aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/caller-save.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/caller-save.c')
-rw-r--r--gcc-4.9/gcc/caller-save.c1446
1 files changed, 1446 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/caller-save.c b/gcc-4.9/gcc/caller-save.c
new file mode 100644
index 000000000..59917a856
--- /dev/null
+++ b/gcc-4.9/gcc/caller-save.c
@@ -0,0 +1,1446 @@
+/* Save and restore call-clobbered registers which are live across a call.
+ Copyright (C) 1989-2014 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "regs.h"
+#include "insn-config.h"
+#include "flags.h"
+#include "hard-reg-set.h"
+#include "recog.h"
+#include "basic-block.h"
+#include "df.h"
+#include "reload.h"
+#include "function.h"
+#include "expr.h"
+#include "diagnostic-core.h"
+#include "tm_p.h"
+#include "addresses.h"
+#include "ggc.h"
+#include "dumpfile.h"
+
+#define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
+
+#define regno_save_mode \
+ (this_target_reload->x_regno_save_mode)
+#define cached_reg_save_code \
+ (this_target_reload->x_cached_reg_save_code)
+#define cached_reg_restore_code \
+ (this_target_reload->x_cached_reg_restore_code)
+
+/* For each hard register, a place on the stack where it can be saved,
+ if needed. */
+
+static rtx
+ regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
+
+/* The number of elements in the subsequent array. */
+static int save_slots_num;
+
+/* Allocated slots so far. */
+static rtx save_slots[FIRST_PSEUDO_REGISTER];
+
+/* Set of hard regs currently residing in save area (during insn scan). */
+
+static HARD_REG_SET hard_regs_saved;
+
+/* Number of registers currently in hard_regs_saved. */
+
+static int n_regs_saved;
+
+/* Computed by mark_referenced_regs, all regs referenced in a given
+ insn. */
+static HARD_REG_SET referenced_regs;
+
+
+typedef void refmarker_fn (rtx *loc, enum machine_mode mode, int hardregno,
+ void *mark_arg);
+
+static int reg_save_code (int, enum machine_mode);
+static int reg_restore_code (int, enum machine_mode);
+
+struct saved_hard_reg;
+static void initiate_saved_hard_regs (void);
+static void new_saved_hard_reg (int, int);
+static void finish_saved_hard_regs (void);
+static int saved_hard_reg_compare_func (const void *, const void *);
+
+static void mark_set_regs (rtx, const_rtx, void *);
+static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg);
+static refmarker_fn mark_reg_as_referenced;
+static refmarker_fn replace_reg_with_saved_mem;
+static int insert_save (struct insn_chain *, int, int, HARD_REG_SET *,
+ enum machine_mode *);
+static int insert_restore (struct insn_chain *, int, int, int,
+ enum machine_mode *);
+static struct insn_chain *insert_one_insn (struct insn_chain *, int, int,
+ rtx);
+static void add_stored_regs (rtx, const_rtx, void *);
+
+
+
+static GTY(()) rtx savepat;
+static GTY(()) rtx restpat;
+static GTY(()) rtx test_reg;
+static GTY(()) rtx test_mem;
+static GTY(()) rtx saveinsn;
+static GTY(()) rtx restinsn;
+
+/* Return the INSN_CODE used to save register REG in mode MODE. */
+static int
+reg_save_code (int reg, enum machine_mode mode)
+{
+ bool ok;
+ if (cached_reg_save_code[reg][mode])
+ return cached_reg_save_code[reg][mode];
+ if (!HARD_REGNO_MODE_OK (reg, mode))
+ {
+ /* Depending on how HARD_REGNO_MODE_OK is defined, range propagation
+ might deduce here that reg >= FIRST_PSEUDO_REGISTER. So the assert
+ below silences a warning. */
+ gcc_assert (reg < FIRST_PSEUDO_REGISTER);
+ cached_reg_save_code[reg][mode] = -1;
+ cached_reg_restore_code[reg][mode] = -1;
+ return -1;
+ }
+
+ /* Update the register number and modes of the register
+ and memory operand. */
+ SET_REGNO_RAW (test_reg, reg);
+ PUT_MODE (test_reg, mode);
+ PUT_MODE (test_mem, mode);
+
+ /* Force re-recognition of the modified insns. */
+ INSN_CODE (saveinsn) = -1;
+ INSN_CODE (restinsn) = -1;
+
+ cached_reg_save_code[reg][mode] = recog_memoized (saveinsn);
+ cached_reg_restore_code[reg][mode] = recog_memoized (restinsn);
+
+ /* Now extract both insns and see if we can meet their
+ constraints. */
+ ok = (cached_reg_save_code[reg][mode] != -1
+ && cached_reg_restore_code[reg][mode] != -1);
+ if (ok)
+ {
+ extract_insn (saveinsn);
+ ok = constrain_operands (1);
+ extract_insn (restinsn);
+ ok &= constrain_operands (1);
+ }
+
+ if (! ok)
+ {
+ cached_reg_save_code[reg][mode] = -1;
+ cached_reg_restore_code[reg][mode] = -1;
+ }
+ gcc_assert (cached_reg_save_code[reg][mode]);
+ return cached_reg_save_code[reg][mode];
+}
+
+/* Return the INSN_CODE used to restore register REG in mode MODE. */
+static int
+reg_restore_code (int reg, enum machine_mode mode)
+{
+ if (cached_reg_restore_code[reg][mode])
+ return cached_reg_restore_code[reg][mode];
+ /* Populate our cache. */
+ reg_save_code (reg, mode);
+ return cached_reg_restore_code[reg][mode];
+}
+
+/* Initialize for caller-save.
+
+ Look at all the hard registers that are used by a call and for which
+ reginfo.c has not already excluded from being used across a call.
+
+ Ensure that we can find a mode to save the register and that there is a
+ simple insn to save and restore the register. This latter check avoids
+ problems that would occur if we tried to save the MQ register of some
+ machines directly into memory. */
+
+void
+init_caller_save (void)
+{
+ rtx addr_reg;
+ int offset;
+ rtx address;
+ int i, j;
+
+ if (caller_save_initialized_p)
+ return;
+
+ caller_save_initialized_p = true;
+
+ CLEAR_HARD_REG_SET (no_caller_save_reg_set);
+ /* First find all the registers that we need to deal with and all
+ the modes that they can have. If we can't find a mode to use,
+ we can't have the register live over calls. */
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ if (call_used_regs[i]
+ && !TEST_HARD_REG_BIT (call_fixed_reg_set, i))
+ {
+ for (j = 1; j <= MOVE_MAX_WORDS; j++)
+ {
+ regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
+ VOIDmode);
+ if (regno_save_mode[i][j] == VOIDmode && j == 1)
+ {
+ SET_HARD_REG_BIT (call_fixed_reg_set, i);
+ }
+ }
+ }
+ else
+ regno_save_mode[i][1] = VOIDmode;
+ }
+
+ /* The following code tries to approximate the conditions under which
+ we can easily save and restore a register without scratch registers or
+ other complexities. It will usually work, except under conditions where
+ the validity of an insn operand is dependent on the address offset.
+ No such cases are currently known.
+
+ We first find a typical offset from some BASE_REG_CLASS register.
+ This address is chosen by finding the first register in the class
+ and by finding the smallest power of two that is a valid offset from
+ that register in every mode we will use to save registers. */
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (TEST_HARD_REG_BIT
+ (reg_class_contents
+ [(int) base_reg_class (regno_save_mode[i][1], ADDR_SPACE_GENERIC,
+ PLUS, CONST_INT)], i))
+ break;
+
+ gcc_assert (i < FIRST_PSEUDO_REGISTER);
+
+ addr_reg = gen_rtx_REG (Pmode, i);
+
+ for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
+ {
+ address = gen_rtx_PLUS (Pmode, addr_reg, gen_int_mode (offset, Pmode));
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (regno_save_mode[i][1] != VOIDmode
+ && ! strict_memory_address_p (regno_save_mode[i][1], address))
+ break;
+
+ if (i == FIRST_PSEUDO_REGISTER)
+ break;
+ }
+
+ /* If we didn't find a valid address, we must use register indirect. */
+ if (offset == 0)
+ address = addr_reg;
+
+ /* Next we try to form an insn to save and restore the register. We
+ see if such an insn is recognized and meets its constraints.
+
+ To avoid lots of unnecessary RTL allocation, we construct all the RTL
+ once, then modify the memory and register operands in-place. */
+
+ test_reg = gen_rtx_REG (VOIDmode, 0);
+ test_mem = gen_rtx_MEM (VOIDmode, address);
+ savepat = gen_rtx_SET (VOIDmode, test_mem, test_reg);
+ restpat = gen_rtx_SET (VOIDmode, test_reg, test_mem);
+
+ saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, savepat, 0, -1, 0);
+ restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, restpat, 0, -1, 0);
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ for (j = 1; j <= MOVE_MAX_WORDS; j++)
+ if (reg_save_code (i,regno_save_mode[i][j]) == -1)
+ {
+ regno_save_mode[i][j] = VOIDmode;
+ if (j == 1)
+ {
+ SET_HARD_REG_BIT (call_fixed_reg_set, i);
+ if (call_used_regs[i])
+ SET_HARD_REG_BIT (no_caller_save_reg_set, i);
+ }
+ }
+}
+
+
+
+/* Initialize save areas by showing that we haven't allocated any yet. */
+
+void
+init_save_areas (void)
+{
+ int i, j;
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ for (j = 1; j <= MOVE_MAX_WORDS; j++)
+ regno_save_mem[i][j] = 0;
+ save_slots_num = 0;
+
+}
+
+/* The structure represents a hard register which should be saved
+ through the call. It is used when the integrated register
+ allocator (IRA) is used and sharing save slots is on. */
+struct saved_hard_reg
+{
+ /* Order number starting with 0. */
+ int num;
+ /* The hard regno. */
+ int hard_regno;
+ /* Execution frequency of all calls through which given hard
+ register should be saved. */
+ int call_freq;
+ /* Stack slot reserved to save the hard register through calls. */
+ rtx slot;
+ /* True if it is first hard register in the chain of hard registers
+ sharing the same stack slot. */
+ int first_p;
+ /* Order number of the next hard register structure with the same
+ slot in the chain. -1 represents end of the chain. */
+ int next;
+};
+
+/* Map: hard register number to the corresponding structure. */
+static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER];
+
+/* The number of all structures representing hard registers should be
+ saved, in order words, the number of used elements in the following
+ array. */
+static int saved_regs_num;
+
+/* Pointers to all the structures. Index is the order number of the
+ corresponding structure. */
+static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER];
+
+/* First called function for work with saved hard registers. */
+static void
+initiate_saved_hard_regs (void)
+{
+ int i;
+
+ saved_regs_num = 0;
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ hard_reg_map[i] = NULL;
+}
+
+/* Allocate and return new saved hard register with given REGNO and
+ CALL_FREQ. */
+static void
+new_saved_hard_reg (int regno, int call_freq)
+{
+ struct saved_hard_reg *saved_reg;
+
+ saved_reg
+ = (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg));
+ hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg;
+ saved_reg->num = saved_regs_num++;
+ saved_reg->hard_regno = regno;
+ saved_reg->call_freq = call_freq;
+ saved_reg->first_p = FALSE;
+ saved_reg->next = -1;
+}
+
+/* Free memory allocated for the saved hard registers. */
+static void
+finish_saved_hard_regs (void)
+{
+ int i;
+
+ for (i = 0; i < saved_regs_num; i++)
+ free (all_saved_regs[i]);
+}
+
+/* The function is used to sort the saved hard register structures
+ according their frequency. */
+static int
+saved_hard_reg_compare_func (const void *v1p, const void *v2p)
+{
+ const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p;
+ const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p;
+
+ if (flag_omit_frame_pointer)
+ {
+ if (p1->call_freq - p2->call_freq != 0)
+ return p1->call_freq - p2->call_freq;
+ }
+ else if (p2->call_freq - p1->call_freq != 0)
+ return p2->call_freq - p1->call_freq;
+
+ return p1->num - p2->num;
+}
+
+/* Allocate save areas for any hard registers that might need saving.
+ We take a conservative approach here and look for call-clobbered hard
+ registers that are assigned to pseudos that cross calls. This may
+ overestimate slightly (especially if some of these registers are later
+ used as spill registers), but it should not be significant.
+
+ For IRA we use priority coloring to decrease stack slots needed for
+ saving hard registers through calls. We build conflicts for them
+ to do coloring.
+
+ Future work:
+
+ In the fallback case we should iterate backwards across all possible
+ modes for the save, choosing the largest available one instead of
+ falling back to the smallest mode immediately. (eg TF -> DF -> SF).
+
+ We do not try to use "move multiple" instructions that exist
+ on some machines (such as the 68k moveml). It could be a win to try
+ and use them when possible. The hard part is doing it in a way that is
+ machine independent since they might be saving non-consecutive
+ registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
+
+void
+setup_save_areas (void)
+{
+ int i, j, k, freq;
+ HARD_REG_SET hard_regs_used;
+ struct saved_hard_reg *saved_reg;
+ rtx insn;
+ struct insn_chain *chain, *next;
+ unsigned int regno;
+ HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets;
+ reg_set_iterator rsi;
+
+ CLEAR_HARD_REG_SET (hard_regs_used);
+
+ /* Find every CALL_INSN and record which hard regs are live across the
+ call into HARD_REG_MAP and HARD_REGS_USED. */
+ initiate_saved_hard_regs ();
+ /* Create hard reg saved regs. */
+ for (chain = reload_insn_chain; chain != 0; chain = next)
+ {
+ rtx cheap;
+
+ insn = chain->insn;
+ next = chain->next;
+ if (!CALL_P (insn)
+ || find_reg_note (insn, REG_NORETURN, NULL))
+ continue;
+ freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
+ REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
+ &chain->live_throughout);
+ COPY_HARD_REG_SET (used_regs, call_used_reg_set);
+
+ /* Record all registers set in this call insn. These don't
+ need to be saved. N.B. the call insn might set a subreg
+ of a multi-hard-reg pseudo; then the pseudo is considered
+ live during the call, but the subreg that is set
+ isn't. */
+ CLEAR_HARD_REG_SET (this_insn_sets);
+ note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
+ /* Sibcalls are considered to set the return value. */
+ if (SIBLING_CALL_P (insn) && crtl->return_rtx)
+ mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
+
+ AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
+ AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
+ AND_HARD_REG_SET (hard_regs_to_save, used_regs);
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
+ {
+ if (hard_reg_map[regno] != NULL)
+ hard_reg_map[regno]->call_freq += freq;
+ else
+ new_saved_hard_reg (regno, freq);
+ SET_HARD_REG_BIT (hard_regs_used, regno);
+ }
+ cheap = find_reg_note (insn, REG_RETURNED, NULL);
+ if (cheap)
+ cheap = XEXP (cheap, 0);
+ /* Look through all live pseudos, mark their hard registers. */
+ EXECUTE_IF_SET_IN_REG_SET
+ (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
+ {
+ int r = reg_renumber[regno];
+ int bound;
+
+ if (r < 0 || regno_reg_rtx[regno] == cheap)
+ continue;
+
+ bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
+ for (; r < bound; r++)
+ if (TEST_HARD_REG_BIT (used_regs, r))
+ {
+ if (hard_reg_map[r] != NULL)
+ hard_reg_map[r]->call_freq += freq;
+ else
+ new_saved_hard_reg (r, freq);
+ SET_HARD_REG_BIT (hard_regs_to_save, r);
+ SET_HARD_REG_BIT (hard_regs_used, r);
+ }
+ }
+ }
+
+ /* If requested, figure out which hard regs can share save slots. */
+ if (optimize && flag_ira_share_save_slots)
+ {
+ rtx slot;
+ char *saved_reg_conflicts;
+ int next_k;
+ struct saved_hard_reg *saved_reg2, *saved_reg3;
+ int call_saved_regs_num;
+ struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER];
+ int best_slot_num;
+ int prev_save_slots_num;
+ rtx prev_save_slots[FIRST_PSEUDO_REGISTER];
+
+ /* Find saved hard register conflicts. */
+ saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num);
+ memset (saved_reg_conflicts, 0, saved_regs_num * saved_regs_num);
+ for (chain = reload_insn_chain; chain != 0; chain = next)
+ {
+ rtx cheap;
+ call_saved_regs_num = 0;
+ insn = chain->insn;
+ next = chain->next;
+ if (!CALL_P (insn)
+ || find_reg_note (insn, REG_NORETURN, NULL))
+ continue;
+
+ cheap = find_reg_note (insn, REG_RETURNED, NULL);
+ if (cheap)
+ cheap = XEXP (cheap, 0);
+
+ REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
+ &chain->live_throughout);
+ COPY_HARD_REG_SET (used_regs, call_used_reg_set);
+
+ /* Record all registers set in this call insn. These don't
+ need to be saved. N.B. the call insn might set a subreg
+ of a multi-hard-reg pseudo; then the pseudo is considered
+ live during the call, but the subreg that is set
+ isn't. */
+ CLEAR_HARD_REG_SET (this_insn_sets);
+ note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
+ /* Sibcalls are considered to set the return value,
+ compare df-scan.c:df_get_call_refs. */
+ if (SIBLING_CALL_P (insn) && crtl->return_rtx)
+ mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
+
+ AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
+ AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
+ AND_HARD_REG_SET (hard_regs_to_save, used_regs);
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
+ {
+ gcc_assert (hard_reg_map[regno] != NULL);
+ call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno];
+ }
+ /* Look through all live pseudos, mark their hard registers. */
+ EXECUTE_IF_SET_IN_REG_SET
+ (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
+ {
+ int r = reg_renumber[regno];
+ int bound;
+
+ if (r < 0 || regno_reg_rtx[regno] == cheap)
+ continue;
+
+ bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
+ for (; r < bound; r++)
+ if (TEST_HARD_REG_BIT (used_regs, r))
+ call_saved_regs[call_saved_regs_num++] = hard_reg_map[r];
+ }
+ for (i = 0; i < call_saved_regs_num; i++)
+ {
+ saved_reg = call_saved_regs[i];
+ for (j = 0; j < call_saved_regs_num; j++)
+ if (i != j)
+ {
+ saved_reg2 = call_saved_regs[j];
+ saved_reg_conflicts[saved_reg->num * saved_regs_num
+ + saved_reg2->num]
+ = saved_reg_conflicts[saved_reg2->num * saved_regs_num
+ + saved_reg->num]
+ = TRUE;
+ }
+ }
+ }
+ /* Sort saved hard regs. */
+ qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *),
+ saved_hard_reg_compare_func);
+ /* Initiate slots available from the previous reload
+ iteration. */
+ prev_save_slots_num = save_slots_num;
+ memcpy (prev_save_slots, save_slots, save_slots_num * sizeof (rtx));
+ save_slots_num = 0;
+ /* Allocate stack slots for the saved hard registers. */
+ for (i = 0; i < saved_regs_num; i++)
+ {
+ saved_reg = all_saved_regs[i];
+ regno = saved_reg->hard_regno;
+ for (j = 0; j < i; j++)
+ {
+ saved_reg2 = all_saved_regs[j];
+ if (! saved_reg2->first_p)
+ continue;
+ slot = saved_reg2->slot;
+ for (k = j; k >= 0; k = next_k)
+ {
+ saved_reg3 = all_saved_regs[k];
+ next_k = saved_reg3->next;
+ if (saved_reg_conflicts[saved_reg->num * saved_regs_num
+ + saved_reg3->num])
+ break;
+ }
+ if (k < 0
+ && (GET_MODE_SIZE (regno_save_mode[regno][1])
+ <= GET_MODE_SIZE (regno_save_mode
+ [saved_reg2->hard_regno][1])))
+ {
+ saved_reg->slot
+ = adjust_address_nv
+ (slot, regno_save_mode[saved_reg->hard_regno][1], 0);
+ regno_save_mem[regno][1] = saved_reg->slot;
+ saved_reg->next = saved_reg2->next;
+ saved_reg2->next = i;
+ if (dump_file != NULL)
+ fprintf (dump_file, "%d uses slot of %d\n",
+ regno, saved_reg2->hard_regno);
+ break;
+ }
+ }
+ if (j == i)
+ {
+ saved_reg->first_p = TRUE;
+ for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++)
+ {
+ slot = prev_save_slots[j];
+ if (slot == NULL_RTX)
+ continue;
+ if (GET_MODE_SIZE (regno_save_mode[regno][1])
+ <= GET_MODE_SIZE (GET_MODE (slot))
+ && best_slot_num < 0)
+ best_slot_num = j;
+ if (GET_MODE (slot) == regno_save_mode[regno][1])
+ break;
+ }
+ if (best_slot_num >= 0)
+ {
+ saved_reg->slot = prev_save_slots[best_slot_num];
+ saved_reg->slot
+ = adjust_address_nv
+ (saved_reg->slot,
+ regno_save_mode[saved_reg->hard_regno][1], 0);
+ if (dump_file != NULL)
+ fprintf (dump_file,
+ "%d uses a slot from prev iteration\n", regno);
+ prev_save_slots[best_slot_num] = NULL_RTX;
+ if (best_slot_num + 1 == prev_save_slots_num)
+ prev_save_slots_num--;
+ }
+ else
+ {
+ saved_reg->slot
+ = assign_stack_local_1
+ (regno_save_mode[regno][1],
+ GET_MODE_SIZE (regno_save_mode[regno][1]), 0,
+ ASLK_REDUCE_ALIGN);
+ if (dump_file != NULL)
+ fprintf (dump_file, "%d uses a new slot\n", regno);
+ }
+ regno_save_mem[regno][1] = saved_reg->slot;
+ save_slots[save_slots_num++] = saved_reg->slot;
+ }
+ }
+ free (saved_reg_conflicts);
+ finish_saved_hard_regs ();
+ }
+ else
+ {
+ /* We are not sharing slots.
+
+ Run through all the call-used hard-registers and allocate
+ space for each in the caller-save area. Try to allocate space
+ in a manner which allows multi-register saves/restores to be done. */
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ for (j = MOVE_MAX_WORDS; j > 0; j--)
+ {
+ int do_save = 1;
+
+ /* If no mode exists for this size, try another. Also break out
+ if we have already saved this hard register. */
+ if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
+ continue;
+
+ /* See if any register in this group has been saved. */
+ for (k = 0; k < j; k++)
+ if (regno_save_mem[i + k][1])
+ {
+ do_save = 0;
+ break;
+ }
+ if (! do_save)
+ continue;
+
+ for (k = 0; k < j; k++)
+ if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
+ {
+ do_save = 0;
+ break;
+ }
+ if (! do_save)
+ continue;
+
+ /* We have found an acceptable mode to store in. Since
+ hard register is always saved in the widest mode
+ available, the mode may be wider than necessary, it is
+ OK to reduce the alignment of spill space. We will
+ verify that it is equal to or greater than required
+ when we restore and save the hard register in
+ insert_restore and insert_save. */
+ regno_save_mem[i][j]
+ = assign_stack_local_1 (regno_save_mode[i][j],
+ GET_MODE_SIZE (regno_save_mode[i][j]),
+ 0, ASLK_REDUCE_ALIGN);
+
+ /* Setup single word save area just in case... */
+ for (k = 0; k < j; k++)
+ /* This should not depend on WORDS_BIG_ENDIAN.
+ The order of words in regs is the same as in memory. */
+ regno_save_mem[i + k][1]
+ = adjust_address_nv (regno_save_mem[i][j],
+ regno_save_mode[i + k][1],
+ k * UNITS_PER_WORD);
+ }
+ }
+
+ /* Now loop again and set the alias set of any save areas we made to
+ the alias set used to represent frame objects. */
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ for (j = MOVE_MAX_WORDS; j > 0; j--)
+ if (regno_save_mem[i][j] != 0)
+ set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
+}
+
+
+
+/* Find the places where hard regs are live across calls and save them. */
+
+void
+save_call_clobbered_regs (void)
+{
+ struct insn_chain *chain, *next, *last = NULL;
+ enum machine_mode save_mode [FIRST_PSEUDO_REGISTER];
+
+ /* Computed in mark_set_regs, holds all registers set by the current
+ instruction. */
+ HARD_REG_SET this_insn_sets;
+
+ CLEAR_HARD_REG_SET (hard_regs_saved);
+ n_regs_saved = 0;
+
+ for (chain = reload_insn_chain; chain != 0; chain = next)
+ {
+ rtx insn = chain->insn;
+ enum rtx_code code = GET_CODE (insn);
+
+ next = chain->next;
+
+ gcc_assert (!chain->is_caller_save_insn);
+
+ if (NONDEBUG_INSN_P (insn))
+ {
+ /* If some registers have been saved, see if INSN references
+ any of them. We must restore them before the insn if so. */
+
+ if (n_regs_saved)
+ {
+ int regno;
+ HARD_REG_SET this_insn_sets;
+
+ if (code == JUMP_INSN)
+ /* Restore all registers if this is a JUMP_INSN. */
+ COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
+ else
+ {
+ CLEAR_HARD_REG_SET (referenced_regs);
+ mark_referenced_regs (&PATTERN (insn),
+ mark_reg_as_referenced, NULL);
+ AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
+ }
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (TEST_HARD_REG_BIT (referenced_regs, regno))
+ regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS,
+ save_mode);
+ /* If a saved register is set after the call, this means we no
+ longer should restore it. This can happen when parts of a
+ multi-word pseudo do not conflict with other pseudos, so
+ IRA may allocate the same hard register for both. One may
+ be live across the call, while the other is set
+ afterwards. */
+ CLEAR_HARD_REG_SET (this_insn_sets);
+ note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
+ AND_COMPL_HARD_REG_SET (hard_regs_saved, this_insn_sets);
+ }
+
+ if (code == CALL_INSN
+ && ! SIBLING_CALL_P (insn)
+ && ! find_reg_note (insn, REG_NORETURN, NULL))
+ {
+ unsigned regno;
+ HARD_REG_SET hard_regs_to_save;
+ reg_set_iterator rsi;
+ rtx cheap;
+
+ cheap = find_reg_note (insn, REG_RETURNED, NULL);
+ if (cheap)
+ cheap = XEXP (cheap, 0);
+
+ /* Use the register life information in CHAIN to compute which
+ regs are live during the call. */
+ REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
+ &chain->live_throughout);
+ /* Save hard registers always in the widest mode available. */
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
+ save_mode [regno] = regno_save_mode [regno][1];
+ else
+ save_mode [regno] = VOIDmode;
+
+ /* Look through all live pseudos, mark their hard registers
+ and choose proper mode for saving. */
+ EXECUTE_IF_SET_IN_REG_SET
+ (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
+ {
+ int r = reg_renumber[regno];
+ int nregs;
+ enum machine_mode mode;
+
+ if (r < 0 || regno_reg_rtx[regno] == cheap)
+ continue;
+ nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
+ mode = HARD_REGNO_CALLER_SAVE_MODE
+ (r, nregs, PSEUDO_REGNO_MODE (regno));
+ if (GET_MODE_BITSIZE (mode)
+ > GET_MODE_BITSIZE (save_mode[r]))
+ save_mode[r] = mode;
+ while (nregs-- > 0)
+ SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
+ }
+
+ /* Record all registers set in this call insn. These don't need
+ to be saved. N.B. the call insn might set a subreg of a
+ multi-hard-reg pseudo; then the pseudo is considered live
+ during the call, but the subreg that is set isn't. */
+ CLEAR_HARD_REG_SET (this_insn_sets);
+ note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
+
+ /* Compute which hard regs must be saved before this call. */
+ AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
+ AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
+ AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
+ AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set);
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
+ regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode);
+
+ /* Must recompute n_regs_saved. */
+ n_regs_saved = 0;
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
+ n_regs_saved++;
+
+ if (cheap
+ && HARD_REGISTER_P (cheap)
+ && TEST_HARD_REG_BIT (call_used_reg_set, REGNO (cheap)))
+ {
+ rtx dest, newpat;
+ rtx pat = PATTERN (insn);
+ if (GET_CODE (pat) == PARALLEL)
+ pat = XVECEXP (pat, 0, 0);
+ dest = SET_DEST (pat);
+ newpat = gen_rtx_SET (VOIDmode, cheap, copy_rtx (dest));
+ chain = insert_one_insn (chain, 0, -1, newpat);
+ }
+ }
+ last = chain;
+ }
+ else if (DEBUG_INSN_P (insn) && n_regs_saved)
+ mark_referenced_regs (&PATTERN (insn),
+ replace_reg_with_saved_mem,
+ save_mode);
+
+ if (chain->next == 0 || chain->next->block != chain->block)
+ {
+ int regno;
+ /* At the end of the basic block, we must restore any registers that
+ remain saved. If the last insn in the block is a JUMP_INSN, put
+ the restore before the insn, otherwise, put it after the insn. */
+
+ if (n_regs_saved
+ && DEBUG_INSN_P (insn)
+ && last
+ && last->block == chain->block)
+ {
+ rtx ins, prev;
+ basic_block bb = BLOCK_FOR_INSN (insn);
+
+ /* When adding hard reg restores after a DEBUG_INSN, move
+ all notes between last real insn and this DEBUG_INSN after
+ the DEBUG_INSN, otherwise we could get code
+ -g/-g0 differences. */
+ for (ins = PREV_INSN (insn); ins != last->insn; ins = prev)
+ {
+ prev = PREV_INSN (ins);
+ if (NOTE_P (ins))
+ {
+ NEXT_INSN (prev) = NEXT_INSN (ins);
+ PREV_INSN (NEXT_INSN (ins)) = prev;
+ PREV_INSN (ins) = insn;
+ NEXT_INSN (ins) = NEXT_INSN (insn);
+ NEXT_INSN (insn) = ins;
+ if (NEXT_INSN (ins))
+ PREV_INSN (NEXT_INSN (ins)) = ins;
+ if (BB_END (bb) == insn)
+ BB_END (bb) = ins;
+ }
+ else
+ gcc_assert (DEBUG_INSN_P (ins));
+ }
+ }
+ last = NULL;
+
+ if (n_regs_saved)
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
+ regno += insert_restore (chain, JUMP_P (insn),
+ regno, MOVE_MAX_WORDS, save_mode);
+ }
+ }
+}
+
+/* Here from note_stores, or directly from save_call_clobbered_regs, when
+ an insn stores a value in a register.
+ Set the proper bit or bits in this_insn_sets. All pseudos that have
+ been assigned hard regs have had their register number changed already,
+ so we can ignore pseudos. */
+static void
+mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data)
+{
+ int regno, endregno, i;
+ HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data;
+
+ if (GET_CODE (reg) == SUBREG)
+ {
+ rtx inner = SUBREG_REG (reg);
+ if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
+ return;
+ regno = subreg_regno (reg);
+ endregno = regno + subreg_nregs (reg);
+ }
+ else if (REG_P (reg)
+ && REGNO (reg) < FIRST_PSEUDO_REGISTER)
+ {
+ regno = REGNO (reg);
+ endregno = END_HARD_REGNO (reg);
+ }
+ else
+ return;
+
+ for (i = regno; i < endregno; i++)
+ SET_HARD_REG_BIT (*this_insn_sets, i);
+}
+
+/* Here from note_stores when an insn stores a value in a register.
+ Set the proper bit or bits in the passed regset. All pseudos that have
+ been assigned hard regs have had their register number changed already,
+ so we can ignore pseudos. */
+static void
+add_stored_regs (rtx reg, const_rtx setter, void *data)
+{
+ int regno, endregno, i;
+ enum machine_mode mode = GET_MODE (reg);
+ int offset = 0;
+
+ if (GET_CODE (setter) == CLOBBER)
+ return;
+
+ if (GET_CODE (reg) == SUBREG
+ && REG_P (SUBREG_REG (reg))
+ && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
+ {
+ offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
+ GET_MODE (SUBREG_REG (reg)),
+ SUBREG_BYTE (reg),
+ GET_MODE (reg));
+ regno = REGNO (SUBREG_REG (reg)) + offset;
+ endregno = regno + subreg_nregs (reg);
+ }
+ else
+ {
+ if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
+ return;
+
+ regno = REGNO (reg) + offset;
+ endregno = end_hard_regno (mode, regno);
+ }
+
+ for (i = regno; i < endregno; i++)
+ SET_REGNO_REG_SET ((regset) data, i);
+}
+
+/* Walk X and record all referenced registers in REFERENCED_REGS. */
+static void
+mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg)
+{
+ enum rtx_code code = GET_CODE (*loc);
+ const char *fmt;
+ int i, j;
+
+ if (code == SET)
+ mark_referenced_regs (&SET_SRC (*loc), mark, arg);
+ if (code == SET || code == CLOBBER)
+ {
+ loc = &SET_DEST (*loc);
+ code = GET_CODE (*loc);
+ if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER)
+ || code == PC || code == CC0
+ || (code == SUBREG && REG_P (SUBREG_REG (*loc))
+ && REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER
+ /* If we're setting only part of a multi-word register,
+ we shall mark it as referenced, because the words
+ that are not being set should be restored. */
+ && ((GET_MODE_SIZE (GET_MODE (*loc))
+ >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc))))
+ || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc)))
+ <= UNITS_PER_WORD))))
+ return;
+ }
+ if (code == MEM || code == SUBREG)
+ {
+ loc = &XEXP (*loc, 0);
+ code = GET_CODE (*loc);
+ }
+
+ if (code == REG)
+ {
+ int regno = REGNO (*loc);
+ int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
+ : reg_renumber[regno]);
+
+ if (hardregno >= 0)
+ mark (loc, GET_MODE (*loc), hardregno, arg);
+ else if (arg)
+ /* ??? Will we ever end up with an equiv expression in a debug
+ insn, that would have required restoring a reg, or will
+ reload take care of it for us? */
+ return;
+ /* If this is a pseudo that did not get a hard register, scan its
+ memory location, since it might involve the use of another
+ register, which might be saved. */
+ else if (reg_equiv_mem (regno) != 0)
+ mark_referenced_regs (&XEXP (reg_equiv_mem (regno), 0), mark, arg);
+ else if (reg_equiv_address (regno) != 0)
+ mark_referenced_regs (&reg_equiv_address (regno), mark, arg);
+ return;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ mark_referenced_regs (&XEXP (*loc, i), mark, arg);
+ else if (fmt[i] == 'E')
+ for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
+ mark_referenced_regs (&XVECEXP (*loc, i, j), mark, arg);
+ }
+}
+
+/* Parameter function for mark_referenced_regs() that adds registers
+ present in the insn and in equivalent mems and addresses to
+ referenced_regs. */
+
+static void
+mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED,
+ enum machine_mode mode,
+ int hardregno,
+ void *arg ATTRIBUTE_UNUSED)
+{
+ add_to_hard_reg_set (&referenced_regs, mode, hardregno);
+}
+
+/* Parameter function for mark_referenced_regs() that replaces
+ registers referenced in a debug_insn that would have been restored,
+ should it be a non-debug_insn, with their save locations. */
+
+static void
+replace_reg_with_saved_mem (rtx *loc,
+ enum machine_mode mode,
+ int regno,
+ void *arg)
+{
+ unsigned int i, nregs = hard_regno_nregs [regno][mode];
+ rtx mem;
+ enum machine_mode *save_mode = (enum machine_mode *)arg;
+
+ for (i = 0; i < nregs; i++)
+ if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
+ break;
+
+ /* If none of the registers in the range would need restoring, we're
+ all set. */
+ if (i == nregs)
+ return;
+
+ while (++i < nregs)
+ if (!TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
+ break;
+
+ if (i == nregs
+ && regno_save_mem[regno][nregs])
+ {
+ mem = copy_rtx (regno_save_mem[regno][nregs]);
+
+ if (nregs == (unsigned int) hard_regno_nregs[regno][save_mode[regno]])
+ mem = adjust_address_nv (mem, save_mode[regno], 0);
+
+ if (GET_MODE (mem) != mode)
+ {
+ /* This is gen_lowpart_if_possible(), but without validating
+ the newly-formed address. */
+ int offset = 0;
+
+ if (WORDS_BIG_ENDIAN)
+ offset = (MAX (GET_MODE_SIZE (GET_MODE (mem)), UNITS_PER_WORD)
+ - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
+ if (BYTES_BIG_ENDIAN)
+ /* Adjust the address so that the address-after-the-data is
+ unchanged. */
+ offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
+ - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (mem))));
+
+ mem = adjust_address_nv (mem, mode, offset);
+ }
+ }
+ else
+ {
+ mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs));
+ for (i = 0; i < nregs; i++)
+ if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
+ {
+ gcc_assert (regno_save_mem[regno + i][1]);
+ XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]);
+ }
+ else
+ {
+ gcc_assert (save_mode[regno] != VOIDmode);
+ XVECEXP (mem, 0, i) = gen_rtx_REG (save_mode [regno],
+ regno + i);
+ }
+ }
+
+ gcc_assert (GET_MODE (mem) == mode);
+ *loc = mem;
+}
+
+
+/* Insert a sequence of insns to restore. Place these insns in front of
+ CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
+ the maximum number of registers which should be restored during this call.
+ It should never be less than 1 since we only work with entire registers.
+
+ Note that we have verified in init_caller_save that we can do this
+ with a simple SET, so use it. Set INSN_CODE to what we save there
+ since the address might not be valid so the insn might not be recognized.
+ These insns will be reloaded and have register elimination done by
+ find_reload, so we need not worry about that here.
+
+ Return the extra number of registers saved. */
+
+static int
+insert_restore (struct insn_chain *chain, int before_p, int regno,
+ int maxrestore, enum machine_mode *save_mode)
+{
+ int i, k;
+ rtx pat = NULL_RTX;
+ int code;
+ unsigned int numregs = 0;
+ struct insn_chain *new_chain;
+ rtx mem;
+
+ /* A common failure mode if register status is not correct in the
+ RTL is for this routine to be called with a REGNO we didn't
+ expect to save. That will cause us to write an insn with a (nil)
+ SET_DEST or SET_SRC. Instead of doing so and causing a crash
+ later, check for this common case here instead. This will remove
+ one step in debugging such problems. */
+ gcc_assert (regno_save_mem[regno][1]);
+
+ /* Get the pattern to emit and update our status.
+
+ See if we can restore `maxrestore' registers at once. Work
+ backwards to the single register case. */
+ for (i = maxrestore; i > 0; i--)
+ {
+ int j;
+ int ok = 1;
+
+ if (regno_save_mem[regno][i] == 0)
+ continue;
+
+ for (j = 0; j < i; j++)
+ if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
+ {
+ ok = 0;
+ break;
+ }
+ /* Must do this one restore at a time. */
+ if (! ok)
+ continue;
+
+ numregs = i;
+ break;
+ }
+
+ mem = regno_save_mem [regno][numregs];
+ if (save_mode [regno] != VOIDmode
+ && save_mode [regno] != GET_MODE (mem)
+ && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
+ /* Check that insn to restore REGNO in save_mode[regno] is
+ correct. */
+ && reg_save_code (regno, save_mode[regno]) >= 0)
+ mem = adjust_address_nv (mem, save_mode[regno], 0);
+ else
+ mem = copy_rtx (mem);
+
+ /* Verify that the alignment of spill space is equal to or greater
+ than required. */
+ gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
+ GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
+
+ pat = gen_rtx_SET (VOIDmode,
+ gen_rtx_REG (GET_MODE (mem),
+ regno), mem);
+ code = reg_restore_code (regno, GET_MODE (mem));
+ new_chain = insert_one_insn (chain, before_p, code, pat);
+
+ /* Clear status for all registers we restored. */
+ for (k = 0; k < i; k++)
+ {
+ CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
+ SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
+ n_regs_saved--;
+ }
+
+ /* Tell our callers how many extra registers we saved/restored. */
+ return numregs - 1;
+}
+
+/* Like insert_restore above, but save registers instead. */
+
+static int
+insert_save (struct insn_chain *chain, int before_p, int regno,
+ HARD_REG_SET (*to_save), enum machine_mode *save_mode)
+{
+ int i;
+ unsigned int k;
+ rtx pat = NULL_RTX;
+ int code;
+ unsigned int numregs = 0;
+ struct insn_chain *new_chain;
+ rtx mem;
+
+ /* A common failure mode if register status is not correct in the
+ RTL is for this routine to be called with a REGNO we didn't
+ expect to save. That will cause us to write an insn with a (nil)
+ SET_DEST or SET_SRC. Instead of doing so and causing a crash
+ later, check for this common case here. This will remove one
+ step in debugging such problems. */
+ gcc_assert (regno_save_mem[regno][1]);
+
+ /* Get the pattern to emit and update our status.
+
+ See if we can save several registers with a single instruction.
+ Work backwards to the single register case. */
+ for (i = MOVE_MAX_WORDS; i > 0; i--)
+ {
+ int j;
+ int ok = 1;
+ if (regno_save_mem[regno][i] == 0)
+ continue;
+
+ for (j = 0; j < i; j++)
+ if (! TEST_HARD_REG_BIT (*to_save, regno + j))
+ {
+ ok = 0;
+ break;
+ }
+ /* Must do this one save at a time. */
+ if (! ok)
+ continue;
+
+ numregs = i;
+ break;
+ }
+
+ mem = regno_save_mem [regno][numregs];
+ if (save_mode [regno] != VOIDmode
+ && save_mode [regno] != GET_MODE (mem)
+ && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
+ /* Check that insn to save REGNO in save_mode[regno] is
+ correct. */
+ && reg_save_code (regno, save_mode[regno]) >= 0)
+ mem = adjust_address_nv (mem, save_mode[regno], 0);
+ else
+ mem = copy_rtx (mem);
+
+ /* Verify that the alignment of spill space is equal to or greater
+ than required. */
+ gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
+ GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
+
+ pat = gen_rtx_SET (VOIDmode, mem,
+ gen_rtx_REG (GET_MODE (mem),
+ regno));
+ code = reg_save_code (regno, GET_MODE (mem));
+ new_chain = insert_one_insn (chain, before_p, code, pat);
+
+ /* Set hard_regs_saved and dead_or_set for all the registers we saved. */
+ for (k = 0; k < numregs; k++)
+ {
+ SET_HARD_REG_BIT (hard_regs_saved, regno + k);
+ SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
+ n_regs_saved++;
+ }
+
+ /* Tell our callers how many extra registers we saved/restored. */
+ return numregs - 1;
+}
+
+/* A for_each_rtx callback used by add_used_regs. Add the hard-register
+ equivalent of each REG to regset DATA. */
+
+static int
+add_used_regs_1 (rtx *loc, void *data)
+{
+ unsigned int regno;
+ regset live;
+ rtx x;
+
+ x = *loc;
+ live = (regset) data;
+ if (REG_P (x))
+ {
+ regno = REGNO (x);
+ if (HARD_REGISTER_NUM_P (regno))
+ bitmap_set_range (live, regno, hard_regno_nregs[regno][GET_MODE (x)]);
+ else
+ regno = reg_renumber[regno];
+ }
+ return 0;
+}
+
+/* A note_uses callback used by insert_one_insn. Add the hard-register
+ equivalent of each REG to regset DATA. */
+
+static void
+add_used_regs (rtx *loc, void *data)
+{
+ for_each_rtx (loc, add_used_regs_1, data);
+}
+
+/* Emit a new caller-save insn and set the code. */
+static struct insn_chain *
+insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat)
+{
+ rtx insn = chain->insn;
+ struct insn_chain *new_chain;
+
+#ifdef HAVE_cc0
+ /* If INSN references CC0, put our insns in front of the insn that sets
+ CC0. This is always safe, since the only way we could be passed an
+ insn that references CC0 is for a restore, and doing a restore earlier
+ isn't a problem. We do, however, assume here that CALL_INSNs don't
+ reference CC0. Guard against non-INSN's like CODE_LABEL. */
+
+ if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
+ && before_p
+ && reg_referenced_p (cc0_rtx, PATTERN (insn)))
+ chain = chain->prev, insn = chain->insn;
+#endif
+
+ new_chain = new_insn_chain ();
+ if (before_p)
+ {
+ rtx link;
+
+ new_chain->prev = chain->prev;
+ if (new_chain->prev != 0)
+ new_chain->prev->next = new_chain;
+ else
+ reload_insn_chain = new_chain;
+
+ chain->prev = new_chain;
+ new_chain->next = chain;
+ new_chain->insn = emit_insn_before (pat, insn);
+ /* ??? It would be nice if we could exclude the already / still saved
+ registers from the live sets. */
+ COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
+ note_uses (&PATTERN (chain->insn), add_used_regs,
+ &new_chain->live_throughout);
+ /* If CHAIN->INSN is a call, then the registers which contain
+ the arguments to the function are live in the new insn. */
+ if (CALL_P (chain->insn))
+ for (link = CALL_INSN_FUNCTION_USAGE (chain->insn);
+ link != NULL_RTX;
+ link = XEXP (link, 1))
+ note_uses (&XEXP (link, 0), add_used_regs,
+ &new_chain->live_throughout);
+
+ CLEAR_REG_SET (&new_chain->dead_or_set);
+ if (chain->insn == BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
+ BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
+ }
+ else
+ {
+ new_chain->next = chain->next;
+ if (new_chain->next != 0)
+ new_chain->next->prev = new_chain;
+ chain->next = new_chain;
+ new_chain->prev = chain;
+ new_chain->insn = emit_insn_after (pat, insn);
+ /* ??? It would be nice if we could exclude the already / still saved
+ registers from the live sets, and observe REG_UNUSED notes. */
+ COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
+ /* Registers that are set in CHAIN->INSN live in the new insn.
+ (Unless there is a REG_UNUSED note for them, but we don't
+ look for them here.) */
+ note_stores (PATTERN (chain->insn), add_stored_regs,
+ &new_chain->live_throughout);
+ CLEAR_REG_SET (&new_chain->dead_or_set);
+ if (chain->insn == BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
+ BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
+ }
+ new_chain->block = chain->block;
+ new_chain->is_caller_save_insn = 1;
+
+ INSN_CODE (new_chain->insn) = code;
+ return new_chain;
+}
+#include "gt-caller-save.h"