traps. */
+
+enum alpha_fp_trap_mode alpha_fptm;
+
+/* Nonzero if inside of a function, because the Alpha asm can't
+ handle .files inside of functions. */
+
+static int inside_function = FALSE;
+
+/* The number of cycles of latency we should assume on memory reads. */
+
+int alpha_memory_latency = 3;
+
+/* Whether the function needs the GP. */
+
+static int alpha_function_needs_gp;
+
+/* The assembler name of the current function. */
+
+static const char *alpha_fnname;
+
+/* The next explicit relocation sequence number. */
+extern GTY(()) int alpha_next_sequence_number;
+int alpha_next_sequence_number = 1;
+
+/* The literal and gpdisp sequence numbers for this insn, as printed
+ by %# and %* respectively. */
+extern GTY(()) int alpha_this_literal_sequence_number;
+extern GTY(()) int alpha_this_gpdisp_sequence_number;
+int alpha_this_literal_sequence_number;
+int alpha_this_gpdisp_sequence_number;
+
+/* Costs of various operations on the different architectures. */
+
+struct alpha_rtx_cost_data
+{
+ unsigned char fp_add;
+ unsigned char fp_mult;
+ unsigned char fp_div_sf;
+ unsigned char fp_div_df;
+ unsigned char int_mult_si;
+ unsigned char int_mult_di;
+ unsigned char int_shift;
+ unsigned char int_cmov;
+ unsigned short int_div;
+};
+
+static struct alpha_rtx_cost_data const alpha_rtx_cost_data[PROCESSOR_MAX] =
+{
+ { /* EV4 */
+ COSTS_N_INSNS (6), /* fp_add */
+ COSTS_N_INSNS (6), /* fp_mult */
+ COSTS_N_INSNS (34), /* fp_div_sf */
+ COSTS_N_INSNS (63), /* fp_div_df */
+ COSTS_N_INSNS (23), /* int_mult_si */
+ COSTS_N_INSNS (23), /* int_mult_di */
+ COSTS_N_INSNS (2), /* int_shift */
+ COSTS_N_INSNS (2), /* int_cmov */
+ COSTS_N_INSNS (97), /* int_div */
+ },
+ { /* EV5 */
+ COSTS_N_INSNS (4), /* fp_add */
+ COSTS_N_INSNS (4), /* fp_mult */
+ COSTS_N_INSNS (15), /* fp_div_sf */
+ COSTS_N_INSNS (22), /* fp_div_df */
+ COSTS_N_INSNS (8), /* int_mult_si */
+ COSTS_N_INSNS (12), /* int_mult_di */
+ COSTS_N_INSNS (1) + 1, /* int_shift */
+ COSTS_N_INSNS (1), /* int_cmov */
+ COSTS_N_INSNS (83), /* int_div */
+ },
+ { /* EV6 */
+ COSTS_N_INSNS (4), /* fp_add */
+ COSTS_N_INSNS (4), /* fp_mult */
+ COSTS_N_INSNS (12), /* fp_div_sf */
+ COSTS_N_INSNS (15), /* fp_div_df */
+ COSTS_N_INSNS (7), /* int_mult_si */
+ COSTS_N_INSNS (7), /* int_mult_di */
+ COSTS_N_INSNS (1), /* int_shift */
+ COSTS_N_INSNS (2), /* int_cmov */
+ COSTS_N_INSNS (86), /* int_div */
+ },
+};
+
+/* Similar but tuned for code size instead of execution latency. The
+ extra +N is fractional cost tuning based on latency. It's used to
+ encourage use of cheaper insns like shift, but only if there's just
+ one of them. */
+
+static struct alpha_rtx_cost_data const alpha_rtx_cost_size =
+{
+ COSTS_N_INSNS (1), /* fp_add */
+ COSTS_N_INSNS (1), /* fp_mult */
+ COSTS_N_INSNS (1), /* fp_div_sf */
+ COSTS_N_INSNS (1) + 1, /* fp_div_df */
+ COSTS_N_INSNS (1) + 1, /* int_mult_si */
+ COSTS_N_INSNS (1) + 2, /* int_mult_di */
+ COSTS_N_INSNS (1), /* int_shift */
+ COSTS_N_INSNS (1), /* int_cmov */
+ COSTS_N_INSNS (6), /* int_div */
+};
+
+/* Get the number of args of a function in one of two ways. */
+#if TARGET_ABI_OPEN_VMS
+#define NUM_ARGS crtl->args.info.num_args
+#else
+#define NUM_ARGS crtl->args.info
+#endif
+
+#define REG_PV 27
+#define REG_RA 26
+
+/* Declarations of static functions. */
+static struct machine_function *alpha_init_machine_status (void);
+static rtx alpha_emit_xfloating_compare (enum rtx_code *, rtx, rtx);
+
+#if TARGET_ABI_OPEN_VMS
+static void alpha_write_linkage (FILE *, const char *);
+static bool vms_valid_pointer_mode (enum machine_mode);
+#else
+#define vms_patch_builtins() gcc_unreachable()
+#endif
+
+#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING
+/* Implement TARGET_MANGLE_TYPE. */
+
+static const char *
+alpha_mangle_type (const_tree type)
+{
+ if (TYPE_MAIN_VARIANT (type) == long_double_type_node
+ && TARGET_LONG_DOUBLE_128)
+ return "g";
+
+ /* For all other types, use normal C++ mangling. */
+ return NULL;
+}
+#endif
+
+/* Parse target option strings. */
+
+static void
+alpha_option_override (void)
+{
+ static const struct cpu_table {
+ const char *const name;
+ const enum processor_type processor;
+ const int flags;
+ const unsigned short line_size; /* in bytes */
+ const unsigned short l1_size; /* in kb. */
+ const unsigned short l2_size; /* in kb. */
+ } cpu_table[] = {
+ /* EV4/LCA45 had 8k L1 caches; EV45 had 16k L1 caches.
+ EV4/EV45 had 128k to 16M 32-byte direct Bcache. LCA45
+ had 64k to 8M 8-byte direct Bcache. */
+ { "ev4", PROCESSOR_EV4, 0, 32, 8, 8*1024 },
+ { "21064", PROCESSOR_EV4, 0, 32, 8, 8*1024 },
+ { "ev45", PROCESSOR_EV4, 0, 32, 16, 16*1024 },
+
+ /* EV5 or EV56 had 8k 32 byte L1, 96k 32 or 64 byte L2,
+ and 1M to 16M 64 byte L3 (not modeled).
+ PCA56 had 16k 64-byte cache; PCA57 had 32k Icache.
+ PCA56 had 8k 64-byte cache; PCA57 had 16k Dcache. */
+ { "ev5", PROCESSOR_EV5, 0, 32, 8, 96 },
+ { "21164", PROCESSOR_EV5, 0, 32, 8, 96 },
+ { "ev56", PROCESSOR_EV5, MASK_BWX, 32, 8, 96 },
+ { "21164a", PROCESSOR_EV5, MASK_BWX, 32, 8, 96 },
+ { "pca56", PROCESSOR_EV5, MASK_BWX|MASK_MAX, 64, 16, 4*1024 },
+ { "21164PC",PROCESSOR_EV5, MASK_BWX|MASK_MAX, 64, 16, 4*1024 },
+ { "21164pc",PROCESSOR_EV5, MASK_BWX|MASK_MAX, 64, 16, 4*1024 },
+
+ /* EV6 had 64k 64 byte L1, 1M to 16M Bcache. */
+ { "ev6", PROCESSOR_EV6, MASK_BWX|MASK_MAX|MASK_FIX, 64, 64, 16*1024 },
+ { "21264", PROCESSOR_EV6, MASK_BWX|MASK_MAX|MASK_FIX, 64, 64, 16*1024 },
+ { "ev67", PROCESSOR_EV6, MASK_BWX|MASK_MAX|MASK_FIX|MASK_CIX,
+ 64, 64, 16*1024 },
+ { "21264a", PROCESSOR_EV6, MASK_BWX|MASK_MAX|MASK_FIX|MASK_CIX,
+ 64, 64, 16*1024 }
+ };
+
+ int const ct_size = ARRAY_SIZE (cpu_table);
+ int line_size = 0, l1_size = 0, l2_size = 0;
+ int i;
+
+#ifdef SUBTARGET_OVERRIDE_OPTIONS
+ SUBTARGET_OVERRIDE_OPTIONS;
+#endif
+
+ /* Default to full IEEE compliance mode for Go language. */
+ if (strcmp (lang_hooks.name, "GNU Go") == 0
+ && !(target_flags_explicit & MASK_IEEE))
+ target_flags |= MASK_IEEE;
+
+ alpha_fprm = ALPHA_FPRM_NORM;
+ alpha_tp = ALPHA_TP_PROG;
+ alpha_fptm = ALPHA_FPTM_N;
+
+ if (TARGET_IEEE)
+ {
+ alpha_tp = ALPHA_TP_INSN;
+ alpha_fptm = ALPHA_FPTM_SU;
+ }
+ if (TARGET_IEEE_WITH_INEXACT)
+ {
+ alpha_tp = ALPHA_TP_INSN;
+ alpha_fptm = ALPHA_FPTM_SUI;
+ }
+
+ if (alpha_tp_string)
+ {
+ if (! strcmp (alpha_tp_string, "p"))
+ alpha_tp = ALPHA_TP_PROG;
+ else if (! strcmp (alpha_tp_string, "f"))
+ alpha_tp = ALPHA_TP_FUNC;
+ else if (! strcmp (alpha_tp_string, "i"))
+ alpha_tp = ALPHA_TP_INSN;
+ else
+ error ("bad value %qs for -mtrap-precision switch", alpha_tp_string);
+ }
+
+ if (alpha_fprm_string)
+ {
+ if (! strcmp (alpha_fprm_string, "n"))
+ alpha_fprm = ALPHA_FPRM_NORM;
+ else if (! strcmp (alpha_fprm_string, "m"))
+ alpha_fprm = ALPHA_FPRM_MINF;
+ else if (! strcmp (alpha_fprm_string, "c"))
+ alpha_fprm = ALPHA_FPRM_CHOP;
+ else if (! strcmp (alpha_fprm_string,"d"))
+ alpha_fprm = ALPHA_FPRM_DYN;
+ else
+ error ("bad value %qs for -mfp-rounding-mode switch",
+ alpha_fprm_string);
+ }
+
+ if (alpha_fptm_string)
+ {
+ if (strcmp (alpha_fptm_string, "n") == 0)
+ alpha_fptm = ALPHA_FPTM_N;
+ else if (strcmp (alpha_fptm_string, "u") == 0)
+ alpha_fptm = ALPHA_FPTM_U;
+ else if (strcmp (alpha_fptm_string, "su") == 0)
+ alpha_fptm = ALPHA_FPTM_SU;
+ else if (strcmp (alpha_fptm_string, "sui") == 0)
+ alpha_fptm = ALPHA_FPTM_SUI;
+ else
+ error ("bad value %qs for -mfp-trap-mode switch", alpha_fptm_string);
+ }
+
+ if (alpha_cpu_string)
+ {
+ for (i = 0; i < ct_size; i++)
+ if (! strcmp (alpha_cpu_string, cpu_table [i].name))
+ {
+ alpha_tune = alpha_cpu = cpu_table[i].processor;
+ line_size = cpu_table[i].line_size;
+ l1_size = cpu_table[i].l1_size;
+ l2_size = cpu_table[i].l2_size;
+ target_flags &= ~ (MASK_BWX | MASK_MAX | MASK_FIX | MASK_CIX);
+ target_flags |= cpu_table[i].flags;
+ break;
+ }
+ if (i == ct_size)
+ error ("bad value %qs for -mcpu switch", alpha_cpu_string);
+ }
+
+ if (alpha_tune_string)
+ {
+ for (i = 0; i < ct_size; i++)
+ if (! strcmp (alpha_tune_string, cpu_table [i].name))
+ {
+ alpha_tune = cpu_table[i].processor;
+ line_size = cpu_table[i].line_size;
+ l1_size = cpu_table[i].l1_size;
+ l2_size = cpu_table[i].l2_size;
+ break;
+ }
+ if (i == ct_size)
+ error ("bad value %qs for -mtune switch", alpha_tune_string);
+ }
+
+ if (line_size)
+ maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE, line_size,
+ global_options.x_param_values,
+ global_options_set.x_param_values);
+ if (l1_size)
+ maybe_set_param_value (PARAM_L1_CACHE_SIZE, l1_size,
+ global_options.x_param_values,
+ global_options_set.x_param_values);
+ if (l2_size)
+ maybe_set_param_value (PARAM_L2_CACHE_SIZE, l2_size,
+ global_options.x_param_values,
+ global_options_set.x_param_values);
+
+ /* Do some sanity checks on the above options. */
+
+ if ((alpha_fptm == ALPHA_FPTM_SU || alpha_fptm == ALPHA_FPTM_SUI)
+ && alpha_tp != ALPHA_TP_INSN && alpha_cpu != PROCESSOR_EV6)
+ {
+ warning (0, "fp software completion requires -mtrap-precision=i");
+ alpha_tp = ALPHA_TP_INSN;
+ }
+
+ if (alpha_cpu == PROCESSOR_EV6)
+ {
+ /* Except for EV6 pass 1 (not released), we always have precise
+ arithmetic traps. Which means we can do software completion
+ without minding trap shadows. */
+ alpha_tp = ALPHA_TP_PROG;
+ }
+
+ if (TARGET_FLOAT_VAX)
+ {
+ if (alpha_fprm == ALPHA_FPRM_MINF || alpha_fprm == ALPHA_FPRM_DYN)
+ {
+ warning (0, "rounding mode not supported for VAX floats");
+ alpha_fprm = ALPHA_FPRM_NORM;
+ }
+ if (alpha_fptm == ALPHA_FPTM_SUI)
+ {
+ warning (0, "trap mode not supported for VAX floats");
+ alpha_fptm = ALPHA_FPTM_SU;
+ }
+ if (target_flags_explicit & MASK_LONG_DOUBLE_128)
+ warning (0, "128-bit long double not supported for VAX floats");
+ target_flags &= ~MASK_LONG_DOUBLE_128;
+ }
+
+ {
+ char *end;
+ int lat;
+
+ if (!alpha_mlat_string)
+ alpha_mlat_string = "L1";
+
+ if (ISDIGIT ((unsigned char)alpha_mlat_string[0])
+ && (lat = strtol (alpha_mlat_string, &end, 10), *end == '\0'))
+ ;
+ else if ((alpha_mlat_string[0] == 'L' || alpha_mlat_string[0] == 'l')
+ && ISDIGIT ((unsigned char)alpha_mlat_string[1])
+ && alpha_mlat_string[2] == '\0')
+ {
+ static int const cache_latency[][4] =
+ {
+ { 3, 30, -1 }, /* ev4 -- Bcache is a guess */
+ { 2, 12, 38 }, /* ev5 -- Bcache from PC164 LMbench numbers */
+ { 3, 12, 30 }, /* ev6 -- Bcache from DS20 LMbench. */
+ };
+
+ lat = alpha_mlat_string[1] - '0';
+ if (lat <= 0 || lat > 3 || cache_latency[alpha_tune][lat-1] == -1)
+ {
+ warning (0, "L%d cache latency unknown for %s",
+ lat, alpha_cpu_name[alpha_tune]);
+ lat = 3;
+ }
+ else
+ lat = cache_latency[alpha_tune][lat-1];
+ }
+ else if (! strcmp (alpha_mlat_string, "main"))
+ {
+ /* Most current memories have about 370ns latency. This is
+ a reasonable guess for a fast cpu. */
+ lat = 150;
+ }
+ else
+ {
+ warning (0, "bad value %qs for -mmemory-latency", alpha_mlat_string);
+ lat = 3;
+ }
+
+ alpha_memory_latency = lat;
+ }
+
+ /* Default the definition of "small data" to 8 bytes. */
+ if (!global_options_set.x_g_switch_value)
+ g_switch_value = 8;
+
+ /* Infer TARGET_SMALL_DATA from -fpic/-fPIC. */
+ if (flag_pic == 1)
+ target_flags |= MASK_SMALL_DATA;
+ else if (flag_pic == 2)
+ target_flags &= ~MASK_SMALL_DATA;
+
+ /* Align labels and loops for optimal branching. */
+ /* ??? Kludge these by not doing anything if we don't optimize. */
+ if (optimize > 0)
+ {
+ if (align_loops <= 0)
+ align_loops = 16;
+ if (align_jumps <= 0)
+ align_jumps = 16;
+ }
+ if (align_functions <= 0)
+ align_functions = 16;
+
+ /* Register variables and functions with the garbage collector. */
+
+ /* Set up function hooks. */
+ init_machine_status = alpha_init_machine_status;
+
+ /* Tell the compiler when we're using VAX floating point. */
+ if (TARGET_FLOAT_VAX)
+ {
+ REAL_MODE_FORMAT (SFmode) = &vax_f_format;
+ REAL_MODE_FORMAT (DFmode) = &vax_g_format;
+ REAL_MODE_FORMAT (TFmode) = NULL;
+ }
+
+#ifdef TARGET_DEFAULT_LONG_DOUBLE_128
+ if (!(target_flags_explicit & MASK_LONG_DOUBLE_128))
+ target_flags |= MASK_LONG_DOUBLE_128;
+#endif
+}
+
+/* Returns 1 if VALUE is a mask that contains full bytes of zero or ones. */
+
+int
+zap_mask (HOST_WIDE_INT value)
+{
+ int i;
+
+ for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
+ i++, value >>= 8)
+ if ((value & 0xff) != 0 && (value & 0xff) != 0xff)
+ return 0;
+
+ return 1;
+}
+
+/* Return true if OP is valid for a particular TLS relocation.
+ We are already guaranteed that OP is a CONST. */
+
+int
+tls_symbolic_operand_1 (rtx op, int size, int unspec)
+{
+ op = XEXP (op, 0);
+
+ if (GET_CODE (op) != UNSPEC || XINT (op, 1) != unspec)
+ return 0;
+ op = XVECEXP (op, 0, 0);
+
+ if (GET_CODE (op) != SYMBOL_REF)
+ return 0;
+
+ switch (SYMBOL_REF_TLS_MODEL (op))
+ {
+ case TLS_MODEL_LOCAL_DYNAMIC:
+ return unspec == UNSPEC_DTPREL && size == alpha_tls_size;
+ case TLS_MODEL_INITIAL_EXEC:
+ return unspec == UNSPEC_TPREL && size == 64;
+ case TLS_MODEL_LOCAL_EXEC:
+ return unspec == UNSPEC_TPREL && size == alpha_tls_size;
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Used by aligned_memory_operand and unaligned_memory_operand to
+ resolve what reload is going to do with OP if it's a register. */
+
+rtx
+resolve_reload_operand (rtx op)
+{
+ if (reload_in_progress)
+ {
+ rtx tmp = op;
+ if (GET_CODE (tmp) == SUBREG)
+ tmp = SUBREG_REG (tmp);
+ if (REG_P (tmp)
+ && REGNO (tmp) >= FIRST_PSEUDO_REGISTER)
+ {
+ op = reg_equiv_memory_loc (REGNO (tmp));
+ if (op == 0)
+ return 0;
+ }
+ }
+ return op;
+}
+
+/* The scalar modes supported differs from the default check-what-c-supports
+ version in that sometimes TFmode is available even when long double
+ indicates only DFmode. */
+
+static bool
+alpha_scalar_mode_supported_p (enum machine_mode mode)
+{
+ switch (mode)
+ {
+ case QImode:
+ case HImode:
+ case SImode:
+ case DImode:
+ case TImode: /* via optabs.c */
+ return true;
+
+ case SFmode:
+ case DFmode:
+ return true;
+
+ case TFmode:
+ return TARGET_HAS_XFLOATING_LIBS;
+
+ default:
+ return false;
+ }
+}
+
+/* Alpha implements a couple of integer vector mode operations when
+ TARGET_MAX is enabled. We do not check TARGET_MAX here, however,
+ which allows the vectorizer to operate on e.g. move instructions,
+ or when expand_vector_operations can do something useful. */
+
+static bool
+alpha_vector_mode_supported_p (enum machine_mode mode)
+{
+ return mode == V8QImode || mode == V4HImode || mode == V2SImode;
+}
+
+/* Return 1 if this function can directly return via $26. */
+
+int
+direct_return (void)
+{
+ return (TARGET_ABI_OSF
+ && reload_completed
+ && alpha_sa_size () == 0
+ && get_frame_size () == 0
+ && crtl->outgoing_args_size == 0
+ && crtl->args.pretend_args_size == 0);
+}
+
+/* Return the TLS model to use for SYMBOL. */
+
+static enum tls_model
+tls_symbolic_operand_type (rtx symbol)
+{
+ enum tls_model model;
+
+ if (GET_CODE (symbol) != SYMBOL_REF)
+ return TLS_MODEL_NONE;
+ model = SYMBOL_REF_TLS_MODEL (symbol);
+
+ /* Local-exec with a 64-bit size is the same code as initial-exec. */
+ if (model == TLS_MODEL_LOCAL_EXEC && alpha_tls_size == 64)
+ model = TLS_MODEL_INITIAL_EXEC;
+
+ return model;
+}
+
+/* Return true if the function DECL will share the same GP as any
+ function in the current unit of translation. */
+
+static bool
+decl_has_samegp (const_tree decl)
+{
+ /* Functions that are not local can be overridden, and thus may
+ not share the same gp. */
+ if (!(*targetm.binds_local_p) (decl))
+ return false;
+
+ /* If -msmall-data is in effect, assume that there is only one GP
+ for the module, and so any local symbol has this property. We
+ need explicit relocations to be able to enforce this for symbols
+ not defined in this unit of translation, however. */
+ if (TARGET_EXPLICIT_RELOCS && TARGET_SMALL_DATA)
+ return true;
+
+ /* Functions that are not external are defined in this UoT. */
+ /* ??? Irritatingly, static functions not yet emitted are still
+ marked "external". Apply this to non-static functions only. */
+ return !TREE_PUBLIC (decl) || !DECL_EXTERNAL (decl);
+}
+
+/* Return true if EXP should be placed in the small data section. */
+
+static bool
+alpha_in_small_data_p (const_tree exp)
+{
+ /* We want to merge strings, so we never consider them small data. */
+ if (TREE_CODE (exp) == STRING_CST)
+ return false;
+
+ /* Functions are never in the small data area. Duh. */
+ if (TREE_CODE (exp) == FUNCTION_DECL)
+ return false;
+
+ if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp))
+ {
+ const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp));
+ if (strcmp (section, ".sdata") == 0
+ || strcmp (section, ".sbss") == 0)
+ return true;
+ }
+ else
+ {
+ HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
+
+ /* If this is an incomplete type with size 0, then we can't put it
+ in sdata because it might be too big when completed. */
+ if (size > 0 && size <= g_switch_value)
+ return true;
+ }
+
+ return false;
+}
+
+#if TARGET_ABI_OPEN_VMS
+static bool
+vms_valid_pointer_mode (enum machine_mode mode)
+{
+ return (mode == SImode || mode == DImode);
+}
+
+static bool
+alpha_linkage_symbol_p (const char *symname)
+{
+ int symlen = strlen (symname);
+
+ if (symlen > 4)
+ return strcmp (&symname [symlen - 4], "..lk") == 0;
+
+ return false;
+}
+
+#define LINKAGE_SYMBOL_REF_P(X) \
+ ((GET_CODE (X) == SYMBOL_REF \
+ && alpha_linkage_symbol_p (XSTR (X, 0))) \
+ || (GET_CODE (X) == CONST \
+ && GET_CODE (XEXP (X, 0)) == PLUS \
+ && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
+ && alpha_linkage_symbol_p (XSTR (XEXP (XEXP (X, 0), 0), 0))))
+#endif
+
+/* legitimate_address_p recognizes an RTL expression that is a valid
+ memory address for an instruction. The MODE argument is the
+ machine mode for the MEM expression that wants to use this address.
+
+ For Alpha, we have either a constant address or the sum of a
+ register and a constant address, or just a register. For DImode,
+ any of those forms can be surrounded with an AND that clear the
+ low-order three bits; this is an "unaligned" access. */
+
+static bool
+alpha_legitimate_address_p (enum machine_mode mode, rtx x, bool strict)
+{
+ /* If this is an ldq_u type address, discard the outer AND. */
+ if (mode == DImode
+ && GET_CODE (x) == AND
+ && CONST_INT_P (XEXP (x, 1))
+ && INTVAL (XEXP (x, 1)) == -8)
+ x = XEXP (x, 0);
+
+ /* Discard non-paradoxical subregs. */
+ if (GET_CODE (x) == SUBREG
+ && (GET_MODE_SIZE (GET_MODE (x))
+ < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
+ x = SUBREG_REG (x);
+
+ /* Unadorned general registers are valid. */
+ if (REG_P (x)
+ && (strict
+ ? STRICT_REG_OK_FOR_BASE_P (x)
+ : NONSTRICT_REG_OK_FOR_BASE_P (x)))
+ return true;
+
+ /* Constant addresses (i.e. +/- 32k) are valid. */
+ if (CONSTANT_ADDRESS_P (x))
+ return true;
+
+#if TARGET_ABI_OPEN_VMS
+ if (LINKAGE_SYMBOL_REF_P (x))
+ return true;
+#endif
+
+ /* Register plus a small constant offset is valid. */
+ if (GET_CODE (x) == PLUS)
+ {
+ rtx ofs = XEXP (x, 1);
+ x = XEXP (x, 0);
+
+ /* Discard non-paradoxical subregs. */
+ if (GET_CODE (x) == SUBREG
+ && (GET_MODE_SIZE (GET_MODE (x))
+ < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
+ x = SUBREG_REG (x);
+
+ if (REG_P (x))
+ {
+ if (! strict
+ && NONSTRICT_REG_OK_FP_BASE_P (x)
+ && CONST_INT_P (ofs))
+ return true;
+ if ((strict
+ ? STRICT_REG_OK_FOR_BASE_P (x)
+ : NONSTRICT_REG_OK_FOR_BASE_P (x))
+ && CONSTANT_ADDRESS_P (ofs))
+ return true;
+ }
+ }
+
+ /* If we're managing explicit relocations, LO_SUM is valid, as are small
+ data symbols. Avoid explicit relocations of modes larger than word
+ mode since i.e. $LC0+8($1) can fold around +/- 32k offset. */
+ else if (TARGET_EXPLICIT_RELOCS
+ && GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
+ {
+ if (small_symbolic_operand (x, Pmode))
+ return true;
+
+ if (GET_CODE (x) == LO_SUM)
+ {
+ rtx ofs = XEXP (x, 1);
+ x = XEXP (x, 0);
+
+ /* Discard non-paradoxical subregs. */
+ if (GET_CODE (x) == SUBREG
+ && (GET_MODE_SIZE (GET_MODE (x))
+ < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
+ x = SUBREG_REG (x);
+
+ /* Must have a valid base register. */
+ if (! (REG_P (x)
+ && (strict
+ ? STRICT_REG_OK_FOR_BASE_P (x)
+ : NONSTRICT_REG_OK_FOR_BASE_P (x))))
+ return false;
+
+ /* The symbol must be local. */
+ if (local_symbolic_operand (ofs, Pmode)
+ || dtp32_symbolic_operand (ofs, Pmode)
+ || tp32_symbolic_operand (ofs, Pmode))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* Build the SYMBOL_REF for __tls_get_addr. */
+
+static GTY(()) rtx tls_get_addr_libfunc;
+
+static rtx
+get_tls_get_addr (void)
+{
+ if (!tls_get_addr_libfunc)
+ tls_get_addr_libfunc = init_one_libfunc ("__tls_get_addr");
+ return tls_get_addr_libfunc;
+}
+
+/* Try machine-dependent ways of modifying an illegitimate address
+ to be legitimate. If we find one, return the new, valid address. */
+
+static rtx
+alpha_legitimize_address_1 (rtx x, rtx scratch, enum machine_mode mode)
+{
+ HOST_WIDE_INT addend;
+
+ /* If the address is (plus reg const_int) and the CONST_INT is not a
+ valid offset, compute the high part of the constant and add it to
+ the register. Then our address is (plus temp low-part-const). */
+ if (GET_CODE (x) == PLUS
+ && REG_P (XEXP (x, 0))
+ && CONST_INT_P (XEXP (x, 1))
+ && ! CONSTANT_ADDRESS_P (XEXP (x, 1)))
+ {
+ addend = INTVAL (XEXP (x, 1));
+ x = XEXP (x, 0);
+ goto split_addend;
+ }
+
+ /* If the address is (const (plus FOO const_int)), find the low-order
+ part of the CONST_INT. Then load FOO plus any high-order part of the
+ CONST_INT into a register. Our address is (plus reg low-part-const).
+ This is done to reduce the number of GOT entries. */
+ if (can_create_pseudo_p ()
+ && GET_CODE (x) == CONST
+ && GET_CODE (XEXP (x, 0)) == PLUS
+ && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
+ {
+ addend = INTVAL (XEXP (XEXP (x, 0), 1));
+ x = force_reg (Pmode, XEXP (XEXP (x, 0), 0));
+ goto split_addend;
+ }
+
+ /* If we have a (plus reg const), emit the load as in (2), then add
+ the two registers, and finally generate (plus reg low-part-const) as
+ our address. */
+ if (can_create_pseudo_p ()
+ && GET_CODE (x) == PLUS
+ && REG_P (XEXP (x, 0))
+ && GET_CODE (XEXP (x, 1)) == CONST
+ && GET_CODE (XEXP (XEXP (x, 1), 0)) == PLUS
+ && CONST_INT_P (XEXP (XEXP (XEXP (x, 1), 0), 1)))
+ {
+ addend = INTVAL (XEXP (XEXP (XEXP (x, 1), 0), 1));
+ x = expand_simple_binop (Pmode, PLUS, XEXP (x, 0),
+ XEXP (XEXP (XEXP (x, 1), 0), 0),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ goto split_addend;
+ }
+
+ /* If this is a local symbol, split the address into HIGH/LO_SUM parts.
+ Avoid modes larger than word mode since i.e. $LC0+8($1) can fold
+ around +/- 32k offset. */
+ if (TARGET_EXPLICIT_RELOCS
+ && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
+ && symbolic_operand (x, Pmode))
+ {
+ rtx r0, r16, eqv, tga, tp, insn, dest, seq;
+
+ switch (tls_symbolic_operand_type (x))
+ {
+ case TLS_MODEL_NONE:
+ break;
+
+ case TLS_MODEL_GLOBAL_DYNAMIC:
+ start_sequence ();
+
+ r0 = gen_rtx_REG (Pmode, 0);
+ r16 = gen_rtx_REG (Pmode, 16);
+ tga = get_tls_get_addr ();
+ dest = gen_reg_rtx (Pmode);
+ seq = GEN_INT (alpha_next_sequence_number++);
+
+ emit_insn (gen_movdi_er_tlsgd (r16, pic_offset_table_rtx, x, seq));
+ insn = gen_call_value_osf_tlsgd (r0, tga, seq);
+ insn = emit_call_insn (insn);
+ RTL_CONST_CALL_P (insn) = 1;
+ use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r16);
+
+ insn = get_insns ();
+ end_sequence ();
+
+ emit_libcall_block (insn, dest, r0, x);
+ return dest;
+
+ case TLS_MODEL_LOCAL_DYNAMIC:
+ start_sequence ();
+
+ r0 = gen_rtx_REG (Pmode, 0);
+ r16 = gen_rtx_REG (Pmode, 16);
+ tga = get_tls_get_addr ();
+ scratch = gen_reg_rtx (Pmode);
+ seq = GEN_INT (alpha_next_sequence_number++);
+
+ emit_insn (gen_movdi_er_tlsldm (r16, pic_offset_table_rtx, seq));
+ insn = gen_call_value_osf_tlsldm (r0, tga, seq);
+ insn = emit_call_insn (insn);
+ RTL_CONST_CALL_P (insn) = 1;
+ use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r16);
+
+ insn = get_insns ();
+ end_sequence ();
+
+ eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
+ UNSPEC_TLSLDM_CALL);
+ emit_libcall_block (insn, scratch, r0, eqv);
+
+ eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_DTPREL);
+ eqv = gen_rtx_CONST (Pmode, eqv);
+
+ if (alpha_tls_size == 64)
+ {
+ dest = gen_reg_rtx (Pmode);
+ emit_insn (gen_rtx_SET (VOIDmode, dest, eqv));
+ emit_insn (gen_adddi3 (dest, dest, scratch));
+ return dest;
+ }
+ if (alpha_tls_size == 32)
+ {
+ insn = gen_rtx_HIGH (Pmode, eqv);
+ insn = gen_rtx_PLUS (Pmode, scratch, insn);
+ scratch = gen_reg_rtx (Pmode);
+ emit_insn (gen_rtx_SET (VOIDmode, scratch, insn));
+ }
+ return gen_rtx_LO_SUM (Pmode, scratch, eqv);
+
+ case TLS_MODEL_INITIAL_EXEC:
+ eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_TPREL);
+ eqv = gen_rtx_CONST (Pmode, eqv);
+ tp = gen_reg_rtx (Pmode);
+ scratch = gen_reg_rtx (Pmode);
+ dest = gen_reg_rtx (Pmode);
+
+ emit_insn (gen_get_thread_pointerdi (tp));
+ emit_insn (gen_rtx_SET (VOIDmode, scratch, eqv));
+ emit_insn (gen_adddi3 (dest, tp, scratch));
+ return dest;
+
+ case TLS_MODEL_LOCAL_EXEC:
+ eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_TPREL);
+ eqv = gen_rtx_CONST (Pmode, eqv);
+ tp = gen_reg_rtx (Pmode);
+
+ emit_insn (gen_get_thread_pointerdi (tp));
+ if (alpha_tls_size == 32)
+ {
+ insn = gen_rtx_HIGH (Pmode, eqv);
+ insn = gen_rtx_PLUS (Pmode, tp, insn);
+ tp = gen_reg_rtx (Pmode);
+ emit_insn (gen_rtx_SET (VOIDmode, tp, insn));
+ }
+ return gen_rtx_LO_SUM (Pmode, tp, eqv);
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (local_symbolic_operand (x, Pmode))
+ {
+ if (small_symbolic_operand (x, Pmode))
+ return x;
+ else
+ {
+ if (can_create_pseudo_p ())
+ scratch = gen_reg_rtx (Pmode);
+ emit_insn (gen_rtx_SET (VOIDmode, scratch,
+ gen_rtx_HIGH (Pmode, x)));
+ return gen_rtx_LO_SUM (Pmode, scratch, x);
+ }
+ }
+ }
+
+ return NULL;
+
+ split_addend:
+ {
+ HOST_WIDE_INT low, high;
+
+ low = ((addend & 0xffff) ^ 0x8000) - 0x8000;
+ addend -= low;
+ high = ((addend & 0xffffffff) ^ 0x80000000) - 0x80000000;
+ addend -= high;
+
+ if (addend)
+ x = expand_simple_binop (Pmode, PLUS, x, GEN_INT (addend),
+ (!can_create_pseudo_p () ? scratch : NULL_RTX),
+ 1, OPTAB_LIB_WIDEN);
+ if (high)
+ x = expand_simple_binop (Pmode, PLUS, x, GEN_INT (high),
+ (!can_create_pseudo_p () ? scratch : NULL_RTX),
+ 1, OPTAB_LIB_WIDEN);
+
+ return plus_constant (Pmode, x, low);
+ }
+}
+
+
+/* Try machine-dependent ways of modifying an illegitimate address
+ to be legitimate. Return X or the new, valid address. */
+
+static rtx
+alpha_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
+ enum machine_mode mode)
+{
+ rtx new_x = alpha_legitimize_address_1 (x, NULL_RTX, mode);
+ return new_x ? new_x : x;
+}
+
+/* Return true if ADDR has an effect that depends on the machine mode it
+ is used for. On the Alpha this is true only for the unaligned modes.
+ We can simplify the test since we know that the address must be valid. */
+
+static bool
+alpha_mode_dependent_address_p (const_rtx addr,
+ addr_space_t as ATTRIBUTE_UNUSED)
+{
+ return GET_CODE (addr) == AND;
+}
+
+/* Primarily this is required for TLS symbols, but given that our move
+ patterns *ought* to be able to handle any symbol at any time, we
+ should never be spilling symbolic operands to the constant pool, ever. */
+
+static bool
+alpha_cannot_force_const_mem (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
+{
+ enum rtx_code code = GET_CODE (x);
+ return code == SYMBOL_REF || code == LABEL_REF || code == CONST;
+}
+
+/* We do not allow indirect calls to be optimized into sibling calls, nor
+ can we allow a call to a function with a different GP to be optimized
+ into a sibcall. */
+
+static bool
+alpha_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
+{
+ /* Can't do indirect tail calls, since we don't know if the target
+ uses the same GP. */
+ if (!decl)
+ return false;
+
+ /* Otherwise, we can make a tail call if the target function shares
+ the same GP. */
+ return decl_has_samegp (decl);
+}
+
+int
+some_small_symbolic_operand_int (rtx *px, void *data ATTRIBUTE_UNUSED)
+{
+ rtx x = *px;
+
+ /* Don't re-split. */
+ if (GET_CODE (x) == LO_SUM)
+ return -1;
+
+ return small_symbolic_operand (x, Pmode) != 0;
+}
+
+static int
+split_small_symbolic_operand_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
+{
+ rtx x = *px;
+
+ /* Don't re-split. */
+ if (GET_CODE (x) == LO_SUM)
+ return -1;
+
+ if (small_symbolic_operand (x, Pmode))
+ {
+ x = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, x);
+ *px = x;
+ return -1;
+ }
+
+ return 0;
+}
+
+rtx
+split_small_symbolic_operand (rtx x)
+{
+ x = copy_insn (x);
+ for_each_rtx (&x, split_small_symbolic_operand_1, NULL);
+ return x;
+}
+
+/* Indicate that INSN cannot be duplicated. This is true for any insn
+ that we've marked with gpdisp relocs, since those have to stay in
+ 1-1 correspondence with one another.
+
+ Technically we could copy them if we could set up a mapping from one
+ sequence number to another, across the set of insns to be duplicated.
+ This seems overly complicated and error-prone since interblock motion
+ from sched-ebb could move one of the pair of insns to a different block.
+
+ Also cannot allow jsr insns to be duplicated. If they throw exceptions,
+ then they'll be in a different block from their ldgp. Which could lead
+ the bb reorder code to think that it would be ok to copy just the block
+ containing the call and branch to the block containing the ldgp. */
+
+static bool
+alpha_cannot_copy_insn_p (rtx insn)
+{
+ if (!reload_completed || !TARGET_EXPLICIT_RELOCS)
+ return false;
+ if (recog_memoized (insn) >= 0)
+ return get_attr_cannot_copy (insn);
+ else
+ return false;
+}
+
+
+/* Try a machine-dependent way of reloading an illegitimate address
+ operand. If we find one, push the reload and return the new rtx. */
+
+rtx
+alpha_legitimize_reload_address (rtx x,
+ enum machine_mode mode ATTRIBUTE_UNUSED,
+ int opnum, int type,
+ int ind_levels ATTRIBUTE_UNUSED)
+{
+ /* We must recognize output that we have already generated ourselves. */
+ if (GET_CODE (x) == PLUS
+ && GET_CODE (XEXP (x, 0)) == PLUS
+ && REG_P (XEXP (XEXP (x, 0), 0))
+ && CONST_INT_P (XEXP (XEXP (x, 0), 1))
+ && CONST_INT_P (XEXP (x, 1)))
+ {
+ push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
+ BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
+ opnum, (enum reload_type) type);
+ return x;
+ }
+
+ /* We wish to handle large displacements off a base register by
+ splitting the addend across an ldah and the mem insn. This
+ cuts number of extra insns needed from 3 to 1. */
+ if (GET_CODE (x) == PLUS
+ && REG_P (XEXP (x, 0))
+ && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
+ && REGNO_OK_FOR_BASE_P (REGNO (XEXP (x, 0)))
+ && GET_CODE (XEXP (x, 1)) == CONST_INT)
+ {
+ HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
+ HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000;
+ HOST_WIDE_INT high
+ = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000;
+
+ /* Check for 32-bit overflow. */
+ if (high + low != val)
+ return NULL_RTX;
+
+ /* Reload the high part into a base reg; leave the low part
+ in the mem directly. */
+ x = gen_rtx_PLUS (GET_MODE (x),
+ gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
+ GEN_INT (high)),
+ GEN_INT (low));
+
+ push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
+ BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
+ opnum, (enum reload_type) type);
+ return x;
+ }
+
+ return NULL_RTX;
+}
+
+/* Compute a (partial) cost for rtx X. Return true if the complete
+ cost has been computed, and false if subexpressions should be
+ scanned. In either case, *TOTAL contains the cost result. */
+
+static bool
+alpha_rtx_costs (rtx x, int code, int outer_code, int opno, int *total,
+ bool speed)
+{
+ enum machine_mode mode = GET_MODE (x);
+ bool float_mode_p = FLOAT_MODE_P (mode);
+ const struct alpha_rtx_cost_data *cost_data;
+
+ if (!speed)
+ cost_data = &alpha_rtx_cost_size;
+ else
+ cost_data = &alpha_rtx_cost_data[alpha_tune];
+
+ switch (code)
+ {
+ case CONST_INT:
+ /* If this is an 8-bit constant, return zero since it can be used
+ nearly anywhere with no cost. If it is a valid operand for an
+ ADD or AND, likewise return 0 if we know it will be used in that
+ context. Otherwise, return 2 since it might be used there later.
+ All other constants take at least two insns. */
+ if (INTVAL (x) >= 0 && INTVAL (x) < 256)
+ {
+ *total = 0;
+ return true;
+ }
+ /* FALLTHRU */
+
+ case CONST_DOUBLE:
+ if (x == CONST0_RTX (mode))
+ *total = 0;
+ else if ((outer_code == PLUS && add_operand (x, VOIDmode))
+ || (outer_code == AND && and_operand (x, VOIDmode)))
+ *total = 0;
+ else if (add_operand (x, VOIDmode) || and_operand (x, VOIDmode))
+ *total = 2;
+ else
+ *total = COSTS_N_INSNS (2);
+ return true;
+
+ case CONST:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ if (TARGET_EXPLICIT_RELOCS && small_symbolic_operand (x, VOIDmode))
+ *total = COSTS_N_INSNS (outer_code != MEM);
+ else if (TARGET_EXPLICIT_RELOCS && local_symbolic_operand (x, VOIDmode))
+ *total = COSTS_N_INSNS (1 + (outer_code != MEM));
+ else if (tls_symbolic_operand_type (x))
+ /* Estimate of cost for call_pal rduniq. */
+ /* ??? How many insns do we emit here? More than one... */
+ *total = COSTS_N_INSNS (15);
+ else
+ /* Otherwise we do a load from the GOT. */
+ *total = COSTS_N_INSNS (!speed ? 1 : alpha_memory_latency);
+ return true;
+
+ case HIGH:
+ /* This is effectively an add_operand. */
+ *total = 2;
+ return true;
+
+ case PLUS:
+ case MINUS:
+ if (float_mode_p)
+ *total = cost_data->fp_add;
+ else if (GET_CODE (XEXP (x, 0)) == MULT
+ && const48_operand (XEXP (XEXP (x, 0), 1), VOIDmode))
+ {
+ *total = (rtx_cost (XEXP (XEXP (x, 0), 0),
+ (enum rtx_code) outer_code, opno, speed)
+ + rtx_cost (XEXP (x, 1),
+ (enum rtx_code) outer_code, opno, speed)
+ + COSTS_N_INSNS (1));
+ return true;
+ }
+ return false;
+
+ case MULT:
+ if (float_mode_p)
+ *total = cost_data->fp_mult;
+ else if (mode == DImode)
+ *total = cost_data->int_mult_di;
+ else
+ *total = cost_data->int_mult_si;
+ return false;
+
+ case ASHIFT:
+ if (CONST_INT_P (XEXP (x, 1))
+ && INTVAL (XEXP (x, 1)) <= 3)
+ {
+ *total = COSTS_N_INSNS (1);
+ return false;
+ }
+ /* FALLTHRU */
+
+ case ASHIFTRT:
+ case LSHIFTRT:
+ *total = cost_data->int_shift;
+ return false;
+
+ case IF_THEN_ELSE:
+ if (float_mode_p)
+ *total = cost_data->fp_add;
+ else
+ *total = cost_data->int_cmov;
+ return false;
+
+ case DIV:
+ case UDIV:
+ case MOD:
+ case UMOD:
+ if (!float_mode_p)
+ *total = cost_data->int_div;
+ else if (mode == SFmode)
+ *total = cost_data->fp_div_sf;
+ else
+ *total = cost_data->fp_div_df;
+ return false;
+
+ case MEM:
+ *total = COSTS_N_INSNS (!speed ? 1 : alpha_memory_latency);
+ return true;
+
+ case NEG:
+ if (! float_mode_p)
+ {
+ *total = COSTS_N_INSNS (1);
+ return false;
+ }
+ /* FALLTHRU */
+
+ case ABS:
+ if (! float_mode_p)
+ {
+ *total = COSTS_N_INSNS (1) + cost_data->int_cmov;
+ return false;
+ }
+ /* FALLTHRU */
+
+ case FLOAT:
+ case UNSIGNED_FLOAT:
+ case FIX:
+ case UNSIGNED_FIX:
+ case FLOAT_TRUNCATE:
+ *total = cost_data->fp_add;
+ return false;
+
+ case FLOAT_EXTEND:
+ if (MEM_P (XEXP (x, 0)))
+ *total = 0;
+ else
+ *total = cost_data->fp_add;
+ return false;
+
+ default:
+ return false;
+ }
+}
+
+/* REF is an alignable memory location. Place an aligned SImode
+ reference into *PALIGNED_MEM and the number of bits to shift into
+ *PBITNUM. SCRATCH is a free register for use in reloading out
+ of range stack slots. */
+
+void
+get_aligned_mem (rtx ref, rtx *paligned_mem, rtx *pbitnum)
+{
+ rtx base;
+ HOST_WIDE_INT disp, offset;
+
+ gcc_assert (MEM_P (ref));
+
+ if (reload_in_progress
+ && ! memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
+ {
+ base = find_replacement (&XEXP (ref, 0));
+ gcc_assert (memory_address_p (GET_MODE (ref), base));
+ }
+ else
+ base = XEXP (ref, 0);
+
+ if (GET_CODE (base) == PLUS)
+ disp = INTVAL (XEXP (base, 1)), base = XEXP (base, 0);
+ else
+ disp = 0;
+
+ /* Find the byte offset within an aligned word. If the memory itself is
+ claimed to be aligned, believe it. Otherwise, aligned_memory_operand
+ will have examined the base register and determined it is aligned, and
+ thus displacements from it are naturally alignable. */
+ if (MEM_ALIGN (ref) >= 32)
+ offset = 0;
+ else
+ offset = disp & 3;
+
+ /* The location should not cross aligned word boundary. */
+ gcc_assert (offset + GET_MODE_SIZE (GET_MODE (ref))
+ <= GET_MODE_SIZE (SImode));
+
+ /* Access the entire aligned word. */
+ *paligned_mem = widen_memory_access (ref, SImode, -offset);
+
+ /* Convert the byte offset within the word to a bit offset. */
+ offset *= BITS_PER_UNIT;
+ *pbitnum = GEN_INT (offset);
+}
+
+/* Similar, but just get the address. Handle the two reload cases.
+ Add EXTRA_OFFSET to the address we return. */
+
+rtx
+get_unaligned_address (rtx ref)
+{
+ rtx base;
+ HOST_WIDE_INT offset = 0;
+
+ gcc_assert (MEM_P (ref));
+
+ if (reload_in_progress
+ && ! memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
+ {
+ base = find_replacement (&XEXP (ref, 0));
+
+ gcc_assert (memory_address_p (GET_MODE (ref), base));
+ }
+ else
+ base = XEXP (ref, 0);
+
+ if (GET_CODE (base) == PLUS)
+ offset += INTVAL (XEXP (base, 1)), base = XEXP (base, 0);
+
+ return plus_constant (Pmode, base, offset);
+}
+
+/* Compute a value X, such that X & 7 == (ADDR + OFS) & 7.
+ X is always returned in a register. */
+
+rtx
+get_unaligned_offset (rtx addr, HOST_WIDE_INT ofs)
+{
+ if (GET_CODE (addr) == PLUS)
+ {
+ ofs += INTVAL (XEXP (addr, 1));
+ addr = XEXP (addr, 0);
+ }
+
+ return expand_simple_binop (Pmode, PLUS, addr, GEN_INT (ofs & 7),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+}
+
+/* On the Alpha, all (non-symbolic) constants except zero go into
+ a floating-point register via memory. Note that we cannot
+ return anything that is not a subset of RCLASS, and that some
+ symbolic constants cannot be dropped to memory. */
+
+enum reg_class
+alpha_preferred_reload_class(rtx x, enum reg_class rclass)
+{
+ /* Zero is present in any register class. */
+ if (x == CONST0_RTX (GET_MODE (x)))
+ return rclass;
+
+ /* These sorts of constants we can easily drop to memory. */
+ if (CONST_INT_P (x)
+ || GET_CODE (x) == CONST_DOUBLE
+ || GET_CODE (x) == CONST_VECTOR)
+ {
+ if (rclass == FLOAT_REGS)
+ return NO_REGS;
+ if (rclass == ALL_REGS)
+ return GENERAL_REGS;
+ return rclass;
+ }
+
+ /* All other kinds of constants should not (and in the case of HIGH
+ cannot) be dropped to memory -- instead we use a GENERAL_REGS
+ secondary reload. */
+ if (CONSTANT_P (x))
+ return (rclass == ALL_REGS ? GENERAL_REGS : rclass);
+
+ return rclass;
+}
+
+/* Inform reload about cases where moving X with a mode MODE to a register in
+ RCLASS requires an extra scratch or immediate register. Return the class
+ needed for the immediate register. */
+
+static reg_class_t
+alpha_secondary_reload (bool in_p, rtx x, reg_class_t rclass_i,
+ enum machine_mode mode, secondary_reload_info *sri)
+{
+ enum reg_class rclass = (enum reg_class) rclass_i;
+
+ /* Loading and storing HImode or QImode values to and from memory
+ usually requires a scratch register. */
+ if (!TARGET_BWX && (mode == QImode || mode == HImode || mode == CQImode))
+ {
+ if (any_memory_operand (x, mode))
+ {
+ if (in_p)
+ {
+ if (!aligned_memory_operand (x, mode))
+ sri->icode = direct_optab_handler (reload_in_optab, mode);
+ }
+ else
+ sri->icode = direct_optab_handler (reload_out_optab, mode);
+ return NO_REGS;
+ }
+ }
+
+ /* We also cannot do integral arithmetic into FP regs, as might result
+ from register elimination into a DImode fp register. */
+ if (rclass == FLOAT_REGS)
+ {
+ if (MEM_P (x) && GET_CODE (XEXP (x, 0)) == AND)
+ return GENERAL_REGS;
+ if (in_p && INTEGRAL_MODE_P (mode)
+ && !MEM_P (x) && !REG_P (x) && !CONST_INT_P (x))
+ return GENERAL_REGS;
+ }
+
+ return NO_REGS;
+}
+
+/* Subfunction of the following function. Update the flags of any MEM
+ found in part of X. */
+
+static int
+alpha_set_memflags_1 (rtx *xp, void *data)
+{
+ rtx x = *xp, orig = (rtx) data;
+
+ if (!MEM_P (x))
+ return 0;
+
+ MEM_VOLATILE_P (x) = MEM_VOLATILE_P (orig);
+ MEM_NOTRAP_P (x) = MEM_NOTRAP_P (orig);
+ MEM_READONLY_P (x) = MEM_READONLY_P (orig);
+
+ /* Sadly, we cannot use alias sets because the extra aliasing
+ produced by the AND interferes. Given that two-byte quantities
+ are the only thing we would be able to differentiate anyway,
+ there does not seem to be any point in convoluting the early
+ out of the alias check. */
+
+ return -1;
+}
+
+/* Given SEQ, which is an INSN list, look for any MEMs in either
+ a SET_DEST or a SET_SRC and copy the in-struct, unchanging, and
+ volatile flags from REF into each of the MEMs found. If REF is not
+ a MEM, don't do anything. */
+
+void
+alpha_set_memflags (rtx seq, rtx ref)
+{
+ rtx insn;
+
+ if (!MEM_P (ref))
+ return;
+
+ /* This is only called from alpha.md, after having had something
+ generated from one of the insn patterns. So if everything is
+ zero, the pattern is already up-to-date. */
+ if (!MEM_VOLATILE_P (ref)
+ && !MEM_NOTRAP_P (ref)
+ && !MEM_READONLY_P (ref))
+ return;
+
+ for (insn = seq; insn; insn = NEXT_INSN (insn))
+ if (INSN_P (insn))
+ for_each_rtx (&PATTERN (insn), alpha_set_memflags_1, (void *) ref);
+ else
+ gcc_unreachable ();
+}
+
+static rtx alpha_emit_set_const (rtx, enum machine_mode, HOST_WIDE_INT,
+ int, bool);
+
+/* Internal routine for alpha_emit_set_const to check for N or below insns.
+ If NO_OUTPUT is true, then we only check to see if N insns are possible,
+ and return pc_rtx if successful. */
+
+static rtx
+alpha_emit_set_const_1 (rtx target, enum machine_mode mode,
+ HOST_WIDE_INT c, int n, bool no_output)
+{
+ HOST_WIDE_INT new_const;
+ int i, bits;
+ /* Use a pseudo if highly optimizing and still generating RTL. */
+ rtx subtarget
+ = (flag_expensive_optimizations && can_create_pseudo_p () ? 0 : target);
+ rtx temp, insn;
+
+ /* If this is a sign-extended 32-bit constant, we can do this in at most
+ three insns, so do it if we have enough insns left. We always have
+ a sign-extended 32-bit constant when compiling on a narrow machine. */
+
+ if (HOST_BITS_PER_WIDE_INT != 64
+ || c >> 31 == -1 || c >> 31 == 0)
+ {
+ HOST_WIDE_INT low = ((c & 0xffff) ^ 0x8000) - 0x8000;
+ HOST_WIDE_INT tmp1 = c - low;
+ HOST_WIDE_INT high = (((tmp1 >> 16) & 0xffff) ^ 0x8000) - 0x8000;
+ HOST_WIDE_INT extra = 0;
+
+ /* If HIGH will be interpreted as negative but the constant is
+ positive, we must adjust it to do two ldha insns. */
+
+ if ((high & 0x8000) != 0 && c >= 0)
+ {
+ extra = 0x4000;
+ tmp1 -= 0x40000000;
+ high = ((tmp1 >> 16) & 0xffff) - 2 * ((tmp1 >> 16) & 0x8000);
+ }
+
+ if (c == low || (low == 0 && extra == 0))
+ {
+ /* We used to use copy_to_suggested_reg (GEN_INT (c), target, mode)
+ but that meant that we can't handle INT_MIN on 32-bit machines
+ (like NT/Alpha), because we recurse indefinitely through
+ emit_move_insn to gen_movdi. So instead, since we know exactly
+ what we want, create it explicitly. */
+
+ if (no_output)
+ return pc_rtx;
+ if (target == NULL)
+ target = gen_reg_rtx (mode);
+ emit_insn (gen_rtx_SET (VOIDmode, target, GEN_INT (c)));
+ return target;
+ }
+ else if (n >= 2 + (extra != 0))
+ {
+ if (no_output)
+ return pc_rtx;
+ if (!can_create_pseudo_p ())
+ {
+ emit_insn (gen_rtx_SET (VOIDmode, target, GEN_INT (high << 16)));
+ temp = target;
+ }
+ else
+ temp = copy_to_suggested_reg (GEN_INT (high << 16),
+ subtarget, mode);
+
+ /* As of 2002-02-23, addsi3 is only available when not optimizing.
+ This means that if we go through expand_binop, we'll try to
+ generate extensions, etc, which will require new pseudos, which
+ will fail during some split phases. The SImode add patterns
+ still exist, but are not named. So build the insns by hand. */
+
+ if (extra != 0)
+ {
+ if (! subtarget)
+ subtarget = gen_reg_rtx (mode);
+ insn = gen_rtx_PLUS (mode, temp, GEN_INT (extra << 16));
+ insn = gen_rtx_SET (VOIDmode, subtarget, insn);
+ emit_insn (insn);
+ temp = subtarget;
+ }
+
+ if (target == NULL)
+ target = gen_reg_rtx (mode);
+ insn = gen_rtx_PLUS (mode, temp, GEN_INT (low));
+ insn = gen_rtx_SET (VOIDmode, target, insn);
+ emit_insn (insn);
+ return target;
+ }
+ }
+
+ /* If we couldn't do it that way, try some other methods. But if we have
+ no instructions left, don't bother. Likewise, if this is SImode and
+ we can't make pseudos, we can't do anything since the expand_binop
+ and expand_unop calls will widen and try to make pseudos. */
+
+ if (n == 1 || (mode == SImode && !can_create_pseudo_p ()))
+ return 0;
+
+ /* Next, see if we can load a related constant and then shift and possibly
+ negate it to get the constant we want. Try this once each increasing
+ numbers of insns. */
+
+ for (i = 1; i < n; i++)
+ {
+ /* First, see if minus some low bits, we've an easy load of
+ high bits. */
+
+ new_const = ((c & 0xffff) ^ 0x8000) - 0x8000;
+ if (new_const != 0)
+ {
+ temp = alpha_emit_set_const (subtarget, mode, c - new_const, i, no_output);
+ if (temp)
+ {
+ if (no_output)
+ return temp;
+ return expand_binop (mode, add_optab, temp, GEN_INT (new_const),
+ target, 0, OPTAB_WIDEN);
+ }
+ }
+
+ /* Next try complementing. */
+ temp = alpha_emit_set_const (subtarget, mode, ~c, i, no_output);
+ if (temp)
+ {
+ if (no_output)
+ return temp;
+ return expand_unop (mode, one_cmpl_optab, temp, target, 0);
+ }
+
+ /* Next try to form a constant and do a left shift. We can do this
+ if some low-order bits are zero; the exact_log2 call below tells
+ us that information. The bits we are shifting out could be any
+ value, but here we'll just try the 0- and sign-extended forms of
+ the constant. To try to increase the chance of having the same
+ constant in more than one insn, start at the highest number of
+ bits to shift, but try all possibilities in case a ZAPNOT will
+ be useful. */
+
+ bits = exact_log2 (c & -c);
+ if (bits > 0)
+ for (; bits > 0; bits--)
+ {
+ new_const = c >> bits;
+ temp = alpha_emit_set_const (subtarget, mode, new_const, i, no_output);
+ if (!temp && c < 0)
+ {
+ new_const = (unsigned HOST_WIDE_INT)c >> bits;
+ temp = alpha_emit_set_const (subtarget, mode, new_const,
+ i, no_output);
+ }
+ if (temp)
+ {
+ if (no_output)
+ return temp;
+ return expand_binop (mode, ashl_optab, temp, GEN_INT (bits),
+ target, 0, OPTAB_WIDEN);
+ }
+ }
+
+ /* Now try high-order zero bits. Here we try the shifted-in bits as
+ all zero and all ones. Be careful to avoid shifting outside the
+ mode and to avoid shifting outside the host wide int size. */
+ /* On narrow hosts, don't shift a 1 into the high bit, since we'll
+ confuse the recursive call and set all of the high 32 bits. */
+
+ bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8)
+ - floor_log2 (c) - 1 - (HOST_BITS_PER_WIDE_INT < 64));
+ if (bits > 0)
+ for (; bits > 0; bits--)
+ {
+ new_const = c << bits;
+ temp = alpha_emit_set_const (subtarget, mode, new_const, i, no_output);
+ if (!temp)
+ {
+ new_const = (c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1);
+ temp = alpha_emit_set_const (subtarget, mode, new_const,
+ i, no_output);
+ }
+ if (temp)
+ {
+ if (no_output)
+ return temp;
+ return expand_binop (mode, lshr_optab, temp, GEN_INT (bits),
+ target, 1, OPTAB_WIDEN);
+ }
+ }
+
+ /* Now try high-order 1 bits. We get that with a sign-extension.
+ But one bit isn't enough here. Be careful to avoid shifting outside
+ the mode and to avoid shifting outside the host wide int size. */
+
+ bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8)
+ - floor_log2 (~ c) - 2);
+ if (bits > 0)
+ for (; bits > 0; bits--)
+ {
+ new_const = c << bits;
+ temp = alpha_emit_set_const (subtarget, mode, new_const, i, no_output);
+ if (!temp)
+ {
+ new_const = (c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1);
+ temp = alpha_emit_set_const (subtarget, mode, new_const,
+ i, no_output);
+ }
+ if (temp)
+ {
+ if (no_output)
+ return temp;
+ return expand_binop (mode, ashr_optab, temp, GEN_INT (bits),
+ target, 0, OPTAB_WIDEN);
+ }
+ }
+ }
+
+#if HOST_BITS_PER_WIDE_INT == 64
+ /* Finally, see if can load a value into the target that is the same as the
+ constant except that all bytes that are 0 are changed to be 0xff. If we
+ can, then we can do a ZAPNOT to obtain the desired constant. */
+
+ new_const = c;
+ for (i = 0; i < 64; i += 8)
+ if ((new_const & ((HOST_WIDE_INT) 0xff << i)) == 0)
+ new_const |= (HOST_WIDE_INT) 0xff << i;
+
+ /* We are only called for SImode and DImode. If this is SImode, ensure that
+ we are sign extended to a full word. */
+
+ if (mode == SImode)
+ new_const = ((new_const & 0xffffffff) ^ 0x80000000) - 0x80000000;
+
+ if (new_const != c)
+ {
+ temp = alpha_emit_set_const (subtarget, mode, new_const, n - 1, no_output);
+ if (temp)
+ {
+ if (no_output)
+ return temp;
+ return expand_binop (mode, and_optab, temp, GEN_INT (c | ~ new_const),
+ target, 0, OPTAB_WIDEN);
+ }
+ }
+#endif
+
+ return 0;
+}
+
+/* Try to output insns to set TARGET equal to the constant C if it can be
+ done in less than N insns. Do all computations in MODE. Returns the place
+ where the output has been placed if it can be done and the insns have been
+ emitted. If it would take more than N insns, zero is returned and no
+ insns and emitted. */
+
+static rtx
+alpha_emit_set_const (rtx target, enum machine_mode mode,
+ HOST_WIDE_INT c, int n, bool no_output)
+{
+ enum machine_mode orig_mode = mode;
+ rtx orig_target = target;
+ rtx result = 0;
+ int i;
+
+ /* If we can't make any pseudos, TARGET is an SImode hard register, we
+ can't load this constant in one insn, do this in DImode. */
+ if (!can_create_pseudo_p () && mode == SImode
+ && REG_P (target) && REGNO (target) < FIRST_PSEUDO_REGISTER)
+ {
+ result = alpha_emit_set_const_1 (target, mode, c, 1, no_output);
+ if (result)
+ return result;
+
+ target = no_output ? NULL : gen_lowpart (DImode, target);
+ mode = DImode;
+ }
+ else if (mode == V8QImode || mode == V4HImode || mode == V2SImode)
+ {
+ target = no_output ? NULL : gen_lowpart (DImode, target);
+ mode = DImode;
+ }
+
+ /* Try 1 insn, then 2, then up to N. */
+ for (i = 1; i <= n; i++)
+ {
+ result = alpha_emit_set_const_1 (target, mode, c, i, no_output);
+ if (result)
+ {
+ rtx insn, set;
+
+ if (no_output)
+ return result;
+
+ insn = get_last_insn ();
+ set = single_set (insn);
+ if (! CONSTANT_P (SET_SRC (set)))
+ set_unique_reg_note (get_last_insn (), REG_EQUAL, GEN_INT (c));
+ break;
+ }
+ }
+
+ /* Allow for the case where we changed the mode of TARGET. */
+ if (result)
+ {
+ if (result == target)
+ result = orig_target;
+ else if (mode != orig_mode)
+ result = gen_lowpart (orig_mode, result);
+ }
+
+ return result;
+}
+
+/* Having failed to find a 3 insn sequence in alpha_emit_set_const,
+ fall back to a straight forward decomposition. We do this to avoid
+ exponential run times encountered when looking for longer sequences
+ with alpha_emit_set_const. */
+
+static rtx
+alpha_emit_set_long_const (rtx target, HOST_WIDE_INT c1, HOST_WIDE_INT c2)
+{
+ HOST_WIDE_INT d1, d2, d3, d4;
+
+ /* Decompose the entire word */
+#if HOST_BITS_PER_WIDE_INT >= 64
+ gcc_assert (c2 == -(c1 < 0));
+ d1 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
+ c1 -= d1;
+ d2 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
+ c1 = (c1 - d2) >> 32;
+ d3 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
+ c1 -= d3;
+ d4 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
+ gcc_assert (c1 == d4);
+#else
+ d1 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
+ c1 -= d1;
+ d2 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
+ gcc_assert (c1 == d2);
+ c2 += (d2 < 0);
+ d3 = ((c2 & 0xffff) ^ 0x8000) - 0x8000;
+ c2 -= d3;
+ d4 = ((c2 & 0xffffffff) ^ 0x80000000) - 0x80000000;
+ gcc_assert (c2 == d4);
+#endif
+
+ /* Construct the high word */
+ if (d4)
+ {
+ emit_move_insn (target, GEN_INT (d4));
+ if (d3)
+ emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d3)));
+ }
+ else
+ emit_move_insn (target, GEN_INT (d3));
+
+ /* Shift it into place */
+ emit_move_insn (target, gen_rtx_ASHIFT (DImode, target, GEN_INT (32)));
+
+ /* Add in the low bits. */
+ if (d2)
+ emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d2)));
+ if (d1)
+ emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d1)));
+
+ return target;
+}
+
+/* Given an integral CONST_INT, CONST_DOUBLE, or CONST_VECTOR, return
+ the low 64 bits. */
+
+static void
+alpha_extract_integer (rtx x, HOST_WIDE_INT *p0, HOST_WIDE_INT *p1)
+{
+ HOST_WIDE_INT i0, i1;
+
+ if (GET_CODE (x) == CONST_VECTOR)
+ x = simplify_subreg (DImode, x, GET_MODE (x), 0);
+
+
+ if (CONST_INT_P (x))
+ {
+ i0 = INTVAL (x);
+ i1 = -(i0 < 0);
+ }
+ else if (HOST_BITS_PER_WIDE_INT >= 64)
+ {
+ i0 = CONST_DOUBLE_LOW (x);
+ i1 = -(i0 < 0);
+ }
+ else
+ {
+ i0 = CONST_DOUBLE_LOW (x);
+ i1 = CONST_DOUBLE_HIGH (x);
+ }
+
+ *p0 = i0;
+ *p1 = i1;
+}
+
+/* Implement TARGET_LEGITIMATE_CONSTANT_P. This is all constants for which
+ we are willing to load the value into a register via a move pattern.
+ Normally this is all symbolic constants, integral constants that
+ take three or fewer instructions, and floating-point zero. */
+
+bool
+alpha_legitimate_constant_p (enum machine_mode mode, rtx x)
+{
+ HOST_WIDE_INT i0, i1;
+
+ switch (GET_CODE (x))
+ {
+ case LABEL_REF:
+ case HIGH:
+ return true;
+
+ case CONST:
+ if (GET_CODE (XEXP (x, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
+ x = XEXP (XEXP (x, 0), 0);
+ else
+ return true;
+
+ if (GET_CODE (x) != SYMBOL_REF)
+ return true;
+
+ /* FALLTHRU */
+
+ case SYMBOL_REF:
+ /* TLS symbols are never valid. */
+ return SYMBOL_REF_TLS_MODEL (x) == 0;
+
+ case CONST_DOUBLE:
+ if (x == CONST0_RTX (mode))
+ return true;
+ if (FLOAT_MODE_P (mode))
+ return false;
+ goto do_integer;
+
+ case CONST_VECTOR:
+ if (x == CONST0_RTX (mode))
+ return true;
+ if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
+ return false;
+ if (GET_MODE_SIZE (mode) != 8)
+ return false;
+ goto do_integer;
+
+ case CONST_INT:
+ do_integer:
+ if (TARGET_BUILD_CONSTANTS)
+ return true;
+ alpha_extract_integer (x, &i0, &i1);
+ if (HOST_BITS_PER_WIDE_INT >= 64 || i1 == (-i0 < 0))
+ return alpha_emit_set_const_1 (x, mode, i0, 3, true) != NULL;
+ return false;
+
+ default:
+ return false;
+ }
+}
+
+/* Operand 1 is known to be a constant, and should require more than one
+ instruction to load. Emit that multi-part load. */
+
+bool
+alpha_split_const_mov (enum machine_mode mode, rtx *operands)
+{
+ HOST_WIDE_INT i0, i1;
+ rtx temp = NULL_RTX;
+
+ alpha_extract_integer (operands[1], &i0, &i1);
+
+ if (HOST_BITS_PER_WIDE_INT >= 64 || i1 == -(i0 < 0))
+ temp = alpha_emit_set_const (operands[0], mode, i0, 3, false);
+
+ if (!temp && TARGET_BUILD_CONSTANTS)
+ temp = alpha_emit_set_long_const (operands[0], i0, i1);
+
+ if (temp)
+ {
+ if (!rtx_equal_p (operands[0], temp))
+ emit_move_insn (operands[0], temp);
+ return true;
+ }
+
+ return false;
+}
+
+/* Expand a move instruction; return true if all work is done.
+ We don't handle non-bwx subword loads here. */
+
+bool
+alpha_expand_mov (enum machine_mode mode, rtx *operands)
+{
+ rtx tmp;
+
+ /* If the output is not a register, the input must be. */
+ if (MEM_P (operands[0])
+ && ! reg_or_0_operand (operands[1], mode))
+ operands[1] = force_reg (mode, operands[1]);
+
+ /* Allow legitimize_address to perform some simplifications. */
+ if (mode == Pmode && symbolic_operand (operands[1], mode))
+ {
+ tmp = alpha_legitimize_address_1 (operands[1], operands[0], mode);
+ if (tmp)
+ {
+ if (tmp == operands[0])
+ return true;
+ operands[1] = tmp;
+ return false;
+ }
+ }
+
+ /* Early out for non-constants and valid constants. */
+ if (! CONSTANT_P (operands[1]) || input_operand (operands[1], mode))
+ return false;
+
+ /* Split large integers. */
+ if (CONST_INT_P (operands[1])
+ || GET_CODE (operands[1]) == CONST_DOUBLE
+ || GET_CODE (operands[1]) == CONST_VECTOR)
+ {
+ if (alpha_split_const_mov (mode, operands))
+ return true;
+ }
+
+ /* Otherwise we've nothing left but to drop the thing to memory. */
+ tmp = force_const_mem (mode, operands[1]);
+
+ if (tmp == NULL_RTX)
+ return false;
+
+ if (reload_in_progress)
+ {
+ emit_move_insn (operands[0], XEXP (tmp, 0));
+ operands[1] = replace_equiv_address (tmp, operands[0]);
+ }
+ else
+ operands[1] = validize_mem (tmp);
+ return false;
+}
+
+/* Expand a non-bwx QImode or HImode move instruction;
+ return true if all work is done. */
+
+bool
+alpha_expand_mov_nobwx (enum machine_mode mode, rtx *operands)
+{
+ rtx seq;
+
+ /* If the output is not a register, the input must be. */
+ if (MEM_P (operands[0]))
+ operands[1] = force_reg (mode, operands[1]);
+
+ /* Handle four memory cases, unaligned and aligned for either the input
+ or the output. The only case where we can be called during reload is
+ for aligned loads; all other cases require temporaries. */
+
+ if (any_memory_operand (operands[1], mode))
+ {
+ if (aligned_memory_operand (operands[1], mode))
+ {
+ if (reload_in_progress)
+ {
+ if (mode == QImode)
+ seq = gen_reload_inqi_aligned (operands[0], operands[1]);
+ else
+ seq = gen_reload_inhi_aligned (operands[0], operands[1]);
+ emit_insn (seq);
+ }
+ else
+ {
+ rtx aligned_mem, bitnum;
+ rtx scratch = gen_reg_rtx (SImode);
+ rtx subtarget;
+ bool copyout;
+
+ get_aligned_mem (operands[1], &aligned_mem, &bitnum);
+
+ subtarget = operands[0];
+ if (REG_P (subtarget))
+ subtarget = gen_lowpart (DImode, subtarget), copyout = false;
+ else
+ subtarget = gen_reg_rtx (DImode), copyout = true;
+
+ if (mode == QImode)
+ seq = gen_aligned_loadqi (subtarget, aligned_mem,
+ bitnum, scratch);
+ else
+ seq = gen_aligned_loadhi (subtarget, aligned_mem,
+ bitnum, scratch);
+ emit_insn (seq);
+
+ if (copyout)
+ emit_move_insn (operands[0], gen_lowpart (mode, subtarget));
+ }
+ }
+ else
+ {
+ /* Don't pass these as parameters since that makes the generated
+ code depend on parameter evaluation order which will cause
+ bootstrap failures. */
+
+ rtx temp1, temp2, subtarget, ua;
+ bool copyout;
+
+ temp1 = gen_reg_rtx (DImode);
+ temp2 = gen_reg_rtx (DImode);
+
+ subtarget = operands[0];
+ if (REG_P (subtarget))
+ subtarget = gen_lowpart (DImode, subtarget), copyout = false;
+ else
+ subtarget = gen_reg_rtx (DImode), copyout = true;
+
+ ua = get_unaligned_address (operands[1]);
+ if (mode == QImode)
+ seq = gen_unaligned_loadqi (subtarget, ua, temp1, temp2);
+ else
+ seq = gen_unaligned_loadhi (subtarget, ua, temp1, temp2);
+
+ alpha_set_memflags (seq, operands[1]);
+ emit_insn (seq);
+
+ if (copyout)
+ emit_move_insn (operands[0], gen_lowpart (mode, subtarget));
+ }
+ return true;
+ }
+
+ if (any_memory_operand (operands[0], mode))
+ {
+ if (aligned_memory_operand (operands[0], mode))
+ {
+ rtx aligned_mem, bitnum;
+ rtx temp1 = gen_reg_rtx (SImode);
+ rtx temp2 = gen_reg_rtx (SImode);
+
+ get_aligned_mem (operands[0], &aligned_mem, &bitnum);
+
+ emit_insn (gen_aligned_store (aligned_mem, operands[1], bitnum,
+ temp1, temp2));
+ }
+ else
+ {
+ rtx temp1 = gen_reg_rtx (DImode);
+ rtx temp2 = gen_reg_rtx (DImode);
+ rtx temp3 = gen_reg_rtx (DImode);
+ rtx ua = get_unaligned_address (operands[0]);
+
+ if (mode == QImode)
+ seq = gen_unaligned_storeqi (ua, operands[1], temp1, temp2, temp3);
+ else
+ seq = gen_unaligned_storehi (ua, operands[1], temp1, temp2, temp3);
+
+ alpha_set_memflags (seq, operands[0]);
+ emit_insn (seq);
+ }
+ return true;
+ }
+
+ return false;
+}
+
+/* Implement the movmisalign patterns. One of the operands is a memory
+ that is not naturally aligned. Emit instructions to load it. */
+
+void
+alpha_expand_movmisalign (enum machine_mode mode, rtx *operands)
+{
+ /* Honor misaligned loads, for those we promised to do so. */
+ if (MEM_P (operands[1]))
+ {
+ rtx tmp;
+
+ if (register_operand (operands[0], mode))
+ tmp = operands[0];
+ else
+ tmp = gen_reg_rtx (mode);
+
+ alpha_expand_unaligned_load (tmp, operands[1], 8, 0, 0);
+ if (tmp != operands[0])
+ emit_move_insn (operands[0], tmp);
+ }
+ else if (MEM_P (operands[0]))
+ {
+ if (!reg_or_0_operand (operands[1], mode))
+ operands[1] = force_reg (mode, operands[1]);
+ alpha_expand_unaligned_store (operands[0], operands[1], 8, 0);
+ }
+ else
+ gcc_unreachable ();
+}
+
+/* Generate an unsigned DImode to FP conversion. This is the same code
+ optabs would emit if we didn't have TFmode patterns.
+
+ For SFmode, this is the only construction I've found that can pass
+ gcc.c-torture/execute/ieee/rbug.c. No scenario that uses DFmode
+ intermediates will work, because you'll get intermediate rounding
+ that ruins the end result. Some of this could be fixed by turning
+ on round-to-positive-infinity, but that requires diddling the fpsr,
+ which kills performance. I tried turning this around and converting
+ to a negative number, so that I could turn on /m, but either I did
+ it wrong or there's something else cause I wound up with the exact
+ same single-bit error. There is a branch-less form of this same code:
+
+ srl $16,1,$1
+ and $16,1,$2
+ cmplt $16,0,$3
+ or $1,$2,$2
+ cmovge $16,$16,$2
+ itoft $3,$f10
+ itoft $2,$f11
+ cvtqs $f11,$f11
+ adds $f11,$f11,$f0
+ fcmoveq $f10,$f11,$f0
+
+ I'm not using it because it's the same number of instructions as
+ this branch-full form, and it has more serialized long latency
+ instructions on the critical path.
+
+ For DFmode, we can avoid rounding errors by breaking up the word
+ into two pieces, converting them separately, and adding them back:
+
+ LC0: .long 0,0x5f800000
+
+ itoft $16,$f11
+ lda $2,LC0
+ cmplt $16,0,$1
+ cpyse $f11,$f31,$f10
+ cpyse $f31,$f11,$f11
+ s4addq $1,$2,$1
+ lds $f12,0($1)
+ cvtqt $f10,$f10
+ cvtqt $f11,$f11
+ addt $f12,$f10,$f0
+ addt $f0,$f11,$f0
+
+ This doesn't seem to be a clear-cut win over the optabs form.
+ It probably all depends on the distribution of numbers being
+ converted -- in the optabs form, all but high-bit-set has a
+ much lower minimum execution time. */
+
+void
+alpha_emit_floatuns (rtx operands[2])
+{
+ rtx neglab, donelab, i0, i1, f0, in, out;
+ enum machine_mode mode;
+
+ out = operands[0];
+ in = force_reg (DImode, operands[1]);
+ mode = GET_MODE (out);
+ neglab = gen_label_rtx ();
+ donelab = gen_label_rtx ();
+ i0 = gen_reg_rtx (DImode);
+ i1 = gen_reg_rtx (DImode);
+ f0 = gen_reg_rtx (mode);
+
+ emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, DImode, 0, neglab);
+
+ emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_FLOAT (mode, in)));
+ emit_jump_insn (gen_jump (donelab));
+ emit_barrier ();
+
+ emit_label (neglab);
+
+ emit_insn (gen_lshrdi3 (i0, in, const1_rtx));
+ emit_insn (gen_anddi3 (i1, in, const1_rtx));
+ emit_insn (gen_iordi3 (i0, i0, i1));
+ emit_insn (gen_rtx_SET (VOIDmode, f0, gen_rtx_FLOAT (mode, i0)));
+ emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_PLUS (mode, f0, f0)));
+
+ emit_label (donelab);
+}
+
+/* Generate the comparison for a conditional branch. */
+
+void
+alpha_emit_conditional_branch (rtx operands[], enum machine_mode cmp_mode)
+{
+ enum rtx_code cmp_code, branch_code;
+ enum machine_mode branch_mode = VOIDmode;
+ enum rtx_code code = GET_CODE (operands[0]);
+ rtx op0 = operands[1], op1 = operands[2];
+ rtx tem;
+
+ if (cmp_mode == TFmode)
+ {
+ op0 = alpha_emit_xfloating_compare (&code, op0, op1);
+ op1 = const0_rtx;
+ cmp_mode = DImode;
+ }
+
+ /* The general case: fold the comparison code to the types of compares
+ that we have, choosing the branch as necessary. */
+ switch (code)
+ {
+ case EQ: case LE: case LT: case LEU: case LTU:
+ case UNORDERED:
+ /* We have these compares. */
+ cmp_code = code, branch_code = NE;
+ break;
+
+ case NE:
+ case ORDERED:
+ /* These must be reversed. */
+ cmp_code = reverse_condition (code), branch_code = EQ;
+ break;
+
+ case GE: case GT: case GEU: case GTU:
+ /* For FP, we swap them, for INT, we reverse them. */
+ if (cmp_mode == DFmode)
+ {
+ cmp_code = swap_condition (code);
+ branch_code = NE;
+ tem = op0, op0 = op1, op1 = tem;
+ }
+ else
+ {
+ cmp_code = reverse_condition (code);
+ branch_code = EQ;
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (cmp_mode == DFmode)
+ {
+ if (flag_unsafe_math_optimizations && cmp_code != UNORDERED)
+ {
+ /* When we are not as concerned about non-finite values, and we
+ are comparing against zero, we can branch directly. */
+ if (op1 == CONST0_RTX (DFmode))
+ cmp_code = UNKNOWN, branch_code = code;
+ else if (op0 == CONST0_RTX (DFmode))
+ {
+ /* Undo the swap we probably did just above. */
+ tem = op0, op0 = op1, op1 = tem;
+ branch_code = swap_condition (cmp_code);
+ cmp_code = UNKNOWN;
+ }
+ }
+ else
+ {
+ /* ??? We mark the branch mode to be CCmode to prevent the
+ compare and branch from being combined, since the compare
+ insn follows IEEE rules that the branch does not. */
+ branch_mode = CCmode;
+ }
+ }
+ else
+ {
+ /* The following optimizations are only for signed compares. */
+ if (code != LEU && code != LTU && code != GEU && code != GTU)
+ {
+ /* Whee. Compare and branch against 0 directly. */
+ if (op1 == const0_rtx)
+ cmp_code = UNKNOWN, branch_code = code;
+
+ /* If the constants doesn't fit into an immediate, but can
+ be generated by lda/ldah, we adjust the argument and
+ compare against zero, so we can use beq/bne directly. */
+ /* ??? Don't do this when comparing against symbols, otherwise
+ we'll reduce (&x == 0x1234) to (&x-0x1234 == 0), which will
+ be declared false out of hand (at least for non-weak). */
+ else if (CONST_INT_P (op1)
+ && (code == EQ || code == NE)
+ && !(symbolic_operand (op0, VOIDmode)
+ || (REG_P (op0) && REG_POINTER (op0))))
+ {
+ rtx n_op1 = GEN_INT (-INTVAL (op1));
+
+ if (! satisfies_constraint_I (op1)
+ && (satisfies_constraint_K (n_op1)
+ || satisfies_constraint_L (n_op1)))
+ cmp_code = PLUS, branch_code = code, op1 = n_op1;
+ }
+ }
+
+ if (!reg_or_0_operand (op0, DImode))
+ op0 = force_reg (DImode, op0);
+ if (cmp_code != PLUS && !reg_or_8bit_operand (op1, DImode))
+ op1 = force_reg (DImode, op1);
+ }
+
+ /* Emit an initial compare instruction, if necessary. */
+ tem = op0;
+ if (cmp_code != UNKNOWN)
+ {
+ tem = gen_reg_rtx (cmp_mode);
+ emit_move_insn (tem, gen_rtx_fmt_ee (cmp_code, cmp_mode, op0, op1));
+ }
+
+ /* Emit the branch instruction. */
+ tem = gen_rtx_SET (VOIDmode, pc_rtx,
+ gen_rtx_IF_THEN_ELSE (VOIDmode,
+ gen_rtx_fmt_ee (branch_code,
+ branch_mode, tem,
+ CONST0_RTX (cmp_mode)),
+ gen_rtx_LABEL_REF (VOIDmode,
+ operands[3]),
+ pc_rtx));
+ emit_jump_insn (tem);
+}
+
+/* Certain simplifications can be done to make invalid setcc operations
+ valid. Return the final comparison, or NULL if we can't work. */
+
+bool
+alpha_emit_setcc (rtx operands[], enum machine_mode cmp_mode)
+{
+ enum rtx_code cmp_code;
+ enum rtx_code code = GET_CODE (operands[1]);
+ rtx op0 = operands[2], op1 = operands[3];
+ rtx tmp;
+
+ if (cmp_mode == TFmode)
+ {
+ op0 = alpha_emit_xfloating_compare (&code, op0, op1);
+ op1 = const0_rtx;
+ cmp_mode = DImode;
+ }
+
+ if (cmp_mode == DFmode && !TARGET_FIX)
+ return 0;
+
+ /* The general case: fold the comparison code to the types of compares
+ that we have, choosing the branch as necessary. */
+
+ cmp_code = UNKNOWN;
+ switch (code)
+ {
+ case EQ: case LE: case LT: case LEU: case LTU:
+ case UNORDERED:
+ /* We have these compares. */
+ if (cmp_mode == DFmode)
+ cmp_code = code, code = NE;
+ break;
+
+ case NE:
+ if (cmp_mode == DImode && op1 == const0_rtx)
+ break;
+ /* FALLTHRU */
+
+ case ORDERED:
+ cmp_code = reverse_condition (code);
+ code = EQ;
+ break;
+
+ case GE: case GT: case GEU: case GTU:
+ /* These normally need swapping, but for integer zero we have
+ special patterns that recognize swapped operands. */
+ if (cmp_mode == DImode && op1 == const0_rtx)
+ break;
+ code = swap_condition (code);
+ if (cmp_mode == DFmode)
+ cmp_code = code, code = NE;
+ tmp = op0, op0 = op1, op1 = tmp;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (cmp_mode == DImode)
+ {
+ if (!register_operand (op0, DImode))
+ op0 = force_reg (DImode, op0);
+ if (!reg_or_8bit_operand (op1, DImode))
+ op1 = force_reg (DImode, op1);
+ }
+
+ /* Emit an initial compare instruction, if necessary. */
+ if (cmp_code != UNKNOWN)
+ {
+ tmp = gen_reg_rtx (cmp_mode);
+ emit_insn (gen_rtx_SET (VOIDmode, tmp,
+ gen_rtx_fmt_ee (cmp_code, cmp_mode, op0, op1)));
+
+ op0 = cmp_mode != DImode ? gen_lowpart (DImode, tmp) : tmp;
+ op1 = const0_rtx;
+ }
+
+ /* Emit the setcc instruction. */
+ emit_insn (gen_rtx_SET (VOIDmode, operands[0],
+ gen_rtx_fmt_ee (code, DImode, op0, op1)));
+ return true;
+}
+
+
+/* Rewrite a comparison against zero CMP of the form
+ (CODE (cc0) (const_int 0)) so it can be written validly in
+ a conditional move (if_then_else CMP ...).
+ If both of the operands that set cc0 are nonzero we must emit
+ an insn to perform the compare (it can't be done within
+ the conditional move). */
+
+rtx
+alpha_emit_conditional_move (rtx cmp, enum machine_mode mode)
+{
+ enum rtx_code code = GET_CODE (cmp);
+ enum rtx_code cmov_code = NE;
+ rtx op0 = XEXP (cmp, 0);
+ rtx op1 = XEXP (cmp, 1);
+ enum machine_mode cmp_mode
+ = (GET_MODE (op0) == VOIDmode ? DImode : GET_MODE (op0));
+ enum machine_mode cmov_mode = VOIDmode;
+ int local_fast_math = flag_unsafe_math_optimizations;
+ rtx tem;
+
+ if (cmp_mode == TFmode)
+ {
+ op0 = alpha_emit_xfloating_compare (&code, op0, op1);
+ op1 = const0_rtx;
+ cmp_mode = DImode;
+ }
+
+ gcc_assert (cmp_mode == DFmode || cmp_mode == DImode);
+
+ if (FLOAT_MODE_P (cmp_mode) != FLOAT_MODE_P (mode))
+ {
+ enum rtx_code cmp_code;
+
+ if (! TARGET_FIX)
+ return 0;
+
+ /* If we have fp<->int register move instructions, do a cmov by
+ performing the comparison in fp registers, and move the
+ zero/nonzero value to integer registers, where we can then
+ use a normal cmov, or vice-versa. */
+
+ switch (code)
+ {
+ case EQ: case LE: case LT: case LEU: case LTU:
+ case UNORDERED:
+ /* We have these compares. */
+ cmp_code = code, code = NE;
+ break;
+
+ case NE:
+ case ORDERED:
+ /* These must be reversed. */
+ cmp_code = reverse_condition (code), code = EQ;
+ break;
+
+ case GE: case GT: case GEU: case GTU:
+ /* These normally need swapping, but for integer zero we have
+ special patterns that recognize swapped operands. */
+ if (cmp_mode == DImode && op1 == const0_rtx)
+ cmp_code = code, code = NE;
+ else
+ {
+ cmp_code = swap_condition (code);
+ code = NE;
+ tem = op0, op0 = op1, op1 = tem;
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (cmp_mode == DImode)
+ {
+ if (!reg_or_0_operand (op0, DImode))
+ op0 = force_reg (DImode, op0);
+ if (!reg_or_8bit_operand (op1, DImode))
+ op1 = force_reg (DImode, op1);
+ }
+
+ tem = gen_reg_rtx (cmp_mode);
+ emit_insn (gen_rtx_SET (VOIDmode, tem,
+ gen_rtx_fmt_ee (cmp_code, cmp_mode,
+ op0, op1)));
+
+ cmp_mode = cmp_mode == DImode ? DFmode : DImode;
+ op0 = gen_lowpart (cmp_mode, tem);
+ op1 = CONST0_RTX (cmp_mode);
+ cmp = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
+ local_fast_math = 1;
+ }
+
+ if (cmp_mode == DImode)
+ {
+ if (!reg_or_0_operand (op0, DImode))
+ op0 = force_reg (DImode, op0);
+ if (!reg_or_8bit_operand (op1, DImode))
+ op1 = force_reg (DImode, op1);
+ }
+
+ /* We may be able to use a conditional move directly.
+ This avoids emitting spurious compares. */
+ if (signed_comparison_operator (cmp, VOIDmode)
+ && (cmp_mode == DImode || local_fast_math)
+ && (op0 == CONST0_RTX (cmp_mode) || op1 == CONST0_RTX (cmp_mode)))
+ return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
+
+ /* We can't put the comparison inside the conditional move;
+ emit a compare instruction and put that inside the
+ conditional move. Make sure we emit only comparisons we have;
+ swap or reverse as necessary. */
+
+ if (!can_create_pseudo_p ())
+ return NULL_RTX;
+
+ switch (code)
+ {
+ case EQ: case LE: case LT: case LEU: case LTU:
+ case UNORDERED:
+ /* We have these compares: */
+ break;
+
+ case NE:
+ case ORDERED:
+ /* These must be reversed. */
+ code = reverse_condition (code);
+ cmov_code = EQ;
+ break;
+
+ case GE: case GT: case GEU: case GTU:
+ /* These normally need swapping, but for integer zero we have
+ special patterns that recognize swapped operands. */
+ if (cmp_mode == DImode && op1 == const0_rtx)
+ break;
+ code = swap_condition (code);
+ tem = op0, op0 = op1, op1 = tem;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (cmp_mode == DImode)
+ {
+ if (!reg_or_0_operand (op0, DImode))
+ op0 = force_reg (DImode, op0);
+ if (!reg_or_8bit_operand (op1, DImode))
+ op1 = force_reg (DImode, op1);
+ }
+
+ /* ??? We mark the branch mode to be CCmode to prevent the compare
+ and cmov from being combined, since the compare insn follows IEEE
+ rules that the cmov does not. */
+ if (cmp_mode == DFmode && !local_fast_math)
+ cmov_mode = CCmode;
+
+ tem = gen_reg_rtx (cmp_mode);
+ emit_move_insn (tem, gen_rtx_fmt_ee (code, cmp_mode, op0, op1));
+ return gen_rtx_fmt_ee (cmov_code, cmov_mode, tem, CONST0_RTX (cmp_mode));
+}
+
+/* Simplify a conditional move of two constants into a setcc with
+ arithmetic. This is done with a splitter since combine would
+ just undo the work if done during code generation. It also catches
+ cases we wouldn't have before cse. */
+
+int
+alpha_split_conditional_move (enum rtx_code code, rtx dest, rtx cond,
+ rtx t_rtx, rtx f_rtx)
+{
+ HOST_WIDE_INT t, f, diff;
+ enum machine_mode mode;
+ rtx target, subtarget, tmp;
+
+ mode = GET_MODE (dest);
+ t = INTVAL (t_rtx);
+ f = INTVAL (f_rtx);
+ diff = t - f;
+
+ if (((code == NE || code == EQ) && diff < 0)
+ || (code == GE || code == GT))
+ {
+ code = reverse_condition (code);
+ diff = t, t = f, f = diff;
+ diff = t - f;
+ }
+
+ subtarget = target = dest;
+ if (mode != DImode)
+ {
+ target = gen_lowpart (DImode, dest);
+ if (can_create_pseudo_p ())
+ subtarget = gen_reg_rtx (DImode);
+ else
+ subtarget = target;
+ }
+ /* Below, we must be careful to use copy_rtx on target and subtarget
+ in intermediate insns, as they may be a subreg rtx, which may not
+ be shared. */
+
+ if (f == 0 && exact_log2 (diff) > 0
+ /* On EV6, we've got enough shifters to make non-arithmetic shifts
+ viable over a longer latency cmove. On EV5, the E0 slot is a
+ scarce resource, and on EV4 shift has the same latency as a cmove. */
+ && (diff <= 8 || alpha_tune == PROCESSOR_EV6))
+ {
+ tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx);
+ emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp));
+
+ tmp = gen_rtx_ASHIFT (DImode, copy_rtx (subtarget),
+ GEN_INT (exact_log2 (t)));
+ emit_insn (gen_rtx_SET (VOIDmode, target, tmp));
+ }
+ else if (f == 0 && t == -1)
+ {
+ tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx);
+ emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp));
+
+ emit_insn (gen_negdi2 (target, copy_rtx (subtarget)));
+ }
+ else if (diff == 1 || diff == 4 || diff == 8)
+ {
+ rtx add_op;
+
+ tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx);
+ emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp));
+
+ if (diff == 1)
+ emit_insn (gen_adddi3 (target, copy_rtx (subtarget), GEN_INT (f)));
+ else
+ {
+ add_op = GEN_INT (f);
+ if (sext_add_operand (add_op, mode))
+ {
+ tmp = gen_rtx_MULT (DImode, copy_rtx (subtarget),
+ GEN_INT (diff));
+ tmp = gen_rtx_PLUS (DImode, tmp, add_op);
+ emit_insn (gen_rtx_SET (VOIDmode, target, tmp));
+ }
+ else
+ return 0;
+ }
+ }
+ else
+ return 0;
+
+ return 1;
+}
+
+/* Look up the function X_floating library function name for the
+ given operation. */
+
+struct GTY(()) xfloating_op
+{
+ const enum rtx_code code;
+ const char *const GTY((skip)) osf_func;
+ const char *const GTY((skip)) vms_func;
+ rtx libcall;
+};
+
+static GTY(()) struct xfloating_op xfloating_ops[] =
+{
+ { PLUS, "_OtsAddX", "OTS$ADD_X", 0 },
+ { MINUS, "_OtsSubX", "OTS$SUB_X", 0 },
+ { MULT, "_OtsMulX", "OTS$MUL_X", 0 },
+ { DIV, "_OtsDivX", "OTS$DIV_X", 0 },
+ { EQ, "_OtsEqlX", "OTS$EQL_X", 0 },
+ { NE, "_OtsNeqX", "OTS$NEQ_X", 0 },
+ { LT, "_OtsLssX", "OTS$LSS_X", 0 },
+ { LE, "_OtsLeqX", "OTS$LEQ_X", 0 },
+ { GT, "_OtsGtrX", "OTS$GTR_X", 0 },
+ { GE, "_OtsGeqX", "OTS$GEQ_X", 0 },
+ { FIX, "_OtsCvtXQ", "OTS$CVTXQ", 0 },
+ { FLOAT, "_OtsCvtQX", "OTS$CVTQX", 0 },
+ { UNSIGNED_FLOAT, "_OtsCvtQUX", "OTS$CVTQUX", 0 },
+ { FLOAT_EXTEND, "_OtsConvertFloatTX", "OTS$CVT_FLOAT_T_X", 0 },
+ { FLOAT_TRUNCATE, "_OtsConvertFloatXT", "OTS$CVT_FLOAT_X_T", 0 }
+};
+
+static GTY(()) struct xfloating_op vax_cvt_ops[] =
+{
+ { FLOAT_EXTEND, "_OtsConvertFloatGX", "OTS$CVT_FLOAT_G_X", 0 },
+ { FLOAT_TRUNCATE, "_OtsConvertFloatXG", "OTS$CVT_FLOAT_X_G", 0 }
+};
+
+static rtx
+alpha_lookup_xfloating_lib_func (enum rtx_code code)
+{
+ struct xfloating_op *ops = xfloating_ops;
+ long n = ARRAY_SIZE (xfloating_ops);
+ long i;
+
+ gcc_assert (TARGET_HAS_XFLOATING_LIBS);
+
+ /* How irritating. Nothing to key off for the main table. */
+ if (TARGET_FLOAT_VAX && (code == FLOAT_EXTEND || code == FLOAT_TRUNCATE))
+ {
+ ops = vax_cvt_ops;
+ n = ARRAY_SIZE (vax_cvt_ops);
+ }
+
+ for (i = 0; i < n; ++i, ++ops)
+ if (ops->code == code)
+ {
+ rtx func = ops->libcall;
+ if (!func)
+ {
+ func = init_one_libfunc (TARGET_ABI_OPEN_VMS
+ ? ops->vms_func : ops->osf_func);
+ ops->libcall = func;
+ }
+ return func;
+ }
+
+ gcc_unreachable ();
+}
+
+/* Most X_floating operations take the rounding mode as an argument.
+ Compute that here. */
+
+static int
+alpha_compute_xfloating_mode_arg (enum rtx_code code,
+ enum alpha_fp_rounding_mode round)
+{
+ int mode;
+
+ switch (round)
+ {
+ case ALPHA_FPRM_NORM:
+ mode = 2;
+ break;
+ case ALPHA_FPRM_MINF:
+ mode = 1;
+ break;
+ case ALPHA_FPRM_CHOP:
+ mode = 0;
+ break;
+ case ALPHA_FPRM_DYN:
+ mode = 4;
+ break;
+ default:
+ gcc_unreachable ();
+
+ /* XXX For reference, round to +inf is mode = 3. */
+ }
+
+ if (code == FLOAT_TRUNCATE && alpha_fptm == ALPHA_FPTM_N)
+ mode |= 0x10000;
+
+ return mode;
+}
+
+/* Emit an X_floating library function call.
+
+ Note that these functions do not follow normal calling conventions:
+ TFmode arguments are passed in two integer registers (as opposed to
+ indirect); TFmode return values appear in R16+R17.
+
+ FUNC is the function to call.
+ TARGET is where the output belongs.
+ OPERANDS are the inputs.
+ NOPERANDS is the count of inputs.
+ EQUIV is the expression equivalent for the function.
+*/
+
+static void
+alpha_emit_xfloating_libcall (rtx func, rtx target, rtx operands[],
+ int noperands, rtx equiv)
+{
+ rtx usage = NULL_RTX, tmp, reg;
+ int regno = 16, i;
+
+ start_sequence ();
+
+ for (i = 0; i < noperands; ++i)
+ {
+ switch (GET_MODE (operands[i]))
+ {
+ case TFmode:
+ reg = gen_rtx_REG (TFmode, regno);
+ regno += 2;
+ break;
+
+ case DFmode:
+ reg = gen_rtx_REG (DFmode, regno + 32);
+ regno += 1;
+ break;
+
+ case VOIDmode:
+ gcc_assert (CONST_INT_P (operands[i]));
+ /* FALLTHRU */
+ case DImode:
+ reg = gen_rtx_REG (DImode, regno);
+ regno += 1;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ emit_move_insn (reg, operands[i]);
+ use_reg (&usage, reg);
+ }
+
+ switch (GET_MODE (target))
+ {
+ case TFmode:
+ reg = gen_rtx_REG (TFmode, 16);
+ break;
+ case DFmode:
+ reg = gen_rtx_REG (DFmode, 32);
+ break;
+ case DImode:
+ reg = gen_rtx_REG (DImode, 0);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ tmp = gen_rtx_MEM (QImode, func);
+ tmp = emit_call_insn (GEN_CALL_VALUE (reg, tmp, const0_rtx,
+ const0_rtx, const0_rtx));
+ CALL_INSN_FUNCTION_USAGE (tmp) = usage;
+ RTL_CONST_CALL_P (tmp) = 1;
+
+ tmp = get_insns ();
+ end_sequence ();
+
+ emit_libcall_block (tmp, target, reg, equiv);
+}
+
+/* Emit an X_floating library function call for arithmetic (+,-,*,/). */
+
+void
+alpha_emit_xfloating_arith (enum rtx_code code, rtx operands[])
+{
+ rtx func;
+ int mode;
+ rtx out_operands[3];
+
+ func = alpha_lookup_xfloating_lib_func (code);
+ mode = alpha_compute_xfloating_mode_arg (code, alpha_fprm);
+
+ out_operands[0] = operands[1];
+ out_operands[1] = operands[2];
+ out_operands[2] = GEN_INT (mode);
+ alpha_emit_xfloating_libcall (func, operands[0], out_operands, 3,
+ gen_rtx_fmt_ee (code, TFmode, operands[1],
+ operands[2]));
+}
+
+/* Emit an X_floating library function call for a comparison. */
+
+static rtx
+alpha_emit_xfloating_compare (enum rtx_code *pcode, rtx op0, rtx op1)
+{
+ enum rtx_code cmp_code, res_code;
+ rtx func, out, operands[2], note;
+
+ /* X_floating library comparison functions return
+ -1 unordered
+ 0 false
+ 1 true
+ Convert the compare against the raw return value. */
+
+ cmp_code = *pcode;
+ switch (cmp_code)
+ {
+ case UNORDERED:
+ cmp_code = EQ;
+ res_code = LT;
+ break;
+ case ORDERED:
+ cmp_code = EQ;
+ res_code = GE;
+ break;
+ case NE:
+ res_code = NE;
+ break;
+ case EQ:
+ case LT:
+ case GT:
+ case LE:
+ case GE:
+ res_code = GT;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ *pcode = res_code;
+
+ func = alpha_lookup_xfloating_lib_func (cmp_code);
+
+ operands[0] = op0;
+ operands[1] = op1;
+ out = gen_reg_rtx (DImode);
+
+ /* What's actually returned is -1,0,1, not a proper boolean value. */
+ note = gen_rtx_fmt_ee (cmp_code, VOIDmode, op0, op1);
+ note = gen_rtx_UNSPEC (DImode, gen_rtvec (1, note), UNSPEC_XFLT_COMPARE);
+ alpha_emit_xfloating_libcall (func, out, operands, 2, note);
+
+ return out;
+}
+
+/* Emit an X_floating library function call for a conversion. */
+
+void
+alpha_emit_xfloating_cvt (enum rtx_code orig_code, rtx operands[])
+{
+ int noperands = 1, mode;
+ rtx out_operands[2];
+ rtx func;
+ enum rtx_code code = orig_code;
+
+ if (code == UNSIGNED_FIX)
+ code = FIX;
+
+ func = alpha_lookup_xfloating_lib_func (code);
+
+ out_operands[0] = operands[1];
+
+ switch (code)
+ {
+ case FIX:
+ mode = alpha_compute_xfloating_mode_arg (code, ALPHA_FPRM_CHOP);
+ out_operands[1] = GEN_INT (mode);
+ noperands = 2;
+ break;
+ case FLOAT_TRUNCATE:
+ mode = alpha_compute_xfloating_mode_arg (code, alpha_fprm);
+ out_operands[1] = GEN_INT (mode);
+ noperands = 2;
+ break;
+ default:
+ break;
+ }
+
+ alpha_emit_xfloating_libcall (func, operands[0], out_operands, noperands,
+ gen_rtx_fmt_e (orig_code,
+ GET_MODE (operands[0]),
+ operands[1]));
+}
+
+/* Split a TImode or TFmode move from OP[1] to OP[0] into a pair of
+ DImode moves from OP[2,3] to OP[0,1]. If FIXUP_OVERLAP is true,
+ guarantee that the sequence
+ set (OP[0] OP[2])
+ set (OP[1] OP[3])
+ is valid. Naturally, output operand ordering is little-endian.
+ This is used by *movtf_internal and *movti_internal. */
+
+void
+alpha_split_tmode_pair (rtx operands[4], enum machine_mode mode,
+ bool fixup_overlap)
+{
+ switch (GET_CODE (operands[1]))
+ {
+ case REG:
+ operands[3] = gen_rtx_REG (DImode, REGNO (operands[1]) + 1);
+ operands[2] = gen_rtx_REG (DImode, REGNO (operands[1]));
+ break;
+
+ case MEM:
+ operands[3] = adjust_address (operands[1], DImode, 8);
+ operands[2] = adjust_address (operands[1], DImode, 0);
+ break;
+
+ case CONST_INT:
+ case CONST_DOUBLE:
+ gcc_assert (operands[1] == CONST0_RTX (mode));
+ operands[2] = operands[3] = const0_rtx;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ switch (GET_CODE (operands[0]))
+ {
+ case REG:
+ operands[1] = gen_rtx_REG (DImode, REGNO (operands[0]) + 1);
+ operands[0] = gen_rtx_REG (DImode, REGNO (operands[0]));
+ break;
+
+ case MEM:
+ operands[1] = adjust_address (operands[0], DImode, 8);
+ operands[0] = adjust_address (operands[0], DImode, 0);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (fixup_overlap && reg_overlap_mentioned_p (operands[0], operands[3]))
+ {
+ rtx tmp;
+ tmp = operands[0], operands[0] = operands[1], operands[1] = tmp;
+ tmp = operands[2], operands[2] = operands[3], operands[3] = tmp;
+ }
+}
+
+/* Implement negtf2 or abstf2. Op0 is destination, op1 is source,
+ op2 is a register containing the sign bit, operation is the
+ logical operation to be performed. */
+
+void
+alpha_split_tfmode_frobsign (rtx operands[3], rtx (*operation) (rtx, rtx, rtx))
+{
+ rtx high_bit = operands[2];
+ rtx scratch;
+ int move;
+
+ alpha_split_tmode_pair (operands, TFmode, false);
+
+ /* Detect three flavors of operand overlap. */
+ move = 1;
+ if (rtx_equal_p (operands[0], operands[2]))
+ move = 0;
+ else if (rtx_equal_p (operands[1], operands[2]))
+ {
+ if (rtx_equal_p (operands[0], high_bit))
+ move = 2;
+ else
+ move = -1;
+ }
+
+ if (move < 0)
+ emit_move_insn (operands[0], operands[2]);
+
+ /* ??? If the destination overlaps both source tf and high_bit, then
+ assume source tf is dead in its entirety and use the other half
+ for a scratch register. Otherwise "scratch" is just the proper
+ destination register. */
+ scratch = operands[move < 2 ? 1 : 3];
+
+ emit_insn ((*operation) (scratch, high_bit, operands[3]));
+
+ if (move > 0)
+ {
+ emit_move_insn (operands[0], operands[2]);
+ if (move > 1)
+ emit_move_insn (operands[1], scratch);
+ }
+}
+
+/* Use ext[wlq][lh] as the Architecture Handbook describes for extracting
+ unaligned data:
+
+ unsigned: signed:
+ word: ldq_u r1,X(r11) ldq_u r1,X(r11)
+ ldq_u r2,X+1(r11) ldq_u r2,X+1(r11)
+ lda r3,X(r11) lda r3,X+2(r11)
+ extwl r1,r3,r1 extql r1,r3,r1
+ extwh r2,r3,r2 extqh r2,r3,r2
+ or r1.r2.r1 or r1,r2,r1
+ sra r1,48,r1
+
+ long: ldq_u r1,X(r11) ldq_u r1,X(r11)
+ ldq_u r2,X+3(r11) ldq_u r2,X+3(r11)
+ lda r3,X(r11) lda r3,X(r11)
+ extll r1,r3,r1 extll r1,r3,r1
+ extlh r2,r3,r2 extlh r2,r3,r2
+ or r1.r2.r1 addl r1,r2,r1
+
+ quad: ldq_u r1,X(r11)
+ ldq_u r2,X+7(r11)
+ lda r3,X(r11)
+ extql r1,r3,r1
+ extqh r2,r3,r2
+ or r1.r2.r1
+*/
+
+void
+alpha_expand_unaligned_load (rtx tgt, rtx mem, HOST_WIDE_INT size,
+ HOST_WIDE_INT ofs, int sign)
+{
+ rtx meml, memh, addr, extl, exth, tmp, mema;
+ enum machine_mode mode;
+
+ if (TARGET_BWX && size == 2)
+ {
+ meml = adjust_address (mem, QImode, ofs);
+ memh = adjust_address (mem, QImode, ofs+1);
+ extl = gen_reg_rtx (DImode);
+ exth = gen_reg_rtx (DImode);
+ emit_insn (gen_zero_extendqidi2 (extl, meml));
+ emit_insn (gen_zero_extendqidi2 (exth, memh));
+ exth = expand_simple_binop (DImode, ASHIFT, exth, GEN_INT (8),
+ NULL, 1, OPTAB_LIB_WIDEN);
+ addr = expand_simple_binop (DImode, IOR, extl, exth,
+ NULL, 1, OPTAB_LIB_WIDEN);
+
+ if (sign && GET_MODE (tgt) != HImode)
+ {
+ addr = gen_lowpart (HImode, addr);
+ emit_insn (gen_extend_insn (tgt, addr, GET_MODE (tgt), HImode, 0));
+ }
+ else
+ {
+ if (GET_MODE (tgt) != DImode)
+ addr = gen_lowpart (GET_MODE (tgt), addr);
+ emit_move_insn (tgt, addr);
+ }
+ return;
+ }
+
+ meml = gen_reg_rtx (DImode);
+ memh = gen_reg_rtx (DImode);
+ addr = gen_reg_rtx (DImode);
+ extl = gen_reg_rtx (DImode);
+ exth = gen_reg_rtx (DImode);
+
+ mema = XEXP (mem, 0);
+ if (GET_CODE (mema) == LO_SUM)
+ mema = force_reg (Pmode, mema);
+
+ /* AND addresses cannot be in any alias set, since they may implicitly
+ alias surrounding code. Ideally we'd have some alias set that
+ covered all types except those with alignment 8 or higher. */
+
+ tmp = change_address (mem, DImode,
+ gen_rtx_AND (DImode,
+ plus_constant (DImode, mema, ofs),
+ GEN_INT (-8)));
+ set_mem_alias_set (tmp, 0);
+ emit_move_insn (meml, tmp);
+
+ tmp = change_address (mem, DImode,
+ gen_rtx_AND (DImode,
+ plus_constant (DImode, mema,
+ ofs + size - 1),
+ GEN_INT (-8)));
+ set_mem_alias_set (tmp, 0);
+ emit_move_insn (memh, tmp);
+
+ if (sign && size == 2)
+ {
+ emit_move_insn (addr, plus_constant (Pmode, mema, ofs+2));
+
+ emit_insn (gen_extql (extl, meml, addr));
+ emit_insn (gen_extqh (exth, memh, addr));
+
+ /* We must use tgt here for the target. Alpha-vms port fails if we use
+ addr for the target, because addr is marked as a pointer and combine
+ knows that pointers are always sign-extended 32-bit values. */
+ addr = expand_binop (DImode, ior_optab, extl, exth, tgt, 1, OPTAB_WIDEN);
+ addr = expand_binop (DImode, ashr_optab, addr, GEN_INT (48),
+ addr, 1, OPTAB_WIDEN);
+ }
+ else
+ {
+ emit_move_insn (addr, plus_constant (Pmode, mema, ofs));
+ emit_insn (gen_extxl (extl, meml, GEN_INT (size*8), addr));
+ switch ((int) size)
+ {
+ case 2:
+ emit_insn (gen_extwh (exth, memh, addr));
+ mode = HImode;
+ break;
+ case 4:
+ emit_insn (gen_extlh (exth, memh, addr));
+ mode = SImode;
+ break;
+ case 8:
+ emit_insn (gen_extqh (exth, memh, addr));
+ mode = DImode;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ addr = expand_binop (mode, ior_optab, gen_lowpart (mode, extl),
+ gen_lowpart (mode, exth), gen_lowpart (mode, tgt),
+ sign, OPTAB_WIDEN);
+ }
+
+ if (addr != tgt)
+ emit_move_insn (tgt, gen_lowpart (GET_MODE (tgt), addr));
+}
+
+/* Similarly, use ins and msk instructions to perform unaligned stores. */
+
+void
+alpha_expand_unaligned_store (rtx dst, rtx src,
+ HOST_WIDE_INT size, HOST_WIDE_INT ofs)
+{
+ rtx dstl, dsth, addr, insl, insh, meml, memh, dsta;
+
+ if (TARGET_BWX && size == 2)
+ {
+ if (src != const0_rtx)
+ {
+ dstl = gen_lowpart (QImode, src);
+ dsth = expand_simple_binop (DImode, LSHIFTRT, src, GEN_INT (8),
+ NULL, 1, OPTAB_LIB_WIDEN);
+ dsth = gen_lowpart (QImode, dsth);
+ }
+ else
+ dstl = dsth = const0_rtx;
+
+ meml = adjust_address (dst, QImode, ofs);
+ memh = adjust_address (dst, QImode, ofs+1);
+
+ emit_move_insn (meml, dstl);
+ emit_move_insn (memh, dsth);
+ return;
+ }
+
+ dstl = gen_reg_rtx (DImode);
+ dsth = gen_reg_rtx (DImode);
+ insl = gen_reg_rtx (DImode);
+ insh = gen_reg_rtx (DImode);
+
+ dsta = XEXP (dst, 0);
+ if (GET_CODE (dsta) == LO_SUM)
+ dsta = force_reg (Pmode, dsta);
+
+ /* AND addresses cannot be in any alias set, since they may implicitly
+ alias surrounding code. Ideally we'd have some alias set that
+ covered all types except those with alignment 8 or higher. */
+
+ meml = change_address (dst, DImode,
+ gen_rtx_AND (DImode,
+ plus_constant (DImode, dsta, ofs),
+ GEN_INT (-8)));
+ set_mem_alias_set (meml, 0);
+
+ memh = change_address (dst, DImode,
+ gen_rtx_AND (DImode,
+ plus_constant (DImode, dsta,
+ ofs + size - 1),
+ GEN_INT (-8)));
+ set_mem_alias_set (memh, 0);
+
+ emit_move_insn (dsth, memh);
+ emit_move_insn (dstl, meml);
+
+ addr = copy_addr_to_reg (plus_constant (Pmode, dsta, ofs));
+
+ if (src != CONST0_RTX (GET_MODE (src)))
+ {
+ emit_insn (gen_insxh (insh, gen_lowpart (DImode, src),
+ GEN_INT (size*8), addr));
+
+ switch ((int) size)
+ {
+ case 2:
+ emit_insn (gen_inswl (insl, gen_lowpart (HImode, src), addr));
+ break;
+ case 4:
+ emit_insn (gen_insll (insl, gen_lowpart (SImode, src), addr));
+ break;
+ case 8:
+ emit_insn (gen_insql (insl, gen_lowpart (DImode, src), addr));
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ emit_insn (gen_mskxh (dsth, dsth, GEN_INT (size*8), addr));
+
+ switch ((int) size)
+ {
+ case 2:
+ emit_insn (gen_mskwl (dstl, dstl, addr));
+ break;
+ case 4:
+ emit_insn (gen_mskll (dstl, dstl, addr));
+ break;
+ case 8:
+ emit_insn (gen_mskql (dstl, dstl, addr));
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ if (src != CONST0_RTX (GET_MODE (src)))
+ {
+ dsth = expand_binop (DImode, ior_optab, insh, dsth, dsth, 0, OPTAB_WIDEN);
+ dstl = expand_binop (DImode, ior_optab, insl, dstl, dstl, 0, OPTAB_WIDEN);
+ }
+
+ /* Must store high before low for degenerate case of aligned. */
+ emit_move_insn (memh, dsth);
+ emit_move_insn (meml, dstl);
+}
+
+/* The block move code tries to maximize speed by separating loads and
+ stores at the expense of register pressure: we load all of the data
+ before we store it back out. There are two secondary effects worth
+ mentioning, that this speeds copying to/from aligned and unaligned
+ buffers, and that it makes the code significantly easier to write. */
+
+#define MAX_MOVE_WORDS 8
+
+/* Load an integral number of consecutive unaligned quadwords. */
+
+static void
+alpha_expand_unaligned_load_words (rtx *out_regs, rtx smem,
+ HOST_WIDE_INT words, HOST_WIDE_INT ofs)
+{
+ rtx const im8 = GEN_INT (-8);
+ rtx ext_tmps[MAX_MOVE_WORDS], data_regs[MAX_MOVE_WORDS+1];
+ rtx sreg, areg, tmp, smema;
+ HOST_WIDE_INT i;
+
+ smema = XEXP (smem, 0);
+ if (GET_CODE (smema) == LO_SUM)
+ smema = force_reg (Pmode, smema);
+
+ /* Generate all the tmp registers we need. */
+ for (i = 0; i < words; ++i)
+ {
+ data_regs[i] = out_regs[i];
+ ext_tmps[i] = gen_reg_rtx (DImode);
+ }
+ data_regs[words] = gen_reg_rtx (DImode);
+
+ if (ofs != 0)
+ smem = adjust_address (smem, GET_MODE (smem), ofs);
+
+ /* Load up all of the source data. */
+ for (i = 0; i < words; ++i)
+ {
+ tmp = change_address (smem, DImode,
+ gen_rtx_AND (DImode,
+ plus_constant (DImode, smema, 8*i),
+ im8));
+ set_mem_alias_set (tmp, 0);
+ emit_move_insn (data_regs[i], tmp);
+ }
+
+ tmp = change_address (smem, DImode,
+ gen_rtx_AND (DImode,
+ plus_constant (DImode, smema,
+ 8*words - 1),
+ im8));
+ set_mem_alias_set (tmp, 0);
+ emit_move_insn (data_regs[words], tmp);
+
+ /* Extract the half-word fragments. Unfortunately DEC decided to make
+ extxh with offset zero a noop instead of zeroing the register, so
+ we must take care of that edge condition ourselves with cmov. */
+
+ sreg = copy_addr_to_reg (smema);
+ areg = expand_binop (DImode, and_optab, sreg, GEN_INT (7), NULL,
+ 1, OPTAB_WIDEN);
+ for (i = 0; i < words; ++i)
+ {
+ emit_insn (gen_extql (data_regs[i], data_regs[i], sreg));
+ emit_insn (gen_extqh (ext_tmps[i], data_regs[i+1], sreg));
+ emit_insn (gen_rtx_SET (VOIDmode, ext_tmps[i],
+ gen_rtx_IF_THEN_ELSE (DImode,
+ gen_rtx_EQ (DImode, areg,
+ const0_rtx),
+ const0_rtx, ext_tmps[i])));
+ }
+
+ /* Merge the half-words into whole words. */
+ for (i = 0; i < words; ++i)
+ {
+ out_regs[i] = expand_binop (DImode, ior_optab, data_regs[i],
+ ext_tmps[i], data_regs[i], 1, OPTAB_WIDEN);
+ }
+}
+
+/* Store an integral number of consecutive unaligned quadwords. DATA_REGS
+ may be NULL to store zeros. */
+
+static void
+alpha_expand_unaligned_store_words (rtx *data_regs, rtx dmem,
+ HOST_WIDE_INT words, HOST_WIDE_INT ofs)
+{
+ rtx const im8 = GEN_INT (-8);
+ rtx ins_tmps[MAX_MOVE_WORDS];
+ rtx st_tmp_1, st_tmp_2, dreg;
+ rtx st_addr_1, st_addr_2, dmema;
+ HOST_WIDE_INT i;
+
+ dmema = XEXP (dmem, 0);
+ if (GET_CODE (dmema) == LO_SUM)
+ dmema = force_reg (Pmode, dmema);
+
+ /* Generate all the tmp registers we need. */
+ if (data_regs != NULL)
+ for (i = 0; i < words; ++i)
+ ins_tmps[i] = gen_reg_rtx(DImode);
+ st_tmp_1 = gen_reg_rtx(DImode);
+ st_tmp_2 = gen_reg_rtx(DImode);
+
+ if (ofs != 0)
+ dmem = adjust_address (dmem, GET_MODE (dmem), ofs);
+
+ st_addr_2 = change_address (dmem, DImode,
+ gen_rtx_AND (DImode,
+ plus_constant (DImode, dmema,
+ words*8 - 1),
+ im8));
+ set_mem_alias_set (st_addr_2, 0);
+
+ st_addr_1 = change_address (dmem, DImode,
+ gen_rtx_AND (DImode, dmema, im8));
+ set_mem_alias_set (st_addr_1, 0);
+
+ /* Load up the destination end bits. */
+ emit_move_insn (st_tmp_2, st_addr_2);
+ emit_move_insn (st_tmp_1, st_addr_1);
+
+ /* Shift the input data into place. */
+ dreg = copy_addr_to_reg (dmema);
+ if (data_regs != NULL)
+ {
+ for (i = words-1; i >= 0; --i)
+ {
+ emit_insn (gen_insqh (ins_tmps[i], data_regs[i], dreg));
+ emit_insn (gen_insql (data_regs[i], data_regs[i], dreg));
+ }
+ for (i = words-1; i > 0; --i)
+ {
+ ins_tmps[i-1] = expand_binop (DImode, ior_optab, data_regs[i],
+ ins_tmps[i-1], ins_tmps[i-1], 1,
+ OPTAB_WIDEN);
+ }
+ }
+
+ /* Split and merge the ends with the destination data. */
+ emit_insn (gen_mskqh (st_tmp_2, st_tmp_2, dreg));
+ emit_insn (gen_mskql (st_tmp_1, st_tmp_1, dreg));
+
+ if (data_regs != NULL)
+ {
+ st_tmp_2 = expand_binop (DImode, ior_optab, st_tmp_2, ins_tmps[words-1],
+ st_tmp_2, 1, OPTAB_WIDEN);
+ st_tmp_1 = expand_binop (DImode, ior_optab, st_tmp_1, data_regs[0],
+ st_tmp_1, 1, OPTAB_WIDEN);
+ }
+
+ /* Store it all. */
+ emit_move_insn (st_addr_2, st_tmp_2);
+ for (i = words-1; i > 0; --i)
+ {
+ rtx tmp = change_address (dmem, DImode,
+ gen_rtx_AND (DImode,
+ plus_constant (DImode,
+ dmema, i*8),
+ im8));
+ set_mem_alias_set (tmp, 0);
+ emit_move_insn (tmp, data_regs ? ins_tmps[i-1] : const0_rtx);
+ }
+ emit_move_insn (st_addr_1, st_tmp_1);
+}
+
+
+/* Expand string/block move operations.
+
+ operands[0] is the pointer to the destination.
+ operands[1] is the pointer to the source.
+ operands[2] is the number of bytes to move.
+ operands[3] is the alignment. */
+
+int
+alpha_expand_block_move (rtx operands[])
+{
+ rtx bytes_rtx = operands[2];
+ rtx align_rtx = operands[3];
+ HOST_WIDE_INT orig_bytes = INTVAL (bytes_rtx);
+ HOST_WIDE_INT bytes = orig_bytes;
+ HOST_WIDE_INT src_align = INTVAL (align_rtx) * BITS_PER_UNIT;
+ HOST_WIDE_INT dst_align = src_align;
+ rtx orig_src = operands[1];
+ rtx orig_dst = operands[0];
+ rtx data_regs[2 * MAX_MOVE_WORDS + 16];
+ rtx tmp;
+ unsigned int i, words, ofs, nregs = 0;
+
+ if (orig_bytes <= 0)
+ return 1;
+ else if (orig_bytes > MAX_MOVE_WORDS * UNITS_PER_WORD)
+ return 0;
+
+ /* Look for additional alignment information from recorded register info. */
+
+ tmp = XEXP (orig_src, 0);
+ if (REG_P (tmp))
+ src_align = MAX (src_align, REGNO_POINTER_ALIGN (REGNO (tmp)));
+ else if (GET_CODE (tmp) == PLUS
+ && REG_P (XEXP (tmp, 0))
+ && CONST_INT_P (XEXP (tmp, 1)))
+ {
+ unsigned HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
+ unsigned int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
+
+ if (a > src_align)
+ {
+ if (a >= 64 && c % 8 == 0)
+ src_align = 64;
+ else if (a >= 32 && c % 4 == 0)
+ src_align = 32;
+ else if (a >= 16 && c % 2 == 0)
+ src_align = 16;
+ }
+ }
+
+ tmp = XEXP (orig_dst, 0);
+ if (REG_P (tmp))
+ dst_align = MAX (dst_align, REGNO_POINTER_ALIGN (REGNO (tmp)));
+ else if (GET_CODE (tmp) == PLUS
+ && REG_P (XEXP (tmp, 0))
+ && CONST_INT_P (XEXP (tmp, 1)))
+ {
+ unsigned HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
+ unsigned int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
+
+ if (a > dst_align)
+ {
+ if (a >= 64 && c % 8 == 0)
+ dst_align = 64;
+ else if (a >= 32 && c % 4 == 0)
+ dst_align = 32;
+ else if (a >= 16 && c % 2 == 0)
+ dst_align = 16;
+ }
+ }
+
+ ofs = 0;
+ if (src_align >= 64 && bytes >= 8)
+ {
+ words = bytes / 8;
+
+ for (i = 0; i < words; ++i)
+ data_regs[nregs + i] = gen_reg_rtx (DImode);
+
+ for (i = 0; i < words; ++i)
+ emit_move_insn (data_regs[nregs + i],
+ adjust_address (orig_src, DImode, ofs + i * 8));
+
+ nregs += words;
+ bytes -= words * 8;
+ ofs += words * 8;
+ }
+
+ if (src_align >= 32 && bytes >= 4)
+ {
+ words = bytes / 4;
+
+ for (i = 0; i < words; ++i)
+ data_regs[nregs + i] = gen_reg_rtx (SImode);
+
+ for (i = 0; i < words; ++i)
+ emit_move_insn (data_regs[nregs + i],
+ adjust_address (orig_src, SImode, ofs + i * 4));
+
+ nregs += words;
+ bytes -= words * 4;
+ ofs += words * 4;
+ }
+
+ if (bytes >= 8)
+ {
+ words = bytes / 8;
+
+ for (i = 0; i < words+1; ++i)
+ data_regs[nregs + i] = gen_reg_rtx (DImode);
+
+ alpha_expand_unaligned_load_words (data_regs + nregs, orig_src,
+ words, ofs);
+
+ nregs += words;
+ bytes -= words * 8;
+ ofs += words * 8;
+ }
+
+ if (! TARGET_BWX && bytes >= 4)
+ {
+ data_regs[nregs++] = tmp = gen_reg_rtx (SImode);
+ alpha_expand_unaligned_load (tmp, orig_src, 4, ofs, 0);
+ bytes -= 4;
+ ofs += 4;
+ }
+
+ if (bytes >= 2)
+ {
+ if (src_align >= 16)
+ {
+ do {
+ data_regs[nregs++] = tmp = gen_reg_rtx (HImode);
+ emit_move_insn (tmp, adjust_address (orig_src, HImode, ofs));
+ bytes -= 2;
+ ofs += 2;
+ } while (bytes >= 2);
+ }
+ else if (! TARGET_BWX)
+ {
+ data_regs[nregs++] = tmp = gen_reg_rtx (HImode);
+ alpha_expand_unaligned_load (tmp, orig_src, 2, ofs, 0);
+ bytes -= 2;
+ ofs += 2;
+ }
+ }
+
+ while (bytes > 0)
+ {
+ data_regs[nregs++] = tmp = gen_reg_rtx (QImode);
+ emit_move_insn (tmp, adjust_address (orig_src, QImode, ofs));
+ bytes -= 1;
+ ofs += 1;
+ }
+
+ gcc_assert (nregs <= ARRAY_SIZE (data_regs));
+
+ /* Now save it back out again. */
+
+ i = 0, ofs = 0;
+
+ /* Write out the data in whatever chunks reading the source allowed. */
+ if (dst_align >= 64)
+ {
+ while (i < nregs && GET_MODE (data_regs[i]) == DImode)
+ {
+ emit_move_insn (adjust_address (orig_dst, DImode, ofs),
+ data_regs[i]);
+ ofs += 8;
+ i++;
+ }
+ }
+
+ if (dst_align >= 32)
+ {
+ /* If the source has remaining DImode regs, write them out in
+ two pieces. */
+ while (i < nregs && GET_MODE (data_regs[i]) == DImode)
+ {
+ tmp = expand_binop (DImode, lshr_optab, data_regs[i], GEN_INT (32),
+ NULL_RTX, 1, OPTAB_WIDEN);
+
+ emit_move_insn (adjust_address (orig_dst, SImode, ofs),
+ gen_lowpart (SImode, data_regs[i]));
+ emit_move_insn (adjust_address (orig_dst, SImode, ofs + 4),
+ gen_lowpart (SImode, tmp));
+ ofs += 8;
+ i++;
+ }
+
+ while (i < nregs && GET_MODE (data_regs[i]) == SImode)
+ {
+ emit_move_insn (adjust_address (orig_dst, SImode, ofs),
+ data_regs[i]);
+ ofs += 4;
+ i++;
+ }
+ }
+
+ if (i < nregs && GET_MODE (data_regs[i]) == DImode)
+ {
+ /* Write out a remaining block of words using unaligned methods. */
+
+ for (words = 1; i + words < nregs; words++)
+ if (GET_MODE (data_regs[i + words]) != DImode)
+ break;
+
+ if (words == 1)
+ alpha_expand_unaligned_store (orig_dst, data_regs[i], 8, ofs);
+ else
+ alpha_expand_unaligned_store_words (data_regs + i, orig_dst,
+ words, ofs);
+
+ i += words;
+ ofs += words * 8;
+ }
+
+ /* Due to the above, this won't be aligned. */
+ /* ??? If we have more than one of these, consider constructing full
+ words in registers and using alpha_expand_unaligned_store_words. */
+ while (i < nregs && GET_MODE (data_regs[i]) == SImode)
+ {
+ alpha_expand_unaligned_store (orig_dst, data_regs[i], 4, ofs);
+ ofs += 4;
+ i++;
+ }
+
+ if (dst_align >= 16)
+ while (i < nregs && GET_MODE (data_regs[i]) == HImode)
+ {
+ emit_move_insn (adjust_address (orig_dst, HImode, ofs), data_regs[i]);
+ i++;
+ ofs += 2;
+ }
+ else
+ while (i < nregs && GET_MODE (data_regs[i]) == HImode)
+ {
+ alpha_expand_unaligned_store (orig_dst, data_regs[i], 2, ofs);
+ i++;
+ ofs += 2;
+ }
+
+ /* The remainder must be byte copies. */
+ while (i < nregs)
+ {
+ gcc_assert (GET_MODE (data_regs[i]) == QImode);
+ emit_move_insn (adjust_address (orig_dst, QImode, ofs), data_regs[i]);
+ i++;
+ ofs += 1;
+ }
+
+ return 1;
+}
+
+int
+alpha_expand_block_clear (rtx operands[])
+{
+ rtx bytes_rtx = operands[1];
+ rtx align_rtx = operands[3];
+ HOST_WIDE_INT orig_bytes = INTVAL (bytes_rtx);
+ HOST_WIDE_INT bytes = orig_bytes;
+ HOST_WIDE_INT align = INTVAL (align_rtx) * BITS_PER_UNIT;
+ HOST_WIDE_INT alignofs = 0;
+ rtx orig_dst = operands[0];
+ rtx tmp;
+ int i, words, ofs = 0;
+
+ if (orig_bytes <= 0)
+ return 1;
+ if (orig_bytes > MAX_MOVE_WORDS * UNITS_PER_WORD)
+ return 0;
+
+ /* Look for stricter alignment. */
+ tmp = XEXP (orig_dst, 0);
+ if (REG_P (tmp))
+ align = MAX (align, REGNO_POINTER_ALIGN (REGNO (tmp)));
+ else if (GET_CODE (tmp) == PLUS
+ && REG_P (XEXP (tmp, 0))
+ && CONST_INT_P (XEXP (tmp, 1)))
+ {
+ HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
+ int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
+
+ if (a > align)
+ {
+ if (a >= 64)
+ align = a, alignofs = 8 - c % 8;
+ else if (a >= 32)
+ align = a, alignofs = 4 - c % 4;
+ else if (a >= 16)
+ align = a, alignofs = 2 - c % 2;
+ }
+ }
+
+ /* Handle an unaligned prefix first. */
+
+ if (alignofs > 0)
+ {
+#if HOST_BITS_PER_WIDE_INT >= 64
+ /* Given that alignofs is bounded by align, the only time BWX could
+ generate three stores is for a 7 byte fill. Prefer two individual
+ stores over a load/mask/store sequence. */
+ if ((!TARGET_BWX || alignofs == 7)
+ && align >= 32
+ && !(alignofs == 4 && bytes >= 4))
+ {
+ enum machine_mode mode = (align >= 64 ? DImode : SImode);
+ int inv_alignofs = (align >= 64 ? 8 : 4) - alignofs;
+ rtx mem, tmp;
+ HOST_WIDE_INT mask;
+
+ mem = adjust_address (orig_dst, mode, ofs - inv_alignofs);
+ set_mem_alias_set (mem, 0);
+
+ mask = ~(~(HOST_WIDE_INT)0 << (inv_alignofs * 8));
+ if (bytes < alignofs)
+ {
+ mask |= ~(HOST_WIDE_INT)0 << ((inv_alignofs + bytes) * 8);
+ ofs += bytes;
+ bytes = 0;
+ }
+ else
+ {
+ bytes -= alignofs;
+ ofs += alignofs;
+ }
+ alignofs = 0;
+
+ tmp = expand_binop (mode, and_optab, mem, GEN_INT (mask),
+ NULL_RTX, 1, OPTAB_WIDEN);
+
+ emit_move_insn (mem, tmp);
+ }
+#endif
+
+ if (TARGET_BWX && (alignofs & 1) && bytes >= 1)
+ {
+ emit_move_insn (adjust_address (orig_dst, QImode, ofs), const0_rtx);
+ bytes -= 1;
+ ofs += 1;
+ alignofs -= 1;
+ }
+ if (TARGET_BWX && align >= 16 && (alignofs & 3) == 2 && bytes >= 2)
+ {
+ emit_move_insn (adjust_address (orig_dst, HImode, ofs), const0_rtx);
+ bytes -= 2;
+ ofs += 2;
+ alignofs -= 2;
+ }
+ if (alignofs == 4 && bytes >= 4)
+ {
+ emit_move_insn (adjust_address (orig_dst, SImode, ofs), const0_rtx);
+ bytes -= 4;
+ ofs += 4;
+ alignofs = 0;
+ }
+
+ /* If we've not used the extra lead alignment information by now,
+ we won't be able to. Downgrade align to match what's left over. */
+ if (alignofs > 0)
+ {
+ alignofs = alignofs & -alignofs;
+ align = MIN (align, alignofs * BITS_PER_UNIT);
+ }
+ }
+
+ /* Handle a block of contiguous long-words. */
+
+ if (align >= 64 && bytes >= 8)
+ {
+ words = bytes / 8;
+
+ for (i = 0; i < words; ++i)
+ emit_move_insn (adjust_address (orig_dst, DImode, ofs + i * 8),
+ const0_rtx);
+
+ bytes -= words * 8;
+ ofs += words * 8;
+ }
+
+ /* If the block is large and appropriately aligned, emit a single
+ store followed by a sequence of stq_u insns. */
+
+ if (align >= 32 && bytes > 16)
+ {
+ rtx orig_dsta;
+
+ emit_move_insn (adjust_address (orig_dst, SImode, ofs), const0_rtx);
+ bytes -= 4;
+ ofs += 4;
+
+ orig_dsta = XEXP (orig_dst, 0);
+ if (GET_CODE (orig_dsta) == LO_SUM)
+ orig_dsta = force_reg (Pmode, orig_dsta);
+
+ words = bytes / 8;
+ for (i = 0; i < words; ++i)
+ {
+ rtx mem
+ = change_address (orig_dst, DImode,
+ gen_rtx_AND (DImode,
+ plus_constant (DImode, orig_dsta,
+ ofs + i*8),
+ GEN_INT (-8)));
+ set_mem_alias_set (mem, 0);
+ emit_move_insn (mem, const0_rtx);
+ }
+
+ /* Depending on the alignment, the first stq_u may have overlapped
+ with the initial stl, which means that the last stq_u didn't
+ write as much as it would appear. Leave those questionable bytes
+ unaccounted for. */
+ bytes -= words * 8 - 4;
+ ofs += words * 8 - 4;
+ }
+
+ /* Handle a smaller block of aligned words. */
+
+ if ((align >= 64 && bytes == 4)
+ || (align == 32 && bytes >= 4))
+ {
+ words = bytes / 4;
+
+ for (i = 0; i < words; ++i)
+ emit_move_insn (adjust_address (orig_dst, SImode, ofs + i * 4),
+ const0_rtx);
+
+ bytes -= words * 4;
+ ofs += words * 4;
+ }
+
+ /* An unaligned block uses stq_u stores for as many as possible. */
+
+ if (bytes >= 8)
+ {
+ words = bytes / 8;
+
+ alpha_expand_unaligned_store_words (NULL, orig_dst, words, ofs);
+
+ bytes -= words * 8;
+ ofs += words * 8;
+ }
+
+ /* Next clean up any trailing pieces. */
+
+#if HOST_BITS_PER_WIDE_INT >= 64
+ /* Count the number of bits in BYTES for which aligned stores could
+ be emitted. */
+ words = 0;
+ for (i = (TARGET_BWX ? 1 : 4); i * BITS_PER_UNIT <= align ; i <<= 1)
+ if (bytes & i)
+ words += 1;
+
+ /* If we have appropriate alignment (and it wouldn't take too many
+ instructions otherwise), mask out the bytes we need. */
+ if (TARGET_BWX ? words > 2 : bytes > 0)
+ {
+ if (align >= 64)
+ {
+ rtx mem, tmp;
+ HOST_WIDE_INT mask;
+
+ mem = adjust_address (orig_dst, DImode, ofs);
+ set_mem_alias_set (mem, 0);
+
+ mask = ~(HOST_WIDE_INT)0 << (bytes * 8);
+
+ tmp = expand_binop (DImode, and_optab, mem, GEN_INT (mask),
+ NULL_RTX, 1, OPTAB_WIDEN);
+
+ emit_move_insn (mem, tmp);
+ return 1;
+ }
+ else if (align >= 32 && bytes < 4)
+ {
+ rtx mem, tmp;
+ HOST_WIDE_INT mask;
+
+ mem = adjust_address (orig_dst, SImode, ofs);
+ set_mem_alias_set (mem, 0);
+
+ mask = ~(HOST_WIDE_INT)0 << (bytes * 8);
+
+ tmp = expand_binop (SImode, and_optab, mem, GEN_INT (mask),
+ NULL_RTX, 1, OPTAB_WIDEN);
+
+ emit_move_insn (mem, tmp);
+ return 1;
+ }
+ }
+#endif
+
+ if (!TARGET_BWX && bytes >= 4)
+ {
+ alpha_expand_unaligned_store (orig_dst, const0_rtx, 4, ofs);
+ bytes -= 4;
+ ofs += 4;
+ }
+
+ if (bytes >= 2)
+ {
+ if (align >= 16)
+ {
+ do {
+ emit_move_insn (adjust_address (orig_dst, HImode, ofs),
+ const0_rtx);
+ bytes -= 2;
+ ofs += 2;
+ } while (bytes >= 2);
+ }
+ else if (! TARGET_BWX)
+ {
+ alpha_expand_unaligned_store (orig_dst, const0_rtx, 2, ofs);
+ bytes -= 2;
+ ofs += 2;
+ }
+ }
+
+ while (bytes > 0)
+ {
+ emit_move_insn (adjust_address (orig_dst, QImode, ofs), const0_rtx);
+ bytes -= 1;
+ ofs += 1;
+ }
+
+ return 1;
+}
+
+/* Returns a mask so that zap(x, value) == x & mask. */
+
+rtx
+alpha_expand_zap_mask (HOST_WIDE_INT value)
+{
+ rtx result;
+ int i;
+
+ if (HOST_BITS_PER_WIDE_INT >= 64)
+ {
+ HOST_WIDE_INT mask = 0;
+
+ for (i = 7; i >= 0; --i)
+ {
+ mask <<= 8;
+ if (!((value >> i) & 1))
+ mask |= 0xff;
+ }
+
+ result = gen_int_mode (mask, DImode);
+ }
+ else
+ {
+ HOST_WIDE_INT mask_lo = 0, mask_hi = 0;
+
+ gcc_assert (HOST_BITS_PER_WIDE_INT == 32);
+
+ for (i = 7; i >= 4; --i)
+ {
+ mask_hi <<= 8;
+ if (!((value >> i) & 1))
+ mask_hi |= 0xff;
+ }
+
+ for (i = 3; i >= 0; --i)
+ {
+ mask_lo <<= 8;
+ if (!((value >> i) & 1))
+ mask_lo |= 0xff;
+ }
+
+ result = immed_double_const (mask_lo, mask_hi, DImode);
+ }
+
+ return result;
+}
+
+void
+alpha_expand_builtin_vector_binop (rtx (*gen) (rtx, rtx, rtx),
+ enum machine_mode mode,
+ rtx op0, rtx op1, rtx op2)
+{
+ op0 = gen_lowpart (mode, op0);
+
+ if (op1 == const0_rtx)
+ op1 = CONST0_RTX (mode);
+ else
+ op1 = gen_lowpart (mode, op1);
+
+ if (op2 == const0_rtx)
+ op2 = CONST0_RTX (mode);
+ else
+ op2 = gen_lowpart (mode, op2);
+
+ emit_insn ((*gen) (op0, op1, op2));
+}
+
+/* A subroutine of the atomic operation splitters. Jump to LABEL if
+ COND is true. Mark the jump as unlikely to be taken. */
+
+static void
+emit_unlikely_jump (rtx cond, rtx label)
+{
+ int very_unlikely = REG_BR_PROB_BASE / 100 - 1;
+ rtx x;
+
+ x = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, label, pc_rtx);
+ x = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, x));
+ add_int_reg_note (x, REG_BR_PROB, very_unlikely);
+}
+
+/* A subroutine of the atomic operation splitters. Emit a load-locked
+ instruction in MODE. */
+
+static void
+emit_load_locked (enum machine_mode mode, rtx reg, rtx mem)
+{
+ rtx (*fn) (rtx, rtx) = NULL;
+ if (mode == SImode)
+ fn = gen_load_locked_si;
+ else if (mode == DImode)
+ fn = gen_load_locked_di;
+ emit_insn (fn (reg, mem));
+}
+
+/* A subroutine of the atomic operation splitters. Emit a store-conditional
+ instruction in MODE. */
+
+static void
+emit_store_conditional (enum machine_mode mode, rtx res, rtx mem, rtx val)
+{
+ rtx (*fn) (rtx, rtx, rtx) = NULL;
+ if (mode == SImode)
+ fn = gen_store_conditional_si;
+ else if (mode == DImode)
+ fn = gen_store_conditional_di;
+ emit_insn (fn (res, mem, val));
+}
+
+/* Subroutines of the atomic operation splitters. Emit barriers
+ as needed for the memory MODEL. */
+
+static void
+alpha_pre_atomic_barrier (enum memmodel model)
+{
+ if (need_atomic_barrier_p (model, true))
+ emit_insn (gen_memory_barrier ());
+}
+
+static void
+alpha_post_atomic_barrier (enum memmodel model)
+{
+ if (need_atomic_barrier_p (model, false))
+ emit_insn (gen_memory_barrier ());
+}
+
+/* A subroutine of the atomic operation splitters. Emit an insxl
+ instruction in MODE. */
+
+static rtx
+emit_insxl (enum machine_mode mode, rtx op1, rtx op2)
+{
+ rtx ret = gen_reg_rtx (DImode);
+ rtx (*fn) (rtx, rtx, rtx);
+
+ switch (mode)
+ {
+ case QImode:
+ fn = gen_insbl;
+ break;
+ case HImode:
+ fn = gen_inswl;
+ break;
+ case SImode:
+ fn = gen_insll;
+ break;
+ case DImode:
+ fn = gen_insql;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ op1 = force_reg (mode, op1);
+ emit_insn (fn (ret, op1, op2));
+
+ return ret;
+}
+
+/* Expand an atomic fetch-and-operate pattern. CODE is the binary operation
+ to perform. MEM is the memory on which to operate. VAL is the second
+ operand of the binary operator. BEFORE and AFTER are optional locations to
+ return the value of MEM either before of after the operation. SCRATCH is
+ a scratch register. */
+
+void
+alpha_split_atomic_op (enum rtx_code code, rtx mem, rtx val, rtx before,
+ rtx after, rtx scratch, enum memmodel model)
+{
+ enum machine_mode mode = GET_MODE (mem);
+ rtx label, x, cond = gen_rtx_REG (DImode, REGNO (scratch));
+
+ alpha_pre_atomic_barrier (model);
+
+ label = gen_label_rtx ();
+ emit_label (label);
+ label = gen_rtx_LABEL_REF (DImode, label);
+
+ if (before == NULL)
+ before = scratch;
+ emit_load_locked (mode, before, mem);
+
+ if (code == NOT)
+ {
+ x = gen_rtx_AND (mode, before, val);
+ emit_insn (gen_rtx_SET (VOIDmode, val, x));
+
+ x = gen_rtx_NOT (mode, val);
+ }
+ else
+ x = gen_rtx_fmt_ee (code, mode, before, val);
+ if (after)
+ emit_insn (gen_rtx_SET (VOIDmode, after, copy_rtx (x)));
+ emit_insn (gen_rtx_SET (VOIDmode, scratch, x));
+
+ emit_store_conditional (mode, cond, mem, scratch);
+
+ x = gen_rtx_EQ (DImode, cond, const0_rtx);
+ emit_unlikely_jump (x, label);
+
+ alpha_post_atomic_barrier (model);
+}
+
+/* Expand a compare and swap operation. */
+
+void
+alpha_split_compare_and_swap (rtx operands[])
+{
+ rtx cond, retval, mem, oldval, newval;
+ bool is_weak;
+ enum memmodel mod_s, mod_f;
+ enum machine_mode mode;
+ rtx label1, label2, x;
+
+ cond = operands[0];
+ retval = operands[1];
+ mem = operands[2];
+ oldval = operands[3];
+ newval = operands[4];
+ is_weak = (operands[5] != const0_rtx);
+ mod_s = (enum memmodel) INTVAL (operands[6]);
+ mod_f = (enum memmodel) INTVAL (operands[7]);
+ mode = GET_MODE (mem);
+
+ alpha_pre_atomic_barrier (mod_s);
+
+ label1 = NULL_RTX;
+ if (!is_weak)
+ {
+ label1 = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
+ emit_label (XEXP (label1, 0));
+ }
+ label2 = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
+
+ emit_load_locked (mode, retval, mem);
+
+ x = gen_lowpart (DImode, retval);
+ if (oldval == const0_rtx)
+ {
+ emit_move_insn (cond, const0_rtx);
+ x = gen_rtx_NE (DImode, x, const0_rtx);
+ }
+ else
+ {
+ x = gen_rtx_EQ (DImode, x, oldval);
+ emit_insn (gen_rtx_SET (VOIDmode, cond, x));
+ x = gen_rtx_EQ (DImode, cond, const0_rtx);
+ }
+ emit_unlikely_jump (x, label2);
+
+ emit_move_insn (cond, newval);
+ emit_store_conditional (mode, cond, mem, gen_lowpart (mode, cond));
+
+ if (!is_weak)
+ {
+ x = gen_rtx_EQ (DImode, cond, const0_rtx);
+ emit_unlikely_jump (x, label1);
+ }
+
+ if (mod_f != MEMMODEL_RELAXED)
+ emit_label (XEXP (label2, 0));
+
+ alpha_post_atomic_barrier (mod_s);
+
+ if (mod_f == MEMMODEL_RELAXED)
+ emit_label (XEXP (label2, 0));
+}
+
+void
+alpha_expand_compare_and_swap_12 (rtx operands[])
+{
+ rtx cond, dst, mem, oldval, newval, is_weak, mod_s, mod_f;
+ enum machine_mode mode;
+ rtx addr, align, wdst;
+ rtx (*gen) (rtx, rtx, rtx, rtx, rtx, rtx, rtx, rtx, rtx);
+
+ cond = operands[0];
+ dst = operands[1];
+ mem = operands[2];
+ oldval = operands[3];
+ newval = operands[4];
+ is_weak = operands[5];
+ mod_s = operands[6];
+ mod_f = operands[7];
+ mode = GET_MODE (mem);
+
+ /* We forced the address into a register via mem_noofs_operand. */
+ addr = XEXP (mem, 0);
+ gcc_assert (register_operand (addr, DImode));
+
+ align = expand_simple_binop (Pmode, AND, addr, GEN_INT (-8),
+ NULL_RTX, 1, OPTAB_DIRECT);
+
+ oldval = convert_modes (DImode, mode, oldval, 1);
+
+ if (newval != const0_rtx)
+ newval = emit_insxl (mode, newval, addr);
+
+ wdst = gen_reg_rtx (DImode);
+ if (mode == QImode)
+ gen = gen_atomic_compare_and_swapqi_1;
+ else
+ gen = gen_atomic_compare_and_swaphi_1;
+ emit_insn (gen (cond, wdst, mem, oldval, newval, align,
+ is_weak, mod_s, mod_f));
+
+ emit_move_insn (dst, gen_lowpart (mode, wdst));
+}
+
+void
+alpha_split_compare_and_swap_12 (rtx operands[])
+{
+ rtx cond, dest, orig_mem, oldval, newval, align, scratch;
+ enum machine_mode mode;
+ bool is_weak;
+ enum memmodel mod_s, mod_f;
+ rtx label1, label2, mem, addr, width, mask, x;
+
+ cond = operands[0];
+ dest = operands[1];
+ orig_mem = operands[2];
+ oldval = operands[3];
+ newval = operands[4];
+ align = operands[5];
+ is_weak = (operands[6] != const0_rtx);
+ mod_s = (enum memmodel) INTVAL (operands[7]);
+ mod_f = (enum memmodel) INTVAL (operands[8]);
+ scratch = operands[9];
+ mode = GET_MODE (orig_mem);
+ addr = XEXP (orig_mem, 0);
+
+ mem = gen_rtx_MEM (DImode, align);
+ MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (orig_mem);
+ if (MEM_ALIAS_SET (orig_mem) == ALIAS_SET_MEMORY_BARRIER)
+ set_mem_alias_set (mem, ALIAS_SET_MEMORY_BARRIER);
+
+ alpha_pre_atomic_barrier (mod_s);
+
+ label1 = NULL_RTX;
+ if (!is_weak)
+ {
+ label1 = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
+ emit_label (XEXP (label1, 0));
+ }
+ label2 = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
+
+ emit_load_locked (DImode, scratch, mem);
+
+ width = GEN_INT (GET_MODE_BITSIZE (mode));
+ mask = GEN_INT (mode == QImode ? 0xff : 0xffff);
+ emit_insn (gen_extxl (dest, scratch, width, addr));
+
+ if (oldval == const0_rtx)
+ {
+ emit_move_insn (cond, const0_rtx);
+ x = gen_rtx_NE (DImode, dest, const0_rtx);
+ }
+ else
+ {
+ x = gen_rtx_EQ (DImode, dest, oldval);
+ emit_insn (gen_rtx_SET (VOIDmode, cond, x));
+ x = gen_rtx_EQ (DImode, cond, const0_rtx);
+ }
+ emit_unlikely_jump (x, label2);
+
+ emit_insn (gen_mskxl (cond, scratch, mask, addr));
+
+ if (newval != const0_rtx)
+ emit_insn (gen_iordi3 (cond, cond, newval));
+
+ emit_store_conditional (DImode, cond, mem, cond);
+
+ if (!is_weak)
+ {
+ x = gen_rtx_EQ (DImode, cond, const0_rtx);
+ emit_unlikely_jump (x, label1);
+ }
+
+ if (mod_f != MEMMODEL_RELAXED)
+ emit_label (XEXP (label2, 0));
+
+ alpha_post_atomic_barrier (mod_s);
+
+ if (mod_f == MEMMODEL_RELAXED)
+ emit_label (XEXP (label2, 0));
+}
+
+/* Expand an atomic exchange operation. */
+
+void
+alpha_split_atomic_exchange (rtx operands[])
+{
+ rtx retval, mem, val, scratch;
+ enum memmodel model;
+ enum machine_mode mode;
+ rtx label, x, cond;
+
+ retval = operands[0];
+ mem = operands[1];
+ val = operands[2];
+ model = (enum memmodel) INTVAL (operands[3]);
+ scratch = operands[4];
+ mode = GET_MODE (mem);
+ cond = gen_lowpart (DImode, scratch);
+
+ alpha_pre_atomic_barrier (model);
+
+ label = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
+ emit_label (XEXP (label, 0));
+
+ emit_load_locked (mode, retval, mem);
+ emit_move_insn (scratch, val);
+ emit_store_conditional (mode, cond, mem, scratch);
+
+ x = gen_rtx_EQ (DImode, cond, const0_rtx);
+ emit_unlikely_jump (x, label);
+
+ alpha_post_atomic_barrier (model);
+}
+
+void
+alpha_expand_atomic_exchange_12 (rtx operands[])
+{
+ rtx dst, mem, val, model;
+ enum machine_mode mode;
+ rtx addr, align, wdst;
+ rtx (*gen) (rtx, rtx, rtx, rtx, rtx);
+
+ dst = operands[0];
+ mem = operands[1];
+ val = operands[2];
+ model = operands[3];
+ mode = GET_MODE (mem);
+
+ /* We forced the address into a register via mem_noofs_operand. */
+ addr = XEXP (mem, 0);
+ gcc_assert (register_operand (addr, DImode));
+
+ align = expand_simple_binop (Pmode, AND, addr, GEN_INT (-8),
+ NULL_RTX, 1, OPTAB_DIRECT);
+
+ /* Insert val into the correct byte location within the word. */
+ if (val != const0_rtx)
+ val = emit_insxl (mode, val, addr);
+
+ wdst = gen_reg_rtx (DImode);
+ if (mode == QImode)
+ gen = gen_atomic_exchangeqi_1;
+ else
+ gen = gen_atomic_exchangehi_1;
+ emit_insn (gen (wdst, mem, val, align, model));
+
+ emit_move_insn (dst, gen_lowpart (mode, wdst));
+}
+
+void
+alpha_split_atomic_exchange_12 (rtx operands[])
+{
+ rtx dest, orig_mem, addr, val, align, scratch;
+ rtx label, mem, width, mask, x;
+ enum machine_mode mode;
+ enum memmodel model;
+
+ dest = operands[0];
+ orig_mem = operands[1];
+ val = operands[2];
+ align = operands[3];
+ model = (enum memmodel) INTVAL (operands[4]);
+ scratch = operands[5];
+ mode = GET_MODE (orig_mem);
+ addr = XEXP (orig_mem, 0);
+
+ mem = gen_rtx_MEM (DImode, align);
+ MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (orig_mem);
+ if (MEM_ALIAS_SET (orig_mem) == ALIAS_SET_MEMORY_BARRIER)
+ set_mem_alias_set (mem, ALIAS_SET_MEMORY_BARRIER);
+
+ alpha_pre_atomic_barrier (model);
+
+ label = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
+ emit_label (XEXP (label, 0));
+
+ emit_load_locked (DImode, scratch, mem);
+
+ width = GEN_INT (GET_MODE_BITSIZE (mode));
+ mask = GEN_INT (mode == QImode ? 0xff : 0xffff);
+ emit_insn (gen_extxl (dest, scratch, width, addr));
+ emit_insn (gen_mskxl (scratch, scratch, mask, addr));
+ if (val != const0_rtx)
+ emit_insn (gen_iordi3 (scratch, scratch, val));
+
+ emit_store_conditional (DImode, scratch, mem, scratch);
+
+ x = gen_rtx_EQ (DImode, scratch, const0_rtx);
+ emit_unlikely_jump (x, label);
+
+ alpha_post_atomic_barrier (model);
+}
+
+/* Adjust the cost of a scheduling dependency. Return the new cost of
+ a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
+
+static int
+alpha_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
+{
+ enum attr_type dep_insn_type;
+
+ /* If the dependence is an anti-dependence, there is no cost. For an
+ output dependence, there is sometimes a cost, but it doesn't seem
+ worth handling those few cases. */
+ if (REG_NOTE_KIND (link) != 0)
+ return cost;
+
+ /* If we can't recognize the insns, we can't really do anything. */
+ if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
+ return cost;
+
+ dep_insn_type = get_attr_type (dep_insn);
+
+ /* Bring in the user-defined memory latency. */
+ if (dep_insn_type == TYPE_ILD
+ || dep_insn_type == TYPE_FLD
+ || dep_insn_type == TYPE_LDSYM)
+ cost += alpha_memory_latency-1;
+
+ /* Everything else handled in DFA bypasses now. */
+
+ return cost;
+}
+
+/* The number of instructions that can be issued per cycle. */
+
+static int
+alpha_issue_rate (void)
+{
+ return (alpha_tune == PROCESSOR_EV4 ? 2 : 4);
+}
+
+/* How many alternative schedules to try. This should be as wide as the
+ scheduling freedom in the DFA, but no wider. Making this value too
+ large results extra work for the scheduler.
+
+ For EV4, loads can be issued to either IB0 or IB1, thus we have 2
+ alternative schedules. For EV5, we can choose between E0/E1 and
+ FA/FM. For EV6, an arithmetic insn can be issued to U0/U1/L0/L1. */
+
+static int
+alpha_multipass_dfa_lookahead (void)
+{
+ return (alpha_tune == PROCESSOR_EV6 ? 4 : 2);
+}
+
+/* Machine-specific function data. */
+
+struct GTY(()) alpha_links;
+
+struct GTY(()) machine_function
+{
+ /* For OSF. */
+ const char *some_ld_name;
+
+ /* For flag_reorder_blocks_and_partition. */
+ rtx gp_save_rtx;
+
+ /* For VMS condition handlers. */
+ bool uses_condition_handler;
+
+ /* Linkage entries. */
+ splay_tree GTY ((param1_is (char *), param2_is (struct alpha_links *)))
+ links;
+};
+
+/* How to allocate a 'struct machine_function'. */
+
+static struct machine_function *
+alpha_init_machine_status (void)
+{
+ return ggc_alloc_cleared_machine_function ();
+}
+
+/* Support for frame based VMS condition handlers. */
+
+/* A VMS condition handler may be established for a function with a call to
+ __builtin_establish_vms_condition_handler, and cancelled with a call to
+ __builtin_revert_vms_condition_handler.
+
+ The VMS Condition Handling Facility knows about the existence of a handler
+ from the procedure descriptor .handler field. As the VMS native compilers,
+ we store the user specified handler's address at a fixed location in the
+ stack frame and point the procedure descriptor at a common wrapper which
+ fetches the real handler's address and issues an indirect call.
+
+ The indirection wrapper is "__gcc_shell_handler", provided by libgcc.
+
+ We force the procedure kind to PT_STACK, and the fixed frame location is
+ fp+8, just before the register save area. We use the handler_data field in
+ the procedure descriptor to state the fp offset at which the installed
+ handler address can be found. */
+
+#define VMS_COND_HANDLER_FP_OFFSET 8
+
+/* Expand code to store the currently installed user VMS condition handler
+ into TARGET and install HANDLER as the new condition handler. */
+
+void
+alpha_expand_builtin_establish_vms_condition_handler (rtx target, rtx handler)
+{
+ rtx handler_slot_address = plus_constant (Pmode, hard_frame_pointer_rtx,
+ VMS_COND_HANDLER_FP_OFFSET);
+
+ rtx handler_slot
+ = gen_rtx_MEM (DImode, handler_slot_address);
+
+ emit_move_insn (target, handler_slot);
+ emit_move_insn (handler_slot, handler);
+
+ /* Notify the start/prologue/epilogue emitters that the condition handler
+ slot is needed. In addition to reserving the slot space, this will force
+ the procedure kind to PT_STACK so ensure that the hard_frame_pointer_rtx
+ use above is correct. */
+ cfun->machine->uses_condition_handler = true;
+}
+
+/* Expand code to store the current VMS condition handler into TARGET and
+ nullify it. */
+
+void
+alpha_expand_builtin_revert_vms_condition_handler (rtx target)
+{
+ /* We implement this by establishing a null condition handler, with the tiny
+ side effect of setting uses_condition_handler. This is a little bit
+ pessimistic if no actual builtin_establish call is ever issued, which is
+ not a real problem and expected never to happen anyway. */
+
+ alpha_expand_builtin_establish_vms_condition_handler (target, const0_rtx);
+}
+
+/* Functions to save and restore alpha_return_addr_rtx. */
+
+/* Start the ball rolling with RETURN_ADDR_RTX. */
+
+rtx
+alpha_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
+{
+ if (count != 0)
+ return const0_rtx;
+
+ return get_hard_reg_initial_val (Pmode, REG_RA);
+}
+
+/* Return or create a memory slot containing the gp value for the current
+ function. Needed only if TARGET_LD_BUGGY_LDGP. */
+
+rtx
+alpha_gp_save_rtx (void)
+{
+ rtx seq, m = cfun->machine->gp_save_rtx;
+
+ if (m == NULL)
+ {
+ start_sequence ();
+
+ m = assign_stack_local (DImode, UNITS_PER_WORD, BITS_PER_WORD);
+ m = validize_mem (m);
+ emit_move_insn (m, pic_offset_table_rtx);
+
+ seq = get_insns ();
+ end_sequence ();
+
+ /* We used to simply emit the sequence after entry_of_function.
+ However this breaks the CFG if the first instruction in the
+ first block is not the NOTE_INSN_BASIC_BLOCK, for example a
+ label. Emit the sequence properly on the edge. We are only
+ invoked from dw2_build_landing_pads and finish_eh_generation
+ will call commit_edge_insertions thanks to a kludge. */
+ insert_insn_on_edge (seq,
+ single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
+
+ cfun->machine->gp_save_rtx = m;
+ }
+
+ return m;
+}
+
+static void
+alpha_instantiate_decls (void)
+{
+ if (cfun->machine->gp_save_rtx != NULL_RTX)
+ instantiate_decl_rtl (cfun->machine->gp_save_rtx);
+}
+
+static int
+alpha_ra_ever_killed (void)
+{
+ rtx top;
+
+ if (!has_hard_reg_initial_val (Pmode, REG_RA))
+ return (int)df_regs_ever_live_p (REG_RA);
+
+ push_topmost_sequence ();
+ top = get_insns ();
+ pop_topmost_sequence ();
+
+ return reg_set_between_p (gen_rtx_REG (Pmode, REG_RA), top, NULL_RTX);
+}
+
+
+/* Return the trap mode suffix applicable to the current
+ instruction, or NULL. */
+
+static const char *
+get_trap_mode_suffix (void)
+{
+ enum attr_trap_suffix s = get_attr_trap_suffix (current_output_insn);
+
+ switch (s)
+ {
+ case TRAP_SUFFIX_NONE:
+ return NULL;
+
+ case TRAP_SUFFIX_SU:
+ if (alpha_fptm >= ALPHA_FPTM_SU)
+ return "su";
+ return NULL;
+
+ case TRAP_SUFFIX_SUI:
+ if (alpha_fptm >= ALPHA_FPTM_SUI)
+ return "sui";
+ return NULL;
+
+ case TRAP_SUFFIX_V_SV:
+ switch (alpha_fptm)
+ {
+ case ALPHA_FPTM_N:
+ return NULL;
+ case ALPHA_FPTM_U:
+ return "v";
+ case ALPHA_FPTM_SU:
+ case ALPHA_FPTM_SUI:
+ return "sv";
+ default:
+ gcc_unreachable ();
+ }
+
+ case TRAP_SUFFIX_V_SV_SVI:
+ switch (alpha_fptm)
+ {
+ case ALPHA_FPTM_N:
+ return NULL;
+ case ALPHA_FPTM_U:
+ return "v";
+ case ALPHA_FPTM_SU:
+ return "sv";
+ case ALPHA_FPTM_SUI:
+ return "svi";
+ default:
+ gcc_unreachable ();
+ }
+ break;
+
+ case TRAP_SUFFIX_U_SU_SUI:
+ switch (alpha_fptm)
+ {
+ case ALPHA_FPTM_N:
+ return NULL;
+ case ALPHA_FPTM_U:
+ return "u";
+ case ALPHA_FPTM_SU:
+ return "su";
+ case ALPHA_FPTM_SUI:
+ return "sui";
+ default:
+ gcc_unreachable ();
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ gcc_unreachable ();
+}
+
+/* Return the rounding mode suffix applicable to the current
+ instruction, or NULL. */
+
+static const char *
+get_round_mode_suffix (void)
+{
+ enum attr_round_suffix s = get_attr_round_suffix (current_output_insn);
+
+ switch (s)
+ {
+ case ROUND_SUFFIX_NONE:
+ return NULL;
+ case ROUND_SUFFIX_NORMAL:
+ switch (alpha_fprm)
+ {
+ case ALPHA_FPRM_NORM:
+ return NULL;
+ case ALPHA_FPRM_MINF:
+ return "m";
+ case ALPHA_FPRM_CHOP:
+ return "c";
+ case ALPHA_FPRM_DYN:
+ return "d";
+ default:
+ gcc_unreachable ();
+ }
+ break;
+
+ case ROUND_SUFFIX_C:
+ return "c";
+
+ default:
+ gcc_unreachable ();
+ }
+ gcc_unreachable ();
+}
+
+/* Locate some local-dynamic symbol still in use by this function
+ so that we can print its name in some movdi_er_tlsldm pattern. */
+
+static int
+get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
+{
+ rtx x = *px;
+
+ if (GET_CODE (x) == SYMBOL_REF
+ && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
+ {
+ cfun->machine->some_ld_name = XSTR (x, 0);
+ return 1;
+ }
+
+ return 0;
+}
+
+static const char *
+get_some_local_dynamic_name (void)
+{
+ rtx insn;
+
+ if (cfun->machine->some_ld_name)
+ return cfun->machine->some_ld_name;
+
+ for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
+ if (INSN_P (insn)
+ && for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0))
+ return cfun->machine->some_ld_name;
+
+ gcc_unreachable ();
+}
+
+/* Print an operand. Recognize special options, documented below. */
+
+void
+print_operand (FILE *file, rtx x, int code)
+{
+ int i;
+
+ switch (code)
+ {
+ case '~':
+ /* Print the assembler name of the current function. */
+ assemble_name (file, alpha_fnname);
+ break;
+
+ case '&':
+ assemble_name (file, get_some_local_dynamic_name ());
+ break;
+
+ case '/':
+ {
+ const char *trap = get_trap_mode_suffix ();
+ const char *round = get_round_mode_suffix ();
+
+ if (trap || round)
+ fprintf (file, "/%s%s", (trap ? trap : ""), (round ? round : ""));
+ break;
+ }
+
+ case ',':
+ /* Generates single precision instruction suffix. */
+ fputc ((TARGET_FLOAT_VAX ? 'f' : 's'), file);
+ break;
+
+ case '-':
+ /* Generates double precision instruction suffix. */
+ fputc ((TARGET_FLOAT_VAX ? 'g' : 't'), file);
+ break;
+
+ case '#':
+ if (alpha_this_literal_sequence_number == 0)
+ alpha_this_literal_sequence_number = alpha_next_sequence_number++;
+ fprintf (file, "%d", alpha_this_literal_sequence_number);
+ break;
+
+ case '*':
+ if (alpha_this_gpdisp_sequence_number == 0)
+ alpha_this_gpdisp_sequence_number = alpha_next_sequence_number++;
+ fprintf (file, "%d", alpha_this_gpdisp_sequence_number);
+ break;
+
+ case 'H':
+ if (GET_CODE (x) == HIGH)
+ output_addr_const (file, XEXP (x, 0));
+ else
+ output_operand_lossage ("invalid %%H value");
+ break;
+
+ case 'J':
+ {
+ const char *lituse;
+
+ if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSGD_CALL)
+ {
+ x = XVECEXP (x, 0, 0);
+ lituse = "lituse_tlsgd";
+ }
+ else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSLDM_CALL)
+ {
+ x = XVECEXP (x, 0, 0);
+ lituse = "lituse_tlsldm";
+ }
+ else if (CONST_INT_P (x))
+ lituse = "lituse_jsr";
+ else
+ {
+ output_operand_lossage ("invalid %%J value");
+ break;
+ }
+
+ if (x != const0_rtx)
+ fprintf (file, "\t\t!%s!%d", lituse, (int) INTVAL (x));
+ }
+ break;
+
+ case 'j':
+ {
+ const char *lituse;
+
+#ifdef HAVE_AS_JSRDIRECT_RELOCS
+ lituse = "lituse_jsrdirect";
+#else
+ lituse = "lituse_jsr";
+#endif
+
+ gcc_assert (INTVAL (x) != 0);
+ fprintf (file, "\t\t!%s!%d", lituse, (int) INTVAL (x));
+ }
+ break;
+ case 'r':
+ /* If this operand is the constant zero, write it as "$31". */
+ if (REG_P (x))
+ fprintf (file, "%s", reg_names[REGNO (x)]);
+ else if (x == CONST0_RTX (GET_MODE (x)))
+ fprintf (file, "$31");
+ else
+ output_operand_lossage ("invalid %%r value");
+ break;
+
+ case 'R':
+ /* Similar, but for floating-point. */
+ if (REG_P (x))
+ fprintf (file, "%s", reg_names[REGNO (x)]);
+ else if (x == CONST0_RTX (GET_MODE (x)))
+ fprintf (file, "$f31");
+ else
+ output_operand_lossage ("invalid %%R value");
+ break;
+
+ case 'N':
+ /* Write the 1's complement of a constant. */
+ if (!CONST_INT_P (x))
+ output_operand_lossage ("invalid %%N value");
+
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INTVAL (x));
+ break;
+
+ case 'P':
+ /* Write 1 << C, for a constant C. */
+ if (!CONST_INT_P (x))
+ output_operand_lossage ("invalid %%P value");
+
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT) 1 << INTVAL (x));
+ break;
+
+ case 'h':
+ /* Write the high-order 16 bits of a constant, sign-extended. */
+ if (!CONST_INT_P (x))
+ output_operand_lossage ("invalid %%h value");
+
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) >> 16);
+ break;
+
+ case 'L':
+ /* Write the low-order 16 bits of a constant, sign-extended. */
+ if (!CONST_INT_P (x))
+ output_operand_lossage ("invalid %%L value");
+
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC,
+ (INTVAL (x) & 0xffff) - 2 * (INTVAL (x) & 0x8000));
+ break;
+
+ case 'm':
+ /* Write mask for ZAP insn. */
+ if (GET_CODE (x) == CONST_DOUBLE)
+ {
+ HOST_WIDE_INT mask = 0;
+ HOST_WIDE_INT value;
+
+ value = CONST_DOUBLE_LOW (x);
+ for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
+ i++, value >>= 8)
+ if (value & 0xff)
+ mask |= (1 << i);
+
+ value = CONST_DOUBLE_HIGH (x);
+ for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
+ i++, value >>= 8)
+ if (value & 0xff)
+ mask |= (1 << (i + sizeof (int)));
+
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, mask & 0xff);
+ }
+
+ else if (CONST_INT_P (x))
+ {
+ HOST_WIDE_INT mask = 0, value = INTVAL (x);
+
+ for (i = 0; i < 8; i++, value >>= 8)
+ if (value & 0xff)
+ mask |= (1 << i);
+
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, mask);
+ }
+ else
+ output_operand_lossage ("invalid %%m value");
+ break;
+
+ case 'M':
+ /* 'b', 'w', 'l', or 'q' as the value of the constant. */
+ if (!CONST_INT_P (x)
+ || (INTVAL (x) != 8 && INTVAL (x) != 16
+ && INTVAL (x) != 32 && INTVAL (x) != 64))
+ output_operand_lossage ("invalid %%M value");
+
+ fprintf (file, "%s",
+ (INTVAL (x) == 8 ? "b"
+ : INTVAL (x) == 16 ? "w"
+ : INTVAL (x) == 32 ? "l"
+ : "q"));
+ break;
+
+ case 'U':
+ /* Similar, except do it from the mask. */
+ if (CONST_INT_P (x))
+ {
+ HOST_WIDE_INT value = INTVAL (x);
+
+ if (value == 0xff)
+ {
+ fputc ('b', file);
+ break;
+ }
+ if (value == 0xffff)
+ {
+ fputc ('w', file);
+ break;
+ }
+ if (value == 0xffffffff)
+ {
+ fputc ('l', file);
+ break;
+ }
+ if (value == -1)
+ {
+ fputc ('q', file);
+ break;
+ }
+ }
+ else if (HOST_BITS_PER_WIDE_INT == 32
+ && GET_CODE (x) == CONST_DOUBLE
+ && CONST_DOUBLE_LOW (x) == 0xffffffff
+ && CONST_DOUBLE_HIGH (x) == 0)
+ {
+ fputc ('l', file);
+ break;
+ }
+ output_operand_lossage ("invalid %%U value");
+ break;
+
+ case 's':
+ /* Write the constant value divided by 8. */
+ if (!CONST_INT_P (x)
+ || (unsigned HOST_WIDE_INT) INTVAL (x) >= 64
+ || (INTVAL (x) & 7) != 0)
+ output_operand_lossage ("invalid %%s value");
+
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) / 8);
+ break;
+
+ case 'S':
+ /* Same, except compute (64 - c) / 8 */
+
+ if (!CONST_INT_P (x)
+ && (unsigned HOST_WIDE_INT) INTVAL (x) >= 64
+ && (INTVAL (x) & 7) != 8)
+ output_operand_lossage ("invalid %%s value");
+
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, (64 - INTVAL (x)) / 8);
+ break;
+
+ case 'C': case 'D': case 'c': case 'd':
+ /* Write out comparison name. */
+ {
+ enum rtx_code c = GET_CODE (x);
+
+ if (!COMPARISON_P (x))
+ output_operand_lossage ("invalid %%C value");
+
+ else if (code == 'D')
+ c = reverse_condition (c);
+ else if (code == 'c')
+ c = swap_condition (c);
+ else if (code == 'd')
+ c = swap_condition (reverse_condition (c));
+
+ if (c == LEU)
+ fprintf (file, "ule");
+ else if (c == LTU)
+ fprintf (file, "ult");
+ else if (c == UNORDERED)
+ fprintf (file, "un");
+ else
+ fprintf (file, "%s", GET_RTX_NAME (c));
+ }
+ break;
+
+ case 'E':
+ /* Write the divide or modulus operator. */
+ switch (GET_CODE (x))
+ {
+ case DIV:
+ fprintf (file, "div%s", GET_MODE (x) == SImode ? "l" : "q");
+ break;
+ case UDIV:
+ fprintf (file, "div%su", GET_MODE (x) == SImode ? "l" : "q");
+ break;
+ case MOD:
+ fprintf (file, "rem%s", GET_MODE (x) == SImode ? "l" : "q");
+ break;
+ case UMOD:
+ fprintf (file, "rem%su", GET_MODE (x) == SImode ? "l" : "q");
+ break;
+ default:
+ output_operand_lossage ("invalid %%E value");
+ break;
+ }
+ break;
+
+ case 'A':
+ /* Write "_u" for unaligned access. */
+ if (MEM_P (x) && GET_CODE (XEXP (x, 0)) == AND)
+ fprintf (file, "_u");
+ break;
+
+ case 0:
+ if (REG_P (x))
+ fprintf (file, "%s", reg_names[REGNO (x)]);
+ else if (MEM_P (x))
+ output_address (XEXP (x, 0));
+ else if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == UNSPEC)
+ {
+ switch (XINT (XEXP (x, 0), 1))
+ {
+ case UNSPEC_DTPREL:
+ case UNSPEC_TPREL:
+ output_addr_const (file, XVECEXP (XEXP (x, 0), 0, 0));
+ break;
+ default:
+ output_operand_lossage ("unknown relocation unspec");
+ break;
+ }
+ }
+ else
+ output_addr_const (file, x);
+ break;
+
+ default:
+ output_operand_lossage ("invalid %%xn code");
+ }
+}
+
+void
+print_operand_address (FILE *file, rtx addr)
+{
+ int basereg = 31;
+ HOST_WIDE_INT offset = 0;
+
+ if (GET_CODE (addr) == AND)
+ addr = XEXP (addr, 0);
+
+ if (GET_CODE (addr) == PLUS
+ && CONST_INT_P (XEXP (addr, 1)))
+ {
+ offset = INTVAL (XEXP (addr, 1));
+ addr = XEXP (addr, 0);
+ }
+
+ if (GET_CODE (addr) == LO_SUM)
+ {
+ const char *reloc16, *reloclo;
+ rtx op1 = XEXP (addr, 1);
+
+ if (GET_CODE (op1) == CONST && GET_CODE (XEXP (op1, 0)) == UNSPEC)
+ {
+ op1 = XEXP (op1, 0);
+ switch (XINT (op1, 1))
+ {
+ case UNSPEC_DTPREL:
+ reloc16 = NULL;
+ reloclo = (alpha_tls_size == 16 ? "dtprel" : "dtprello");
+ break;
+ case UNSPEC_TPREL:
+ reloc16 = NULL;
+ reloclo = (alpha_tls_size == 16 ? "tprel" : "tprello");
+ break;
+ default:
+ output_operand_lossage ("unknown relocation unspec");
+ return;
+ }
+
+ output_addr_const (file, XVECEXP (op1, 0, 0));
+ }
+ else
+ {
+ reloc16 = "gprel";
+ reloclo = "gprellow";
+ output_addr_const (file, op1);
+ }
+
+ if (offset)
+ fprintf (file, "+" HOST_WIDE_INT_PRINT_DEC, offset);
+
+ addr = XEXP (addr, 0);
+ switch (GET_CODE (addr))
+ {
+ case REG:
+ basereg = REGNO (addr);
+ break;
+
+ case SUBREG:
+ basereg = subreg_regno (addr);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ fprintf (file, "($%d)\t\t!%s", basereg,
+ (basereg == 29 ? reloc16 : reloclo));
+ return;
+ }
+
+ switch (GET_CODE (addr))
+ {
+ case REG:
+ basereg = REGNO (addr);
+ break;
+
+ case SUBREG:
+ basereg = subreg_regno (addr);
+ break;
+
+ case CONST_INT:
+ offset = INTVAL (addr);
+ break;
+
+#if TARGET_ABI_OPEN_VMS
+ case SYMBOL_REF:
+ fprintf (file, "%s", XSTR (addr, 0));
+ return;
+
+ case CONST:
+ gcc_assert (GET_CODE (XEXP (addr, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF);
+ fprintf (file, "%s+" HOST_WIDE_INT_PRINT_DEC,
+ XSTR (XEXP (XEXP (addr, 0), 0), 0),
+ INTVAL (XEXP (XEXP (addr, 0), 1)));
+ return;
+
+#endif
+ default:
+ gcc_unreachable ();
+ }
+
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC "($%d)", offset, basereg);
+}
+
+/* Emit RTL insns to initialize the variable parts of a trampoline at
+ M_TRAMP. FNDECL is target function's decl. CHAIN_VALUE is an rtx
+ for the static chain value for the function. */
+
+static void
+alpha_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
+{
+ rtx fnaddr, mem, word1, word2;
+
+ fnaddr = XEXP (DECL_RTL (fndecl), 0);
+
+#ifdef POINTERS_EXTEND_UNSIGNED
+ fnaddr = convert_memory_address (Pmode, fnaddr);
+ chain_value = convert_memory_address (Pmode, chain_value);
+#endif
+
+ if (TARGET_ABI_OPEN_VMS)
+ {
+ const char *fnname;
+ char *trname;
+
+ /* Construct the name of the trampoline entry point. */
+ fnname = XSTR (fnaddr, 0);
+ trname = (char *) alloca (strlen (fnname) + 5);
+ strcpy (trname, fnname);
+ strcat (trname, "..tr");
+ fnname = ggc_alloc_string (trname, strlen (trname) + 1);
+ word2 = gen_rtx_SYMBOL_REF (Pmode, fnname);
+
+ /* Trampoline (or "bounded") procedure descriptor is constructed from
+ the function's procedure descriptor with certain fields zeroed IAW
+ the VMS calling standard. This is stored in the first quadword. */
+ word1 = force_reg (DImode, gen_const_mem (DImode, fnaddr));
+ word1 = expand_and (DImode, word1,
+ GEN_INT (HOST_WIDE_INT_C (0xffff0fff0000fff0)),
+ NULL);
+ }
+ else
+ {
+ /* These 4 instructions are:
+ ldq $1,24($27)
+ ldq $27,16($27)
+ jmp $31,($27),0
+ nop
+ We don't bother setting the HINT field of the jump; the nop
+ is merely there for padding. */
+ word1 = GEN_INT (HOST_WIDE_INT_C (0xa77b0010a43b0018));
+ word2 = GEN_INT (HOST_WIDE_INT_C (0x47ff041f6bfb0000));
+ }
+
+ /* Store the first two words, as computed above. */
+ mem = adjust_address (m_tramp, DImode, 0);
+ emit_move_insn (mem, word1);
+ mem = adjust_address (m_tramp, DImode, 8);
+ emit_move_insn (mem, word2);
+
+ /* Store function address and static chain value. */
+ mem = adjust_address (m_tramp, Pmode, 16);
+ emit_move_insn (mem, fnaddr);
+ mem = adjust_address (m_tramp, Pmode, 24);
+ emit_move_insn (mem, chain_value);
+
+ if (TARGET_ABI_OSF)
+ {
+ emit_insn (gen_imb ());
+#ifdef HAVE_ENABLE_EXECUTE_STACK
+ emit_library_call (init_one_libfunc ("__enable_execute_stack"),
+ LCT_NORMAL, VOIDmode, 1, XEXP (m_tramp, 0), Pmode);
+#endif
+ }
+}
+
+/* Determine where to put an argument to a function.
+ Value is zero to push the argument on the stack,
+ or a hard register in which to store the argument.
+
+ MODE is the argument's machine mode.
+ TYPE is the data type of the argument (as a tree).
+ This is null for libcalls where that information may
+ not be available.
+ CUM is a variable of type CUMULATIVE_ARGS which gives info about
+ the preceding args and about the function being called.
+ NAMED is nonzero if this argument is a named parameter
+ (otherwise it is an extra parameter matching an ellipsis).
+
+ On Alpha the first 6 words of args are normally in registers
+ and the rest are pushed. */
+
+static rtx
+alpha_function_arg (cumulative_args_t cum_v, enum machine_mode mode,
+ const_tree type, bool named ATTRIBUTE_UNUSED)
+{
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+ int basereg;
+ int num_args;
+
+ /* Don't get confused and pass small structures in FP registers. */
+ if (type && AGGREGATE_TYPE_P (type))
+ basereg = 16;
+ else
+ {
+#ifdef ENABLE_CHECKING
+ /* With alpha_split_complex_arg, we shouldn't see any raw complex
+ values here. */
+ gcc_assert (!COMPLEX_MODE_P (mode));
+#endif
+
+ /* Set up defaults for FP operands passed in FP registers, and
+ integral operands passed in integer registers. */
+ if (TARGET_FPREGS && GET_MODE_CLASS (mode) == MODE_FLOAT)
+ basereg = 32 + 16;
+ else
+ basereg = 16;
+ }
+
+ /* ??? Irritatingly, the definition of CUMULATIVE_ARGS is different for
+ the two platforms, so we can't avoid conditional compilation. */
+#if TARGET_ABI_OPEN_VMS
+ {
+ if (mode == VOIDmode)
+ return alpha_arg_info_reg_val (*cum);
+
+ num_args = cum->num_args;
+ if (num_args >= 6
+ || targetm.calls.must_pass_in_stack (mode, type))
+ return NULL_RTX;
+ }
+#elif TARGET_ABI_OSF
+ {
+ if (*cum >= 6)
+ return NULL_RTX;
+ num_args = *cum;
+
+ /* VOID is passed as a special flag for "last argument". */
+ if (type == void_type_node)
+ basereg = 16;
+ else if (targetm.calls.must_pass_in_stack (mode, type))
+ return NULL_RTX;
+ }
+#else
+#error Unhandled ABI
+#endif
+
+ return gen_rtx_REG (mode, num_args + basereg);
+}
+
+/* Update the data in CUM to advance over an argument
+ of mode MODE and data type TYPE.
+ (TYPE is null for libcalls where that information may not be available.) */
+
+static void
+alpha_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
+ const_tree type, bool named ATTRIBUTE_UNUSED)
+{
+ CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
+ bool onstack = targetm.calls.must_pass_in_stack (mode, type);
+ int increment = onstack ? 6 : ALPHA_ARG_SIZE (mode, type, named);
+
+#if TARGET_ABI_OSF
+ *cum += increment;
+#else
+ if (!onstack && cum->num_args < 6)
+ cum->atypes[cum->num_args] = alpha_arg_type (mode);
+ cum->num_args += increment;
+#endif
+}
+
+static int
+alpha_arg_partial_bytes (cumulative_args_t cum_v,
+ enum machine_mode mode ATTRIBUTE_UNUSED,
+ tree type ATTRIBUTE_UNUSED,
+ bool named ATTRIBUTE_UNUSED)
+{
+ int words = 0;
+ CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED = get_cumulative_args (cum_v);
+
+#if TARGET_ABI_OPEN_VMS
+ if (cum->num_args < 6
+ && 6 < cum->num_args + ALPHA_ARG_SIZE (mode, type, named))
+ words = 6 - cum->num_args;
+#elif TARGET_ABI_OSF
+ if (*cum < 6 && 6 < *cum + ALPHA_ARG_SIZE (mode, type, named))
+ words = 6 - *cum;
+#else
+#error Unhandled ABI
+#endif
+
+ return words * UNITS_PER_WORD;
+}
+
+
+/* Return true if TYPE must be returned in memory, instead of in registers. */
+
+static bool
+alpha_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
+{
+ enum machine_mode mode = VOIDmode;
+ int size;
+
+ if (type)
+ {
+ mode = TYPE_MODE (type);
+
+ /* All aggregates are returned in memory, except on OpenVMS where
+ records that fit 64 bits should be returned by immediate value
+ as required by section 3.8.7.1 of the OpenVMS Calling Standard. */
+ if (TARGET_ABI_OPEN_VMS
+ && TREE_CODE (type) != ARRAY_TYPE
+ && (unsigned HOST_WIDE_INT) int_size_in_bytes(type) <= 8)
+ return false;
+
+ if (AGGREGATE_TYPE_P (type))
+ return true;
+ }
+
+ size = GET_MODE_SIZE (mode);
+ switch (GET_MODE_CLASS (mode))
+ {
+ case MODE_VECTOR_FLOAT:
+ /* Pass all float vectors in memory, like an aggregate. */
+ return true;
+
+ case MODE_COMPLEX_FLOAT:
+ /* We judge complex floats on the size of their element,
+ not the size of the whole type. */
+ size = GET_MODE_UNIT_SIZE (mode);
+ break;
+
+ case MODE_INT:
+ case MODE_FLOAT:
+ case MODE_COMPLEX_INT:
+ case MODE_VECTOR_INT:
+ break;
+
+ default:
+ /* ??? We get called on all sorts of random stuff from
+ aggregate_value_p. We must return something, but it's not
+ clear what's safe to return. Pretend it's a struct I
+ guess. */
+ return true;
+ }
+
+ /* Otherwise types must fit in one register. */
+ return size > UNITS_PER_WORD;
+}
+
+/* Return true if TYPE should be passed by invisible reference. */
+
+static bool
+alpha_pass_by_reference (cumulative_args_t ca ATTRIBUTE_UNUSED,
+ enum machine_mode mode,
+ const_tree type ATTRIBUTE_UNUSED,
+ bool named ATTRIBUTE_UNUSED)
+{
+ return mode == TFmode || mode == TCmode;
+}
+
+/* Define how to find the value returned by a function. VALTYPE is the
+ data type of the value (as a tree). If the precise function being
+ called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is 0.
+ MODE is set instead of VALTYPE for libcalls.
+
+ On Alpha the value is found in $0 for integer functions and
+ $f0 for floating-point functions. */
+
+rtx
+function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED,
+ enum machine_mode mode)
+{
+ unsigned int regnum, dummy ATTRIBUTE_UNUSED;
+ enum mode_class mclass;
+
+ gcc_assert (!valtype || !alpha_return_in_memory (valtype, func));
+
+ if (valtype)
+ mode = TYPE_MODE (valtype);
+
+ mclass = GET_MODE_CLASS (mode);
+ switch (mclass)
+ {
+ case MODE_INT:
+ /* Do the same thing as PROMOTE_MODE except for libcalls on VMS,
+ where we have them returning both SImode and DImode. */
+ if (!(TARGET_ABI_OPEN_VMS && valtype && AGGREGATE_TYPE_P (valtype)))
+ PROMOTE_MODE (mode, dummy, valtype);
+ /* FALLTHRU */
+
+ case MODE_COMPLEX_INT:
+ case MODE_VECTOR_INT:
+ regnum = 0;
+ break;
+
+ case MODE_FLOAT:
+ regnum = 32;
+ break;
+
+ case MODE_COMPLEX_FLOAT:
+ {
+ enum machine_mode cmode = GET_MODE_INNER (mode);
+
+ return gen_rtx_PARALLEL
+ (VOIDmode,
+ gen_rtvec (2,
+ gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (cmode, 32),
+ const0_rtx),
+ gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (cmode, 33),
+ GEN_INT (GET_MODE_SIZE (cmode)))));
+ }
+
+ case MODE_RANDOM:
+ /* We should only reach here for BLKmode on VMS. */
+ gcc_assert (TARGET_ABI_OPEN_VMS && mode == BLKmode);
+ regnum = 0;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return gen_rtx_REG (mode, regnum);
+}
+
+/* TCmode complex values are passed by invisible reference. We
+ should not split these values. */
+
+static bool
+alpha_split_complex_arg (const_tree type)
+{
+ return TYPE_MODE (type) != TCmode;
+}
+
+static tree
+alpha_build_builtin_va_list (void)
+{
+ tree base, ofs, space, record, type_decl;
+
+ if (TARGET_ABI_OPEN_VMS)
+ return ptr_type_node;
+
+ record = (*lang_hooks.types.make_type) (RECORD_TYPE);
+ type_decl = build_decl (BUILTINS_LOCATION,
+ TYPE_DECL, get_identifier ("__va_list_tag"), record);
+ TYPE_STUB_DECL (record) = type_decl;
+ TYPE_NAME (record) = type_decl;
+
+ /* C++? SET_IS_AGGR_TYPE (record, 1); */
+
+ /* Dummy field to prevent alignment warnings. */
+ space = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL, NULL_TREE, integer_type_node);
+ DECL_FIELD_CONTEXT (space) = record;
+ DECL_ARTIFICIAL (space) = 1;
+ DECL_IGNORED_P (space) = 1;
+
+ ofs = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL, get_identifier ("__offset"),
+ integer_type_node);
+ DECL_FIELD_CONTEXT (ofs) = record;
+ DECL_CHAIN (ofs) = space;
+ /* ??? This is a hack, __offset is marked volatile to prevent
+ DCE that confuses stdarg optimization and results in
+ gcc.c-torture/execute/stdarg-1.c failure. See PR 41089. */
+ TREE_THIS_VOLATILE (ofs) = 1;
+
+ base = build_decl (BUILTINS_LOCATION,
+ FIELD_DECL, get_identifier ("__base"),
+ ptr_type_node);
+ DECL_FIELD_CONTEXT (base) = record;
+ DECL_CHAIN (base) = ofs;
+
+ TYPE_FIELDS (record) = base;
+ layout_type (record);
+
+ va_list_gpr_counter_field = ofs;
+ return record;
+}
+
+#if TARGET_ABI_OSF
+/* Helper function for alpha_stdarg_optimize_hook. Skip over casts
+ and constant additions. */
+
+static gimple
+va_list_skip_additions (tree lhs)
+{
+ gimple stmt;
+
+ for (;;)
+ {
+ enum tree_code code;
+
+ stmt = SSA_NAME_DEF_STMT (lhs);
+
+ if (gimple_code (stmt) == GIMPLE_PHI)
+ return stmt;
+
+ if (!is_gimple_assign (stmt)
+ || gimple_assign_lhs (stmt) != lhs)
+ return NULL;
+
+ if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
+ return stmt;
+ code = gimple_assign_rhs_code (stmt);
+ if (!CONVERT_EXPR_CODE_P (code)
+ && ((code != PLUS_EXPR && code != POINTER_PLUS_EXPR)
+ || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST
+ || !tree_fits_uhwi_p (gimple_assign_rhs2 (stmt))))
+ return stmt;
+
+ lhs = gimple_assign_rhs1 (stmt);
+ }
+}
+
+/* Check if LHS = RHS statement is
+ LHS = *(ap.__base + ap.__offset + cst)
+ or
+ LHS = *(ap.__base
+ + ((ap.__offset + cst <= 47)
+ ? ap.__offset + cst - 48 : ap.__offset + cst) + cst2).
+ If the former, indicate that GPR registers are needed,
+ if the latter, indicate that FPR registers are needed.
+
+ Also look for LHS = (*ptr).field, where ptr is one of the forms
+ listed above.
+
+ On alpha, cfun->va_list_gpr_size is used as size of the needed
+ regs and cfun->va_list_fpr_size is a bitmask, bit 0 set if GPR
+ registers are needed and bit 1 set if FPR registers are needed.
+ Return true if va_list references should not be scanned for the
+ current statement. */
+
+static bool
+alpha_stdarg_optimize_hook (struct stdarg_info *si, const_gimple stmt)
+{
+ tree base, offset, rhs;
+ int offset_arg = 1;
+ gimple base_stmt;
+
+ if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
+ != GIMPLE_SINGLE_RHS)
+ return false;
+
+ rhs = gimple_assign_rhs1 (stmt);
+ while (handled_component_p (rhs))
+ rhs = TREE_OPERAND (rhs, 0);
+ if (TREE_CODE (rhs) != MEM_REF
+ || TREE_CODE (TREE_OPERAND (rhs, 0)) != SSA_NAME)
+ return false;
+
+ stmt = va_list_skip_additions (TREE_OPERAND (rhs, 0));
+ if (stmt == NULL
+ || !is_gimple_assign (stmt)
+ || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
+ return false;
+
+ base = gimple_assign_rhs1 (stmt);
+ if (TREE_CODE (base) == SSA_NAME)
+ {
+ base_stmt = va_list_skip_additions (base);
+ if (base_stmt
+ && is_gimple_assign (base_stmt)
+ && gimple_assign_rhs_code (base_stmt) == COMPONENT_REF)
+ base = gimple_assign_rhs1 (base_stmt);
+ }
+
+ if (TREE_CODE (base) != COMPONENT_REF
+ || TREE_OPERAND (base, 1) != TYPE_FIELDS (va_list_type_node))
+ {
+ base = gimple_assign_rhs2 (stmt);
+ if (TREE_CODE (base) == SSA_NAME)
+ {
+ base_stmt = va_list_skip_additions (base);
+ if (base_stmt
+ && is_gimple_assign (base_stmt)
+ && gimple_assign_rhs_code (base_stmt) == COMPONENT_REF)
+ base = gimple_assign_rhs1 (base_stmt);
+ }
+
+ if (TREE_CODE (base) != COMPONENT_REF
+ || TREE_OPERAND (base, 1) != TYPE_FIELDS (va_list_type_node))
+ return false;
+
+ offset_arg = 0;
+ }
+
+ base = get_base_address (base);
+ if (TREE_CODE (base) != VAR_DECL
+ || !bitmap_bit_p (si->va_list_vars, DECL_UID (base) + num_ssa_names))
+ return false;
+
+ offset = gimple_op (stmt, 1 + offset_arg);
+ if (TREE_CODE (offset) == SSA_NAME)
+ {
+ gimple offset_stmt = va_list_skip_additions (offset);
+
+ if (offset_stmt
+ && gimple_code (offset_stmt) == GIMPLE_PHI)
+ {
+ HOST_WIDE_INT sub;
+ gimple arg1_stmt, arg2_stmt;
+ tree arg1, arg2;
+ enum tree_code code1, code2;
+
+ if (gimple_phi_num_args (offset_stmt) != 2)
+ goto escapes;
+
+ arg1_stmt
+ = va_list_skip_additions (gimple_phi_arg_def (offset_stmt, 0));
+ arg2_stmt
+ = va_list_skip_additions (gimple_phi_arg_def (offset_stmt, 1));
+ if (arg1_stmt == NULL
+ || !is_gimple_assign (arg1_stmt)
+ || arg2_stmt == NULL
+ || !is_gimple_assign (arg2_stmt))
+ goto escapes;
+
+ code1 = gimple_assign_rhs_code (arg1_stmt);
+ code2 = gimple_assign_rhs_code (arg2_stmt);
+ if (code1 == COMPONENT_REF
+ && (code2 == MINUS_EXPR || code2 == PLUS_EXPR))
+ /* Do nothing. */;
+ else if (code2 == COMPONENT_REF
+ && (code1 == MINUS_EXPR || code1 == PLUS_EXPR))
+ {
+ gimple tem = arg1_stmt;
+ code2 = code1;
+ arg1_stmt = arg2_stmt;
+ arg2_stmt = tem;
+ }
+ else
+ goto escapes;
+
+ if (!tree_fits_shwi_p (gimple_assign_rhs2 (arg2_stmt)))
+ goto escapes;
+
+ sub = tree_to_shwi (gimple_assign_rhs2 (arg2_stmt));
+ if (code2 == MINUS_EXPR)
+ sub = -sub;
+ if (sub < -48 || sub > -32)
+ goto escapes;
+
+ arg1 = gimple_assign_rhs1 (arg1_stmt);
+ arg2 = gimple_assign_rhs1 (arg2_stmt);
+ if (TREE_CODE (arg2) == SSA_NAME)
+ {
+ arg2_stmt = va_list_skip_additions (arg2);
+ if (arg2_stmt == NULL
+ || !is_gimple_assign (arg2_stmt)
+ || gimple_assign_rhs_code (arg2_stmt) != COMPONENT_REF)
+ goto escapes;
+ arg2 = gimple_assign_rhs1 (arg2_stmt);
+ }
+ if (arg1 != arg2)
+ goto escapes;
+
+ if (TREE_CODE (arg1) != COMPONENT_REF
+ || TREE_OPERAND (arg1, 1) != va_list_gpr_counter_field
+ || get_base_address (arg1) != base)
+ goto escapes;
+
+ /* Need floating point regs. */
+ cfun->va_list_fpr_size |= 2;
+ return false;
+ }
+ if (offset_stmt
+ && is_gimple_assign (offset_stmt)
+ && gimple_assign_rhs_code (offset_stmt) == COMPONENT_REF)
+ offset = gimple_assign_rhs1 (offset_stmt);
+ }
+ if (TREE_CODE (offset) != COMPONENT_REF
+ || TREE_OPERAND (offset, 1) != va_list_gpr_counter_field
+ || get_base_address (offset) != base)
+ goto escapes;
+ else
+ /* Need general regs. */
+ cfun->va_list_fpr_size |= 1;
+ return false;
+
+escapes:
+ si->va_list_escapes = true;
+ return false;
+}
+#endif
+
+/* Perform any needed actions needed for a function that is receiving a
+ variable number of arguments. */
+
+static void
+alpha_setup_incoming_varargs (cumulative_args_t pcum, enum machine_mode mode,
+ tree type, int *pretend_size, int no_rtl)
+{
+ CUMULATIVE_ARGS cum = *get_cumulative_args (pcum);
+
+ /* Skip the current argument. */
+ targetm.calls.function_arg_advance (pack_cumulative_args (&cum), mode, type,
+ true);
+
+#if TARGET_ABI_OPEN_VMS
+ /* For VMS, we allocate space for all 6 arg registers plus a count.
+
+ However, if NO registers need to be saved, don't allocate any space.
+ This is not only because we won't need the space, but because AP
+ includes the current_pretend_args_size and we don't want to mess up
+ any ap-relative addresses already made. */
+ if (cum.num_args < 6)
+ {
+ if (!no_rtl)
+ {
+ emit_move_insn (gen_rtx_REG (DImode, 1), virtual_incoming_args_rtx);
+ emit_insn (gen_arg_home ());
+ }
+ *pretend_size = 7 * UNITS_PER_WORD;
+ }
+#else
+ /* On OSF/1 and friends, we allocate space for all 12 arg registers, but
+ only push those that are remaining. However, if NO registers need to
+ be saved, don't allocate any space. This is not only because we won't
+ need the space, but because AP includes the current_pretend_args_size
+ and we don't want to mess up any ap-relative addresses already made.
+
+ If we are not to use the floating-point registers, save the integer
+ registers where we would put the floating-point registers. This is
+ not the most efficient way to implement varargs with just one register
+ class, but it isn't worth doing anything more efficient in this rare
+ case. */
+ if (cum >= 6)
+ return;
+
+ if (!no_rtl)
+ {
+ int count;
+ alias_set_type set = get_varargs_alias_set ();
+ rtx tmp;
+
+ count = cfun->va_list_gpr_size / UNITS_PER_WORD;
+ if (count > 6 - cum)
+ count = 6 - cum;
+
+ /* Detect whether integer registers or floating-point registers
+ are needed by the detected va_arg statements. See above for
+ how these values are computed. Note that the "escape" value
+ is VA_LIST_MAX_FPR_SIZE, which is 255, which has both of
+ these bits set. */
+ gcc_assert ((VA_LIST_MAX_FPR_SIZE & 3) == 3);
+
+ if (cfun->va_list_fpr_size & 1)
+ {
+ tmp = gen_rtx_MEM (BLKmode,
+ plus_constant (Pmode, virtual_incoming_args_rtx,
+ (cum + 6) * UNITS_PER_WORD));
+ MEM_NOTRAP_P (tmp) = 1;
+ set_mem_alias_set (tmp, set);
+ move_block_from_reg (16 + cum, tmp, count);
+ }
+
+ if (cfun->va_list_fpr_size & 2)
+ {
+ tmp = gen_rtx_MEM (BLKmode,
+ plus_constant (Pmode, virtual_incoming_args_rtx,
+ cum * UNITS_PER_WORD));
+ MEM_NOTRAP_P (tmp) = 1;
+ set_mem_alias_set (tmp, set);
+ move_block_from_reg (16 + cum + TARGET_FPREGS*32, tmp, count);
+ }
+ }
+ *pretend_size = 12 * UNITS_PER_WORD;
+#endif
+}
+
+static void
+alpha_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
+{
+ HOST_WIDE_INT offset;
+ tree t, offset_field, base_field;
+
+ if (TREE_CODE (TREE_TYPE (valist)) == ERROR_MARK)
+ return;
+
+ /* For Unix, TARGET_SETUP_INCOMING_VARARGS moves the starting address base
+ up by 48, storing fp arg registers in the first 48 bytes, and the
+ integer arg registers in the next 48 bytes. This is only done,
+ however, if any integer registers need to be stored.
+
+ If no integer registers need be stored, then we must subtract 48
+ in order to account for the integer arg registers which are counted
+ in argsize above, but which are not actually stored on the stack.
+ Must further be careful here about structures straddling the last
+ integer argument register; that futzes with pretend_args_size,
+ which changes the meaning of AP. */
+
+ if (NUM_ARGS < 6)
+ offset = TARGET_ABI_OPEN_VMS ? UNITS_PER_WORD : 6 * UNITS_PER_WORD;
+ else
+ offset = -6 * UNITS_PER_WORD + crtl->args.pretend_args_size;
+
+ if (TARGET_ABI_OPEN_VMS)
+ {
+ t = make_tree (ptr_type_node, virtual_incoming_args_rtx);
+ t = fold_build_pointer_plus_hwi (t, offset + NUM_ARGS * UNITS_PER_WORD);
+ t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t);
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+ }
+ else
+ {
+ base_field = TYPE_FIELDS (TREE_TYPE (valist));
+ offset_field = DECL_CHAIN (base_field);
+
+ base_field = build3 (COMPONENT_REF, TREE_TYPE (base_field),
+ valist, base_field, NULL_TREE);
+ offset_field = build3 (COMPONENT_REF, TREE_TYPE (offset_field),
+ valist, offset_field, NULL_TREE);
+
+ t = make_tree (ptr_type_node, virtual_incoming_args_rtx);
+ t = fold_build_pointer_plus_hwi (t, offset);
+ t = build2 (MODIFY_EXPR, TREE_TYPE (base_field), base_field, t);
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+
+ t = build_int_cst (NULL_TREE, NUM_ARGS * UNITS_PER_WORD);
+ t = build2 (MODIFY_EXPR, TREE_TYPE (offset_field), offset_field, t);
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+ }
+}
+
+static tree
+alpha_gimplify_va_arg_1 (tree type, tree base, tree offset,
+ gimple_seq *pre_p)
+{
+ tree type_size, ptr_type, addend, t, addr;
+ gimple_seq internal_post;
+
+ /* If the type could not be passed in registers, skip the block
+ reserved for the registers. */
+ if (targetm.calls.must_pass_in_stack (TYPE_MODE (type), type))
+ {
+ t = build_int_cst (TREE_TYPE (offset), 6*8);
+ gimplify_assign (offset,
+ build2 (MAX_EXPR, TREE_TYPE (offset), offset, t),
+ pre_p);
+ }
+
+ addend = offset;
+ ptr_type = build_pointer_type_for_mode (type, ptr_mode, true);
+
+ if (TREE_CODE (type) == COMPLEX_TYPE)
+ {
+ tree real_part, imag_part, real_temp;
+
+ real_part = alpha_gimplify_va_arg_1 (TREE_TYPE (type), base,
+ offset, pre_p);
+
+ /* Copy the value into a new temporary, lest the formal temporary
+ be reused out from under us. */
+ real_temp = get_initialized_tmp_var (real_part, pre_p, NULL);
+
+ imag_part = alpha_gimplify_va_arg_1 (TREE_TYPE (type), base,
+ offset, pre_p);
+
+ return build2 (COMPLEX_EXPR, type, real_temp, imag_part);
+ }
+ else if (TREE_CODE (type) == REAL_TYPE)
+ {
+ tree fpaddend, cond, fourtyeight;
+
+ fourtyeight = build_int_cst (TREE_TYPE (addend), 6*8);
+ fpaddend = fold_build2 (MINUS_EXPR, TREE_TYPE (addend),
+ addend, fourtyeight);
+ cond = fold_build2 (LT_EXPR, boolean_type_node, addend, fourtyeight);
+ addend = fold_build3 (COND_EXPR, TREE_TYPE (addend), cond,
+ fpaddend, addend);
+ }
+
+ /* Build the final address and force that value into a temporary. */
+ addr = fold_build_pointer_plus (fold_convert (ptr_type, base), addend);
+ internal_post = NULL;
+ gimplify_expr (&addr, pre_p, &internal_post, is_gimple_val, fb_rvalue);
+ gimple_seq_add_seq (pre_p, internal_post);
+
+ /* Update the offset field. */
+ type_size = TYPE_SIZE_UNIT (TYPE_MAIN_VARIANT (type));
+ if (type_size == NULL || TREE_OVERFLOW (type_size))
+ t = size_zero_node;
+ else
+ {
+ t = size_binop (PLUS_EXPR, type_size, size_int (7));
+ t = size_binop (TRUNC_DIV_EXPR, t, size_int (8));
+ t = size_binop (MULT_EXPR, t, size_int (8));
+ }
+ t = fold_convert (TREE_TYPE (offset), t);
+ gimplify_assign (offset, build2 (PLUS_EXPR, TREE_TYPE (offset), offset, t),
+ pre_p);
+
+ return build_va_arg_indirect_ref (addr);
+}
+
+static tree
+alpha_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p,
+ gimple_seq *post_p)
+{
+ tree offset_field, base_field, offset, base, t, r;
+ bool indirect;
+
+ if (TARGET_ABI_OPEN_VMS)
+ return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
+
+ base_field = TYPE_FIELDS (va_list_type_node);
+ offset_field = DECL_CHAIN (base_field);
+ base_field = build3 (COMPONENT_REF, TREE_TYPE (base_field),
+ valist, base_field, NULL_TREE);
+ offset_field = build3 (COMPONENT_REF, TREE_TYPE (offset_field),
+ valist, offset_field, NULL_TREE);
+
+ /* Pull the fields of the structure out into temporaries. Since we never
+ modify the base field, we can use a formal temporary. Sign-extend the
+ offset field so that it's the proper width for pointer arithmetic. */
+ base = get_formal_tmp_var (base_field, pre_p);
+
+ t = fold_convert (build_nonstandard_integer_type (64, 0), offset_field);
+ offset = get_initialized_tmp_var (t, pre_p, NULL);
+
+ indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
+ if (indirect)
+ type = build_pointer_type_for_mode (type, ptr_mode, true);
+
+ /* Find the value. Note that this will be a stable indirection, or
+ a composite of stable indirections in the case of complex. */
+ r = alpha_gimplify_va_arg_1 (type, base, offset, pre_p);
+
+ /* Stuff the offset temporary back into its field. */
+ gimplify_assign (unshare_expr (offset_field),
+ fold_convert (TREE_TYPE (offset_field), offset), pre_p);
+
+ if (indirect)
+ r = build_va_arg_indirect_ref (r);
+
+ return r;
+}
+
+/* Builtins. */
+
+enum alpha_builtin
+{
+ ALPHA_BUILTIN_CMPBGE,
+ ALPHA_BUILTIN_EXTBL,
+ ALPHA_BUILTIN_EXTWL,
+ ALPHA_BUILTIN_EXTLL,
+ ALPHA_BUILTIN_EXTQL,
+ ALPHA_BUILTIN_EXTWH,
+ ALPHA_BUILTIN_EXTLH,
+ ALPHA_BUILTIN_EXTQH,
+ ALPHA_BUILTIN_INSBL,
+ ALPHA_BUILTIN_INSWL,
+ ALPHA_BUILTIN_INSLL,
+ ALPHA_BUILTIN_INSQL,
+ ALPHA_BUILTIN_INSWH,
+ ALPHA_BUILTIN_INSLH,
+ ALPHA_BUILTIN_INSQH,
+ ALPHA_BUILTIN_MSKBL,
+ ALPHA_BUILTIN_MSKWL,
+ ALPHA_BUILTIN_MSKLL,
+ ALPHA_BUILTIN_MSKQL,
+ ALPHA_BUILTIN_MSKWH,
+ ALPHA_BUILTIN_MSKLH,
+ ALPHA_BUILTIN_MSKQH,
+ ALPHA_BUILTIN_UMULH,
+ ALPHA_BUILTIN_ZAP,
+ ALPHA_BUILTIN_ZAPNOT,
+ ALPHA_BUILTIN_AMASK,
+ ALPHA_BUILTIN_IMPLVER,
+ ALPHA_BUILTIN_RPCC,
+ ALPHA_BUILTIN_ESTABLISH_VMS_CONDITION_HANDLER,
+ ALPHA_BUILTIN_REVERT_VMS_CONDITION_HANDLER,
+
+ /* TARGET_MAX */
+ ALPHA_BUILTIN_MINUB8,
+ ALPHA_BUILTIN_MINSB8,
+ ALPHA_BUILTIN_MINUW4,
+ ALPHA_BUILTIN_MINSW4,
+ ALPHA_BUILTIN_MAXUB8,
+ ALPHA_BUILTIN_MAXSB8,
+ ALPHA_BUILTIN_MAXUW4,
+ ALPHA_BUILTIN_MAXSW4,
+ ALPHA_BUILTIN_PERR,
+ ALPHA_BUILTIN_PKLB,
+ ALPHA_BUILTIN_PKWB,
+ ALPHA_BUILTIN_UNPKBL,
+ ALPHA_BUILTIN_UNPKBW,
+
+ /* TARGET_CIX */
+ ALPHA_BUILTIN_CTTZ,
+ ALPHA_BUILTIN_CTLZ,
+ ALPHA_BUILTIN_CTPOP,
+
+ ALPHA_BUILTIN_max
+};
+
+static enum insn_code const code_for_builtin[ALPHA_BUILTIN_max] = {
+ CODE_FOR_builtin_cmpbge,
+ CODE_FOR_extbl,
+ CODE_FOR_extwl,
+ CODE_FOR_extll,
+ CODE_FOR_extql,
+ CODE_FOR_extwh,
+ CODE_FOR_extlh,
+ CODE_FOR_extqh,
+ CODE_FOR_builtin_insbl,
+ CODE_FOR_builtin_inswl,
+ CODE_FOR_builtin_insll,
+ CODE_FOR_insql,
+ CODE_FOR_inswh,
+ CODE_FOR_inslh,
+ CODE_FOR_insqh,
+ CODE_FOR_mskbl,
+ CODE_FOR_mskwl,
+ CODE_FOR_mskll,
+ CODE_FOR_mskql,
+ CODE_FOR_mskwh,
+ CODE_FOR_msklh,
+ CODE_FOR_mskqh,
+ CODE_FOR_umuldi3_highpart,
+ CODE_FOR_builtin_zap,
+ CODE_FOR_builtin_zapnot,
+ CODE_FOR_builtin_amask,
+ CODE_FOR_builtin_implver,
+ CODE_FOR_builtin_rpcc,
+ CODE_FOR_builtin_establish_vms_condition_handler,
+ CODE_FOR_builtin_revert_vms_condition_handler,
+
+ /* TARGET_MAX */
+ CODE_FOR_builtin_minub8,
+ CODE_FOR_builtin_minsb8,
+ CODE_FOR_builtin_minuw4,
+ CODE_FOR_builtin_minsw4,
+ CODE_FOR_builtin_maxub8,
+ CODE_FOR_builtin_maxsb8,
+ CODE_FOR_builtin_maxuw4,
+ CODE_FOR_builtin_maxsw4,
+ CODE_FOR_builtin_perr,
+ CODE_FOR_builtin_pklb,
+ CODE_FOR_builtin_pkwb,
+ CODE_FOR_builtin_unpkbl,
+ CODE_FOR_builtin_unpkbw,
+
+ /* TARGET_CIX */
+ CODE_FOR_ctzdi2,
+ CODE_FOR_clzdi2,
+ CODE_FOR_popcountdi2
+};
+
+struct alpha_builtin_def
+{
+ const char *name;
+ enum alpha_builtin code;
+ unsigned int target_mask;
+ bool is_const;
+};
+
+static struct alpha_builtin_def const zero_arg_builtins[] = {
+ { "__builtin_alpha_implver", ALPHA_BUILTIN_IMPLVER, 0, true },
+ { "__builtin_alpha_rpcc", ALPHA_BUILTIN_RPCC, 0, false }
+};
+
+static struct alpha_builtin_def const one_arg_builtins[] = {
+ { "__builtin_alpha_amask", ALPHA_BUILTIN_AMASK, 0, true },
+ { "__builtin_alpha_pklb", ALPHA_BUILTIN_PKLB, MASK_MAX, true },
+ { "__builtin_alpha_pkwb", ALPHA_BUILTIN_PKWB, MASK_MAX, true },
+ { "__builtin_alpha_unpkbl", ALPHA_BUILTIN_UNPKBL, MASK_MAX, true },
+ { "__builtin_alpha_unpkbw", ALPHA_BUILTIN_UNPKBW, MASK_MAX, true },
+ { "__builtin_alpha_cttz", ALPHA_BUILTIN_CTTZ, MASK_CIX, true },
+ { "__builtin_alpha_ctlz", ALPHA_BUILTIN_CTLZ, MASK_CIX, true },
+ { "__builtin_alpha_ctpop", ALPHA_BUILTIN_CTPOP, MASK_CIX, true }
+};
+
+static struct alpha_builtin_def const two_arg_builtins[] = {
+ { "__builtin_alpha_cmpbge", ALPHA_BUILTIN_CMPBGE, 0, true },
+ { "__builtin_alpha_extbl", ALPHA_BUILTIN_EXTBL, 0, true },
+ { "__builtin_alpha_extwl", ALPHA_BUILTIN_EXTWL, 0, true },
+ { "__builtin_alpha_extll", ALPHA_BUILTIN_EXTLL, 0, true },
+ { "__builtin_alpha_extql", ALPHA_BUILTIN_EXTQL, 0, true },
+ { "__builtin_alpha_extwh", ALPHA_BUILTIN_EXTWH, 0, true },
+ { "__builtin_alpha_extlh", ALPHA_BUILTIN_EXTLH, 0, true },
+ { "__builtin_alpha_extqh", ALPHA_BUILTIN_EXTQH, 0, true },
+ { "__builtin_alpha_insbl", ALPHA_BUILTIN_INSBL, 0, true },
+ { "__builtin_alpha_inswl", ALPHA_BUILTIN_INSWL, 0, true },
+ { "__builtin_alpha_insll", ALPHA_BUILTIN_INSLL, 0, true },
+ { "__builtin_alpha_insql", ALPHA_BUILTIN_INSQL, 0, true },
+ { "__builtin_alpha_inswh", ALPHA_BUILTIN_INSWH, 0, true },
+ { "__builtin_alpha_inslh", ALPHA_BUILTIN_INSLH, 0, true },
+ { "__builtin_alpha_insqh", ALPHA_BUILTIN_INSQH, 0, true },
+ { "__builtin_alpha_mskbl", ALPHA_BUILTIN_MSKBL, 0, true },
+ { "__builtin_alpha_mskwl", ALPHA_BUILTIN_MSKWL, 0, true },
+ { "__builtin_alpha_mskll", ALPHA_BUILTIN_MSKLL, 0, true },
+ { "__builtin_alpha_mskql", ALPHA_BUILTIN_MSKQL, 0, true },
+ { "__builtin_alpha_mskwh", ALPHA_BUILTIN_MSKWH, 0, true },
+ { "__builtin_alpha_msklh", ALPHA_BUILTIN_MSKLH, 0, true },
+ { "__builtin_alpha_mskqh", ALPHA_BUILTIN_MSKQH, 0, true },
+ { "__builtin_alpha_umulh", ALPHA_BUILTIN_UMULH, 0, true },
+ { "__builtin_alpha_zap", ALPHA_BUILTIN_ZAP, 0, true },
+ { "__builtin_alpha_zapnot", ALPHA_BUILTIN_ZAPNOT, 0, true },
+ { "__builtin_alpha_minub8", ALPHA_BUILTIN_MINUB8, MASK_MAX, true },
+ { "__builtin_alpha_minsb8", ALPHA_BUILTIN_MINSB8, MASK_MAX, true },
+ { "__builtin_alpha_minuw4", ALPHA_BUILTIN_MINUW4, MASK_MAX, true },
+ { "__builtin_alpha_minsw4", ALPHA_BUILTIN_MINSW4, MASK_MAX, true },
+ { "__builtin_alpha_maxub8", ALPHA_BUILTIN_MAXUB8, MASK_MAX, true },
+ { "__builtin_alpha_maxsb8", ALPHA_BUILTIN_MAXSB8, MASK_MAX, true },
+ { "__builtin_alpha_maxuw4", ALPHA_BUILTIN_MAXUW4, MASK_MAX, true },
+ { "__builtin_alpha_maxsw4", ALPHA_BUILTIN_MAXSW4, MASK_MAX, true },
+ { "__builtin_alpha_perr", ALPHA_BUILTIN_PERR, MASK_MAX, true }
+};
+
+static GTY(()) tree alpha_dimode_u;
+static GTY(()) tree alpha_v8qi_u;
+static GTY(()) tree alpha_v8qi_s;
+static GTY(()) tree alpha_v4hi_u;
+static GTY(()) tree alpha_v4hi_s;
+
+static GTY(()) tree alpha_builtins[(int) ALPHA_BUILTIN_max];
+
+/* Return the alpha builtin for CODE. */
+
+static tree
+alpha_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
+{
+ if (code >= ALPHA_BUILTIN_max)
+ return error_mark_node;
+ return alpha_builtins[code];
+}
+
+/* Helper function of alpha_init_builtins. Add the built-in specified
+ by NAME, TYPE, CODE, and ECF. */
+
+static void
+alpha_builtin_function (const char *name, tree ftype,
+ enum alpha_builtin code, unsigned ecf)
+{
+ tree decl = add_builtin_function (name, ftype, (int) code,
+ BUILT_IN_MD, NULL, NULL_TREE);
+
+ if (ecf & ECF_CONST)
+ TREE_READONLY (decl) = 1;
+ if (ecf & ECF_NOTHROW)
+ TREE_NOTHROW (decl) = 1;
+
+ alpha_builtins [(int) code] = decl;
+}
+
+/* Helper function of alpha_init_builtins. Add the COUNT built-in
+ functions pointed to by P, with function type FTYPE. */
+
+static void
+alpha_add_builtins (const struct alpha_builtin_def *p, size_t count,
+ tree ftype)
+{
+ size_t i;
+
+ for (i = 0; i < count; ++i, ++p)
+ if ((target_flags & p->target_mask) == p->target_mask)
+ alpha_builtin_function (p->name, ftype, p->code,
+ (p->is_const ? ECF_CONST : 0) | ECF_NOTHROW);
+}
+
+static void
+alpha_init_builtins (void)
+{
+ tree ftype;
+
+ alpha_dimode_u = lang_hooks.types.type_for_mode (DImode, 1);
+ alpha_v8qi_u = build_vector_type (unsigned_intQI_type_node, 8);
+ alpha_v8qi_s = build_vector_type (intQI_type_node, 8);
+ alpha_v4hi_u = build_vector_type (unsigned_intHI_type_node, 4);
+ alpha_v4hi_s = build_vector_type (intHI_type_node, 4);
+
+ ftype = build_function_type_list (alpha_dimode_u, NULL_TREE);
+ alpha_add_builtins (zero_arg_builtins, ARRAY_SIZE (zero_arg_builtins), ftype);
+
+ ftype = build_function_type_list (alpha_dimode_u, alpha_dimode_u, NULL_TREE);
+ alpha_add_builtins (one_arg_builtins, ARRAY_SIZE (one_arg_builtins), ftype);
+
+ ftype = build_function_type_list (alpha_dimode_u, alpha_dimode_u,
+ alpha_dimode_u, NULL_TREE);
+ alpha_add_builtins (two_arg_builtins, ARRAY_SIZE (two_arg_builtins), ftype);
+
+ if (TARGET_ABI_OPEN_VMS)
+ {
+ ftype = build_function_type_list (ptr_type_node, ptr_type_node,
+ NULL_TREE);
+ alpha_builtin_function ("__builtin_establish_vms_condition_handler",
+ ftype,
+ ALPHA_BUILTIN_ESTABLISH_VMS_CONDITION_HANDLER,
+ 0);
+
+ ftype = build_function_type_list (ptr_type_node, void_type_node,
+ NULL_TREE);
+ alpha_builtin_function ("__builtin_revert_vms_condition_handler", ftype,
+ ALPHA_BUILTIN_REVERT_VMS_CONDITION_HANDLER, 0);
+
+ vms_patch_builtins ();
+ }
+}
+
+/* Expand an expression EXP that calls a built-in function,
+ with result going to TARGET if that's convenient
+ (and in mode MODE if that's convenient).
+ SUBTARGET may be used as the target for computing one of EXP's operands.
+ IGNORE is nonzero if the value is to be ignored. */
+
+static rtx
+alpha_expand_builtin (tree exp, rtx target,
+ rtx subtarget ATTRIBUTE_UNUSED,
+ enum machine_mode mode ATTRIBUTE_UNUSED,
+ int ignore ATTRIBUTE_UNUSED)
+{
+#define MAX_ARGS 2
+
+ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
+ unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
+ tree arg;
+ call_expr_arg_iterator iter;
+ enum insn_code icode;
+ rtx op[MAX_ARGS], pat;
+ int arity;
+ bool nonvoid;
+
+ if (fcode >= ALPHA_BUILTIN_max)
+ internal_error ("bad builtin fcode");
+ icode = code_for_builtin[fcode];
+ if (icode == 0)
+ internal_error ("bad builtin fcode");
+
+ nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node;
+
+ arity = 0;
+ FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
+ {
+ const struct insn_operand_data *insn_op;
+
+ if (arg == error_mark_node)
+ return NULL_RTX;
+ if (arity > MAX_ARGS)
+ return NULL_RTX;
+
+ insn_op = &insn_data[icode].operand[arity + nonvoid];
+
+ op[arity] = expand_expr (arg, NULL_RTX, insn_op->mode, EXPAND_NORMAL);
+
+ if (!(*insn_op->predicate) (op[arity], insn_op->mode))
+ op[arity] = copy_to_mode_reg (insn_op->mode, op[arity]);
+ arity++;
+ }
+
+ if (nonvoid)
+ {
+ enum machine_mode tmode = insn_data[icode].operand[0].mode;
+ if (!target
+ || GET_MODE (target) != tmode
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
+ target = gen_reg_rtx (tmode);
+ }
+
+ switch (arity)
+ {
+ case 0:
+ pat = GEN_FCN (icode) (target);
+ break;
+ case 1:
+ if (nonvoid)
+ pat = GEN_FCN (icode) (target, op[0]);
+ else
+ pat = GEN_FCN (icode) (op[0]);
+ break;
+ case 2:
+ pat = GEN_FCN (icode) (target, op[0], op[1]);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ if (!pat)
+ return NULL_RTX;
+ emit_insn (pat);
+
+ if (nonvoid)
+ return target;
+ else
+ return const0_rtx;
+}
+
+
+/* Several bits below assume HWI >= 64 bits. This should be enforced
+ by config.gcc. */
+#if HOST_BITS_PER_WIDE_INT < 64
+# error "HOST_WIDE_INT too small"
+#endif
+
+/* Fold the builtin for the CMPBGE instruction. This is a vector comparison
+ with an 8-bit output vector. OPINT contains the integer operands; bit N
+ of OP_CONST is set if OPINT[N] is valid. */
+
+static tree
+alpha_fold_builtin_cmpbge (unsigned HOST_WIDE_INT opint[], long op_const)
+{
+ if (op_const == 3)
+ {
+ int i, val;
+ for (i = 0, val = 0; i < 8; ++i)
+ {
+ unsigned HOST_WIDE_INT c0 = (opint[0] >> (i * 8)) & 0xff;
+ unsigned HOST_WIDE_INT c1 = (opint[1] >> (i * 8)) & 0xff;
+ if (c0 >= c1)
+ val |= 1 << i;
+ }
+ return build_int_cst (alpha_dimode_u, val);
+ }
+ else if (op_const == 2 && opint[1] == 0)
+ return build_int_cst (alpha_dimode_u, 0xff);
+ return NULL;
+}
+
+/* Fold the builtin for the ZAPNOT instruction. This is essentially a
+ specialized form of an AND operation. Other byte manipulation instructions
+ are defined in terms of this instruction, so this is also used as a
+ subroutine for other builtins.
+
+ OP contains the tree operands; OPINT contains the extracted integer values.
+ Bit N of OP_CONST it set if OPINT[N] is valid. OP may be null if only
+ OPINT may be considered. */
+
+static tree
+alpha_fold_builtin_zapnot (tree *op, unsigned HOST_WIDE_INT opint[],
+ long op_const)
+{
+ if (op_const & 2)
+ {
+ unsigned HOST_WIDE_INT mask = 0;
+ int i;
+
+ for (i = 0; i < 8; ++i)
+ if ((opint[1] >> i) & 1)
+ mask |= (unsigned HOST_WIDE_INT)0xff << (i * 8);
+
+ if (op_const & 1)
+ return build_int_cst (alpha_dimode_u, opint[0] & mask);
+
+ if (op)
+ return fold_build2 (BIT_AND_EXPR, alpha_dimode_u, op[0],
+ build_int_cst (alpha_dimode_u, mask));
+ }
+ else if ((op_const & 1) && opint[0] == 0)
+ return build_int_cst (alpha_dimode_u, 0);
+ return NULL;
+}
+
+/* Fold the builtins for the EXT family of instructions. */
+
+static tree
+alpha_fold_builtin_extxx (tree op[], unsigned HOST_WIDE_INT opint[],
+ long op_const, unsigned HOST_WIDE_INT bytemask,
+ bool is_high)
+{
+ long zap_const = 2;
+ tree *zap_op = NULL;
+
+ if (op_const & 2)
+ {
+ unsigned HOST_WIDE_INT loc;
+
+ loc = opint[1] & 7;
+ loc *= BITS_PER_UNIT;
+
+ if (loc != 0)
+ {
+ if (op_const & 1)
+ {
+ unsigned HOST_WIDE_INT temp = opint[0];
+ if (is_high)
+ temp <<= loc;
+ else
+ temp >>= loc;
+ opint[0] = temp;
+ zap_const = 3;
+ }
+ }
+ else
+ zap_op = op;
+ }
+
+ opint[1] = bytemask;
+ return alpha_fold_builtin_zapnot (zap_op, opint, zap_const);
+}
+
+/* Fold the builtins for the INS family of instructions. */
+
+static tree
+alpha_fold_builtin_insxx (tree op[], unsigned HOST_WIDE_INT opint[],
+ long op_const, unsigned HOST_WIDE_INT bytemask,
+ bool is_high)
+{
+ if ((op_const & 1) && opint[0] == 0)
+ return build_int_cst (alpha_dimode_u, 0);
+
+ if (op_const & 2)
+ {
+ unsigned HOST_WIDE_INT temp, loc, byteloc;
+ tree *zap_op = NULL;
+
+ loc = opint[1] & 7;
+ bytemask <<= loc;
+
+ temp = opint[0];
+ if (is_high)
+ {
+ byteloc = (64 - (loc * 8)) & 0x3f;
+ if (byteloc == 0)
+ zap_op = op;
+ else
+ temp >>= byteloc;
+ bytemask >>= 8;
+ }
+ else
+ {
+ byteloc = loc * 8;
+ if (byteloc == 0)
+ zap_op = op;
+ else
+ temp <<= byteloc;
+ }
+
+ opint[0] = temp;
+ opint[1] = bytemask;
+ return alpha_fold_builtin_zapnot (zap_op, opint, op_const);
+ }
+
+ return NULL;
+}
+
+static tree
+alpha_fold_builtin_mskxx (tree op[], unsigned HOST_WIDE_INT opint[],
+ long op_const, unsigned HOST_WIDE_INT bytemask,
+ bool is_high)
+{
+ if (op_const & 2)
+ {
+ unsigned HOST_WIDE_INT loc;
+
+ loc = opint[1] & 7;
+ bytemask <<= loc;
+
+ if (is_high)
+ bytemask >>= 8;
+
+ opint[1] = bytemask ^ 0xff;
+ }
+
+ return alpha_fold_builtin_zapnot (op, opint, op_const);
+}
+
+static tree
+alpha_fold_vector_minmax (enum tree_code code, tree op[], tree vtype)
+{
+ tree op0 = fold_convert (vtype, op[0]);
+ tree op1 = fold_convert (vtype, op[1]);
+ tree val = fold_build2 (code, vtype, op0, op1);
+ return fold_build1 (VIEW_CONVERT_EXPR, alpha_dimode_u, val);
+}
+
+static tree
+alpha_fold_builtin_perr (unsigned HOST_WIDE_INT opint[], long op_const)
+{
+ unsigned HOST_WIDE_INT temp = 0;
+ int i;
+
+ if (op_const != 3)
+ return NULL;
+
+ for (i = 0; i < 8; ++i)
+ {
+ unsigned HOST_WIDE_INT a = (opint[0] >> (i * 8)) & 0xff;
+ unsigned HOST_WIDE_INT b = (opint[1] >> (i * 8)) & 0xff;
+ if (a >= b)
+ temp += a - b;
+ else
+ temp += b - a;
+ }
+
+ return build_int_cst (alpha_dimode_u, temp);
+}
+
+static tree
+alpha_fold_builtin_pklb (unsigned HOST_WIDE_INT opint[], long op_const)
+{
+ unsigned HOST_WIDE_INT temp;
+
+ if (op_const == 0)
+ return NULL;
+
+ temp = opint[0] & 0xff;
+ temp |= (opint[0] >> 24) & 0xff00;
+
+ return build_int_cst (alpha_dimode_u, temp);
+}
+
+static tree
+alpha_fold_builtin_pkwb (unsigned HOST_WIDE_INT opint[], long op_const)
+{
+ unsigned HOST_WIDE_INT temp;
+
+ if (op_const == 0)
+ return NULL;
+
+ temp = opint[0] & 0xff;
+ temp |= (opint[0] >> 8) & 0xff00;
+ temp |= (opint[0] >> 16) & 0xff0000;
+ temp |= (opint[0] >> 24) & 0xff000000;
+
+ return build_int_cst (alpha_dimode_u, temp);
+}
+
+static tree
+alpha_fold_builtin_unpkbl (unsigned HOST_WIDE_INT opint[], long op_const)
+{
+ unsigned HOST_WIDE_INT temp;
+
+ if (op_const == 0)
+ return NULL;
+
+ temp = opint[0] & 0xff;
+ temp |= (opint[0] & 0xff00) << 24;
+
+ return build_int_cst (alpha_dimode_u, temp);
+}
+
+static tree
+alpha_fold_builtin_unpkbw (unsigned HOST_WIDE_INT opint[], long op_const)
+{
+ unsigned HOST_WIDE_INT temp;
+
+ if (op_const == 0)
+ return NULL;
+
+ temp = opint[0] & 0xff;
+ temp |= (opint[0] & 0x0000ff00) << 8;
+ temp |= (opint[0] & 0x00ff0000) << 16;
+ temp |= (opint[0] & 0xff000000) << 24;
+
+ return build_int_cst (alpha_dimode_u, temp);
+}
+
+static tree
+alpha_fold_builtin_cttz (unsigned HOST_WIDE_INT opint[], long op_const)
+{
+ unsigned HOST_WIDE_INT temp;
+
+ if (op_const == 0)
+ return NULL;
+
+ if (opint[0] == 0)
+ temp = 64;
+ else
+ temp = exact_log2 (opint[0] & -opint[0]);
+
+ return build_int_cst (alpha_dimode_u, temp);
+}
+
+static tree
+alpha_fold_builtin_ctlz (unsigned HOST_WIDE_INT opint[], long op_const)
+{
+ unsigned HOST_WIDE_INT temp;
+
+ if (op_const == 0)
+ return NULL;
+
+ if (opint[0] == 0)
+ temp = 64;
+ else
+ temp = 64 - floor_log2 (opint[0]) - 1;
+
+ return build_int_cst (alpha_dimode_u, temp);
+}
+
+static tree
+alpha_fold_builtin_ctpop (unsigned HOST_WIDE_INT opint[], long op_const)
+{
+ unsigned HOST_WIDE_INT temp, op;
+
+ if (op_const == 0)
+ return NULL;
+
+ op = opint[0];
+ temp = 0;
+ while (op)
+ temp++, op &= op - 1;
+
+ return build_int_cst (alpha_dimode_u, temp);
+}
+
+/* Fold one of our builtin functions. */
+
+static tree
+alpha_fold_builtin (tree fndecl, int n_args, tree *op,
+ bool ignore ATTRIBUTE_UNUSED)
+{
+ unsigned HOST_WIDE_INT opint[MAX_ARGS];
+ long op_const = 0;
+ int i;
+
+ if (n_args > MAX_ARGS)
+ return NULL;
+
+ for (i = 0; i < n_args; i++)
+ {
+ tree arg = op[i];
+ if (arg == error_mark_node)
+ return NULL;
+
+ opint[i] = 0;
+ if (TREE_CODE (arg) == INTEGER_CST)
+ {
+ op_const |= 1L << i;
+ opint[i] = int_cst_value (arg);
+ }
+ }
+
+ switch (DECL_FUNCTION_CODE (fndecl))
+ {
+ case ALPHA_BUILTIN_CMPBGE:
+ return alpha_fold_builtin_cmpbge (opint, op_const);
+
+ case ALPHA_BUILTIN_EXTBL:
+ return alpha_fold_builtin_extxx (op, opint, op_const, 0x01, false);
+ case ALPHA_BUILTIN_EXTWL:
+ return alpha_fold_builtin_extxx (op, opint, op_const, 0x03, false);
+ case ALPHA_BUILTIN_EXTLL:
+ return alpha_fold_builtin_extxx (op, opint, op_const, 0x0f, false);
+ case ALPHA_BUILTIN_EXTQL:
+ return alpha_fold_builtin_extxx (op, opint, op_const, 0xff, false);
+ case ALPHA_BUILTIN_EXTWH:
+ return alpha_fold_builtin_extxx (op, opint, op_const, 0x03, true);
+ case ALPHA_BUILTIN_EXTLH:
+ return alpha_fold_builtin_extxx (op, opint, op_const, 0x0f, true);
+ case ALPHA_BUILTIN_EXTQH:
+ return alpha_fold_builtin_extxx (op, opint, op_const, 0xff, true);
+
+ case ALPHA_BUILTIN_INSBL:
+ return alpha_fold_builtin_insxx (op, opint, op_const, 0x01, false);
+ case ALPHA_BUILTIN_INSWL:
+ return alpha_fold_builtin_insxx (op, opint, op_const, 0x03, false);
+ case ALPHA_BUILTIN_INSLL:
+ return alpha_fold_builtin_insxx (op, opint, op_const, 0x0f, false);
+ case ALPHA_BUILTIN_INSQL:
+ return alpha_fold_builtin_insxx (op, opint, op_const, 0xff, false);
+ case ALPHA_BUILTIN_INSWH:
+ return alpha_fold_builtin_insxx (op, opint, op_const, 0x03, true);
+ case ALPHA_BUILTIN_INSLH:
+ return alpha_fold_builtin_insxx (op, opint, op_const, 0x0f, true);
+ case ALPHA_BUILTIN_INSQH:
+ return alpha_fold_builtin_insxx (op, opint, op_const, 0xff, true);
+
+ case ALPHA_BUILTIN_MSKBL:
+ return alpha_fold_builtin_mskxx (op, opint, op_const, 0x01, false);
+ case ALPHA_BUILTIN_MSKWL:
+ return alpha_fold_builtin_mskxx (op, opint, op_const, 0x03, false);
+ case ALPHA_BUILTIN_MSKLL:
+ return alpha_fold_builtin_mskxx (op, opint, op_const, 0x0f, false);
+ case ALPHA_BUILTIN_MSKQL:
+ return alpha_fold_builtin_mskxx (op, opint, op_const, 0xff, false);
+ case ALPHA_BUILTIN_MSKWH:
+ return alpha_fold_builtin_mskxx (op, opint, op_const, 0x03, true);
+ case ALPHA_BUILTIN_MSKLH:
+ return alpha_fold_builtin_mskxx (op, opint, op_const, 0x0f, true);
+ case ALPHA_BUILTIN_MSKQH:
+ return alpha_fold_builtin_mskxx (op, opint, op_const, 0xff, true);
+
+ case ALPHA_BUILTIN_UMULH:
+ return fold_build2 (MULT_HIGHPART_EXPR, alpha_dimode_u, op[0], op[1]);
+
+ case ALPHA_BUILTIN_ZAP:
+ opint[1] ^= 0xff;
+ /* FALLTHRU */
+ case ALPHA_BUILTIN_ZAPNOT:
+ return alpha_fold_builtin_zapnot (op, opint, op_const);
+
+ case ALPHA_BUILTIN_MINUB8:
+ return alpha_fold_vector_minmax (MIN_EXPR, op, alpha_v8qi_u);
+ case ALPHA_BUILTIN_MINSB8:
+ return alpha_fold_vector_minmax (MIN_EXPR, op, alpha_v8qi_s);
+ case ALPHA_BUILTIN_MINUW4:
+ return alpha_fold_vector_minmax (MIN_EXPR, op, alpha_v4hi_u);
+ case ALPHA_BUILTIN_MINSW4:
+ return alpha_fold_vector_minmax (MIN_EXPR, op, alpha_v4hi_s);
+ case ALPHA_BUILTIN_MAXUB8:
+ return alpha_fold_vector_minmax (MAX_EXPR, op, alpha_v8qi_u);
+ case ALPHA_BUILTIN_MAXSB8:
+ return alpha_fold_vector_minmax (MAX_EXPR, op, alpha_v8qi_s);
+ case ALPHA_BUILTIN_MAXUW4:
+ return alpha_fold_vector_minmax (MAX_EXPR, op, alpha_v4hi_u);
+ case ALPHA_BUILTIN_MAXSW4:
+ return alpha_fold_vector_minmax (MAX_EXPR, op, alpha_v4hi_s);
+
+ case ALPHA_BUILTIN_PERR:
+ return alpha_fold_builtin_perr (opint, op_const);
+ case ALPHA_BUILTIN_PKLB:
+ return alpha_fold_builtin_pklb (opint, op_const);
+ case ALPHA_BUILTIN_PKWB:
+ return alpha_fold_builtin_pkwb (opint, op_const);
+ case ALPHA_BUILTIN_UNPKBL:
+ return alpha_fold_builtin_unpkbl (opint, op_const);
+ case ALPHA_BUILTIN_UNPKBW:
+ return alpha_fold_builtin_unpkbw (opint, op_const);
+
+ case ALPHA_BUILTIN_CTTZ:
+ return alpha_fold_builtin_cttz (opint, op_const);
+ case ALPHA_BUILTIN_CTLZ:
+ return alpha_fold_builtin_ctlz (opint, op_const);
+ case ALPHA_BUILTIN_CTPOP:
+ return alpha_fold_builtin_ctpop (opint, op_const);
+
+ case ALPHA_BUILTIN_AMASK:
+ case ALPHA_BUILTIN_IMPLVER:
+ case ALPHA_BUILTIN_RPCC:
+ /* None of these are foldable at compile-time. */
+ default:
+ return NULL;
+ }
+}
+
+/* This page contains routines that are used to determine what the function
+ prologue and epilogue code will do and write them out. */
+
+/* Compute the size of the save area in the stack. */
+
+/* These variables are used for communication between the following functions.
+ They indicate various things about the current function being compiled
+ that are used to tell what kind of prologue, epilogue and procedure
+ descriptor to generate. */
+
+/* Nonzero if we need a stack procedure. */
+enum alpha_procedure_types {PT_NULL = 0, PT_REGISTER = 1, PT_STACK = 2};
+static enum alpha_procedure_types alpha_procedure_type;
+
+/* Register number (either FP or SP) that is used to unwind the frame. */
+static int vms_unwind_regno;
+
+/* Register number used to save FP. We need not have one for RA since
+ we don't modify it for register procedures. This is only defined
+ for register frame procedures. */
+static int vms_save_fp_regno;
+
+/* Register number used to reference objects off our PV. */
+static int vms_base_regno;
+
+/* Compute register masks for saved registers. */
+
+static void
+alpha_sa_mask (unsigned long *imaskP, unsigned long *fmaskP)
+{
+ unsigned long imask = 0;
+ unsigned long fmask = 0;
+ unsigned int i;
+
+ /* When outputting a thunk, we don't have valid register life info,
+ but assemble_start_function wants to output .frame and .mask
+ directives. */
+ if (cfun->is_thunk)
+ {
+ *imaskP = 0;
+ *fmaskP = 0;
+ return;
+ }
+
+ if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_STACK)
+ imask |= (1UL << HARD_FRAME_POINTER_REGNUM);
+
+ /* One for every register we have to save. */
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (! fixed_regs[i] && ! call_used_regs[i]
+ && df_regs_ever_live_p (i) && i != REG_RA)
+ {
+ if (i < 32)
+ imask |= (1UL << i);
+ else
+ fmask |= (1UL << (i - 32));
+ }
+
+ /* We need to restore these for the handler. */
+ if (crtl->calls_eh_return)
+ {
+ for (i = 0; ; ++i)
+ {
+ unsigned regno = EH_RETURN_DATA_REGNO (i);
+ if (regno == INVALID_REGNUM)
+ break;
+ imask |= 1UL << regno;
+ }
+ }
+
+ /* If any register spilled, then spill the return address also. */
+ /* ??? This is required by the Digital stack unwind specification
+ and isn't needed if we're doing Dwarf2 unwinding. */
+ if (imask || fmask || alpha_ra_ever_killed ())
+ imask |= (1UL << REG_RA);
+
+ *imaskP = imask;
+ *fmaskP = fmask;
+}
+
+int
+alpha_sa_size (void)
+{
+ unsigned long mask[2];
+ int sa_size = 0;
+ int i, j;
+
+ alpha_sa_mask (&mask[0], &mask[1]);
+
+ for (j = 0; j < 2; ++j)
+ for (i = 0; i < 32; ++i)
+ if ((mask[j] >> i) & 1)
+ sa_size++;
+
+ if (TARGET_ABI_OPEN_VMS)
+ {
+ /* Start with a stack procedure if we make any calls (REG_RA used), or
+ need a frame pointer, with a register procedure if we otherwise need
+ at least a slot, and with a null procedure in other cases. */
+ if ((mask[0] >> REG_RA) & 1 || frame_pointer_needed)
+ alpha_procedure_type = PT_STACK;
+ else if (get_frame_size() != 0)
+ alpha_procedure_type = PT_REGISTER;
+ else
+ alpha_procedure_type = PT_NULL;
+
+ /* Don't reserve space for saving FP & RA yet. Do that later after we've
+ made the final decision on stack procedure vs register procedure. */
+ if (alpha_procedure_type == PT_STACK)
+ sa_size -= 2;
+
+ /* Decide whether to refer to objects off our PV via FP or PV.
+ If we need FP for something else or if we receive a nonlocal
+ goto (which expects PV to contain the value), we must use PV.
+ Otherwise, start by assuming we can use FP. */
+
+ vms_base_regno
+ = (frame_pointer_needed
+ || cfun->has_nonlocal_label
+ || alpha_procedure_type == PT_STACK
+ || crtl->outgoing_args_size)
+ ? REG_PV : HARD_FRAME_POINTER_REGNUM;
+
+ /* If we want to copy PV into FP, we need to find some register
+ in which to save FP. */
+
+ vms_save_fp_regno = -1;
+ if (vms_base_regno == HARD_FRAME_POINTER_REGNUM)
+ for (i = 0; i < 32; i++)
+ if (! fixed_regs[i] && call_used_regs[i] && ! df_regs_ever_live_p (i))
+ vms_save_fp_regno = i;
+
+ /* A VMS condition handler requires a stack procedure in our
+ implementation. (not required by the calling standard). */
+ if ((vms_save_fp_regno == -1 && alpha_procedure_type == PT_REGISTER)
+ || cfun->machine->uses_condition_handler)
+ vms_base_regno = REG_PV, alpha_procedure_type = PT_STACK;
+ else if (alpha_procedure_type == PT_NULL)
+ vms_base_regno = REG_PV;
+
+ /* Stack unwinding should be done via FP unless we use it for PV. */
+ vms_unwind_regno = (vms_base_regno == REG_PV
+ ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
+
+ /* If this is a stack procedure, allow space for saving FP, RA and
+ a condition handler slot if needed. */
+ if (alpha_procedure_type == PT_STACK)
+ sa_size += 2 + cfun->machine->uses_condition_handler;
+ }
+ else
+ {
+ /* Our size must be even (multiple of 16 bytes). */
+ if (sa_size & 1)
+ sa_size++;
+ }
+
+ return sa_size * 8;
+}
+
+/* Define the offset between two registers, one to be eliminated,
+ and the other its replacement, at the start of a routine. */
+
+HOST_WIDE_INT
+alpha_initial_elimination_offset (unsigned int from,
+ unsigned int to ATTRIBUTE_UNUSED)
+{
+ HOST_WIDE_INT ret;
+
+ ret = alpha_sa_size ();
+ ret += ALPHA_ROUND (crtl->outgoing_args_size);
+
+ switch (from)
+ {
+ case FRAME_POINTER_REGNUM:
+ break;
+
+ case ARG_POINTER_REGNUM:
+ ret += (ALPHA_ROUND (get_frame_size ()
+ + crtl->args.pretend_args_size)
+ - crtl->args.pretend_args_size);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return ret;
+}
+
+#if TARGET_ABI_OPEN_VMS
+
+/* Worker function for TARGET_CAN_ELIMINATE. */
+
+static bool
+alpha_vms_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
+{
+ /* We need the alpha_procedure_type to decide. Evaluate it now. */
+ alpha_sa_size ();
+
+ switch (alpha_procedure_type)
+ {
+ case PT_NULL:
+ /* NULL procedures have no frame of their own and we only
+ know how to resolve from the current stack pointer. */
+ return to == STACK_POINTER_REGNUM;
+
+ case PT_REGISTER:
+ case PT_STACK:
+ /* We always eliminate except to the stack pointer if there is no
+ usable frame pointer at hand. */
+ return (to != STACK_POINTER_REGNUM
+ || vms_unwind_regno != HARD_FRAME_POINTER_REGNUM);
+ }
+
+ gcc_unreachable ();
+}
+
+/* FROM is to be eliminated for TO. Return the offset so that TO+offset
+ designates the same location as FROM. */
+
+HOST_WIDE_INT
+alpha_vms_initial_elimination_offset (unsigned int from, unsigned int to)
+{
+ /* The only possible attempts we ever expect are ARG or FRAME_PTR to
+ HARD_FRAME or STACK_PTR. We need the alpha_procedure_type to decide
+ on the proper computations and will need the register save area size
+ in most cases. */
+
+ HOST_WIDE_INT sa_size = alpha_sa_size ();
+
+ /* PT_NULL procedures have no frame of their own and we only allow
+ elimination to the stack pointer. This is the argument pointer and we
+ resolve the soft frame pointer to that as well. */
+
+ if (alpha_procedure_type == PT_NULL)
+ return 0;
+
+ /* For a PT_STACK procedure the frame layout looks as follows
+
+ -----> decreasing addresses
+
+ < size rounded up to 16 | likewise >
+ --------------#------------------------------+++--------------+++-------#
+ incoming args # pretended args | "frame" | regs sa | PV | outgoing args #
+ --------------#---------------------------------------------------------#
+ ^ ^ ^ ^
+ ARG_PTR FRAME_PTR HARD_FRAME_PTR STACK_PTR
+
+
+ PT_REGISTER procedures are similar in that they may have a frame of their
+ own. They have no regs-sa/pv/outgoing-args area.
+
+ We first compute offset to HARD_FRAME_PTR, then add what we need to get
+ to STACK_PTR if need be. */
+
+ {
+ HOST_WIDE_INT offset;
+ HOST_WIDE_INT pv_save_size = alpha_procedure_type == PT_STACK ? 8 : 0;
+
+ switch (from)
+ {
+ case FRAME_POINTER_REGNUM:
+ offset = ALPHA_ROUND (sa_size + pv_save_size);
+ break;
+ case ARG_POINTER_REGNUM:
+ offset = (ALPHA_ROUND (sa_size + pv_save_size
+ + get_frame_size ()
+ + crtl->args.pretend_args_size)
+ - crtl->args.pretend_args_size);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ if (to == STACK_POINTER_REGNUM)
+ offset += ALPHA_ROUND (crtl->outgoing_args_size);
+
+ return offset;
+ }
+}
+
+#define COMMON_OBJECT "common_object"
+
+static tree
+common_object_handler (tree *node, tree name ATTRIBUTE_UNUSED,
+ tree args ATTRIBUTE_UNUSED, int flags ATTRIBUTE_UNUSED,
+ bool *no_add_attrs ATTRIBUTE_UNUSED)
+{
+ tree decl = *node;
+ gcc_assert (DECL_P (decl));
+
+ DECL_COMMON (decl) = 1;
+ return NULL_TREE;
+}
+
+static const struct attribute_spec vms_attribute_table[] =
+{
+ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
+ affects_type_identity } */
+ { COMMON_OBJECT, 0, 1, true, false, false, common_object_handler, false },
+ { NULL, 0, 0, false, false, false, NULL, false }
+};
+
+void
+vms_output_aligned_decl_common(FILE *file, tree decl, const char *name,
+ unsigned HOST_WIDE_INT size,
+ unsigned int align)
+{
+ tree attr = DECL_ATTRIBUTES (decl);
+ fprintf (file, "%s", COMMON_ASM_OP);
+ assemble_name (file, name);
+ fprintf (file, "," HOST_WIDE_INT_PRINT_UNSIGNED, size);
+ /* ??? Unlike on OSF/1, the alignment factor is not in log units. */
+ fprintf (file, ",%u", align / BITS_PER_UNIT);
+ if (attr)
+ {
+ attr = lookup_attribute (COMMON_OBJECT, attr);
+ if (attr)
+ fprintf (file, ",%s",
+ IDENTIFIER_POINTER (TREE_VALUE (TREE_VALUE (attr))));
+ }
+ fputc ('\n', file);
+}
+
+#undef COMMON_OBJECT
+
+#endif
+
+static int
+find_lo_sum_using_gp (rtx *px, void *data ATTRIBUTE_UNUSED)
+{
+ return GET_CODE (*px) == LO_SUM && XEXP (*px, 0) == pic_offset_table_rtx;
+}
+
+int
+alpha_find_lo_sum_using_gp (rtx insn)
+{
+ return for_each_rtx (&PATTERN (insn), find_lo_sum_using_gp, NULL) > 0;
+}
+
+static int
+alpha_does_function_need_gp (void)
+{
+ rtx insn;
+
+ /* The GP being variable is an OSF abi thing. */
+ if (! TARGET_ABI_OSF)
+ return 0;
+
+ /* We need the gp to load the address of __mcount. */
+ if (TARGET_PROFILING_NEEDS_GP && crtl->profile)
+ return 1;
+
+ /* The code emitted by alpha_output_mi_thunk_osf uses the gp. */
+ if (cfun->is_thunk)
+ return 1;
+
+ /* The nonlocal receiver pattern assumes that the gp is valid for
+ the nested function. Reasonable because it's almost always set
+ correctly already. For the cases where that's wrong, make sure
+ the nested function loads its gp on entry. */
+ if (crtl->has_nonlocal_goto)
+ return 1;
+
+ /* If we need a GP (we have a LDSYM insn or a CALL_INSN), load it first.
+ Even if we are a static function, we still need to do this in case
+ our address is taken and passed to something like qsort. */
+
+ push_topmost_sequence ();
+ insn = get_insns ();
+ pop_topmost_sequence ();
+
+ for (; insn; insn = NEXT_INSN (insn))
+ if (NONDEBUG_INSN_P (insn)
+ && GET_CODE (PATTERN (insn)) != USE
+ && GET_CODE (PATTERN (insn)) != CLOBBER
+ && get_attr_usegp (insn))
+ return 1;
+
+ return 0;
+}
+
+
+/* Helper function to set RTX_FRAME_RELATED_P on instructions, including
+ sequences. */
+
+static rtx
+set_frame_related_p (void)
+{
+ rtx seq = get_insns ();
+ rtx insn;
+
+ end_sequence ();
+
+ if (!seq)
+ return NULL_RTX;
+
+ if (INSN_P (seq))
+ {
+ insn = seq;
+ while (insn != NULL_RTX)
+ {
+ RTX_FRAME_RELATED_P (insn) = 1;
+ insn = NEXT_INSN (insn);
+ }
+ seq = emit_insn (seq);
+ }
+ else
+ {
+ seq = emit_insn (seq);
+ RTX_FRAME_RELATED_P (seq) = 1;
+ }
+ return seq;
+}
+
+#define FRP(exp) (start_sequence (), exp, set_frame_related_p ())
+
+/* Generates a store with the proper unwind info attached. VALUE is
+ stored at BASE_REG+BASE_OFS. If FRAME_BIAS is nonzero, then BASE_REG
+ contains SP+FRAME_BIAS, and that is the unwind info that should be
+ generated. If FRAME_REG != VALUE, then VALUE is being stored on
+ behalf of FRAME_REG, and FRAME_REG should be present in the unwind. */
+
+static void
+emit_frame_store_1 (rtx value, rtx base_reg, HOST_WIDE_INT frame_bias,
+ HOST_WIDE_INT base_ofs, rtx frame_reg)
+{
+ rtx addr, mem, insn;
+
+ addr = plus_constant (Pmode, base_reg, base_ofs);
+ mem = gen_frame_mem (DImode, addr);
+
+ insn = emit_move_insn (mem, value);
+ RTX_FRAME_RELATED_P (insn) = 1;
+
+ if (frame_bias || value != frame_reg)
+ {
+ if (frame_bias)
+ {
+ addr = plus_constant (Pmode, stack_pointer_rtx,
+ frame_bias + base_ofs);
+ mem = gen_rtx_MEM (DImode, addr);
+ }
+
+ add_reg_note (insn, REG_FRAME_RELATED_EXPR,
+ gen_rtx_SET (VOIDmode, mem, frame_reg));
+ }
+}
+
+static void
+emit_frame_store (unsigned int regno, rtx base_reg,
+ HOST_WIDE_INT frame_bias, HOST_WIDE_INT base_ofs)
+{
+ rtx reg = gen_rtx_REG (DImode, regno);
+ emit_frame_store_1 (reg, base_reg, frame_bias, base_ofs, reg);
+}
+
+/* Compute the frame size. SIZE is the size of the "naked" frame
+ and SA_SIZE is the size of the register save area. */
+
+static HOST_WIDE_INT
+compute_frame_size (HOST_WIDE_INT size, HOST_WIDE_INT sa_size)
+{
+ if (TARGET_ABI_OPEN_VMS)
+ return ALPHA_ROUND (sa_size
+ + (alpha_procedure_type == PT_STACK ? 8 : 0)
+ + size
+ + crtl->args.pretend_args_size);
+ else
+ return ALPHA_ROUND (crtl->outgoing_args_size)
+ + sa_size
+ + ALPHA_ROUND (size
+ + crtl->args.pretend_args_size);
+}
+
+/* Write function prologue. */
+
+/* On vms we have two kinds of functions:
+
+ - stack frame (PROC_STACK)
+ these are 'normal' functions with local vars and which are
+ calling other functions
+ - register frame (PROC_REGISTER)
+ keeps all data in registers, needs no stack
+
+ We must pass this to the assembler so it can generate the
+ proper pdsc (procedure descriptor)
+ This is done with the '.pdesc' command.
+
+ On not-vms, we don't really differentiate between the two, as we can
+ simply allocate stack without saving registers. */
+
+void
+alpha_expand_prologue (void)
+{
+ /* Registers to save. */
+ unsigned long imask = 0;
+ unsigned long fmask = 0;
+ /* Stack space needed for pushing registers clobbered by us. */
+ HOST_WIDE_INT sa_size, sa_bias;
+ /* Complete stack size needed. */
+ HOST_WIDE_INT frame_size;
+ /* Probed stack size; it additionally includes the size of
+ the "reserve region" if any. */
+ HOST_WIDE_INT probed_size;
+ /* Offset from base reg to register save area. */
+ HOST_WIDE_INT reg_offset;
+ rtx sa_reg;
+ int i;
+
+ sa_size = alpha_sa_size ();
+ frame_size = compute_frame_size (get_frame_size (), sa_size);
+
+ if (flag_stack_usage_info)
+ current_function_static_stack_size = frame_size;
+
+ if (TARGET_ABI_OPEN_VMS)
+ reg_offset = 8 + 8 * cfun->machine->uses_condition_handler;
+ else
+ reg_offset = ALPHA_ROUND (crtl->outgoing_args_size);
+
+ alpha_sa_mask (&imask, &fmask);
+
+ /* Emit an insn to reload GP, if needed. */
+ if (TARGET_ABI_OSF)
+ {
+ alpha_function_needs_gp = alpha_does_function_need_gp ();
+ if (alpha_function_needs_gp)
+ emit_insn (gen_prologue_ldgp ());
+ }
+
+ /* TARGET_PROFILING_NEEDS_GP actually implies that we need to insert
+ the call to mcount ourselves, rather than having the linker do it
+ magically in response to -pg. Since _mcount has special linkage,
+ don't represent the call as a call. */
+ if (TARGET_PROFILING_NEEDS_GP && crtl->profile)
+ emit_insn (gen_prologue_mcount ());
+
+ /* Adjust the stack by the frame size. If the frame size is > 4096
+ bytes, we need to be sure we probe somewhere in the first and last
+ 4096 bytes (we can probably get away without the latter test) and
+ every 8192 bytes in between. If the frame size is > 32768, we
+ do this in a loop. Otherwise, we generate the explicit probe
+ instructions.
+
+ Note that we are only allowed to adjust sp once in the prologue. */
+
+ probed_size = frame_size;
+ if (flag_stack_check)
+ probed_size += STACK_CHECK_PROTECT;
+
+ if (probed_size <= 32768)
+ {
+ if (probed_size > 4096)
+ {
+ int probed;
+
+ for (probed = 4096; probed < probed_size; probed += 8192)
+ emit_insn (gen_probe_stack (GEN_INT (-probed)));
+
+ /* We only have to do this probe if we aren't saving registers or
+ if we are probing beyond the frame because of -fstack-check. */
+ if ((sa_size == 0 && probed_size > probed - 4096)
+ || flag_stack_check)
+ emit_insn (gen_probe_stack (GEN_INT (-probed_size)));
+ }
+
+ if (frame_size != 0)
+ FRP (emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (-frame_size))));
+ }
+ else
+ {
+ /* Here we generate code to set R22 to SP + 4096 and set R23 to the
+ number of 8192 byte blocks to probe. We then probe each block
+ in the loop and then set SP to the proper location. If the
+ amount remaining is > 4096, we have to do one more probe if we
+ are not saving any registers or if we are probing beyond the
+ frame because of -fstack-check. */
+
+ HOST_WIDE_INT blocks = (probed_size + 4096) / 8192;
+ HOST_WIDE_INT leftover = probed_size + 4096 - blocks * 8192;
+ rtx ptr = gen_rtx_REG (DImode, 22);
+ rtx count = gen_rtx_REG (DImode, 23);
+ rtx seq;
+
+ emit_move_insn (count, GEN_INT (blocks));
+ emit_insn (gen_adddi3 (ptr, stack_pointer_rtx, GEN_INT (4096)));
+
+ /* Because of the difficulty in emitting a new basic block this
+ late in the compilation, generate the loop as a single insn. */
+ emit_insn (gen_prologue_stack_probe_loop (count, ptr));
+
+ if ((leftover > 4096 && sa_size == 0) || flag_stack_check)
+ {
+ rtx last = gen_rtx_MEM (DImode,
+ plus_constant (Pmode, ptr, -leftover));
+ MEM_VOLATILE_P (last) = 1;
+ emit_move_insn (last, const0_rtx);
+ }
+
+ if (flag_stack_check)
+ {
+ /* If -fstack-check is specified we have to load the entire
+ constant into a register and subtract from the sp in one go,
+ because the probed stack size is not equal to the frame size. */
+ HOST_WIDE_INT lo, hi;
+ lo = ((frame_size & 0xffff) ^ 0x8000) - 0x8000;
+ hi = frame_size - lo;
+
+ emit_move_insn (ptr, GEN_INT (hi));
+ emit_insn (gen_adddi3 (ptr, ptr, GEN_INT (lo)));
+ seq = emit_insn (gen_subdi3 (stack_pointer_rtx, stack_pointer_rtx,
+ ptr));
+ }
+ else
+ {
+ seq = emit_insn (gen_adddi3 (stack_pointer_rtx, ptr,
+ GEN_INT (-leftover)));
+ }
+
+ /* This alternative is special, because the DWARF code cannot
+ possibly intuit through the loop above. So we invent this
+ note it looks at instead. */
+ RTX_FRAME_RELATED_P (seq) = 1;
+ add_reg_note (seq, REG_FRAME_RELATED_EXPR,
+ gen_rtx_SET (VOIDmode, stack_pointer_rtx,
+ plus_constant (Pmode, stack_pointer_rtx,
+ -frame_size)));
+ }
+
+ /* Cope with very large offsets to the register save area. */
+ sa_bias = 0;
+ sa_reg = stack_pointer_rtx;
+ if (reg_offset + sa_size > 0x8000)
+ {
+ int low = ((reg_offset & 0xffff) ^ 0x8000) - 0x8000;
+ rtx sa_bias_rtx;
+
+ if (low + sa_size <= 0x8000)
+ sa_bias = reg_offset - low, reg_offset = low;
+ else
+ sa_bias = reg_offset, reg_offset = 0;
+
+ sa_reg = gen_rtx_REG (DImode, 24);
+ sa_bias_rtx = GEN_INT (sa_bias);
+
+ if (add_operand (sa_bias_rtx, DImode))
+ emit_insn (gen_adddi3 (sa_reg, stack_pointer_rtx, sa_bias_rtx));
+ else
+ {
+ emit_move_insn (sa_reg, sa_bias_rtx);
+ emit_insn (gen_adddi3 (sa_reg, stack_pointer_rtx, sa_reg));
+ }
+ }
+
+ /* Save regs in stack order. Beginning with VMS PV. */
+ if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_STACK)
+ emit_frame_store (REG_PV, stack_pointer_rtx, 0, 0);
+
+ /* Save register RA next. */
+ if (imask & (1UL << REG_RA))
+ {
+ emit_frame_store (REG_RA, sa_reg, sa_bias, reg_offset);
+ imask &= ~(1UL << REG_RA);
+ reg_offset += 8;
+ }
+
+ /* Now save any other registers required to be saved. */
+ for (i = 0; i < 31; i++)
+ if (imask & (1UL << i))
+ {
+ emit_frame_store (i, sa_reg, sa_bias, reg_offset);
+ reg_offset += 8;
+ }
+
+ for (i = 0; i < 31; i++)
+ if (fmask & (1UL << i))
+ {
+ emit_frame_store (i+32, sa_reg, sa_bias, reg_offset);
+ reg_offset += 8;
+ }
+
+ if (TARGET_ABI_OPEN_VMS)
+ {
+ /* Register frame procedures save the fp. */
+ if (alpha_procedure_type == PT_REGISTER)
+ {
+ rtx insn = emit_move_insn (gen_rtx_REG (DImode, vms_save_fp_regno),
+ hard_frame_pointer_rtx);
+ add_reg_note (insn, REG_CFA_REGISTER, NULL);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+
+ if (alpha_procedure_type != PT_NULL && vms_base_regno != REG_PV)
+ emit_insn (gen_force_movdi (gen_rtx_REG (DImode, vms_base_regno),
+ gen_rtx_REG (DImode, REG_PV)));
+
+ if (alpha_procedure_type != PT_NULL
+ && vms_unwind_regno == HARD_FRAME_POINTER_REGNUM)
+ FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
+
+ /* If we have to allocate space for outgoing args, do it now. */
+ if (crtl->outgoing_args_size != 0)
+ {
+ rtx seq
+ = emit_move_insn (stack_pointer_rtx,
+ plus_constant
+ (Pmode, hard_frame_pointer_rtx,
+ - (ALPHA_ROUND
+ (crtl->outgoing_args_size))));
+
+ /* Only set FRAME_RELATED_P on the stack adjustment we just emitted
+ if ! frame_pointer_needed. Setting the bit will change the CFA
+ computation rule to use sp again, which would be wrong if we had
+ frame_pointer_needed, as this means sp might move unpredictably
+ later on.
+
+ Also, note that
+ frame_pointer_needed
+ => vms_unwind_regno == HARD_FRAME_POINTER_REGNUM
+ and
+ crtl->outgoing_args_size != 0
+ => alpha_procedure_type != PT_NULL,
+
+ so when we are not setting the bit here, we are guaranteed to
+ have emitted an FRP frame pointer update just before. */
+ RTX_FRAME_RELATED_P (seq) = ! frame_pointer_needed;
+ }
+ }
+ else
+ {
+ /* If we need a frame pointer, set it from the stack pointer. */
+ if (frame_pointer_needed)
+ {
+ if (TARGET_CAN_FAULT_IN_PROLOGUE)
+ FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
+ else
+ /* This must always be the last instruction in the
+ prologue, thus we emit a special move + clobber. */
+ FRP (emit_insn (gen_init_fp (hard_frame_pointer_rtx,
+ stack_pointer_rtx, sa_reg)));
+ }
+ }
+
+ /* The ABIs for VMS and OSF/1 say that while we can schedule insns into
+ the prologue, for exception handling reasons, we cannot do this for
+ any insn that might fault. We could prevent this for mems with a
+ (clobber:BLK (scratch)), but this doesn't work for fp insns. So we
+ have to prevent all such scheduling with a blockage.
+
+ Linux, on the other hand, never bothered to implement OSF/1's
+ exception handling, and so doesn't care about such things. Anyone
+ planning to use dwarf2 frame-unwind info can also omit the blockage. */
+
+ if (! TARGET_CAN_FAULT_IN_PROLOGUE)
+ emit_insn (gen_blockage ());
+}
+
+/* Count the number of .file directives, so that .loc is up to date. */
+int num_source_filenames = 0;
+
+/* Output the textual info surrounding the prologue. */
+
+void
+alpha_start_function (FILE *file, const char *fnname,
+ tree decl ATTRIBUTE_UNUSED)
+{
+ unsigned long imask = 0;
+ unsigned long fmask = 0;
+ /* Stack space needed for pushing registers clobbered by us. */
+ HOST_WIDE_INT sa_size;
+ /* Complete stack size needed. */
+ unsigned HOST_WIDE_INT frame_size;
+ /* The maximum debuggable frame size. */
+ unsigned HOST_WIDE_INT max_frame_size = 1UL << 31;
+ /* Offset from base reg to register save area. */
+ HOST_WIDE_INT reg_offset;
+ char *entry_label = (char *) alloca (strlen (fnname) + 6);
+ char *tramp_label = (char *) alloca (strlen (fnname) + 6);
+ int i;
+
+#if TARGET_ABI_OPEN_VMS
+ vms_start_function (fnname);
+#endif
+
+ alpha_fnname = fnname;
+ sa_size = alpha_sa_size ();
+ frame_size = compute_frame_size (get_frame_size (), sa_size);
+
+ if (TARGET_ABI_OPEN_VMS)
+ reg_offset = 8 + 8 * cfun->machine->uses_condition_handler;
+ else
+ reg_offset = ALPHA_ROUND (crtl->outgoing_args_size);
+
+ alpha_sa_mask (&imask, &fmask);
+
+ /* Issue function start and label. */
+ if (TARGET_ABI_OPEN_VMS || !flag_inhibit_size_directive)
+ {
+ fputs ("\t.ent ", file);
+ assemble_name (file, fnname);
+ putc ('\n', file);
+
+ /* If the function needs GP, we'll write the "..ng" label there.
+ Otherwise, do it here. */
+ if (TARGET_ABI_OSF
+ && ! alpha_function_needs_gp
+ && ! cfun->is_thunk)
+ {
+ putc ('$', file);
+ assemble_name (file, fnname);
+ fputs ("..ng:\n", file);
+ }
+ }
+ /* Nested functions on VMS that are potentially called via trampoline
+ get a special transfer entry point that loads the called functions
+ procedure descriptor and static chain. */
+ if (TARGET_ABI_OPEN_VMS
+ && !TREE_PUBLIC (decl)
+ && DECL_CONTEXT (decl)
+ && !TYPE_P (DECL_CONTEXT (decl))
+ && TREE_CODE (DECL_CONTEXT (decl)) != TRANSLATION_UNIT_DECL)
+ {
+ strcpy (tramp_label, fnname);
+ strcat (tramp_label, "..tr");
+ ASM_OUTPUT_LABEL (file, tramp_label);
+ fprintf (file, "\tldq $1,24($27)\n");
+ fprintf (file, "\tldq $27,16($27)\n");
+ }
+
+ strcpy (entry_label, fnname);
+ if (TARGET_ABI_OPEN_VMS)
+ strcat (entry_label, "..en");
+
+ ASM_OUTPUT_LABEL (file, entry_label);
+ inside_function = TRUE;
+
+ if (TARGET_ABI_OPEN_VMS)
+ fprintf (file, "\t.base $%d\n", vms_base_regno);
+
+ if (TARGET_ABI_OSF
+ && TARGET_IEEE_CONFORMANT
+ && !flag_inhibit_size_directive)
+ {
+ /* Set flags in procedure descriptor to request IEEE-conformant
+ math-library routines. The value we set it to is PDSC_EXC_IEEE
+ (/usr/include/pdsc.h). */
+ fputs ("\t.eflag 48\n", file);
+ }
+
+ /* Set up offsets to alpha virtual arg/local debugging pointer. */
+ alpha_auto_offset = -frame_size + crtl->args.pretend_args_size;
+ alpha_arg_offset = -frame_size + 48;
+
+ /* Describe our frame. If the frame size is larger than an integer,
+ print it as zero to avoid an assembler error. We won't be
+ properly describing such a frame, but that's the best we can do. */
+ if (TARGET_ABI_OPEN_VMS)
+ fprintf (file, "\t.frame $%d," HOST_WIDE_INT_PRINT_DEC ",$26,"
+ HOST_WIDE_INT_PRINT_DEC "\n",
+ vms_unwind_regno,
+ frame_size >= (1UL << 31) ? 0 : frame_size,
+ reg_offset);
+ else if (!flag_inhibit_size_directive)
+ fprintf (file, "\t.frame $%d," HOST_WIDE_INT_PRINT_DEC ",$26,%d\n",
+ (frame_pointer_needed
+ ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM),
+ frame_size >= max_frame_size ? 0 : frame_size,
+ crtl->args.pretend_args_size);
+
+ /* Describe which registers were spilled. */
+ if (TARGET_ABI_OPEN_VMS)
+ {
+ if (imask)
+ /* ??? Does VMS care if mask contains ra? The old code didn't
+ set it, so I don't here. */
+ fprintf (file, "\t.mask 0x%lx,0\n", imask & ~(1UL << REG_RA));
+ if (fmask)
+ fprintf (file, "\t.fmask 0x%lx,0\n", fmask);
+ if (alpha_procedure_type == PT_REGISTER)
+ fprintf (file, "\t.fp_save $%d\n", vms_save_fp_regno);
+ }
+ else if (!flag_inhibit_size_directive)
+ {
+ if (imask)
+ {
+ fprintf (file, "\t.mask 0x%lx," HOST_WIDE_INT_PRINT_DEC "\n", imask,
+ frame_size >= max_frame_size ? 0 : reg_offset - frame_size);
+
+ for (i = 0; i < 32; ++i)
+ if (imask & (1UL << i))
+ reg_offset += 8;
+ }
+
+ if (fmask)
+ fprintf (file, "\t.fmask 0x%lx," HOST_WIDE_INT_PRINT_DEC "\n", fmask,
+ frame_size >= max_frame_size ? 0 : reg_offset - frame_size);
+ }
+
+#if TARGET_ABI_OPEN_VMS
+ /* If a user condition handler has been installed at some point, emit
+ the procedure descriptor bits to point the Condition Handling Facility
+ at the indirection wrapper, and state the fp offset at which the user
+ handler may be found. */
+ if (cfun->machine->uses_condition_handler)
+ {
+ fprintf (file, "\t.handler __gcc_shell_handler\n");
+ fprintf (file, "\t.handler_data %d\n", VMS_COND_HANDLER_FP_OFFSET);
+ }
+
+#ifdef TARGET_VMS_CRASH_DEBUG
+ /* Support of minimal traceback info. */
+ switch_to_section (readonly_data_section);
+ fprintf (file, "\t.align 3\n");
+ assemble_name (file, fnname); fputs ("..na:\n", file);
+ fputs ("\t.ascii \"", file);
+ assemble_name (file, fnname);
+ fputs ("\\0\"\n", file);
+ switch_to_section (text_section);
+#endif
+#endif /* TARGET_ABI_OPEN_VMS */
+}
+
+/* Emit the .prologue note at the scheduled end of the prologue. */
+
+static void
+alpha_output_function_end_prologue (FILE *file)
+{
+ if (TARGET_ABI_OPEN_VMS)
+ fputs ("\t.prologue\n", file);
+ else if (!flag_inhibit_size_directive)
+ fprintf (file, "\t.prologue %d\n",
+ alpha_function_needs_gp || cfun->is_thunk);
+}
+
+/* Write function epilogue. */
+
+void
+alpha_expand_epilogue (void)
+{
+ /* Registers to save. */
+ unsigned long imask = 0;
+ unsigned long fmask = 0;
+ /* Stack space needed for pushing registers clobbered by us. */
+ HOST_WIDE_INT sa_size;
+ /* Complete stack size needed. */
+ HOST_WIDE_INT frame_size;
+ /* Offset from base reg to register save area. */
+ HOST_WIDE_INT reg_offset;
+ int fp_is_frame_pointer, fp_offset;
+ rtx sa_reg, sa_reg_exp = NULL;
+ rtx sp_adj1, sp_adj2, mem, reg, insn;
+ rtx eh_ofs;
+ rtx cfa_restores = NULL_RTX;
+ int i;
+
+ sa_size = alpha_sa_size ();
+ frame_size = compute_frame_size (get_frame_size (), sa_size);
+
+ if (TARGET_ABI_OPEN_VMS)
+ {
+ if (alpha_procedure_type == PT_STACK)
+ reg_offset = 8 + 8 * cfun->machine->uses_condition_handler;
+ else
+ reg_offset = 0;
+ }
+ else
+ reg_offset = ALPHA_ROUND (crtl->outgoing_args_size);
+
+ alpha_sa_mask (&imask, &fmask);
+
+ fp_is_frame_pointer
+ = (TARGET_ABI_OPEN_VMS
+ ? alpha_procedure_type == PT_STACK
+ : frame_pointer_needed);
+ fp_offset = 0;
+ sa_reg = stack_pointer_rtx;
+
+ if (crtl->calls_eh_return)
+ eh_ofs = EH_RETURN_STACKADJ_RTX;
+ else
+ eh_ofs = NULL_RTX;
+
+ if (sa_size)
+ {
+ /* If we have a frame pointer, restore SP from it. */
+ if (TARGET_ABI_OPEN_VMS
+ ? vms_unwind_regno == HARD_FRAME_POINTER_REGNUM
+ : frame_pointer_needed)
+ emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
+
+ /* Cope with very large offsets to the register save area. */
+ if (reg_offset + sa_size > 0x8000)
+ {
+ int low = ((reg_offset & 0xffff) ^ 0x8000) - 0x8000;
+ HOST_WIDE_INT bias;
+
+ if (low + sa_size <= 0x8000)
+ bias = reg_offset - low, reg_offset = low;
+ else
+ bias = reg_offset, reg_offset = 0;
+
+ sa_reg = gen_rtx_REG (DImode, 22);
+ sa_reg_exp = plus_constant (Pmode, stack_pointer_rtx, bias);
+
+ emit_move_insn (sa_reg, sa_reg_exp);
+ }
+
+ /* Restore registers in order, excepting a true frame pointer. */
+
+ mem = gen_frame_mem (DImode, plus_constant (Pmode, sa_reg, reg_offset));
+ reg = gen_rtx_REG (DImode, REG_RA);
+ emit_move_insn (reg, mem);
+ cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
+
+ reg_offset += 8;
+ imask &= ~(1UL << REG_RA);
+
+ for (i = 0; i < 31; ++i)
+ if (imask & (1UL << i))
+ {
+ if (i == HARD_FRAME_POINTER_REGNUM && fp_is_frame_pointer)
+ fp_offset = reg_offset;
+ else
+ {
+ mem = gen_frame_mem (DImode,
+ plus_constant (Pmode, sa_reg,
+ reg_offset));
+ reg = gen_rtx_REG (DImode, i);
+ emit_move_insn (reg, mem);
+ cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg,
+ cfa_restores);
+ }
+ reg_offset += 8;
+ }
+
+ for (i = 0; i < 31; ++i)
+ if (fmask & (1UL << i))
+ {
+ mem = gen_frame_mem (DFmode, plus_constant (Pmode, sa_reg,
+ reg_offset));
+ reg = gen_rtx_REG (DFmode, i+32);
+ emit_move_insn (reg, mem);
+ cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
+ reg_offset += 8;
+ }
+ }
+
+ if (frame_size || eh_ofs)
+ {
+ sp_adj1 = stack_pointer_rtx;
+
+ if (eh_ofs)
+ {
+ sp_adj1 = gen_rtx_REG (DImode, 23);
+ emit_move_insn (sp_adj1,
+ gen_rtx_PLUS (Pmode, stack_pointer_rtx, eh_ofs));
+ }
+
+ /* If the stack size is large, begin computation into a temporary
+ register so as not to interfere with a potential fp restore,
+ which must be consecutive with an SP restore. */
+ if (frame_size < 32768 && !cfun->calls_alloca)
+ sp_adj2 = GEN_INT (frame_size);
+ else if (frame_size < 0x40007fffL)
+ {
+ int low = ((frame_size & 0xffff) ^ 0x8000) - 0x8000;
+
+ sp_adj2 = plus_constant (Pmode, sp_adj1, frame_size - low);
+ if (sa_reg_exp && rtx_equal_p (sa_reg_exp, sp_adj2))
+ sp_adj1 = sa_reg;
+ else
+ {
+ sp_adj1 = gen_rtx_REG (DImode, 23);
+ emit_move_insn (sp_adj1, sp_adj2);
+ }
+ sp_adj2 = GEN_INT (low);
+ }
+ else
+ {
+ rtx tmp = gen_rtx_REG (DImode, 23);
+ sp_adj2 = alpha_emit_set_const (tmp, DImode, frame_size, 3, false);
+ if (!sp_adj2)
+ {
+ /* We can't drop new things to memory this late, afaik,
+ so build it up by pieces. */
+ sp_adj2 = alpha_emit_set_long_const (tmp, frame_size,
+ -(frame_size < 0));
+ gcc_assert (sp_adj2);
+ }
+ }
+
+ /* From now on, things must be in order. So emit blockages. */
+
+ /* Restore the frame pointer. */
+ if (fp_is_frame_pointer)
+ {
+ emit_insn (gen_blockage ());
+ mem = gen_frame_mem (DImode, plus_constant (Pmode, sa_reg,
+ fp_offset));
+ emit_move_insn (hard_frame_pointer_rtx, mem);
+ cfa_restores = alloc_reg_note (REG_CFA_RESTORE,
+ hard_frame_pointer_rtx, cfa_restores);
+ }
+ else if (TARGET_ABI_OPEN_VMS)
+ {
+ emit_insn (gen_blockage ());
+ emit_move_insn (hard_frame_pointer_rtx,
+ gen_rtx_REG (DImode, vms_save_fp_regno));
+ cfa_restores = alloc_reg_note (REG_CFA_RESTORE,
+ hard_frame_pointer_rtx, cfa_restores);
+ }
+
+ /* Restore the stack pointer. */
+ emit_insn (gen_blockage ());
+ if (sp_adj2 == const0_rtx)
+ insn = emit_move_insn (stack_pointer_rtx, sp_adj1);
+ else
+ insn = emit_move_insn (stack_pointer_rtx,
+ gen_rtx_PLUS (DImode, sp_adj1, sp_adj2));
+ REG_NOTES (insn) = cfa_restores;
+ add_reg_note (insn, REG_CFA_DEF_CFA, stack_pointer_rtx);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ else
+ {
+ gcc_assert (cfa_restores == NULL);
+
+ if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_REGISTER)
+ {
+ emit_insn (gen_blockage ());
+ insn = emit_move_insn (hard_frame_pointer_rtx,
+ gen_rtx_REG (DImode, vms_save_fp_regno));
+ add_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ }
+}
+
+/* Output the rest of the textual info surrounding the epilogue. */
+
+void
+alpha_end_function (FILE *file, const char *fnname, tree decl ATTRIBUTE_UNUSED)
+{
+ rtx insn;
+
+ /* We output a nop after noreturn calls at the very end of the function to
+ ensure that the return address always remains in the caller's code range,
+ as not doing so might confuse unwinding engines. */
+ insn = get_last_insn ();
+ if (!INSN_P (insn))
+ insn = prev_active_insn (insn);
+ if (insn && CALL_P (insn))
+ output_asm_insn (get_insn_template (CODE_FOR_nop, NULL), NULL);
+
+#if TARGET_ABI_OPEN_VMS
+ /* Write the linkage entries. */
+ alpha_write_linkage (file, fnname);
+#endif
+
+ /* End the function. */
+ if (TARGET_ABI_OPEN_VMS
+ || !flag_inhibit_size_directive)
+ {
+ fputs ("\t.end ", file);
+ assemble_name (file, fnname);
+ putc ('\n', file);
+ }
+ inside_function = FALSE;
+}
+
+#if TARGET_ABI_OSF
+/* Emit a tail call to FUNCTION after adjusting THIS by DELTA.
+
+ In order to avoid the hordes of differences between generated code
+ with and without TARGET_EXPLICIT_RELOCS, and to avoid duplicating
+ lots of code loading up large constants, generate rtl and emit it
+ instead of going straight to text.
+
+ Not sure why this idea hasn't been explored before... */
+
+static void
+alpha_output_mi_thunk_osf (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
+ HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
+ tree function)
+{
+ HOST_WIDE_INT hi, lo;
+ rtx this_rtx, insn, funexp;
+
+ /* We always require a valid GP. */
+ emit_insn (gen_prologue_ldgp ());
+ emit_note (NOTE_INSN_PROLOGUE_END);
+
+ /* Find the "this" pointer. If the function returns a structure,
+ the structure return pointer is in $16. */
+ if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
+ this_rtx = gen_rtx_REG (Pmode, 17);
+ else
+ this_rtx = gen_rtx_REG (Pmode, 16);
+
+ /* Add DELTA. When possible we use ldah+lda. Otherwise load the
+ entire constant for the add. */
+ lo = ((delta & 0xffff) ^ 0x8000) - 0x8000;
+ hi = (((delta - lo) & 0xffffffff) ^ 0x80000000) - 0x80000000;
+ if (hi + lo == delta)
+ {
+ if (hi)
+ emit_insn (gen_adddi3 (this_rtx, this_rtx, GEN_INT (hi)));
+ if (lo)
+ emit_insn (gen_adddi3 (this_rtx, this_rtx, GEN_INT (lo)));
+ }
+ else
+ {
+ rtx tmp = alpha_emit_set_long_const (gen_rtx_REG (Pmode, 0),
+ delta, -(delta < 0));
+ emit_insn (gen_adddi3 (this_rtx, this_rtx, tmp));
+ }
+
+ /* Add a delta stored in the vtable at VCALL_OFFSET. */
+ if (vcall_offset)
+ {
+ rtx tmp, tmp2;
+
+ tmp = gen_rtx_REG (Pmode, 0);
+ emit_move_insn (tmp, gen_rtx_MEM (Pmode, this_rtx));
+
+ lo = ((vcall_offset & 0xffff) ^ 0x8000) - 0x8000;
+ hi = (((vcall_offset - lo) & 0xffffffff) ^ 0x80000000) - 0x80000000;
+ if (hi + lo == vcall_offset)
+ {
+ if (hi)
+ emit_insn (gen_adddi3 (tmp, tmp, GEN_INT (hi)));
+ }
+ else
+ {
+ tmp2 = alpha_emit_set_long_const (gen_rtx_REG (Pmode, 1),
+ vcall_offset, -(vcall_offset < 0));
+ emit_insn (gen_adddi3 (tmp, tmp, tmp2));
+ lo = 0;
+ }
+ if (lo)
+ tmp2 = gen_rtx_PLUS (Pmode, tmp, GEN_INT (lo));
+ else
+ tmp2 = tmp;
+ emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp2));
+
+ emit_insn (gen_adddi3 (this_rtx, this_rtx, tmp));
+ }
+
+ /* Generate a tail call to the target function. */
+ if (! TREE_USED (function))
+ {
+ assemble_external (function);
+ TREE_USED (function) = 1;
+ }
+ funexp = XEXP (DECL_RTL (function), 0);
+ funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
+ insn = emit_call_insn (gen_sibcall (funexp, const0_rtx));
+ SIBLING_CALL_P (insn) = 1;
+
+ /* Run just enough of rest_of_compilation to get the insns emitted.
+ There's not really enough bulk here to make other passes such as
+ instruction scheduling worth while. Note that use_thunk calls
+ assemble_start_function and assemble_end_function. */
+ insn = get_insns ();
+ shorten_branches (insn);
+ final_start_function (insn, file, 1);
+ final (insn, file, 1);
+ final_end_function ();
+}
+#endif /* TARGET_ABI_OSF */
+
+/* Debugging support. */
+
+#include "gstab.h"
+
+/* Name of the file containing the current function. */
+
+static const char *current_function_file = "";
+
+/* Offsets to alpha virtual arg/local debugging pointers. */
+
+long alpha_arg_offset;
+long alpha_auto_offset;
+
+/* Emit a new filename to a stream. */
+
+void
+alpha_output_filename (FILE *stream, const char *name)
+{
+ static int first_time = TRUE;
+
+ if (first_time)
+ {
+ first_time = FALSE;
+ ++num_source_filenames;
+ current_function_file = name;
+ fprintf (stream, "\t.file\t%d ", num_source_filenames);
+ output_quoted_string (stream, name);
+ fprintf (stream, "\n");
+ }
+
+ else if (name != current_function_file
+ && strcmp (name, current_function_file) != 0)
+ {
+ ++num_source_filenames;
+ current_function_file = name;
+ fprintf (stream, "\t.file\t%d ", num_source_filenames);
+
+ output_quoted_string (stream, name);
+ fprintf (stream, "\n");
+ }
+}
+
+/* Structure to show the current status of registers and memory. */
+
+struct shadow_summary
+{
+ struct {
+ unsigned int i : 31; /* Mask of int regs */
+ unsigned int fp : 31; /* Mask of fp regs */
+ unsigned int mem : 1; /* mem == imem | fpmem */
+ } used, defd;
+};
+
+/* Summary the effects of expression X on the machine. Update SUM, a pointer
+ to the summary structure. SET is nonzero if the insn is setting the
+ object, otherwise zero. */
+
+static void
+summarize_insn (rtx x, struct shadow_summary *sum, int set)
+{
+ const char *format_ptr;
+ int i, j;
+
+ if (x == 0)
+ return;
+
+ switch (GET_CODE (x))
+ {
+ /* ??? Note that this case would be incorrect if the Alpha had a
+ ZERO_EXTRACT in SET_DEST. */
+ case SET:
+ summarize_insn (SET_SRC (x), sum, 0);
+ summarize_insn (SET_DEST (x), sum, 1);
+ break;
+
+ case CLOBBER:
+ summarize_insn (XEXP (x, 0), sum, 1);
+ break;
+
+ case USE:
+ summarize_insn (XEXP (x, 0), sum, 0);
+ break;
+
+ case ASM_OPERANDS:
+ for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
+ summarize_insn (ASM_OPERANDS_INPUT (x, i), sum, 0);
+ break;
+
+ case PARALLEL:
+ for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
+ summarize_insn (XVECEXP (x, 0, i), sum, 0);
+ break;
+
+ case SUBREG:
+ summarize_insn (SUBREG_REG (x), sum, 0);
+ break;
+
+ case REG:
+ {
+ int regno = REGNO (x);
+ unsigned long mask = ((unsigned long) 1) << (regno % 32);
+
+ if (regno == 31 || regno == 63)
+ break;
+
+ if (set)
+ {
+ if (regno < 32)
+ sum->defd.i |= mask;
+ else
+ sum->defd.fp |= mask;
+ }
+ else
+ {
+ if (regno < 32)
+ sum->used.i |= mask;
+ else
+ sum->used.fp |= mask;
+ }
+ }
+ break;
+
+ case MEM:
+ if (set)
+ sum->defd.mem = 1;
+ else
+ sum->used.mem = 1;
+
+ /* Find the regs used in memory address computation: */
+ summarize_insn (XEXP (x, 0), sum, 0);
+ break;
+
+ case CONST_INT: case CONST_DOUBLE:
+ case SYMBOL_REF: case LABEL_REF: case CONST:
+ case SCRATCH: case ASM_INPUT:
+ break;
+
+ /* Handle common unary and binary ops for efficiency. */
+ case COMPARE: case PLUS: case MINUS: case MULT: case DIV:
+ case MOD: case UDIV: case UMOD: case AND: case IOR:
+ case XOR: case ASHIFT: case ROTATE: case ASHIFTRT: case LSHIFTRT:
+ case ROTATERT: case SMIN: case SMAX: case UMIN: case UMAX:
+ case NE: case EQ: case GE: case GT: case LE:
+ case LT: case GEU: case GTU: case LEU: case LTU:
+ summarize_insn (XEXP (x, 0), sum, 0);
+ summarize_insn (XEXP (x, 1), sum, 0);
+ break;
+
+ case NEG: case NOT: case SIGN_EXTEND: case ZERO_EXTEND:
+ case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT:
+ case FIX: case UNSIGNED_FLOAT: case UNSIGNED_FIX: case ABS:
+ case SQRT: case FFS:
+ summarize_insn (XEXP (x, 0), sum, 0);
+ break;
+
+ default:
+ format_ptr = GET_RTX_FORMAT (GET_CODE (x));
+ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
+ switch (format_ptr[i])
+ {
+ case 'e':
+ summarize_insn (XEXP (x, i), sum, 0);
+ break;
+
+ case 'E':
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ summarize_insn (XVECEXP (x, i, j), sum, 0);
+ break;
+
+ case 'i':
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+}
+
+/* Ensure a sufficient number of `trapb' insns are in the code when
+ the user requests code with a trap precision of functions or
+ instructions.
+
+ In naive mode, when the user requests a trap-precision of
+ "instruction", a trapb is needed after every instruction that may
+ generate a trap. This ensures that the code is resumption safe but
+ it is also slow.
+
+ When optimizations are turned on, we delay issuing a trapb as long
+ as possible. In this context, a trap shadow is the sequence of
+ instructions that starts with a (potentially) trap generating
+ instruction and extends to the next trapb or call_pal instruction
+ (but GCC never generates call_pal by itself). We can delay (and
+ therefore sometimes omit) a trapb subject to the following
+ conditions:
+
+ (a) On entry to the trap shadow, if any Alpha register or memory
+ location contains a value that is used as an operand value by some
+ instruction in the trap shadow (live on entry), then no instruction
+ in the trap shadow may modify the register or memory location.
+
+ (b) Within the trap shadow, the computation of the base register
+ for a memory load or store instruction may not involve using the
+ result of an instruction that might generate an UNPREDICTABLE
+ result.
+
+ (c) Within the trap shadow, no register may be used more than once
+ as a destination register. (This is to make life easier for the
+ trap-handler.)
+
+ (d) The trap shadow may not include any branch instructions. */
+
+static void
+alpha_handle_trap_shadows (void)
+{
+ struct shadow_summary shadow;
+ int trap_pending, exception_nesting;
+ rtx i, n;
+
+ trap_pending = 0;
+ exception_nesting = 0;
+ shadow.used.i = 0;
+ shadow.used.fp = 0;
+ shadow.used.mem = 0;
+ shadow.defd = shadow.used;
+
+ for (i = get_insns (); i ; i = NEXT_INSN (i))
+ {
+ if (NOTE_P (i))
+ {
+ switch (NOTE_KIND (i))
+ {
+ case NOTE_INSN_EH_REGION_BEG:
+ exception_nesting++;
+ if (trap_pending)
+ goto close_shadow;
+ break;
+
+ case NOTE_INSN_EH_REGION_END:
+ exception_nesting--;
+ if (trap_pending)
+ goto close_shadow;
+ break;
+
+ case NOTE_INSN_EPILOGUE_BEG:
+ if (trap_pending && alpha_tp >= ALPHA_TP_FUNC)
+ goto close_shadow;
+ break;
+ }
+ }
+ else if (trap_pending)
+ {
+ if (alpha_tp == ALPHA_TP_FUNC)
+ {
+ if (JUMP_P (i)
+ && GET_CODE (PATTERN (i)) == RETURN)
+ goto close_shadow;
+ }
+ else if (alpha_tp == ALPHA_TP_INSN)
+ {
+ if (optimize > 0)
+ {
+ struct shadow_summary sum;
+
+ sum.used.i = 0;
+ sum.used.fp = 0;
+ sum.used.mem = 0;
+ sum.defd = sum.used;
+
+ switch (GET_CODE (i))
+ {
+ case INSN:
+ /* Annoyingly, get_attr_trap will die on these. */
+ if (GET_CODE (PATTERN (i)) == USE
+ || GET_CODE (PATTERN (i)) == CLOBBER)
+ break;
+
+ summarize_insn (PATTERN (i), &sum, 0);
+
+ if ((sum.defd.i & shadow.defd.i)
+ || (sum.defd.fp & shadow.defd.fp))
+ {
+ /* (c) would be violated */
+ goto close_shadow;
+ }
+
+ /* Combine shadow with summary of current insn: */
+ shadow.used.i |= sum.used.i;
+ shadow.used.fp |= sum.used.fp;
+ shadow.used.mem |= sum.used.mem;
+ shadow.defd.i |= sum.defd.i;
+ shadow.defd.fp |= sum.defd.fp;
+ shadow.defd.mem |= sum.defd.mem;
+
+ if ((sum.defd.i & shadow.used.i)
+ || (sum.defd.fp & shadow.used.fp)
+ || (sum.defd.mem & shadow.used.mem))
+ {
+ /* (a) would be violated (also takes care of (b)) */
+ gcc_assert (get_attr_trap (i) != TRAP_YES
+ || (!(sum.defd.i & sum.used.i)
+ && !(sum.defd.fp & sum.used.fp)));
+
+ goto close_shadow;
+ }
+ break;
+
+ case JUMP_INSN:
+ case CALL_INSN:
+ case CODE_LABEL:
+ goto close_shadow;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+ else
+ {
+ close_shadow:
+ n = emit_insn_before (gen_trapb (), i);
+ PUT_MODE (n, TImode);
+ PUT_MODE (i, TImode);
+ trap_pending = 0;
+ shadow.used.i = 0;
+ shadow.used.fp = 0;
+ shadow.used.mem = 0;
+ shadow.defd = shadow.used;
+ }
+ }
+ }
+
+ if ((exception_nesting > 0 || alpha_tp >= ALPHA_TP_FUNC)
+ && NONJUMP_INSN_P (i)
+ && GET_CODE (PATTERN (i)) != USE
+ && GET_CODE (PATTERN (i)) != CLOBBER
+ && get_attr_trap (i) == TRAP_YES)
+ {
+ if (optimize && !trap_pending)
+ summarize_insn (PATTERN (i), &shadow, 0);
+ trap_pending = 1;
+ }
+ }
+}
+
+/* Alpha can only issue instruction groups simultaneously if they are
+ suitably aligned. This is very processor-specific. */
+/* There are a number of entries in alphaev4_insn_pipe and alphaev5_insn_pipe
+ that are marked "fake". These instructions do not exist on that target,
+ but it is possible to see these insns with deranged combinations of
+ command-line options, such as "-mtune=ev4 -mmax". Instead of aborting,
+ choose a result at random. */
+
+enum alphaev4_pipe {
+ EV4_STOP = 0,
+ EV4_IB0 = 1,
+ EV4_IB1 = 2,
+ EV4_IBX = 4
+};
+
+enum alphaev5_pipe {
+ EV5_STOP = 0,
+ EV5_NONE = 1,
+ EV5_E01 = 2,
+ EV5_E0 = 4,
+ EV5_E1 = 8,
+ EV5_FAM = 16,
+ EV5_FA = 32,
+ EV5_FM = 64
+};
+
+static enum alphaev4_pipe
+alphaev4_insn_pipe (rtx insn)
+{
+ if (recog_memoized (insn) < 0)
+ return EV4_STOP;
+ if (get_attr_length (insn) != 4)
+ return EV4_STOP;
+
+ switch (get_attr_type (insn))
+ {
+ case TYPE_ILD:
+ case TYPE_LDSYM:
+ case TYPE_FLD:
+ case TYPE_LD_L:
+ return EV4_IBX;
+
+ case TYPE_IADD:
+ case TYPE_ILOG:
+ case TYPE_ICMOV:
+ case TYPE_ICMP:
+ case TYPE_FST:
+ case TYPE_SHIFT:
+ case TYPE_IMUL:
+ case TYPE_FBR:
+ case TYPE_MVI: /* fake */
+ return EV4_IB0;
+
+ case TYPE_IST:
+ case TYPE_MISC:
+ case TYPE_IBR:
+ case TYPE_JSR:
+ case TYPE_CALLPAL:
+ case TYPE_FCPYS:
+ case TYPE_FCMOV:
+ case TYPE_FADD:
+ case TYPE_FDIV:
+ case TYPE_FMUL:
+ case TYPE_ST_C:
+ case TYPE_MB:
+ case TYPE_FSQRT: /* fake */
+ case TYPE_FTOI: /* fake */
+ case TYPE_ITOF: /* fake */
+ return EV4_IB1;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+static enum alphaev5_pipe
+alphaev5_insn_pipe (rtx insn)
+{
+ if (recog_memoized (insn) < 0)
+ return EV5_STOP;
+ if (get_attr_length (insn) != 4)
+ return EV5_STOP;
+
+ switch (get_attr_type (insn))
+ {
+ case TYPE_ILD:
+ case TYPE_FLD:
+ case TYPE_LDSYM:
+ case TYPE_IADD:
+ case TYPE_ILOG:
+ case TYPE_ICMOV:
+ case TYPE_ICMP:
+ return EV5_E01;
+
+ case TYPE_IST:
+ case TYPE_FST:
+ case TYPE_SHIFT:
+ case TYPE_IMUL:
+ case TYPE_MISC:
+ case TYPE_MVI:
+ case TYPE_LD_L:
+ case TYPE_ST_C:
+ case TYPE_MB:
+ case TYPE_FTOI: /* fake */
+ case TYPE_ITOF: /* fake */
+ return EV5_E0;
+
+ case TYPE_IBR:
+ case TYPE_JSR:
+ case TYPE_CALLPAL:
+ return EV5_E1;
+
+ case TYPE_FCPYS:
+ return EV5_FAM;
+
+ case TYPE_FBR:
+ case TYPE_FCMOV:
+ case TYPE_FADD:
+ case TYPE_FDIV:
+ case TYPE_FSQRT: /* fake */
+ return EV5_FA;
+
+ case TYPE_FMUL:
+ return EV5_FM;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* IN_USE is a mask of the slots currently filled within the insn group.
+ The mask bits come from alphaev4_pipe above. If EV4_IBX is set, then
+ the insn in EV4_IB0 can be swapped by the hardware into EV4_IB1.
+
+ LEN is, of course, the length of the group in bytes. */
+
+static rtx
+alphaev4_next_group (rtx insn, int *pin_use, int *plen)
+{
+ int len, in_use;
+
+ len = in_use = 0;
+
+ if (! INSN_P (insn)
+ || GET_CODE (PATTERN (insn)) == CLOBBER
+ || GET_CODE (PATTERN (insn)) == USE)
+ goto next_and_done;
+
+ while (1)
+ {
+ enum alphaev4_pipe pipe;
+
+ pipe = alphaev4_insn_pipe (insn);
+ switch (pipe)
+ {
+ case EV4_STOP:
+ /* Force complex instructions to start new groups. */
+ if (in_use)
+ goto done;
+
+ /* If this is a completely unrecognized insn, it's an asm.
+ We don't know how long it is, so record length as -1 to
+ signal a needed realignment. */
+ if (recog_memoized (insn) < 0)
+ len = -1;
+ else
+ len = get_attr_length (insn);
+ goto next_and_done;
+
+ case EV4_IBX:
+ if (in_use & EV4_IB0)
+ {
+ if (in_use & EV4_IB1)
+ goto done;
+ in_use |= EV4_IB1;
+ }
+ else
+ in_use |= EV4_IB0 | EV4_IBX;
+ break;
+
+ case EV4_IB0:
+ if (in_use & EV4_IB0)
+ {
+ if (!(in_use & EV4_IBX) || (in_use & EV4_IB1))
+ goto done;
+ in_use |= EV4_IB1;
+ }
+ in_use |= EV4_IB0;
+ break;
+
+ case EV4_IB1:
+ if (in_use & EV4_IB1)
+ goto done;
+ in_use |= EV4_IB1;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ len += 4;
+
+ /* Haifa doesn't do well scheduling branches. */
+ if (JUMP_P (insn))
+ goto next_and_done;
+
+ next:
+ insn = next_nonnote_insn (insn);
+
+ if (!insn || ! INSN_P (insn))
+ goto done;
+
+ /* Let Haifa tell us where it thinks insn group boundaries are. */
+ if (GET_MODE (insn) == TImode)
+ goto done;
+
+ if (GET_CODE (insn) == CLOBBER || GET_CODE (insn) == USE)
+ goto next;
+ }
+
+ next_and_done:
+ insn = next_nonnote_insn (insn);
+
+ done:
+ *plen = len;
+ *pin_use = in_use;
+ return insn;
+}
+
+/* IN_USE is a mask of the slots currently filled within the insn group.
+ The mask bits come from alphaev5_pipe above. If EV5_E01 is set, then
+ the insn in EV5_E0 can be swapped by the hardware into EV5_E1.
+
+ LEN is, of course, the length of the group in bytes. */
+
+static rtx
+alphaev5_next_group (rtx insn, int *pin_use, int *plen)
+{
+ int len, in_use;
+
+ len = in_use = 0;
+
+ if (! INSN_P (insn)
+ || GET_CODE (PATTERN (insn)) == CLOBBER
+ || GET_CODE (PATTERN (insn)) == USE)
+ goto next_and_done;
+
+ while (1)
+ {
+ enum alphaev5_pipe pipe;
+
+ pipe = alphaev5_insn_pipe (insn);
+ switch (pipe)
+ {
+ case EV5_STOP:
+ /* Force complex instructions to start new groups. */
+ if (in_use)
+ goto done;
+
+ /* If this is a completely unrecognized insn, it's an asm.
+ We don't know how long it is, so record length as -1 to
+ signal a needed realignment. */
+ if (recog_memoized (insn) < 0)
+ len = -1;
+ else
+ len = get_attr_length (insn);
+ goto next_and_done;
+
+ /* ??? Most of the places below, we would like to assert never
+ happen, as it would indicate an error either in Haifa, or
+ in the scheduling description. Unfortunately, Haifa never
+ schedules the last instruction of the BB, so we don't have
+ an accurate TI bit to go off. */
+ case EV5_E01:
+ if (in_use & EV5_E0)
+ {
+ if (in_use & EV5_E1)
+ goto done;
+ in_use |= EV5_E1;
+ }
+ else
+ in_use |= EV5_E0 | EV5_E01;
+ break;
+
+ case EV5_E0:
+ if (in_use & EV5_E0)
+ {
+ if (!(in_use & EV5_E01) || (in_use & EV5_E1))
+ goto done;
+ in_use |= EV5_E1;
+ }
+ in_use |= EV5_E0;
+ break;
+
+ case EV5_E1:
+ if (in_use & EV5_E1)
+ goto done;
+ in_use |= EV5_E1;
+ break;
+
+ case EV5_FAM:
+ if (in_use & EV5_FA)
+ {
+ if (in_use & EV5_FM)
+ goto done;
+ in_use |= EV5_FM;
+ }
+ else
+ in_use |= EV5_FA | EV5_FAM;
+ break;
+
+ case EV5_FA:
+ if (in_use & EV5_FA)
+ goto done;
+ in_use |= EV5_FA;
+ break;
+
+ case EV5_FM:
+ if (in_use & EV5_FM)
+ goto done;
+ in_use |= EV5_FM;
+ break;
+
+ case EV5_NONE:
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ len += 4;
+
+ /* Haifa doesn't do well scheduling branches. */
+ /* ??? If this is predicted not-taken, slotting continues, except
+ that no more IBR, FBR, or JSR insns may be slotted. */
+ if (JUMP_P (insn))
+ goto next_and_done;
+
+ next:
+ insn = next_nonnote_insn (insn);
+
+ if (!insn || ! INSN_P (insn))
+ goto done;
+
+ /* Let Haifa tell us where it thinks insn group boundaries are. */
+ if (GET_MODE (insn) == TImode)
+ goto done;
+
+ if (GET_CODE (insn) == CLOBBER || GET_CODE (insn) == USE)
+ goto next;
+ }
+
+ next_and_done:
+ insn = next_nonnote_insn (insn);
+
+ done:
+ *plen = len;
+ *pin_use = in_use;
+ return insn;
+}
+
+static rtx
+alphaev4_next_nop (int *pin_use)
+{
+ int in_use = *pin_use;
+ rtx nop;
+
+ if (!(in_use & EV4_IB0))
+ {
+ in_use |= EV4_IB0;
+ nop = gen_nop ();
+ }
+ else if ((in_use & (EV4_IBX|EV4_IB1)) == EV4_IBX)
+ {
+ in_use |= EV4_IB1;
+ nop = gen_nop ();
+ }
+ else if (TARGET_FP && !(in_use & EV4_IB1))
+ {
+ in_use |= EV4_IB1;
+ nop = gen_fnop ();
+ }
+ else
+ nop = gen_unop ();
+
+ *pin_use = in_use;
+ return nop;
+}
+
+static rtx
+alphaev5_next_nop (int *pin_use)
+{
+ int in_use = *pin_use;
+ rtx nop;
+
+ if (!(in_use & EV5_E1))
+ {
+ in_use |= EV5_E1;
+ nop = gen_nop ();
+ }
+ else if (TARGET_FP && !(in_use & EV5_FA))
+ {
+ in_use |= EV5_FA;
+ nop = gen_fnop ();
+ }
+ else if (TARGET_FP && !(in_use & EV5_FM))
+ {
+ in_use |= EV5_FM;
+ nop = gen_fnop ();
+ }
+ else
+ nop = gen_unop ();
+
+ *pin_use = in_use;
+ return nop;
+}
+
+/* The instruction group alignment main loop. */
+
+static void
+alpha_align_insns (unsigned int max_align,
+ rtx (*next_group) (rtx, int *, int *),
+ rtx (*next_nop) (int *))
+{
+ /* ALIGN is the known alignment for the insn group. */
+ unsigned int align;
+ /* OFS is the offset of the current insn in the insn group. */
+ int ofs;
+ int prev_in_use, in_use, len, ldgp;
+ rtx i, next;
+
+ /* Let shorten branches care for assigning alignments to code labels. */
+ shorten_branches (get_insns ());
+
+ if (align_functions < 4)
+ align = 4;
+ else if ((unsigned int) align_functions < max_align)
+ align = align_functions;
+ else
+ align = max_align;
+
+ ofs = prev_in_use = 0;
+ i = get_insns ();
+ if (NOTE_P (i))
+ i = next_nonnote_insn (i);
+
+ ldgp = alpha_function_needs_gp ? 8 : 0;
+
+ while (i)
+ {
+ next = (*next_group) (i, &in_use, &len);
+
+ /* When we see a label, resync alignment etc. */
+ if (LABEL_P (i))
+ {
+ unsigned int new_align = 1 << label_to_alignment (i);
+
+ if (new_align >= align)
+ {
+ align = new_align < max_align ? new_align : max_align;
+ ofs = 0;
+ }
+
+ else if (ofs & (new_align-1))
+ ofs = (ofs | (new_align-1)) + 1;
+ gcc_assert (!len);
+ }
+
+ /* Handle complex instructions special. */
+ else if (in_use == 0)
+ {
+ /* Asms will have length < 0. This is a signal that we have
+ lost alignment knowledge. Assume, however, that the asm
+ will not mis-align instructions. */
+ if (len < 0)
+ {
+ ofs = 0;
+ align = 4;
+ len = 0;
+ }
+ }
+
+ /* If the known alignment is smaller than the recognized insn group,
+ realign the output. */
+ else if ((int) align < len)
+ {
+ unsigned int new_log_align = len > 8 ? 4 : 3;
+ rtx prev, where;
+
+ where = prev = prev_nonnote_insn (i);
+ if (!where || !LABEL_P (where))
+ where = i;
+
+ /* Can't realign between a call and its gp reload. */
+ if (! (TARGET_EXPLICIT_RELOCS
+ && prev && CALL_P (prev)))
+ {
+ emit_insn_before (gen_realign (GEN_INT (new_log_align)), where);
+ align = 1 << new_log_align;
+ ofs = 0;
+ }
+ }
+
+ /* We may not insert padding inside the initial ldgp sequence. */
+ else if (ldgp > 0)
+ ldgp -= len;
+
+ /* If the group won't fit in the same INT16 as the previous,
+ we need to add padding to keep the group together. Rather
+ than simply leaving the insn filling to the assembler, we
+ can make use of the knowledge of what sorts of instructions
+ were issued in the previous group to make sure that all of
+ the added nops are really free. */
+ else if (ofs + len > (int) align)
+ {
+ int nop_count = (align - ofs) / 4;
+ rtx where;
+
+ /* Insert nops before labels, branches, and calls to truly merge
+ the execution of the nops with the previous instruction group. */
+ where = prev_nonnote_insn (i);
+ if (where)
+ {
+ if (LABEL_P (where))
+ {
+ rtx where2 = prev_nonnote_insn (where);
+ if (where2 && JUMP_P (where2))
+ where = where2;
+ }
+ else if (NONJUMP_INSN_P (where))
+ where = i;
+ }
+ else
+ where = i;
+
+ do
+ emit_insn_before ((*next_nop)(&prev_in_use), where);
+ while (--nop_count);
+ ofs = 0;
+ }
+
+ ofs = (ofs + len) & (align - 1);
+ prev_in_use = in_use;
+ i = next;
+ }
+}
+
+/* Insert an unop between sibcall or noreturn function call and GP load. */
+
+static void
+alpha_pad_function_end (void)
+{
+ rtx insn, next;
+
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ {
+ if (!CALL_P (insn)
+ || !(SIBLING_CALL_P (insn)
+ || find_reg_note (insn, REG_NORETURN, NULL_RTX)))
+ continue;
+
+ /* Make sure we do not split a call and its corresponding
+ CALL_ARG_LOCATION note. */
+ next = NEXT_INSN (insn);
+ if (next == NULL)
+ continue;
+ if (BARRIER_P (next))
+ {
+ next = NEXT_INSN (next);
+ if (next == NULL)
+ continue;
+ }
+ if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
+ insn = next;
+
+ next = next_active_insn (insn);
+ if (next)
+ {
+ rtx pat = PATTERN (next);
+
+ if (GET_CODE (pat) == SET
+ && GET_CODE (SET_SRC (pat)) == UNSPEC_VOLATILE
+ && XINT (SET_SRC (pat), 1) == UNSPECV_LDGP1)
+ emit_insn_after (gen_unop (), insn);
+ }
+ }
+}
+
+/* Machine dependent reorg pass. */
+
+static void
+alpha_reorg (void)
+{
+ /* Workaround for a linker error that triggers when an exception
+ handler immediatelly follows a sibcall or a noreturn function.
+
+In the sibcall case:
+
+ The instruction stream from an object file:
+
+ 1d8: 00 00 fb 6b jmp (t12)
+ 1dc: 00 00 ba 27 ldah gp,0(ra)
+ 1e0: 00 00 bd 23 lda gp,0(gp)
+ 1e4: 00 00 7d a7 ldq t12,0(gp)
+ 1e8: 00 40 5b 6b jsr ra,(t12),1ec <__funcZ+0x1ec>
+
+ was converted in the final link pass to:
+
+ 12003aa88: 67 fa ff c3 br 120039428 <...>
+ 12003aa8c: 00 00 fe 2f unop
+ 12003aa90: 00 00 fe 2f unop
+ 12003aa94: 48 83 7d a7 ldq t12,-31928(gp)
+ 12003aa98: 00 40 5b 6b jsr ra,(t12),12003aa9c <__func+0x1ec>
+
+And in the noreturn case:
+
+ The instruction stream from an object file:
+
+ 54: 00 40 5b 6b jsr ra,(t12),58 <__func+0x58>
+ 58: 00 00 ba 27 ldah gp,0(ra)
+ 5c: 00 00 bd 23 lda gp,0(gp)
+ 60: 00 00 7d a7 ldq t12,0(gp)
+ 64: 00 40 5b 6b jsr ra,(t12),68 <__func+0x68>
+
+ was converted in the final link pass to:
+
+ fdb24: a0 03 40 d3 bsr ra,fe9a8 <_called_func+0x8>
+ fdb28: 00 00 fe 2f unop
+ fdb2c: 00 00 fe 2f unop
+ fdb30: 30 82 7d a7 ldq t12,-32208(gp)
+ fdb34: 00 40 5b 6b jsr ra,(t12),fdb38 <__func+0x68>
+
+ GP load instructions were wrongly cleared by the linker relaxation
+ pass. This workaround prevents removal of GP loads by inserting
+ an unop instruction between a sibcall or noreturn function call and
+ exception handler prologue. */
+
+ if (current_function_has_exception_handlers ())
+ alpha_pad_function_end ();
+
+ if (alpha_tp != ALPHA_TP_PROG || flag_exceptions)
+ alpha_handle_trap_shadows ();
+
+ /* Due to the number of extra trapb insns, don't bother fixing up
+ alignment when trap precision is instruction. Moreover, we can
+ only do our job when sched2 is run. */
+ if (optimize && !optimize_size
+ && alpha_tp != ALPHA_TP_INSN
+ && flag_schedule_insns_after_reload)
+ {
+ if (alpha_tune == PROCESSOR_EV4)
+ alpha_align_insns (8, alphaev4_next_group, alphaev4_next_nop);
+ else if (alpha_tune == PROCESSOR_EV5)
+ alpha_align_insns (16, alphaev5_next_group, alphaev5_next_nop);
+ }
+}
+
+static void
+alpha_file_start (void)
+{
+ default_file_start ();
+
+ fputs ("\t.set noreorder\n", asm_out_file);
+ fputs ("\t.set volatile\n", asm_out_file);
+ if (TARGET_ABI_OSF)
+ fputs ("\t.set noat\n", asm_out_file);
+ if (TARGET_EXPLICIT_RELOCS)
+ fputs ("\t.set nomacro\n", asm_out_file);
+ if (TARGET_SUPPORT_ARCH | TARGET_BWX | TARGET_MAX | TARGET_FIX | TARGET_CIX)
+ {
+ const char *arch;
+
+ if (alpha_cpu == PROCESSOR_EV6 || TARGET_FIX || TARGET_CIX)
+ arch = "ev6";
+ else if (TARGET_MAX)
+ arch = "pca56";
+ else if (TARGET_BWX)
+ arch = "ev56";
+ else if (alpha_cpu == PROCESSOR_EV5)
+ arch = "ev5";
+ else
+ arch = "ev4";
+
+ fprintf (asm_out_file, "\t.arch %s\n", arch);
+ }
+}
+
+/* Since we don't have a .dynbss section, we should not allow global
+ relocations in the .rodata section. */
+
+static int
+alpha_elf_reloc_rw_mask (void)
+{
+ return flag_pic ? 3 : 2;
+}
+
+/* Return a section for X. The only special thing we do here is to
+ honor small data. */
+
+static section *
+alpha_elf_select_rtx_section (enum machine_mode mode, rtx x,
+ unsigned HOST_WIDE_INT align)
+{
+ if (TARGET_SMALL_DATA && GET_MODE_SIZE (mode) <= g_switch_value)
+ /* ??? Consider using mergeable sdata sections. */
+ return sdata_section;
+ else
+ return default_elf_select_rtx_section (mode, x, align);
+}
+
+static unsigned int
+alpha_elf_section_type_flags (tree decl, const char *name, int reloc)
+{
+ unsigned int flags = 0;
+
+ if (strcmp (name, ".sdata") == 0
+ || strncmp (name, ".sdata.", 7) == 0
+ || strncmp (name, ".gnu.linkonce.s.", 16) == 0
+ || strcmp (name, ".sbss") == 0
+ || strncmp (name, ".sbss.", 6) == 0
+ || strncmp (name, ".gnu.linkonce.sb.", 17) == 0)
+ flags = SECTION_SMALL;
+
+ flags |= default_section_type_flags (decl, name, reloc);
+ return flags;
+}
+
+/* Structure to collect function names for final output in link section. */
+/* Note that items marked with GTY can't be ifdef'ed out. */
+
+enum reloc_kind
+{
+ KIND_LINKAGE,
+ KIND_CODEADDR
+};
+
+struct GTY(()) alpha_links
+{
+ rtx func;
+ rtx linkage;
+ enum reloc_kind rkind;
+};
+
+#if TARGET_ABI_OPEN_VMS
+
+/* Return the VMS argument type corresponding to MODE. */
+
+enum avms_arg_type
+alpha_arg_type (enum machine_mode mode)
+{
+ switch (mode)
+ {
+ case SFmode:
+ return TARGET_FLOAT_VAX ? FF : FS;
+ case DFmode:
+ return TARGET_FLOAT_VAX ? FD : FT;
+ default:
+ return I64;
+ }
+}
+
+/* Return an rtx for an integer representing the VMS Argument Information
+ register value. */
+
+rtx
+alpha_arg_info_reg_val (CUMULATIVE_ARGS cum)
+{
+ unsigned HOST_WIDE_INT regval = cum.num_args;
+ int i;
+
+ for (i = 0; i < 6; i++)
+ regval |= ((int) cum.atypes[i]) << (i * 3 + 8);
+
+ return GEN_INT (regval);
+}
+
+
+/* Return a SYMBOL_REF representing the reference to the .linkage entry
+ of function FUNC built for calls made from CFUNDECL. LFLAG is 1 if
+ this is the reference to the linkage pointer value, 0 if this is the
+ reference to the function entry value. RFLAG is 1 if this a reduced
+ reference (code address only), 0 if this is a full reference. */
+
+rtx
+alpha_use_linkage (rtx func, bool lflag, bool rflag)
+{
+ struct alpha_links *al = NULL;
+ const char *name = XSTR (func, 0);
+
+ if (cfun->machine->links)
+ {
+ splay_tree_node lnode;
+
+ /* Is this name already defined? */
+ lnode = splay_tree_lookup (cfun->machine->links, (splay_tree_key) name);
+ if (lnode)
+ al = (struct alpha_links *) lnode->value;
+ }
+ else
+ cfun->machine->links = splay_tree_new_ggc
+ ((splay_tree_compare_fn) strcmp,
+ ggc_alloc_splay_tree_str_alpha_links_splay_tree_s,
+ ggc_alloc_splay_tree_str_alpha_links_splay_tree_node_s);
+
+ if (al == NULL)
+ {
+ size_t buf_len;
+ char *linksym;
+ tree id;
+
+ if (name[0] == '*')
+ name++;
+
+ /* Follow transparent alias, as this is used for CRTL translations. */
+ id = maybe_get_identifier (name);
+ if (id)
+ {
+ while (IDENTIFIER_TRANSPARENT_ALIAS (id))
+ id = TREE_CHAIN (id);
+ name = IDENTIFIER_POINTER (id);
+ }
+
+ buf_len = strlen (name) + 8 + 9;
+ linksym = (char *) alloca (buf_len);
+ snprintf (linksym, buf_len, "$%d..%s..lk", cfun->funcdef_no, name);
+
+ al = ggc_alloc_alpha_links ();
+ al->func = func;
+ al->linkage = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (linksym));
+
+ splay_tree_insert (cfun->machine->links,
+ (splay_tree_key) ggc_strdup (name),
+ (splay_tree_value) al);
+ }
+
+ al->rkind = rflag ? KIND_CODEADDR : KIND_LINKAGE;
+
+ if (lflag)
+ return gen_rtx_MEM (Pmode, plus_constant (Pmode, al->linkage, 8));
+ else
+ return al->linkage;
+}
+
+static int
+alpha_write_one_linkage (splay_tree_node node, void *data)
+{
+ const char *const name = (const char *) node->key;
+ struct alpha_links *link = (struct alpha_links *) node->value;
+ FILE *stream = (FILE *) data;
+
+ ASM_OUTPUT_INTERNAL_LABEL (stream, XSTR (link->linkage, 0));
+ if (link->rkind == KIND_CODEADDR)
+ {
+ /* External and used, request code address. */
+ fprintf (stream, "\t.code_address ");
+ }
+ else
+ {
+ if (!SYMBOL_REF_EXTERNAL_P (link->func)
+ && SYMBOL_REF_LOCAL_P (link->func))
+ {
+ /* Locally defined, build linkage pair. */
+ fprintf (stream, "\t.quad %s..en\n", name);
+ fprintf (stream, "\t.quad ");
+ }
+ else
+ {
+ /* External, request linkage pair. */
+ fprintf (stream, "\t.linkage ");
+ }
+ }
+ assemble_name (stream, name);
+ fputs ("\n", stream);
+
+ return 0;
+}
+
+static void
+alpha_write_linkage (FILE *stream, const char *funname)
+{
+ fprintf (stream, "\t.link\n");
+ fprintf (stream, "\t.align 3\n");
+ in_section = NULL;
+
+#ifdef TARGET_VMS_CRASH_DEBUG
+ fputs ("\t.name ", stream);
+ assemble_name (stream, funname);
+ fputs ("..na\n", stream);
+#endif
+
+ ASM_OUTPUT_LABEL (stream, funname);
+ fprintf (stream, "\t.pdesc ");
+ assemble_name (stream, funname);
+ fprintf (stream, "..en,%s\n",
+ alpha_procedure_type == PT_STACK ? "stack"
+ : alpha_procedure_type == PT_REGISTER ? "reg" : "null");
+
+ if (cfun->machine->links)
+ {
+ splay_tree_foreach (cfun->machine->links, alpha_write_one_linkage, stream);
+ /* splay_tree_delete (func->links); */
+ }
+}
+
+/* Switch to an arbitrary section NAME with attributes as specified
+ by FLAGS. ALIGN specifies any known alignment requirements for
+ the section; 0 if the default should be used. */
+
+static void
+vms_asm_named_section (const char *name, unsigned int flags,
+ tree decl ATTRIBUTE_UNUSED)
+{
+ fputc ('\n', asm_out_file);
+ fprintf (asm_out_file, ".section\t%s", name);
+
+ if (flags & SECTION_DEBUG)
+ fprintf (asm_out_file, ",NOWRT");
+
+ fputc ('\n', asm_out_file);
+}
+
+/* Record an element in the table of global constructors. SYMBOL is
+ a SYMBOL_REF of the function to be called; PRIORITY is a number
+ between 0 and MAX_INIT_PRIORITY.
+
+ Differs from default_ctors_section_asm_out_constructor in that the
+ width of the .ctors entry is always 64 bits, rather than the 32 bits
+ used by a normal pointer. */
+
+static void
+vms_asm_out_constructor (rtx symbol, int priority ATTRIBUTE_UNUSED)
+{
+ switch_to_section (ctors_section);
+ assemble_align (BITS_PER_WORD);
+ assemble_integer (symbol, UNITS_PER_WORD, BITS_PER_WORD, 1);
+}
+
+static void
+vms_asm_out_destructor (rtx symbol, int priority ATTRIBUTE_UNUSED)
+{
+ switch_to_section (dtors_section);
+ assemble_align (BITS_PER_WORD);
+ assemble_integer (symbol, UNITS_PER_WORD, BITS_PER_WORD, 1);
+}
+#else
+rtx
+alpha_use_linkage (rtx func ATTRIBUTE_UNUSED,
+ bool lflag ATTRIBUTE_UNUSED,
+ bool rflag ATTRIBUTE_UNUSED)
+{
+ return NULL_RTX;
+}
+
+#endif /* TARGET_ABI_OPEN_VMS */
+
+static void
+alpha_init_libfuncs (void)
+{
+ if (TARGET_ABI_OPEN_VMS)
+ {
+ /* Use the VMS runtime library functions for division and
+ remainder. */
+ set_optab_libfunc (sdiv_optab, SImode, "OTS$DIV_I");
+ set_optab_libfunc (sdiv_optab, DImode, "OTS$DIV_L");
+ set_optab_libfunc (udiv_optab, SImode, "OTS$DIV_UI");
+ set_optab_libfunc (udiv_optab, DImode, "OTS$DIV_UL");
+ set_optab_libfunc (smod_optab, SImode, "OTS$REM_I");
+ set_optab_libfunc (smod_optab, DImode, "OTS$REM_L");
+ set_optab_libfunc (umod_optab, SImode, "OTS$REM_UI");
+ set_optab_libfunc (umod_optab, DImode, "OTS$REM_UL");
+ abort_libfunc = init_one_libfunc ("decc$abort");
+ memcmp_libfunc = init_one_libfunc ("decc$memcmp");
+#ifdef MEM_LIBFUNCS_INIT
+ MEM_LIBFUNCS_INIT;
+#endif
+ }
+}
+
+/* On the Alpha, we use this to disable the floating-point registers
+ when they don't exist. */
+
+static void
+alpha_conditional_register_usage (void)
+{
+ int i;
+ if (! TARGET_FPREGS)
+ for (i = 32; i < 63; i++)
+ fixed_regs[i] = call_used_regs[i] = 1;
+}
+
+/* Canonicalize a comparison from one we don't have to one we do have. */
+
+static void
+alpha_canonicalize_comparison (int *code, rtx *op0, rtx *op1,
+ bool op0_preserve_value)
+{
+ if (!op0_preserve_value
+ && (*code == GE || *code == GT || *code == GEU || *code == GTU)
+ && (REG_P (*op1) || *op1 == const0_rtx))
+ {
+ rtx tem = *op0;
+ *op0 = *op1;
+ *op1 = tem;
+ *code = (int)swap_condition ((enum rtx_code)*code);
+ }
+
+ if ((*code == LT || *code == LTU)
+ && CONST_INT_P (*op1) && INTVAL (*op1) == 256)
+ {
+ *code = *code == LT ? LE : LEU;
+ *op1 = GEN_INT (255);
+ }
+}
+
+/* Initialize the GCC target structure. */
+#if TARGET_ABI_OPEN_VMS
+# undef TARGET_ATTRIBUTE_TABLE
+# define TARGET_ATTRIBUTE_TABLE vms_attribute_table
+# undef TARGET_CAN_ELIMINATE
+# define TARGET_CAN_ELIMINATE alpha_vms_can_eliminate
+#endif
+
+#undef TARGET_IN_SMALL_DATA_P
+#define TARGET_IN_SMALL_DATA_P alpha_in_small_data_p
+
+#undef TARGET_ASM_ALIGNED_HI_OP
+#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
+#undef TARGET_ASM_ALIGNED_DI_OP
+#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
+
+/* Default unaligned ops are provided for ELF systems. To get unaligned
+ data for non-ELF systems, we have to turn off auto alignment. */
+#if TARGET_ABI_OPEN_VMS
+#undef TARGET_ASM_UNALIGNED_HI_OP
+#define TARGET_ASM_UNALIGNED_HI_OP "\t.align 0\n\t.word\t"
+#undef TARGET_ASM_UNALIGNED_SI_OP
+#define TARGET_ASM_UNALIGNED_SI_OP "\t.align 0\n\t.long\t"
+#undef TARGET_ASM_UNALIGNED_DI_OP
+#define TARGET_ASM_UNALIGNED_DI_OP "\t.align 0\n\t.quad\t"
+#endif
+
+#undef TARGET_ASM_RELOC_RW_MASK
+#define TARGET_ASM_RELOC_RW_MASK alpha_elf_reloc_rw_mask
+#undef TARGET_ASM_SELECT_RTX_SECTION
+#define TARGET_ASM_SELECT_RTX_SECTION alpha_elf_select_rtx_section
+#undef TARGET_SECTION_TYPE_FLAGS
+#define TARGET_SECTION_TYPE_FLAGS alpha_elf_section_type_flags
+
+#undef TARGET_ASM_FUNCTION_END_PROLOGUE
+#define TARGET_ASM_FUNCTION_END_PROLOGUE alpha_output_function_end_prologue
+
+#undef TARGET_INIT_LIBFUNCS
+#define TARGET_INIT_LIBFUNCS alpha_init_libfuncs
+
+#undef TARGET_LEGITIMIZE_ADDRESS
+#define TARGET_LEGITIMIZE_ADDRESS alpha_legitimize_address
+#undef TARGET_MODE_DEPENDENT_ADDRESS_P
+#define TARGET_MODE_DEPENDENT_ADDRESS_P alpha_mode_dependent_address_p
+
+#undef TARGET_ASM_FILE_START
+#define TARGET_ASM_FILE_START alpha_file_start
+
+#undef TARGET_SCHED_ADJUST_COST
+#define TARGET_SCHED_ADJUST_COST alpha_adjust_cost
+#undef TARGET_SCHED_ISSUE_RATE
+#define TARGET_SCHED_ISSUE_RATE alpha_issue_rate
+#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
+#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
+ alpha_multipass_dfa_lookahead
+
+#undef TARGET_HAVE_TLS
+#define TARGET_HAVE_TLS HAVE_AS_TLS
+
+#undef TARGET_BUILTIN_DECL
+#define TARGET_BUILTIN_DECL alpha_builtin_decl
+#undef TARGET_INIT_BUILTINS
+#define TARGET_INIT_BUILTINS alpha_init_builtins
+#undef TARGET_EXPAND_BUILTIN
+#define TARGET_EXPAND_BUILTIN alpha_expand_builtin
+#undef TARGET_FOLD_BUILTIN
+#define TARGET_FOLD_BUILTIN alpha_fold_builtin
+
+#undef TARGET_FUNCTION_OK_FOR_SIBCALL
+#define TARGET_FUNCTION_OK_FOR_SIBCALL alpha_function_ok_for_sibcall
+#undef TARGET_CANNOT_COPY_INSN_P
+#define TARGET_CANNOT_COPY_INSN_P alpha_cannot_copy_insn_p
+#undef TARGET_LEGITIMATE_CONSTANT_P
+#define TARGET_LEGITIMATE_CONSTANT_P alpha_legitimate_constant_p
+#undef TARGET_CANNOT_FORCE_CONST_MEM
+#define TARGET_CANNOT_FORCE_CONST_MEM alpha_cannot_force_const_mem
+
+#if TARGET_ABI_OSF
+#undef TARGET_ASM_OUTPUT_MI_THUNK
+#define TARGET_ASM_OUTPUT_MI_THUNK alpha_output_mi_thunk_osf
+#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
+#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
+#undef TARGET_STDARG_OPTIMIZE_HOOK
+#define TARGET_STDARG_OPTIMIZE_HOOK alpha_stdarg_optimize_hook
+#endif
+
+/* Use 16-bits anchor. */
+#undef TARGET_MIN_ANCHOR_OFFSET
+#define TARGET_MIN_ANCHOR_OFFSET -0x7fff - 1
+#undef TARGET_MAX_ANCHOR_OFFSET
+#define TARGET_MAX_ANCHOR_OFFSET 0x7fff
+#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
+#define TARGET_USE_BLOCKS_FOR_CONSTANT_P hook_bool_mode_const_rtx_true
+
+#undef TARGET_RTX_COSTS
+#define TARGET_RTX_COSTS alpha_rtx_costs
+#undef TARGET_ADDRESS_COST
+#define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
+
+#undef TARGET_MACHINE_DEPENDENT_REORG
+#define TARGET_MACHINE_DEPENDENT_REORG alpha_reorg
+
+#undef TARGET_PROMOTE_FUNCTION_MODE
+#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
+#undef TARGET_PROMOTE_PROTOTYPES
+#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_false
+#undef TARGET_RETURN_IN_MEMORY
+#define TARGET_RETURN_IN_MEMORY alpha_return_in_memory
+#undef TARGET_PASS_BY_REFERENCE
+#define TARGET_PASS_BY_REFERENCE alpha_pass_by_reference
+#undef TARGET_SETUP_INCOMING_VARARGS
+#define TARGET_SETUP_INCOMING_VARARGS alpha_setup_incoming_varargs
+#undef TARGET_STRICT_ARGUMENT_NAMING
+#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
+#undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
+#define TARGET_PRETEND_OUTGOING_VARARGS_NAMED hook_bool_CUMULATIVE_ARGS_true
+#undef TARGET_SPLIT_COMPLEX_ARG
+#define TARGET_SPLIT_COMPLEX_ARG alpha_split_complex_arg
+#undef TARGET_GIMPLIFY_VA_ARG_EXPR
+#define TARGET_GIMPLIFY_VA_ARG_EXPR alpha_gimplify_va_arg
+#undef TARGET_ARG_PARTIAL_BYTES
+#define TARGET_ARG_PARTIAL_BYTES alpha_arg_partial_bytes
+#undef TARGET_FUNCTION_ARG
+#define TARGET_FUNCTION_ARG alpha_function_arg
+#undef TARGET_FUNCTION_ARG_ADVANCE
+#define TARGET_FUNCTION_ARG_ADVANCE alpha_function_arg_advance
+#undef TARGET_TRAMPOLINE_INIT
+#define TARGET_TRAMPOLINE_INIT alpha_trampoline_init
+
+#undef TARGET_INSTANTIATE_DECLS
+#define TARGET_INSTANTIATE_DECLS alpha_instantiate_decls
+
+#undef TARGET_SECONDARY_RELOAD
+#define TARGET_SECONDARY_RELOAD alpha_secondary_reload
+
+#undef TARGET_SCALAR_MODE_SUPPORTED_P
+#define TARGET_SCALAR_MODE_SUPPORTED_P alpha_scalar_mode_supported_p
+#undef TARGET_VECTOR_MODE_SUPPORTED_P
+#define TARGET_VECTOR_MODE_SUPPORTED_P alpha_vector_mode_supported_p
+
+#undef TARGET_BUILD_BUILTIN_VA_LIST
+#define TARGET_BUILD_BUILTIN_VA_LIST alpha_build_builtin_va_list
+
+#undef TARGET_EXPAND_BUILTIN_VA_START
+#define TARGET_EXPAND_BUILTIN_VA_START alpha_va_start
+
+/* The Alpha architecture does not require sequential consistency. See
+ http://www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html
+ for an example of how it can be violated in practice. */
+#undef TARGET_RELAXED_ORDERING
+#define TARGET_RELAXED_ORDERING true
+
+#undef TARGET_OPTION_OVERRIDE
+#define TARGET_OPTION_OVERRIDE alpha_option_override
+
+#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING
+#undef TARGET_MANGLE_TYPE
+#define TARGET_MANGLE_TYPE alpha_mangle_type
+#endif
+
+#undef TARGET_LEGITIMATE_ADDRESS_P
+#define TARGET_LEGITIMATE_ADDRESS_P alpha_legitimate_address_p
+
+#undef TARGET_CONDITIONAL_REGISTER_USAGE
+#define TARGET_CONDITIONAL_REGISTER_USAGE alpha_conditional_register_usage
+
+#undef TARGET_CANONICALIZE_COMPARISON
+#define TARGET_CANONICALIZE_COMPARISON alpha_canonicalize_comparison
+
+struct gcc_target targetm = TARGET_INITIALIZER;
+
+
+#include "gt-alpha.h"