aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/ada/sem_res.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/ada/sem_res.adb')
-rw-r--r--gcc-4.9/gcc/ada/sem_res.adb11959
1 files changed, 11959 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/ada/sem_res.adb b/gcc-4.9/gcc/ada/sem_res.adb
new file mode 100644
index 000000000..5a70b2d56
--- /dev/null
+++ b/gcc-4.9/gcc/ada/sem_res.adb
@@ -0,0 +1,11959 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- S E M _ R E S --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Debug; use Debug;
+with Debug_A; use Debug_A;
+with Einfo; use Einfo;
+with Errout; use Errout;
+with Expander; use Expander;
+with Exp_Disp; use Exp_Disp;
+with Exp_Ch6; use Exp_Ch6;
+with Exp_Ch7; use Exp_Ch7;
+with Exp_Tss; use Exp_Tss;
+with Exp_Util; use Exp_Util;
+with Fname; use Fname;
+with Freeze; use Freeze;
+with Itypes; use Itypes;
+with Lib; use Lib;
+with Lib.Xref; use Lib.Xref;
+with Namet; use Namet;
+with Nmake; use Nmake;
+with Nlists; use Nlists;
+with Opt; use Opt;
+with Output; use Output;
+with Restrict; use Restrict;
+with Rident; use Rident;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Aux; use Sem_Aux;
+with Sem_Aggr; use Sem_Aggr;
+with Sem_Attr; use Sem_Attr;
+with Sem_Cat; use Sem_Cat;
+with Sem_Ch4; use Sem_Ch4;
+with Sem_Ch6; use Sem_Ch6;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Ch13; use Sem_Ch13;
+with Sem_Dim; use Sem_Dim;
+with Sem_Disp; use Sem_Disp;
+with Sem_Dist; use Sem_Dist;
+with Sem_Elim; use Sem_Elim;
+with Sem_Elab; use Sem_Elab;
+with Sem_Eval; use Sem_Eval;
+with Sem_Intr; use Sem_Intr;
+with Sem_Util; use Sem_Util;
+with Targparm; use Targparm;
+with Sem_Type; use Sem_Type;
+with Sem_Warn; use Sem_Warn;
+with Sinfo; use Sinfo;
+with Sinfo.CN; use Sinfo.CN;
+with Snames; use Snames;
+with Stand; use Stand;
+with Stringt; use Stringt;
+with Style; use Style;
+with Tbuild; use Tbuild;
+with Uintp; use Uintp;
+with Urealp; use Urealp;
+
+package body Sem_Res is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ -- Second pass (top-down) type checking and overload resolution procedures
+ -- Typ is the type required by context. These procedures propagate the type
+ -- information recursively to the descendants of N. If the node is not
+ -- overloaded, its Etype is established in the first pass. If overloaded,
+ -- the Resolve routines set the correct type. For arith. operators, the
+ -- Etype is the base type of the context.
+
+ -- Note that Resolve_Attribute is separated off in Sem_Attr
+
+ procedure Check_Discriminant_Use (N : Node_Id);
+ -- Enforce the restrictions on the use of discriminants when constraining
+ -- a component of a discriminated type (record or concurrent type).
+
+ procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
+ -- Given a node for an operator associated with type T, check that
+ -- the operator is visible. Operators all of whose operands are
+ -- universal must be checked for visibility during resolution
+ -- because their type is not determinable based on their operands.
+
+ procedure Check_Fully_Declared_Prefix
+ (Typ : Entity_Id;
+ Pref : Node_Id);
+ -- Check that the type of the prefix of a dereference is not incomplete
+
+ function Check_Infinite_Recursion (N : Node_Id) return Boolean;
+ -- Given a call node, N, which is known to occur immediately within the
+ -- subprogram being called, determines whether it is a detectable case of
+ -- an infinite recursion, and if so, outputs appropriate messages. Returns
+ -- True if an infinite recursion is detected, and False otherwise.
+
+ procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
+ -- If the type of the object being initialized uses the secondary stack
+ -- directly or indirectly, create a transient scope for the call to the
+ -- init proc. This is because we do not create transient scopes for the
+ -- initialization of individual components within the init proc itself.
+ -- Could be optimized away perhaps?
+
+ procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
+ -- N is the node for a logical operator. If the operator is predefined, and
+ -- the root type of the operands is Standard.Boolean, then a check is made
+ -- for restriction No_Direct_Boolean_Operators. This procedure also handles
+ -- the style check for Style_Check_Boolean_And_Or.
+
+ function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
+ -- Determine whether E is an access type declared by an access declaration,
+ -- and not an (anonymous) allocator type.
+
+ function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
+ -- Utility to check whether the entity for an operator is a predefined
+ -- operator, in which case the expression is left as an operator in the
+ -- tree (else it is rewritten into a call). An instance of an intrinsic
+ -- conversion operation may be given an operator name, but is not treated
+ -- like an operator. Note that an operator that is an imported back-end
+ -- builtin has convention Intrinsic, but is expected to be rewritten into
+ -- a call, so such an operator is not treated as predefined by this
+ -- predicate.
+
+ procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
+ -- If a default expression in entry call N depends on the discriminants
+ -- of the task, it must be replaced with a reference to the discriminant
+ -- of the task being called.
+
+ procedure Resolve_Op_Concat_Arg
+ (N : Node_Id;
+ Arg : Node_Id;
+ Typ : Entity_Id;
+ Is_Comp : Boolean);
+ -- Internal procedure for Resolve_Op_Concat to resolve one operand of
+ -- concatenation operator. The operand is either of the array type or of
+ -- the component type. If the operand is an aggregate, and the component
+ -- type is composite, this is ambiguous if component type has aggregates.
+
+ procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
+ -- Does the first part of the work of Resolve_Op_Concat
+
+ procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
+ -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
+ -- has been resolved. See Resolve_Op_Concat for details.
+
+ procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
+
+ function Operator_Kind
+ (Op_Name : Name_Id;
+ Is_Binary : Boolean) return Node_Kind;
+ -- Utility to map the name of an operator into the corresponding Node. Used
+ -- by other node rewriting procedures.
+
+ procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
+ -- Resolve actuals of call, and add default expressions for missing ones.
+ -- N is the Node_Id for the subprogram call, and Nam is the entity of the
+ -- called subprogram.
+
+ procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
+ -- Called from Resolve_Call, when the prefix denotes an entry or element
+ -- of entry family. Actuals are resolved as for subprograms, and the node
+ -- is rebuilt as an entry call. Also called for protected operations. Typ
+ -- is the context type, which is used when the operation is a protected
+ -- function with no arguments, and the return value is indexed.
+
+ procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
+ -- A call to a user-defined intrinsic operator is rewritten as a call to
+ -- the corresponding predefined operator, with suitable conversions. Note
+ -- that this applies only for intrinsic operators that denote predefined
+ -- operators, not ones that are intrinsic imports of back-end builtins.
+
+ procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
+ -- Ditto, for unary operators (arithmetic ones and "not" on signed
+ -- integer types for VMS).
+
+ procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
+ -- If an operator node resolves to a call to a user-defined operator,
+ -- rewrite the node as a function call.
+
+ procedure Make_Call_Into_Operator
+ (N : Node_Id;
+ Typ : Entity_Id;
+ Op_Id : Entity_Id);
+ -- Inverse transformation: if an operator is given in functional notation,
+ -- then after resolving the node, transform into an operator node, so
+ -- that operands are resolved properly. Recall that predefined operators
+ -- do not have a full signature and special resolution rules apply.
+
+ procedure Rewrite_Renamed_Operator
+ (N : Node_Id;
+ Op : Entity_Id;
+ Typ : Entity_Id);
+ -- An operator can rename another, e.g. in an instantiation. In that
+ -- case, the proper operator node must be constructed and resolved.
+
+ procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
+ -- The String_Literal_Subtype is built for all strings that are not
+ -- operands of a static concatenation operation. If the argument is
+ -- not a N_String_Literal node, then the call has no effect.
+
+ procedure Set_Slice_Subtype (N : Node_Id);
+ -- Build subtype of array type, with the range specified by the slice
+
+ procedure Simplify_Type_Conversion (N : Node_Id);
+ -- Called after N has been resolved and evaluated, but before range checks
+ -- have been applied. Currently simplifies a combination of floating-point
+ -- to integer conversion and Truncation attribute.
+
+ function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
+ -- A universal_fixed expression in an universal context is unambiguous if
+ -- there is only one applicable fixed point type. Determining whether there
+ -- is only one requires a search over all visible entities, and happens
+ -- only in very pathological cases (see 6115-006).
+
+ -------------------------
+ -- Ambiguous_Character --
+ -------------------------
+
+ procedure Ambiguous_Character (C : Node_Id) is
+ E : Entity_Id;
+
+ begin
+ if Nkind (C) = N_Character_Literal then
+ Error_Msg_N ("ambiguous character literal", C);
+
+ -- First the ones in Standard
+
+ Error_Msg_N ("\\possible interpretation: Character!", C);
+ Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
+
+ -- Include Wide_Wide_Character in Ada 2005 mode
+
+ if Ada_Version >= Ada_2005 then
+ Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
+ end if;
+
+ -- Now any other types that match
+
+ E := Current_Entity (C);
+ while Present (E) loop
+ Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
+ E := Homonym (E);
+ end loop;
+ end if;
+ end Ambiguous_Character;
+
+ -------------------------
+ -- Analyze_And_Resolve --
+ -------------------------
+
+ procedure Analyze_And_Resolve (N : Node_Id) is
+ begin
+ Analyze (N);
+ Resolve (N);
+ end Analyze_And_Resolve;
+
+ procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
+ begin
+ Analyze (N);
+ Resolve (N, Typ);
+ end Analyze_And_Resolve;
+
+ -- Versions with check(s) suppressed
+
+ procedure Analyze_And_Resolve
+ (N : Node_Id;
+ Typ : Entity_Id;
+ Suppress : Check_Id)
+ is
+ Scop : constant Entity_Id := Current_Scope;
+
+ begin
+ if Suppress = All_Checks then
+ declare
+ Sva : constant Suppress_Array := Scope_Suppress.Suppress;
+ begin
+ Scope_Suppress.Suppress := (others => True);
+ Analyze_And_Resolve (N, Typ);
+ Scope_Suppress.Suppress := Sva;
+ end;
+
+ else
+ declare
+ Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
+ begin
+ Scope_Suppress.Suppress (Suppress) := True;
+ Analyze_And_Resolve (N, Typ);
+ Scope_Suppress.Suppress (Suppress) := Svg;
+ end;
+ end if;
+
+ if Current_Scope /= Scop
+ and then Scope_Is_Transient
+ then
+ -- This can only happen if a transient scope was created for an inner
+ -- expression, which will be removed upon completion of the analysis
+ -- of an enclosing construct. The transient scope must have the
+ -- suppress status of the enclosing environment, not of this Analyze
+ -- call.
+
+ Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
+ Scope_Suppress;
+ end if;
+ end Analyze_And_Resolve;
+
+ procedure Analyze_And_Resolve
+ (N : Node_Id;
+ Suppress : Check_Id)
+ is
+ Scop : constant Entity_Id := Current_Scope;
+
+ begin
+ if Suppress = All_Checks then
+ declare
+ Sva : constant Suppress_Array := Scope_Suppress.Suppress;
+ begin
+ Scope_Suppress.Suppress := (others => True);
+ Analyze_And_Resolve (N);
+ Scope_Suppress.Suppress := Sva;
+ end;
+
+ else
+ declare
+ Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
+ begin
+ Scope_Suppress.Suppress (Suppress) := True;
+ Analyze_And_Resolve (N);
+ Scope_Suppress.Suppress (Suppress) := Svg;
+ end;
+ end if;
+
+ if Current_Scope /= Scop and then Scope_Is_Transient then
+ Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
+ Scope_Suppress;
+ end if;
+ end Analyze_And_Resolve;
+
+ ----------------------------
+ -- Check_Discriminant_Use --
+ ----------------------------
+
+ procedure Check_Discriminant_Use (N : Node_Id) is
+ PN : constant Node_Id := Parent (N);
+ Disc : constant Entity_Id := Entity (N);
+ P : Node_Id;
+ D : Node_Id;
+
+ begin
+ -- Any use in a spec-expression is legal
+
+ if In_Spec_Expression then
+ null;
+
+ elsif Nkind (PN) = N_Range then
+
+ -- Discriminant cannot be used to constrain a scalar type
+
+ P := Parent (PN);
+
+ if Nkind (P) = N_Range_Constraint
+ and then Nkind (Parent (P)) = N_Subtype_Indication
+ and then Nkind (Parent (Parent (P))) = N_Component_Definition
+ then
+ Error_Msg_N ("discriminant cannot constrain scalar type", N);
+
+ elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
+
+ -- The following check catches the unusual case where a
+ -- discriminant appears within an index constraint that is part of
+ -- a larger expression within a constraint on a component, e.g. "C
+ -- : Int range 1 .. F (new A(1 .. D))". For now we only check case
+ -- of record components, and note that a similar check should also
+ -- apply in the case of discriminant constraints below. ???
+
+ -- Note that the check for N_Subtype_Declaration below is to
+ -- detect the valid use of discriminants in the constraints of a
+ -- subtype declaration when this subtype declaration appears
+ -- inside the scope of a record type (which is syntactically
+ -- illegal, but which may be created as part of derived type
+ -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
+ -- for more info.
+
+ if Ekind (Current_Scope) = E_Record_Type
+ and then Scope (Disc) = Current_Scope
+ and then not
+ (Nkind (Parent (P)) = N_Subtype_Indication
+ and then
+ Nkind_In (Parent (Parent (P)), N_Component_Definition,
+ N_Subtype_Declaration)
+ and then Paren_Count (N) = 0)
+ then
+ Error_Msg_N
+ ("discriminant must appear alone in component constraint", N);
+ return;
+ end if;
+
+ -- Detect a common error:
+
+ -- type R (D : Positive := 100) is record
+ -- Name : String (1 .. D);
+ -- end record;
+
+ -- The default value causes an object of type R to be allocated
+ -- with room for Positive'Last characters. The RM does not mandate
+ -- the allocation of the maximum size, but that is what GNAT does
+ -- so we should warn the programmer that there is a problem.
+
+ Check_Large : declare
+ SI : Node_Id;
+ T : Entity_Id;
+ TB : Node_Id;
+ CB : Entity_Id;
+
+ function Large_Storage_Type (T : Entity_Id) return Boolean;
+ -- Return True if type T has a large enough range that any
+ -- array whose index type covered the whole range of the type
+ -- would likely raise Storage_Error.
+
+ ------------------------
+ -- Large_Storage_Type --
+ ------------------------
+
+ function Large_Storage_Type (T : Entity_Id) return Boolean is
+ begin
+ -- The type is considered large if its bounds are known at
+ -- compile time and if it requires at least as many bits as
+ -- a Positive to store the possible values.
+
+ return Compile_Time_Known_Value (Type_Low_Bound (T))
+ and then Compile_Time_Known_Value (Type_High_Bound (T))
+ and then
+ Minimum_Size (T, Biased => True) >=
+ RM_Size (Standard_Positive);
+ end Large_Storage_Type;
+
+ -- Start of processing for Check_Large
+
+ begin
+ -- Check that the Disc has a large range
+
+ if not Large_Storage_Type (Etype (Disc)) then
+ goto No_Danger;
+ end if;
+
+ -- If the enclosing type is limited, we allocate only the
+ -- default value, not the maximum, and there is no need for
+ -- a warning.
+
+ if Is_Limited_Type (Scope (Disc)) then
+ goto No_Danger;
+ end if;
+
+ -- Check that it is the high bound
+
+ if N /= High_Bound (PN)
+ or else No (Discriminant_Default_Value (Disc))
+ then
+ goto No_Danger;
+ end if;
+
+ -- Check the array allows a large range at this bound. First
+ -- find the array
+
+ SI := Parent (P);
+
+ if Nkind (SI) /= N_Subtype_Indication then
+ goto No_Danger;
+ end if;
+
+ T := Entity (Subtype_Mark (SI));
+
+ if not Is_Array_Type (T) then
+ goto No_Danger;
+ end if;
+
+ -- Next, find the dimension
+
+ TB := First_Index (T);
+ CB := First (Constraints (P));
+ while True
+ and then Present (TB)
+ and then Present (CB)
+ and then CB /= PN
+ loop
+ Next_Index (TB);
+ Next (CB);
+ end loop;
+
+ if CB /= PN then
+ goto No_Danger;
+ end if;
+
+ -- Now, check the dimension has a large range
+
+ if not Large_Storage_Type (Etype (TB)) then
+ goto No_Danger;
+ end if;
+
+ -- Warn about the danger
+
+ Error_Msg_N
+ ("??creation of & object may raise Storage_Error!",
+ Scope (Disc));
+
+ <<No_Danger>>
+ null;
+
+ end Check_Large;
+ end if;
+
+ -- Legal case is in index or discriminant constraint
+
+ elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
+ N_Discriminant_Association)
+ then
+ if Paren_Count (N) > 0 then
+ Error_Msg_N
+ ("discriminant in constraint must appear alone", N);
+
+ elsif Nkind (N) = N_Expanded_Name
+ and then Comes_From_Source (N)
+ then
+ Error_Msg_N
+ ("discriminant must appear alone as a direct name", N);
+ end if;
+
+ return;
+
+ -- Otherwise, context is an expression. It should not be within (i.e. a
+ -- subexpression of) a constraint for a component.
+
+ else
+ D := PN;
+ P := Parent (PN);
+ while not Nkind_In (P, N_Component_Declaration,
+ N_Subtype_Indication,
+ N_Entry_Declaration)
+ loop
+ D := P;
+ P := Parent (P);
+ exit when No (P);
+ end loop;
+
+ -- If the discriminant is used in an expression that is a bound of a
+ -- scalar type, an Itype is created and the bounds are attached to
+ -- its range, not to the original subtype indication. Such use is of
+ -- course a double fault.
+
+ if (Nkind (P) = N_Subtype_Indication
+ and then Nkind_In (Parent (P), N_Component_Definition,
+ N_Derived_Type_Definition)
+ and then D = Constraint (P))
+
+ -- The constraint itself may be given by a subtype indication,
+ -- rather than by a more common discrete range.
+
+ or else (Nkind (P) = N_Subtype_Indication
+ and then
+ Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
+ or else Nkind (P) = N_Entry_Declaration
+ or else Nkind (D) = N_Defining_Identifier
+ then
+ Error_Msg_N
+ ("discriminant in constraint must appear alone", N);
+ end if;
+ end if;
+ end Check_Discriminant_Use;
+
+ --------------------------------
+ -- Check_For_Visible_Operator --
+ --------------------------------
+
+ procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
+ begin
+ if Is_Invisible_Operator (N, T) then
+ Error_Msg_NE -- CODEFIX
+ ("operator for} is not directly visible!", N, First_Subtype (T));
+ Error_Msg_N -- CODEFIX
+ ("use clause would make operation legal!", N);
+ end if;
+ end Check_For_Visible_Operator;
+
+ ----------------------------------
+ -- Check_Fully_Declared_Prefix --
+ ----------------------------------
+
+ procedure Check_Fully_Declared_Prefix
+ (Typ : Entity_Id;
+ Pref : Node_Id)
+ is
+ begin
+ -- Check that the designated type of the prefix of a dereference is
+ -- not an incomplete type. This cannot be done unconditionally, because
+ -- dereferences of private types are legal in default expressions. This
+ -- case is taken care of in Check_Fully_Declared, called below. There
+ -- are also 2005 cases where it is legal for the prefix to be unfrozen.
+
+ -- This consideration also applies to similar checks for allocators,
+ -- qualified expressions, and type conversions.
+
+ -- An additional exception concerns other per-object expressions that
+ -- are not directly related to component declarations, in particular
+ -- representation pragmas for tasks. These will be per-object
+ -- expressions if they depend on discriminants or some global entity.
+ -- If the task has access discriminants, the designated type may be
+ -- incomplete at the point the expression is resolved. This resolution
+ -- takes place within the body of the initialization procedure, where
+ -- the discriminant is replaced by its discriminal.
+
+ if Is_Entity_Name (Pref)
+ and then Ekind (Entity (Pref)) = E_In_Parameter
+ then
+ null;
+
+ -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
+ -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
+ -- Analyze_Object_Renaming, and Freeze_Entity.
+
+ elsif Ada_Version >= Ada_2005
+ and then Is_Entity_Name (Pref)
+ and then Is_Access_Type (Etype (Pref))
+ and then Ekind (Directly_Designated_Type (Etype (Pref))) =
+ E_Incomplete_Type
+ and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
+ then
+ null;
+ else
+ Check_Fully_Declared (Typ, Parent (Pref));
+ end if;
+ end Check_Fully_Declared_Prefix;
+
+ ------------------------------
+ -- Check_Infinite_Recursion --
+ ------------------------------
+
+ function Check_Infinite_Recursion (N : Node_Id) return Boolean is
+ P : Node_Id;
+ C : Node_Id;
+
+ function Same_Argument_List return Boolean;
+ -- Check whether list of actuals is identical to list of formals of
+ -- called function (which is also the enclosing scope).
+
+ ------------------------
+ -- Same_Argument_List --
+ ------------------------
+
+ function Same_Argument_List return Boolean is
+ A : Node_Id;
+ F : Entity_Id;
+ Subp : Entity_Id;
+
+ begin
+ if not Is_Entity_Name (Name (N)) then
+ return False;
+ else
+ Subp := Entity (Name (N));
+ end if;
+
+ F := First_Formal (Subp);
+ A := First_Actual (N);
+ while Present (F) and then Present (A) loop
+ if not Is_Entity_Name (A)
+ or else Entity (A) /= F
+ then
+ return False;
+ end if;
+
+ Next_Actual (A);
+ Next_Formal (F);
+ end loop;
+
+ return True;
+ end Same_Argument_List;
+
+ -- Start of processing for Check_Infinite_Recursion
+
+ begin
+ -- Special case, if this is a procedure call and is a call to the
+ -- current procedure with the same argument list, then this is for
+ -- sure an infinite recursion and we insert a call to raise SE.
+
+ if Is_List_Member (N)
+ and then List_Length (List_Containing (N)) = 1
+ and then Same_Argument_List
+ then
+ declare
+ P : constant Node_Id := Parent (N);
+ begin
+ if Nkind (P) = N_Handled_Sequence_Of_Statements
+ and then Nkind (Parent (P)) = N_Subprogram_Body
+ and then Is_Empty_List (Declarations (Parent (P)))
+ then
+ Error_Msg_Warn := SPARK_Mode /= On;
+ Error_Msg_N ("!infinite recursion<<", N);
+ Error_Msg_N ("\!Storage_Error [<<", N);
+ Insert_Action (N,
+ Make_Raise_Storage_Error (Sloc (N),
+ Reason => SE_Infinite_Recursion));
+ return True;
+ end if;
+ end;
+ end if;
+
+ -- If not that special case, search up tree, quitting if we reach a
+ -- construct (e.g. a conditional) that tells us that this is not a
+ -- case for an infinite recursion warning.
+
+ C := N;
+ loop
+ P := Parent (C);
+
+ -- If no parent, then we were not inside a subprogram, this can for
+ -- example happen when processing certain pragmas in a spec. Just
+ -- return False in this case.
+
+ if No (P) then
+ return False;
+ end if;
+
+ -- Done if we get to subprogram body, this is definitely an infinite
+ -- recursion case if we did not find anything to stop us.
+
+ exit when Nkind (P) = N_Subprogram_Body;
+
+ -- If appearing in conditional, result is false
+
+ if Nkind_In (P, N_Or_Else,
+ N_And_Then,
+ N_Case_Expression,
+ N_Case_Statement,
+ N_If_Expression,
+ N_If_Statement)
+ then
+ return False;
+
+ elsif Nkind (P) = N_Handled_Sequence_Of_Statements
+ and then C /= First (Statements (P))
+ then
+ -- If the call is the expression of a return statement and the
+ -- actuals are identical to the formals, it's worth a warning.
+ -- However, we skip this if there is an immediately preceding
+ -- raise statement, since the call is never executed.
+
+ -- Furthermore, this corresponds to a common idiom:
+
+ -- function F (L : Thing) return Boolean is
+ -- begin
+ -- raise Program_Error;
+ -- return F (L);
+ -- end F;
+
+ -- for generating a stub function
+
+ if Nkind (Parent (N)) = N_Simple_Return_Statement
+ and then Same_Argument_List
+ then
+ exit when not Is_List_Member (Parent (N));
+
+ -- OK, return statement is in a statement list, look for raise
+
+ declare
+ Nod : Node_Id;
+
+ begin
+ -- Skip past N_Freeze_Entity nodes generated by expansion
+
+ Nod := Prev (Parent (N));
+ while Present (Nod)
+ and then Nkind (Nod) = N_Freeze_Entity
+ loop
+ Prev (Nod);
+ end loop;
+
+ -- If no raise statement, give warning. We look at the
+ -- original node, because in the case of "raise ... with
+ -- ...", the node has been transformed into a call.
+
+ exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
+ and then
+ (Nkind (Nod) not in N_Raise_xxx_Error
+ or else Present (Condition (Nod)));
+ end;
+ end if;
+
+ return False;
+
+ else
+ C := P;
+ end if;
+ end loop;
+
+ Error_Msg_Warn := SPARK_Mode /= On;
+ Error_Msg_N ("!possible infinite recursion<<", N);
+ Error_Msg_N ("\!??Storage_Error ]<<", N);
+
+ return True;
+ end Check_Infinite_Recursion;
+
+ -------------------------------
+ -- Check_Initialization_Call --
+ -------------------------------
+
+ procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
+ Typ : constant Entity_Id := Etype (First_Formal (Nam));
+
+ function Uses_SS (T : Entity_Id) return Boolean;
+ -- Check whether the creation of an object of the type will involve
+ -- use of the secondary stack. If T is a record type, this is true
+ -- if the expression for some component uses the secondary stack, e.g.
+ -- through a call to a function that returns an unconstrained value.
+ -- False if T is controlled, because cleanups occur elsewhere.
+
+ -------------
+ -- Uses_SS --
+ -------------
+
+ function Uses_SS (T : Entity_Id) return Boolean is
+ Comp : Entity_Id;
+ Expr : Node_Id;
+ Full_Type : Entity_Id := Underlying_Type (T);
+
+ begin
+ -- Normally we want to use the underlying type, but if it's not set
+ -- then continue with T.
+
+ if not Present (Full_Type) then
+ Full_Type := T;
+ end if;
+
+ if Is_Controlled (Full_Type) then
+ return False;
+
+ elsif Is_Array_Type (Full_Type) then
+ return Uses_SS (Component_Type (Full_Type));
+
+ elsif Is_Record_Type (Full_Type) then
+ Comp := First_Component (Full_Type);
+ while Present (Comp) loop
+ if Ekind (Comp) = E_Component
+ and then Nkind (Parent (Comp)) = N_Component_Declaration
+ then
+ -- The expression for a dynamic component may be rewritten
+ -- as a dereference, so retrieve original node.
+
+ Expr := Original_Node (Expression (Parent (Comp)));
+
+ -- Return True if the expression is a call to a function
+ -- (including an attribute function such as Image, or a
+ -- user-defined operator) with a result that requires a
+ -- transient scope.
+
+ if (Nkind (Expr) = N_Function_Call
+ or else Nkind (Expr) in N_Op
+ or else (Nkind (Expr) = N_Attribute_Reference
+ and then Present (Expressions (Expr))))
+ and then Requires_Transient_Scope (Etype (Expr))
+ then
+ return True;
+
+ elsif Uses_SS (Etype (Comp)) then
+ return True;
+ end if;
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+
+ return False;
+
+ else
+ return False;
+ end if;
+ end Uses_SS;
+
+ -- Start of processing for Check_Initialization_Call
+
+ begin
+ -- Establish a transient scope if the type needs it
+
+ if Uses_SS (Typ) then
+ Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
+ end if;
+ end Check_Initialization_Call;
+
+ ---------------------------------------
+ -- Check_No_Direct_Boolean_Operators --
+ ---------------------------------------
+
+ procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
+ begin
+ if Scope (Entity (N)) = Standard_Standard
+ and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
+ then
+ -- Restriction only applies to original source code
+
+ if Comes_From_Source (N) then
+ Check_Restriction (No_Direct_Boolean_Operators, N);
+ end if;
+ end if;
+
+ -- Do style check (but skip if in instance, error is on template)
+
+ if Style_Check then
+ if not In_Instance then
+ Check_Boolean_Operator (N);
+ end if;
+ end if;
+ end Check_No_Direct_Boolean_Operators;
+
+ ------------------------------
+ -- Check_Parameterless_Call --
+ ------------------------------
+
+ procedure Check_Parameterless_Call (N : Node_Id) is
+ Nam : Node_Id;
+
+ function Prefix_Is_Access_Subp return Boolean;
+ -- If the prefix is of an access_to_subprogram type, the node must be
+ -- rewritten as a call. Ditto if the prefix is overloaded and all its
+ -- interpretations are access to subprograms.
+
+ ---------------------------
+ -- Prefix_Is_Access_Subp --
+ ---------------------------
+
+ function Prefix_Is_Access_Subp return Boolean is
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ -- If the context is an attribute reference that can apply to
+ -- functions, this is never a parameterless call (RM 4.1.4(6)).
+
+ if Nkind (Parent (N)) = N_Attribute_Reference
+ and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
+ Name_Code_Address,
+ Name_Access)
+ then
+ return False;
+ end if;
+
+ if not Is_Overloaded (N) then
+ return
+ Ekind (Etype (N)) = E_Subprogram_Type
+ and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
+ else
+ Get_First_Interp (N, I, It);
+ while Present (It.Typ) loop
+ if Ekind (It.Typ) /= E_Subprogram_Type
+ or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
+ then
+ return False;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ return True;
+ end if;
+ end Prefix_Is_Access_Subp;
+
+ -- Start of processing for Check_Parameterless_Call
+
+ begin
+ -- Defend against junk stuff if errors already detected
+
+ if Total_Errors_Detected /= 0 then
+ if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
+ return;
+ elsif Nkind (N) in N_Has_Chars
+ and then Chars (N) in Error_Name_Or_No_Name
+ then
+ return;
+ end if;
+
+ Require_Entity (N);
+ end if;
+
+ -- If the context expects a value, and the name is a procedure, this is
+ -- most likely a missing 'Access. Don't try to resolve the parameterless
+ -- call, error will be caught when the outer call is analyzed.
+
+ if Is_Entity_Name (N)
+ and then Ekind (Entity (N)) = E_Procedure
+ and then not Is_Overloaded (N)
+ and then
+ Nkind_In (Parent (N), N_Parameter_Association,
+ N_Function_Call,
+ N_Procedure_Call_Statement)
+ then
+ return;
+ end if;
+
+ -- Rewrite as call if overloadable entity that is (or could be, in the
+ -- overloaded case) a function call. If we know for sure that the entity
+ -- is an enumeration literal, we do not rewrite it.
+
+ -- If the entity is the name of an operator, it cannot be a call because
+ -- operators cannot have default parameters. In this case, this must be
+ -- a string whose contents coincide with an operator name. Set the kind
+ -- of the node appropriately.
+
+ if (Is_Entity_Name (N)
+ and then Nkind (N) /= N_Operator_Symbol
+ and then Is_Overloadable (Entity (N))
+ and then (Ekind (Entity (N)) /= E_Enumeration_Literal
+ or else Is_Overloaded (N)))
+
+ -- Rewrite as call if it is an explicit dereference of an expression of
+ -- a subprogram access type, and the subprogram type is not that of a
+ -- procedure or entry.
+
+ or else
+ (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
+
+ -- Rewrite as call if it is a selected component which is a function,
+ -- this is the case of a call to a protected function (which may be
+ -- overloaded with other protected operations).
+
+ or else
+ (Nkind (N) = N_Selected_Component
+ and then (Ekind (Entity (Selector_Name (N))) = E_Function
+ or else
+ (Ekind_In (Entity (Selector_Name (N)), E_Entry,
+ E_Procedure)
+ and then Is_Overloaded (Selector_Name (N)))))
+
+ -- If one of the above three conditions is met, rewrite as call. Apply
+ -- the rewriting only once.
+
+ then
+ if Nkind (Parent (N)) /= N_Function_Call
+ or else N /= Name (Parent (N))
+ then
+
+ -- This may be a prefixed call that was not fully analyzed, e.g.
+ -- an actual in an instance.
+
+ if Ada_Version >= Ada_2005
+ and then Nkind (N) = N_Selected_Component
+ and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
+ then
+ Analyze_Selected_Component (N);
+
+ if Nkind (N) /= N_Selected_Component then
+ return;
+ end if;
+ end if;
+
+ Nam := New_Copy (N);
+
+ -- If overloaded, overload set belongs to new copy
+
+ Save_Interps (N, Nam);
+
+ -- Change node to parameterless function call (note that the
+ -- Parameter_Associations associations field is left set to Empty,
+ -- its normal default value since there are no parameters)
+
+ Change_Node (N, N_Function_Call);
+ Set_Name (N, Nam);
+ Set_Sloc (N, Sloc (Nam));
+ Analyze_Call (N);
+ end if;
+
+ elsif Nkind (N) = N_Parameter_Association then
+ Check_Parameterless_Call (Explicit_Actual_Parameter (N));
+
+ elsif Nkind (N) = N_Operator_Symbol then
+ Change_Operator_Symbol_To_String_Literal (N);
+ Set_Is_Overloaded (N, False);
+ Set_Etype (N, Any_String);
+ end if;
+ end Check_Parameterless_Call;
+
+ -----------------------------
+ -- Is_Definite_Access_Type --
+ -----------------------------
+
+ function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
+ Btyp : constant Entity_Id := Base_Type (E);
+ begin
+ return Ekind (Btyp) = E_Access_Type
+ or else (Ekind (Btyp) = E_Access_Subprogram_Type
+ and then Comes_From_Source (Btyp));
+ end Is_Definite_Access_Type;
+
+ ----------------------
+ -- Is_Predefined_Op --
+ ----------------------
+
+ function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
+ begin
+ -- Predefined operators are intrinsic subprograms
+
+ if not Is_Intrinsic_Subprogram (Nam) then
+ return False;
+ end if;
+
+ -- A call to a back-end builtin is never a predefined operator
+
+ if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
+ return False;
+ end if;
+
+ return not Is_Generic_Instance (Nam)
+ and then Chars (Nam) in Any_Operator_Name
+ and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
+ end Is_Predefined_Op;
+
+ -----------------------------
+ -- Make_Call_Into_Operator --
+ -----------------------------
+
+ procedure Make_Call_Into_Operator
+ (N : Node_Id;
+ Typ : Entity_Id;
+ Op_Id : Entity_Id)
+ is
+ Op_Name : constant Name_Id := Chars (Op_Id);
+ Act1 : Node_Id := First_Actual (N);
+ Act2 : Node_Id := Next_Actual (Act1);
+ Error : Boolean := False;
+ Func : constant Entity_Id := Entity (Name (N));
+ Is_Binary : constant Boolean := Present (Act2);
+ Op_Node : Node_Id;
+ Opnd_Type : Entity_Id;
+ Orig_Type : Entity_Id := Empty;
+ Pack : Entity_Id;
+
+ type Kind_Test is access function (E : Entity_Id) return Boolean;
+
+ function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
+ -- If the operand is not universal, and the operator is given by an
+ -- expanded name, verify that the operand has an interpretation with a
+ -- type defined in the given scope of the operator.
+
+ function Type_In_P (Test : Kind_Test) return Entity_Id;
+ -- Find a type of the given class in package Pack that contains the
+ -- operator.
+
+ ---------------------------
+ -- Operand_Type_In_Scope --
+ ---------------------------
+
+ function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
+ Nod : constant Node_Id := Right_Opnd (Op_Node);
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ if not Is_Overloaded (Nod) then
+ return Scope (Base_Type (Etype (Nod))) = S;
+
+ else
+ Get_First_Interp (Nod, I, It);
+ while Present (It.Typ) loop
+ if Scope (Base_Type (It.Typ)) = S then
+ return True;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ return False;
+ end if;
+ end Operand_Type_In_Scope;
+
+ ---------------
+ -- Type_In_P --
+ ---------------
+
+ function Type_In_P (Test : Kind_Test) return Entity_Id is
+ E : Entity_Id;
+
+ function In_Decl return Boolean;
+ -- Verify that node is not part of the type declaration for the
+ -- candidate type, which would otherwise be invisible.
+
+ -------------
+ -- In_Decl --
+ -------------
+
+ function In_Decl return Boolean is
+ Decl_Node : constant Node_Id := Parent (E);
+ N2 : Node_Id;
+
+ begin
+ N2 := N;
+
+ if Etype (E) = Any_Type then
+ return True;
+
+ elsif No (Decl_Node) then
+ return False;
+
+ else
+ while Present (N2)
+ and then Nkind (N2) /= N_Compilation_Unit
+ loop
+ if N2 = Decl_Node then
+ return True;
+ else
+ N2 := Parent (N2);
+ end if;
+ end loop;
+
+ return False;
+ end if;
+ end In_Decl;
+
+ -- Start of processing for Type_In_P
+
+ begin
+ -- If the context type is declared in the prefix package, this is the
+ -- desired base type.
+
+ if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
+ return Base_Type (Typ);
+
+ else
+ E := First_Entity (Pack);
+ while Present (E) loop
+ if Test (E)
+ and then not In_Decl
+ then
+ return E;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+
+ return Empty;
+ end if;
+ end Type_In_P;
+
+ -- Start of processing for Make_Call_Into_Operator
+
+ begin
+ Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
+
+ -- Binary operator
+
+ if Is_Binary then
+ Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
+ Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
+ Save_Interps (Act1, Left_Opnd (Op_Node));
+ Save_Interps (Act2, Right_Opnd (Op_Node));
+ Act1 := Left_Opnd (Op_Node);
+ Act2 := Right_Opnd (Op_Node);
+
+ -- Unary operator
+
+ else
+ Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
+ Save_Interps (Act1, Right_Opnd (Op_Node));
+ Act1 := Right_Opnd (Op_Node);
+ end if;
+
+ -- If the operator is denoted by an expanded name, and the prefix is
+ -- not Standard, but the operator is a predefined one whose scope is
+ -- Standard, then this is an implicit_operator, inserted as an
+ -- interpretation by the procedure of the same name. This procedure
+ -- overestimates the presence of implicit operators, because it does
+ -- not examine the type of the operands. Verify now that the operand
+ -- type appears in the given scope. If right operand is universal,
+ -- check the other operand. In the case of concatenation, either
+ -- argument can be the component type, so check the type of the result.
+ -- If both arguments are literals, look for a type of the right kind
+ -- defined in the given scope. This elaborate nonsense is brought to
+ -- you courtesy of b33302a. The type itself must be frozen, so we must
+ -- find the type of the proper class in the given scope.
+
+ -- A final wrinkle is the multiplication operator for fixed point types,
+ -- which is defined in Standard only, and not in the scope of the
+ -- fixed point type itself.
+
+ if Nkind (Name (N)) = N_Expanded_Name then
+ Pack := Entity (Prefix (Name (N)));
+
+ -- If this is a package renaming, get renamed entity, which will be
+ -- the scope of the operands if operaton is type-correct.
+
+ if Present (Renamed_Entity (Pack)) then
+ Pack := Renamed_Entity (Pack);
+ end if;
+
+ -- If the entity being called is defined in the given package, it is
+ -- a renaming of a predefined operator, and known to be legal.
+
+ if Scope (Entity (Name (N))) = Pack
+ and then Pack /= Standard_Standard
+ then
+ null;
+
+ -- Visibility does not need to be checked in an instance: if the
+ -- operator was not visible in the generic it has been diagnosed
+ -- already, else there is an implicit copy of it in the instance.
+
+ elsif In_Instance then
+ null;
+
+ elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
+ and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
+ and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
+ then
+ if Pack /= Standard_Standard then
+ Error := True;
+ end if;
+
+ -- Ada 2005 AI-420: Predefined equality on Universal_Access is
+ -- available.
+
+ elsif Ada_Version >= Ada_2005
+ and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
+ and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
+ then
+ null;
+
+ else
+ Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
+
+ if Op_Name = Name_Op_Concat then
+ Opnd_Type := Base_Type (Typ);
+
+ elsif (Scope (Opnd_Type) = Standard_Standard
+ and then Is_Binary)
+ or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
+ and then Is_Binary
+ and then not Comes_From_Source (Opnd_Type))
+ then
+ Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
+ end if;
+
+ if Scope (Opnd_Type) = Standard_Standard then
+
+ -- Verify that the scope contains a type that corresponds to
+ -- the given literal. Optimize the case where Pack is Standard.
+
+ if Pack /= Standard_Standard then
+
+ if Opnd_Type = Universal_Integer then
+ Orig_Type := Type_In_P (Is_Integer_Type'Access);
+
+ elsif Opnd_Type = Universal_Real then
+ Orig_Type := Type_In_P (Is_Real_Type'Access);
+
+ elsif Opnd_Type = Any_String then
+ Orig_Type := Type_In_P (Is_String_Type'Access);
+
+ elsif Opnd_Type = Any_Access then
+ Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
+
+ elsif Opnd_Type = Any_Composite then
+ Orig_Type := Type_In_P (Is_Composite_Type'Access);
+
+ if Present (Orig_Type) then
+ if Has_Private_Component (Orig_Type) then
+ Orig_Type := Empty;
+ else
+ Set_Etype (Act1, Orig_Type);
+
+ if Is_Binary then
+ Set_Etype (Act2, Orig_Type);
+ end if;
+ end if;
+ end if;
+
+ else
+ Orig_Type := Empty;
+ end if;
+
+ Error := No (Orig_Type);
+ end if;
+
+ elsif Ekind (Opnd_Type) = E_Allocator_Type
+ and then No (Type_In_P (Is_Definite_Access_Type'Access))
+ then
+ Error := True;
+
+ -- If the type is defined elsewhere, and the operator is not
+ -- defined in the given scope (by a renaming declaration, e.g.)
+ -- then this is an error as well. If an extension of System is
+ -- present, and the type may be defined there, Pack must be
+ -- System itself.
+
+ elsif Scope (Opnd_Type) /= Pack
+ and then Scope (Op_Id) /= Pack
+ and then (No (System_Aux_Id)
+ or else Scope (Opnd_Type) /= System_Aux_Id
+ or else Pack /= Scope (System_Aux_Id))
+ then
+ if not Is_Overloaded (Right_Opnd (Op_Node)) then
+ Error := True;
+ else
+ Error := not Operand_Type_In_Scope (Pack);
+ end if;
+
+ elsif Pack = Standard_Standard
+ and then not Operand_Type_In_Scope (Standard_Standard)
+ then
+ Error := True;
+ end if;
+ end if;
+
+ if Error then
+ Error_Msg_Node_2 := Pack;
+ Error_Msg_NE
+ ("& not declared in&", N, Selector_Name (Name (N)));
+ Set_Etype (N, Any_Type);
+ return;
+
+ -- Detect a mismatch between the context type and the result type
+ -- in the named package, which is otherwise not detected if the
+ -- operands are universal. Check is only needed if source entity is
+ -- an operator, not a function that renames an operator.
+
+ elsif Nkind (Parent (N)) /= N_Type_Conversion
+ and then Ekind (Entity (Name (N))) = E_Operator
+ and then Is_Numeric_Type (Typ)
+ and then not Is_Universal_Numeric_Type (Typ)
+ and then Scope (Base_Type (Typ)) /= Pack
+ and then not In_Instance
+ then
+ if Is_Fixed_Point_Type (Typ)
+ and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
+ then
+ -- Already checked above
+
+ null;
+
+ -- Operator may be defined in an extension of System
+
+ elsif Present (System_Aux_Id)
+ and then Scope (Opnd_Type) = System_Aux_Id
+ then
+ null;
+
+ else
+ -- Could we use Wrong_Type here??? (this would require setting
+ -- Etype (N) to the actual type found where Typ was expected).
+
+ Error_Msg_NE ("expect }", N, Typ);
+ end if;
+ end if;
+ end if;
+
+ Set_Chars (Op_Node, Op_Name);
+
+ if not Is_Private_Type (Etype (N)) then
+ Set_Etype (Op_Node, Base_Type (Etype (N)));
+ else
+ Set_Etype (Op_Node, Etype (N));
+ end if;
+
+ -- If this is a call to a function that renames a predefined equality,
+ -- the renaming declaration provides a type that must be used to
+ -- resolve the operands. This must be done now because resolution of
+ -- the equality node will not resolve any remaining ambiguity, and it
+ -- assumes that the first operand is not overloaded.
+
+ if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
+ and then Ekind (Func) = E_Function
+ and then Is_Overloaded (Act1)
+ then
+ Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
+ Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
+ end if;
+
+ Set_Entity (Op_Node, Op_Id);
+ Generate_Reference (Op_Id, N, ' ');
+
+ -- Do rewrite setting Comes_From_Source on the result if the original
+ -- call came from source. Although it is not strictly the case that the
+ -- operator as such comes from the source, logically it corresponds
+ -- exactly to the function call in the source, so it should be marked
+ -- this way (e.g. to make sure that validity checks work fine).
+
+ declare
+ CS : constant Boolean := Comes_From_Source (N);
+ begin
+ Rewrite (N, Op_Node);
+ Set_Comes_From_Source (N, CS);
+ end;
+
+ -- If this is an arithmetic operator and the result type is private,
+ -- the operands and the result must be wrapped in conversion to
+ -- expose the underlying numeric type and expand the proper checks,
+ -- e.g. on division.
+
+ if Is_Private_Type (Typ) then
+ case Nkind (N) is
+ when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
+ N_Op_Expon | N_Op_Mod | N_Op_Rem =>
+ Resolve_Intrinsic_Operator (N, Typ);
+
+ when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
+ Resolve_Intrinsic_Unary_Operator (N, Typ);
+
+ when others =>
+ Resolve (N, Typ);
+ end case;
+ else
+ Resolve (N, Typ);
+ end if;
+
+ -- If in ASIS_Mode, propagate operand types to original actuals of
+ -- function call, which would otherwise not be fully resolved. If
+ -- the call has already been constant-folded, nothing to do. We
+ -- relocate the operand nodes rather than copy them, to preserve
+ -- original_node pointers, given that the operands themselves may
+ -- have been rewritten.
+
+ if ASIS_Mode and then Nkind (N) in N_Op then
+ if Is_Binary then
+ Rewrite (First (Parameter_Associations (Original_Node (N))),
+ Relocate_Node (Left_Opnd (N)));
+ Rewrite (Next (First (Parameter_Associations (Original_Node (N)))),
+ Relocate_Node (Right_Opnd (N)));
+ else
+ Rewrite (First (Parameter_Associations (Original_Node (N))),
+ Relocate_Node (Right_Opnd (N)));
+ end if;
+
+ Set_Parent (Original_Node (N), Parent (N));
+ end if;
+ end Make_Call_Into_Operator;
+
+ -------------------
+ -- Operator_Kind --
+ -------------------
+
+ function Operator_Kind
+ (Op_Name : Name_Id;
+ Is_Binary : Boolean) return Node_Kind
+ is
+ Kind : Node_Kind;
+
+ begin
+ -- Use CASE statement or array???
+
+ if Is_Binary then
+ if Op_Name = Name_Op_And then
+ Kind := N_Op_And;
+ elsif Op_Name = Name_Op_Or then
+ Kind := N_Op_Or;
+ elsif Op_Name = Name_Op_Xor then
+ Kind := N_Op_Xor;
+ elsif Op_Name = Name_Op_Eq then
+ Kind := N_Op_Eq;
+ elsif Op_Name = Name_Op_Ne then
+ Kind := N_Op_Ne;
+ elsif Op_Name = Name_Op_Lt then
+ Kind := N_Op_Lt;
+ elsif Op_Name = Name_Op_Le then
+ Kind := N_Op_Le;
+ elsif Op_Name = Name_Op_Gt then
+ Kind := N_Op_Gt;
+ elsif Op_Name = Name_Op_Ge then
+ Kind := N_Op_Ge;
+ elsif Op_Name = Name_Op_Add then
+ Kind := N_Op_Add;
+ elsif Op_Name = Name_Op_Subtract then
+ Kind := N_Op_Subtract;
+ elsif Op_Name = Name_Op_Concat then
+ Kind := N_Op_Concat;
+ elsif Op_Name = Name_Op_Multiply then
+ Kind := N_Op_Multiply;
+ elsif Op_Name = Name_Op_Divide then
+ Kind := N_Op_Divide;
+ elsif Op_Name = Name_Op_Mod then
+ Kind := N_Op_Mod;
+ elsif Op_Name = Name_Op_Rem then
+ Kind := N_Op_Rem;
+ elsif Op_Name = Name_Op_Expon then
+ Kind := N_Op_Expon;
+ else
+ raise Program_Error;
+ end if;
+
+ -- Unary operators
+
+ else
+ if Op_Name = Name_Op_Add then
+ Kind := N_Op_Plus;
+ elsif Op_Name = Name_Op_Subtract then
+ Kind := N_Op_Minus;
+ elsif Op_Name = Name_Op_Abs then
+ Kind := N_Op_Abs;
+ elsif Op_Name = Name_Op_Not then
+ Kind := N_Op_Not;
+ else
+ raise Program_Error;
+ end if;
+ end if;
+
+ return Kind;
+ end Operator_Kind;
+
+ ----------------------------
+ -- Preanalyze_And_Resolve --
+ ----------------------------
+
+ procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
+ Save_Full_Analysis : constant Boolean := Full_Analysis;
+
+ begin
+ Full_Analysis := False;
+ Expander_Mode_Save_And_Set (False);
+
+ -- Normally, we suppress all checks for this preanalysis. There is no
+ -- point in processing them now, since they will be applied properly
+ -- and in the proper location when the default expressions reanalyzed
+ -- and reexpanded later on. We will also have more information at that
+ -- point for possible suppression of individual checks.
+
+ -- However, in SPARK mode, most expansion is suppressed, and this
+ -- later reanalysis and reexpansion may not occur. SPARK mode does
+ -- require the setting of checking flags for proof purposes, so we
+ -- do the SPARK preanalysis without suppressing checks.
+
+ -- This special handling for SPARK mode is required for example in the
+ -- case of Ada 2012 constructs such as quantified expressions, which are
+ -- expanded in two separate steps.
+
+ if GNATprove_Mode then
+ Analyze_And_Resolve (N, T);
+ else
+ Analyze_And_Resolve (N, T, Suppress => All_Checks);
+ end if;
+
+ Expander_Mode_Restore;
+ Full_Analysis := Save_Full_Analysis;
+ end Preanalyze_And_Resolve;
+
+ -- Version without context type
+
+ procedure Preanalyze_And_Resolve (N : Node_Id) is
+ Save_Full_Analysis : constant Boolean := Full_Analysis;
+
+ begin
+ Full_Analysis := False;
+ Expander_Mode_Save_And_Set (False);
+
+ Analyze (N);
+ Resolve (N, Etype (N), Suppress => All_Checks);
+
+ Expander_Mode_Restore;
+ Full_Analysis := Save_Full_Analysis;
+ end Preanalyze_And_Resolve;
+
+ ----------------------------------
+ -- Replace_Actual_Discriminants --
+ ----------------------------------
+
+ procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Tsk : Node_Id := Empty;
+
+ function Process_Discr (Nod : Node_Id) return Traverse_Result;
+ -- Comment needed???
+
+ -------------------
+ -- Process_Discr --
+ -------------------
+
+ function Process_Discr (Nod : Node_Id) return Traverse_Result is
+ Ent : Entity_Id;
+
+ begin
+ if Nkind (Nod) = N_Identifier then
+ Ent := Entity (Nod);
+
+ if Present (Ent)
+ and then Ekind (Ent) = E_Discriminant
+ then
+ Rewrite (Nod,
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
+ Selector_Name => Make_Identifier (Loc, Chars (Ent))));
+
+ Set_Etype (Nod, Etype (Ent));
+ end if;
+
+ end if;
+
+ return OK;
+ end Process_Discr;
+
+ procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
+
+ -- Start of processing for Replace_Actual_Discriminants
+
+ begin
+ if not Expander_Active then
+ return;
+ end if;
+
+ if Nkind (Name (N)) = N_Selected_Component then
+ Tsk := Prefix (Name (N));
+
+ elsif Nkind (Name (N)) = N_Indexed_Component then
+ Tsk := Prefix (Prefix (Name (N)));
+ end if;
+
+ if No (Tsk) then
+ return;
+ else
+ Replace_Discrs (Default);
+ end if;
+ end Replace_Actual_Discriminants;
+
+ -------------
+ -- Resolve --
+ -------------
+
+ procedure Resolve (N : Node_Id; Typ : Entity_Id) is
+ Ambiguous : Boolean := False;
+ Ctx_Type : Entity_Id := Typ;
+ Expr_Type : Entity_Id := Empty; -- prevent junk warning
+ Err_Type : Entity_Id := Empty;
+ Found : Boolean := False;
+ From_Lib : Boolean;
+ I : Interp_Index;
+ I1 : Interp_Index := 0; -- prevent junk warning
+ It : Interp;
+ It1 : Interp;
+ Seen : Entity_Id := Empty; -- prevent junk warning
+
+ function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
+ -- Determine whether a node comes from a predefined library unit or
+ -- Standard.
+
+ procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
+ -- Try and fix up a literal so that it matches its expected type. New
+ -- literals are manufactured if necessary to avoid cascaded errors.
+
+ function Proper_Current_Scope return Entity_Id;
+ -- Return the current scope. Skip loop scopes created for the purpose of
+ -- quantified expression analysis since those do not appear in the tree.
+
+ procedure Report_Ambiguous_Argument;
+ -- Additional diagnostics when an ambiguous call has an ambiguous
+ -- argument (typically a controlling actual).
+
+ procedure Resolution_Failed;
+ -- Called when attempt at resolving current expression fails
+
+ ------------------------------------
+ -- Comes_From_Predefined_Lib_Unit --
+ -------------------------------------
+
+ function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
+ begin
+ return
+ Sloc (Nod) = Standard_Location
+ or else Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
+ end Comes_From_Predefined_Lib_Unit;
+
+ --------------------
+ -- Patch_Up_Value --
+ --------------------
+
+ procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
+ begin
+ if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
+ Rewrite (N,
+ Make_Real_Literal (Sloc (N),
+ Realval => UR_From_Uint (Intval (N))));
+ Set_Etype (N, Universal_Real);
+ Set_Is_Static_Expression (N);
+
+ elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
+ Rewrite (N,
+ Make_Integer_Literal (Sloc (N),
+ Intval => UR_To_Uint (Realval (N))));
+ Set_Etype (N, Universal_Integer);
+ Set_Is_Static_Expression (N);
+
+ elsif Nkind (N) = N_String_Literal
+ and then Is_Character_Type (Typ)
+ then
+ Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
+ Rewrite (N,
+ Make_Character_Literal (Sloc (N),
+ Chars => Name_Find,
+ Char_Literal_Value =>
+ UI_From_Int (Character'Pos ('A'))));
+ Set_Etype (N, Any_Character);
+ Set_Is_Static_Expression (N);
+
+ elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
+ Rewrite (N,
+ Make_String_Literal (Sloc (N),
+ Strval => End_String));
+
+ elsif Nkind (N) = N_Range then
+ Patch_Up_Value (Low_Bound (N), Typ);
+ Patch_Up_Value (High_Bound (N), Typ);
+ end if;
+ end Patch_Up_Value;
+
+ --------------------------
+ -- Proper_Current_Scope --
+ --------------------------
+
+ function Proper_Current_Scope return Entity_Id is
+ S : Entity_Id := Current_Scope;
+
+ begin
+ while Present (S) loop
+
+ -- Skip a loop scope created for quantified expression analysis
+
+ if Ekind (S) = E_Loop
+ and then Nkind (Parent (S)) = N_Quantified_Expression
+ then
+ S := Scope (S);
+ else
+ exit;
+ end if;
+ end loop;
+
+ return S;
+ end Proper_Current_Scope;
+
+ -------------------------------
+ -- Report_Ambiguous_Argument --
+ -------------------------------
+
+ procedure Report_Ambiguous_Argument is
+ Arg : constant Node_Id := First (Parameter_Associations (N));
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ if Nkind (Arg) = N_Function_Call
+ and then Is_Entity_Name (Name (Arg))
+ and then Is_Overloaded (Name (Arg))
+ then
+ Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
+
+ -- Could use comments on what is going on here???
+
+ Get_First_Interp (Name (Arg), I, It);
+ while Present (It.Nam) loop
+ Error_Msg_Sloc := Sloc (It.Nam);
+
+ if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
+ Error_Msg_N ("interpretation (inherited) #!", Arg);
+ else
+ Error_Msg_N ("interpretation #!", Arg);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end if;
+ end Report_Ambiguous_Argument;
+
+ -----------------------
+ -- Resolution_Failed --
+ -----------------------
+
+ procedure Resolution_Failed is
+ begin
+ Patch_Up_Value (N, Typ);
+ Set_Etype (N, Typ);
+ Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
+ Set_Is_Overloaded (N, False);
+
+ -- The caller will return without calling the expander, so we need
+ -- to set the analyzed flag. Note that it is fine to set Analyzed
+ -- to True even if we are in the middle of a shallow analysis,
+ -- (see the spec of sem for more details) since this is an error
+ -- situation anyway, and there is no point in repeating the
+ -- analysis later (indeed it won't work to repeat it later, since
+ -- we haven't got a clear resolution of which entity is being
+ -- referenced.)
+
+ Set_Analyzed (N, True);
+ return;
+ end Resolution_Failed;
+
+ -- Start of processing for Resolve
+
+ begin
+ if N = Error then
+ return;
+ end if;
+
+ -- Access attribute on remote subprogram cannot be used for a non-remote
+ -- access-to-subprogram type.
+
+ if Nkind (N) = N_Attribute_Reference
+ and then Nam_In (Attribute_Name (N), Name_Access,
+ Name_Unrestricted_Access,
+ Name_Unchecked_Access)
+ and then Comes_From_Source (N)
+ and then Is_Entity_Name (Prefix (N))
+ and then Is_Subprogram (Entity (Prefix (N)))
+ and then Is_Remote_Call_Interface (Entity (Prefix (N)))
+ and then not Is_Remote_Access_To_Subprogram_Type (Typ)
+ then
+ Error_Msg_N
+ ("prefix must statically denote a non-remote subprogram", N);
+ end if;
+
+ From_Lib := Comes_From_Predefined_Lib_Unit (N);
+
+ -- If the context is a Remote_Access_To_Subprogram, access attributes
+ -- must be resolved with the corresponding fat pointer. There is no need
+ -- to check for the attribute name since the return type of an
+ -- attribute is never a remote type.
+
+ if Nkind (N) = N_Attribute_Reference
+ and then Comes_From_Source (N)
+ and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
+ then
+ declare
+ Attr : constant Attribute_Id :=
+ Get_Attribute_Id (Attribute_Name (N));
+ Pref : constant Node_Id := Prefix (N);
+ Decl : Node_Id;
+ Spec : Node_Id;
+ Is_Remote : Boolean := True;
+
+ begin
+ -- Check that Typ is a remote access-to-subprogram type
+
+ if Is_Remote_Access_To_Subprogram_Type (Typ) then
+
+ -- Prefix (N) must statically denote a remote subprogram
+ -- declared in a package specification.
+
+ if Attr = Attribute_Access or else
+ Attr = Attribute_Unchecked_Access or else
+ Attr = Attribute_Unrestricted_Access
+ then
+ Decl := Unit_Declaration_Node (Entity (Pref));
+
+ if Nkind (Decl) = N_Subprogram_Body then
+ Spec := Corresponding_Spec (Decl);
+
+ if not No (Spec) then
+ Decl := Unit_Declaration_Node (Spec);
+ end if;
+ end if;
+
+ Spec := Parent (Decl);
+
+ if not Is_Entity_Name (Prefix (N))
+ or else Nkind (Spec) /= N_Package_Specification
+ or else
+ not Is_Remote_Call_Interface (Defining_Entity (Spec))
+ then
+ Is_Remote := False;
+ Error_Msg_N
+ ("prefix must statically denote a remote subprogram ",
+ N);
+ end if;
+
+ -- If we are generating code in distributed mode, perform
+ -- semantic checks against corresponding remote entities.
+
+ if Expander_Active
+ and then Get_PCS_Name /= Name_No_DSA
+ then
+ Check_Subtype_Conformant
+ (New_Id => Entity (Prefix (N)),
+ Old_Id => Designated_Type
+ (Corresponding_Remote_Type (Typ)),
+ Err_Loc => N);
+
+ if Is_Remote then
+ Process_Remote_AST_Attribute (N, Typ);
+ end if;
+ end if;
+ end if;
+ end if;
+ end;
+ end if;
+
+ Debug_A_Entry ("resolving ", N);
+
+ if Debug_Flag_V then
+ Write_Overloads (N);
+ end if;
+
+ if Comes_From_Source (N) then
+ if Is_Fixed_Point_Type (Typ) then
+ Check_Restriction (No_Fixed_Point, N);
+
+ elsif Is_Floating_Point_Type (Typ)
+ and then Typ /= Universal_Real
+ and then Typ /= Any_Real
+ then
+ Check_Restriction (No_Floating_Point, N);
+ end if;
+ end if;
+
+ -- Return if already analyzed
+
+ if Analyzed (N) then
+ Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
+ Analyze_Dimension (N);
+ return;
+
+ -- Any case of Any_Type as the Etype value means that we had a
+ -- previous error.
+
+ elsif Etype (N) = Any_Type then
+ Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
+ return;
+ end if;
+
+ Check_Parameterless_Call (N);
+
+ -- The resolution of an Expression_With_Actions is determined by
+ -- its Expression.
+
+ if Nkind (N) = N_Expression_With_Actions then
+ Resolve (Expression (N), Typ);
+
+ Found := True;
+ Expr_Type := Etype (Expression (N));
+
+ -- If not overloaded, then we know the type, and all that needs doing
+ -- is to check that this type is compatible with the context.
+
+ elsif not Is_Overloaded (N) then
+ Found := Covers (Typ, Etype (N));
+ Expr_Type := Etype (N);
+
+ -- In the overloaded case, we must select the interpretation that
+ -- is compatible with the context (i.e. the type passed to Resolve)
+
+ else
+ -- Loop through possible interpretations
+
+ Get_First_Interp (N, I, It);
+ Interp_Loop : while Present (It.Typ) loop
+
+ if Debug_Flag_V then
+ Write_Str ("Interp: ");
+ Write_Interp (It);
+ end if;
+
+ -- We are only interested in interpretations that are compatible
+ -- with the expected type, any other interpretations are ignored.
+
+ if not Covers (Typ, It.Typ) then
+ if Debug_Flag_V then
+ Write_Str (" interpretation incompatible with context");
+ Write_Eol;
+ end if;
+
+ else
+ -- Skip the current interpretation if it is disabled by an
+ -- abstract operator. This action is performed only when the
+ -- type against which we are resolving is the same as the
+ -- type of the interpretation.
+
+ if Ada_Version >= Ada_2005
+ and then It.Typ = Typ
+ and then Typ /= Universal_Integer
+ and then Typ /= Universal_Real
+ and then Present (It.Abstract_Op)
+ then
+ if Debug_Flag_V then
+ Write_Line ("Skip.");
+ end if;
+
+ goto Continue;
+ end if;
+
+ -- First matching interpretation
+
+ if not Found then
+ Found := True;
+ I1 := I;
+ Seen := It.Nam;
+ Expr_Type := It.Typ;
+
+ -- Matching interpretation that is not the first, maybe an
+ -- error, but there are some cases where preference rules are
+ -- used to choose between the two possibilities. These and
+ -- some more obscure cases are handled in Disambiguate.
+
+ else
+ -- If the current statement is part of a predefined library
+ -- unit, then all interpretations which come from user level
+ -- packages should not be considered. Check previous and
+ -- current one.
+
+ if From_Lib then
+ if not Comes_From_Predefined_Lib_Unit (It.Nam) then
+ goto Continue;
+
+ elsif not Comes_From_Predefined_Lib_Unit (Seen) then
+
+ -- Previous interpretation must be discarded
+
+ I1 := I;
+ Seen := It.Nam;
+ Expr_Type := It.Typ;
+ Set_Entity (N, Seen);
+ goto Continue;
+ end if;
+ end if;
+
+ -- Otherwise apply further disambiguation steps
+
+ Error_Msg_Sloc := Sloc (Seen);
+ It1 := Disambiguate (N, I1, I, Typ);
+
+ -- Disambiguation has succeeded. Skip the remaining
+ -- interpretations.
+
+ if It1 /= No_Interp then
+ Seen := It1.Nam;
+ Expr_Type := It1.Typ;
+
+ while Present (It.Typ) loop
+ Get_Next_Interp (I, It);
+ end loop;
+
+ else
+ -- Before we issue an ambiguity complaint, check for
+ -- the case of a subprogram call where at least one
+ -- of the arguments is Any_Type, and if so, suppress
+ -- the message, since it is a cascaded error.
+
+ if Nkind (N) in N_Subprogram_Call then
+ declare
+ A : Node_Id;
+ E : Node_Id;
+
+ begin
+ A := First_Actual (N);
+ while Present (A) loop
+ E := A;
+
+ if Nkind (E) = N_Parameter_Association then
+ E := Explicit_Actual_Parameter (E);
+ end if;
+
+ if Etype (E) = Any_Type then
+ if Debug_Flag_V then
+ Write_Str ("Any_Type in call");
+ Write_Eol;
+ end if;
+
+ exit Interp_Loop;
+ end if;
+
+ Next_Actual (A);
+ end loop;
+ end;
+
+ elsif Nkind (N) in N_Binary_Op
+ and then (Etype (Left_Opnd (N)) = Any_Type
+ or else Etype (Right_Opnd (N)) = Any_Type)
+ then
+ exit Interp_Loop;
+
+ elsif Nkind (N) in N_Unary_Op
+ and then Etype (Right_Opnd (N)) = Any_Type
+ then
+ exit Interp_Loop;
+ end if;
+
+ -- Not that special case, so issue message using the
+ -- flag Ambiguous to control printing of the header
+ -- message only at the start of an ambiguous set.
+
+ if not Ambiguous then
+ if Nkind (N) = N_Function_Call
+ and then Nkind (Name (N)) = N_Explicit_Dereference
+ then
+ Error_Msg_N
+ ("ambiguous expression "
+ & "(cannot resolve indirect call)!", N);
+ else
+ Error_Msg_NE -- CODEFIX
+ ("ambiguous expression (cannot resolve&)!",
+ N, It.Nam);
+ end if;
+
+ Ambiguous := True;
+
+ if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
+ Error_Msg_N
+ ("\\possible interpretation (inherited)#!", N);
+ else
+ Error_Msg_N -- CODEFIX
+ ("\\possible interpretation#!", N);
+ end if;
+
+ if Nkind (N) in N_Subprogram_Call
+ and then Present (Parameter_Associations (N))
+ then
+ Report_Ambiguous_Argument;
+ end if;
+ end if;
+
+ Error_Msg_Sloc := Sloc (It.Nam);
+
+ -- By default, the error message refers to the candidate
+ -- interpretation. But if it is a predefined operator, it
+ -- is implicitly declared at the declaration of the type
+ -- of the operand. Recover the sloc of that declaration
+ -- for the error message.
+
+ if Nkind (N) in N_Op
+ and then Scope (It.Nam) = Standard_Standard
+ and then not Is_Overloaded (Right_Opnd (N))
+ and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
+ Standard_Standard
+ then
+ Err_Type := First_Subtype (Etype (Right_Opnd (N)));
+
+ if Comes_From_Source (Err_Type)
+ and then Present (Parent (Err_Type))
+ then
+ Error_Msg_Sloc := Sloc (Parent (Err_Type));
+ end if;
+
+ elsif Nkind (N) in N_Binary_Op
+ and then Scope (It.Nam) = Standard_Standard
+ and then not Is_Overloaded (Left_Opnd (N))
+ and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
+ Standard_Standard
+ then
+ Err_Type := First_Subtype (Etype (Left_Opnd (N)));
+
+ if Comes_From_Source (Err_Type)
+ and then Present (Parent (Err_Type))
+ then
+ Error_Msg_Sloc := Sloc (Parent (Err_Type));
+ end if;
+
+ -- If this is an indirect call, use the subprogram_type
+ -- in the message, to have a meaningful location. Also
+ -- indicate if this is an inherited operation, created
+ -- by a type declaration.
+
+ elsif Nkind (N) = N_Function_Call
+ and then Nkind (Name (N)) = N_Explicit_Dereference
+ and then Is_Type (It.Nam)
+ then
+ Err_Type := It.Nam;
+ Error_Msg_Sloc :=
+ Sloc (Associated_Node_For_Itype (Err_Type));
+ else
+ Err_Type := Empty;
+ end if;
+
+ if Nkind (N) in N_Op
+ and then Scope (It.Nam) = Standard_Standard
+ and then Present (Err_Type)
+ then
+ -- Special-case the message for universal_fixed
+ -- operators, which are not declared with the type
+ -- of the operand, but appear forever in Standard.
+
+ if It.Typ = Universal_Fixed
+ and then Scope (It.Nam) = Standard_Standard
+ then
+ Error_Msg_N
+ ("\\possible interpretation as universal_fixed "
+ & "operation (RM 4.5.5 (19))", N);
+ else
+ Error_Msg_N
+ ("\\possible interpretation (predefined)#!", N);
+ end if;
+
+ elsif
+ Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
+ then
+ Error_Msg_N
+ ("\\possible interpretation (inherited)#!", N);
+ else
+ Error_Msg_N -- CODEFIX
+ ("\\possible interpretation#!", N);
+ end if;
+
+ end if;
+ end if;
+
+ -- We have a matching interpretation, Expr_Type is the type
+ -- from this interpretation, and Seen is the entity.
+
+ -- For an operator, just set the entity name. The type will be
+ -- set by the specific operator resolution routine.
+
+ if Nkind (N) in N_Op then
+ Set_Entity (N, Seen);
+ Generate_Reference (Seen, N);
+
+ elsif Nkind (N) = N_Case_Expression then
+ Set_Etype (N, Expr_Type);
+
+ elsif Nkind (N) = N_Character_Literal then
+ Set_Etype (N, Expr_Type);
+
+ elsif Nkind (N) = N_If_Expression then
+ Set_Etype (N, Expr_Type);
+
+ -- AI05-0139-2: Expression is overloaded because type has
+ -- implicit dereference. If type matches context, no implicit
+ -- dereference is involved.
+
+ elsif Has_Implicit_Dereference (Expr_Type) then
+ Set_Etype (N, Expr_Type);
+ Set_Is_Overloaded (N, False);
+ exit Interp_Loop;
+
+ elsif Is_Overloaded (N)
+ and then Present (It.Nam)
+ and then Ekind (It.Nam) = E_Discriminant
+ and then Has_Implicit_Dereference (It.Nam)
+ then
+ -- If the node is a general indexing, the dereference is
+ -- is inserted when resolving the rewritten form, else
+ -- insert it now.
+
+ if Nkind (N) /= N_Indexed_Component
+ or else No (Generalized_Indexing (N))
+ then
+ Build_Explicit_Dereference (N, It.Nam);
+ end if;
+
+ -- For an explicit dereference, attribute reference, range,
+ -- short-circuit form (which is not an operator node), or call
+ -- with a name that is an explicit dereference, there is
+ -- nothing to be done at this point.
+
+ elsif Nkind_In (N, N_Explicit_Dereference,
+ N_Attribute_Reference,
+ N_And_Then,
+ N_Indexed_Component,
+ N_Or_Else,
+ N_Range,
+ N_Selected_Component,
+ N_Slice)
+ or else Nkind (Name (N)) = N_Explicit_Dereference
+ then
+ null;
+
+ -- For procedure or function calls, set the type of the name,
+ -- and also the entity pointer for the prefix.
+
+ elsif Nkind (N) in N_Subprogram_Call
+ and then Is_Entity_Name (Name (N))
+ then
+ Set_Etype (Name (N), Expr_Type);
+ Set_Entity (Name (N), Seen);
+ Generate_Reference (Seen, Name (N));
+
+ elsif Nkind (N) = N_Function_Call
+ and then Nkind (Name (N)) = N_Selected_Component
+ then
+ Set_Etype (Name (N), Expr_Type);
+ Set_Entity (Selector_Name (Name (N)), Seen);
+ Generate_Reference (Seen, Selector_Name (Name (N)));
+
+ -- For all other cases, just set the type of the Name
+
+ else
+ Set_Etype (Name (N), Expr_Type);
+ end if;
+
+ end if;
+
+ <<Continue>>
+
+ -- Move to next interpretation
+
+ exit Interp_Loop when No (It.Typ);
+
+ Get_Next_Interp (I, It);
+ end loop Interp_Loop;
+ end if;
+
+ -- At this stage Found indicates whether or not an acceptable
+ -- interpretation exists. If not, then we have an error, except that if
+ -- the context is Any_Type as a result of some other error, then we
+ -- suppress the error report.
+
+ if not Found then
+ if Typ /= Any_Type then
+
+ -- If type we are looking for is Void, then this is the procedure
+ -- call case, and the error is simply that what we gave is not a
+ -- procedure name (we think of procedure calls as expressions with
+ -- types internally, but the user doesn't think of them this way).
+
+ if Typ = Standard_Void_Type then
+
+ -- Special case message if function used as a procedure
+
+ if Nkind (N) = N_Procedure_Call_Statement
+ and then Is_Entity_Name (Name (N))
+ and then Ekind (Entity (Name (N))) = E_Function
+ then
+ Error_Msg_NE
+ ("cannot use function & in a procedure call",
+ Name (N), Entity (Name (N)));
+
+ -- Otherwise give general message (not clear what cases this
+ -- covers, but no harm in providing for them).
+
+ else
+ Error_Msg_N ("expect procedure name in procedure call", N);
+ end if;
+
+ Found := True;
+
+ -- Otherwise we do have a subexpression with the wrong type
+
+ -- Check for the case of an allocator which uses an access type
+ -- instead of the designated type. This is a common error and we
+ -- specialize the message, posting an error on the operand of the
+ -- allocator, complaining that we expected the designated type of
+ -- the allocator.
+
+ elsif Nkind (N) = N_Allocator
+ and then Ekind (Typ) in Access_Kind
+ and then Ekind (Etype (N)) in Access_Kind
+ and then Designated_Type (Etype (N)) = Typ
+ then
+ Wrong_Type (Expression (N), Designated_Type (Typ));
+ Found := True;
+
+ -- Check for view mismatch on Null in instances, for which the
+ -- view-swapping mechanism has no identifier.
+
+ elsif (In_Instance or else In_Inlined_Body)
+ and then (Nkind (N) = N_Null)
+ and then Is_Private_Type (Typ)
+ and then Is_Access_Type (Full_View (Typ))
+ then
+ Resolve (N, Full_View (Typ));
+ Set_Etype (N, Typ);
+ return;
+
+ -- Check for an aggregate. Sometimes we can get bogus aggregates
+ -- from misuse of parentheses, and we are about to complain about
+ -- the aggregate without even looking inside it.
+
+ -- Instead, if we have an aggregate of type Any_Composite, then
+ -- analyze and resolve the component fields, and then only issue
+ -- another message if we get no errors doing this (otherwise
+ -- assume that the errors in the aggregate caused the problem).
+
+ elsif Nkind (N) = N_Aggregate
+ and then Etype (N) = Any_Composite
+ then
+ -- Disable expansion in any case. If there is a type mismatch
+ -- it may be fatal to try to expand the aggregate. The flag
+ -- would otherwise be set to false when the error is posted.
+
+ Expander_Active := False;
+
+ declare
+ procedure Check_Aggr (Aggr : Node_Id);
+ -- Check one aggregate, and set Found to True if we have a
+ -- definite error in any of its elements
+
+ procedure Check_Elmt (Aelmt : Node_Id);
+ -- Check one element of aggregate and set Found to True if
+ -- we definitely have an error in the element.
+
+ ----------------
+ -- Check_Aggr --
+ ----------------
+
+ procedure Check_Aggr (Aggr : Node_Id) is
+ Elmt : Node_Id;
+
+ begin
+ if Present (Expressions (Aggr)) then
+ Elmt := First (Expressions (Aggr));
+ while Present (Elmt) loop
+ Check_Elmt (Elmt);
+ Next (Elmt);
+ end loop;
+ end if;
+
+ if Present (Component_Associations (Aggr)) then
+ Elmt := First (Component_Associations (Aggr));
+ while Present (Elmt) loop
+
+ -- If this is a default-initialized component, then
+ -- there is nothing to check. The box will be
+ -- replaced by the appropriate call during late
+ -- expansion.
+
+ if not Box_Present (Elmt) then
+ Check_Elmt (Expression (Elmt));
+ end if;
+
+ Next (Elmt);
+ end loop;
+ end if;
+ end Check_Aggr;
+
+ ----------------
+ -- Check_Elmt --
+ ----------------
+
+ procedure Check_Elmt (Aelmt : Node_Id) is
+ begin
+ -- If we have a nested aggregate, go inside it (to
+ -- attempt a naked analyze-resolve of the aggregate can
+ -- cause undesirable cascaded errors). Do not resolve
+ -- expression if it needs a type from context, as for
+ -- integer * fixed expression.
+
+ if Nkind (Aelmt) = N_Aggregate then
+ Check_Aggr (Aelmt);
+
+ else
+ Analyze (Aelmt);
+
+ if not Is_Overloaded (Aelmt)
+ and then Etype (Aelmt) /= Any_Fixed
+ then
+ Resolve (Aelmt);
+ end if;
+
+ if Etype (Aelmt) = Any_Type then
+ Found := True;
+ end if;
+ end if;
+ end Check_Elmt;
+
+ begin
+ Check_Aggr (N);
+ end;
+ end if;
+
+ -- Looks like we have a type error, but check for special case
+ -- of Address wanted, integer found, with the configuration pragma
+ -- Allow_Integer_Address active. If we have this case, introduce
+ -- an unchecked conversion to allow the integer expression to be
+ -- treated as an Address. The reverse case of integer wanted,
+ -- Address found, is treated in an analogous manner.
+
+ if Address_Integer_Convert_OK (Typ, Etype (N)) then
+ Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+
+ -- That special Allow_Integer_Address check did not appply, so we
+ -- have a real type error. If an error message was issued already,
+ -- Found got reset to True, so if it's still False, issue standard
+ -- Wrong_Type message.
+
+ if not Found then
+ if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
+ declare
+ Subp_Name : Node_Id;
+
+ begin
+ if Is_Entity_Name (Name (N)) then
+ Subp_Name := Name (N);
+
+ elsif Nkind (Name (N)) = N_Selected_Component then
+
+ -- Protected operation: retrieve operation name
+
+ Subp_Name := Selector_Name (Name (N));
+
+ else
+ raise Program_Error;
+ end if;
+
+ Error_Msg_Node_2 := Typ;
+ Error_Msg_NE
+ ("no visible interpretation of& "
+ & "matches expected type&", N, Subp_Name);
+ end;
+
+ if All_Errors_Mode then
+ declare
+ Index : Interp_Index;
+ It : Interp;
+
+ begin
+ Error_Msg_N ("\\possible interpretations:", N);
+
+ Get_First_Interp (Name (N), Index, It);
+ while Present (It.Nam) loop
+ Error_Msg_Sloc := Sloc (It.Nam);
+ Error_Msg_Node_2 := It.Nam;
+ Error_Msg_NE
+ ("\\ type& for & declared#", N, It.Typ);
+ Get_Next_Interp (Index, It);
+ end loop;
+ end;
+
+ else
+ Error_Msg_N ("\use -gnatf for details", N);
+ end if;
+
+ else
+ Wrong_Type (N, Typ);
+ end if;
+ end if;
+ end if;
+
+ Resolution_Failed;
+ return;
+
+ -- Test if we have more than one interpretation for the context
+
+ elsif Ambiguous then
+ Resolution_Failed;
+ return;
+
+ -- Only one intepretation
+
+ else
+ -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
+ -- the "+" on T is abstract, and the operands are of universal type,
+ -- the above code will have (incorrectly) resolved the "+" to the
+ -- universal one in Standard. Therefore check for this case and give
+ -- an error. We can't do this earlier, because it would cause legal
+ -- cases to get errors (when some other type has an abstract "+").
+
+ if Ada_Version >= Ada_2005
+ and then Nkind (N) in N_Op
+ and then Is_Overloaded (N)
+ and then Is_Universal_Numeric_Type (Etype (Entity (N)))
+ then
+ Get_First_Interp (N, I, It);
+ while Present (It.Typ) loop
+ if Present (It.Abstract_Op) and then
+ Etype (It.Abstract_Op) = Typ
+ then
+ Error_Msg_NE
+ ("cannot call abstract subprogram &!", N, It.Abstract_Op);
+ return;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end if;
+
+ -- Here we have an acceptable interpretation for the context
+
+ -- Propagate type information and normalize tree for various
+ -- predefined operations. If the context only imposes a class of
+ -- types, rather than a specific type, propagate the actual type
+ -- downward.
+
+ if Typ = Any_Integer or else
+ Typ = Any_Boolean or else
+ Typ = Any_Modular or else
+ Typ = Any_Real or else
+ Typ = Any_Discrete
+ then
+ Ctx_Type := Expr_Type;
+
+ -- Any_Fixed is legal in a real context only if a specific fixed-
+ -- point type is imposed. If Norman Cohen can be confused by this,
+ -- it deserves a separate message.
+
+ if Typ = Any_Real
+ and then Expr_Type = Any_Fixed
+ then
+ Error_Msg_N ("illegal context for mixed mode operation", N);
+ Set_Etype (N, Universal_Real);
+ Ctx_Type := Universal_Real;
+ end if;
+ end if;
+
+ -- A user-defined operator is transformed into a function call at
+ -- this point, so that further processing knows that operators are
+ -- really operators (i.e. are predefined operators). User-defined
+ -- operators that are intrinsic are just renamings of the predefined
+ -- ones, and need not be turned into calls either, but if they rename
+ -- a different operator, we must transform the node accordingly.
+ -- Instantiations of Unchecked_Conversion are intrinsic but are
+ -- treated as functions, even if given an operator designator.
+
+ if Nkind (N) in N_Op
+ and then Present (Entity (N))
+ and then Ekind (Entity (N)) /= E_Operator
+ then
+
+ if not Is_Predefined_Op (Entity (N)) then
+ Rewrite_Operator_As_Call (N, Entity (N));
+
+ elsif Present (Alias (Entity (N)))
+ and then
+ Nkind (Parent (Parent (Entity (N)))) =
+ N_Subprogram_Renaming_Declaration
+ then
+ Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
+
+ -- If the node is rewritten, it will be fully resolved in
+ -- Rewrite_Renamed_Operator.
+
+ if Analyzed (N) then
+ return;
+ end if;
+ end if;
+ end if;
+
+ case N_Subexpr'(Nkind (N)) is
+
+ when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
+
+ when N_Allocator => Resolve_Allocator (N, Ctx_Type);
+
+ when N_Short_Circuit
+ => Resolve_Short_Circuit (N, Ctx_Type);
+
+ when N_Attribute_Reference
+ => Resolve_Attribute (N, Ctx_Type);
+
+ when N_Case_Expression
+ => Resolve_Case_Expression (N, Ctx_Type);
+
+ when N_Character_Literal
+ => Resolve_Character_Literal (N, Ctx_Type);
+
+ when N_Expanded_Name
+ => Resolve_Entity_Name (N, Ctx_Type);
+
+ when N_Explicit_Dereference
+ => Resolve_Explicit_Dereference (N, Ctx_Type);
+
+ when N_Expression_With_Actions
+ => Resolve_Expression_With_Actions (N, Ctx_Type);
+
+ when N_Extension_Aggregate
+ => Resolve_Extension_Aggregate (N, Ctx_Type);
+
+ when N_Function_Call
+ => Resolve_Call (N, Ctx_Type);
+
+ when N_Identifier
+ => Resolve_Entity_Name (N, Ctx_Type);
+
+ when N_If_Expression
+ => Resolve_If_Expression (N, Ctx_Type);
+
+ when N_Indexed_Component
+ => Resolve_Indexed_Component (N, Ctx_Type);
+
+ when N_Integer_Literal
+ => Resolve_Integer_Literal (N, Ctx_Type);
+
+ when N_Membership_Test
+ => Resolve_Membership_Op (N, Ctx_Type);
+
+ when N_Null => Resolve_Null (N, Ctx_Type);
+
+ when N_Op_And | N_Op_Or | N_Op_Xor
+ => Resolve_Logical_Op (N, Ctx_Type);
+
+ when N_Op_Eq | N_Op_Ne
+ => Resolve_Equality_Op (N, Ctx_Type);
+
+ when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
+ => Resolve_Comparison_Op (N, Ctx_Type);
+
+ when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
+
+ when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
+ N_Op_Divide | N_Op_Mod | N_Op_Rem
+
+ => Resolve_Arithmetic_Op (N, Ctx_Type);
+
+ when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
+
+ when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
+
+ when N_Op_Plus | N_Op_Minus | N_Op_Abs
+ => Resolve_Unary_Op (N, Ctx_Type);
+
+ when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
+
+ when N_Procedure_Call_Statement
+ => Resolve_Call (N, Ctx_Type);
+
+ when N_Operator_Symbol
+ => Resolve_Operator_Symbol (N, Ctx_Type);
+
+ when N_Qualified_Expression
+ => Resolve_Qualified_Expression (N, Ctx_Type);
+
+ -- Why is the following null, needs a comment ???
+
+ when N_Quantified_Expression
+ => null;
+
+ when N_Raise_Expression
+ => Resolve_Raise_Expression (N, Ctx_Type);
+
+ when N_Raise_xxx_Error
+ => Set_Etype (N, Ctx_Type);
+
+ when N_Range => Resolve_Range (N, Ctx_Type);
+
+ when N_Real_Literal
+ => Resolve_Real_Literal (N, Ctx_Type);
+
+ when N_Reference => Resolve_Reference (N, Ctx_Type);
+
+ when N_Selected_Component
+ => Resolve_Selected_Component (N, Ctx_Type);
+
+ when N_Slice => Resolve_Slice (N, Ctx_Type);
+
+ when N_String_Literal
+ => Resolve_String_Literal (N, Ctx_Type);
+
+ when N_Type_Conversion
+ => Resolve_Type_Conversion (N, Ctx_Type);
+
+ when N_Unchecked_Expression =>
+ Resolve_Unchecked_Expression (N, Ctx_Type);
+
+ when N_Unchecked_Type_Conversion =>
+ Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
+ end case;
+
+ -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
+ -- expression of an anonymous access type that occurs in the context
+ -- of a named general access type, except when the expression is that
+ -- of a membership test. This ensures proper legality checking in
+ -- terms of allowed conversions (expressions that would be illegal to
+ -- convert implicitly are allowed in membership tests).
+
+ if Ada_Version >= Ada_2012
+ and then Ekind (Ctx_Type) = E_General_Access_Type
+ and then Ekind (Etype (N)) = E_Anonymous_Access_Type
+ and then Nkind (Parent (N)) not in N_Membership_Test
+ then
+ Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
+ Analyze_And_Resolve (N, Ctx_Type);
+ end if;
+
+ -- If the subexpression was replaced by a non-subexpression, then
+ -- all we do is to expand it. The only legitimate case we know of
+ -- is converting procedure call statement to entry call statements,
+ -- but there may be others, so we are making this test general.
+
+ if Nkind (N) not in N_Subexpr then
+ Debug_A_Exit ("resolving ", N, " (done)");
+ Expand (N);
+ return;
+ end if;
+
+ -- The expression is definitely NOT overloaded at this point, so
+ -- we reset the Is_Overloaded flag to avoid any confusion when
+ -- reanalyzing the node.
+
+ Set_Is_Overloaded (N, False);
+
+ -- Freeze expression type, entity if it is a name, and designated
+ -- type if it is an allocator (RM 13.14(10,11,13)).
+
+ -- Now that the resolution of the type of the node is complete, and
+ -- we did not detect an error, we can expand this node. We skip the
+ -- expand call if we are in a default expression, see section
+ -- "Handling of Default Expressions" in Sem spec.
+
+ Debug_A_Exit ("resolving ", N, " (done)");
+
+ -- We unconditionally freeze the expression, even if we are in
+ -- default expression mode (the Freeze_Expression routine tests this
+ -- flag and only freezes static types if it is set).
+
+ -- Ada 2012 (AI05-177): Expression functions do not freeze. Only
+ -- their use (in an expanded call) freezes.
+
+ if Ekind (Proper_Current_Scope) /= E_Function
+ or else Nkind (Original_Node (Unit_Declaration_Node
+ (Proper_Current_Scope))) /= N_Expression_Function
+ then
+ Freeze_Expression (N);
+ end if;
+
+ -- Now we can do the expansion
+
+ Expand (N);
+ end if;
+ end Resolve;
+
+ -------------
+ -- Resolve --
+ -------------
+
+ -- Version with check(s) suppressed
+
+ procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
+ begin
+ if Suppress = All_Checks then
+ declare
+ Sva : constant Suppress_Array := Scope_Suppress.Suppress;
+ begin
+ Scope_Suppress.Suppress := (others => True);
+ Resolve (N, Typ);
+ Scope_Suppress.Suppress := Sva;
+ end;
+
+ else
+ declare
+ Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
+ begin
+ Scope_Suppress.Suppress (Suppress) := True;
+ Resolve (N, Typ);
+ Scope_Suppress.Suppress (Suppress) := Svg;
+ end;
+ end if;
+ end Resolve;
+
+ -------------
+ -- Resolve --
+ -------------
+
+ -- Version with implicit type
+
+ procedure Resolve (N : Node_Id) is
+ begin
+ Resolve (N, Etype (N));
+ end Resolve;
+
+ ---------------------
+ -- Resolve_Actuals --
+ ---------------------
+
+ procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ A : Node_Id;
+ A_Id : Entity_Id;
+ A_Typ : Entity_Id;
+ F : Entity_Id;
+ F_Typ : Entity_Id;
+ Prev : Node_Id := Empty;
+ Orig_A : Node_Id;
+
+ procedure Check_Argument_Order;
+ -- Performs a check for the case where the actuals are all simple
+ -- identifiers that correspond to the formal names, but in the wrong
+ -- order, which is considered suspicious and cause for a warning.
+
+ procedure Check_Prefixed_Call;
+ -- If the original node is an overloaded call in prefix notation,
+ -- insert an 'Access or a dereference as needed over the first actual.
+ -- Try_Object_Operation has already verified that there is a valid
+ -- interpretation, but the form of the actual can only be determined
+ -- once the primitive operation is identified.
+
+ procedure Insert_Default;
+ -- If the actual is missing in a call, insert in the actuals list
+ -- an instance of the default expression. The insertion is always
+ -- a named association.
+
+ procedure Property_Error
+ (Var : Node_Id;
+ Var_Id : Entity_Id;
+ Prop_Nam : Name_Id);
+ -- Emit an error concerning variable Var with entity Var_Id that has
+ -- enabled property Prop_Nam when it acts as an actual parameter in a
+ -- call and the corresponding formal parameter is of mode IN.
+
+ function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
+ -- Check whether T1 and T2, or their full views, are derived from a
+ -- common type. Used to enforce the restrictions on array conversions
+ -- of AI95-00246.
+
+ function Static_Concatenation (N : Node_Id) return Boolean;
+ -- Predicate to determine whether an actual that is a concatenation
+ -- will be evaluated statically and does not need a transient scope.
+ -- This must be determined before the actual is resolved and expanded
+ -- because if needed the transient scope must be introduced earlier.
+
+ --------------------------
+ -- Check_Argument_Order --
+ --------------------------
+
+ procedure Check_Argument_Order is
+ begin
+ -- Nothing to do if no parameters, or original node is neither a
+ -- function call nor a procedure call statement (happens in the
+ -- operator-transformed-to-function call case), or the call does
+ -- not come from source, or this warning is off.
+
+ if not Warn_On_Parameter_Order
+ or else No (Parameter_Associations (N))
+ or else Nkind (Original_Node (N)) not in N_Subprogram_Call
+ or else not Comes_From_Source (N)
+ then
+ return;
+ end if;
+
+ declare
+ Nargs : constant Nat := List_Length (Parameter_Associations (N));
+
+ begin
+ -- Nothing to do if only one parameter
+
+ if Nargs < 2 then
+ return;
+ end if;
+
+ -- Here if at least two arguments
+
+ declare
+ Actuals : array (1 .. Nargs) of Node_Id;
+ Actual : Node_Id;
+ Formal : Node_Id;
+
+ Wrong_Order : Boolean := False;
+ -- Set True if an out of order case is found
+
+ begin
+ -- Collect identifier names of actuals, fail if any actual is
+ -- not a simple identifier, and record max length of name.
+
+ Actual := First (Parameter_Associations (N));
+ for J in Actuals'Range loop
+ if Nkind (Actual) /= N_Identifier then
+ return;
+ else
+ Actuals (J) := Actual;
+ Next (Actual);
+ end if;
+ end loop;
+
+ -- If we got this far, all actuals are identifiers and the list
+ -- of their names is stored in the Actuals array.
+
+ Formal := First_Formal (Nam);
+ for J in Actuals'Range loop
+
+ -- If we ran out of formals, that's odd, probably an error
+ -- which will be detected elsewhere, but abandon the search.
+
+ if No (Formal) then
+ return;
+ end if;
+
+ -- If name matches and is in order OK
+
+ if Chars (Formal) = Chars (Actuals (J)) then
+ null;
+
+ else
+ -- If no match, see if it is elsewhere in list and if so
+ -- flag potential wrong order if type is compatible.
+
+ for K in Actuals'Range loop
+ if Chars (Formal) = Chars (Actuals (K))
+ and then
+ Has_Compatible_Type (Actuals (K), Etype (Formal))
+ then
+ Wrong_Order := True;
+ goto Continue;
+ end if;
+ end loop;
+
+ -- No match
+
+ return;
+ end if;
+
+ <<Continue>> Next_Formal (Formal);
+ end loop;
+
+ -- If Formals left over, also probably an error, skip warning
+
+ if Present (Formal) then
+ return;
+ end if;
+
+ -- Here we give the warning if something was out of order
+
+ if Wrong_Order then
+ Error_Msg_N
+ ("?P?actuals for this call may be in wrong order", N);
+ end if;
+ end;
+ end;
+ end Check_Argument_Order;
+
+ -------------------------
+ -- Check_Prefixed_Call --
+ -------------------------
+
+ procedure Check_Prefixed_Call is
+ Act : constant Node_Id := First_Actual (N);
+ A_Type : constant Entity_Id := Etype (Act);
+ F_Type : constant Entity_Id := Etype (First_Formal (Nam));
+ Orig : constant Node_Id := Original_Node (N);
+ New_A : Node_Id;
+
+ begin
+ -- Check whether the call is a prefixed call, with or without
+ -- additional actuals.
+
+ if Nkind (Orig) = N_Selected_Component
+ or else
+ (Nkind (Orig) = N_Indexed_Component
+ and then Nkind (Prefix (Orig)) = N_Selected_Component
+ and then Is_Entity_Name (Prefix (Prefix (Orig)))
+ and then Is_Entity_Name (Act)
+ and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
+ then
+ if Is_Access_Type (A_Type)
+ and then not Is_Access_Type (F_Type)
+ then
+ -- Introduce dereference on object in prefix
+
+ New_A :=
+ Make_Explicit_Dereference (Sloc (Act),
+ Prefix => Relocate_Node (Act));
+ Rewrite (Act, New_A);
+ Analyze (Act);
+
+ elsif Is_Access_Type (F_Type)
+ and then not Is_Access_Type (A_Type)
+ then
+ -- Introduce an implicit 'Access in prefix
+
+ if not Is_Aliased_View (Act) then
+ Error_Msg_NE
+ ("object in prefixed call to& must be aliased"
+ & " (RM-2005 4.3.1 (13))",
+ Prefix (Act), Nam);
+ end if;
+
+ Rewrite (Act,
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Access,
+ Prefix => Relocate_Node (Act)));
+ end if;
+
+ Analyze (Act);
+ end if;
+ end Check_Prefixed_Call;
+
+ --------------------
+ -- Insert_Default --
+ --------------------
+
+ procedure Insert_Default is
+ Actval : Node_Id;
+ Assoc : Node_Id;
+
+ begin
+ -- Missing argument in call, nothing to insert
+
+ if No (Default_Value (F)) then
+ return;
+
+ else
+ -- Note that we do a full New_Copy_Tree, so that any associated
+ -- Itypes are properly copied. This may not be needed any more,
+ -- but it does no harm as a safety measure. Defaults of a generic
+ -- formal may be out of bounds of the corresponding actual (see
+ -- cc1311b) and an additional check may be required.
+
+ Actval :=
+ New_Copy_Tree
+ (Default_Value (F),
+ New_Scope => Current_Scope,
+ New_Sloc => Loc);
+
+ if Is_Concurrent_Type (Scope (Nam))
+ and then Has_Discriminants (Scope (Nam))
+ then
+ Replace_Actual_Discriminants (N, Actval);
+ end if;
+
+ if Is_Overloadable (Nam)
+ and then Present (Alias (Nam))
+ then
+ if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
+ and then not Is_Tagged_Type (Etype (F))
+ then
+ -- If default is a real literal, do not introduce a
+ -- conversion whose effect may depend on the run-time
+ -- size of universal real.
+
+ if Nkind (Actval) = N_Real_Literal then
+ Set_Etype (Actval, Base_Type (Etype (F)));
+ else
+ Actval := Unchecked_Convert_To (Etype (F), Actval);
+ end if;
+ end if;
+
+ if Is_Scalar_Type (Etype (F)) then
+ Enable_Range_Check (Actval);
+ end if;
+
+ Set_Parent (Actval, N);
+
+ -- Resolve aggregates with their base type, to avoid scope
+ -- anomalies: the subtype was first built in the subprogram
+ -- declaration, and the current call may be nested.
+
+ if Nkind (Actval) = N_Aggregate then
+ Analyze_And_Resolve (Actval, Etype (F));
+ else
+ Analyze_And_Resolve (Actval, Etype (Actval));
+ end if;
+
+ else
+ Set_Parent (Actval, N);
+
+ -- See note above concerning aggregates
+
+ if Nkind (Actval) = N_Aggregate
+ and then Has_Discriminants (Etype (Actval))
+ then
+ Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
+
+ -- Resolve entities with their own type, which may differ from
+ -- the type of a reference in a generic context (the view
+ -- swapping mechanism did not anticipate the re-analysis of
+ -- default values in calls).
+
+ elsif Is_Entity_Name (Actval) then
+ Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
+
+ else
+ Analyze_And_Resolve (Actval, Etype (Actval));
+ end if;
+ end if;
+
+ -- If default is a tag indeterminate function call, propagate tag
+ -- to obtain proper dispatching.
+
+ if Is_Controlling_Formal (F)
+ and then Nkind (Default_Value (F)) = N_Function_Call
+ then
+ Set_Is_Controlling_Actual (Actval);
+ end if;
+
+ end if;
+
+ -- If the default expression raises constraint error, then just
+ -- silently replace it with an N_Raise_Constraint_Error node, since
+ -- we already gave the warning on the subprogram spec. If node is
+ -- already a Raise_Constraint_Error leave as is, to prevent loops in
+ -- the warnings removal machinery.
+
+ if Raises_Constraint_Error (Actval)
+ and then Nkind (Actval) /= N_Raise_Constraint_Error
+ then
+ Rewrite (Actval,
+ Make_Raise_Constraint_Error (Loc,
+ Reason => CE_Range_Check_Failed));
+ Set_Raises_Constraint_Error (Actval);
+ Set_Etype (Actval, Etype (F));
+ end if;
+
+ Assoc :=
+ Make_Parameter_Association (Loc,
+ Explicit_Actual_Parameter => Actval,
+ Selector_Name => Make_Identifier (Loc, Chars (F)));
+
+ -- Case of insertion is first named actual
+
+ if No (Prev) or else
+ Nkind (Parent (Prev)) /= N_Parameter_Association
+ then
+ Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
+ Set_First_Named_Actual (N, Actval);
+
+ if No (Prev) then
+ if No (Parameter_Associations (N)) then
+ Set_Parameter_Associations (N, New_List (Assoc));
+ else
+ Append (Assoc, Parameter_Associations (N));
+ end if;
+
+ else
+ Insert_After (Prev, Assoc);
+ end if;
+
+ -- Case of insertion is not first named actual
+
+ else
+ Set_Next_Named_Actual
+ (Assoc, Next_Named_Actual (Parent (Prev)));
+ Set_Next_Named_Actual (Parent (Prev), Actval);
+ Append (Assoc, Parameter_Associations (N));
+ end if;
+
+ Mark_Rewrite_Insertion (Assoc);
+ Mark_Rewrite_Insertion (Actval);
+
+ Prev := Actval;
+ end Insert_Default;
+
+ --------------------
+ -- Property_Error --
+ --------------------
+
+ procedure Property_Error
+ (Var : Node_Id;
+ Var_Id : Entity_Id;
+ Prop_Nam : Name_Id)
+ is
+ begin
+ Error_Msg_Name_1 := Prop_Nam;
+ Error_Msg_NE
+ ("external variable & with enabled property % cannot appear as "
+ & "actual in procedure call (SPARK RM 7.1.3(11))", Var, Var_Id);
+ Error_Msg_N ("\\corresponding formal parameter has mode In", Var);
+ end Property_Error;
+
+ -------------------
+ -- Same_Ancestor --
+ -------------------
+
+ function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
+ FT1 : Entity_Id := T1;
+ FT2 : Entity_Id := T2;
+
+ begin
+ if Is_Private_Type (T1)
+ and then Present (Full_View (T1))
+ then
+ FT1 := Full_View (T1);
+ end if;
+
+ if Is_Private_Type (T2)
+ and then Present (Full_View (T2))
+ then
+ FT2 := Full_View (T2);
+ end if;
+
+ return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
+ end Same_Ancestor;
+
+ --------------------------
+ -- Static_Concatenation --
+ --------------------------
+
+ function Static_Concatenation (N : Node_Id) return Boolean is
+ begin
+ case Nkind (N) is
+ when N_String_Literal =>
+ return True;
+
+ when N_Op_Concat =>
+
+ -- Concatenation is static when both operands are static and
+ -- the concatenation operator is a predefined one.
+
+ return Scope (Entity (N)) = Standard_Standard
+ and then
+ Static_Concatenation (Left_Opnd (N))
+ and then
+ Static_Concatenation (Right_Opnd (N));
+
+ when others =>
+ if Is_Entity_Name (N) then
+ declare
+ Ent : constant Entity_Id := Entity (N);
+ begin
+ return Ekind (Ent) = E_Constant
+ and then Present (Constant_Value (Ent))
+ and then
+ Is_Static_Expression (Constant_Value (Ent));
+ end;
+
+ else
+ return False;
+ end if;
+ end case;
+ end Static_Concatenation;
+
+ -- Start of processing for Resolve_Actuals
+
+ begin
+ Check_Argument_Order;
+ Check_Function_Writable_Actuals (N);
+
+ if Present (First_Actual (N)) then
+ Check_Prefixed_Call;
+ end if;
+
+ A := First_Actual (N);
+ F := First_Formal (Nam);
+ while Present (F) loop
+ if No (A) and then Needs_No_Actuals (Nam) then
+ null;
+
+ -- If we have an error in any actual or formal, indicated by a type
+ -- of Any_Type, then abandon resolution attempt, and set result type
+ -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
+ -- type is imposed from context.
+
+ elsif (Present (A) and then Etype (A) = Any_Type)
+ or else Etype (F) = Any_Type
+ then
+ if Nkind (A) /= N_Raise_Expression then
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+ end if;
+
+ -- Case where actual is present
+
+ -- If the actual is an entity, generate a reference to it now. We
+ -- do this before the actual is resolved, because a formal of some
+ -- protected subprogram, or a task discriminant, will be rewritten
+ -- during expansion, and the source entity reference may be lost.
+
+ if Present (A)
+ and then Is_Entity_Name (A)
+ and then Comes_From_Source (N)
+ then
+ Orig_A := Entity (A);
+
+ if Present (Orig_A) then
+ if Is_Formal (Orig_A)
+ and then Ekind (F) /= E_In_Parameter
+ then
+ Generate_Reference (Orig_A, A, 'm');
+
+ elsif not Is_Overloaded (A) then
+ if Ekind (F) /= E_Out_Parameter then
+ Generate_Reference (Orig_A, A);
+
+ -- RM 6.4.1(12): For an out parameter that is passed by
+ -- copy, the formal parameter object is created, and:
+
+ -- * For an access type, the formal parameter is initialized
+ -- from the value of the actual, without checking that the
+ -- value satisfies any constraint, any predicate, or any
+ -- exclusion of the null value.
+
+ -- * For a scalar type that has the Default_Value aspect
+ -- specified, the formal parameter is initialized from the
+ -- value of the actual, without checking that the value
+ -- satisfies any constraint or any predicate.
+ -- I do not understand why this case is included??? this is
+ -- not a case where an OUT parameter is treated as IN OUT.
+
+ -- * For a composite type with discriminants or that has
+ -- implicit initial values for any subcomponents, the
+ -- behavior is as for an in out parameter passed by copy.
+
+ -- Hence for these cases we generate the read reference now
+ -- (the write reference will be generated later by
+ -- Note_Possible_Modification).
+
+ elsif Is_By_Copy_Type (Etype (F))
+ and then
+ (Is_Access_Type (Etype (F))
+ or else
+ (Is_Scalar_Type (Etype (F))
+ and then
+ Present (Default_Aspect_Value (Etype (F))))
+ or else
+ (Is_Composite_Type (Etype (F))
+ and then (Has_Discriminants (Etype (F))
+ or else Is_Partially_Initialized_Type
+ (Etype (F)))))
+ then
+ Generate_Reference (Orig_A, A);
+ end if;
+ end if;
+ end if;
+ end if;
+
+ if Present (A)
+ and then (Nkind (Parent (A)) /= N_Parameter_Association
+ or else Chars (Selector_Name (Parent (A))) = Chars (F))
+ then
+ -- If style checking mode on, check match of formal name
+
+ if Style_Check then
+ if Nkind (Parent (A)) = N_Parameter_Association then
+ Check_Identifier (Selector_Name (Parent (A)), F);
+ end if;
+ end if;
+
+ -- If the formal is Out or In_Out, do not resolve and expand the
+ -- conversion, because it is subsequently expanded into explicit
+ -- temporaries and assignments. However, the object of the
+ -- conversion can be resolved. An exception is the case of tagged
+ -- type conversion with a class-wide actual. In that case we want
+ -- the tag check to occur and no temporary will be needed (no
+ -- representation change can occur) and the parameter is passed by
+ -- reference, so we go ahead and resolve the type conversion.
+ -- Another exception is the case of reference to component or
+ -- subcomponent of a bit-packed array, in which case we want to
+ -- defer expansion to the point the in and out assignments are
+ -- performed.
+
+ if Ekind (F) /= E_In_Parameter
+ and then Nkind (A) = N_Type_Conversion
+ and then not Is_Class_Wide_Type (Etype (Expression (A)))
+ then
+ if Ekind (F) = E_In_Out_Parameter
+ and then Is_Array_Type (Etype (F))
+ then
+ -- In a view conversion, the conversion must be legal in
+ -- both directions, and thus both component types must be
+ -- aliased, or neither (4.6 (8)).
+
+ -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
+ -- the privacy requirement should not apply to generic
+ -- types, and should be checked in an instance. ARG query
+ -- is in order ???
+
+ if Has_Aliased_Components (Etype (Expression (A))) /=
+ Has_Aliased_Components (Etype (F))
+ then
+ Error_Msg_N
+ ("both component types in a view conversion must be"
+ & " aliased, or neither", A);
+
+ -- Comment here??? what set of cases???
+
+ elsif
+ not Same_Ancestor (Etype (F), Etype (Expression (A)))
+ then
+ -- Check view conv between unrelated by ref array types
+
+ if Is_By_Reference_Type (Etype (F))
+ or else Is_By_Reference_Type (Etype (Expression (A)))
+ then
+ Error_Msg_N
+ ("view conversion between unrelated by reference "
+ & "array types not allowed (\'A'I-00246)", A);
+
+ -- In Ada 2005 mode, check view conversion component
+ -- type cannot be private, tagged, or volatile. Note
+ -- that we only apply this to source conversions. The
+ -- generated code can contain conversions which are
+ -- not subject to this test, and we cannot extract the
+ -- component type in such cases since it is not present.
+
+ elsif Comes_From_Source (A)
+ and then Ada_Version >= Ada_2005
+ then
+ declare
+ Comp_Type : constant Entity_Id :=
+ Component_Type
+ (Etype (Expression (A)));
+ begin
+ if (Is_Private_Type (Comp_Type)
+ and then not Is_Generic_Type (Comp_Type))
+ or else Is_Tagged_Type (Comp_Type)
+ or else Is_Volatile (Comp_Type)
+ then
+ Error_Msg_N
+ ("component type of a view conversion cannot"
+ & " be private, tagged, or volatile"
+ & " (RM 4.6 (24))",
+ Expression (A));
+ end if;
+ end;
+ end if;
+ end if;
+ end if;
+
+ -- Resolve expression if conversion is all OK
+
+ if (Conversion_OK (A)
+ or else Valid_Conversion (A, Etype (A), Expression (A)))
+ and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
+ then
+ Resolve (Expression (A));
+ end if;
+
+ -- If the actual is a function call that returns a limited
+ -- unconstrained object that needs finalization, create a
+ -- transient scope for it, so that it can receive the proper
+ -- finalization list.
+
+ elsif Nkind (A) = N_Function_Call
+ and then Is_Limited_Record (Etype (F))
+ and then not Is_Constrained (Etype (F))
+ and then Expander_Active
+ and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
+ then
+ Establish_Transient_Scope (A, Sec_Stack => False);
+ Resolve (A, Etype (F));
+
+ -- A small optimization: if one of the actuals is a concatenation
+ -- create a block around a procedure call to recover stack space.
+ -- This alleviates stack usage when several procedure calls in
+ -- the same statement list use concatenation. We do not perform
+ -- this wrapping for code statements, where the argument is a
+ -- static string, and we want to preserve warnings involving
+ -- sequences of such statements.
+
+ elsif Nkind (A) = N_Op_Concat
+ and then Nkind (N) = N_Procedure_Call_Statement
+ and then Expander_Active
+ and then
+ not (Is_Intrinsic_Subprogram (Nam)
+ and then Chars (Nam) = Name_Asm)
+ and then not Static_Concatenation (A)
+ then
+ Establish_Transient_Scope (A, Sec_Stack => False);
+ Resolve (A, Etype (F));
+
+ else
+ if Nkind (A) = N_Type_Conversion
+ and then Is_Array_Type (Etype (F))
+ and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
+ and then
+ (Is_Limited_Type (Etype (F))
+ or else Is_Limited_Type (Etype (Expression (A))))
+ then
+ Error_Msg_N
+ ("conversion between unrelated limited array types "
+ & "not allowed ('A'I-00246)", A);
+
+ if Is_Limited_Type (Etype (F)) then
+ Explain_Limited_Type (Etype (F), A);
+ end if;
+
+ if Is_Limited_Type (Etype (Expression (A))) then
+ Explain_Limited_Type (Etype (Expression (A)), A);
+ end if;
+ end if;
+
+ -- (Ada 2005: AI-251): If the actual is an allocator whose
+ -- directly designated type is a class-wide interface, we build
+ -- an anonymous access type to use it as the type of the
+ -- allocator. Later, when the subprogram call is expanded, if
+ -- the interface has a secondary dispatch table the expander
+ -- will add a type conversion to force the correct displacement
+ -- of the pointer.
+
+ if Nkind (A) = N_Allocator then
+ declare
+ DDT : constant Entity_Id :=
+ Directly_Designated_Type (Base_Type (Etype (F)));
+
+ New_Itype : Entity_Id;
+
+ begin
+ if Is_Class_Wide_Type (DDT)
+ and then Is_Interface (DDT)
+ then
+ New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
+ Set_Etype (New_Itype, Etype (A));
+ Set_Directly_Designated_Type
+ (New_Itype, Directly_Designated_Type (Etype (A)));
+ Set_Etype (A, New_Itype);
+ end if;
+
+ -- Ada 2005, AI-162:If the actual is an allocator, the
+ -- innermost enclosing statement is the master of the
+ -- created object. This needs to be done with expansion
+ -- enabled only, otherwise the transient scope will not
+ -- be removed in the expansion of the wrapped construct.
+
+ if (Is_Controlled (DDT) or else Has_Task (DDT))
+ and then Expander_Active
+ then
+ Establish_Transient_Scope (A, Sec_Stack => False);
+ end if;
+ end;
+
+ if Ekind (Etype (F)) = E_Anonymous_Access_Type then
+ Check_Restriction (No_Access_Parameter_Allocators, A);
+ end if;
+ end if;
+
+ -- (Ada 2005): The call may be to a primitive operation of a
+ -- tagged synchronized type, declared outside of the type. In
+ -- this case the controlling actual must be converted to its
+ -- corresponding record type, which is the formal type. The
+ -- actual may be a subtype, either because of a constraint or
+ -- because it is a generic actual, so use base type to locate
+ -- concurrent type.
+
+ F_Typ := Base_Type (Etype (F));
+
+ if Is_Tagged_Type (F_Typ)
+ and then (Is_Concurrent_Type (F_Typ)
+ or else Is_Concurrent_Record_Type (F_Typ))
+ then
+ -- If the actual is overloaded, look for an interpretation
+ -- that has a synchronized type.
+
+ if not Is_Overloaded (A) then
+ A_Typ := Base_Type (Etype (A));
+
+ else
+ declare
+ Index : Interp_Index;
+ It : Interp;
+
+ begin
+ Get_First_Interp (A, Index, It);
+ while Present (It.Typ) loop
+ if Is_Concurrent_Type (It.Typ)
+ or else Is_Concurrent_Record_Type (It.Typ)
+ then
+ A_Typ := Base_Type (It.Typ);
+ exit;
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+ end;
+ end if;
+
+ declare
+ Full_A_Typ : Entity_Id;
+
+ begin
+ if Present (Full_View (A_Typ)) then
+ Full_A_Typ := Base_Type (Full_View (A_Typ));
+ else
+ Full_A_Typ := A_Typ;
+ end if;
+
+ -- Tagged synchronized type (case 1): the actual is a
+ -- concurrent type.
+
+ if Is_Concurrent_Type (A_Typ)
+ and then Corresponding_Record_Type (A_Typ) = F_Typ
+ then
+ Rewrite (A,
+ Unchecked_Convert_To
+ (Corresponding_Record_Type (A_Typ), A));
+ Resolve (A, Etype (F));
+
+ -- Tagged synchronized type (case 2): the formal is a
+ -- concurrent type.
+
+ elsif Ekind (Full_A_Typ) = E_Record_Type
+ and then Present
+ (Corresponding_Concurrent_Type (Full_A_Typ))
+ and then Is_Concurrent_Type (F_Typ)
+ and then Present (Corresponding_Record_Type (F_Typ))
+ and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
+ then
+ Resolve (A, Corresponding_Record_Type (F_Typ));
+
+ -- Common case
+
+ else
+ Resolve (A, Etype (F));
+ end if;
+ end;
+
+ -- Not a synchronized operation
+
+ else
+ Resolve (A, Etype (F));
+ end if;
+ end if;
+
+ A_Typ := Etype (A);
+ F_Typ := Etype (F);
+
+ if Comes_From_Source (Original_Node (N))
+ and then Nkind_In (Original_Node (N), N_Function_Call,
+ N_Procedure_Call_Statement)
+ then
+ -- In formal mode, check that actual parameters matching
+ -- formals of tagged types are objects (or ancestor type
+ -- conversions of objects), not general expressions.
+
+ if Is_Actual_Tagged_Parameter (A) then
+ if Is_SPARK_Object_Reference (A) then
+ null;
+
+ elsif Nkind (A) = N_Type_Conversion then
+ declare
+ Operand : constant Node_Id := Expression (A);
+ Operand_Typ : constant Entity_Id := Etype (Operand);
+ Target_Typ : constant Entity_Id := A_Typ;
+
+ begin
+ if not Is_SPARK_Object_Reference (Operand) then
+ Check_SPARK_Restriction
+ ("object required", Operand);
+
+ -- In formal mode, the only view conversions are those
+ -- involving ancestor conversion of an extended type.
+
+ elsif not
+ (Is_Tagged_Type (Target_Typ)
+ and then not Is_Class_Wide_Type (Target_Typ)
+ and then Is_Tagged_Type (Operand_Typ)
+ and then not Is_Class_Wide_Type (Operand_Typ)
+ and then Is_Ancestor (Target_Typ, Operand_Typ))
+ then
+ if Ekind_In
+ (F, E_Out_Parameter, E_In_Out_Parameter)
+ then
+ Check_SPARK_Restriction
+ ("ancestor conversion is the only permitted "
+ & "view conversion", A);
+ else
+ Check_SPARK_Restriction
+ ("ancestor conversion required", A);
+ end if;
+
+ else
+ null;
+ end if;
+ end;
+
+ else
+ Check_SPARK_Restriction ("object required", A);
+ end if;
+
+ -- In formal mode, the only view conversions are those
+ -- involving ancestor conversion of an extended type.
+
+ elsif Nkind (A) = N_Type_Conversion
+ and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
+ then
+ Check_SPARK_Restriction
+ ("ancestor conversion is the only permitted view "
+ & "conversion", A);
+ end if;
+ end if;
+
+ -- has warnings suppressed, then we reset Never_Set_In_Source for
+ -- the calling entity. The reason for this is to catch cases like
+ -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
+ -- uses trickery to modify an IN parameter.
+
+ if Ekind (F) = E_In_Parameter
+ and then Is_Entity_Name (A)
+ and then Present (Entity (A))
+ and then Ekind (Entity (A)) = E_Variable
+ and then Has_Warnings_Off (F_Typ)
+ then
+ Set_Never_Set_In_Source (Entity (A), False);
+ end if;
+
+ -- Perform error checks for IN and IN OUT parameters
+
+ if Ekind (F) /= E_Out_Parameter then
+
+ -- Check unset reference. For scalar parameters, it is clearly
+ -- wrong to pass an uninitialized value as either an IN or
+ -- IN-OUT parameter. For composites, it is also clearly an
+ -- error to pass a completely uninitialized value as an IN
+ -- parameter, but the case of IN OUT is trickier. We prefer
+ -- not to give a warning here. For example, suppose there is
+ -- a routine that sets some component of a record to False.
+ -- It is perfectly reasonable to make this IN-OUT and allow
+ -- either initialized or uninitialized records to be passed
+ -- in this case.
+
+ -- For partially initialized composite values, we also avoid
+ -- warnings, since it is quite likely that we are passing a
+ -- partially initialized value and only the initialized fields
+ -- will in fact be read in the subprogram.
+
+ if Is_Scalar_Type (A_Typ)
+ or else (Ekind (F) = E_In_Parameter
+ and then not Is_Partially_Initialized_Type (A_Typ))
+ then
+ Check_Unset_Reference (A);
+ end if;
+
+ -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
+ -- actual to a nested call, since this is case of reading an
+ -- out parameter, which is not allowed.
+
+ if Ada_Version = Ada_83
+ and then Is_Entity_Name (A)
+ and then Ekind (Entity (A)) = E_Out_Parameter
+ then
+ Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
+ end if;
+ end if;
+
+ -- Case of OUT or IN OUT parameter
+
+ if Ekind (F) /= E_In_Parameter then
+
+ -- For an Out parameter, check for useless assignment. Note
+ -- that we can't set Last_Assignment this early, because we may
+ -- kill current values in Resolve_Call, and that call would
+ -- clobber the Last_Assignment field.
+
+ -- Note: call Warn_On_Useless_Assignment before doing the check
+ -- below for Is_OK_Variable_For_Out_Formal so that the setting
+ -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
+ -- reflects the last assignment, not this one.
+
+ if Ekind (F) = E_Out_Parameter then
+ if Warn_On_Modified_As_Out_Parameter (F)
+ and then Is_Entity_Name (A)
+ and then Present (Entity (A))
+ and then Comes_From_Source (N)
+ then
+ Warn_On_Useless_Assignment (Entity (A), A);
+ end if;
+ end if;
+
+ -- Validate the form of the actual. Note that the call to
+ -- Is_OK_Variable_For_Out_Formal generates the required
+ -- reference in this case.
+
+ -- A call to an initialization procedure for an aggregate
+ -- component may initialize a nested component of a constant
+ -- designated object. In this context the object is variable.
+
+ if not Is_OK_Variable_For_Out_Formal (A)
+ and then not Is_Init_Proc (Nam)
+ then
+ Error_Msg_NE ("actual for& must be a variable", A, F);
+
+ if Is_Subprogram (Current_Scope)
+ and then
+ (Is_Invariant_Procedure (Current_Scope)
+ or else Is_Predicate_Function (Current_Scope))
+ then
+ Error_Msg_N
+ ("function used in predicate cannot "
+ & "modify its argument", F);
+ end if;
+ end if;
+
+ -- What's the following about???
+
+ if Is_Entity_Name (A) then
+ Kill_Checks (Entity (A));
+ else
+ Kill_All_Checks;
+ end if;
+ end if;
+
+ if Etype (A) = Any_Type then
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- Apply appropriate range checks for in, out, and in-out
+ -- parameters. Out and in-out parameters also need a separate
+ -- check, if there is a type conversion, to make sure the return
+ -- value meets the constraints of the variable before the
+ -- conversion.
+
+ -- Gigi looks at the check flag and uses the appropriate types.
+ -- For now since one flag is used there is an optimization which
+ -- might not be done in the In Out case since Gigi does not do
+ -- any analysis. More thought required about this ???
+
+ if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
+
+ -- Apply predicate checks, unless this is a call to the
+ -- predicate check function itself, which would cause an
+ -- infinite recursion, or it is a call to an initialization
+ -- procedure whose operand is of course an unfinished object.
+
+ if not (Ekind (Nam) = E_Function
+ and then (Is_Predicate_Function (Nam)
+ or else
+ Is_Predicate_Function_M (Nam)))
+ and then not Is_Init_Proc (Nam)
+ then
+ Apply_Predicate_Check (A, F_Typ);
+ end if;
+
+ -- Apply required constraint checks
+
+ if Is_Scalar_Type (Etype (A)) then
+ Apply_Scalar_Range_Check (A, F_Typ);
+
+ elsif Is_Array_Type (Etype (A)) then
+ Apply_Length_Check (A, F_Typ);
+
+ elsif Is_Record_Type (F_Typ)
+ and then Has_Discriminants (F_Typ)
+ and then Is_Constrained (F_Typ)
+ and then (not Is_Derived_Type (F_Typ)
+ or else Comes_From_Source (Nam))
+ then
+ Apply_Discriminant_Check (A, F_Typ);
+
+ -- For view conversions of a discriminated object, apply
+ -- check to object itself, the conversion alreay has the
+ -- proper type.
+
+ if Nkind (A) = N_Type_Conversion
+ and then Is_Constrained (Etype (Expression (A)))
+ then
+ Apply_Discriminant_Check (Expression (A), F_Typ);
+ end if;
+
+ elsif Is_Access_Type (F_Typ)
+ and then Is_Array_Type (Designated_Type (F_Typ))
+ and then Is_Constrained (Designated_Type (F_Typ))
+ then
+ Apply_Length_Check (A, F_Typ);
+
+ elsif Is_Access_Type (F_Typ)
+ and then Has_Discriminants (Designated_Type (F_Typ))
+ and then Is_Constrained (Designated_Type (F_Typ))
+ then
+ Apply_Discriminant_Check (A, F_Typ);
+
+ else
+ Apply_Range_Check (A, F_Typ);
+ end if;
+
+ -- Ada 2005 (AI-231): Note that the controlling parameter case
+ -- already existed in Ada 95, which is partially checked
+ -- elsewhere (see Checks), and we don't want the warning
+ -- message to differ.
+
+ if Is_Access_Type (F_Typ)
+ and then Can_Never_Be_Null (F_Typ)
+ and then Known_Null (A)
+ then
+ if Is_Controlling_Formal (F) then
+ Apply_Compile_Time_Constraint_Error
+ (N => A,
+ Msg => "null value not allowed here??",
+ Reason => CE_Access_Check_Failed);
+
+ elsif Ada_Version >= Ada_2005 then
+ Apply_Compile_Time_Constraint_Error
+ (N => A,
+ Msg => "(Ada 2005) null not allowed in "
+ & "null-excluding formal??",
+ Reason => CE_Null_Not_Allowed);
+ end if;
+ end if;
+ end if;
+
+ if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
+ if Nkind (A) = N_Type_Conversion then
+ if Is_Scalar_Type (A_Typ) then
+ Apply_Scalar_Range_Check
+ (Expression (A), Etype (Expression (A)), A_Typ);
+ else
+ Apply_Range_Check
+ (Expression (A), Etype (Expression (A)), A_Typ);
+ end if;
+
+ else
+ if Is_Scalar_Type (F_Typ) then
+ Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
+ elsif Is_Array_Type (F_Typ)
+ and then Ekind (F) = E_Out_Parameter
+ then
+ Apply_Length_Check (A, F_Typ);
+ else
+ Apply_Range_Check (A, A_Typ, F_Typ);
+ end if;
+ end if;
+ end if;
+
+ -- An actual associated with an access parameter is implicitly
+ -- converted to the anonymous access type of the formal and must
+ -- satisfy the legality checks for access conversions.
+
+ if Ekind (F_Typ) = E_Anonymous_Access_Type then
+ if not Valid_Conversion (A, F_Typ, A) then
+ Error_Msg_N
+ ("invalid implicit conversion for access parameter", A);
+ end if;
+
+ -- If the actual is an access selected component of a variable,
+ -- the call may modify its designated object. It is reasonable
+ -- to treat this as a potential modification of the enclosing
+ -- record, to prevent spurious warnings that it should be
+ -- declared as a constant, because intuitively programmers
+ -- regard the designated subcomponent as part of the record.
+
+ if Nkind (A) = N_Selected_Component
+ and then Is_Entity_Name (Prefix (A))
+ and then not Is_Constant_Object (Entity (Prefix (A)))
+ then
+ Note_Possible_Modification (A, Sure => False);
+ end if;
+ end if;
+
+ -- Check bad case of atomic/volatile argument (RM C.6(12))
+
+ if Is_By_Reference_Type (Etype (F))
+ and then Comes_From_Source (N)
+ then
+ if Is_Atomic_Object (A)
+ and then not Is_Atomic (Etype (F))
+ then
+ Error_Msg_NE
+ ("cannot pass atomic argument to non-atomic formal&",
+ A, F);
+
+ elsif Is_Volatile_Object (A)
+ and then not Is_Volatile (Etype (F))
+ then
+ Error_Msg_NE
+ ("cannot pass volatile argument to non-volatile formal&",
+ A, F);
+ end if;
+ end if;
+
+ -- Check that subprograms don't have improper controlling
+ -- arguments (RM 3.9.2 (9)).
+
+ -- A primitive operation may have an access parameter of an
+ -- incomplete tagged type, but a dispatching call is illegal
+ -- if the type is still incomplete.
+
+ if Is_Controlling_Formal (F) then
+ Set_Is_Controlling_Actual (A);
+
+ if Ekind (Etype (F)) = E_Anonymous_Access_Type then
+ declare
+ Desig : constant Entity_Id := Designated_Type (Etype (F));
+ begin
+ if Ekind (Desig) = E_Incomplete_Type
+ and then No (Full_View (Desig))
+ and then No (Non_Limited_View (Desig))
+ then
+ Error_Msg_NE
+ ("premature use of incomplete type& "
+ & "in dispatching call", A, Desig);
+ end if;
+ end;
+ end if;
+
+ elsif Nkind (A) = N_Explicit_Dereference then
+ Validate_Remote_Access_To_Class_Wide_Type (A);
+ end if;
+
+ if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
+ and then not Is_Class_Wide_Type (F_Typ)
+ and then not Is_Controlling_Formal (F)
+ then
+ Error_Msg_N ("class-wide argument not allowed here!", A);
+
+ if Is_Subprogram (Nam)
+ and then Comes_From_Source (Nam)
+ then
+ Error_Msg_Node_2 := F_Typ;
+ Error_Msg_NE
+ ("& is not a dispatching operation of &!", A, Nam);
+ end if;
+
+ -- Apply the checks described in 3.10.2(27): if the context is a
+ -- specific access-to-object, the actual cannot be class-wide.
+ -- Use base type to exclude access_to_subprogram cases.
+
+ elsif Is_Access_Type (A_Typ)
+ and then Is_Access_Type (F_Typ)
+ and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
+ and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
+ or else (Nkind (A) = N_Attribute_Reference
+ and then
+ Is_Class_Wide_Type (Etype (Prefix (A)))))
+ and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
+ and then not Is_Controlling_Formal (F)
+
+ -- Disable these checks for call to imported C++ subprograms
+
+ and then not
+ (Is_Entity_Name (Name (N))
+ and then Is_Imported (Entity (Name (N)))
+ and then Convention (Entity (Name (N))) = Convention_CPP)
+ then
+ Error_Msg_N
+ ("access to class-wide argument not allowed here!", A);
+
+ if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
+ Error_Msg_Node_2 := Designated_Type (F_Typ);
+ Error_Msg_NE
+ ("& is not a dispatching operation of &!", A, Nam);
+ end if;
+ end if;
+
+ Eval_Actual (A);
+
+ -- If it is a named association, treat the selector_name as a
+ -- proper identifier, and mark the corresponding entity.
+
+ if Nkind (Parent (A)) = N_Parameter_Association
+
+ -- Ignore reference in SPARK mode, as it refers to an entity not
+ -- in scope at the point of reference, so the reference should
+ -- be ignored for computing effects of subprograms.
+
+ and then not GNATprove_Mode
+ then
+ Set_Entity (Selector_Name (Parent (A)), F);
+ Generate_Reference (F, Selector_Name (Parent (A)));
+ Set_Etype (Selector_Name (Parent (A)), F_Typ);
+ Generate_Reference (F_Typ, N, ' ');
+ end if;
+
+ Prev := A;
+
+ if Ekind (F) /= E_Out_Parameter then
+ Check_Unset_Reference (A);
+ end if;
+
+ -- The following checks are only relevant when SPARK_Mode is on as
+ -- they are not standard Ada legality rule.
+
+ if SPARK_Mode = On
+ and then Is_SPARK_Volatile_Object (A)
+ then
+ -- A volatile object may act as an actual parameter when the
+ -- corresponding formal is of a non-scalar volatile type.
+
+ if Is_Volatile (Etype (F))
+ and then not Is_Scalar_Type (Etype (F))
+ then
+ null;
+
+ -- A volatile object may act as an actual parameter in a call
+ -- to an instance of Unchecked_Conversion.
+
+ elsif Is_Unchecked_Conversion_Instance (Nam) then
+ null;
+
+ else
+ Error_Msg_N
+ ("volatile object cannot act as actual in a call (SPARK "
+ & "RM 7.1.3(12))", A);
+ end if;
+
+ -- Detect an external variable with an enabled property that
+ -- does not match the mode of the corresponding formal in a
+ -- procedure call.
+
+ -- why only procedure calls ???
+
+ if Ekind (Nam) = E_Procedure
+ and then Is_Entity_Name (A)
+ and then Present (Entity (A))
+ and then Ekind (Entity (A)) = E_Variable
+ then
+ A_Id := Entity (A);
+
+ if Ekind (F) = E_In_Parameter then
+ if Async_Readers_Enabled (A_Id) then
+ Property_Error (A, A_Id, Name_Async_Readers);
+ elsif Effective_Reads_Enabled (A_Id) then
+ Property_Error (A, A_Id, Name_Effective_Reads);
+ elsif Effective_Writes_Enabled (A_Id) then
+ Property_Error (A, A_Id, Name_Effective_Writes);
+ end if;
+
+ elsif Ekind (F) = E_Out_Parameter
+ and then Async_Writers_Enabled (A_Id)
+ then
+ Error_Msg_Name_1 := Name_Async_Writers;
+ Error_Msg_NE
+ ("external variable & with enabled property % cannot "
+ & "appear as actual in procedure call "
+ & "(SPARK RM 7.1.3(11))", A, A_Id);
+ Error_Msg_N
+ ("\\corresponding formal parameter has mode Out", A);
+ end if;
+ end if;
+ end if;
+
+ Next_Actual (A);
+
+ -- Case where actual is not present
+
+ else
+ Insert_Default;
+ end if;
+
+ Next_Formal (F);
+ end loop;
+ end Resolve_Actuals;
+
+ -----------------------
+ -- Resolve_Allocator --
+ -----------------------
+
+ procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
+ Desig_T : constant Entity_Id := Designated_Type (Typ);
+ E : constant Node_Id := Expression (N);
+ Subtyp : Entity_Id;
+ Discrim : Entity_Id;
+ Constr : Node_Id;
+ Aggr : Node_Id;
+ Assoc : Node_Id := Empty;
+ Disc_Exp : Node_Id;
+
+ procedure Check_Allocator_Discrim_Accessibility
+ (Disc_Exp : Node_Id;
+ Alloc_Typ : Entity_Id);
+ -- Check that accessibility level associated with an access discriminant
+ -- initialized in an allocator by the expression Disc_Exp is not deeper
+ -- than the level of the allocator type Alloc_Typ. An error message is
+ -- issued if this condition is violated. Specialized checks are done for
+ -- the cases of a constraint expression which is an access attribute or
+ -- an access discriminant.
+
+ function In_Dispatching_Context return Boolean;
+ -- If the allocator is an actual in a call, it is allowed to be class-
+ -- wide when the context is not because it is a controlling actual.
+
+ -------------------------------------------
+ -- Check_Allocator_Discrim_Accessibility --
+ -------------------------------------------
+
+ procedure Check_Allocator_Discrim_Accessibility
+ (Disc_Exp : Node_Id;
+ Alloc_Typ : Entity_Id)
+ is
+ begin
+ if Type_Access_Level (Etype (Disc_Exp)) >
+ Deepest_Type_Access_Level (Alloc_Typ)
+ then
+ Error_Msg_N
+ ("operand type has deeper level than allocator type", Disc_Exp);
+
+ -- When the expression is an Access attribute the level of the prefix
+ -- object must not be deeper than that of the allocator's type.
+
+ elsif Nkind (Disc_Exp) = N_Attribute_Reference
+ and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
+ Attribute_Access
+ and then Object_Access_Level (Prefix (Disc_Exp)) >
+ Deepest_Type_Access_Level (Alloc_Typ)
+ then
+ Error_Msg_N
+ ("prefix of attribute has deeper level than allocator type",
+ Disc_Exp);
+
+ -- When the expression is an access discriminant the check is against
+ -- the level of the prefix object.
+
+ elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
+ and then Nkind (Disc_Exp) = N_Selected_Component
+ and then Object_Access_Level (Prefix (Disc_Exp)) >
+ Deepest_Type_Access_Level (Alloc_Typ)
+ then
+ Error_Msg_N
+ ("access discriminant has deeper level than allocator type",
+ Disc_Exp);
+
+ -- All other cases are legal
+
+ else
+ null;
+ end if;
+ end Check_Allocator_Discrim_Accessibility;
+
+ ----------------------------
+ -- In_Dispatching_Context --
+ ----------------------------
+
+ function In_Dispatching_Context return Boolean is
+ Par : constant Node_Id := Parent (N);
+
+ begin
+ return Nkind (Par) in N_Subprogram_Call
+ and then Is_Entity_Name (Name (Par))
+ and then Is_Dispatching_Operation (Entity (Name (Par)));
+ end In_Dispatching_Context;
+
+ -- Start of processing for Resolve_Allocator
+
+ begin
+ -- Replace general access with specific type
+
+ if Ekind (Etype (N)) = E_Allocator_Type then
+ Set_Etype (N, Base_Type (Typ));
+ end if;
+
+ if Is_Abstract_Type (Typ) then
+ Error_Msg_N ("type of allocator cannot be abstract", N);
+ end if;
+
+ -- For qualified expression, resolve the expression using the given
+ -- subtype (nothing to do for type mark, subtype indication)
+
+ if Nkind (E) = N_Qualified_Expression then
+ if Is_Class_Wide_Type (Etype (E))
+ and then not Is_Class_Wide_Type (Desig_T)
+ and then not In_Dispatching_Context
+ then
+ Error_Msg_N
+ ("class-wide allocator not allowed for this access type", N);
+ end if;
+
+ Resolve (Expression (E), Etype (E));
+ Check_Unset_Reference (Expression (E));
+
+ -- A qualified expression requires an exact match of the type.
+ -- Class-wide matching is not allowed.
+
+ if (Is_Class_Wide_Type (Etype (Expression (E)))
+ or else Is_Class_Wide_Type (Etype (E)))
+ and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
+ then
+ Wrong_Type (Expression (E), Etype (E));
+ end if;
+
+ -- Calls to build-in-place functions are not currently supported in
+ -- allocators for access types associated with a simple storage pool.
+ -- Supporting such allocators may require passing additional implicit
+ -- parameters to build-in-place functions (or a significant revision
+ -- of the current b-i-p implementation to unify the handling for
+ -- multiple kinds of storage pools). ???
+
+ if Is_Limited_View (Desig_T)
+ and then Nkind (Expression (E)) = N_Function_Call
+ then
+ declare
+ Pool : constant Entity_Id :=
+ Associated_Storage_Pool (Root_Type (Typ));
+ begin
+ if Present (Pool)
+ and then
+ Present (Get_Rep_Pragma
+ (Etype (Pool), Name_Simple_Storage_Pool_Type))
+ then
+ Error_Msg_N
+ ("limited function calls not yet supported in simple "
+ & "storage pool allocators", Expression (E));
+ end if;
+ end;
+ end if;
+
+ -- A special accessibility check is needed for allocators that
+ -- constrain access discriminants. The level of the type of the
+ -- expression used to constrain an access discriminant cannot be
+ -- deeper than the type of the allocator (in contrast to access
+ -- parameters, where the level of the actual can be arbitrary).
+
+ -- We can't use Valid_Conversion to perform this check because in
+ -- general the type of the allocator is unrelated to the type of
+ -- the access discriminant.
+
+ if Ekind (Typ) /= E_Anonymous_Access_Type
+ or else Is_Local_Anonymous_Access (Typ)
+ then
+ Subtyp := Entity (Subtype_Mark (E));
+
+ Aggr := Original_Node (Expression (E));
+
+ if Has_Discriminants (Subtyp)
+ and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
+ then
+ Discrim := First_Discriminant (Base_Type (Subtyp));
+
+ -- Get the first component expression of the aggregate
+
+ if Present (Expressions (Aggr)) then
+ Disc_Exp := First (Expressions (Aggr));
+
+ elsif Present (Component_Associations (Aggr)) then
+ Assoc := First (Component_Associations (Aggr));
+
+ if Present (Assoc) then
+ Disc_Exp := Expression (Assoc);
+ else
+ Disc_Exp := Empty;
+ end if;
+
+ else
+ Disc_Exp := Empty;
+ end if;
+
+ while Present (Discrim) and then Present (Disc_Exp) loop
+ if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
+ Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
+ end if;
+
+ Next_Discriminant (Discrim);
+
+ if Present (Discrim) then
+ if Present (Assoc) then
+ Next (Assoc);
+ Disc_Exp := Expression (Assoc);
+
+ elsif Present (Next (Disc_Exp)) then
+ Next (Disc_Exp);
+
+ else
+ Assoc := First (Component_Associations (Aggr));
+
+ if Present (Assoc) then
+ Disc_Exp := Expression (Assoc);
+ else
+ Disc_Exp := Empty;
+ end if;
+ end if;
+ end if;
+ end loop;
+ end if;
+ end if;
+
+ -- For a subtype mark or subtype indication, freeze the subtype
+
+ else
+ Freeze_Expression (E);
+
+ if Is_Access_Constant (Typ) and then not No_Initialization (N) then
+ Error_Msg_N
+ ("initialization required for access-to-constant allocator", N);
+ end if;
+
+ -- A special accessibility check is needed for allocators that
+ -- constrain access discriminants. The level of the type of the
+ -- expression used to constrain an access discriminant cannot be
+ -- deeper than the type of the allocator (in contrast to access
+ -- parameters, where the level of the actual can be arbitrary).
+ -- We can't use Valid_Conversion to perform this check because
+ -- in general the type of the allocator is unrelated to the type
+ -- of the access discriminant.
+
+ if Nkind (Original_Node (E)) = N_Subtype_Indication
+ and then (Ekind (Typ) /= E_Anonymous_Access_Type
+ or else Is_Local_Anonymous_Access (Typ))
+ then
+ Subtyp := Entity (Subtype_Mark (Original_Node (E)));
+
+ if Has_Discriminants (Subtyp) then
+ Discrim := First_Discriminant (Base_Type (Subtyp));
+ Constr := First (Constraints (Constraint (Original_Node (E))));
+ while Present (Discrim) and then Present (Constr) loop
+ if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
+ if Nkind (Constr) = N_Discriminant_Association then
+ Disc_Exp := Original_Node (Expression (Constr));
+ else
+ Disc_Exp := Original_Node (Constr);
+ end if;
+
+ Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
+ end if;
+
+ Next_Discriminant (Discrim);
+ Next (Constr);
+ end loop;
+ end if;
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
+ -- check that the level of the type of the created object is not deeper
+ -- than the level of the allocator's access type, since extensions can
+ -- now occur at deeper levels than their ancestor types. This is a
+ -- static accessibility level check; a run-time check is also needed in
+ -- the case of an initialized allocator with a class-wide argument (see
+ -- Expand_Allocator_Expression).
+
+ if Ada_Version >= Ada_2005
+ and then Is_Class_Wide_Type (Desig_T)
+ then
+ declare
+ Exp_Typ : Entity_Id;
+
+ begin
+ if Nkind (E) = N_Qualified_Expression then
+ Exp_Typ := Etype (E);
+ elsif Nkind (E) = N_Subtype_Indication then
+ Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
+ else
+ Exp_Typ := Entity (E);
+ end if;
+
+ if Type_Access_Level (Exp_Typ) >
+ Deepest_Type_Access_Level (Typ)
+ then
+ if In_Instance_Body then
+ Error_Msg_Warn := SPARK_Mode /= On;
+ Error_Msg_N
+ ("type in allocator has deeper level than "
+ & "designated class-wide type<<", E);
+ Error_Msg_N ("\Program_Error [<<", E);
+ Rewrite (N,
+ Make_Raise_Program_Error (Sloc (N),
+ Reason => PE_Accessibility_Check_Failed));
+ Set_Etype (N, Typ);
+
+ -- Do not apply Ada 2005 accessibility checks on a class-wide
+ -- allocator if the type given in the allocator is a formal
+ -- type. A run-time check will be performed in the instance.
+
+ elsif not Is_Generic_Type (Exp_Typ) then
+ Error_Msg_N ("type in allocator has deeper level than "
+ & "designated class-wide type", E);
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- Check for allocation from an empty storage pool
+
+ if No_Pool_Assigned (Typ) then
+ Error_Msg_N ("allocation from empty storage pool!", N);
+
+ -- If the context is an unchecked conversion, as may happen within an
+ -- inlined subprogram, the allocator is being resolved with its own
+ -- anonymous type. In that case, if the target type has a specific
+ -- storage pool, it must be inherited explicitly by the allocator type.
+
+ elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
+ and then No (Associated_Storage_Pool (Typ))
+ then
+ Set_Associated_Storage_Pool
+ (Typ, Associated_Storage_Pool (Etype (Parent (N))));
+ end if;
+
+ if Ekind (Etype (N)) = E_Anonymous_Access_Type then
+ Check_Restriction (No_Anonymous_Allocators, N);
+ end if;
+
+ -- Check that an allocator with task parts isn't for a nested access
+ -- type when restriction No_Task_Hierarchy applies.
+
+ if not Is_Library_Level_Entity (Base_Type (Typ))
+ and then Has_Task (Base_Type (Desig_T))
+ then
+ Check_Restriction (No_Task_Hierarchy, N);
+ end if;
+
+ -- An erroneous allocator may be rewritten as a raise Program_Error
+ -- statement.
+
+ if Nkind (N) = N_Allocator then
+
+ -- An anonymous access discriminant is the definition of a
+ -- coextension.
+
+ if Ekind (Typ) = E_Anonymous_Access_Type
+ and then Nkind (Associated_Node_For_Itype (Typ)) =
+ N_Discriminant_Specification
+ then
+ declare
+ Discr : constant Entity_Id :=
+ Defining_Identifier (Associated_Node_For_Itype (Typ));
+
+ begin
+ Check_Restriction (No_Coextensions, N);
+
+ -- Ada 2012 AI05-0052: If the designated type of the allocator
+ -- is limited, then the allocator shall not be used to define
+ -- the value of an access discriminant unless the discriminated
+ -- type is immutably limited.
+
+ if Ada_Version >= Ada_2012
+ and then Is_Limited_Type (Desig_T)
+ and then not Is_Limited_View (Scope (Discr))
+ then
+ Error_Msg_N
+ ("only immutably limited types can have anonymous "
+ & "access discriminants designating a limited type", N);
+ end if;
+ end;
+
+ -- Avoid marking an allocator as a dynamic coextension if it is
+ -- within a static construct.
+
+ if not Is_Static_Coextension (N) then
+ Set_Is_Dynamic_Coextension (N);
+ end if;
+
+ -- Cleanup for potential static coextensions
+
+ else
+ Set_Is_Dynamic_Coextension (N, False);
+ Set_Is_Static_Coextension (N, False);
+ end if;
+ end if;
+
+ -- Report a simple error: if the designated object is a local task,
+ -- its body has not been seen yet, and its activation will fail an
+ -- elaboration check.
+
+ if Is_Task_Type (Desig_T)
+ and then Scope (Base_Type (Desig_T)) = Current_Scope
+ and then Is_Compilation_Unit (Current_Scope)
+ and then Ekind (Current_Scope) = E_Package
+ and then not In_Package_Body (Current_Scope)
+ then
+ Error_Msg_Warn := SPARK_Mode /= On;
+ Error_Msg_N ("cannot activate task before body seen<<", N);
+ Error_Msg_N ("\Program_Error [<<", N);
+ end if;
+
+ -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
+ -- type with a task component on a subpool. This action must raise
+ -- Program_Error at runtime.
+
+ if Ada_Version >= Ada_2012
+ and then Nkind (N) = N_Allocator
+ and then Present (Subpool_Handle_Name (N))
+ and then Has_Task (Desig_T)
+ then
+ Error_Msg_Warn := SPARK_Mode /= On;
+ Error_Msg_N ("cannot allocate task on subpool<<", N);
+ Error_Msg_N ("\Program_Error [<<", N);
+
+ Rewrite (N,
+ Make_Raise_Program_Error (Sloc (N),
+ Reason => PE_Explicit_Raise));
+ Set_Etype (N, Typ);
+ end if;
+ end Resolve_Allocator;
+
+ ---------------------------
+ -- Resolve_Arithmetic_Op --
+ ---------------------------
+
+ -- Used for resolving all arithmetic operators except exponentiation
+
+ procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+ TL : constant Entity_Id := Base_Type (Etype (L));
+ TR : constant Entity_Id := Base_Type (Etype (R));
+ T : Entity_Id;
+ Rop : Node_Id;
+
+ B_Typ : constant Entity_Id := Base_Type (Typ);
+ -- We do the resolution using the base type, because intermediate values
+ -- in expressions always are of the base type, not a subtype of it.
+
+ function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
+ -- Returns True if N is in a context that expects "any real type"
+
+ function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
+ -- Return True iff given type is Integer or universal real/integer
+
+ procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
+ -- Choose type of integer literal in fixed-point operation to conform
+ -- to available fixed-point type. T is the type of the other operand,
+ -- which is needed to determine the expected type of N.
+
+ procedure Set_Operand_Type (N : Node_Id);
+ -- Set operand type to T if universal
+
+ -------------------------------
+ -- Expected_Type_Is_Any_Real --
+ -------------------------------
+
+ function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
+ begin
+ -- N is the expression after "delta" in a fixed_point_definition;
+ -- see RM-3.5.9(6):
+
+ return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
+ N_Decimal_Fixed_Point_Definition,
+
+ -- N is one of the bounds in a real_range_specification;
+ -- see RM-3.5.7(5):
+
+ N_Real_Range_Specification,
+
+ -- N is the expression of a delta_constraint;
+ -- see RM-J.3(3):
+
+ N_Delta_Constraint);
+ end Expected_Type_Is_Any_Real;
+
+ -----------------------------
+ -- Is_Integer_Or_Universal --
+ -----------------------------
+
+ function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
+ T : Entity_Id;
+ Index : Interp_Index;
+ It : Interp;
+
+ begin
+ if not Is_Overloaded (N) then
+ T := Etype (N);
+ return Base_Type (T) = Base_Type (Standard_Integer)
+ or else T = Universal_Integer
+ or else T = Universal_Real;
+ else
+ Get_First_Interp (N, Index, It);
+ while Present (It.Typ) loop
+ if Base_Type (It.Typ) = Base_Type (Standard_Integer)
+ or else It.Typ = Universal_Integer
+ or else It.Typ = Universal_Real
+ then
+ return True;
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+ end if;
+
+ return False;
+ end Is_Integer_Or_Universal;
+
+ ----------------------------
+ -- Set_Mixed_Mode_Operand --
+ ----------------------------
+
+ procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
+ Index : Interp_Index;
+ It : Interp;
+
+ begin
+ if Universal_Interpretation (N) = Universal_Integer then
+
+ -- A universal integer literal is resolved as standard integer
+ -- except in the case of a fixed-point result, where we leave it
+ -- as universal (to be handled by Exp_Fixd later on)
+
+ if Is_Fixed_Point_Type (T) then
+ Resolve (N, Universal_Integer);
+ else
+ Resolve (N, Standard_Integer);
+ end if;
+
+ elsif Universal_Interpretation (N) = Universal_Real
+ and then (T = Base_Type (Standard_Integer)
+ or else T = Universal_Integer
+ or else T = Universal_Real)
+ then
+ -- A universal real can appear in a fixed-type context. We resolve
+ -- the literal with that context, even though this might raise an
+ -- exception prematurely (the other operand may be zero).
+
+ Resolve (N, B_Typ);
+
+ elsif Etype (N) = Base_Type (Standard_Integer)
+ and then T = Universal_Real
+ and then Is_Overloaded (N)
+ then
+ -- Integer arg in mixed-mode operation. Resolve with universal
+ -- type, in case preference rule must be applied.
+
+ Resolve (N, Universal_Integer);
+
+ elsif Etype (N) = T
+ and then B_Typ /= Universal_Fixed
+ then
+ -- Not a mixed-mode operation, resolve with context
+
+ Resolve (N, B_Typ);
+
+ elsif Etype (N) = Any_Fixed then
+
+ -- N may itself be a mixed-mode operation, so use context type
+
+ Resolve (N, B_Typ);
+
+ elsif Is_Fixed_Point_Type (T)
+ and then B_Typ = Universal_Fixed
+ and then Is_Overloaded (N)
+ then
+ -- Must be (fixed * fixed) operation, operand must have one
+ -- compatible interpretation.
+
+ Resolve (N, Any_Fixed);
+
+ elsif Is_Fixed_Point_Type (B_Typ)
+ and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
+ and then Is_Overloaded (N)
+ then
+ -- C * F(X) in a fixed context, where C is a real literal or a
+ -- fixed-point expression. F must have either a fixed type
+ -- interpretation or an integer interpretation, but not both.
+
+ Get_First_Interp (N, Index, It);
+ while Present (It.Typ) loop
+ if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
+ if Analyzed (N) then
+ Error_Msg_N ("ambiguous operand in fixed operation", N);
+ else
+ Resolve (N, Standard_Integer);
+ end if;
+
+ elsif Is_Fixed_Point_Type (It.Typ) then
+ if Analyzed (N) then
+ Error_Msg_N ("ambiguous operand in fixed operation", N);
+ else
+ Resolve (N, It.Typ);
+ end if;
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+
+ -- Reanalyze the literal with the fixed type of the context. If
+ -- context is Universal_Fixed, we are within a conversion, leave
+ -- the literal as a universal real because there is no usable
+ -- fixed type, and the target of the conversion plays no role in
+ -- the resolution.
+
+ declare
+ Op2 : Node_Id;
+ T2 : Entity_Id;
+
+ begin
+ if N = L then
+ Op2 := R;
+ else
+ Op2 := L;
+ end if;
+
+ if B_Typ = Universal_Fixed
+ and then Nkind (Op2) = N_Real_Literal
+ then
+ T2 := Universal_Real;
+ else
+ T2 := B_Typ;
+ end if;
+
+ Set_Analyzed (Op2, False);
+ Resolve (Op2, T2);
+ end;
+
+ else
+ Resolve (N);
+ end if;
+ end Set_Mixed_Mode_Operand;
+
+ ----------------------
+ -- Set_Operand_Type --
+ ----------------------
+
+ procedure Set_Operand_Type (N : Node_Id) is
+ begin
+ if Etype (N) = Universal_Integer
+ or else Etype (N) = Universal_Real
+ then
+ Set_Etype (N, T);
+ end if;
+ end Set_Operand_Type;
+
+ -- Start of processing for Resolve_Arithmetic_Op
+
+ begin
+ if Comes_From_Source (N)
+ and then Ekind (Entity (N)) = E_Function
+ and then Is_Imported (Entity (N))
+ and then Is_Intrinsic_Subprogram (Entity (N))
+ then
+ Resolve_Intrinsic_Operator (N, Typ);
+ return;
+
+ -- Special-case for mixed-mode universal expressions or fixed point type
+ -- operation: each argument is resolved separately. The same treatment
+ -- is required if one of the operands of a fixed point operation is
+ -- universal real, since in this case we don't do a conversion to a
+ -- specific fixed-point type (instead the expander handles the case).
+
+ -- Set the type of the node to its universal interpretation because
+ -- legality checks on an exponentiation operand need the context.
+
+ elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
+ and then Present (Universal_Interpretation (L))
+ and then Present (Universal_Interpretation (R))
+ then
+ Set_Etype (N, B_Typ);
+ Resolve (L, Universal_Interpretation (L));
+ Resolve (R, Universal_Interpretation (R));
+
+ elsif (B_Typ = Universal_Real
+ or else Etype (N) = Universal_Fixed
+ or else (Etype (N) = Any_Fixed
+ and then Is_Fixed_Point_Type (B_Typ))
+ or else (Is_Fixed_Point_Type (B_Typ)
+ and then (Is_Integer_Or_Universal (L)
+ or else
+ Is_Integer_Or_Universal (R))))
+ and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
+ then
+ if TL = Universal_Integer or else TR = Universal_Integer then
+ Check_For_Visible_Operator (N, B_Typ);
+ end if;
+
+ -- If context is a fixed type and one operand is integer, the other
+ -- is resolved with the type of the context.
+
+ if Is_Fixed_Point_Type (B_Typ)
+ and then (Base_Type (TL) = Base_Type (Standard_Integer)
+ or else TL = Universal_Integer)
+ then
+ Resolve (R, B_Typ);
+ Resolve (L, TL);
+
+ elsif Is_Fixed_Point_Type (B_Typ)
+ and then (Base_Type (TR) = Base_Type (Standard_Integer)
+ or else TR = Universal_Integer)
+ then
+ Resolve (L, B_Typ);
+ Resolve (R, TR);
+
+ else
+ Set_Mixed_Mode_Operand (L, TR);
+ Set_Mixed_Mode_Operand (R, TL);
+ end if;
+
+ -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
+ -- multiplying operators from being used when the expected type is
+ -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
+ -- some cases where the expected type is actually Any_Real;
+ -- Expected_Type_Is_Any_Real takes care of that case.
+
+ if Etype (N) = Universal_Fixed
+ or else Etype (N) = Any_Fixed
+ then
+ if B_Typ = Universal_Fixed
+ and then not Expected_Type_Is_Any_Real (N)
+ and then not Nkind_In (Parent (N), N_Type_Conversion,
+ N_Unchecked_Type_Conversion)
+ then
+ Error_Msg_N ("type cannot be determined from context!", N);
+ Error_Msg_N ("\explicit conversion to result type required", N);
+
+ Set_Etype (L, Any_Type);
+ Set_Etype (R, Any_Type);
+
+ else
+ if Ada_Version = Ada_83
+ and then Etype (N) = Universal_Fixed
+ and then not
+ Nkind_In (Parent (N), N_Type_Conversion,
+ N_Unchecked_Type_Conversion)
+ then
+ Error_Msg_N
+ ("(Ada 83) fixed-point operation "
+ & "needs explicit conversion", N);
+ end if;
+
+ -- The expected type is "any real type" in contexts like
+
+ -- type T is delta <universal_fixed-expression> ...
+
+ -- in which case we need to set the type to Universal_Real
+ -- so that static expression evaluation will work properly.
+
+ if Expected_Type_Is_Any_Real (N) then
+ Set_Etype (N, Universal_Real);
+ else
+ Set_Etype (N, B_Typ);
+ end if;
+ end if;
+
+ elsif Is_Fixed_Point_Type (B_Typ)
+ and then (Is_Integer_Or_Universal (L)
+ or else Nkind (L) = N_Real_Literal
+ or else Nkind (R) = N_Real_Literal
+ or else Is_Integer_Or_Universal (R))
+ then
+ Set_Etype (N, B_Typ);
+
+ elsif Etype (N) = Any_Fixed then
+
+ -- If no previous errors, this is only possible if one operand is
+ -- overloaded and the context is universal. Resolve as such.
+
+ Set_Etype (N, B_Typ);
+ end if;
+
+ else
+ if (TL = Universal_Integer or else TL = Universal_Real)
+ and then
+ (TR = Universal_Integer or else TR = Universal_Real)
+ then
+ Check_For_Visible_Operator (N, B_Typ);
+ end if;
+
+ -- If the context is Universal_Fixed and the operands are also
+ -- universal fixed, this is an error, unless there is only one
+ -- applicable fixed_point type (usually Duration).
+
+ if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
+ T := Unique_Fixed_Point_Type (N);
+
+ if T = Any_Type then
+ Set_Etype (N, T);
+ return;
+ else
+ Resolve (L, T);
+ Resolve (R, T);
+ end if;
+
+ else
+ Resolve (L, B_Typ);
+ Resolve (R, B_Typ);
+ end if;
+
+ -- If one of the arguments was resolved to a non-universal type.
+ -- label the result of the operation itself with the same type.
+ -- Do the same for the universal argument, if any.
+
+ T := Intersect_Types (L, R);
+ Set_Etype (N, Base_Type (T));
+ Set_Operand_Type (L);
+ Set_Operand_Type (R);
+ end if;
+
+ Generate_Operator_Reference (N, Typ);
+ Analyze_Dimension (N);
+ Eval_Arithmetic_Op (N);
+
+ -- In SPARK, a multiplication or division with operands of fixed point
+ -- types shall be qualified or explicitly converted to identify the
+ -- result type.
+
+ if (Is_Fixed_Point_Type (Etype (L))
+ or else Is_Fixed_Point_Type (Etype (R)))
+ and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
+ and then
+ not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
+ then
+ Check_SPARK_Restriction
+ ("operation should be qualified or explicitly converted", N);
+ end if;
+
+ -- Set overflow and division checking bit
+
+ if Nkind (N) in N_Op then
+ if not Overflow_Checks_Suppressed (Etype (N)) then
+ Enable_Overflow_Check (N);
+ end if;
+
+ -- Give warning if explicit division by zero
+
+ if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
+ and then not Division_Checks_Suppressed (Etype (N))
+ then
+ Rop := Right_Opnd (N);
+
+ if Compile_Time_Known_Value (Rop)
+ and then ((Is_Integer_Type (Etype (Rop))
+ and then Expr_Value (Rop) = Uint_0)
+ or else
+ (Is_Real_Type (Etype (Rop))
+ and then Expr_Value_R (Rop) = Ureal_0))
+ then
+ -- Specialize the warning message according to the operation.
+ -- The following warnings are for the case
+
+ case Nkind (N) is
+ when N_Op_Divide =>
+
+ -- For division, we have two cases, for float division
+ -- of an unconstrained float type, on a machine where
+ -- Machine_Overflows is false, we don't get an exception
+ -- at run-time, but rather an infinity or Nan. The Nan
+ -- case is pretty obscure, so just warn about infinities.
+
+ if Is_Floating_Point_Type (Typ)
+ and then not Is_Constrained (Typ)
+ and then not Machine_Overflows_On_Target
+ then
+ Error_Msg_N
+ ("float division by zero, may generate "
+ & "'+'/'- infinity??", Right_Opnd (N));
+
+ -- For all other cases, we get a Constraint_Error
+
+ else
+ Apply_Compile_Time_Constraint_Error
+ (N, "division by zero??", CE_Divide_By_Zero,
+ Loc => Sloc (Right_Opnd (N)));
+ end if;
+
+ when N_Op_Rem =>
+ Apply_Compile_Time_Constraint_Error
+ (N, "rem with zero divisor??", CE_Divide_By_Zero,
+ Loc => Sloc (Right_Opnd (N)));
+
+ when N_Op_Mod =>
+ Apply_Compile_Time_Constraint_Error
+ (N, "mod with zero divisor??", CE_Divide_By_Zero,
+ Loc => Sloc (Right_Opnd (N)));
+
+ -- Division by zero can only happen with division, rem,
+ -- and mod operations.
+
+ when others =>
+ raise Program_Error;
+ end case;
+
+ -- Otherwise just set the flag to check at run time
+
+ else
+ Activate_Division_Check (N);
+ end if;
+ end if;
+
+ -- If Restriction No_Implicit_Conditionals is active, then it is
+ -- violated if either operand can be negative for mod, or for rem
+ -- if both operands can be negative.
+
+ if Restriction_Check_Required (No_Implicit_Conditionals)
+ and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
+ then
+ declare
+ Lo : Uint;
+ Hi : Uint;
+ OK : Boolean;
+
+ LNeg : Boolean;
+ RNeg : Boolean;
+ -- Set if corresponding operand might be negative
+
+ begin
+ Determine_Range
+ (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
+ LNeg := (not OK) or else Lo < 0;
+
+ Determine_Range
+ (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
+ RNeg := (not OK) or else Lo < 0;
+
+ -- Check if we will be generating conditionals. There are two
+ -- cases where that can happen, first for REM, the only case
+ -- is largest negative integer mod -1, where the division can
+ -- overflow, but we still have to give the right result. The
+ -- front end generates a test for this annoying case. Here we
+ -- just test if both operands can be negative (that's what the
+ -- expander does, so we match its logic here).
+
+ -- The second case is mod where either operand can be negative.
+ -- In this case, the back end has to generate additional tests.
+
+ if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
+ or else
+ (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
+ then
+ Check_Restriction (No_Implicit_Conditionals, N);
+ end if;
+ end;
+ end if;
+ end if;
+
+ Check_Unset_Reference (L);
+ Check_Unset_Reference (R);
+ Check_Function_Writable_Actuals (N);
+ end Resolve_Arithmetic_Op;
+
+ ------------------
+ -- Resolve_Call --
+ ------------------
+
+ procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Subp : constant Node_Id := Name (N);
+ Nam : Entity_Id;
+ I : Interp_Index;
+ It : Interp;
+ Norm_OK : Boolean;
+ Scop : Entity_Id;
+ Rtype : Entity_Id;
+
+ function Same_Or_Aliased_Subprograms
+ (S : Entity_Id;
+ E : Entity_Id) return Boolean;
+ -- Returns True if the subprogram entity S is the same as E or else
+ -- S is an alias of E.
+
+ ---------------------------------
+ -- Same_Or_Aliased_Subprograms --
+ ---------------------------------
+
+ function Same_Or_Aliased_Subprograms
+ (S : Entity_Id;
+ E : Entity_Id) return Boolean
+ is
+ Subp_Alias : constant Entity_Id := Alias (S);
+ begin
+ return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
+ end Same_Or_Aliased_Subprograms;
+
+ -- Start of processing for Resolve_Call
+
+ begin
+ -- The context imposes a unique interpretation with type Typ on a
+ -- procedure or function call. Find the entity of the subprogram that
+ -- yields the expected type, and propagate the corresponding formal
+ -- constraints on the actuals. The caller has established that an
+ -- interpretation exists, and emitted an error if not unique.
+
+ -- First deal with the case of a call to an access-to-subprogram,
+ -- dereference made explicit in Analyze_Call.
+
+ if Ekind (Etype (Subp)) = E_Subprogram_Type then
+ if not Is_Overloaded (Subp) then
+ Nam := Etype (Subp);
+
+ else
+ -- Find the interpretation whose type (a subprogram type) has a
+ -- return type that is compatible with the context. Analysis of
+ -- the node has established that one exists.
+
+ Nam := Empty;
+
+ Get_First_Interp (Subp, I, It);
+ while Present (It.Typ) loop
+ if Covers (Typ, Etype (It.Typ)) then
+ Nam := It.Typ;
+ exit;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ if No (Nam) then
+ raise Program_Error;
+ end if;
+ end if;
+
+ -- If the prefix is not an entity, then resolve it
+
+ if not Is_Entity_Name (Subp) then
+ Resolve (Subp, Nam);
+ end if;
+
+ -- For an indirect call, we always invalidate checks, since we do not
+ -- know whether the subprogram is local or global. Yes we could do
+ -- better here, e.g. by knowing that there are no local subprograms,
+ -- but it does not seem worth the effort. Similarly, we kill all
+ -- knowledge of current constant values.
+
+ Kill_Current_Values;
+
+ -- If this is a procedure call which is really an entry call, do
+ -- the conversion of the procedure call to an entry call. Protected
+ -- operations use the same circuitry because the name in the call
+ -- can be an arbitrary expression with special resolution rules.
+
+ elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
+ or else (Is_Entity_Name (Subp)
+ and then Ekind (Entity (Subp)) = E_Entry)
+ then
+ Resolve_Entry_Call (N, Typ);
+ Check_Elab_Call (N);
+
+ -- Kill checks and constant values, as above for indirect case
+ -- Who knows what happens when another task is activated?
+
+ Kill_Current_Values;
+ return;
+
+ -- Normal subprogram call with name established in Resolve
+
+ elsif not (Is_Type (Entity (Subp))) then
+ Nam := Entity (Subp);
+ Set_Entity_With_Checks (Subp, Nam);
+
+ -- Otherwise we must have the case of an overloaded call
+
+ else
+ pragma Assert (Is_Overloaded (Subp));
+
+ -- Initialize Nam to prevent warning (we know it will be assigned
+ -- in the loop below, but the compiler does not know that).
+
+ Nam := Empty;
+
+ Get_First_Interp (Subp, I, It);
+ while Present (It.Typ) loop
+ if Covers (Typ, It.Typ) then
+ Nam := It.Nam;
+ Set_Entity_With_Checks (Subp, Nam);
+ exit;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end if;
+
+ if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
+ and then not Is_Access_Subprogram_Type (Base_Type (Typ))
+ and then Nkind (Subp) /= N_Explicit_Dereference
+ and then Present (Parameter_Associations (N))
+ then
+ -- The prefix is a parameterless function call that returns an access
+ -- to subprogram. If parameters are present in the current call, add
+ -- add an explicit dereference. We use the base type here because
+ -- within an instance these may be subtypes.
+
+ -- The dereference is added either in Analyze_Call or here. Should
+ -- be consolidated ???
+
+ Set_Is_Overloaded (Subp, False);
+ Set_Etype (Subp, Etype (Nam));
+ Insert_Explicit_Dereference (Subp);
+ Nam := Designated_Type (Etype (Nam));
+ Resolve (Subp, Nam);
+ end if;
+
+ -- Check that a call to Current_Task does not occur in an entry body
+
+ if Is_RTE (Nam, RE_Current_Task) then
+ declare
+ P : Node_Id;
+
+ begin
+ P := N;
+ loop
+ P := Parent (P);
+
+ -- Exclude calls that occur within the default of a formal
+ -- parameter of the entry, since those are evaluated outside
+ -- of the body.
+
+ exit when No (P) or else Nkind (P) = N_Parameter_Specification;
+
+ if Nkind (P) = N_Entry_Body
+ or else (Nkind (P) = N_Subprogram_Body
+ and then Is_Entry_Barrier_Function (P))
+ then
+ Rtype := Etype (N);
+ Error_Msg_Warn := SPARK_Mode /= On;
+ Error_Msg_NE
+ ("& should not be used in entry body (RM C.7(17))<<",
+ N, Nam);
+ Error_Msg_NE ("\Program_Error [<<", N, Nam);
+ Rewrite (N,
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Current_Task_In_Entry_Body));
+ Set_Etype (N, Rtype);
+ return;
+ end if;
+ end loop;
+ end;
+ end if;
+
+ -- Check that a procedure call does not occur in the context of the
+ -- entry call statement of a conditional or timed entry call. Note that
+ -- the case of a call to a subprogram renaming of an entry will also be
+ -- rejected. The test for N not being an N_Entry_Call_Statement is
+ -- defensive, covering the possibility that the processing of entry
+ -- calls might reach this point due to later modifications of the code
+ -- above.
+
+ if Nkind (Parent (N)) = N_Entry_Call_Alternative
+ and then Nkind (N) /= N_Entry_Call_Statement
+ and then Entry_Call_Statement (Parent (N)) = N
+ then
+ if Ada_Version < Ada_2005 then
+ Error_Msg_N ("entry call required in select statement", N);
+
+ -- Ada 2005 (AI-345): If a procedure_call_statement is used
+ -- for a procedure_or_entry_call, the procedure_name or
+ -- procedure_prefix of the procedure_call_statement shall denote
+ -- an entry renamed by a procedure, or (a view of) a primitive
+ -- subprogram of a limited interface whose first parameter is
+ -- a controlling parameter.
+
+ elsif Nkind (N) = N_Procedure_Call_Statement
+ and then not Is_Renamed_Entry (Nam)
+ and then not Is_Controlling_Limited_Procedure (Nam)
+ then
+ Error_Msg_N
+ ("entry call or dispatching primitive of interface required", N);
+ end if;
+ end if;
+
+ -- If the SPARK_05 restriction is active, we are not allowed
+ -- to have a call to a subprogram before we see its completion.
+
+ if not Has_Completion (Nam)
+ and then Restriction_Check_Required (SPARK_05)
+
+ -- Don't flag strange internal calls
+
+ and then Comes_From_Source (N)
+ and then Comes_From_Source (Nam)
+
+ -- Only flag calls in extended main source
+
+ and then In_Extended_Main_Source_Unit (Nam)
+ and then In_Extended_Main_Source_Unit (N)
+
+ -- Exclude enumeration literals from this processing
+
+ and then Ekind (Nam) /= E_Enumeration_Literal
+ then
+ Check_SPARK_Restriction
+ ("call to subprogram cannot appear before its body", N);
+ end if;
+
+ -- Check that this is not a call to a protected procedure or entry from
+ -- within a protected function.
+
+ Check_Internal_Protected_Use (N, Nam);
+
+ -- Freeze the subprogram name if not in a spec-expression. Note that
+ -- we freeze procedure calls as well as function calls. Procedure calls
+ -- are not frozen according to the rules (RM 13.14(14)) because it is
+ -- impossible to have a procedure call to a non-frozen procedure in
+ -- pure Ada, but in the code that we generate in the expander, this
+ -- rule needs extending because we can generate procedure calls that
+ -- need freezing.
+
+ -- In Ada 2012, expression functions may be called within pre/post
+ -- conditions of subsequent functions or expression functions. Such
+ -- calls do not freeze when they appear within generated bodies,
+ -- (including the body of another expression function) which would
+ -- place the freeze node in the wrong scope. An expression function
+ -- is frozen in the usual fashion, by the appearance of a real body,
+ -- or at the end of a declarative part.
+
+ if Is_Entity_Name (Subp) and then not In_Spec_Expression
+ and then not Is_Expression_Function (Current_Scope)
+ and then
+ (not Is_Expression_Function (Entity (Subp))
+ or else Scope (Entity (Subp)) = Current_Scope)
+ then
+ Freeze_Expression (Subp);
+ end if;
+
+ -- For a predefined operator, the type of the result is the type imposed
+ -- by context, except for a predefined operation on universal fixed.
+ -- Otherwise The type of the call is the type returned by the subprogram
+ -- being called.
+
+ if Is_Predefined_Op (Nam) then
+ if Etype (N) /= Universal_Fixed then
+ Set_Etype (N, Typ);
+ end if;
+
+ -- If the subprogram returns an array type, and the context requires the
+ -- component type of that array type, the node is really an indexing of
+ -- the parameterless call. Resolve as such. A pathological case occurs
+ -- when the type of the component is an access to the array type. In
+ -- this case the call is truly ambiguous.
+
+ elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
+ and then
+ ((Is_Array_Type (Etype (Nam))
+ and then Covers (Typ, Component_Type (Etype (Nam))))
+ or else
+ (Is_Access_Type (Etype (Nam))
+ and then Is_Array_Type (Designated_Type (Etype (Nam)))
+ and then
+ Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))))
+ then
+ declare
+ Index_Node : Node_Id;
+ New_Subp : Node_Id;
+ Ret_Type : constant Entity_Id := Etype (Nam);
+
+ begin
+ if Is_Access_Type (Ret_Type)
+ and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
+ then
+ Error_Msg_N
+ ("cannot disambiguate function call and indexing", N);
+ else
+ New_Subp := Relocate_Node (Subp);
+
+ -- The called entity may be an explicit dereference, in which
+ -- case there is no entity to set.
+
+ if Nkind (New_Subp) /= N_Explicit_Dereference then
+ Set_Entity (Subp, Nam);
+ end if;
+
+ if (Is_Array_Type (Ret_Type)
+ and then Component_Type (Ret_Type) /= Any_Type)
+ or else
+ (Is_Access_Type (Ret_Type)
+ and then
+ Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
+ then
+ if Needs_No_Actuals (Nam) then
+
+ -- Indexed call to a parameterless function
+
+ Index_Node :=
+ Make_Indexed_Component (Loc,
+ Prefix =>
+ Make_Function_Call (Loc,
+ Name => New_Subp),
+ Expressions => Parameter_Associations (N));
+ else
+ -- An Ada 2005 prefixed call to a primitive operation
+ -- whose first parameter is the prefix. This prefix was
+ -- prepended to the parameter list, which is actually a
+ -- list of indexes. Remove the prefix in order to build
+ -- the proper indexed component.
+
+ Index_Node :=
+ Make_Indexed_Component (Loc,
+ Prefix =>
+ Make_Function_Call (Loc,
+ Name => New_Subp,
+ Parameter_Associations =>
+ New_List
+ (Remove_Head (Parameter_Associations (N)))),
+ Expressions => Parameter_Associations (N));
+ end if;
+
+ -- Preserve the parenthesis count of the node
+
+ Set_Paren_Count (Index_Node, Paren_Count (N));
+
+ -- Since we are correcting a node classification error made
+ -- by the parser, we call Replace rather than Rewrite.
+
+ Replace (N, Index_Node);
+
+ Set_Etype (Prefix (N), Ret_Type);
+ Set_Etype (N, Typ);
+ Resolve_Indexed_Component (N, Typ);
+ Check_Elab_Call (Prefix (N));
+ end if;
+ end if;
+
+ return;
+ end;
+
+ else
+ Set_Etype (N, Etype (Nam));
+ end if;
+
+ -- In the case where the call is to an overloaded subprogram, Analyze
+ -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
+ -- such a case Normalize_Actuals needs to be called once more to order
+ -- the actuals correctly. Otherwise the call will have the ordering
+ -- given by the last overloaded subprogram whether this is the correct
+ -- one being called or not.
+
+ if Is_Overloaded (Subp) then
+ Normalize_Actuals (N, Nam, False, Norm_OK);
+ pragma Assert (Norm_OK);
+ end if;
+
+ -- In any case, call is fully resolved now. Reset Overload flag, to
+ -- prevent subsequent overload resolution if node is analyzed again
+
+ Set_Is_Overloaded (Subp, False);
+ Set_Is_Overloaded (N, False);
+
+ -- If we are calling the current subprogram from immediately within its
+ -- body, then that is the case where we can sometimes detect cases of
+ -- infinite recursion statically. Do not try this in case restriction
+ -- No_Recursion is in effect anyway, and do it only for source calls.
+
+ if Comes_From_Source (N) then
+ Scop := Current_Scope;
+
+ -- Check violation of SPARK_05 restriction which does not permit
+ -- a subprogram body to contain a call to the subprogram directly.
+
+ if Restriction_Check_Required (SPARK_05)
+ and then Same_Or_Aliased_Subprograms (Nam, Scop)
+ then
+ Check_SPARK_Restriction
+ ("subprogram may not contain direct call to itself", N);
+ end if;
+
+ -- Issue warning for possible infinite recursion in the absence
+ -- of the No_Recursion restriction.
+
+ if Same_Or_Aliased_Subprograms (Nam, Scop)
+ and then not Restriction_Active (No_Recursion)
+ and then Check_Infinite_Recursion (N)
+ then
+ -- Here we detected and flagged an infinite recursion, so we do
+ -- not need to test the case below for further warnings. Also we
+ -- are all done if we now have a raise SE node.
+
+ if Nkind (N) = N_Raise_Storage_Error then
+ return;
+ end if;
+
+ -- If call is to immediately containing subprogram, then check for
+ -- the case of a possible run-time detectable infinite recursion.
+
+ else
+ Scope_Loop : while Scop /= Standard_Standard loop
+ if Same_Or_Aliased_Subprograms (Nam, Scop) then
+
+ -- Although in general case, recursion is not statically
+ -- checkable, the case of calling an immediately containing
+ -- subprogram is easy to catch.
+
+ Check_Restriction (No_Recursion, N);
+
+ -- If the recursive call is to a parameterless subprogram,
+ -- then even if we can't statically detect infinite
+ -- recursion, this is pretty suspicious, and we output a
+ -- warning. Furthermore, we will try later to detect some
+ -- cases here at run time by expanding checking code (see
+ -- Detect_Infinite_Recursion in package Exp_Ch6).
+
+ -- If the recursive call is within a handler, do not emit a
+ -- warning, because this is a common idiom: loop until input
+ -- is correct, catch illegal input in handler and restart.
+
+ if No (First_Formal (Nam))
+ and then Etype (Nam) = Standard_Void_Type
+ and then not Error_Posted (N)
+ and then Nkind (Parent (N)) /= N_Exception_Handler
+ then
+ -- For the case of a procedure call. We give the message
+ -- only if the call is the first statement in a sequence
+ -- of statements, or if all previous statements are
+ -- simple assignments. This is simply a heuristic to
+ -- decrease false positives, without losing too many good
+ -- warnings. The idea is that these previous statements
+ -- may affect global variables the procedure depends on.
+ -- We also exclude raise statements, that may arise from
+ -- constraint checks and are probably unrelated to the
+ -- intended control flow.
+
+ if Nkind (N) = N_Procedure_Call_Statement
+ and then Is_List_Member (N)
+ then
+ declare
+ P : Node_Id;
+ begin
+ P := Prev (N);
+ while Present (P) loop
+ if not Nkind_In (P,
+ N_Assignment_Statement,
+ N_Raise_Constraint_Error)
+ then
+ exit Scope_Loop;
+ end if;
+
+ Prev (P);
+ end loop;
+ end;
+ end if;
+
+ -- Do not give warning if we are in a conditional context
+
+ declare
+ K : constant Node_Kind := Nkind (Parent (N));
+ begin
+ if (K = N_Loop_Statement
+ and then Present (Iteration_Scheme (Parent (N))))
+ or else K = N_If_Statement
+ or else K = N_Elsif_Part
+ or else K = N_Case_Statement_Alternative
+ then
+ exit Scope_Loop;
+ end if;
+ end;
+
+ -- Here warning is to be issued
+
+ Set_Has_Recursive_Call (Nam);
+ Error_Msg_Warn := SPARK_Mode /= On;
+ Error_Msg_N ("possible infinite recursion<<!", N);
+ Error_Msg_N ("\Storage_Error ]<<!", N);
+ end if;
+
+ exit Scope_Loop;
+ end if;
+
+ Scop := Scope (Scop);
+ end loop Scope_Loop;
+ end if;
+ end if;
+
+ -- Check obsolescent reference to Ada.Characters.Handling subprogram
+
+ Check_Obsolescent_2005_Entity (Nam, Subp);
+
+ -- If subprogram name is a predefined operator, it was given in
+ -- functional notation. Replace call node with operator node, so
+ -- that actuals can be resolved appropriately.
+
+ if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
+ Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
+ return;
+
+ elsif Present (Alias (Nam))
+ and then Is_Predefined_Op (Alias (Nam))
+ then
+ Resolve_Actuals (N, Nam);
+ Make_Call_Into_Operator (N, Typ, Alias (Nam));
+ return;
+ end if;
+
+ -- Create a transient scope if the resulting type requires it
+
+ -- There are several notable exceptions:
+
+ -- a) In init procs, the transient scope overhead is not needed, and is
+ -- even incorrect when the call is a nested initialization call for a
+ -- component whose expansion may generate adjust calls. However, if the
+ -- call is some other procedure call within an initialization procedure
+ -- (for example a call to Create_Task in the init_proc of the task
+ -- run-time record) a transient scope must be created around this call.
+
+ -- b) Enumeration literal pseudo-calls need no transient scope
+
+ -- c) Intrinsic subprograms (Unchecked_Conversion and source info
+ -- functions) do not use the secondary stack even though the return
+ -- type may be unconstrained.
+
+ -- d) Calls to a build-in-place function, since such functions may
+ -- allocate their result directly in a target object, and cases where
+ -- the result does get allocated in the secondary stack are checked for
+ -- within the specialized Exp_Ch6 procedures for expanding those
+ -- build-in-place calls.
+
+ -- e) If the subprogram is marked Inline_Always, then even if it returns
+ -- an unconstrained type the call does not require use of the secondary
+ -- stack. However, inlining will only take place if the body to inline
+ -- is already present. It may not be available if e.g. the subprogram is
+ -- declared in a child instance.
+
+ -- If this is an initialization call for a type whose construction
+ -- uses the secondary stack, and it is not a nested call to initialize
+ -- a component, we do need to create a transient scope for it. We
+ -- check for this by traversing the type in Check_Initialization_Call.
+
+ if Is_Inlined (Nam)
+ and then Has_Pragma_Inline_Always (Nam)
+ and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
+ and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
+ and then not Debug_Flag_Dot_K
+ then
+ null;
+
+ elsif Is_Inlined (Nam)
+ and then Has_Pragma_Inline (Nam)
+ and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
+ and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
+ and then Debug_Flag_Dot_K
+ then
+ null;
+
+ elsif Ekind (Nam) = E_Enumeration_Literal
+ or else Is_Build_In_Place_Function (Nam)
+ or else Is_Intrinsic_Subprogram (Nam)
+ then
+ null;
+
+ elsif Expander_Active
+ and then Is_Type (Etype (Nam))
+ and then Requires_Transient_Scope (Etype (Nam))
+ and then
+ (not Within_Init_Proc
+ or else
+ (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
+ then
+ Establish_Transient_Scope (N, Sec_Stack => True);
+
+ -- If the call appears within the bounds of a loop, it will
+ -- be rewritten and reanalyzed, nothing left to do here.
+
+ if Nkind (N) /= N_Function_Call then
+ return;
+ end if;
+
+ elsif Is_Init_Proc (Nam)
+ and then not Within_Init_Proc
+ then
+ Check_Initialization_Call (N, Nam);
+ end if;
+
+ -- A protected function cannot be called within the definition of the
+ -- enclosing protected type.
+
+ if Is_Protected_Type (Scope (Nam))
+ and then In_Open_Scopes (Scope (Nam))
+ and then not Has_Completion (Scope (Nam))
+ then
+ Error_Msg_NE
+ ("& cannot be called before end of protected definition", N, Nam);
+ end if;
+
+ -- Propagate interpretation to actuals, and add default expressions
+ -- where needed.
+
+ if Present (First_Formal (Nam)) then
+ Resolve_Actuals (N, Nam);
+
+ -- Overloaded literals are rewritten as function calls, for purpose of
+ -- resolution. After resolution, we can replace the call with the
+ -- literal itself.
+
+ elsif Ekind (Nam) = E_Enumeration_Literal then
+ Copy_Node (Subp, N);
+ Resolve_Entity_Name (N, Typ);
+
+ -- Avoid validation, since it is a static function call
+
+ Generate_Reference (Nam, Subp);
+ return;
+ end if;
+
+ -- If the subprogram is not global, then kill all saved values and
+ -- checks. This is a bit conservative, since in many cases we could do
+ -- better, but it is not worth the effort. Similarly, we kill constant
+ -- values. However we do not need to do this for internal entities
+ -- (unless they are inherited user-defined subprograms), since they
+ -- are not in the business of molesting local values.
+
+ -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
+ -- kill all checks and values for calls to global subprograms. This
+ -- takes care of the case where an access to a local subprogram is
+ -- taken, and could be passed directly or indirectly and then called
+ -- from almost any context.
+
+ -- Note: we do not do this step till after resolving the actuals. That
+ -- way we still take advantage of the current value information while
+ -- scanning the actuals.
+
+ -- We suppress killing values if we are processing the nodes associated
+ -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
+ -- type kills all the values as part of analyzing the code that
+ -- initializes the dispatch tables.
+
+ if Inside_Freezing_Actions = 0
+ and then (not Is_Library_Level_Entity (Nam)
+ or else Suppress_Value_Tracking_On_Call
+ (Nearest_Dynamic_Scope (Current_Scope)))
+ and then (Comes_From_Source (Nam)
+ or else (Present (Alias (Nam))
+ and then Comes_From_Source (Alias (Nam))))
+ then
+ Kill_Current_Values;
+ end if;
+
+ -- If we are warning about unread OUT parameters, this is the place to
+ -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
+ -- after the above call to Kill_Current_Values (since that call clears
+ -- the Last_Assignment field of all local variables).
+
+ if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
+ and then Comes_From_Source (N)
+ and then In_Extended_Main_Source_Unit (N)
+ then
+ declare
+ F : Entity_Id;
+ A : Node_Id;
+
+ begin
+ F := First_Formal (Nam);
+ A := First_Actual (N);
+ while Present (F) and then Present (A) loop
+ if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
+ and then Warn_On_Modified_As_Out_Parameter (F)
+ and then Is_Entity_Name (A)
+ and then Present (Entity (A))
+ and then Comes_From_Source (N)
+ and then Safe_To_Capture_Value (N, Entity (A))
+ then
+ Set_Last_Assignment (Entity (A), A);
+ end if;
+
+ Next_Formal (F);
+ Next_Actual (A);
+ end loop;
+ end;
+ end if;
+
+ -- If the subprogram is a primitive operation, check whether or not
+ -- it is a correct dispatching call.
+
+ if Is_Overloadable (Nam)
+ and then Is_Dispatching_Operation (Nam)
+ then
+ Check_Dispatching_Call (N);
+
+ elsif Ekind (Nam) /= E_Subprogram_Type
+ and then Is_Abstract_Subprogram (Nam)
+ and then not In_Instance
+ then
+ Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
+ end if;
+
+ -- If this is a dispatching call, generate the appropriate reference,
+ -- for better source navigation in GPS.
+
+ if Is_Overloadable (Nam)
+ and then Present (Controlling_Argument (N))
+ then
+ Generate_Reference (Nam, Subp, 'R');
+
+ -- Normal case, not a dispatching call: generate a call reference
+
+ else
+ Generate_Reference (Nam, Subp, 's');
+ end if;
+
+ if Is_Intrinsic_Subprogram (Nam) then
+ Check_Intrinsic_Call (N);
+ end if;
+
+ -- Check for violation of restriction No_Specific_Termination_Handlers
+ -- and warn on a potentially blocking call to Abort_Task.
+
+ if Restriction_Check_Required (No_Specific_Termination_Handlers)
+ and then (Is_RTE (Nam, RE_Set_Specific_Handler)
+ or else
+ Is_RTE (Nam, RE_Specific_Handler))
+ then
+ Check_Restriction (No_Specific_Termination_Handlers, N);
+
+ elsif Is_RTE (Nam, RE_Abort_Task) then
+ Check_Potentially_Blocking_Operation (N);
+ end if;
+
+ -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
+ -- timing event violates restriction No_Relative_Delay (AI-0211). We
+ -- need to check the second argument to determine whether it is an
+ -- absolute or relative timing event.
+
+ if Restriction_Check_Required (No_Relative_Delay)
+ and then Is_RTE (Nam, RE_Set_Handler)
+ and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
+ then
+ Check_Restriction (No_Relative_Delay, N);
+ end if;
+
+ -- Issue an error for a call to an eliminated subprogram. This routine
+ -- will not perform the check if the call appears within a default
+ -- expression.
+
+ Check_For_Eliminated_Subprogram (Subp, Nam);
+
+ -- In formal mode, the primitive operations of a tagged type or type
+ -- extension do not include functions that return the tagged type.
+
+ if Nkind (N) = N_Function_Call
+ and then Is_Tagged_Type (Etype (N))
+ and then Is_Entity_Name (Name (N))
+ and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
+ then
+ Check_SPARK_Restriction ("function not inherited", N);
+ end if;
+
+ -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
+ -- class-wide and the call dispatches on result in a context that does
+ -- not provide a tag, the call raises Program_Error.
+
+ if Nkind (N) = N_Function_Call
+ and then In_Instance
+ and then Is_Generic_Actual_Type (Typ)
+ and then Is_Class_Wide_Type (Typ)
+ and then Has_Controlling_Result (Nam)
+ and then Nkind (Parent (N)) = N_Object_Declaration
+ then
+ -- Verify that none of the formals are controlling
+
+ declare
+ Call_OK : Boolean := False;
+ F : Entity_Id;
+
+ begin
+ F := First_Formal (Nam);
+ while Present (F) loop
+ if Is_Controlling_Formal (F) then
+ Call_OK := True;
+ exit;
+ end if;
+
+ Next_Formal (F);
+ end loop;
+
+ if not Call_OK then
+ Error_Msg_Warn := SPARK_Mode /= On;
+ Error_Msg_N ("!cannot determine tag of result<<", N);
+ Error_Msg_N ("\Program_Error [<<!", N);
+ Insert_Action (N,
+ Make_Raise_Program_Error (Sloc (N),
+ Reason => PE_Explicit_Raise));
+ end if;
+ end;
+ end if;
+
+ -- Check the dimensions of the actuals in the call. For function calls,
+ -- propagate the dimensions from the returned type to N.
+
+ Analyze_Dimension_Call (N, Nam);
+
+ -- All done, evaluate call and deal with elaboration issues
+
+ Eval_Call (N);
+ Check_Elab_Call (N);
+ Warn_On_Overlapping_Actuals (Nam, N);
+ end Resolve_Call;
+
+ -----------------------------
+ -- Resolve_Case_Expression --
+ -----------------------------
+
+ procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
+ Alt : Node_Id;
+
+ begin
+ Alt := First (Alternatives (N));
+ while Present (Alt) loop
+ Resolve (Expression (Alt), Typ);
+ Next (Alt);
+ end loop;
+
+ Set_Etype (N, Typ);
+ Eval_Case_Expression (N);
+ end Resolve_Case_Expression;
+
+ -------------------------------
+ -- Resolve_Character_Literal --
+ -------------------------------
+
+ procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
+ B_Typ : constant Entity_Id := Base_Type (Typ);
+ C : Entity_Id;
+
+ begin
+ -- Verify that the character does belong to the type of the context
+
+ Set_Etype (N, B_Typ);
+ Eval_Character_Literal (N);
+
+ -- Wide_Wide_Character literals must always be defined, since the set
+ -- of wide wide character literals is complete, i.e. if a character
+ -- literal is accepted by the parser, then it is OK for wide wide
+ -- character (out of range character literals are rejected).
+
+ if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
+ return;
+
+ -- Always accept character literal for type Any_Character, which
+ -- occurs in error situations and in comparisons of literals, both
+ -- of which should accept all literals.
+
+ elsif B_Typ = Any_Character then
+ return;
+
+ -- For Standard.Character or a type derived from it, check that the
+ -- literal is in range.
+
+ elsif Root_Type (B_Typ) = Standard_Character then
+ if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
+ return;
+ end if;
+
+ -- For Standard.Wide_Character or a type derived from it, check that the
+ -- literal is in range.
+
+ elsif Root_Type (B_Typ) = Standard_Wide_Character then
+ if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
+ return;
+ end if;
+
+ -- For Standard.Wide_Wide_Character or a type derived from it, we
+ -- know the literal is in range, since the parser checked.
+
+ elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
+ return;
+
+ -- If the entity is already set, this has already been resolved in a
+ -- generic context, or comes from expansion. Nothing else to do.
+
+ elsif Present (Entity (N)) then
+ return;
+
+ -- Otherwise we have a user defined character type, and we can use the
+ -- standard visibility mechanisms to locate the referenced entity.
+
+ else
+ C := Current_Entity (N);
+ while Present (C) loop
+ if Etype (C) = B_Typ then
+ Set_Entity_With_Checks (N, C);
+ Generate_Reference (C, N);
+ return;
+ end if;
+
+ C := Homonym (C);
+ end loop;
+ end if;
+
+ -- If we fall through, then the literal does not match any of the
+ -- entries of the enumeration type. This isn't just a constraint error
+ -- situation, it is an illegality (see RM 4.2).
+
+ Error_Msg_NE
+ ("character not defined for }", N, First_Subtype (B_Typ));
+ end Resolve_Character_Literal;
+
+ ---------------------------
+ -- Resolve_Comparison_Op --
+ ---------------------------
+
+ -- Context requires a boolean type, and plays no role in resolution.
+ -- Processing identical to that for equality operators. The result type is
+ -- the base type, which matters when pathological subtypes of booleans with
+ -- limited ranges are used.
+
+ procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+ T : Entity_Id;
+
+ begin
+ -- If this is an intrinsic operation which is not predefined, use the
+ -- types of its declared arguments to resolve the possibly overloaded
+ -- operands. Otherwise the operands are unambiguous and specify the
+ -- expected type.
+
+ if Scope (Entity (N)) /= Standard_Standard then
+ T := Etype (First_Entity (Entity (N)));
+
+ else
+ T := Find_Unique_Type (L, R);
+
+ if T = Any_Fixed then
+ T := Unique_Fixed_Point_Type (L);
+ end if;
+ end if;
+
+ Set_Etype (N, Base_Type (Typ));
+ Generate_Reference (T, N, ' ');
+
+ -- Skip remaining processing if already set to Any_Type
+
+ if T = Any_Type then
+ return;
+ end if;
+
+ -- Deal with other error cases
+
+ if T = Any_String or else
+ T = Any_Composite or else
+ T = Any_Character
+ then
+ if T = Any_Character then
+ Ambiguous_Character (L);
+ else
+ Error_Msg_N ("ambiguous operands for comparison", N);
+ end if;
+
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- Resolve the operands if types OK
+
+ Resolve (L, T);
+ Resolve (R, T);
+ Check_Unset_Reference (L);
+ Check_Unset_Reference (R);
+ Generate_Operator_Reference (N, T);
+ Check_Low_Bound_Tested (N);
+
+ -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
+ -- types or array types except String.
+
+ if Is_Boolean_Type (T) then
+ Check_SPARK_Restriction
+ ("comparison is not defined on Boolean type", N);
+
+ elsif Is_Array_Type (T)
+ and then Base_Type (T) /= Standard_String
+ then
+ Check_SPARK_Restriction
+ ("comparison is not defined on array types other than String", N);
+ end if;
+
+ -- Check comparison on unordered enumeration
+
+ if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
+ Error_Msg_Sloc := Sloc (Etype (L));
+ Error_Msg_NE
+ ("comparison on unordered enumeration type& declared#?U?",
+ N, Etype (L));
+ end if;
+
+ -- Evaluate the relation (note we do this after the above check since
+ -- this Eval call may change N to True/False.
+
+ Analyze_Dimension (N);
+ Eval_Relational_Op (N);
+ end Resolve_Comparison_Op;
+
+ -----------------------------------------
+ -- Resolve_Discrete_Subtype_Indication --
+ -----------------------------------------
+
+ procedure Resolve_Discrete_Subtype_Indication
+ (N : Node_Id;
+ Typ : Entity_Id)
+ is
+ R : Node_Id;
+ S : Entity_Id;
+
+ begin
+ Analyze (Subtype_Mark (N));
+ S := Entity (Subtype_Mark (N));
+
+ if Nkind (Constraint (N)) /= N_Range_Constraint then
+ Error_Msg_N ("expect range constraint for discrete type", N);
+ Set_Etype (N, Any_Type);
+
+ else
+ R := Range_Expression (Constraint (N));
+
+ if R = Error then
+ return;
+ end if;
+
+ Analyze (R);
+
+ if Base_Type (S) /= Base_Type (Typ) then
+ Error_Msg_NE
+ ("expect subtype of }", N, First_Subtype (Typ));
+
+ -- Rewrite the constraint as a range of Typ
+ -- to allow compilation to proceed further.
+
+ Set_Etype (N, Typ);
+ Rewrite (Low_Bound (R),
+ Make_Attribute_Reference (Sloc (Low_Bound (R)),
+ Prefix => New_Occurrence_Of (Typ, Sloc (R)),
+ Attribute_Name => Name_First));
+ Rewrite (High_Bound (R),
+ Make_Attribute_Reference (Sloc (High_Bound (R)),
+ Prefix => New_Occurrence_Of (Typ, Sloc (R)),
+ Attribute_Name => Name_First));
+
+ else
+ Resolve (R, Typ);
+ Set_Etype (N, Etype (R));
+
+ -- Additionally, we must check that the bounds are compatible
+ -- with the given subtype, which might be different from the
+ -- type of the context.
+
+ Apply_Range_Check (R, S);
+
+ -- ??? If the above check statically detects a Constraint_Error
+ -- it replaces the offending bound(s) of the range R with a
+ -- Constraint_Error node. When the itype which uses these bounds
+ -- is frozen the resulting call to Duplicate_Subexpr generates
+ -- a new temporary for the bounds.
+
+ -- Unfortunately there are other itypes that are also made depend
+ -- on these bounds, so when Duplicate_Subexpr is called they get
+ -- a forward reference to the newly created temporaries and Gigi
+ -- aborts on such forward references. This is probably sign of a
+ -- more fundamental problem somewhere else in either the order of
+ -- itype freezing or the way certain itypes are constructed.
+
+ -- To get around this problem we call Remove_Side_Effects right
+ -- away if either bounds of R are a Constraint_Error.
+
+ declare
+ L : constant Node_Id := Low_Bound (R);
+ H : constant Node_Id := High_Bound (R);
+
+ begin
+ if Nkind (L) = N_Raise_Constraint_Error then
+ Remove_Side_Effects (L);
+ end if;
+
+ if Nkind (H) = N_Raise_Constraint_Error then
+ Remove_Side_Effects (H);
+ end if;
+ end;
+
+ Check_Unset_Reference (Low_Bound (R));
+ Check_Unset_Reference (High_Bound (R));
+ end if;
+ end if;
+ end Resolve_Discrete_Subtype_Indication;
+
+ -------------------------
+ -- Resolve_Entity_Name --
+ -------------------------
+
+ -- Used to resolve identifiers and expanded names
+
+ procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
+ function Appears_In_Check (Nod : Node_Id) return Boolean;
+ -- Denote whether an arbitrary node Nod appears in a check node
+
+ ----------------------
+ -- Appears_In_Check --
+ ----------------------
+
+ function Appears_In_Check (Nod : Node_Id) return Boolean is
+ Par : Node_Id;
+
+ begin
+ -- Climb the parent chain looking for a check node
+
+ Par := Nod;
+ while Present (Par) loop
+ if Nkind (Par) in N_Raise_xxx_Error then
+ return True;
+
+ -- Prevent the search from going too far
+
+ elsif Is_Body_Or_Package_Declaration (Par) then
+ exit;
+ end if;
+
+ Par := Parent (Par);
+ end loop;
+
+ return False;
+ end Appears_In_Check;
+
+ -- Local variables
+
+ E : constant Entity_Id := Entity (N);
+ Par : constant Node_Id := Parent (N);
+
+ -- Start of processing for Resolve_Entity_Name
+
+ begin
+ -- If garbage from errors, set to Any_Type and return
+
+ if No (E) and then Total_Errors_Detected /= 0 then
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- Replace named numbers by corresponding literals. Note that this is
+ -- the one case where Resolve_Entity_Name must reset the Etype, since
+ -- it is currently marked as universal.
+
+ if Ekind (E) = E_Named_Integer then
+ Set_Etype (N, Typ);
+ Eval_Named_Integer (N);
+
+ elsif Ekind (E) = E_Named_Real then
+ Set_Etype (N, Typ);
+ Eval_Named_Real (N);
+
+ -- For enumeration literals, we need to make sure that a proper style
+ -- check is done, since such literals are overloaded, and thus we did
+ -- not do a style check during the first phase of analysis.
+
+ elsif Ekind (E) = E_Enumeration_Literal then
+ Set_Entity_With_Checks (N, E);
+ Eval_Entity_Name (N);
+
+ -- Case of subtype name appearing as an operand in expression
+
+ elsif Is_Type (E) then
+
+ -- Allow use of subtype if it is a concurrent type where we are
+ -- currently inside the body. This will eventually be expanded into a
+ -- call to Self (for tasks) or _object (for protected objects). Any
+ -- other use of a subtype is invalid.
+
+ if Is_Concurrent_Type (E)
+ and then In_Open_Scopes (E)
+ then
+ null;
+
+ -- Any other use is an error
+
+ else
+ Error_Msg_N
+ ("invalid use of subtype mark in expression or call", N);
+ end if;
+
+ -- Check discriminant use if entity is discriminant in current scope,
+ -- i.e. discriminant of record or concurrent type currently being
+ -- analyzed. Uses in corresponding body are unrestricted.
+
+ elsif Ekind (E) = E_Discriminant
+ and then Scope (E) = Current_Scope
+ and then not Has_Completion (Current_Scope)
+ then
+ Check_Discriminant_Use (N);
+
+ -- A parameterless generic function cannot appear in a context that
+ -- requires resolution.
+
+ elsif Ekind (E) = E_Generic_Function then
+ Error_Msg_N ("illegal use of generic function", N);
+
+ elsif Ekind (E) = E_Out_Parameter
+ and then Ada_Version = Ada_83
+ and then (Nkind (Parent (N)) in N_Op
+ or else (Nkind (Parent (N)) = N_Assignment_Statement
+ and then N = Expression (Parent (N)))
+ or else Nkind (Parent (N)) = N_Explicit_Dereference)
+ then
+ Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
+
+ -- In all other cases, just do the possible static evaluation
+
+ else
+ -- A deferred constant that appears in an expression must have a
+ -- completion, unless it has been removed by in-place expansion of
+ -- an aggregate.
+
+ if Ekind (E) = E_Constant
+ and then Comes_From_Source (E)
+ and then No (Constant_Value (E))
+ and then Is_Frozen (Etype (E))
+ and then not In_Spec_Expression
+ and then not Is_Imported (E)
+ then
+ if No_Initialization (Parent (E))
+ or else (Present (Full_View (E))
+ and then No_Initialization (Parent (Full_View (E))))
+ then
+ null;
+ else
+ Error_Msg_N (
+ "deferred constant is frozen before completion", N);
+ end if;
+ end if;
+
+ Eval_Entity_Name (N);
+ end if;
+
+ -- A volatile object subject to enabled properties Async_Writers or
+ -- Effective_Reads must appear in a specific context. The following
+ -- checks are only relevant when SPARK_Mode is on as they are not
+ -- standard Ada legality rules.
+
+ if SPARK_Mode = On
+ and then Ekind_In (E, E_Abstract_State, E_Variable)
+ and then Is_SPARK_Volatile_Object (E)
+ and then
+ (Async_Writers_Enabled (E)
+ or else Effective_Reads_Enabled (E))
+ then
+ -- The volatile object can appear on either side of an assignment
+
+ if Nkind (Par) = N_Assignment_Statement then
+ null;
+
+ -- The volatile object is part of the initialization expression of
+ -- another object. Ensure that the climb of the parent chain came
+ -- from the expression side and not from the name side.
+
+ elsif Nkind (Par) = N_Object_Declaration
+ and then Present (Expression (Par))
+ and then N = Expression (Par)
+ then
+ null;
+
+ -- The volatile object appears as an actual parameter in a call to an
+ -- instance of Unchecked_Conversion whose result is renamed.
+
+ elsif Nkind (Par) = N_Function_Call
+ and then Is_Unchecked_Conversion_Instance (Entity (Name (Par)))
+ and then Nkind (Parent (Par)) = N_Object_Renaming_Declaration
+ then
+ null;
+
+ -- Assume that references to volatile objects that appear as actual
+ -- parameters in a procedure call are always legal. The full legality
+ -- check is done when the actuals are resolved.
+
+ elsif Nkind (Par) = N_Procedure_Call_Statement then
+ null;
+
+ -- Allow references to volatile objects in various checks
+
+ elsif Appears_In_Check (Par) then
+ null;
+
+ else
+ Error_Msg_N
+ ("volatile object cannot appear in this context "
+ & "(SPARK RM 7.1.3(13))", N);
+ end if;
+ end if;
+ end Resolve_Entity_Name;
+
+ -------------------
+ -- Resolve_Entry --
+ -------------------
+
+ procedure Resolve_Entry (Entry_Name : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (Entry_Name);
+ Nam : Entity_Id;
+ New_N : Node_Id;
+ S : Entity_Id;
+ Tsk : Entity_Id;
+ E_Name : Node_Id;
+ Index : Node_Id;
+
+ function Actual_Index_Type (E : Entity_Id) return Entity_Id;
+ -- If the bounds of the entry family being called depend on task
+ -- discriminants, build a new index subtype where a discriminant is
+ -- replaced with the value of the discriminant of the target task.
+ -- The target task is the prefix of the entry name in the call.
+
+ -----------------------
+ -- Actual_Index_Type --
+ -----------------------
+
+ function Actual_Index_Type (E : Entity_Id) return Entity_Id is
+ Typ : constant Entity_Id := Entry_Index_Type (E);
+ Tsk : constant Entity_Id := Scope (E);
+ Lo : constant Node_Id := Type_Low_Bound (Typ);
+ Hi : constant Node_Id := Type_High_Bound (Typ);
+ New_T : Entity_Id;
+
+ function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
+ -- If the bound is given by a discriminant, replace with a reference
+ -- to the discriminant of the same name in the target task. If the
+ -- entry name is the target of a requeue statement and the entry is
+ -- in the current protected object, the bound to be used is the
+ -- discriminal of the object (see Apply_Range_Checks for details of
+ -- the transformation).
+
+ -----------------------------
+ -- Actual_Discriminant_Ref --
+ -----------------------------
+
+ function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
+ Typ : constant Entity_Id := Etype (Bound);
+ Ref : Node_Id;
+
+ begin
+ Remove_Side_Effects (Bound);
+
+ if not Is_Entity_Name (Bound)
+ or else Ekind (Entity (Bound)) /= E_Discriminant
+ then
+ return Bound;
+
+ elsif Is_Protected_Type (Tsk)
+ and then In_Open_Scopes (Tsk)
+ and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
+ then
+ -- Note: here Bound denotes a discriminant of the corresponding
+ -- record type tskV, whose discriminal is a formal of the
+ -- init-proc tskVIP. What we want is the body discriminal,
+ -- which is associated to the discriminant of the original
+ -- concurrent type tsk.
+
+ return New_Occurrence_Of
+ (Find_Body_Discriminal (Entity (Bound)), Loc);
+
+ else
+ Ref :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
+ Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
+ Analyze (Ref);
+ Resolve (Ref, Typ);
+ return Ref;
+ end if;
+ end Actual_Discriminant_Ref;
+
+ -- Start of processing for Actual_Index_Type
+
+ begin
+ if not Has_Discriminants (Tsk)
+ or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
+ then
+ return Entry_Index_Type (E);
+
+ else
+ New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
+ Set_Etype (New_T, Base_Type (Typ));
+ Set_Size_Info (New_T, Typ);
+ Set_RM_Size (New_T, RM_Size (Typ));
+ Set_Scalar_Range (New_T,
+ Make_Range (Sloc (Entry_Name),
+ Low_Bound => Actual_Discriminant_Ref (Lo),
+ High_Bound => Actual_Discriminant_Ref (Hi)));
+
+ return New_T;
+ end if;
+ end Actual_Index_Type;
+
+ -- Start of processing of Resolve_Entry
+
+ begin
+ -- Find name of entry being called, and resolve prefix of name with its
+ -- own type. The prefix can be overloaded, and the name and signature of
+ -- the entry must be taken into account.
+
+ if Nkind (Entry_Name) = N_Indexed_Component then
+
+ -- Case of dealing with entry family within the current tasks
+
+ E_Name := Prefix (Entry_Name);
+
+ else
+ E_Name := Entry_Name;
+ end if;
+
+ if Is_Entity_Name (E_Name) then
+
+ -- Entry call to an entry (or entry family) in the current task. This
+ -- is legal even though the task will deadlock. Rewrite as call to
+ -- current task.
+
+ -- This can also be a call to an entry in an enclosing task. If this
+ -- is a single task, we have to retrieve its name, because the scope
+ -- of the entry is the task type, not the object. If the enclosing
+ -- task is a task type, the identity of the task is given by its own
+ -- self variable.
+
+ -- Finally this can be a requeue on an entry of the same task or
+ -- protected object.
+
+ S := Scope (Entity (E_Name));
+
+ for J in reverse 0 .. Scope_Stack.Last loop
+ if Is_Task_Type (Scope_Stack.Table (J).Entity)
+ and then not Comes_From_Source (S)
+ then
+ -- S is an enclosing task or protected object. The concurrent
+ -- declaration has been converted into a type declaration, and
+ -- the object itself has an object declaration that follows
+ -- the type in the same declarative part.
+
+ Tsk := Next_Entity (S);
+ while Etype (Tsk) /= S loop
+ Next_Entity (Tsk);
+ end loop;
+
+ S := Tsk;
+ exit;
+
+ elsif S = Scope_Stack.Table (J).Entity then
+
+ -- Call to current task. Will be transformed into call to Self
+
+ exit;
+
+ end if;
+ end loop;
+
+ New_N :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Occurrence_Of (S, Loc),
+ Selector_Name =>
+ New_Occurrence_Of (Entity (E_Name), Loc));
+ Rewrite (E_Name, New_N);
+ Analyze (E_Name);
+
+ elsif Nkind (Entry_Name) = N_Selected_Component
+ and then Is_Overloaded (Prefix (Entry_Name))
+ then
+ -- Use the entry name (which must be unique at this point) to find
+ -- the prefix that returns the corresponding task/protected type.
+
+ declare
+ Pref : constant Node_Id := Prefix (Entry_Name);
+ Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ Get_First_Interp (Pref, I, It);
+ while Present (It.Typ) loop
+ if Scope (Ent) = It.Typ then
+ Set_Etype (Pref, It.Typ);
+ exit;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+ end if;
+
+ if Nkind (Entry_Name) = N_Selected_Component then
+ Resolve (Prefix (Entry_Name));
+
+ else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
+ Nam := Entity (Selector_Name (Prefix (Entry_Name)));
+ Resolve (Prefix (Prefix (Entry_Name)));
+ Index := First (Expressions (Entry_Name));
+ Resolve (Index, Entry_Index_Type (Nam));
+
+ -- Up to this point the expression could have been the actual in a
+ -- simple entry call, and be given by a named association.
+
+ if Nkind (Index) = N_Parameter_Association then
+ Error_Msg_N ("expect expression for entry index", Index);
+ else
+ Apply_Range_Check (Index, Actual_Index_Type (Nam));
+ end if;
+ end if;
+ end Resolve_Entry;
+
+ ------------------------
+ -- Resolve_Entry_Call --
+ ------------------------
+
+ procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
+ Entry_Name : constant Node_Id := Name (N);
+ Loc : constant Source_Ptr := Sloc (Entry_Name);
+ Actuals : List_Id;
+ First_Named : Node_Id;
+ Nam : Entity_Id;
+ Norm_OK : Boolean;
+ Obj : Node_Id;
+ Was_Over : Boolean;
+
+ begin
+ -- We kill all checks here, because it does not seem worth the effort to
+ -- do anything better, an entry call is a big operation.
+
+ Kill_All_Checks;
+
+ -- Processing of the name is similar for entry calls and protected
+ -- operation calls. Once the entity is determined, we can complete
+ -- the resolution of the actuals.
+
+ -- The selector may be overloaded, in the case of a protected object
+ -- with overloaded functions. The type of the context is used for
+ -- resolution.
+
+ if Nkind (Entry_Name) = N_Selected_Component
+ and then Is_Overloaded (Selector_Name (Entry_Name))
+ and then Typ /= Standard_Void_Type
+ then
+ declare
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ Get_First_Interp (Selector_Name (Entry_Name), I, It);
+ while Present (It.Typ) loop
+ if Covers (Typ, It.Typ) then
+ Set_Entity (Selector_Name (Entry_Name), It.Nam);
+ Set_Etype (Entry_Name, It.Typ);
+
+ Generate_Reference (It.Typ, N, ' ');
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+ end if;
+
+ Resolve_Entry (Entry_Name);
+
+ if Nkind (Entry_Name) = N_Selected_Component then
+
+ -- Simple entry call
+
+ Nam := Entity (Selector_Name (Entry_Name));
+ Obj := Prefix (Entry_Name);
+ Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
+
+ else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
+
+ -- Call to member of entry family
+
+ Nam := Entity (Selector_Name (Prefix (Entry_Name)));
+ Obj := Prefix (Prefix (Entry_Name));
+ Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
+ end if;
+
+ -- We cannot in general check the maximum depth of protected entry calls
+ -- at compile time. But we can tell that any protected entry call at all
+ -- violates a specified nesting depth of zero.
+
+ if Is_Protected_Type (Scope (Nam)) then
+ Check_Restriction (Max_Entry_Queue_Length, N);
+ end if;
+
+ -- Use context type to disambiguate a protected function that can be
+ -- called without actuals and that returns an array type, and where the
+ -- argument list may be an indexing of the returned value.
+
+ if Ekind (Nam) = E_Function
+ and then Needs_No_Actuals (Nam)
+ and then Present (Parameter_Associations (N))
+ and then
+ ((Is_Array_Type (Etype (Nam))
+ and then Covers (Typ, Component_Type (Etype (Nam))))
+
+ or else (Is_Access_Type (Etype (Nam))
+ and then Is_Array_Type (Designated_Type (Etype (Nam)))
+ and then
+ Covers
+ (Typ,
+ Component_Type (Designated_Type (Etype (Nam))))))
+ then
+ declare
+ Index_Node : Node_Id;
+
+ begin
+ Index_Node :=
+ Make_Indexed_Component (Loc,
+ Prefix =>
+ Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
+ Expressions => Parameter_Associations (N));
+
+ -- Since we are correcting a node classification error made by the
+ -- parser, we call Replace rather than Rewrite.
+
+ Replace (N, Index_Node);
+ Set_Etype (Prefix (N), Etype (Nam));
+ Set_Etype (N, Typ);
+ Resolve_Indexed_Component (N, Typ);
+ return;
+ end;
+ end if;
+
+ if Ekind_In (Nam, E_Entry, E_Entry_Family)
+ and then Present (PPC_Wrapper (Nam))
+ and then Current_Scope /= PPC_Wrapper (Nam)
+ then
+ -- Rewrite as call to the precondition wrapper, adding the task
+ -- object to the list of actuals. If the call is to a member of an
+ -- entry family, include the index as well.
+
+ declare
+ New_Call : Node_Id;
+ New_Actuals : List_Id;
+
+ begin
+ New_Actuals := New_List (Obj);
+
+ if Nkind (Entry_Name) = N_Indexed_Component then
+ Append_To (New_Actuals,
+ New_Copy_Tree (First (Expressions (Entry_Name))));
+ end if;
+
+ Append_List (Parameter_Associations (N), New_Actuals);
+ New_Call :=
+ Make_Procedure_Call_Statement (Loc,
+ Name =>
+ New_Occurrence_Of (PPC_Wrapper (Nam), Loc),
+ Parameter_Associations => New_Actuals);
+ Rewrite (N, New_Call);
+ Analyze_And_Resolve (N);
+ return;
+ end;
+ end if;
+
+ -- The operation name may have been overloaded. Order the actuals
+ -- according to the formals of the resolved entity, and set the return
+ -- type to that of the operation.
+
+ if Was_Over then
+ Normalize_Actuals (N, Nam, False, Norm_OK);
+ pragma Assert (Norm_OK);
+ Set_Etype (N, Etype (Nam));
+ end if;
+
+ Resolve_Actuals (N, Nam);
+ Check_Internal_Protected_Use (N, Nam);
+
+ -- Create a call reference to the entry
+
+ Generate_Reference (Nam, Entry_Name, 's');
+
+ if Ekind_In (Nam, E_Entry, E_Entry_Family) then
+ Check_Potentially_Blocking_Operation (N);
+ end if;
+
+ -- Verify that a procedure call cannot masquerade as an entry
+ -- call where an entry call is expected.
+
+ if Ekind (Nam) = E_Procedure then
+ if Nkind (Parent (N)) = N_Entry_Call_Alternative
+ and then N = Entry_Call_Statement (Parent (N))
+ then
+ Error_Msg_N ("entry call required in select statement", N);
+
+ elsif Nkind (Parent (N)) = N_Triggering_Alternative
+ and then N = Triggering_Statement (Parent (N))
+ then
+ Error_Msg_N ("triggering statement cannot be procedure call", N);
+
+ elsif Ekind (Scope (Nam)) = E_Task_Type
+ and then not In_Open_Scopes (Scope (Nam))
+ then
+ Error_Msg_N ("task has no entry with this name", Entry_Name);
+ end if;
+ end if;
+
+ -- After resolution, entry calls and protected procedure calls are
+ -- changed into entry calls, for expansion. The structure of the node
+ -- does not change, so it can safely be done in place. Protected
+ -- function calls must keep their structure because they are
+ -- subexpressions.
+
+ if Ekind (Nam) /= E_Function then
+
+ -- A protected operation that is not a function may modify the
+ -- corresponding object, and cannot apply to a constant. If this
+ -- is an internal call, the prefix is the type itself.
+
+ if Is_Protected_Type (Scope (Nam))
+ and then not Is_Variable (Obj)
+ and then (not Is_Entity_Name (Obj)
+ or else not Is_Type (Entity (Obj)))
+ then
+ Error_Msg_N
+ ("prefix of protected procedure or entry call must be variable",
+ Entry_Name);
+ end if;
+
+ Actuals := Parameter_Associations (N);
+ First_Named := First_Named_Actual (N);
+
+ Rewrite (N,
+ Make_Entry_Call_Statement (Loc,
+ Name => Entry_Name,
+ Parameter_Associations => Actuals));
+
+ Set_First_Named_Actual (N, First_Named);
+ Set_Analyzed (N, True);
+
+ -- Protected functions can return on the secondary stack, in which
+ -- case we must trigger the transient scope mechanism.
+
+ elsif Expander_Active
+ and then Requires_Transient_Scope (Etype (Nam))
+ then
+ Establish_Transient_Scope (N, Sec_Stack => True);
+ end if;
+ end Resolve_Entry_Call;
+
+ -------------------------
+ -- Resolve_Equality_Op --
+ -------------------------
+
+ -- Both arguments must have the same type, and the boolean context does
+ -- not participate in the resolution. The first pass verifies that the
+ -- interpretation is not ambiguous, and the type of the left argument is
+ -- correctly set, or is Any_Type in case of ambiguity. If both arguments
+ -- are strings or aggregates, allocators, or Null, they are ambiguous even
+ -- though they carry a single (universal) type. Diagnose this case here.
+
+ procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+ T : Entity_Id := Find_Unique_Type (L, R);
+
+ procedure Check_If_Expression (Cond : Node_Id);
+ -- The resolution rule for if expressions requires that each such must
+ -- have a unique type. This means that if several dependent expressions
+ -- are of a non-null anonymous access type, and the context does not
+ -- impose an expected type (as can be the case in an equality operation)
+ -- the expression must be rejected.
+
+ procedure Explain_Redundancy (N : Node_Id);
+ -- Attempt to explain the nature of a redundant comparison with True. If
+ -- the expression N is too complex, this routine issues a general error
+ -- message.
+
+ function Find_Unique_Access_Type return Entity_Id;
+ -- In the case of allocators and access attributes, the context must
+ -- provide an indication of the specific access type to be used. If
+ -- one operand is of such a "generic" access type, check whether there
+ -- is a specific visible access type that has the same designated type.
+ -- This is semantically dubious, and of no interest to any real code,
+ -- but c48008a makes it all worthwhile.
+
+ -------------------------
+ -- Check_If_Expression --
+ -------------------------
+
+ procedure Check_If_Expression (Cond : Node_Id) is
+ Then_Expr : Node_Id;
+ Else_Expr : Node_Id;
+
+ begin
+ if Nkind (Cond) = N_If_Expression then
+ Then_Expr := Next (First (Expressions (Cond)));
+ Else_Expr := Next (Then_Expr);
+
+ if Nkind (Then_Expr) /= N_Null
+ and then Nkind (Else_Expr) /= N_Null
+ then
+ Error_Msg_N ("cannot determine type of if expression", Cond);
+ end if;
+ end if;
+ end Check_If_Expression;
+
+ ------------------------
+ -- Explain_Redundancy --
+ ------------------------
+
+ procedure Explain_Redundancy (N : Node_Id) is
+ Error : Name_Id;
+ Val : Node_Id;
+ Val_Id : Entity_Id;
+
+ begin
+ Val := N;
+
+ -- Strip the operand down to an entity
+
+ loop
+ if Nkind (Val) = N_Selected_Component then
+ Val := Selector_Name (Val);
+ else
+ exit;
+ end if;
+ end loop;
+
+ -- The construct denotes an entity
+
+ if Is_Entity_Name (Val) and then Present (Entity (Val)) then
+ Val_Id := Entity (Val);
+
+ -- Do not generate an error message when the comparison is done
+ -- against the enumeration literal Standard.True.
+
+ if Ekind (Val_Id) /= E_Enumeration_Literal then
+
+ -- Build a customized error message
+
+ Name_Len := 0;
+ Add_Str_To_Name_Buffer ("?r?");
+
+ if Ekind (Val_Id) = E_Component then
+ Add_Str_To_Name_Buffer ("component ");
+
+ elsif Ekind (Val_Id) = E_Constant then
+ Add_Str_To_Name_Buffer ("constant ");
+
+ elsif Ekind (Val_Id) = E_Discriminant then
+ Add_Str_To_Name_Buffer ("discriminant ");
+
+ elsif Is_Formal (Val_Id) then
+ Add_Str_To_Name_Buffer ("parameter ");
+
+ elsif Ekind (Val_Id) = E_Variable then
+ Add_Str_To_Name_Buffer ("variable ");
+ end if;
+
+ Add_Str_To_Name_Buffer ("& is always True!");
+ Error := Name_Find;
+
+ Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
+ end if;
+
+ -- The construct is too complex to disect, issue a general message
+
+ else
+ Error_Msg_N ("?r?expression is always True!", Val);
+ end if;
+ end Explain_Redundancy;
+
+ -----------------------------
+ -- Find_Unique_Access_Type --
+ -----------------------------
+
+ function Find_Unique_Access_Type return Entity_Id is
+ Acc : Entity_Id;
+ E : Entity_Id;
+ S : Entity_Id;
+
+ begin
+ if Ekind_In (Etype (R), E_Allocator_Type,
+ E_Access_Attribute_Type)
+ then
+ Acc := Designated_Type (Etype (R));
+
+ elsif Ekind_In (Etype (L), E_Allocator_Type,
+ E_Access_Attribute_Type)
+ then
+ Acc := Designated_Type (Etype (L));
+ else
+ return Empty;
+ end if;
+
+ S := Current_Scope;
+ while S /= Standard_Standard loop
+ E := First_Entity (S);
+ while Present (E) loop
+ if Is_Type (E)
+ and then Is_Access_Type (E)
+ and then Ekind (E) /= E_Allocator_Type
+ and then Designated_Type (E) = Base_Type (Acc)
+ then
+ return E;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+
+ S := Scope (S);
+ end loop;
+
+ return Empty;
+ end Find_Unique_Access_Type;
+
+ -- Start of processing for Resolve_Equality_Op
+
+ begin
+ Set_Etype (N, Base_Type (Typ));
+ Generate_Reference (T, N, ' ');
+
+ if T = Any_Fixed then
+ T := Unique_Fixed_Point_Type (L);
+ end if;
+
+ if T /= Any_Type then
+ if T = Any_String or else
+ T = Any_Composite or else
+ T = Any_Character
+ then
+ if T = Any_Character then
+ Ambiguous_Character (L);
+ else
+ Error_Msg_N ("ambiguous operands for equality", N);
+ end if;
+
+ Set_Etype (N, Any_Type);
+ return;
+
+ elsif T = Any_Access
+ or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
+ then
+ T := Find_Unique_Access_Type;
+
+ if No (T) then
+ Error_Msg_N ("ambiguous operands for equality", N);
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- If expressions must have a single type, and if the context does
+ -- not impose one the dependent expressions cannot be anonymous
+ -- access types.
+
+ -- Why no similar processing for case expressions???
+
+ elsif Ada_Version >= Ada_2012
+ and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
+ E_Anonymous_Access_Subprogram_Type)
+ and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
+ E_Anonymous_Access_Subprogram_Type)
+ then
+ Check_If_Expression (L);
+ Check_If_Expression (R);
+ end if;
+
+ Resolve (L, T);
+ Resolve (R, T);
+
+ -- In SPARK, equality operators = and /= for array types other than
+ -- String are only defined when, for each index position, the
+ -- operands have equal static bounds.
+
+ if Is_Array_Type (T) then
+
+ -- Protect call to Matching_Static_Array_Bounds to avoid costly
+ -- operation if not needed.
+
+ if Restriction_Check_Required (SPARK_05)
+ and then Base_Type (T) /= Standard_String
+ and then Base_Type (Etype (L)) = Base_Type (Etype (R))
+ and then Etype (L) /= Any_Composite -- or else L in error
+ and then Etype (R) /= Any_Composite -- or else R in error
+ and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
+ then
+ Check_SPARK_Restriction
+ ("array types should have matching static bounds", N);
+ end if;
+ end if;
+
+ -- If the unique type is a class-wide type then it will be expanded
+ -- into a dispatching call to the predefined primitive. Therefore we
+ -- check here for potential violation of such restriction.
+
+ if Is_Class_Wide_Type (T) then
+ Check_Restriction (No_Dispatching_Calls, N);
+ end if;
+
+ if Warn_On_Redundant_Constructs
+ and then Comes_From_Source (N)
+ and then Comes_From_Source (R)
+ and then Is_Entity_Name (R)
+ and then Entity (R) = Standard_True
+ then
+ Error_Msg_N -- CODEFIX
+ ("?r?comparison with True is redundant!", N);
+ Explain_Redundancy (Original_Node (R));
+ end if;
+
+ Check_Unset_Reference (L);
+ Check_Unset_Reference (R);
+ Generate_Operator_Reference (N, T);
+ Check_Low_Bound_Tested (N);
+
+ -- If this is an inequality, it may be the implicit inequality
+ -- created for a user-defined operation, in which case the corres-
+ -- ponding equality operation is not intrinsic, and the operation
+ -- cannot be constant-folded. Else fold.
+
+ if Nkind (N) = N_Op_Eq
+ or else Comes_From_Source (Entity (N))
+ or else Ekind (Entity (N)) = E_Operator
+ or else Is_Intrinsic_Subprogram
+ (Corresponding_Equality (Entity (N)))
+ then
+ Analyze_Dimension (N);
+ Eval_Relational_Op (N);
+
+ elsif Nkind (N) = N_Op_Ne
+ and then Is_Abstract_Subprogram (Entity (N))
+ then
+ Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
+ end if;
+
+ -- Ada 2005: If one operand is an anonymous access type, convert the
+ -- other operand to it, to ensure that the underlying types match in
+ -- the back-end. Same for access_to_subprogram, and the conversion
+ -- verifies that the types are subtype conformant.
+
+ -- We apply the same conversion in the case one of the operands is a
+ -- private subtype of the type of the other.
+
+ -- Why the Expander_Active test here ???
+
+ if Expander_Active
+ and then
+ (Ekind_In (T, E_Anonymous_Access_Type,
+ E_Anonymous_Access_Subprogram_Type)
+ or else Is_Private_Type (T))
+ then
+ if Etype (L) /= T then
+ Rewrite (L,
+ Make_Unchecked_Type_Conversion (Sloc (L),
+ Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
+ Expression => Relocate_Node (L)));
+ Analyze_And_Resolve (L, T);
+ end if;
+
+ if (Etype (R)) /= T then
+ Rewrite (R,
+ Make_Unchecked_Type_Conversion (Sloc (R),
+ Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
+ Expression => Relocate_Node (R)));
+ Analyze_And_Resolve (R, T);
+ end if;
+ end if;
+ end if;
+ end Resolve_Equality_Op;
+
+ ----------------------------------
+ -- Resolve_Explicit_Dereference --
+ ----------------------------------
+
+ procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ New_N : Node_Id;
+ P : constant Node_Id := Prefix (N);
+
+ P_Typ : Entity_Id;
+ -- The candidate prefix type, if overloaded
+
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ Check_Fully_Declared_Prefix (Typ, P);
+ P_Typ := Empty;
+
+ -- A useful optimization: check whether the dereference denotes an
+ -- element of a container, and if so rewrite it as a call to the
+ -- corresponding Element function.
+
+ -- Disabled for now, on advice of ARG. A more restricted form of the
+ -- predicate might be acceptable ???
+
+ -- if Is_Container_Element (N) then
+ -- return;
+ -- end if;
+
+ if Is_Overloaded (P) then
+
+ -- Use the context type to select the prefix that has the correct
+ -- designated type. Keep the first match, which will be the inner-
+ -- most.
+
+ Get_First_Interp (P, I, It);
+
+ while Present (It.Typ) loop
+ if Is_Access_Type (It.Typ)
+ and then Covers (Typ, Designated_Type (It.Typ))
+ then
+ if No (P_Typ) then
+ P_Typ := It.Typ;
+ end if;
+
+ -- Remove access types that do not match, but preserve access
+ -- to subprogram interpretations, in case a further dereference
+ -- is needed (see below).
+
+ elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
+ Remove_Interp (I);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ if Present (P_Typ) then
+ Resolve (P, P_Typ);
+ Set_Etype (N, Designated_Type (P_Typ));
+
+ else
+ -- If no interpretation covers the designated type of the prefix,
+ -- this is the pathological case where not all implementations of
+ -- the prefix allow the interpretation of the node as a call. Now
+ -- that the expected type is known, Remove other interpretations
+ -- from prefix, rewrite it as a call, and resolve again, so that
+ -- the proper call node is generated.
+
+ Get_First_Interp (P, I, It);
+ while Present (It.Typ) loop
+ if Ekind (It.Typ) /= E_Access_Subprogram_Type then
+ Remove_Interp (I);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ New_N :=
+ Make_Function_Call (Loc,
+ Name =>
+ Make_Explicit_Dereference (Loc,
+ Prefix => P),
+ Parameter_Associations => New_List);
+
+ Save_Interps (N, New_N);
+ Rewrite (N, New_N);
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+
+ -- If not overloaded, resolve P with its own type
+
+ else
+ Resolve (P);
+ end if;
+
+ if Is_Access_Type (Etype (P)) then
+ Apply_Access_Check (N);
+ end if;
+
+ -- If the designated type is a packed unconstrained array type, and the
+ -- explicit dereference is not in the context of an attribute reference,
+ -- then we must compute and set the actual subtype, since it is needed
+ -- by Gigi. The reason we exclude the attribute case is that this is
+ -- handled fine by Gigi, and in fact we use such attributes to build the
+ -- actual subtype. We also exclude generated code (which builds actual
+ -- subtypes directly if they are needed).
+
+ if Is_Array_Type (Etype (N))
+ and then Is_Packed (Etype (N))
+ and then not Is_Constrained (Etype (N))
+ and then Nkind (Parent (N)) /= N_Attribute_Reference
+ and then Comes_From_Source (N)
+ then
+ Set_Etype (N, Get_Actual_Subtype (N));
+ end if;
+
+ -- Note: No Eval processing is required for an explicit dereference,
+ -- because such a name can never be static.
+
+ end Resolve_Explicit_Dereference;
+
+ -------------------------------------
+ -- Resolve_Expression_With_Actions --
+ -------------------------------------
+
+ procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
+ begin
+ Set_Etype (N, Typ);
+
+ -- If N has no actions, and its expression has been constant folded,
+ -- then rewrite N as just its expression. Note, we can't do this in
+ -- the general case of Is_Empty_List (Actions (N)) as this would cause
+ -- Expression (N) to be expanded again.
+
+ if Is_Empty_List (Actions (N))
+ and then Compile_Time_Known_Value (Expression (N))
+ then
+ Rewrite (N, Expression (N));
+ end if;
+ end Resolve_Expression_With_Actions;
+
+ ----------------------------------
+ -- Resolve_Generalized_Indexing --
+ ----------------------------------
+
+ procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
+ Indexing : constant Node_Id := Generalized_Indexing (N);
+ Call : Node_Id;
+ Indices : List_Id;
+ Pref : Node_Id;
+
+ begin
+ -- In ASIS mode, propagate the information about the indices back to
+ -- to the original indexing node. The generalized indexing is either
+ -- a function call, or a dereference of one. The actuals include the
+ -- prefix of the original node, which is the container expression.
+
+ if ASIS_Mode then
+ Resolve (Indexing, Typ);
+ Set_Etype (N, Etype (Indexing));
+ Set_Is_Overloaded (N, False);
+
+ Call := Indexing;
+ while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
+ loop
+ Call := Prefix (Call);
+ end loop;
+
+ if Nkind (Call) = N_Function_Call then
+ Indices := Parameter_Associations (Call);
+ Pref := Remove_Head (Indices);
+ Set_Expressions (N, Indices);
+ Set_Prefix (N, Pref);
+ end if;
+
+ else
+ Rewrite (N, Indexing);
+ Resolve (N, Typ);
+ end if;
+ end Resolve_Generalized_Indexing;
+
+ ---------------------------
+ -- Resolve_If_Expression --
+ ---------------------------
+
+ procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
+ Condition : constant Node_Id := First (Expressions (N));
+ Then_Expr : constant Node_Id := Next (Condition);
+ Else_Expr : Node_Id := Next (Then_Expr);
+ Else_Typ : Entity_Id;
+ Then_Typ : Entity_Id;
+
+ begin
+ Resolve (Condition, Any_Boolean);
+ Resolve (Then_Expr, Typ);
+ Then_Typ := Etype (Then_Expr);
+
+ -- When the "then" expression is of a scalar subtype different from the
+ -- result subtype, then insert a conversion to ensure the generation of
+ -- a constraint check. The same is done for the else part below, again
+ -- comparing subtypes rather than base types.
+
+ if Is_Scalar_Type (Then_Typ)
+ and then Then_Typ /= Typ
+ then
+ Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
+ Analyze_And_Resolve (Then_Expr, Typ);
+ end if;
+
+ -- If ELSE expression present, just resolve using the determined type
+
+ if Present (Else_Expr) then
+ Resolve (Else_Expr, Typ);
+ Else_Typ := Etype (Else_Expr);
+
+ if Is_Scalar_Type (Else_Typ)
+ and then Else_Typ /= Typ
+ then
+ Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
+ Analyze_And_Resolve (Else_Expr, Typ);
+ end if;
+
+ -- If no ELSE expression is present, root type must be Standard.Boolean
+ -- and we provide a Standard.True result converted to the appropriate
+ -- Boolean type (in case it is a derived boolean type).
+
+ elsif Root_Type (Typ) = Standard_Boolean then
+ Else_Expr :=
+ Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
+ Analyze_And_Resolve (Else_Expr, Typ);
+ Append_To (Expressions (N), Else_Expr);
+
+ else
+ Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
+ Append_To (Expressions (N), Error);
+ end if;
+
+ Set_Etype (N, Typ);
+ Eval_If_Expression (N);
+ end Resolve_If_Expression;
+
+ -------------------------------
+ -- Resolve_Indexed_Component --
+ -------------------------------
+
+ procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
+ Name : constant Node_Id := Prefix (N);
+ Expr : Node_Id;
+ Array_Type : Entity_Id := Empty; -- to prevent junk warning
+ Index : Node_Id;
+
+ begin
+ if Present (Generalized_Indexing (N)) then
+ Resolve_Generalized_Indexing (N, Typ);
+ return;
+ end if;
+
+ if Is_Overloaded (Name) then
+
+ -- Use the context type to select the prefix that yields the correct
+ -- component type.
+
+ declare
+ I : Interp_Index;
+ It : Interp;
+ I1 : Interp_Index := 0;
+ P : constant Node_Id := Prefix (N);
+ Found : Boolean := False;
+
+ begin
+ Get_First_Interp (P, I, It);
+ while Present (It.Typ) loop
+ if (Is_Array_Type (It.Typ)
+ and then Covers (Typ, Component_Type (It.Typ)))
+ or else (Is_Access_Type (It.Typ)
+ and then Is_Array_Type (Designated_Type (It.Typ))
+ and then
+ Covers
+ (Typ,
+ Component_Type (Designated_Type (It.Typ))))
+ then
+ if Found then
+ It := Disambiguate (P, I1, I, Any_Type);
+
+ if It = No_Interp then
+ Error_Msg_N ("ambiguous prefix for indexing", N);
+ Set_Etype (N, Typ);
+ return;
+
+ else
+ Found := True;
+ Array_Type := It.Typ;
+ I1 := I;
+ end if;
+
+ else
+ Found := True;
+ Array_Type := It.Typ;
+ I1 := I;
+ end if;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+
+ else
+ Array_Type := Etype (Name);
+ end if;
+
+ Resolve (Name, Array_Type);
+ Array_Type := Get_Actual_Subtype_If_Available (Name);
+
+ -- If prefix is access type, dereference to get real array type.
+ -- Note: we do not apply an access check because the expander always
+ -- introduces an explicit dereference, and the check will happen there.
+
+ if Is_Access_Type (Array_Type) then
+ Array_Type := Designated_Type (Array_Type);
+ end if;
+
+ -- If name was overloaded, set component type correctly now
+ -- If a misplaced call to an entry family (which has no index types)
+ -- return. Error will be diagnosed from calling context.
+
+ if Is_Array_Type (Array_Type) then
+ Set_Etype (N, Component_Type (Array_Type));
+ else
+ return;
+ end if;
+
+ Index := First_Index (Array_Type);
+ Expr := First (Expressions (N));
+
+ -- The prefix may have resolved to a string literal, in which case its
+ -- etype has a special representation. This is only possible currently
+ -- if the prefix is a static concatenation, written in functional
+ -- notation.
+
+ if Ekind (Array_Type) = E_String_Literal_Subtype then
+ Resolve (Expr, Standard_Positive);
+
+ else
+ while Present (Index) and Present (Expr) loop
+ Resolve (Expr, Etype (Index));
+ Check_Unset_Reference (Expr);
+
+ if Is_Scalar_Type (Etype (Expr)) then
+ Apply_Scalar_Range_Check (Expr, Etype (Index));
+ else
+ Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
+ end if;
+
+ Next_Index (Index);
+ Next (Expr);
+ end loop;
+ end if;
+
+ Analyze_Dimension (N);
+
+ -- Do not generate the warning on suspicious index if we are analyzing
+ -- package Ada.Tags; otherwise we will report the warning with the
+ -- Prims_Ptr field of the dispatch table.
+
+ if Scope (Etype (Prefix (N))) = Standard_Standard
+ or else not
+ Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
+ Ada_Tags)
+ then
+ Warn_On_Suspicious_Index (Name, First (Expressions (N)));
+ Eval_Indexed_Component (N);
+ end if;
+
+ -- If the array type is atomic, and is packed, and we are in a left side
+ -- context, then this is worth a warning, since we have a situation
+ -- where the access to the component may cause extra read/writes of
+ -- the atomic array object, which could be considered unexpected.
+
+ if Nkind (N) = N_Indexed_Component
+ and then (Is_Atomic (Array_Type)
+ or else (Is_Entity_Name (Prefix (N))
+ and then Is_Atomic (Entity (Prefix (N)))))
+ and then Is_Bit_Packed_Array (Array_Type)
+ and then Is_LHS (N) = Yes
+ then
+ Error_Msg_N ("??assignment to component of packed atomic array",
+ Prefix (N));
+ Error_Msg_N ("??\may cause unexpected accesses to atomic object",
+ Prefix (N));
+ end if;
+ end Resolve_Indexed_Component;
+
+ -----------------------------
+ -- Resolve_Integer_Literal --
+ -----------------------------
+
+ procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
+ begin
+ Set_Etype (N, Typ);
+ Eval_Integer_Literal (N);
+ end Resolve_Integer_Literal;
+
+ --------------------------------
+ -- Resolve_Intrinsic_Operator --
+ --------------------------------
+
+ procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
+ Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
+ Op : Entity_Id;
+ Orig_Op : constant Entity_Id := Entity (N);
+ Arg1 : Node_Id;
+ Arg2 : Node_Id;
+
+ function Convert_Operand (Opnd : Node_Id) return Node_Id;
+ -- If the operand is a literal, it cannot be the expression in a
+ -- conversion. Use a qualified expression instead.
+
+ function Convert_Operand (Opnd : Node_Id) return Node_Id is
+ Loc : constant Source_Ptr := Sloc (Opnd);
+ Res : Node_Id;
+ begin
+ if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
+ Res :=
+ Make_Qualified_Expression (Loc,
+ Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
+ Expression => Relocate_Node (Opnd));
+ Analyze (Res);
+
+ else
+ Res := Unchecked_Convert_To (Btyp, Opnd);
+ end if;
+
+ return Res;
+ end Convert_Operand;
+
+ -- Start of processing for Resolve_Intrinsic_Operator
+
+ begin
+ -- We must preserve the original entity in a generic setting, so that
+ -- the legality of the operation can be verified in an instance.
+
+ if not Expander_Active then
+ return;
+ end if;
+
+ Op := Entity (N);
+ while Scope (Op) /= Standard_Standard loop
+ Op := Homonym (Op);
+ pragma Assert (Present (Op));
+ end loop;
+
+ Set_Entity (N, Op);
+ Set_Is_Overloaded (N, False);
+
+ -- If the result or operand types are private, rewrite with unchecked
+ -- conversions on the operands and the result, to expose the proper
+ -- underlying numeric type.
+
+ if Is_Private_Type (Typ)
+ or else Is_Private_Type (Etype (Left_Opnd (N)))
+ or else Is_Private_Type (Etype (Right_Opnd (N)))
+ then
+ Arg1 := Convert_Operand (Left_Opnd (N));
+ -- Unchecked_Convert_To (Btyp, Left_Opnd (N));
+ -- What on earth is this commented out fragment of code???
+
+ if Nkind (N) = N_Op_Expon then
+ Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
+ else
+ Arg2 := Convert_Operand (Right_Opnd (N));
+ end if;
+
+ if Nkind (Arg1) = N_Type_Conversion then
+ Save_Interps (Left_Opnd (N), Expression (Arg1));
+ end if;
+
+ if Nkind (Arg2) = N_Type_Conversion then
+ Save_Interps (Right_Opnd (N), Expression (Arg2));
+ end if;
+
+ Set_Left_Opnd (N, Arg1);
+ Set_Right_Opnd (N, Arg2);
+
+ Set_Etype (N, Btyp);
+ Rewrite (N, Unchecked_Convert_To (Typ, N));
+ Resolve (N, Typ);
+
+ elsif Typ /= Etype (Left_Opnd (N))
+ or else Typ /= Etype (Right_Opnd (N))
+ then
+ -- Add explicit conversion where needed, and save interpretations in
+ -- case operands are overloaded. If the context is a VMS operation,
+ -- assert that the conversion is legal (the operands have the proper
+ -- types to select the VMS intrinsic). Note that in rare cases the
+ -- VMS operators may be visible, but the default System is being used
+ -- and Address is a private type.
+
+ Arg1 := Convert_To (Typ, Left_Opnd (N));
+ Arg2 := Convert_To (Typ, Right_Opnd (N));
+
+ if Nkind (Arg1) = N_Type_Conversion then
+ Save_Interps (Left_Opnd (N), Expression (Arg1));
+
+ if Is_VMS_Operator (Orig_Op) then
+ Set_Conversion_OK (Arg1);
+ end if;
+ else
+ Save_Interps (Left_Opnd (N), Arg1);
+ end if;
+
+ if Nkind (Arg2) = N_Type_Conversion then
+ Save_Interps (Right_Opnd (N), Expression (Arg2));
+
+ if Is_VMS_Operator (Orig_Op) then
+ Set_Conversion_OK (Arg2);
+ end if;
+ else
+ Save_Interps (Right_Opnd (N), Arg2);
+ end if;
+
+ Rewrite (Left_Opnd (N), Arg1);
+ Rewrite (Right_Opnd (N), Arg2);
+ Analyze (Arg1);
+ Analyze (Arg2);
+ Resolve_Arithmetic_Op (N, Typ);
+
+ else
+ Resolve_Arithmetic_Op (N, Typ);
+ end if;
+ end Resolve_Intrinsic_Operator;
+
+ --------------------------------------
+ -- Resolve_Intrinsic_Unary_Operator --
+ --------------------------------------
+
+ procedure Resolve_Intrinsic_Unary_Operator
+ (N : Node_Id;
+ Typ : Entity_Id)
+ is
+ Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
+ Op : Entity_Id;
+ Arg2 : Node_Id;
+
+ begin
+ Op := Entity (N);
+ while Scope (Op) /= Standard_Standard loop
+ Op := Homonym (Op);
+ pragma Assert (Present (Op));
+ end loop;
+
+ Set_Entity (N, Op);
+
+ if Is_Private_Type (Typ) then
+ Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
+ Save_Interps (Right_Opnd (N), Expression (Arg2));
+
+ Set_Right_Opnd (N, Arg2);
+
+ Set_Etype (N, Btyp);
+ Rewrite (N, Unchecked_Convert_To (Typ, N));
+ Resolve (N, Typ);
+
+ else
+ Resolve_Unary_Op (N, Typ);
+ end if;
+ end Resolve_Intrinsic_Unary_Operator;
+
+ ------------------------
+ -- Resolve_Logical_Op --
+ ------------------------
+
+ procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
+ B_Typ : Entity_Id;
+
+ begin
+ Check_No_Direct_Boolean_Operators (N);
+
+ -- Predefined operations on scalar types yield the base type. On the
+ -- other hand, logical operations on arrays yield the type of the
+ -- arguments (and the context).
+
+ if Is_Array_Type (Typ) then
+ B_Typ := Typ;
+ else
+ B_Typ := Base_Type (Typ);
+ end if;
+
+ -- OK if this is a VMS-specific intrinsic operation
+
+ if Is_VMS_Operator (Entity (N)) then
+ null;
+
+ -- The following test is required because the operands of the operation
+ -- may be literals, in which case the resulting type appears to be
+ -- compatible with a signed integer type, when in fact it is compatible
+ -- only with modular types. If the context itself is universal, the
+ -- operation is illegal.
+
+ elsif not Valid_Boolean_Arg (Typ) then
+ Error_Msg_N ("invalid context for logical operation", N);
+ Set_Etype (N, Any_Type);
+ return;
+
+ elsif Typ = Any_Modular then
+ Error_Msg_N
+ ("no modular type available in this context", N);
+ Set_Etype (N, Any_Type);
+ return;
+
+ elsif Is_Modular_Integer_Type (Typ)
+ and then Etype (Left_Opnd (N)) = Universal_Integer
+ and then Etype (Right_Opnd (N)) = Universal_Integer
+ then
+ Check_For_Visible_Operator (N, B_Typ);
+ end if;
+
+ -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
+ -- is active and the result type is standard Boolean (do not mess with
+ -- ops that return a nonstandard Boolean type, because something strange
+ -- is going on).
+
+ -- Note: you might expect this replacement to be done during expansion,
+ -- but that doesn't work, because when the pragma Short_Circuit_And_Or
+ -- is used, no part of the right operand of an "and" or "or" operator
+ -- should be executed if the left operand would short-circuit the
+ -- evaluation of the corresponding "and then" or "or else". If we left
+ -- the replacement to expansion time, then run-time checks associated
+ -- with such operands would be evaluated unconditionally, due to being
+ -- before the condition prior to the rewriting as short-circuit forms
+ -- during expansion.
+
+ if Short_Circuit_And_Or
+ and then B_Typ = Standard_Boolean
+ and then Nkind_In (N, N_Op_And, N_Op_Or)
+ then
+ if Nkind (N) = N_Op_And then
+ Rewrite (N,
+ Make_And_Then (Sloc (N),
+ Left_Opnd => Relocate_Node (Left_Opnd (N)),
+ Right_Opnd => Relocate_Node (Right_Opnd (N))));
+ Analyze_And_Resolve (N, B_Typ);
+
+ -- Case of OR changed to OR ELSE
+
+ else
+ Rewrite (N,
+ Make_Or_Else (Sloc (N),
+ Left_Opnd => Relocate_Node (Left_Opnd (N)),
+ Right_Opnd => Relocate_Node (Right_Opnd (N))));
+ Analyze_And_Resolve (N, B_Typ);
+ end if;
+
+ -- Return now, since analysis of the rewritten ops will take care of
+ -- other reference bookkeeping and expression folding.
+
+ return;
+ end if;
+
+ Resolve (Left_Opnd (N), B_Typ);
+ Resolve (Right_Opnd (N), B_Typ);
+
+ Check_Unset_Reference (Left_Opnd (N));
+ Check_Unset_Reference (Right_Opnd (N));
+
+ Set_Etype (N, B_Typ);
+ Generate_Operator_Reference (N, B_Typ);
+ Eval_Logical_Op (N);
+
+ -- In SPARK, logical operations AND, OR and XOR for arrays are defined
+ -- only when both operands have same static lower and higher bounds. Of
+ -- course the types have to match, so only check if operands are
+ -- compatible and the node itself has no errors.
+
+ if Is_Array_Type (B_Typ)
+ and then Nkind (N) in N_Binary_Op
+ then
+ declare
+ Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
+ Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
+
+ begin
+ -- Protect call to Matching_Static_Array_Bounds to avoid costly
+ -- operation if not needed.
+
+ if Restriction_Check_Required (SPARK_05)
+ and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
+ and then Left_Typ /= Any_Composite -- or Left_Opnd in error
+ and then Right_Typ /= Any_Composite -- or Right_Opnd in error
+ and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
+ then
+ Check_SPARK_Restriction
+ ("array types should have matching static bounds", N);
+ end if;
+ end;
+ end if;
+
+ Check_Function_Writable_Actuals (N);
+ end Resolve_Logical_Op;
+
+ ---------------------------
+ -- Resolve_Membership_Op --
+ ---------------------------
+
+ -- The context can only be a boolean type, and does not determine the
+ -- arguments. Arguments should be unambiguous, but the preference rule for
+ -- universal types applies.
+
+ procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
+ pragma Warnings (Off, Typ);
+
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+ T : Entity_Id;
+
+ procedure Resolve_Set_Membership;
+ -- Analysis has determined a unique type for the left operand. Use it to
+ -- resolve the disjuncts.
+
+ ----------------------------
+ -- Resolve_Set_Membership --
+ ----------------------------
+
+ procedure Resolve_Set_Membership is
+ Alt : Node_Id;
+ Ltyp : constant Entity_Id := Etype (L);
+
+ begin
+ Resolve (L, Ltyp);
+
+ Alt := First (Alternatives (N));
+ while Present (Alt) loop
+
+ -- Alternative is an expression, a range
+ -- or a subtype mark.
+
+ if not Is_Entity_Name (Alt)
+ or else not Is_Type (Entity (Alt))
+ then
+ Resolve (Alt, Ltyp);
+ end if;
+
+ Next (Alt);
+ end loop;
+
+ -- Check for duplicates for discrete case
+
+ if Is_Discrete_Type (Ltyp) then
+ declare
+ type Ent is record
+ Alt : Node_Id;
+ Val : Uint;
+ end record;
+
+ Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
+ Nalts : Nat;
+
+ begin
+ -- Loop checking duplicates. This is quadratic, but giant sets
+ -- are unlikely in this context so it's a reasonable choice.
+
+ Nalts := 0;
+ Alt := First (Alternatives (N));
+ while Present (Alt) loop
+ if Is_Static_Expression (Alt)
+ and then (Nkind_In (Alt, N_Integer_Literal,
+ N_Character_Literal)
+ or else Nkind (Alt) in N_Has_Entity)
+ then
+ Nalts := Nalts + 1;
+ Alts (Nalts) := (Alt, Expr_Value (Alt));
+
+ for J in 1 .. Nalts - 1 loop
+ if Alts (J).Val = Alts (Nalts).Val then
+ Error_Msg_Sloc := Sloc (Alts (J).Alt);
+ Error_Msg_N ("duplicate of value given#??", Alt);
+ end if;
+ end loop;
+ end if;
+
+ Alt := Next (Alt);
+ end loop;
+ end;
+ end if;
+ end Resolve_Set_Membership;
+
+ -- Start of processing for Resolve_Membership_Op
+
+ begin
+ if L = Error or else R = Error then
+ return;
+ end if;
+
+ if Present (Alternatives (N)) then
+ Resolve_Set_Membership;
+ Check_Function_Writable_Actuals (N);
+ return;
+
+ elsif not Is_Overloaded (R)
+ and then
+ (Etype (R) = Universal_Integer
+ or else
+ Etype (R) = Universal_Real)
+ and then Is_Overloaded (L)
+ then
+ T := Etype (R);
+
+ -- Ada 2005 (AI-251): Support the following case:
+
+ -- type I is interface;
+ -- type T is tagged ...
+
+ -- function Test (O : I'Class) is
+ -- begin
+ -- return O in T'Class.
+ -- end Test;
+
+ -- In this case we have nothing else to do. The membership test will be
+ -- done at run time.
+
+ elsif Ada_Version >= Ada_2005
+ and then Is_Class_Wide_Type (Etype (L))
+ and then Is_Interface (Etype (L))
+ and then Is_Class_Wide_Type (Etype (R))
+ and then not Is_Interface (Etype (R))
+ then
+ return;
+ else
+ T := Intersect_Types (L, R);
+ end if;
+
+ -- If mixed-mode operations are present and operands are all literal,
+ -- the only interpretation involves Duration, which is probably not
+ -- the intention of the programmer.
+
+ if T = Any_Fixed then
+ T := Unique_Fixed_Point_Type (N);
+
+ if T = Any_Type then
+ return;
+ end if;
+ end if;
+
+ Resolve (L, T);
+ Check_Unset_Reference (L);
+
+ if Nkind (R) = N_Range
+ and then not Is_Scalar_Type (T)
+ then
+ Error_Msg_N ("scalar type required for range", R);
+ end if;
+
+ if Is_Entity_Name (R) then
+ Freeze_Expression (R);
+ else
+ Resolve (R, T);
+ Check_Unset_Reference (R);
+ end if;
+
+ Eval_Membership_Op (N);
+ Check_Function_Writable_Actuals (N);
+ end Resolve_Membership_Op;
+
+ ------------------
+ -- Resolve_Null --
+ ------------------
+
+ procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ begin
+ -- Handle restriction against anonymous null access values This
+ -- restriction can be turned off using -gnatdj.
+
+ -- Ada 2005 (AI-231): Remove restriction
+
+ if Ada_Version < Ada_2005
+ and then not Debug_Flag_J
+ and then Ekind (Typ) = E_Anonymous_Access_Type
+ and then Comes_From_Source (N)
+ then
+ -- In the common case of a call which uses an explicitly null value
+ -- for an access parameter, give specialized error message.
+
+ if Nkind (Parent (N)) in N_Subprogram_Call then
+ Error_Msg_N
+ ("null is not allowed as argument for an access parameter", N);
+
+ -- Standard message for all other cases (are there any?)
+
+ else
+ Error_Msg_N
+ ("null cannot be of an anonymous access type", N);
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-231): Generate the null-excluding check in case of
+ -- assignment to a null-excluding object
+
+ if Ada_Version >= Ada_2005
+ and then Can_Never_Be_Null (Typ)
+ and then Nkind (Parent (N)) = N_Assignment_Statement
+ then
+ if not Inside_Init_Proc then
+ Insert_Action
+ (Compile_Time_Constraint_Error (N,
+ "(Ada 2005) null not allowed in null-excluding objects??"),
+ Make_Raise_Constraint_Error (Loc,
+ Reason => CE_Access_Check_Failed));
+ else
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc,
+ Reason => CE_Access_Check_Failed));
+ end if;
+ end if;
+
+ -- In a distributed context, null for a remote access to subprogram may
+ -- need to be replaced with a special record aggregate. In this case,
+ -- return after having done the transformation.
+
+ if (Ekind (Typ) = E_Record_Type
+ or else Is_Remote_Access_To_Subprogram_Type (Typ))
+ and then Remote_AST_Null_Value (N, Typ)
+ then
+ return;
+ end if;
+
+ -- The null literal takes its type from the context
+
+ Set_Etype (N, Typ);
+ end Resolve_Null;
+
+ -----------------------
+ -- Resolve_Op_Concat --
+ -----------------------
+
+ procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
+
+ -- We wish to avoid deep recursion, because concatenations are often
+ -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
+ -- operands nonrecursively until we find something that is not a simple
+ -- concatenation (A in this case). We resolve that, and then walk back
+ -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
+ -- to do the rest of the work at each level. The Parent pointers allow
+ -- us to avoid recursion, and thus avoid running out of memory. See also
+ -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
+
+ NN : Node_Id := N;
+ Op1 : Node_Id;
+
+ begin
+ -- The following code is equivalent to:
+
+ -- Resolve_Op_Concat_First (NN, Typ);
+ -- Resolve_Op_Concat_Arg (N, ...);
+ -- Resolve_Op_Concat_Rest (N, Typ);
+
+ -- where the Resolve_Op_Concat_Arg call recurses back here if the left
+ -- operand is a concatenation.
+
+ -- Walk down left operands
+
+ loop
+ Resolve_Op_Concat_First (NN, Typ);
+ Op1 := Left_Opnd (NN);
+ exit when not (Nkind (Op1) = N_Op_Concat
+ and then not Is_Array_Type (Component_Type (Typ))
+ and then Entity (Op1) = Entity (NN));
+ NN := Op1;
+ end loop;
+
+ -- Now (given the above example) NN is A&B and Op1 is A
+
+ -- First resolve Op1 ...
+
+ Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
+
+ -- ... then walk NN back up until we reach N (where we started), calling
+ -- Resolve_Op_Concat_Rest along the way.
+
+ loop
+ Resolve_Op_Concat_Rest (NN, Typ);
+ exit when NN = N;
+ NN := Parent (NN);
+ end loop;
+
+ if Base_Type (Etype (N)) /= Standard_String then
+ Check_SPARK_Restriction
+ ("result of concatenation should have type String", N);
+ end if;
+ end Resolve_Op_Concat;
+
+ ---------------------------
+ -- Resolve_Op_Concat_Arg --
+ ---------------------------
+
+ procedure Resolve_Op_Concat_Arg
+ (N : Node_Id;
+ Arg : Node_Id;
+ Typ : Entity_Id;
+ Is_Comp : Boolean)
+ is
+ Btyp : constant Entity_Id := Base_Type (Typ);
+ Ctyp : constant Entity_Id := Component_Type (Typ);
+
+ begin
+ if In_Instance then
+ if Is_Comp
+ or else (not Is_Overloaded (Arg)
+ and then Etype (Arg) /= Any_Composite
+ and then Covers (Ctyp, Etype (Arg)))
+ then
+ Resolve (Arg, Ctyp);
+ else
+ Resolve (Arg, Btyp);
+ end if;
+
+ -- If both Array & Array and Array & Component are visible, there is a
+ -- potential ambiguity that must be reported.
+
+ elsif Has_Compatible_Type (Arg, Ctyp) then
+ if Nkind (Arg) = N_Aggregate
+ and then Is_Composite_Type (Ctyp)
+ then
+ if Is_Private_Type (Ctyp) then
+ Resolve (Arg, Btyp);
+
+ -- If the operation is user-defined and not overloaded use its
+ -- profile. The operation may be a renaming, in which case it has
+ -- been rewritten, and we want the original profile.
+
+ elsif not Is_Overloaded (N)
+ and then Comes_From_Source (Entity (Original_Node (N)))
+ and then Ekind (Entity (Original_Node (N))) = E_Function
+ then
+ Resolve (Arg,
+ Etype
+ (Next_Formal (First_Formal (Entity (Original_Node (N))))));
+ return;
+
+ -- Otherwise an aggregate may match both the array type and the
+ -- component type.
+
+ else
+ Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
+ Set_Etype (Arg, Any_Type);
+ end if;
+
+ else
+ if Is_Overloaded (Arg)
+ and then Has_Compatible_Type (Arg, Typ)
+ and then Etype (Arg) /= Any_Type
+ then
+ declare
+ I : Interp_Index;
+ It : Interp;
+ Func : Entity_Id;
+
+ begin
+ Get_First_Interp (Arg, I, It);
+ Func := It.Nam;
+ Get_Next_Interp (I, It);
+
+ -- Special-case the error message when the overloading is
+ -- caused by a function that yields an array and can be
+ -- called without parameters.
+
+ if It.Nam = Func then
+ Error_Msg_Sloc := Sloc (Func);
+ Error_Msg_N ("ambiguous call to function#", Arg);
+ Error_Msg_NE
+ ("\\interpretation as call yields&", Arg, Typ);
+ Error_Msg_NE
+ ("\\interpretation as indexing of call yields&",
+ Arg, Component_Type (Typ));
+
+ else
+ Error_Msg_N ("ambiguous operand for concatenation!", Arg);
+
+ Get_First_Interp (Arg, I, It);
+ while Present (It.Nam) loop
+ Error_Msg_Sloc := Sloc (It.Nam);
+
+ if Base_Type (It.Typ) = Btyp
+ or else
+ Base_Type (It.Typ) = Base_Type (Ctyp)
+ then
+ Error_Msg_N -- CODEFIX
+ ("\\possible interpretation#", Arg);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end if;
+ end;
+ end if;
+
+ Resolve (Arg, Component_Type (Typ));
+
+ if Nkind (Arg) = N_String_Literal then
+ Set_Etype (Arg, Component_Type (Typ));
+ end if;
+
+ if Arg = Left_Opnd (N) then
+ Set_Is_Component_Left_Opnd (N);
+ else
+ Set_Is_Component_Right_Opnd (N);
+ end if;
+ end if;
+
+ else
+ Resolve (Arg, Btyp);
+ end if;
+
+ -- Concatenation is restricted in SPARK: each operand must be either a
+ -- string literal, the name of a string constant, a static character or
+ -- string expression, or another concatenation. Arg cannot be a
+ -- concatenation here as callers of Resolve_Op_Concat_Arg call it
+ -- separately on each final operand, past concatenation operations.
+
+ if Is_Character_Type (Etype (Arg)) then
+ if not Is_Static_Expression (Arg) then
+ Check_SPARK_Restriction
+ ("character operand for concatenation should be static", Arg);
+ end if;
+
+ elsif Is_String_Type (Etype (Arg)) then
+ if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
+ and then Is_Constant_Object (Entity (Arg)))
+ and then not Is_Static_Expression (Arg)
+ then
+ Check_SPARK_Restriction
+ ("string operand for concatenation should be static", Arg);
+ end if;
+
+ -- Do not issue error on an operand that is neither a character nor a
+ -- string, as the error is issued in Resolve_Op_Concat.
+
+ else
+ null;
+ end if;
+
+ Check_Unset_Reference (Arg);
+ end Resolve_Op_Concat_Arg;
+
+ -----------------------------
+ -- Resolve_Op_Concat_First --
+ -----------------------------
+
+ procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
+ Btyp : constant Entity_Id := Base_Type (Typ);
+ Op1 : constant Node_Id := Left_Opnd (N);
+ Op2 : constant Node_Id := Right_Opnd (N);
+
+ begin
+ -- The parser folds an enormous sequence of concatenations of string
+ -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
+ -- in the right operand. If the expression resolves to a predefined "&"
+ -- operator, all is well. Otherwise, the parser's folding is wrong, so
+ -- we give an error. See P_Simple_Expression in Par.Ch4.
+
+ if Nkind (Op2) = N_String_Literal
+ and then Is_Folded_In_Parser (Op2)
+ and then Ekind (Entity (N)) = E_Function
+ then
+ pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
+ and then String_Length (Strval (Op1)) = 0);
+ Error_Msg_N ("too many user-defined concatenations", N);
+ return;
+ end if;
+
+ Set_Etype (N, Btyp);
+
+ if Is_Limited_Composite (Btyp) then
+ Error_Msg_N ("concatenation not available for limited array", N);
+ Explain_Limited_Type (Btyp, N);
+ end if;
+ end Resolve_Op_Concat_First;
+
+ ----------------------------
+ -- Resolve_Op_Concat_Rest --
+ ----------------------------
+
+ procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
+ Op1 : constant Node_Id := Left_Opnd (N);
+ Op2 : constant Node_Id := Right_Opnd (N);
+
+ begin
+ Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
+
+ Generate_Operator_Reference (N, Typ);
+
+ if Is_String_Type (Typ) then
+ Eval_Concatenation (N);
+ end if;
+
+ -- If this is not a static concatenation, but the result is a string
+ -- type (and not an array of strings) ensure that static string operands
+ -- have their subtypes properly constructed.
+
+ if Nkind (N) /= N_String_Literal
+ and then Is_Character_Type (Component_Type (Typ))
+ then
+ Set_String_Literal_Subtype (Op1, Typ);
+ Set_String_Literal_Subtype (Op2, Typ);
+ end if;
+ end Resolve_Op_Concat_Rest;
+
+ ----------------------
+ -- Resolve_Op_Expon --
+ ----------------------
+
+ procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
+ B_Typ : constant Entity_Id := Base_Type (Typ);
+
+ begin
+ -- Catch attempts to do fixed-point exponentiation with universal
+ -- operands, which is a case where the illegality is not caught during
+ -- normal operator analysis. This is not done in preanalysis mode
+ -- since the tree is not fully decorated during preanalysis.
+
+ if Full_Analysis then
+ if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
+ Error_Msg_N ("exponentiation not available for fixed point", N);
+ return;
+
+ elsif Nkind (Parent (N)) in N_Op
+ and then Is_Fixed_Point_Type (Etype (Parent (N)))
+ and then Etype (N) = Universal_Real
+ and then Comes_From_Source (N)
+ then
+ Error_Msg_N ("exponentiation not available for fixed point", N);
+ return;
+ end if;
+ end if;
+
+ if Comes_From_Source (N)
+ and then Ekind (Entity (N)) = E_Function
+ and then Is_Imported (Entity (N))
+ and then Is_Intrinsic_Subprogram (Entity (N))
+ then
+ Resolve_Intrinsic_Operator (N, Typ);
+ return;
+ end if;
+
+ if Etype (Left_Opnd (N)) = Universal_Integer
+ or else Etype (Left_Opnd (N)) = Universal_Real
+ then
+ Check_For_Visible_Operator (N, B_Typ);
+ end if;
+
+ -- We do the resolution using the base type, because intermediate values
+ -- in expressions are always of the base type, not a subtype of it.
+
+ Resolve (Left_Opnd (N), B_Typ);
+ Resolve (Right_Opnd (N), Standard_Integer);
+
+ -- For integer types, right argument must be in Natural range
+
+ if Is_Integer_Type (Typ) then
+ Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
+ end if;
+
+ Check_Unset_Reference (Left_Opnd (N));
+ Check_Unset_Reference (Right_Opnd (N));
+
+ Set_Etype (N, B_Typ);
+ Generate_Operator_Reference (N, B_Typ);
+
+ Analyze_Dimension (N);
+
+ if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
+ -- Evaluate the exponentiation operator for dimensioned type
+
+ Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
+ else
+ Eval_Op_Expon (N);
+ end if;
+
+ -- Set overflow checking bit. Much cleverer code needed here eventually
+ -- and perhaps the Resolve routines should be separated for the various
+ -- arithmetic operations, since they will need different processing. ???
+
+ if Nkind (N) in N_Op then
+ if not Overflow_Checks_Suppressed (Etype (N)) then
+ Enable_Overflow_Check (N);
+ end if;
+ end if;
+ end Resolve_Op_Expon;
+
+ --------------------
+ -- Resolve_Op_Not --
+ --------------------
+
+ procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
+ B_Typ : Entity_Id;
+
+ function Parent_Is_Boolean return Boolean;
+ -- This function determines if the parent node is a boolean operator or
+ -- operation (comparison op, membership test, or short circuit form) and
+ -- the not in question is the left operand of this operation. Note that
+ -- if the not is in parens, then false is returned.
+
+ -----------------------
+ -- Parent_Is_Boolean --
+ -----------------------
+
+ function Parent_Is_Boolean return Boolean is
+ begin
+ if Paren_Count (N) /= 0 then
+ return False;
+
+ else
+ case Nkind (Parent (N)) is
+ when N_Op_And |
+ N_Op_Eq |
+ N_Op_Ge |
+ N_Op_Gt |
+ N_Op_Le |
+ N_Op_Lt |
+ N_Op_Ne |
+ N_Op_Or |
+ N_Op_Xor |
+ N_In |
+ N_Not_In |
+ N_And_Then |
+ N_Or_Else =>
+
+ return Left_Opnd (Parent (N)) = N;
+
+ when others =>
+ return False;
+ end case;
+ end if;
+ end Parent_Is_Boolean;
+
+ -- Start of processing for Resolve_Op_Not
+
+ begin
+ -- Predefined operations on scalar types yield the base type. On the
+ -- other hand, logical operations on arrays yield the type of the
+ -- arguments (and the context).
+
+ if Is_Array_Type (Typ) then
+ B_Typ := Typ;
+ else
+ B_Typ := Base_Type (Typ);
+ end if;
+
+ if Is_VMS_Operator (Entity (N)) then
+ null;
+
+ -- Straightforward case of incorrect arguments
+
+ elsif not Valid_Boolean_Arg (Typ) then
+ Error_Msg_N ("invalid operand type for operator&", N);
+ Set_Etype (N, Any_Type);
+ return;
+
+ -- Special case of probable missing parens
+
+ elsif Typ = Universal_Integer or else Typ = Any_Modular then
+ if Parent_Is_Boolean then
+ Error_Msg_N
+ ("operand of not must be enclosed in parentheses",
+ Right_Opnd (N));
+ else
+ Error_Msg_N
+ ("no modular type available in this context", N);
+ end if;
+
+ Set_Etype (N, Any_Type);
+ return;
+
+ -- OK resolution of NOT
+
+ else
+ -- Warn if non-boolean types involved. This is a case like not a < b
+ -- where a and b are modular, where we will get (not a) < b and most
+ -- likely not (a < b) was intended.
+
+ if Warn_On_Questionable_Missing_Parens
+ and then not Is_Boolean_Type (Typ)
+ and then Parent_Is_Boolean
+ then
+ Error_Msg_N ("?q?not expression should be parenthesized here!", N);
+ end if;
+
+ -- Warn on double negation if checking redundant constructs
+
+ if Warn_On_Redundant_Constructs
+ and then Comes_From_Source (N)
+ and then Comes_From_Source (Right_Opnd (N))
+ and then Root_Type (Typ) = Standard_Boolean
+ and then Nkind (Right_Opnd (N)) = N_Op_Not
+ then
+ Error_Msg_N ("redundant double negation?r?", N);
+ end if;
+
+ -- Complete resolution and evaluation of NOT
+
+ Resolve (Right_Opnd (N), B_Typ);
+ Check_Unset_Reference (Right_Opnd (N));
+ Set_Etype (N, B_Typ);
+ Generate_Operator_Reference (N, B_Typ);
+ Eval_Op_Not (N);
+ end if;
+ end Resolve_Op_Not;
+
+ -----------------------------
+ -- Resolve_Operator_Symbol --
+ -----------------------------
+
+ -- Nothing to be done, all resolved already
+
+ procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
+ pragma Warnings (Off, N);
+ pragma Warnings (Off, Typ);
+
+ begin
+ null;
+ end Resolve_Operator_Symbol;
+
+ ----------------------------------
+ -- Resolve_Qualified_Expression --
+ ----------------------------------
+
+ procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
+ pragma Warnings (Off, Typ);
+
+ Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
+ Expr : constant Node_Id := Expression (N);
+
+ begin
+ Resolve (Expr, Target_Typ);
+
+ -- Protect call to Matching_Static_Array_Bounds to avoid costly
+ -- operation if not needed.
+
+ if Restriction_Check_Required (SPARK_05)
+ and then Is_Array_Type (Target_Typ)
+ and then Is_Array_Type (Etype (Expr))
+ and then Etype (Expr) /= Any_Composite -- or else Expr in error
+ and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
+ then
+ Check_SPARK_Restriction
+ ("array types should have matching static bounds", N);
+ end if;
+
+ -- A qualified expression requires an exact match of the type, class-
+ -- wide matching is not allowed. However, if the qualifying type is
+ -- specific and the expression has a class-wide type, it may still be
+ -- okay, since it can be the result of the expansion of a call to a
+ -- dispatching function, so we also have to check class-wideness of the
+ -- type of the expression's original node.
+
+ if (Is_Class_Wide_Type (Target_Typ)
+ or else
+ (Is_Class_Wide_Type (Etype (Expr))
+ and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
+ and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
+ then
+ Wrong_Type (Expr, Target_Typ);
+ end if;
+
+ -- If the target type is unconstrained, then we reset the type of the
+ -- result from the type of the expression. For other cases, the actual
+ -- subtype of the expression is the target type.
+
+ if Is_Composite_Type (Target_Typ)
+ and then not Is_Constrained (Target_Typ)
+ then
+ Set_Etype (N, Etype (Expr));
+ end if;
+
+ Analyze_Dimension (N);
+ Eval_Qualified_Expression (N);
+ end Resolve_Qualified_Expression;
+
+ ------------------------------
+ -- Resolve_Raise_Expression --
+ ------------------------------
+
+ procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
+ begin
+ if Typ = Raise_Type then
+ Error_Msg_N ("cannot find unique type for raise expression", N);
+ Set_Etype (N, Any_Type);
+ else
+ Set_Etype (N, Typ);
+ end if;
+ end Resolve_Raise_Expression;
+
+ -------------------
+ -- Resolve_Range --
+ -------------------
+
+ procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
+ L : constant Node_Id := Low_Bound (N);
+ H : constant Node_Id := High_Bound (N);
+
+ function First_Last_Ref return Boolean;
+ -- Returns True if N is of the form X'First .. X'Last where X is the
+ -- same entity for both attributes.
+
+ --------------------
+ -- First_Last_Ref --
+ --------------------
+
+ function First_Last_Ref return Boolean is
+ Lorig : constant Node_Id := Original_Node (L);
+ Horig : constant Node_Id := Original_Node (H);
+
+ begin
+ if Nkind (Lorig) = N_Attribute_Reference
+ and then Nkind (Horig) = N_Attribute_Reference
+ and then Attribute_Name (Lorig) = Name_First
+ and then Attribute_Name (Horig) = Name_Last
+ then
+ declare
+ PL : constant Node_Id := Prefix (Lorig);
+ PH : constant Node_Id := Prefix (Horig);
+ begin
+ if Is_Entity_Name (PL)
+ and then Is_Entity_Name (PH)
+ and then Entity (PL) = Entity (PH)
+ then
+ return True;
+ end if;
+ end;
+ end if;
+
+ return False;
+ end First_Last_Ref;
+
+ -- Start of processing for Resolve_Range
+
+ begin
+ Set_Etype (N, Typ);
+ Resolve (L, Typ);
+ Resolve (H, Typ);
+
+ -- Check for inappropriate range on unordered enumeration type
+
+ if Bad_Unordered_Enumeration_Reference (N, Typ)
+
+ -- Exclude X'First .. X'Last if X is the same entity for both
+
+ and then not First_Last_Ref
+ then
+ Error_Msg_Sloc := Sloc (Typ);
+ Error_Msg_NE
+ ("subrange of unordered enumeration type& declared#?U?", N, Typ);
+ end if;
+
+ Check_Unset_Reference (L);
+ Check_Unset_Reference (H);
+
+ -- We have to check the bounds for being within the base range as
+ -- required for a non-static context. Normally this is automatic and
+ -- done as part of evaluating expressions, but the N_Range node is an
+ -- exception, since in GNAT we consider this node to be a subexpression,
+ -- even though in Ada it is not. The circuit in Sem_Eval could check for
+ -- this, but that would put the test on the main evaluation path for
+ -- expressions.
+
+ Check_Non_Static_Context (L);
+ Check_Non_Static_Context (H);
+
+ -- Check for an ambiguous range over character literals. This will
+ -- happen with a membership test involving only literals.
+
+ if Typ = Any_Character then
+ Ambiguous_Character (L);
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- If bounds are static, constant-fold them, so size computations are
+ -- identical between front-end and back-end. Do not perform this
+ -- transformation while analyzing generic units, as type information
+ -- would be lost when reanalyzing the constant node in the instance.
+
+ if Is_Discrete_Type (Typ) and then Expander_Active then
+ if Is_OK_Static_Expression (L) then
+ Fold_Uint (L, Expr_Value (L), Is_Static_Expression (L));
+ end if;
+
+ if Is_OK_Static_Expression (H) then
+ Fold_Uint (H, Expr_Value (H), Is_Static_Expression (H));
+ end if;
+ end if;
+ end Resolve_Range;
+
+ --------------------------
+ -- Resolve_Real_Literal --
+ --------------------------
+
+ procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
+ Actual_Typ : constant Entity_Id := Etype (N);
+
+ begin
+ -- Special processing for fixed-point literals to make sure that the
+ -- value is an exact multiple of small where this is required. We skip
+ -- this for the universal real case, and also for generic types.
+
+ if Is_Fixed_Point_Type (Typ)
+ and then Typ /= Universal_Fixed
+ and then Typ /= Any_Fixed
+ and then not Is_Generic_Type (Typ)
+ then
+ declare
+ Val : constant Ureal := Realval (N);
+ Cintr : constant Ureal := Val / Small_Value (Typ);
+ Cint : constant Uint := UR_Trunc (Cintr);
+ Den : constant Uint := Norm_Den (Cintr);
+ Stat : Boolean;
+
+ begin
+ -- Case of literal is not an exact multiple of the Small
+
+ if Den /= 1 then
+
+ -- For a source program literal for a decimal fixed-point type,
+ -- this is statically illegal (RM 4.9(36)).
+
+ if Is_Decimal_Fixed_Point_Type (Typ)
+ and then Actual_Typ = Universal_Real
+ and then Comes_From_Source (N)
+ then
+ Error_Msg_N ("value has extraneous low order digits", N);
+ end if;
+
+ -- Generate a warning if literal from source
+
+ if Is_Static_Expression (N)
+ and then Warn_On_Bad_Fixed_Value
+ then
+ Error_Msg_N
+ ("?b?static fixed-point value is not a multiple of Small!",
+ N);
+ end if;
+
+ -- Replace literal by a value that is the exact representation
+ -- of a value of the type, i.e. a multiple of the small value,
+ -- by truncation, since Machine_Rounds is false for all GNAT
+ -- fixed-point types (RM 4.9(38)).
+
+ Stat := Is_Static_Expression (N);
+ Rewrite (N,
+ Make_Real_Literal (Sloc (N),
+ Realval => Small_Value (Typ) * Cint));
+
+ Set_Is_Static_Expression (N, Stat);
+ end if;
+
+ -- In all cases, set the corresponding integer field
+
+ Set_Corresponding_Integer_Value (N, Cint);
+ end;
+ end if;
+
+ -- Now replace the actual type by the expected type as usual
+
+ Set_Etype (N, Typ);
+ Eval_Real_Literal (N);
+ end Resolve_Real_Literal;
+
+ -----------------------
+ -- Resolve_Reference --
+ -----------------------
+
+ procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
+ P : constant Node_Id := Prefix (N);
+
+ begin
+ -- Replace general access with specific type
+
+ if Ekind (Etype (N)) = E_Allocator_Type then
+ Set_Etype (N, Base_Type (Typ));
+ end if;
+
+ Resolve (P, Designated_Type (Etype (N)));
+
+ -- If we are taking the reference of a volatile entity, then treat it as
+ -- a potential modification of this entity. This is too conservative,
+ -- but necessary because remove side effects can cause transformations
+ -- of normal assignments into reference sequences that otherwise fail to
+ -- notice the modification.
+
+ if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
+ Note_Possible_Modification (P, Sure => False);
+ end if;
+ end Resolve_Reference;
+
+ --------------------------------
+ -- Resolve_Selected_Component --
+ --------------------------------
+
+ procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
+ Comp : Entity_Id;
+ Comp1 : Entity_Id := Empty; -- prevent junk warning
+ P : constant Node_Id := Prefix (N);
+ S : constant Node_Id := Selector_Name (N);
+ T : Entity_Id := Etype (P);
+ I : Interp_Index;
+ I1 : Interp_Index := 0; -- prevent junk warning
+ It : Interp;
+ It1 : Interp;
+ Found : Boolean;
+
+ function Init_Component return Boolean;
+ -- Check whether this is the initialization of a component within an
+ -- init proc (by assignment or call to another init proc). If true,
+ -- there is no need for a discriminant check.
+
+ --------------------
+ -- Init_Component --
+ --------------------
+
+ function Init_Component return Boolean is
+ begin
+ return Inside_Init_Proc
+ and then Nkind (Prefix (N)) = N_Identifier
+ and then Chars (Prefix (N)) = Name_uInit
+ and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
+ end Init_Component;
+
+ -- Start of processing for Resolve_Selected_Component
+
+ begin
+ if Is_Overloaded (P) then
+
+ -- Use the context type to select the prefix that has a selector
+ -- of the correct name and type.
+
+ Found := False;
+ Get_First_Interp (P, I, It);
+
+ Search : while Present (It.Typ) loop
+ if Is_Access_Type (It.Typ) then
+ T := Designated_Type (It.Typ);
+ else
+ T := It.Typ;
+ end if;
+
+ -- Locate selected component. For a private prefix the selector
+ -- can denote a discriminant.
+
+ if Is_Record_Type (T) or else Is_Private_Type (T) then
+
+ -- The visible components of a class-wide type are those of
+ -- the root type.
+
+ if Is_Class_Wide_Type (T) then
+ T := Etype (T);
+ end if;
+
+ Comp := First_Entity (T);
+ while Present (Comp) loop
+ if Chars (Comp) = Chars (S)
+ and then Covers (Etype (Comp), Typ)
+ then
+ if not Found then
+ Found := True;
+ I1 := I;
+ It1 := It;
+ Comp1 := Comp;
+
+ else
+ It := Disambiguate (P, I1, I, Any_Type);
+
+ if It = No_Interp then
+ Error_Msg_N
+ ("ambiguous prefix for selected component", N);
+ Set_Etype (N, Typ);
+ return;
+
+ else
+ It1 := It;
+
+ -- There may be an implicit dereference. Retrieve
+ -- designated record type.
+
+ if Is_Access_Type (It1.Typ) then
+ T := Designated_Type (It1.Typ);
+ else
+ T := It1.Typ;
+ end if;
+
+ if Scope (Comp1) /= T then
+
+ -- Resolution chooses the new interpretation.
+ -- Find the component with the right name.
+
+ Comp1 := First_Entity (T);
+ while Present (Comp1)
+ and then Chars (Comp1) /= Chars (S)
+ loop
+ Comp1 := Next_Entity (Comp1);
+ end loop;
+ end if;
+
+ exit Search;
+ end if;
+ end if;
+ end if;
+
+ Comp := Next_Entity (Comp);
+ end loop;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop Search;
+
+ Resolve (P, It1.Typ);
+ Set_Etype (N, Typ);
+ Set_Entity_With_Checks (S, Comp1);
+
+ else
+ -- Resolve prefix with its type
+
+ Resolve (P, T);
+ end if;
+
+ -- Generate cross-reference. We needed to wait until full overloading
+ -- resolution was complete to do this, since otherwise we can't tell if
+ -- we are an lvalue or not.
+
+ if May_Be_Lvalue (N) then
+ Generate_Reference (Entity (S), S, 'm');
+ else
+ Generate_Reference (Entity (S), S, 'r');
+ end if;
+
+ -- If prefix is an access type, the node will be transformed into an
+ -- explicit dereference during expansion. The type of the node is the
+ -- designated type of that of the prefix.
+
+ if Is_Access_Type (Etype (P)) then
+ T := Designated_Type (Etype (P));
+ Check_Fully_Declared_Prefix (T, P);
+ else
+ T := Etype (P);
+ end if;
+
+ -- Set flag for expander if discriminant check required
+
+ if Has_Discriminants (T)
+ and then Ekind_In (Entity (S), E_Component, E_Discriminant)
+ and then Present (Original_Record_Component (Entity (S)))
+ and then Ekind (Original_Record_Component (Entity (S))) = E_Component
+ and then not Discriminant_Checks_Suppressed (T)
+ and then not Init_Component
+ then
+ Set_Do_Discriminant_Check (N);
+ end if;
+
+ if Ekind (Entity (S)) = E_Void then
+ Error_Msg_N ("premature use of component", S);
+ end if;
+
+ -- If the prefix is a record conversion, this may be a renamed
+ -- discriminant whose bounds differ from those of the original
+ -- one, so we must ensure that a range check is performed.
+
+ if Nkind (P) = N_Type_Conversion
+ and then Ekind (Entity (S)) = E_Discriminant
+ and then Is_Discrete_Type (Typ)
+ then
+ Set_Etype (N, Base_Type (Typ));
+ end if;
+
+ -- Note: No Eval processing is required, because the prefix is of a
+ -- record type, or protected type, and neither can possibly be static.
+
+ -- If the array type is atomic, and is packed, and we are in a left side
+ -- context, then this is worth a warning, since we have a situation
+ -- where the access to the component may cause extra read/writes of the
+ -- atomic array object, which could be considered unexpected.
+
+ if Nkind (N) = N_Selected_Component
+ and then (Is_Atomic (T)
+ or else (Is_Entity_Name (Prefix (N))
+ and then Is_Atomic (Entity (Prefix (N)))))
+ and then Is_Packed (T)
+ and then Is_LHS (N) = Yes
+ then
+ Error_Msg_N
+ ("??assignment to component of packed atomic record", Prefix (N));
+ Error_Msg_N
+ ("\??may cause unexpected accesses to atomic object", Prefix (N));
+ end if;
+
+ Analyze_Dimension (N);
+ end Resolve_Selected_Component;
+
+ -------------------
+ -- Resolve_Shift --
+ -------------------
+
+ procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
+ B_Typ : constant Entity_Id := Base_Type (Typ);
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+
+ begin
+ -- We do the resolution using the base type, because intermediate values
+ -- in expressions always are of the base type, not a subtype of it.
+
+ Resolve (L, B_Typ);
+ Resolve (R, Standard_Natural);
+
+ Check_Unset_Reference (L);
+ Check_Unset_Reference (R);
+
+ Set_Etype (N, B_Typ);
+ Generate_Operator_Reference (N, B_Typ);
+ Eval_Shift (N);
+ end Resolve_Shift;
+
+ ---------------------------
+ -- Resolve_Short_Circuit --
+ ---------------------------
+
+ procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
+ B_Typ : constant Entity_Id := Base_Type (Typ);
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+
+ begin
+ -- Ensure all actions associated with the left operand (e.g.
+ -- finalization of transient controlled objects) are fully evaluated
+ -- locally within an expression with actions. This is particularly
+ -- helpful for coverage analysis. However this should not happen in
+ -- generics.
+
+ if Expander_Active then
+ declare
+ Reloc_L : constant Node_Id := Relocate_Node (L);
+ begin
+ Save_Interps (Old_N => L, New_N => Reloc_L);
+
+ Rewrite (L,
+ Make_Expression_With_Actions (Sloc (L),
+ Actions => New_List,
+ Expression => Reloc_L));
+
+ -- Set Comes_From_Source on L to preserve warnings for unset
+ -- reference.
+
+ Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
+ end;
+ end if;
+
+ Resolve (L, B_Typ);
+ Resolve (R, B_Typ);
+
+ -- Check for issuing warning for always False assert/check, this happens
+ -- when assertions are turned off, in which case the pragma Assert/Check
+ -- was transformed into:
+
+ -- if False and then <condition> then ...
+
+ -- and we detect this pattern
+
+ if Warn_On_Assertion_Failure
+ and then Is_Entity_Name (R)
+ and then Entity (R) = Standard_False
+ and then Nkind (Parent (N)) = N_If_Statement
+ and then Nkind (N) = N_And_Then
+ and then Is_Entity_Name (L)
+ and then Entity (L) = Standard_False
+ then
+ declare
+ Orig : constant Node_Id := Original_Node (Parent (N));
+
+ begin
+ -- Special handling of Asssert pragma
+
+ if Nkind (Orig) = N_Pragma
+ and then Pragma_Name (Orig) = Name_Assert
+ then
+ declare
+ Expr : constant Node_Id :=
+ Original_Node
+ (Expression
+ (First (Pragma_Argument_Associations (Orig))));
+
+ begin
+ -- Don't warn if original condition is explicit False,
+ -- since obviously the failure is expected in this case.
+
+ if Is_Entity_Name (Expr)
+ and then Entity (Expr) = Standard_False
+ then
+ null;
+
+ -- Issue warning. We do not want the deletion of the
+ -- IF/AND-THEN to take this message with it. We achieve this
+ -- by making sure that the expanded code points to the Sloc
+ -- of the expression, not the original pragma.
+
+ else
+ -- Note: Use Error_Msg_F here rather than Error_Msg_N.
+ -- The source location of the expression is not usually
+ -- the best choice here. For example, it gets located on
+ -- the last AND keyword in a chain of boolean expressiond
+ -- AND'ed together. It is best to put the message on the
+ -- first character of the assertion, which is the effect
+ -- of the First_Node call here.
+
+ Error_Msg_F
+ ("?A?assertion would fail at run time!",
+ Expression
+ (First (Pragma_Argument_Associations (Orig))));
+ end if;
+ end;
+
+ -- Similar processing for Check pragma
+
+ elsif Nkind (Orig) = N_Pragma
+ and then Pragma_Name (Orig) = Name_Check
+ then
+ -- Don't want to warn if original condition is explicit False
+
+ declare
+ Expr : constant Node_Id :=
+ Original_Node
+ (Expression
+ (Next (First (Pragma_Argument_Associations (Orig)))));
+ begin
+ if Is_Entity_Name (Expr)
+ and then Entity (Expr) = Standard_False
+ then
+ null;
+
+ -- Post warning
+
+ else
+ -- Again use Error_Msg_F rather than Error_Msg_N, see
+ -- comment above for an explanation of why we do this.
+
+ Error_Msg_F
+ ("?A?check would fail at run time!",
+ Expression
+ (Last (Pragma_Argument_Associations (Orig))));
+ end if;
+ end;
+ end if;
+ end;
+ end if;
+
+ -- Continue with processing of short circuit
+
+ Check_Unset_Reference (L);
+ Check_Unset_Reference (R);
+
+ Set_Etype (N, B_Typ);
+ Eval_Short_Circuit (N);
+ end Resolve_Short_Circuit;
+
+ -------------------
+ -- Resolve_Slice --
+ -------------------
+
+ procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
+ Drange : constant Node_Id := Discrete_Range (N);
+ Name : constant Node_Id := Prefix (N);
+ Array_Type : Entity_Id := Empty;
+ Dexpr : Node_Id := Empty;
+ Index_Type : Entity_Id;
+
+ begin
+ if Is_Overloaded (Name) then
+
+ -- Use the context type to select the prefix that yields the correct
+ -- array type.
+
+ declare
+ I : Interp_Index;
+ I1 : Interp_Index := 0;
+ It : Interp;
+ P : constant Node_Id := Prefix (N);
+ Found : Boolean := False;
+
+ begin
+ Get_First_Interp (P, I, It);
+ while Present (It.Typ) loop
+ if (Is_Array_Type (It.Typ)
+ and then Covers (Typ, It.Typ))
+ or else (Is_Access_Type (It.Typ)
+ and then Is_Array_Type (Designated_Type (It.Typ))
+ and then Covers (Typ, Designated_Type (It.Typ)))
+ then
+ if Found then
+ It := Disambiguate (P, I1, I, Any_Type);
+
+ if It = No_Interp then
+ Error_Msg_N ("ambiguous prefix for slicing", N);
+ Set_Etype (N, Typ);
+ return;
+ else
+ Found := True;
+ Array_Type := It.Typ;
+ I1 := I;
+ end if;
+ else
+ Found := True;
+ Array_Type := It.Typ;
+ I1 := I;
+ end if;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+
+ else
+ Array_Type := Etype (Name);
+ end if;
+
+ Resolve (Name, Array_Type);
+
+ if Is_Access_Type (Array_Type) then
+ Apply_Access_Check (N);
+ Array_Type := Designated_Type (Array_Type);
+
+ -- If the prefix is an access to an unconstrained array, we must use
+ -- the actual subtype of the object to perform the index checks. The
+ -- object denoted by the prefix is implicit in the node, so we build
+ -- an explicit representation for it in order to compute the actual
+ -- subtype.
+
+ if not Is_Constrained (Array_Type) then
+ Remove_Side_Effects (Prefix (N));
+
+ declare
+ Obj : constant Node_Id :=
+ Make_Explicit_Dereference (Sloc (N),
+ Prefix => New_Copy_Tree (Prefix (N)));
+ begin
+ Set_Etype (Obj, Array_Type);
+ Set_Parent (Obj, Parent (N));
+ Array_Type := Get_Actual_Subtype (Obj);
+ end;
+ end if;
+
+ elsif Is_Entity_Name (Name)
+ or else Nkind (Name) = N_Explicit_Dereference
+ or else (Nkind (Name) = N_Function_Call
+ and then not Is_Constrained (Etype (Name)))
+ then
+ Array_Type := Get_Actual_Subtype (Name);
+
+ -- If the name is a selected component that depends on discriminants,
+ -- build an actual subtype for it. This can happen only when the name
+ -- itself is overloaded; otherwise the actual subtype is created when
+ -- the selected component is analyzed.
+
+ elsif Nkind (Name) = N_Selected_Component
+ and then Full_Analysis
+ and then Depends_On_Discriminant (First_Index (Array_Type))
+ then
+ declare
+ Act_Decl : constant Node_Id :=
+ Build_Actual_Subtype_Of_Component (Array_Type, Name);
+ begin
+ Insert_Action (N, Act_Decl);
+ Array_Type := Defining_Identifier (Act_Decl);
+ end;
+
+ -- Maybe this should just be "else", instead of checking for the
+ -- specific case of slice??? This is needed for the case where the
+ -- prefix is an Image attribute, which gets expanded to a slice, and so
+ -- has a constrained subtype which we want to use for the slice range
+ -- check applied below (the range check won't get done if the
+ -- unconstrained subtype of the 'Image is used).
+
+ elsif Nkind (Name) = N_Slice then
+ Array_Type := Etype (Name);
+ end if;
+
+ -- Obtain the type of the array index
+
+ if Ekind (Array_Type) = E_String_Literal_Subtype then
+ Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
+ else
+ Index_Type := Etype (First_Index (Array_Type));
+ end if;
+
+ -- If name was overloaded, set slice type correctly now
+
+ Set_Etype (N, Array_Type);
+
+ -- Handle the generation of a range check that compares the array index
+ -- against the discrete_range. The check is not applied to internally
+ -- built nodes associated with the expansion of dispatch tables. Check
+ -- that Ada.Tags has already been loaded to avoid extra dependencies on
+ -- the unit.
+
+ if Tagged_Type_Expansion
+ and then RTU_Loaded (Ada_Tags)
+ and then Nkind (Prefix (N)) = N_Selected_Component
+ and then Present (Entity (Selector_Name (Prefix (N))))
+ and then Entity (Selector_Name (Prefix (N))) =
+ RTE_Record_Component (RE_Prims_Ptr)
+ then
+ null;
+
+ -- The discrete_range is specified by a subtype indication. Create a
+ -- shallow copy and inherit the type, parent and source location from
+ -- the discrete_range. This ensures that the range check is inserted
+ -- relative to the slice and that the runtime exception points to the
+ -- proper construct.
+
+ elsif Is_Entity_Name (Drange) then
+ Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
+
+ Set_Etype (Dexpr, Etype (Drange));
+ Set_Parent (Dexpr, Parent (Drange));
+ Set_Sloc (Dexpr, Sloc (Drange));
+
+ -- The discrete_range is a regular range. Resolve the bounds and remove
+ -- their side effects.
+
+ else
+ Resolve (Drange, Base_Type (Index_Type));
+
+ if Nkind (Drange) = N_Range then
+ Force_Evaluation (Low_Bound (Drange));
+ Force_Evaluation (High_Bound (Drange));
+
+ Dexpr := Drange;
+ end if;
+ end if;
+
+ if Present (Dexpr) then
+ Apply_Range_Check (Dexpr, Index_Type);
+ end if;
+
+ Set_Slice_Subtype (N);
+
+ -- Check bad use of type with predicates
+
+ if Has_Predicates (Etype (Drange)) then
+ Bad_Predicated_Subtype_Use
+ ("subtype& has predicate, not allowed in slice",
+ Drange, Etype (Drange));
+
+ -- Otherwise here is where we check suspicious indexes
+
+ elsif Nkind (Drange) = N_Range then
+ Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
+ Warn_On_Suspicious_Index (Name, High_Bound (Drange));
+ end if;
+
+ Analyze_Dimension (N);
+ Eval_Slice (N);
+ end Resolve_Slice;
+
+ ----------------------------
+ -- Resolve_String_Literal --
+ ----------------------------
+
+ procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
+ C_Typ : constant Entity_Id := Component_Type (Typ);
+ R_Typ : constant Entity_Id := Root_Type (C_Typ);
+ Loc : constant Source_Ptr := Sloc (N);
+ Str : constant String_Id := Strval (N);
+ Strlen : constant Nat := String_Length (Str);
+ Subtype_Id : Entity_Id;
+ Need_Check : Boolean;
+
+ begin
+ -- For a string appearing in a concatenation, defer creation of the
+ -- string_literal_subtype until the end of the resolution of the
+ -- concatenation, because the literal may be constant-folded away. This
+ -- is a useful optimization for long concatenation expressions.
+
+ -- If the string is an aggregate built for a single character (which
+ -- happens in a non-static context) or a is null string to which special
+ -- checks may apply, we build the subtype. Wide strings must also get a
+ -- string subtype if they come from a one character aggregate. Strings
+ -- generated by attributes might be static, but it is often hard to
+ -- determine whether the enclosing context is static, so we generate
+ -- subtypes for them as well, thus losing some rarer optimizations ???
+ -- Same for strings that come from a static conversion.
+
+ Need_Check :=
+ (Strlen = 0 and then Typ /= Standard_String)
+ or else Nkind (Parent (N)) /= N_Op_Concat
+ or else (N /= Left_Opnd (Parent (N))
+ and then N /= Right_Opnd (Parent (N)))
+ or else ((Typ = Standard_Wide_String
+ or else Typ = Standard_Wide_Wide_String)
+ and then Nkind (Original_Node (N)) /= N_String_Literal);
+
+ -- If the resolving type is itself a string literal subtype, we can just
+ -- reuse it, since there is no point in creating another.
+
+ if Ekind (Typ) = E_String_Literal_Subtype then
+ Subtype_Id := Typ;
+
+ elsif Nkind (Parent (N)) = N_Op_Concat
+ and then not Need_Check
+ and then not Nkind_In (Original_Node (N), N_Character_Literal,
+ N_Attribute_Reference,
+ N_Qualified_Expression,
+ N_Type_Conversion)
+ then
+ Subtype_Id := Typ;
+
+ -- Otherwise we must create a string literal subtype. Note that the
+ -- whole idea of string literal subtypes is simply to avoid the need
+ -- for building a full fledged array subtype for each literal.
+
+ else
+ Set_String_Literal_Subtype (N, Typ);
+ Subtype_Id := Etype (N);
+ end if;
+
+ if Nkind (Parent (N)) /= N_Op_Concat
+ or else Need_Check
+ then
+ Set_Etype (N, Subtype_Id);
+ Eval_String_Literal (N);
+ end if;
+
+ if Is_Limited_Composite (Typ)
+ or else Is_Private_Composite (Typ)
+ then
+ Error_Msg_N ("string literal not available for private array", N);
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- The validity of a null string has been checked in the call to
+ -- Eval_String_Literal.
+
+ if Strlen = 0 then
+ return;
+
+ -- Always accept string literal with component type Any_Character, which
+ -- occurs in error situations and in comparisons of literals, both of
+ -- which should accept all literals.
+
+ elsif R_Typ = Any_Character then
+ return;
+
+ -- If the type is bit-packed, then we always transform the string
+ -- literal into a full fledged aggregate.
+
+ elsif Is_Bit_Packed_Array (Typ) then
+ null;
+
+ -- Deal with cases of Wide_Wide_String, Wide_String, and String
+
+ else
+ -- For Standard.Wide_Wide_String, or any other type whose component
+ -- type is Standard.Wide_Wide_Character, we know that all the
+ -- characters in the string must be acceptable, since the parser
+ -- accepted the characters as valid character literals.
+
+ if R_Typ = Standard_Wide_Wide_Character then
+ null;
+
+ -- For the case of Standard.String, or any other type whose component
+ -- type is Standard.Character, we must make sure that there are no
+ -- wide characters in the string, i.e. that it is entirely composed
+ -- of characters in range of type Character.
+
+ -- If the string literal is the result of a static concatenation, the
+ -- test has already been performed on the components, and need not be
+ -- repeated.
+
+ elsif R_Typ = Standard_Character
+ and then Nkind (Original_Node (N)) /= N_Op_Concat
+ then
+ for J in 1 .. Strlen loop
+ if not In_Character_Range (Get_String_Char (Str, J)) then
+
+ -- If we are out of range, post error. This is one of the
+ -- very few places that we place the flag in the middle of
+ -- a token, right under the offending wide character. Not
+ -- quite clear if this is right wrt wide character encoding
+ -- sequences, but it's only an error message.
+
+ Error_Msg
+ ("literal out of range of type Standard.Character",
+ Source_Ptr (Int (Loc) + J));
+ return;
+ end if;
+ end loop;
+
+ -- For the case of Standard.Wide_String, or any other type whose
+ -- component type is Standard.Wide_Character, we must make sure that
+ -- there are no wide characters in the string, i.e. that it is
+ -- entirely composed of characters in range of type Wide_Character.
+
+ -- If the string literal is the result of a static concatenation,
+ -- the test has already been performed on the components, and need
+ -- not be repeated.
+
+ elsif R_Typ = Standard_Wide_Character
+ and then Nkind (Original_Node (N)) /= N_Op_Concat
+ then
+ for J in 1 .. Strlen loop
+ if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
+
+ -- If we are out of range, post error. This is one of the
+ -- very few places that we place the flag in the middle of
+ -- a token, right under the offending wide character.
+
+ -- This is not quite right, because characters in general
+ -- will take more than one character position ???
+
+ Error_Msg
+ ("literal out of range of type Standard.Wide_Character",
+ Source_Ptr (Int (Loc) + J));
+ return;
+ end if;
+ end loop;
+
+ -- If the root type is not a standard character, then we will convert
+ -- the string into an aggregate and will let the aggregate code do
+ -- the checking. Standard Wide_Wide_Character is also OK here.
+
+ else
+ null;
+ end if;
+
+ -- See if the component type of the array corresponding to the string
+ -- has compile time known bounds. If yes we can directly check
+ -- whether the evaluation of the string will raise constraint error.
+ -- Otherwise we need to transform the string literal into the
+ -- corresponding character aggregate and let the aggregate code do
+ -- the checking.
+
+ if Is_Standard_Character_Type (R_Typ) then
+
+ -- Check for the case of full range, where we are definitely OK
+
+ if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
+ return;
+ end if;
+
+ -- Here the range is not the complete base type range, so check
+
+ declare
+ Comp_Typ_Lo : constant Node_Id :=
+ Type_Low_Bound (Component_Type (Typ));
+ Comp_Typ_Hi : constant Node_Id :=
+ Type_High_Bound (Component_Type (Typ));
+
+ Char_Val : Uint;
+
+ begin
+ if Compile_Time_Known_Value (Comp_Typ_Lo)
+ and then Compile_Time_Known_Value (Comp_Typ_Hi)
+ then
+ for J in 1 .. Strlen loop
+ Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
+
+ if Char_Val < Expr_Value (Comp_Typ_Lo)
+ or else Char_Val > Expr_Value (Comp_Typ_Hi)
+ then
+ Apply_Compile_Time_Constraint_Error
+ (N, "character out of range??",
+ CE_Range_Check_Failed,
+ Loc => Source_Ptr (Int (Loc) + J));
+ end if;
+ end loop;
+
+ return;
+ end if;
+ end;
+ end if;
+ end if;
+
+ -- If we got here we meed to transform the string literal into the
+ -- equivalent qualified positional array aggregate. This is rather
+ -- heavy artillery for this situation, but it is hard work to avoid.
+
+ declare
+ Lits : constant List_Id := New_List;
+ P : Source_Ptr := Loc + 1;
+ C : Char_Code;
+
+ begin
+ -- Build the character literals, we give them source locations that
+ -- correspond to the string positions, which is a bit tricky given
+ -- the possible presence of wide character escape sequences.
+
+ for J in 1 .. Strlen loop
+ C := Get_String_Char (Str, J);
+ Set_Character_Literal_Name (C);
+
+ Append_To (Lits,
+ Make_Character_Literal (P,
+ Chars => Name_Find,
+ Char_Literal_Value => UI_From_CC (C)));
+
+ if In_Character_Range (C) then
+ P := P + 1;
+
+ -- Should we have a call to Skip_Wide here ???
+
+ -- ??? else
+ -- Skip_Wide (P);
+
+ end if;
+ end loop;
+
+ Rewrite (N,
+ Make_Qualified_Expression (Loc,
+ Subtype_Mark => New_Occurrence_Of (Typ, Loc),
+ Expression =>
+ Make_Aggregate (Loc, Expressions => Lits)));
+
+ Analyze_And_Resolve (N, Typ);
+ end;
+ end Resolve_String_Literal;
+
+ -----------------------------
+ -- Resolve_Type_Conversion --
+ -----------------------------
+
+ procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
+ Conv_OK : constant Boolean := Conversion_OK (N);
+ Operand : constant Node_Id := Expression (N);
+ Operand_Typ : constant Entity_Id := Etype (Operand);
+ Target_Typ : constant Entity_Id := Etype (N);
+ Rop : Node_Id;
+ Orig_N : Node_Id;
+ Orig_T : Node_Id;
+
+ Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
+ -- Set to False to suppress cases where we want to suppress the test
+ -- for redundancy to avoid possible false positives on this warning.
+
+ begin
+ if not Conv_OK
+ and then not Valid_Conversion (N, Target_Typ, Operand)
+ then
+ return;
+ end if;
+
+ -- If the Operand Etype is Universal_Fixed, then the conversion is
+ -- never redundant. We need this check because by the time we have
+ -- finished the rather complex transformation, the conversion looks
+ -- redundant when it is not.
+
+ if Operand_Typ = Universal_Fixed then
+ Test_Redundant := False;
+
+ -- If the operand is marked as Any_Fixed, then special processing is
+ -- required. This is also a case where we suppress the test for a
+ -- redundant conversion, since most certainly it is not redundant.
+
+ elsif Operand_Typ = Any_Fixed then
+ Test_Redundant := False;
+
+ -- Mixed-mode operation involving a literal. Context must be a fixed
+ -- type which is applied to the literal subsequently.
+
+ if Is_Fixed_Point_Type (Typ) then
+ Set_Etype (Operand, Universal_Real);
+
+ elsif Is_Numeric_Type (Typ)
+ and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
+ and then (Etype (Right_Opnd (Operand)) = Universal_Real
+ or else
+ Etype (Left_Opnd (Operand)) = Universal_Real)
+ then
+ -- Return if expression is ambiguous
+
+ if Unique_Fixed_Point_Type (N) = Any_Type then
+ return;
+
+ -- If nothing else, the available fixed type is Duration
+
+ else
+ Set_Etype (Operand, Standard_Duration);
+ end if;
+
+ -- Resolve the real operand with largest available precision
+
+ if Etype (Right_Opnd (Operand)) = Universal_Real then
+ Rop := New_Copy_Tree (Right_Opnd (Operand));
+ else
+ Rop := New_Copy_Tree (Left_Opnd (Operand));
+ end if;
+
+ Resolve (Rop, Universal_Real);
+
+ -- If the operand is a literal (it could be a non-static and
+ -- illegal exponentiation) check whether the use of Duration
+ -- is potentially inaccurate.
+
+ if Nkind (Rop) = N_Real_Literal
+ and then Realval (Rop) /= Ureal_0
+ and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
+ then
+ Error_Msg_N
+ ("??universal real operand can only "
+ & "be interpreted as Duration!", Rop);
+ Error_Msg_N
+ ("\??precision will be lost in the conversion!", Rop);
+ end if;
+
+ elsif Is_Numeric_Type (Typ)
+ and then Nkind (Operand) in N_Op
+ and then Unique_Fixed_Point_Type (N) /= Any_Type
+ then
+ Set_Etype (Operand, Standard_Duration);
+
+ else
+ Error_Msg_N ("invalid context for mixed mode operation", N);
+ Set_Etype (Operand, Any_Type);
+ return;
+ end if;
+ end if;
+
+ Resolve (Operand);
+
+ -- In SPARK, a type conversion between array types should be restricted
+ -- to types which have matching static bounds.
+
+ -- Protect call to Matching_Static_Array_Bounds to avoid costly
+ -- operation if not needed.
+
+ if Restriction_Check_Required (SPARK_05)
+ and then Is_Array_Type (Target_Typ)
+ and then Is_Array_Type (Operand_Typ)
+ and then Operand_Typ /= Any_Composite -- or else Operand in error
+ and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
+ then
+ Check_SPARK_Restriction
+ ("array types should have matching static bounds", N);
+ end if;
+
+ -- In formal mode, the operand of an ancestor type conversion must be an
+ -- object (not an expression).
+
+ if Is_Tagged_Type (Target_Typ)
+ and then not Is_Class_Wide_Type (Target_Typ)
+ and then Is_Tagged_Type (Operand_Typ)
+ and then not Is_Class_Wide_Type (Operand_Typ)
+ and then Is_Ancestor (Target_Typ, Operand_Typ)
+ and then not Is_SPARK_Object_Reference (Operand)
+ then
+ Check_SPARK_Restriction ("object required", Operand);
+ end if;
+
+ Analyze_Dimension (N);
+
+ -- Note: we do the Eval_Type_Conversion call before applying the
+ -- required checks for a subtype conversion. This is important, since
+ -- both are prepared under certain circumstances to change the type
+ -- conversion to a constraint error node, but in the case of
+ -- Eval_Type_Conversion this may reflect an illegality in the static
+ -- case, and we would miss the illegality (getting only a warning
+ -- message), if we applied the type conversion checks first.
+
+ Eval_Type_Conversion (N);
+
+ -- Even when evaluation is not possible, we may be able to simplify the
+ -- conversion or its expression. This needs to be done before applying
+ -- checks, since otherwise the checks may use the original expression
+ -- and defeat the simplifications. This is specifically the case for
+ -- elimination of the floating-point Truncation attribute in
+ -- float-to-int conversions.
+
+ Simplify_Type_Conversion (N);
+
+ -- If after evaluation we still have a type conversion, then we may need
+ -- to apply checks required for a subtype conversion.
+
+ -- Skip these type conversion checks if universal fixed operands
+ -- operands involved, since range checks are handled separately for
+ -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
+
+ if Nkind (N) = N_Type_Conversion
+ and then not Is_Generic_Type (Root_Type (Target_Typ))
+ and then Target_Typ /= Universal_Fixed
+ and then Operand_Typ /= Universal_Fixed
+ then
+ Apply_Type_Conversion_Checks (N);
+ end if;
+
+ -- Issue warning for conversion of simple object to its own type. We
+ -- have to test the original nodes, since they may have been rewritten
+ -- by various optimizations.
+
+ Orig_N := Original_Node (N);
+
+ -- Here we test for a redundant conversion if the warning mode is
+ -- active (and was not locally reset), and we have a type conversion
+ -- from source not appearing in a generic instance.
+
+ if Test_Redundant
+ and then Nkind (Orig_N) = N_Type_Conversion
+ and then Comes_From_Source (Orig_N)
+ and then not In_Instance
+ then
+ Orig_N := Original_Node (Expression (Orig_N));
+ Orig_T := Target_Typ;
+
+ -- If the node is part of a larger expression, the Target_Type
+ -- may not be the original type of the node if the context is a
+ -- condition. Recover original type to see if conversion is needed.
+
+ if Is_Boolean_Type (Orig_T)
+ and then Nkind (Parent (N)) in N_Op
+ then
+ Orig_T := Etype (Parent (N));
+ end if;
+
+ -- If we have an entity name, then give the warning if the entity
+ -- is the right type, or if it is a loop parameter covered by the
+ -- original type (that's needed because loop parameters have an
+ -- odd subtype coming from the bounds).
+
+ if (Is_Entity_Name (Orig_N)
+ and then
+ (Etype (Entity (Orig_N)) = Orig_T
+ or else
+ (Ekind (Entity (Orig_N)) = E_Loop_Parameter
+ and then Covers (Orig_T, Etype (Entity (Orig_N))))))
+
+ -- If not an entity, then type of expression must match
+
+ or else Etype (Orig_N) = Orig_T
+ then
+ -- One more check, do not give warning if the analyzed conversion
+ -- has an expression with non-static bounds, and the bounds of the
+ -- target are static. This avoids junk warnings in cases where the
+ -- conversion is necessary to establish staticness, for example in
+ -- a case statement.
+
+ if not Is_OK_Static_Subtype (Operand_Typ)
+ and then Is_OK_Static_Subtype (Target_Typ)
+ then
+ null;
+
+ -- Finally, if this type conversion occurs in a context requiring
+ -- a prefix, and the expression is a qualified expression then the
+ -- type conversion is not redundant, since a qualified expression
+ -- is not a prefix, whereas a type conversion is. For example, "X
+ -- := T'(Funx(...)).Y;" is illegal because a selected component
+ -- requires a prefix, but a type conversion makes it legal: "X :=
+ -- T(T'(Funx(...))).Y;"
+
+ -- In Ada 2012, a qualified expression is a name, so this idiom is
+ -- no longer needed, but we still suppress the warning because it
+ -- seems unfriendly for warnings to pop up when you switch to the
+ -- newer language version.
+
+ elsif Nkind (Orig_N) = N_Qualified_Expression
+ and then Nkind_In (Parent (N), N_Attribute_Reference,
+ N_Indexed_Component,
+ N_Selected_Component,
+ N_Slice,
+ N_Explicit_Dereference)
+ then
+ null;
+
+ -- Never warn on conversion to Long_Long_Integer'Base since
+ -- that is most likely an artifact of the extended overflow
+ -- checking and comes from complex expanded code.
+
+ elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
+ null;
+
+ -- Here we give the redundant conversion warning. If it is an
+ -- entity, give the name of the entity in the message. If not,
+ -- just mention the expression.
+
+ -- Shoudn't we test Warn_On_Redundant_Constructs here ???
+
+ else
+ if Is_Entity_Name (Orig_N) then
+ Error_Msg_Node_2 := Orig_T;
+ Error_Msg_NE -- CODEFIX
+ ("??redundant conversion, & is of type &!",
+ N, Entity (Orig_N));
+ else
+ Error_Msg_NE
+ ("??redundant conversion, expression is of type&!",
+ N, Orig_T);
+ end if;
+ end if;
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
+ -- No need to perform any interface conversion if the type of the
+ -- expression coincides with the target type.
+
+ if Ada_Version >= Ada_2005
+ and then Expander_Active
+ and then Operand_Typ /= Target_Typ
+ then
+ declare
+ Opnd : Entity_Id := Operand_Typ;
+ Target : Entity_Id := Target_Typ;
+
+ begin
+ if Is_Access_Type (Opnd) then
+ Opnd := Designated_Type (Opnd);
+ end if;
+
+ if Is_Access_Type (Target_Typ) then
+ Target := Designated_Type (Target);
+ end if;
+
+ if Opnd = Target then
+ null;
+
+ -- Conversion from interface type
+
+ elsif Is_Interface (Opnd) then
+
+ -- Ada 2005 (AI-217): Handle entities from limited views
+
+ if From_Limited_With (Opnd) then
+ Error_Msg_Qual_Level := 99;
+ Error_Msg_NE -- CODEFIX
+ ("missing WITH clause on package &", N,
+ Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
+ Error_Msg_N
+ ("type conversions require visibility of the full view",
+ N);
+
+ elsif From_Limited_With (Target)
+ and then not
+ (Is_Access_Type (Target_Typ)
+ and then Present (Non_Limited_View (Etype (Target))))
+ then
+ Error_Msg_Qual_Level := 99;
+ Error_Msg_NE -- CODEFIX
+ ("missing WITH clause on package &", N,
+ Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
+ Error_Msg_N
+ ("type conversions require visibility of the full view",
+ N);
+
+ else
+ Expand_Interface_Conversion (N);
+ end if;
+
+ -- Conversion to interface type
+
+ elsif Is_Interface (Target) then
+
+ -- Handle subtypes
+
+ if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
+ Opnd := Etype (Opnd);
+ end if;
+
+ if Is_Class_Wide_Type (Opnd)
+ or else Interface_Present_In_Ancestor
+ (Typ => Opnd,
+ Iface => Target)
+ then
+ Expand_Interface_Conversion (N);
+ else
+ Error_Msg_Name_1 := Chars (Etype (Target));
+ Error_Msg_Name_2 := Chars (Opnd);
+ Error_Msg_N
+ ("wrong interface conversion (% is not a progenitor "
+ & "of %)", N);
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- Ada 2012: if target type has predicates, the result requires a
+ -- predicate check. If the context is a call to another predicate
+ -- check we must prevent infinite recursion.
+
+ if Has_Predicates (Target_Typ) then
+ if Nkind (Parent (N)) = N_Function_Call
+ and then Present (Name (Parent (N)))
+ and then (Is_Predicate_Function (Entity (Name (Parent (N))))
+ or else
+ Is_Predicate_Function_M (Entity (Name (Parent (N)))))
+ then
+ null;
+
+ else
+ Apply_Predicate_Check (N, Target_Typ);
+ end if;
+ end if;
+ end Resolve_Type_Conversion;
+
+ ----------------------
+ -- Resolve_Unary_Op --
+ ----------------------
+
+ procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
+ B_Typ : constant Entity_Id := Base_Type (Typ);
+ R : constant Node_Id := Right_Opnd (N);
+ OK : Boolean;
+ Lo : Uint;
+ Hi : Uint;
+
+ begin
+ if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
+ Error_Msg_Name_1 := Chars (Typ);
+ Check_SPARK_Restriction
+ ("unary operator not defined for modular type%", N);
+ end if;
+
+ -- Deal with intrinsic unary operators
+
+ if Comes_From_Source (N)
+ and then Ekind (Entity (N)) = E_Function
+ and then Is_Imported (Entity (N))
+ and then Is_Intrinsic_Subprogram (Entity (N))
+ then
+ Resolve_Intrinsic_Unary_Operator (N, Typ);
+ return;
+ end if;
+
+ -- Deal with universal cases
+
+ if Etype (R) = Universal_Integer
+ or else
+ Etype (R) = Universal_Real
+ then
+ Check_For_Visible_Operator (N, B_Typ);
+ end if;
+
+ Set_Etype (N, B_Typ);
+ Resolve (R, B_Typ);
+
+ -- Generate warning for expressions like abs (x mod 2)
+
+ if Warn_On_Redundant_Constructs
+ and then Nkind (N) = N_Op_Abs
+ then
+ Determine_Range (Right_Opnd (N), OK, Lo, Hi);
+
+ if OK and then Hi >= Lo and then Lo >= 0 then
+ Error_Msg_N -- CODEFIX
+ ("?r?abs applied to known non-negative value has no effect", N);
+ end if;
+ end if;
+
+ -- Deal with reference generation
+
+ Check_Unset_Reference (R);
+ Generate_Operator_Reference (N, B_Typ);
+ Analyze_Dimension (N);
+ Eval_Unary_Op (N);
+
+ -- Set overflow checking bit. Much cleverer code needed here eventually
+ -- and perhaps the Resolve routines should be separated for the various
+ -- arithmetic operations, since they will need different processing ???
+
+ if Nkind (N) in N_Op then
+ if not Overflow_Checks_Suppressed (Etype (N)) then
+ Enable_Overflow_Check (N);
+ end if;
+ end if;
+
+ -- Generate warning for expressions like -5 mod 3 for integers. No need
+ -- to worry in the floating-point case, since parens do not affect the
+ -- result so there is no point in giving in a warning.
+
+ declare
+ Norig : constant Node_Id := Original_Node (N);
+ Rorig : Node_Id;
+ Val : Uint;
+ HB : Uint;
+ LB : Uint;
+ Lval : Uint;
+ Opnd : Node_Id;
+
+ begin
+ if Warn_On_Questionable_Missing_Parens
+ and then Comes_From_Source (Norig)
+ and then Is_Integer_Type (Typ)
+ and then Nkind (Norig) = N_Op_Minus
+ then
+ Rorig := Original_Node (Right_Opnd (Norig));
+
+ -- We are looking for cases where the right operand is not
+ -- parenthesized, and is a binary operator, multiply, divide, or
+ -- mod. These are the cases where the grouping can affect results.
+
+ if Paren_Count (Rorig) = 0
+ and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
+ then
+ -- For mod, we always give the warning, since the value is
+ -- affected by the parenthesization (e.g. (-5) mod 315 /=
+ -- -(5 mod 315)). But for the other cases, the only concern is
+ -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
+ -- overflows, but (-2) * 64 does not). So we try to give the
+ -- message only when overflow is possible.
+
+ if Nkind (Rorig) /= N_Op_Mod
+ and then Compile_Time_Known_Value (R)
+ then
+ Val := Expr_Value (R);
+
+ if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
+ HB := Expr_Value (Type_High_Bound (Typ));
+ else
+ HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
+ end if;
+
+ if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
+ LB := Expr_Value (Type_Low_Bound (Typ));
+ else
+ LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
+ end if;
+
+ -- Note that the test below is deliberately excluding the
+ -- largest negative number, since that is a potentially
+ -- troublesome case (e.g. -2 * x, where the result is the
+ -- largest negative integer has an overflow with 2 * x).
+
+ if Val > LB and then Val <= HB then
+ return;
+ end if;
+ end if;
+
+ -- For the multiplication case, the only case we have to worry
+ -- about is when (-a)*b is exactly the largest negative number
+ -- so that -(a*b) can cause overflow. This can only happen if
+ -- a is a power of 2, and more generally if any operand is a
+ -- constant that is not a power of 2, then the parentheses
+ -- cannot affect whether overflow occurs. We only bother to
+ -- test the left most operand
+
+ -- Loop looking at left operands for one that has known value
+
+ Opnd := Rorig;
+ Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
+ if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
+ Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
+
+ -- Operand value of 0 or 1 skips warning
+
+ if Lval <= 1 then
+ return;
+
+ -- Otherwise check power of 2, if power of 2, warn, if
+ -- anything else, skip warning.
+
+ else
+ while Lval /= 2 loop
+ if Lval mod 2 = 1 then
+ return;
+ else
+ Lval := Lval / 2;
+ end if;
+ end loop;
+
+ exit Opnd_Loop;
+ end if;
+ end if;
+
+ -- Keep looking at left operands
+
+ Opnd := Left_Opnd (Opnd);
+ end loop Opnd_Loop;
+
+ -- For rem or "/" we can only have a problematic situation
+ -- if the divisor has a value of minus one or one. Otherwise
+ -- overflow is impossible (divisor > 1) or we have a case of
+ -- division by zero in any case.
+
+ if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
+ and then Compile_Time_Known_Value (Right_Opnd (Rorig))
+ and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
+ then
+ return;
+ end if;
+
+ -- If we fall through warning should be issued
+
+ -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
+
+ Error_Msg_N
+ ("??unary minus expression should be parenthesized here!", N);
+ end if;
+ end if;
+ end;
+ end Resolve_Unary_Op;
+
+ ----------------------------------
+ -- Resolve_Unchecked_Expression --
+ ----------------------------------
+
+ procedure Resolve_Unchecked_Expression
+ (N : Node_Id;
+ Typ : Entity_Id)
+ is
+ begin
+ Resolve (Expression (N), Typ, Suppress => All_Checks);
+ Set_Etype (N, Typ);
+ end Resolve_Unchecked_Expression;
+
+ ---------------------------------------
+ -- Resolve_Unchecked_Type_Conversion --
+ ---------------------------------------
+
+ procedure Resolve_Unchecked_Type_Conversion
+ (N : Node_Id;
+ Typ : Entity_Id)
+ is
+ pragma Warnings (Off, Typ);
+
+ Operand : constant Node_Id := Expression (N);
+ Opnd_Type : constant Entity_Id := Etype (Operand);
+
+ begin
+ -- Resolve operand using its own type
+
+ Resolve (Operand, Opnd_Type);
+ Analyze_Dimension (N);
+ Eval_Unchecked_Conversion (N);
+ end Resolve_Unchecked_Type_Conversion;
+
+ ------------------------------
+ -- Rewrite_Operator_As_Call --
+ ------------------------------
+
+ procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Actuals : constant List_Id := New_List;
+ New_N : Node_Id;
+
+ begin
+ if Nkind (N) in N_Binary_Op then
+ Append (Left_Opnd (N), Actuals);
+ end if;
+
+ Append (Right_Opnd (N), Actuals);
+
+ New_N :=
+ Make_Function_Call (Sloc => Loc,
+ Name => New_Occurrence_Of (Nam, Loc),
+ Parameter_Associations => Actuals);
+
+ Preserve_Comes_From_Source (New_N, N);
+ Preserve_Comes_From_Source (Name (New_N), N);
+ Rewrite (N, New_N);
+ Set_Etype (N, Etype (Nam));
+ end Rewrite_Operator_As_Call;
+
+ ------------------------------
+ -- Rewrite_Renamed_Operator --
+ ------------------------------
+
+ procedure Rewrite_Renamed_Operator
+ (N : Node_Id;
+ Op : Entity_Id;
+ Typ : Entity_Id)
+ is
+ Nam : constant Name_Id := Chars (Op);
+ Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
+ Op_Node : Node_Id;
+
+ begin
+ -- Do not perform this transformation within a pre/postcondition,
+ -- because the expression will be re-analyzed, and the transformation
+ -- might affect the visibility of the operator, e.g. in an instance.
+
+ if In_Assertion_Expr > 0 then
+ return;
+ end if;
+
+ -- Rewrite the operator node using the real operator, not its renaming.
+ -- Exclude user-defined intrinsic operations of the same name, which are
+ -- treated separately and rewritten as calls.
+
+ if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
+ Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
+ Set_Chars (Op_Node, Nam);
+ Set_Etype (Op_Node, Etype (N));
+ Set_Entity (Op_Node, Op);
+ Set_Right_Opnd (Op_Node, Right_Opnd (N));
+
+ -- Indicate that both the original entity and its renaming are
+ -- referenced at this point.
+
+ Generate_Reference (Entity (N), N);
+ Generate_Reference (Op, N);
+
+ if Is_Binary then
+ Set_Left_Opnd (Op_Node, Left_Opnd (N));
+ end if;
+
+ Rewrite (N, Op_Node);
+
+ -- If the context type is private, add the appropriate conversions so
+ -- that the operator is applied to the full view. This is done in the
+ -- routines that resolve intrinsic operators.
+
+ if Is_Intrinsic_Subprogram (Op)
+ and then Is_Private_Type (Typ)
+ then
+ case Nkind (N) is
+ when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
+ N_Op_Expon | N_Op_Mod | N_Op_Rem =>
+ Resolve_Intrinsic_Operator (N, Typ);
+
+ when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
+ Resolve_Intrinsic_Unary_Operator (N, Typ);
+
+ when others =>
+ Resolve (N, Typ);
+ end case;
+ end if;
+
+ elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
+
+ -- Operator renames a user-defined operator of the same name. Use the
+ -- original operator in the node, which is the one Gigi knows about.
+
+ Set_Entity (N, Op);
+ Set_Is_Overloaded (N, False);
+ end if;
+ end Rewrite_Renamed_Operator;
+
+ -----------------------
+ -- Set_Slice_Subtype --
+ -----------------------
+
+ -- Build an implicit subtype declaration to represent the type delivered by
+ -- the slice. This is an abbreviated version of an array subtype. We define
+ -- an index subtype for the slice, using either the subtype name or the
+ -- discrete range of the slice. To be consistent with index usage elsewhere
+ -- we create a list header to hold the single index. This list is not
+ -- otherwise attached to the syntax tree.
+
+ procedure Set_Slice_Subtype (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Index_List : constant List_Id := New_List;
+ Index : Node_Id;
+ Index_Subtype : Entity_Id;
+ Index_Type : Entity_Id;
+ Slice_Subtype : Entity_Id;
+ Drange : constant Node_Id := Discrete_Range (N);
+
+ begin
+ Index_Type := Base_Type (Etype (Drange));
+
+ if Is_Entity_Name (Drange) then
+ Index_Subtype := Entity (Drange);
+
+ else
+ -- We force the evaluation of a range. This is definitely needed in
+ -- the renamed case, and seems safer to do unconditionally. Note in
+ -- any case that since we will create and insert an Itype referring
+ -- to this range, we must make sure any side effect removal actions
+ -- are inserted before the Itype definition.
+
+ if Nkind (Drange) = N_Range then
+ Force_Evaluation (Low_Bound (Drange));
+ Force_Evaluation (High_Bound (Drange));
+
+ -- If the discrete range is given by a subtype indication, the
+ -- type of the slice is the base of the subtype mark.
+
+ elsif Nkind (Drange) = N_Subtype_Indication then
+ declare
+ R : constant Node_Id := Range_Expression (Constraint (Drange));
+ begin
+ Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
+ Force_Evaluation (Low_Bound (R));
+ Force_Evaluation (High_Bound (R));
+ end;
+ end if;
+
+ Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
+
+ -- Take a new copy of Drange (where bounds have been rewritten to
+ -- reference side-effect-free names). Using a separate tree ensures
+ -- that further expansion (e.g. while rewriting a slice assignment
+ -- into a FOR loop) does not attempt to remove side effects on the
+ -- bounds again (which would cause the bounds in the index subtype
+ -- definition to refer to temporaries before they are defined) (the
+ -- reason is that some names are considered side effect free here
+ -- for the subtype, but not in the context of a loop iteration
+ -- scheme).
+
+ Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
+ Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
+ Set_Etype (Index_Subtype, Index_Type);
+ Set_Size_Info (Index_Subtype, Index_Type);
+ Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
+ end if;
+
+ Slice_Subtype := Create_Itype (E_Array_Subtype, N);
+
+ Index := New_Occurrence_Of (Index_Subtype, Loc);
+ Set_Etype (Index, Index_Subtype);
+ Append (Index, Index_List);
+
+ Set_First_Index (Slice_Subtype, Index);
+ Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
+ Set_Is_Constrained (Slice_Subtype, True);
+
+ Check_Compile_Time_Size (Slice_Subtype);
+
+ -- The Etype of the existing Slice node is reset to this slice subtype.
+ -- Its bounds are obtained from its first index.
+
+ Set_Etype (N, Slice_Subtype);
+
+ -- For packed slice subtypes, freeze immediately (except in the case of
+ -- being in a "spec expression" where we never freeze when we first see
+ -- the expression).
+
+ if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
+ Freeze_Itype (Slice_Subtype, N);
+
+ -- For all other cases insert an itype reference in the slice's actions
+ -- so that the itype is frozen at the proper place in the tree (i.e. at
+ -- the point where actions for the slice are analyzed). Note that this
+ -- is different from freezing the itype immediately, which might be
+ -- premature (e.g. if the slice is within a transient scope). This needs
+ -- to be done only if expansion is enabled.
+
+ elsif Expander_Active then
+ Ensure_Defined (Typ => Slice_Subtype, N => N);
+ end if;
+ end Set_Slice_Subtype;
+
+ --------------------------------
+ -- Set_String_Literal_Subtype --
+ --------------------------------
+
+ procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Low_Bound : constant Node_Id :=
+ Type_Low_Bound (Etype (First_Index (Typ)));
+ Subtype_Id : Entity_Id;
+
+ begin
+ if Nkind (N) /= N_String_Literal then
+ return;
+ end if;
+
+ Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
+ Set_String_Literal_Length (Subtype_Id, UI_From_Int
+ (String_Length (Strval (N))));
+ Set_Etype (Subtype_Id, Base_Type (Typ));
+ Set_Is_Constrained (Subtype_Id);
+ Set_Etype (N, Subtype_Id);
+
+ -- The low bound is set from the low bound of the corresponding index
+ -- type. Note that we do not store the high bound in the string literal
+ -- subtype, but it can be deduced if necessary from the length and the
+ -- low bound.
+
+ if Is_OK_Static_Expression (Low_Bound) then
+ Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
+
+ -- If the lower bound is not static we create a range for the string
+ -- literal, using the index type and the known length of the literal.
+ -- The index type is not necessarily Positive, so the upper bound is
+ -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
+
+ else
+ declare
+ Index_List : constant List_Id := New_List;
+ Index_Type : constant Entity_Id := Etype (First_Index (Typ));
+ High_Bound : constant Node_Id :=
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Val,
+ Prefix =>
+ New_Occurrence_Of (Index_Type, Loc),
+ Expressions => New_List (
+ Make_Op_Add (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Pos,
+ Prefix =>
+ New_Occurrence_Of (Index_Type, Loc),
+ Expressions =>
+ New_List (New_Copy_Tree (Low_Bound))),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc,
+ String_Length (Strval (N)) - 1))));
+
+ Array_Subtype : Entity_Id;
+ Drange : Node_Id;
+ Index : Node_Id;
+ Index_Subtype : Entity_Id;
+
+ begin
+ if Is_Integer_Type (Index_Type) then
+ Set_String_Literal_Low_Bound
+ (Subtype_Id, Make_Integer_Literal (Loc, 1));
+
+ else
+ -- If the index type is an enumeration type, build bounds
+ -- expression with attributes.
+
+ Set_String_Literal_Low_Bound
+ (Subtype_Id,
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_First,
+ Prefix =>
+ New_Occurrence_Of (Base_Type (Index_Type), Loc)));
+ Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
+ end if;
+
+ Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
+
+ -- Build bona fide subtype for the string, and wrap it in an
+ -- unchecked conversion, because the backend expects the
+ -- String_Literal_Subtype to have a static lower bound.
+
+ Index_Subtype :=
+ Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
+ Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
+ Set_Scalar_Range (Index_Subtype, Drange);
+ Set_Parent (Drange, N);
+ Analyze_And_Resolve (Drange, Index_Type);
+
+ -- In the context, the Index_Type may already have a constraint,
+ -- so use common base type on string subtype. The base type may
+ -- be used when generating attributes of the string, for example
+ -- in the context of a slice assignment.
+
+ Set_Etype (Index_Subtype, Base_Type (Index_Type));
+ Set_Size_Info (Index_Subtype, Index_Type);
+ Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
+
+ Array_Subtype := Create_Itype (E_Array_Subtype, N);
+
+ Index := New_Occurrence_Of (Index_Subtype, Loc);
+ Set_Etype (Index, Index_Subtype);
+ Append (Index, Index_List);
+
+ Set_First_Index (Array_Subtype, Index);
+ Set_Etype (Array_Subtype, Base_Type (Typ));
+ Set_Is_Constrained (Array_Subtype, True);
+
+ Rewrite (N,
+ Make_Unchecked_Type_Conversion (Loc,
+ Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
+ Expression => Relocate_Node (N)));
+ Set_Etype (N, Array_Subtype);
+ end;
+ end if;
+ end Set_String_Literal_Subtype;
+
+ ------------------------------
+ -- Simplify_Type_Conversion --
+ ------------------------------
+
+ procedure Simplify_Type_Conversion (N : Node_Id) is
+ begin
+ if Nkind (N) = N_Type_Conversion then
+ declare
+ Operand : constant Node_Id := Expression (N);
+ Target_Typ : constant Entity_Id := Etype (N);
+ Opnd_Typ : constant Entity_Id := Etype (Operand);
+
+ begin
+ if Is_Floating_Point_Type (Opnd_Typ)
+ and then
+ (Is_Integer_Type (Target_Typ)
+ or else (Is_Fixed_Point_Type (Target_Typ)
+ and then Conversion_OK (N)))
+ and then Nkind (Operand) = N_Attribute_Reference
+ and then Attribute_Name (Operand) = Name_Truncation
+
+ -- Special processing required if the conversion is the expression
+ -- of a Truncation attribute reference. In this case we replace:
+
+ -- ityp (ftyp'Truncation (x))
+
+ -- by
+
+ -- ityp (x)
+
+ -- with the Float_Truncate flag set, which is more efficient.
+
+ then
+ Rewrite (Operand,
+ Relocate_Node (First (Expressions (Operand))));
+ Set_Float_Truncate (N, True);
+ end if;
+ end;
+ end if;
+ end Simplify_Type_Conversion;
+
+ -----------------------------
+ -- Unique_Fixed_Point_Type --
+ -----------------------------
+
+ function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
+ T1 : Entity_Id := Empty;
+ T2 : Entity_Id;
+ Item : Node_Id;
+ Scop : Entity_Id;
+
+ procedure Fixed_Point_Error;
+ -- Give error messages for true ambiguity. Messages are posted on node
+ -- N, and entities T1, T2 are the possible interpretations.
+
+ -----------------------
+ -- Fixed_Point_Error --
+ -----------------------
+
+ procedure Fixed_Point_Error is
+ begin
+ Error_Msg_N ("ambiguous universal_fixed_expression", N);
+ Error_Msg_NE ("\\possible interpretation as}", N, T1);
+ Error_Msg_NE ("\\possible interpretation as}", N, T2);
+ end Fixed_Point_Error;
+
+ -- Start of processing for Unique_Fixed_Point_Type
+
+ begin
+ -- The operations on Duration are visible, so Duration is always a
+ -- possible interpretation.
+
+ T1 := Standard_Duration;
+
+ -- Look for fixed-point types in enclosing scopes
+
+ Scop := Current_Scope;
+ while Scop /= Standard_Standard loop
+ T2 := First_Entity (Scop);
+ while Present (T2) loop
+ if Is_Fixed_Point_Type (T2)
+ and then Current_Entity (T2) = T2
+ and then Scope (Base_Type (T2)) = Scop
+ then
+ if Present (T1) then
+ Fixed_Point_Error;
+ return Any_Type;
+ else
+ T1 := T2;
+ end if;
+ end if;
+
+ Next_Entity (T2);
+ end loop;
+
+ Scop := Scope (Scop);
+ end loop;
+
+ -- Look for visible fixed type declarations in the context
+
+ Item := First (Context_Items (Cunit (Current_Sem_Unit)));
+ while Present (Item) loop
+ if Nkind (Item) = N_With_Clause then
+ Scop := Entity (Name (Item));
+ T2 := First_Entity (Scop);
+ while Present (T2) loop
+ if Is_Fixed_Point_Type (T2)
+ and then Scope (Base_Type (T2)) = Scop
+ and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
+ then
+ if Present (T1) then
+ Fixed_Point_Error;
+ return Any_Type;
+ else
+ T1 := T2;
+ end if;
+ end if;
+
+ Next_Entity (T2);
+ end loop;
+ end if;
+
+ Next (Item);
+ end loop;
+
+ if Nkind (N) = N_Real_Literal then
+ Error_Msg_NE
+ ("??real literal interpreted as }!", N, T1);
+ else
+ Error_Msg_NE
+ ("??universal_fixed expression interpreted as }!", N, T1);
+ end if;
+
+ return T1;
+ end Unique_Fixed_Point_Type;
+
+ ----------------------
+ -- Valid_Conversion --
+ ----------------------
+
+ function Valid_Conversion
+ (N : Node_Id;
+ Target : Entity_Id;
+ Operand : Node_Id;
+ Report_Errs : Boolean := True) return Boolean
+ is
+ Target_Type : constant Entity_Id := Base_Type (Target);
+ Opnd_Type : Entity_Id := Etype (Operand);
+ Inc_Ancestor : Entity_Id;
+
+ function Conversion_Check
+ (Valid : Boolean;
+ Msg : String) return Boolean;
+ -- Little routine to post Msg if Valid is False, returns Valid value
+
+ procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
+ -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
+
+ procedure Conversion_Error_NE
+ (Msg : String;
+ N : Node_Or_Entity_Id;
+ E : Node_Or_Entity_Id);
+ -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
+
+ function Valid_Tagged_Conversion
+ (Target_Type : Entity_Id;
+ Opnd_Type : Entity_Id) return Boolean;
+ -- Specifically test for validity of tagged conversions
+
+ function Valid_Array_Conversion return Boolean;
+ -- Check index and component conformance, and accessibility levels if
+ -- the component types are anonymous access types (Ada 2005).
+
+ ----------------------
+ -- Conversion_Check --
+ ----------------------
+
+ function Conversion_Check
+ (Valid : Boolean;
+ Msg : String) return Boolean
+ is
+ begin
+ if not Valid
+
+ -- A generic unit has already been analyzed and we have verified
+ -- that a particular conversion is OK in that context. Since the
+ -- instance is reanalyzed without relying on the relationships
+ -- established during the analysis of the generic, it is possible
+ -- to end up with inconsistent views of private types. Do not emit
+ -- the error message in such cases. The rest of the machinery in
+ -- Valid_Conversion still ensures the proper compatibility of
+ -- target and operand types.
+
+ and then not In_Instance
+ then
+ Conversion_Error_N (Msg, Operand);
+ end if;
+
+ return Valid;
+ end Conversion_Check;
+
+ ------------------------
+ -- Conversion_Error_N --
+ ------------------------
+
+ procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
+ begin
+ if Report_Errs then
+ Error_Msg_N (Msg, N);
+ end if;
+ end Conversion_Error_N;
+
+ -------------------------
+ -- Conversion_Error_NE --
+ -------------------------
+
+ procedure Conversion_Error_NE
+ (Msg : String;
+ N : Node_Or_Entity_Id;
+ E : Node_Or_Entity_Id)
+ is
+ begin
+ if Report_Errs then
+ Error_Msg_NE (Msg, N, E);
+ end if;
+ end Conversion_Error_NE;
+
+ ----------------------------
+ -- Valid_Array_Conversion --
+ ----------------------------
+
+ function Valid_Array_Conversion return Boolean
+ is
+ Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
+ Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
+
+ Opnd_Index : Node_Id;
+ Opnd_Index_Type : Entity_Id;
+
+ Target_Comp_Type : constant Entity_Id :=
+ Component_Type (Target_Type);
+ Target_Comp_Base : constant Entity_Id :=
+ Base_Type (Target_Comp_Type);
+
+ Target_Index : Node_Id;
+ Target_Index_Type : Entity_Id;
+
+ begin
+ -- Error if wrong number of dimensions
+
+ if
+ Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
+ then
+ Conversion_Error_N
+ ("incompatible number of dimensions for conversion", Operand);
+ return False;
+
+ -- Number of dimensions matches
+
+ else
+ -- Loop through indexes of the two arrays
+
+ Target_Index := First_Index (Target_Type);
+ Opnd_Index := First_Index (Opnd_Type);
+ while Present (Target_Index) and then Present (Opnd_Index) loop
+ Target_Index_Type := Etype (Target_Index);
+ Opnd_Index_Type := Etype (Opnd_Index);
+
+ -- Error if index types are incompatible
+
+ if not (Is_Integer_Type (Target_Index_Type)
+ and then Is_Integer_Type (Opnd_Index_Type))
+ and then (Root_Type (Target_Index_Type)
+ /= Root_Type (Opnd_Index_Type))
+ then
+ Conversion_Error_N
+ ("incompatible index types for array conversion",
+ Operand);
+ return False;
+ end if;
+
+ Next_Index (Target_Index);
+ Next_Index (Opnd_Index);
+ end loop;
+
+ -- If component types have same base type, all set
+
+ if Target_Comp_Base = Opnd_Comp_Base then
+ null;
+
+ -- Here if base types of components are not the same. The only
+ -- time this is allowed is if we have anonymous access types.
+
+ -- The conversion of arrays of anonymous access types can lead
+ -- to dangling pointers. AI-392 formalizes the accessibility
+ -- checks that must be applied to such conversions to prevent
+ -- out-of-scope references.
+
+ elsif Ekind_In
+ (Target_Comp_Base, E_Anonymous_Access_Type,
+ E_Anonymous_Access_Subprogram_Type)
+ and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
+ and then
+ Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
+ then
+ if Type_Access_Level (Target_Type) <
+ Deepest_Type_Access_Level (Opnd_Type)
+ then
+ if In_Instance_Body then
+ Error_Msg_Warn := SPARK_Mode /= On;
+ Conversion_Error_N
+ ("source array type has deeper accessibility "
+ & "level than target<<", Operand);
+ Conversion_Error_N ("\Program_Error [<<", Operand);
+ Rewrite (N,
+ Make_Raise_Program_Error (Sloc (N),
+ Reason => PE_Accessibility_Check_Failed));
+ Set_Etype (N, Target_Type);
+ return False;
+
+ -- Conversion not allowed because of accessibility levels
+
+ else
+ Conversion_Error_N
+ ("source array type has deeper accessibility "
+ & "level than target", Operand);
+ return False;
+ end if;
+
+ else
+ null;
+ end if;
+
+ -- All other cases where component base types do not match
+
+ else
+ Conversion_Error_N
+ ("incompatible component types for array conversion",
+ Operand);
+ return False;
+ end if;
+
+ -- Check that component subtypes statically match. For numeric
+ -- types this means that both must be either constrained or
+ -- unconstrained. For enumeration types the bounds must match.
+ -- All of this is checked in Subtypes_Statically_Match.
+
+ if not Subtypes_Statically_Match
+ (Target_Comp_Type, Opnd_Comp_Type)
+ then
+ Conversion_Error_N
+ ("component subtypes must statically match", Operand);
+ return False;
+ end if;
+ end if;
+
+ return True;
+ end Valid_Array_Conversion;
+
+ -----------------------------
+ -- Valid_Tagged_Conversion --
+ -----------------------------
+
+ function Valid_Tagged_Conversion
+ (Target_Type : Entity_Id;
+ Opnd_Type : Entity_Id) return Boolean
+ is
+ begin
+ -- Upward conversions are allowed (RM 4.6(22))
+
+ if Covers (Target_Type, Opnd_Type)
+ or else Is_Ancestor (Target_Type, Opnd_Type)
+ then
+ return True;
+
+ -- Downward conversion are allowed if the operand is class-wide
+ -- (RM 4.6(23)).
+
+ elsif Is_Class_Wide_Type (Opnd_Type)
+ and then Covers (Opnd_Type, Target_Type)
+ then
+ return True;
+
+ elsif Covers (Opnd_Type, Target_Type)
+ or else Is_Ancestor (Opnd_Type, Target_Type)
+ then
+ return
+ Conversion_Check (False,
+ "downward conversion of tagged objects not allowed");
+
+ -- Ada 2005 (AI-251): The conversion to/from interface types is
+ -- always valid
+
+ elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
+ return True;
+
+ -- If the operand is a class-wide type obtained through a limited_
+ -- with clause, and the context includes the non-limited view, use
+ -- it to determine whether the conversion is legal.
+
+ elsif Is_Class_Wide_Type (Opnd_Type)
+ and then From_Limited_With (Opnd_Type)
+ and then Present (Non_Limited_View (Etype (Opnd_Type)))
+ and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
+ then
+ return True;
+
+ elsif Is_Access_Type (Opnd_Type)
+ and then Is_Interface (Directly_Designated_Type (Opnd_Type))
+ then
+ return True;
+
+ else
+ Conversion_Error_NE
+ ("invalid tagged conversion, not compatible with}",
+ N, First_Subtype (Opnd_Type));
+ return False;
+ end if;
+ end Valid_Tagged_Conversion;
+
+ -- Start of processing for Valid_Conversion
+
+ begin
+ Check_Parameterless_Call (Operand);
+
+ if Is_Overloaded (Operand) then
+ declare
+ I : Interp_Index;
+ I1 : Interp_Index;
+ It : Interp;
+ It1 : Interp;
+ N1 : Entity_Id;
+ T1 : Entity_Id;
+
+ begin
+ -- Remove procedure calls, which syntactically cannot appear in
+ -- this context, but which cannot be removed by type checking,
+ -- because the context does not impose a type.
+
+ -- When compiling for VMS, spurious ambiguities can be produced
+ -- when arithmetic operations have a literal operand and return
+ -- System.Address or a descendant of it. These ambiguities are
+ -- otherwise resolved by the context, but for conversions there
+ -- is no context type and the removal of the spurious operations
+ -- must be done explicitly here.
+
+ -- The node may be labelled overloaded, but still contain only one
+ -- interpretation because others were discarded earlier. If this
+ -- is the case, retain the single interpretation if legal.
+
+ Get_First_Interp (Operand, I, It);
+ Opnd_Type := It.Typ;
+ Get_Next_Interp (I, It);
+
+ if Present (It.Typ)
+ and then Opnd_Type /= Standard_Void_Type
+ then
+ -- More than one candidate interpretation is available
+
+ Get_First_Interp (Operand, I, It);
+ while Present (It.Typ) loop
+ if It.Typ = Standard_Void_Type then
+ Remove_Interp (I);
+ end if;
+
+ if Present (System_Aux_Id)
+ and then Is_Descendent_Of_Address (It.Typ)
+ then
+ Remove_Interp (I);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end if;
+
+ Get_First_Interp (Operand, I, It);
+ I1 := I;
+ It1 := It;
+
+ if No (It.Typ) then
+ Conversion_Error_N ("illegal operand in conversion", Operand);
+ return False;
+ end if;
+
+ Get_Next_Interp (I, It);
+
+ if Present (It.Typ) then
+ N1 := It1.Nam;
+ T1 := It1.Typ;
+ It1 := Disambiguate (Operand, I1, I, Any_Type);
+
+ if It1 = No_Interp then
+ Conversion_Error_N
+ ("ambiguous operand in conversion", Operand);
+
+ -- If the interpretation involves a standard operator, use
+ -- the location of the type, which may be user-defined.
+
+ if Sloc (It.Nam) = Standard_Location then
+ Error_Msg_Sloc := Sloc (It.Typ);
+ else
+ Error_Msg_Sloc := Sloc (It.Nam);
+ end if;
+
+ Conversion_Error_N -- CODEFIX
+ ("\\possible interpretation#!", Operand);
+
+ if Sloc (N1) = Standard_Location then
+ Error_Msg_Sloc := Sloc (T1);
+ else
+ Error_Msg_Sloc := Sloc (N1);
+ end if;
+
+ Conversion_Error_N -- CODEFIX
+ ("\\possible interpretation#!", Operand);
+
+ return False;
+ end if;
+ end if;
+
+ Set_Etype (Operand, It1.Typ);
+ Opnd_Type := It1.Typ;
+ end;
+ end if;
+
+ -- Deal with conversion of integer type to address if the pragma
+ -- Allow_Integer_Address is in effect. We convert the conversion to
+ -- an unchecked conversion in this case and we are all done.
+
+ if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
+ Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
+ Analyze_And_Resolve (N, Target_Type);
+ return True;
+ end if;
+
+ -- If we are within a child unit, check whether the type of the
+ -- expression has an ancestor in a parent unit, in which case it
+ -- belongs to its derivation class even if the ancestor is private.
+ -- See RM 7.3.1 (5.2/3).
+
+ Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
+
+ -- Numeric types
+
+ if Is_Numeric_Type (Target_Type) then
+
+ -- A universal fixed expression can be converted to any numeric type
+
+ if Opnd_Type = Universal_Fixed then
+ return True;
+
+ -- Also no need to check when in an instance or inlined body, because
+ -- the legality has been established when the template was analyzed.
+ -- Furthermore, numeric conversions may occur where only a private
+ -- view of the operand type is visible at the instantiation point.
+ -- This results in a spurious error if we check that the operand type
+ -- is a numeric type.
+
+ -- Note: in a previous version of this unit, the following tests were
+ -- applied only for generated code (Comes_From_Source set to False),
+ -- but in fact the test is required for source code as well, since
+ -- this situation can arise in source code.
+
+ elsif In_Instance or else In_Inlined_Body then
+ return True;
+
+ -- Otherwise we need the conversion check
+
+ else
+ return Conversion_Check
+ (Is_Numeric_Type (Opnd_Type)
+ or else
+ (Present (Inc_Ancestor)
+ and then Is_Numeric_Type (Inc_Ancestor)),
+ "illegal operand for numeric conversion");
+ end if;
+
+ -- Array types
+
+ elsif Is_Array_Type (Target_Type) then
+ if not Is_Array_Type (Opnd_Type)
+ or else Opnd_Type = Any_Composite
+ or else Opnd_Type = Any_String
+ then
+ Conversion_Error_N
+ ("illegal operand for array conversion", Operand);
+ return False;
+
+ else
+ return Valid_Array_Conversion;
+ end if;
+
+ -- Ada 2005 (AI-251): Anonymous access types where target references an
+ -- interface type.
+
+ elsif Ekind_In (Target_Type, E_General_Access_Type,
+ E_Anonymous_Access_Type)
+ and then Is_Interface (Directly_Designated_Type (Target_Type))
+ then
+ -- Check the static accessibility rule of 4.6(17). Note that the
+ -- check is not enforced when within an instance body, since the
+ -- RM requires such cases to be caught at run time.
+
+ -- If the operand is a rewriting of an allocator no check is needed
+ -- because there are no accessibility issues.
+
+ if Nkind (Original_Node (N)) = N_Allocator then
+ null;
+
+ elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
+ if Type_Access_Level (Opnd_Type) >
+ Deepest_Type_Access_Level (Target_Type)
+ then
+ -- In an instance, this is a run-time check, but one we know
+ -- will fail, so generate an appropriate warning. The raise
+ -- will be generated by Expand_N_Type_Conversion.
+
+ if In_Instance_Body then
+ Error_Msg_Warn := SPARK_Mode /= On;
+ Conversion_Error_N
+ ("cannot convert local pointer to non-local access type<<",
+ Operand);
+ Conversion_Error_N ("\Program_Error [<<", Operand);
+
+ else
+ Conversion_Error_N
+ ("cannot convert local pointer to non-local access type",
+ Operand);
+ return False;
+ end if;
+
+ -- Special accessibility checks are needed in the case of access
+ -- discriminants declared for a limited type.
+
+ elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
+ and then not Is_Local_Anonymous_Access (Opnd_Type)
+ then
+ -- When the operand is a selected access discriminant the check
+ -- needs to be made against the level of the object denoted by
+ -- the prefix of the selected name (Object_Access_Level handles
+ -- checking the prefix of the operand for this case).
+
+ if Nkind (Operand) = N_Selected_Component
+ and then Object_Access_Level (Operand) >
+ Deepest_Type_Access_Level (Target_Type)
+ then
+ -- In an instance, this is a run-time check, but one we know
+ -- will fail, so generate an appropriate warning. The raise
+ -- will be generated by Expand_N_Type_Conversion.
+
+ if In_Instance_Body then
+ Error_Msg_Warn := SPARK_Mode /= On;
+ Conversion_Error_N
+ ("cannot convert access discriminant to non-local "
+ & "access type<<", Operand);
+ Conversion_Error_N ("\Program_Error [<<", Operand);
+
+ -- Real error if not in instance body
+
+ else
+ Conversion_Error_N
+ ("cannot convert access discriminant to non-local "
+ & "access type", Operand);
+ return False;
+ end if;
+ end if;
+
+ -- The case of a reference to an access discriminant from
+ -- within a limited type declaration (which will appear as
+ -- a discriminal) is always illegal because the level of the
+ -- discriminant is considered to be deeper than any (nameable)
+ -- access type.
+
+ if Is_Entity_Name (Operand)
+ and then not Is_Local_Anonymous_Access (Opnd_Type)
+ and then
+ Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
+ and then Present (Discriminal_Link (Entity (Operand)))
+ then
+ Conversion_Error_N
+ ("discriminant has deeper accessibility level than target",
+ Operand);
+ return False;
+ end if;
+ end if;
+ end if;
+
+ return True;
+
+ -- General and anonymous access types
+
+ elsif Ekind_In (Target_Type, E_General_Access_Type,
+ E_Anonymous_Access_Type)
+ and then
+ Conversion_Check
+ (Is_Access_Type (Opnd_Type)
+ and then not
+ Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
+ E_Access_Protected_Subprogram_Type),
+ "must be an access-to-object type")
+ then
+ if Is_Access_Constant (Opnd_Type)
+ and then not Is_Access_Constant (Target_Type)
+ then
+ Conversion_Error_N
+ ("access-to-constant operand type not allowed", Operand);
+ return False;
+ end if;
+
+ -- Check the static accessibility rule of 4.6(17). Note that the
+ -- check is not enforced when within an instance body, since the RM
+ -- requires such cases to be caught at run time.
+
+ if Ekind (Target_Type) /= E_Anonymous_Access_Type
+ or else Is_Local_Anonymous_Access (Target_Type)
+ or else Nkind (Associated_Node_For_Itype (Target_Type)) =
+ N_Object_Declaration
+ then
+ -- Ada 2012 (AI05-0149): Perform legality checking on implicit
+ -- conversions from an anonymous access type to a named general
+ -- access type. Such conversions are not allowed in the case of
+ -- access parameters and stand-alone objects of an anonymous
+ -- access type. The implicit conversion case is recognized by
+ -- testing that Comes_From_Source is False and that it's been
+ -- rewritten. The Comes_From_Source test isn't sufficient because
+ -- nodes in inlined calls to predefined library routines can have
+ -- Comes_From_Source set to False. (Is there a better way to test
+ -- for implicit conversions???)
+
+ if Ada_Version >= Ada_2012
+ and then not Comes_From_Source (N)
+ and then N /= Original_Node (N)
+ and then Ekind (Target_Type) = E_General_Access_Type
+ and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
+ then
+ if Is_Itype (Opnd_Type) then
+
+ -- Implicit conversions aren't allowed for objects of an
+ -- anonymous access type, since such objects have nonstatic
+ -- levels in Ada 2012.
+
+ if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
+ N_Object_Declaration
+ then
+ Conversion_Error_N
+ ("implicit conversion of stand-alone anonymous "
+ & "access object not allowed", Operand);
+ return False;
+
+ -- Implicit conversions aren't allowed for anonymous access
+ -- parameters. The "not Is_Local_Anonymous_Access_Type" test
+ -- is done to exclude anonymous access results.
+
+ elsif not Is_Local_Anonymous_Access (Opnd_Type)
+ and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
+ N_Function_Specification,
+ N_Procedure_Specification)
+ then
+ Conversion_Error_N
+ ("implicit conversion of anonymous access formal "
+ & "not allowed", Operand);
+ return False;
+
+ -- This is a case where there's an enclosing object whose
+ -- to which the "statically deeper than" relationship does
+ -- not apply (such as an access discriminant selected from
+ -- a dereference of an access parameter).
+
+ elsif Object_Access_Level (Operand)
+ = Scope_Depth (Standard_Standard)
+ then
+ Conversion_Error_N
+ ("implicit conversion of anonymous access value "
+ & "not allowed", Operand);
+ return False;
+
+ -- In other cases, the level of the operand's type must be
+ -- statically less deep than that of the target type, else
+ -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
+
+ elsif Type_Access_Level (Opnd_Type) >
+ Deepest_Type_Access_Level (Target_Type)
+ then
+ Conversion_Error_N
+ ("implicit conversion of anonymous access value "
+ & "violates accessibility", Operand);
+ return False;
+ end if;
+ end if;
+
+ elsif Type_Access_Level (Opnd_Type) >
+ Deepest_Type_Access_Level (Target_Type)
+ then
+ -- In an instance, this is a run-time check, but one we know
+ -- will fail, so generate an appropriate warning. The raise
+ -- will be generated by Expand_N_Type_Conversion.
+
+ if In_Instance_Body then
+ Error_Msg_Warn := SPARK_Mode /= On;
+ Conversion_Error_N
+ ("cannot convert local pointer to non-local access type<<",
+ Operand);
+ Conversion_Error_N ("\Program_Error [<<", Operand);
+
+ -- If not in an instance body, this is a real error
+
+ else
+ -- Avoid generation of spurious error message
+
+ if not Error_Posted (N) then
+ Conversion_Error_N
+ ("cannot convert local pointer to non-local access type",
+ Operand);
+ end if;
+
+ return False;
+ end if;
+
+ -- Special accessibility checks are needed in the case of access
+ -- discriminants declared for a limited type.
+
+ elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
+ and then not Is_Local_Anonymous_Access (Opnd_Type)
+ then
+ -- When the operand is a selected access discriminant the check
+ -- needs to be made against the level of the object denoted by
+ -- the prefix of the selected name (Object_Access_Level handles
+ -- checking the prefix of the operand for this case).
+
+ if Nkind (Operand) = N_Selected_Component
+ and then Object_Access_Level (Operand) >
+ Deepest_Type_Access_Level (Target_Type)
+ then
+ -- In an instance, this is a run-time check, but one we know
+ -- will fail, so generate an appropriate warning. The raise
+ -- will be generated by Expand_N_Type_Conversion.
+
+ if In_Instance_Body then
+ Error_Msg_Warn := SPARK_Mode /= On;
+ Conversion_Error_N
+ ("cannot convert access discriminant to non-local "
+ & "access type<<", Operand);
+ Conversion_Error_N ("\Program_Error [<<", Operand);
+
+ -- If not in an instance body, this is a real error
+
+ else
+ Conversion_Error_N
+ ("cannot convert access discriminant to non-local "
+ & "access type", Operand);
+ return False;
+ end if;
+ end if;
+
+ -- The case of a reference to an access discriminant from
+ -- within a limited type declaration (which will appear as
+ -- a discriminal) is always illegal because the level of the
+ -- discriminant is considered to be deeper than any (nameable)
+ -- access type.
+
+ if Is_Entity_Name (Operand)
+ and then
+ Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
+ and then Present (Discriminal_Link (Entity (Operand)))
+ then
+ Conversion_Error_N
+ ("discriminant has deeper accessibility level than target",
+ Operand);
+ return False;
+ end if;
+ end if;
+ end if;
+
+ -- In the presence of limited_with clauses we have to use non-limited
+ -- views, if available.
+
+ Check_Limited : declare
+ function Full_Designated_Type (T : Entity_Id) return Entity_Id;
+ -- Helper function to handle limited views
+
+ --------------------------
+ -- Full_Designated_Type --
+ --------------------------
+
+ function Full_Designated_Type (T : Entity_Id) return Entity_Id is
+ Desig : constant Entity_Id := Designated_Type (T);
+
+ begin
+ -- Handle the limited view of a type
+
+ if Is_Incomplete_Type (Desig)
+ and then From_Limited_With (Desig)
+ and then Present (Non_Limited_View (Desig))
+ then
+ return Available_View (Desig);
+ else
+ return Desig;
+ end if;
+ end Full_Designated_Type;
+
+ -- Local Declarations
+
+ Target : constant Entity_Id := Full_Designated_Type (Target_Type);
+ Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
+
+ Same_Base : constant Boolean :=
+ Base_Type (Target) = Base_Type (Opnd);
+
+ -- Start of processing for Check_Limited
+
+ begin
+ if Is_Tagged_Type (Target) then
+ return Valid_Tagged_Conversion (Target, Opnd);
+
+ else
+ if not Same_Base then
+ Conversion_Error_NE
+ ("target designated type not compatible with }",
+ N, Base_Type (Opnd));
+ return False;
+
+ -- Ada 2005 AI-384: legality rule is symmetric in both
+ -- designated types. The conversion is legal (with possible
+ -- constraint check) if either designated type is
+ -- unconstrained.
+
+ elsif Subtypes_Statically_Match (Target, Opnd)
+ or else
+ (Has_Discriminants (Target)
+ and then
+ (not Is_Constrained (Opnd)
+ or else not Is_Constrained (Target)))
+ then
+ -- Special case, if Value_Size has been used to make the
+ -- sizes different, the conversion is not allowed even
+ -- though the subtypes statically match.
+
+ if Known_Static_RM_Size (Target)
+ and then Known_Static_RM_Size (Opnd)
+ and then RM_Size (Target) /= RM_Size (Opnd)
+ then
+ Conversion_Error_NE
+ ("target designated subtype not compatible with }",
+ N, Opnd);
+ Conversion_Error_NE
+ ("\because sizes of the two designated subtypes differ",
+ N, Opnd);
+ return False;
+
+ -- Normal case where conversion is allowed
+
+ else
+ return True;
+ end if;
+
+ else
+ Error_Msg_NE
+ ("target designated subtype not compatible with }",
+ N, Opnd);
+ return False;
+ end if;
+ end if;
+ end Check_Limited;
+
+ -- Access to subprogram types. If the operand is an access parameter,
+ -- the type has a deeper accessibility that any master, and cannot be
+ -- assigned. We must make an exception if the conversion is part of an
+ -- assignment and the target is the return object of an extended return
+ -- statement, because in that case the accessibility check takes place
+ -- after the return.
+
+ elsif Is_Access_Subprogram_Type (Target_Type)
+ and then No (Corresponding_Remote_Type (Opnd_Type))
+ then
+ if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
+ and then Is_Entity_Name (Operand)
+ and then Ekind (Entity (Operand)) = E_In_Parameter
+ and then
+ (Nkind (Parent (N)) /= N_Assignment_Statement
+ or else not Is_Entity_Name (Name (Parent (N)))
+ or else not Is_Return_Object (Entity (Name (Parent (N)))))
+ then
+ Conversion_Error_N
+ ("illegal attempt to store anonymous access to subprogram",
+ Operand);
+ Conversion_Error_N
+ ("\value has deeper accessibility than any master "
+ & "(RM 3.10.2 (13))",
+ Operand);
+
+ Error_Msg_NE
+ ("\use named access type for& instead of access parameter",
+ Operand, Entity (Operand));
+ end if;
+
+ -- Check that the designated types are subtype conformant
+
+ Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
+ Old_Id => Designated_Type (Opnd_Type),
+ Err_Loc => N);
+
+ -- Check the static accessibility rule of 4.6(20)
+
+ if Type_Access_Level (Opnd_Type) >
+ Deepest_Type_Access_Level (Target_Type)
+ then
+ Conversion_Error_N
+ ("operand type has deeper accessibility level than target",
+ Operand);
+
+ -- Check that if the operand type is declared in a generic body,
+ -- then the target type must be declared within that same body
+ -- (enforces last sentence of 4.6(20)).
+
+ elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
+ declare
+ O_Gen : constant Node_Id :=
+ Enclosing_Generic_Body (Opnd_Type);
+
+ T_Gen : Node_Id;
+
+ begin
+ T_Gen := Enclosing_Generic_Body (Target_Type);
+ while Present (T_Gen) and then T_Gen /= O_Gen loop
+ T_Gen := Enclosing_Generic_Body (T_Gen);
+ end loop;
+
+ if T_Gen /= O_Gen then
+ Conversion_Error_N
+ ("target type must be declared in same generic body "
+ & "as operand type", N);
+ end if;
+ end;
+ end if;
+
+ return True;
+
+ -- Remote subprogram access types
+
+ elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
+ and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
+ then
+ -- It is valid to convert from one RAS type to another provided
+ -- that their specification statically match.
+
+ Check_Subtype_Conformant
+ (New_Id =>
+ Designated_Type (Corresponding_Remote_Type (Target_Type)),
+ Old_Id =>
+ Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
+ Err_Loc =>
+ N);
+ return True;
+
+ -- If it was legal in the generic, it's legal in the instance
+
+ elsif In_Instance_Body then
+ return True;
+
+ -- If both are tagged types, check legality of view conversions
+
+ elsif Is_Tagged_Type (Target_Type)
+ and then
+ Is_Tagged_Type (Opnd_Type)
+ then
+ return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
+
+ -- Types derived from the same root type are convertible
+
+ elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
+ return True;
+
+ -- In an instance or an inlined body, there may be inconsistent views of
+ -- the same type, or of types derived from a common root.
+
+ elsif (In_Instance or In_Inlined_Body)
+ and then
+ Root_Type (Underlying_Type (Target_Type)) =
+ Root_Type (Underlying_Type (Opnd_Type))
+ then
+ return True;
+
+ -- Special check for common access type error case
+
+ elsif Ekind (Target_Type) = E_Access_Type
+ and then Is_Access_Type (Opnd_Type)
+ then
+ Conversion_Error_N ("target type must be general access type!", N);
+ Conversion_Error_NE -- CODEFIX
+ ("add ALL to }!", N, Target_Type);
+ return False;
+
+ -- Here we have a real conversion error
+
+ else
+ Conversion_Error_NE
+ ("invalid conversion, not compatible with }", N, Opnd_Type);
+ return False;
+ end if;
+ end Valid_Conversion;
+
+end Sem_Res;