aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/ada/sem_ch6.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/ada/sem_ch6.adb')
-rw-r--r--gcc-4.9/gcc/ada/sem_ch6.adb11954
1 files changed, 11954 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/ada/sem_ch6.adb b/gcc-4.9/gcc/ada/sem_ch6.adb
new file mode 100644
index 000000000..2bf9f263d
--- /dev/null
+++ b/gcc-4.9/gcc/ada/sem_ch6.adb
@@ -0,0 +1,11954 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- S E M _ C H 6 --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Aspects; use Aspects;
+with Atree; use Atree;
+with Checks; use Checks;
+with Debug; use Debug;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Errout; use Errout;
+with Expander; use Expander;
+with Exp_Ch6; use Exp_Ch6;
+with Exp_Ch7; use Exp_Ch7;
+with Exp_Ch9; use Exp_Ch9;
+with Exp_Dbug; use Exp_Dbug;
+with Exp_Disp; use Exp_Disp;
+with Exp_Tss; use Exp_Tss;
+with Exp_Util; use Exp_Util;
+with Fname; use Fname;
+with Freeze; use Freeze;
+with Itypes; use Itypes;
+with Lib.Xref; use Lib.Xref;
+with Layout; use Layout;
+with Namet; use Namet;
+with Lib; use Lib;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Output; use Output;
+with Restrict; use Restrict;
+with Rident; use Rident;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Aux; use Sem_Aux;
+with Sem_Cat; use Sem_Cat;
+with Sem_Ch3; use Sem_Ch3;
+with Sem_Ch4; use Sem_Ch4;
+with Sem_Ch5; use Sem_Ch5;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Ch10; use Sem_Ch10;
+with Sem_Ch12; use Sem_Ch12;
+with Sem_Ch13; use Sem_Ch13;
+with Sem_Dim; use Sem_Dim;
+with Sem_Disp; use Sem_Disp;
+with Sem_Dist; use Sem_Dist;
+with Sem_Elim; use Sem_Elim;
+with Sem_Eval; use Sem_Eval;
+with Sem_Mech; use Sem_Mech;
+with Sem_Prag; use Sem_Prag;
+with Sem_Res; use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Sem_Type; use Sem_Type;
+with Sem_Warn; use Sem_Warn;
+with Sinput; use Sinput;
+with Stand; use Stand;
+with Sinfo; use Sinfo;
+with Sinfo.CN; use Sinfo.CN;
+with Snames; use Snames;
+with Stringt; use Stringt;
+with Style;
+with Stylesw; use Stylesw;
+with Targparm; use Targparm;
+with Tbuild; use Tbuild;
+with Uintp; use Uintp;
+with Urealp; use Urealp;
+with Validsw; use Validsw;
+
+package body Sem_Ch6 is
+
+ May_Hide_Profile : Boolean := False;
+ -- This flag is used to indicate that two formals in two subprograms being
+ -- checked for conformance differ only in that one is an access parameter
+ -- while the other is of a general access type with the same designated
+ -- type. In this case, if the rest of the signatures match, a call to
+ -- either subprogram may be ambiguous, which is worth a warning. The flag
+ -- is set in Compatible_Types, and the warning emitted in
+ -- New_Overloaded_Entity.
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Analyze_Null_Procedure
+ (N : Node_Id;
+ Is_Completion : out Boolean);
+ -- A null procedure can be a declaration or (Ada 2012) a completion.
+
+ procedure Analyze_Return_Statement (N : Node_Id);
+ -- Common processing for simple and extended return statements
+
+ procedure Analyze_Function_Return (N : Node_Id);
+ -- Subsidiary to Analyze_Return_Statement. Called when the return statement
+ -- applies to a [generic] function.
+
+ procedure Analyze_Return_Type (N : Node_Id);
+ -- Subsidiary to Process_Formals: analyze subtype mark in function
+ -- specification in a context where the formals are visible and hide
+ -- outer homographs.
+
+ procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
+ -- Does all the real work of Analyze_Subprogram_Body. This is split out so
+ -- that we can use RETURN but not skip the debug output at the end.
+
+ procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
+ -- Analyze a generic subprogram body. N is the body to be analyzed, and
+ -- Gen_Id is the defining entity Id for the corresponding spec.
+
+ procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
+ -- If a subprogram has pragma Inline and inlining is active, use generic
+ -- machinery to build an unexpanded body for the subprogram. This body is
+ -- subsequently used for inline expansions at call sites. If subprogram can
+ -- be inlined (depending on size and nature of local declarations) this
+ -- function returns true. Otherwise subprogram body is treated normally.
+ -- If proper warnings are enabled and the subprogram contains a construct
+ -- that cannot be inlined, the offending construct is flagged accordingly.
+
+ function Can_Override_Operator (Subp : Entity_Id) return Boolean;
+ -- Returns true if Subp can override a predefined operator.
+
+ procedure Check_And_Build_Body_To_Inline
+ (N : Node_Id;
+ Spec_Id : Entity_Id;
+ Body_Id : Entity_Id);
+ -- Spec_Id and Body_Id are the entities of the specification and body of
+ -- the subprogram body N. If N can be inlined by the frontend (supported
+ -- cases documented in Check_Body_To_Inline) then build the body-to-inline
+ -- associated with N and attach it to the declaration node of Spec_Id.
+
+ procedure Check_Conformance
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Ctype : Conformance_Type;
+ Errmsg : Boolean;
+ Conforms : out Boolean;
+ Err_Loc : Node_Id := Empty;
+ Get_Inst : Boolean := False;
+ Skip_Controlling_Formals : Boolean := False);
+ -- Given two entities, this procedure checks that the profiles associated
+ -- with these entities meet the conformance criterion given by the third
+ -- parameter. If they conform, Conforms is set True and control returns
+ -- to the caller. If they do not conform, Conforms is set to False, and
+ -- in addition, if Errmsg is True on the call, proper messages are output
+ -- to complain about the conformance failure. If Err_Loc is non_Empty
+ -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
+ -- error messages are placed on the appropriate part of the construct
+ -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
+ -- against a formal access-to-subprogram type so Get_Instance_Of must
+ -- be called.
+
+ procedure Check_Subprogram_Order (N : Node_Id);
+ -- N is the N_Subprogram_Body node for a subprogram. This routine applies
+ -- the alpha ordering rule for N if this ordering requirement applicable.
+
+ procedure Check_Returns
+ (HSS : Node_Id;
+ Mode : Character;
+ Err : out Boolean;
+ Proc : Entity_Id := Empty);
+ -- Called to check for missing return statements in a function body, or for
+ -- returns present in a procedure body which has No_Return set. HSS is the
+ -- handled statement sequence for the subprogram body. This procedure
+ -- checks all flow paths to make sure they either have return (Mode = 'F',
+ -- used for functions) or do not have a return (Mode = 'P', used for
+ -- No_Return procedures). The flag Err is set if there are any control
+ -- paths not explicitly terminated by a return in the function case, and is
+ -- True otherwise. Proc is the entity for the procedure case and is used
+ -- in posting the warning message.
+
+ procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
+ -- In Ada 2012, a primitive equality operator on an untagged record type
+ -- must appear before the type is frozen, and have the same visibility as
+ -- that of the type. This procedure checks that this rule is met, and
+ -- otherwise emits an error on the subprogram declaration and a warning
+ -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
+ -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
+ -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
+ -- is set, otherwise the call has no effect.
+
+ procedure Enter_Overloaded_Entity (S : Entity_Id);
+ -- This procedure makes S, a new overloaded entity, into the first visible
+ -- entity with that name.
+
+ function Is_Non_Overriding_Operation
+ (Prev_E : Entity_Id;
+ New_E : Entity_Id) return Boolean;
+ -- Enforce the rule given in 12.3(18): a private operation in an instance
+ -- overrides an inherited operation only if the corresponding operation
+ -- was overriding in the generic. This needs to be checked for primitive
+ -- operations of types derived (in the generic unit) from formal private
+ -- or formal derived types.
+
+ procedure Make_Inequality_Operator (S : Entity_Id);
+ -- Create the declaration for an inequality operator that is implicitly
+ -- created by a user-defined equality operator that yields a boolean.
+
+ procedure Set_Formal_Validity (Formal_Id : Entity_Id);
+ -- Formal_Id is an formal parameter entity. This procedure deals with
+ -- setting the proper validity status for this entity, which depends on
+ -- the kind of parameter and the validity checking mode.
+
+ ---------------------------------------------
+ -- Analyze_Abstract_Subprogram_Declaration --
+ ---------------------------------------------
+
+ procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
+ Designator : constant Entity_Id :=
+ Analyze_Subprogram_Specification (Specification (N));
+ Scop : constant Entity_Id := Current_Scope;
+
+ begin
+ Check_SPARK_Restriction ("abstract subprogram is not allowed", N);
+
+ Generate_Definition (Designator);
+ Set_Contract (Designator, Make_Contract (Sloc (Designator)));
+ Set_Is_Abstract_Subprogram (Designator);
+ New_Overloaded_Entity (Designator);
+ Check_Delayed_Subprogram (Designator);
+
+ Set_Categorization_From_Scope (Designator, Scop);
+
+ if Ekind (Scope (Designator)) = E_Protected_Type then
+ Error_Msg_N
+ ("abstract subprogram not allowed in protected type", N);
+
+ -- Issue a warning if the abstract subprogram is neither a dispatching
+ -- operation nor an operation that overrides an inherited subprogram or
+ -- predefined operator, since this most likely indicates a mistake.
+
+ elsif Warn_On_Redundant_Constructs
+ and then not Is_Dispatching_Operation (Designator)
+ and then not Present (Overridden_Operation (Designator))
+ and then (not Is_Operator_Symbol_Name (Chars (Designator))
+ or else Scop /= Scope (Etype (First_Formal (Designator))))
+ then
+ Error_Msg_N
+ ("abstract subprogram is not dispatching or overriding?r?", N);
+ end if;
+
+ Generate_Reference_To_Formals (Designator);
+ Check_Eliminated (Designator);
+
+ if Has_Aspects (N) then
+ Analyze_Aspect_Specifications (N, Designator);
+ end if;
+ end Analyze_Abstract_Subprogram_Declaration;
+
+ ---------------------------------
+ -- Analyze_Expression_Function --
+ ---------------------------------
+
+ procedure Analyze_Expression_Function (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ LocX : constant Source_Ptr := Sloc (Expression (N));
+ Expr : constant Node_Id := Expression (N);
+ Spec : constant Node_Id := Specification (N);
+
+ Def_Id : Entity_Id;
+
+ Prev : Entity_Id;
+ -- If the expression is a completion, Prev is the entity whose
+ -- declaration is completed. Def_Id is needed to analyze the spec.
+
+ New_Body : Node_Id;
+ New_Decl : Node_Id;
+ New_Spec : Node_Id;
+ Ret : Node_Id;
+
+ begin
+ -- This is one of the occasions on which we transform the tree during
+ -- semantic analysis. If this is a completion, transform the expression
+ -- function into an equivalent subprogram body, and analyze it.
+
+ -- Expression functions are inlined unconditionally. The back-end will
+ -- determine whether this is possible.
+
+ Inline_Processing_Required := True;
+
+ -- Create a specification for the generated body. Types and defauts in
+ -- the profile are copies of the spec, but new entities must be created
+ -- for the unit name and the formals.
+
+ New_Spec := New_Copy_Tree (Spec);
+ Set_Defining_Unit_Name (New_Spec,
+ Make_Defining_Identifier (Sloc (Defining_Unit_Name (Spec)),
+ Chars (Defining_Unit_Name (Spec))));
+
+ if Present (Parameter_Specifications (New_Spec)) then
+ declare
+ Formal_Spec : Node_Id;
+ Def : Entity_Id;
+
+ begin
+ Formal_Spec := First (Parameter_Specifications (New_Spec));
+
+ -- Create a new formal parameter at the same source position
+
+ while Present (Formal_Spec) loop
+ Def := Defining_Identifier (Formal_Spec);
+ Set_Defining_Identifier (Formal_Spec,
+ Make_Defining_Identifier (Sloc (Def),
+ Chars => Chars (Def)));
+ Next (Formal_Spec);
+ end loop;
+ end;
+ end if;
+
+ Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
+
+ -- If there are previous overloadable entities with the same name,
+ -- check whether any of them is completed by the expression function.
+
+ if Present (Prev) and then Is_Overloadable (Prev) then
+ Def_Id := Analyze_Subprogram_Specification (Spec);
+ Prev := Find_Corresponding_Spec (N);
+ end if;
+
+ Ret := Make_Simple_Return_Statement (LocX, Expression (N));
+
+ New_Body :=
+ Make_Subprogram_Body (Loc,
+ Specification => New_Spec,
+ Declarations => Empty_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (LocX,
+ Statements => New_List (Ret)));
+
+ -- If the expression completes a generic subprogram, we must create a
+ -- separate node for the body, because at instantiation the original
+ -- node of the generic copy must be a generic subprogram body, and
+ -- cannot be a expression function. Otherwise we just rewrite the
+ -- expression with the non-generic body.
+
+ if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
+ Insert_After (N, New_Body);
+
+ -- Propagate any aspects or pragmas that apply to the expression
+ -- function to the proper body when the expression function acts
+ -- as a completion.
+
+ if Has_Aspects (N) then
+ Move_Aspects (N, To => New_Body);
+ end if;
+
+ Relocate_Pragmas_To_Body (New_Body);
+
+ Rewrite (N, Make_Null_Statement (Loc));
+ Set_Has_Completion (Prev, False);
+ Analyze (N);
+ Analyze (New_Body);
+ Set_Is_Inlined (Prev);
+
+ elsif Present (Prev) and then Comes_From_Source (Prev) then
+ Set_Has_Completion (Prev, False);
+
+ -- An expression function that is a completion freezes the
+ -- expression. This means freezing the return type, and if it is
+ -- an access type, freezing its designated type as well.
+
+ -- Note that we cannot defer this freezing to the analysis of the
+ -- expression itself, because a freeze node might appear in a nested
+ -- scope, leading to an elaboration order issue in gigi.
+
+ Freeze_Before (N, Etype (Prev));
+
+ if Is_Access_Type (Etype (Prev)) then
+ Freeze_Before (N, Designated_Type (Etype (Prev)));
+ end if;
+
+ -- For navigation purposes, indicate that the function is a body
+
+ Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
+ Rewrite (N, New_Body);
+
+ -- Correct the parent pointer of the aspect specification list to
+ -- reference the rewritten node.
+
+ if Has_Aspects (N) then
+ Set_Parent (Aspect_Specifications (N), N);
+ end if;
+
+ -- Propagate any pragmas that apply to the expression function to the
+ -- proper body when the expression function acts as a completion.
+ -- Aspects are automatically transfered because of node rewriting.
+
+ Relocate_Pragmas_To_Body (N);
+ Analyze (N);
+
+ -- Prev is the previous entity with the same name, but it is can
+ -- be an unrelated spec that is not completed by the expression
+ -- function. In that case the relevant entity is the one in the body.
+ -- Not clear that the backend can inline it in this case ???
+
+ if Has_Completion (Prev) then
+ Set_Is_Inlined (Prev);
+
+ -- The formals of the expression function are body formals,
+ -- and do not appear in the ali file, which will only contain
+ -- references to the formals of the original subprogram spec.
+
+ declare
+ F1 : Entity_Id;
+ F2 : Entity_Id;
+
+ begin
+ F1 := First_Formal (Def_Id);
+ F2 := First_Formal (Prev);
+
+ while Present (F1) loop
+ Set_Spec_Entity (F1, F2);
+ Next_Formal (F1);
+ Next_Formal (F2);
+ end loop;
+ end;
+
+ else
+ Set_Is_Inlined (Defining_Entity (New_Body));
+ end if;
+
+ -- If this is not a completion, create both a declaration and a body, so
+ -- that the expression can be inlined whenever possible.
+
+ else
+ -- An expression function that is not a completion is not a
+ -- subprogram declaration, and thus cannot appear in a protected
+ -- definition.
+
+ if Nkind (Parent (N)) = N_Protected_Definition then
+ Error_Msg_N
+ ("an expression function is not a legal protected operation", N);
+ end if;
+
+ New_Decl :=
+ Make_Subprogram_Declaration (Loc, Specification => Spec);
+
+ Rewrite (N, New_Decl);
+
+ -- Correct the parent pointer of the aspect specification list to
+ -- reference the rewritten node.
+
+ if Has_Aspects (N) then
+ Set_Parent (Aspect_Specifications (N), N);
+ end if;
+
+ Analyze (N);
+ Set_Is_Inlined (Defining_Entity (New_Decl));
+
+ -- To prevent premature freeze action, insert the new body at the end
+ -- of the current declarations, or at the end of the package spec.
+ -- However, resolve usage names now, to prevent spurious visibility
+ -- on later entities. Note that the function can now be called in
+ -- the current declarative part, which will appear to be prior to
+ -- the presence of the body in the code. There are nevertheless no
+ -- order of elaboration issues because all name resolution has taken
+ -- place at the point of declaration.
+
+ declare
+ Decls : List_Id := List_Containing (N);
+ Par : constant Node_Id := Parent (Decls);
+ Id : constant Entity_Id := Defining_Entity (New_Decl);
+
+ begin
+ if Nkind (Par) = N_Package_Specification
+ and then Decls = Visible_Declarations (Par)
+ and then Present (Private_Declarations (Par))
+ and then not Is_Empty_List (Private_Declarations (Par))
+ then
+ Decls := Private_Declarations (Par);
+ end if;
+
+ Insert_After (Last (Decls), New_Body);
+ Push_Scope (Id);
+ Install_Formals (Id);
+
+ -- Preanalyze the expression for name capture, except in an
+ -- instance, where this has been done during generic analysis,
+ -- and will be redone when analyzing the body.
+
+ declare
+ Expr : constant Node_Id := Expression (Ret);
+
+ begin
+ Set_Parent (Expr, Ret);
+
+ if not In_Instance then
+ Preanalyze_Spec_Expression (Expr, Etype (Id));
+ end if;
+ end;
+
+ End_Scope;
+ end;
+ end if;
+
+ -- If the return expression is a static constant, we suppress warning
+ -- messages on unused formals, which in most cases will be noise.
+
+ Set_Is_Trivial_Subprogram (Defining_Entity (New_Body),
+ Is_OK_Static_Expression (Expr));
+ end Analyze_Expression_Function;
+
+ ----------------------------------------
+ -- Analyze_Extended_Return_Statement --
+ ----------------------------------------
+
+ procedure Analyze_Extended_Return_Statement (N : Node_Id) is
+ begin
+ Analyze_Return_Statement (N);
+ end Analyze_Extended_Return_Statement;
+
+ ----------------------------
+ -- Analyze_Function_Call --
+ ----------------------------
+
+ procedure Analyze_Function_Call (N : Node_Id) is
+ Actuals : constant List_Id := Parameter_Associations (N);
+ Func_Nam : constant Node_Id := Name (N);
+ Actual : Node_Id;
+
+ begin
+ Analyze (Func_Nam);
+
+ -- A call of the form A.B (X) may be an Ada 2005 call, which is
+ -- rewritten as B (A, X). If the rewriting is successful, the call
+ -- has been analyzed and we just return.
+
+ if Nkind (Func_Nam) = N_Selected_Component
+ and then Name (N) /= Func_Nam
+ and then Is_Rewrite_Substitution (N)
+ and then Present (Etype (N))
+ then
+ return;
+ end if;
+
+ -- If error analyzing name, then set Any_Type as result type and return
+
+ if Etype (Func_Nam) = Any_Type then
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- Otherwise analyze the parameters
+
+ if Present (Actuals) then
+ Actual := First (Actuals);
+ while Present (Actual) loop
+ Analyze (Actual);
+ Check_Parameterless_Call (Actual);
+ Next (Actual);
+ end loop;
+ end if;
+
+ Analyze_Call (N);
+ end Analyze_Function_Call;
+
+ -----------------------------
+ -- Analyze_Function_Return --
+ -----------------------------
+
+ procedure Analyze_Function_Return (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
+ Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
+
+ R_Type : constant Entity_Id := Etype (Scope_Id);
+ -- Function result subtype
+
+ procedure Check_Limited_Return (Expr : Node_Id);
+ -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
+ -- limited types. Used only for simple return statements.
+ -- Expr is the expression returned.
+
+ procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
+ -- Check that the return_subtype_indication properly matches the result
+ -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
+
+ --------------------------
+ -- Check_Limited_Return --
+ --------------------------
+
+ procedure Check_Limited_Return (Expr : Node_Id) is
+ begin
+ -- Ada 2005 (AI-318-02): Return-by-reference types have been
+ -- removed and replaced by anonymous access results. This is an
+ -- incompatibility with Ada 95. Not clear whether this should be
+ -- enforced yet or perhaps controllable with special switch. ???
+
+ -- A limited interface that is not immutably limited is OK.
+
+ if Is_Limited_Interface (R_Type)
+ and then
+ not (Is_Task_Interface (R_Type)
+ or else Is_Protected_Interface (R_Type)
+ or else Is_Synchronized_Interface (R_Type))
+ then
+ null;
+
+ elsif Is_Limited_Type (R_Type)
+ and then not Is_Interface (R_Type)
+ and then Comes_From_Source (N)
+ and then not In_Instance_Body
+ and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
+ then
+ -- Error in Ada 2005
+
+ if Ada_Version >= Ada_2005
+ and then not Debug_Flag_Dot_L
+ and then not GNAT_Mode
+ then
+ Error_Msg_N
+ ("(Ada 2005) cannot copy object of a limited type " &
+ "(RM-2005 6.5(5.5/2))", Expr);
+
+ if Is_Limited_View (R_Type) then
+ Error_Msg_N
+ ("\return by reference not permitted in Ada 2005", Expr);
+ end if;
+
+ -- Warn in Ada 95 mode, to give folks a heads up about this
+ -- incompatibility.
+
+ -- In GNAT mode, this is just a warning, to allow it to be
+ -- evilly turned off. Otherwise it is a real error.
+
+ -- In a generic context, simplify the warning because it makes
+ -- no sense to discuss pass-by-reference or copy.
+
+ elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
+ if Inside_A_Generic then
+ Error_Msg_N
+ ("return of limited object not permitted in Ada 2005 "
+ & "(RM-2005 6.5(5.5/2))?y?", Expr);
+
+ elsif Is_Limited_View (R_Type) then
+ Error_Msg_N
+ ("return by reference not permitted in Ada 2005 "
+ & "(RM-2005 6.5(5.5/2))?y?", Expr);
+ else
+ Error_Msg_N
+ ("cannot copy object of a limited type in Ada 2005 "
+ & "(RM-2005 6.5(5.5/2))?y?", Expr);
+ end if;
+
+ -- Ada 95 mode, compatibility warnings disabled
+
+ else
+ return; -- skip continuation messages below
+ end if;
+
+ if not Inside_A_Generic then
+ Error_Msg_N
+ ("\consider switching to return of access type", Expr);
+ Explain_Limited_Type (R_Type, Expr);
+ end if;
+ end if;
+ end Check_Limited_Return;
+
+ -------------------------------------
+ -- Check_Return_Subtype_Indication --
+ -------------------------------------
+
+ procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
+ Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
+
+ R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
+ -- Subtype given in the extended return statement (must match R_Type)
+
+ Subtype_Ind : constant Node_Id :=
+ Object_Definition (Original_Node (Obj_Decl));
+
+ R_Type_Is_Anon_Access : constant Boolean :=
+ Ekind_In (R_Type,
+ E_Anonymous_Access_Subprogram_Type,
+ E_Anonymous_Access_Protected_Subprogram_Type,
+ E_Anonymous_Access_Type);
+ -- True if return type of the function is an anonymous access type
+ -- Can't we make Is_Anonymous_Access_Type in einfo ???
+
+ R_Stm_Type_Is_Anon_Access : constant Boolean :=
+ Ekind_In (R_Stm_Type,
+ E_Anonymous_Access_Subprogram_Type,
+ E_Anonymous_Access_Protected_Subprogram_Type,
+ E_Anonymous_Access_Type);
+ -- True if type of the return object is an anonymous access type
+
+ procedure Error_No_Match (N : Node_Id);
+ -- Output error messages for case where types do not statically
+ -- match. N is the location for the messages.
+
+ --------------------
+ -- Error_No_Match --
+ --------------------
+
+ procedure Error_No_Match (N : Node_Id) is
+ begin
+ Error_Msg_N
+ ("subtype must statically match function result subtype", N);
+
+ if not Predicates_Match (R_Stm_Type, R_Type) then
+ Error_Msg_Node_2 := R_Type;
+ Error_Msg_NE
+ ("\predicate of & does not match predicate of &",
+ N, R_Stm_Type);
+ end if;
+ end Error_No_Match;
+
+ -- Start of processing for Check_Return_Subtype_Indication
+
+ begin
+ -- First, avoid cascaded errors
+
+ if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
+ return;
+ end if;
+
+ -- "return access T" case; check that the return statement also has
+ -- "access T", and that the subtypes statically match:
+ -- if this is an access to subprogram the signatures must match.
+
+ if R_Type_Is_Anon_Access then
+ if R_Stm_Type_Is_Anon_Access then
+ if
+ Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
+ then
+ if Base_Type (Designated_Type (R_Stm_Type)) /=
+ Base_Type (Designated_Type (R_Type))
+ or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
+ then
+ Error_No_Match (Subtype_Mark (Subtype_Ind));
+ end if;
+
+ else
+ -- For two anonymous access to subprogram types, the
+ -- types themselves must be type conformant.
+
+ if not Conforming_Types
+ (R_Stm_Type, R_Type, Fully_Conformant)
+ then
+ Error_No_Match (Subtype_Ind);
+ end if;
+ end if;
+
+ else
+ Error_Msg_N ("must use anonymous access type", Subtype_Ind);
+ end if;
+
+ -- If the return object is of an anonymous access type, then report
+ -- an error if the function's result type is not also anonymous.
+
+ elsif R_Stm_Type_Is_Anon_Access
+ and then not R_Type_Is_Anon_Access
+ then
+ Error_Msg_N ("anonymous access not allowed for function with " &
+ "named access result", Subtype_Ind);
+
+ -- Subtype indication case: check that the return object's type is
+ -- covered by the result type, and that the subtypes statically match
+ -- when the result subtype is constrained. Also handle record types
+ -- with unknown discriminants for which we have built the underlying
+ -- record view. Coverage is needed to allow specific-type return
+ -- objects when the result type is class-wide (see AI05-32).
+
+ elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
+ or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
+ and then
+ Covers
+ (Base_Type (R_Type),
+ Underlying_Record_View (Base_Type (R_Stm_Type))))
+ then
+ -- A null exclusion may be present on the return type, on the
+ -- function specification, on the object declaration or on the
+ -- subtype itself.
+
+ if Is_Access_Type (R_Type)
+ and then
+ (Can_Never_Be_Null (R_Type)
+ or else Null_Exclusion_Present (Parent (Scope_Id))) /=
+ Can_Never_Be_Null (R_Stm_Type)
+ then
+ Error_No_Match (Subtype_Ind);
+ end if;
+
+ -- AI05-103: for elementary types, subtypes must statically match
+
+ if Is_Constrained (R_Type)
+ or else Is_Access_Type (R_Type)
+ then
+ if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
+ Error_No_Match (Subtype_Ind);
+ end if;
+ end if;
+
+ elsif Etype (Base_Type (R_Type)) = R_Stm_Type
+ and then Is_Null_Extension (Base_Type (R_Type))
+ then
+ null;
+
+ else
+ Error_Msg_N
+ ("wrong type for return_subtype_indication", Subtype_Ind);
+ end if;
+ end Check_Return_Subtype_Indication;
+
+ ---------------------
+ -- Local Variables --
+ ---------------------
+
+ Expr : Node_Id;
+
+ -- Start of processing for Analyze_Function_Return
+
+ begin
+ Set_Return_Present (Scope_Id);
+
+ if Nkind (N) = N_Simple_Return_Statement then
+ Expr := Expression (N);
+
+ -- Guard against a malformed expression. The parser may have tried to
+ -- recover but the node is not analyzable.
+
+ if Nkind (Expr) = N_Error then
+ Set_Etype (Expr, Any_Type);
+ Expander_Mode_Save_And_Set (False);
+ return;
+
+ else
+ -- The resolution of a controlled [extension] aggregate associated
+ -- with a return statement creates a temporary which needs to be
+ -- finalized on function exit. Wrap the return statement inside a
+ -- block so that the finalization machinery can detect this case.
+ -- This early expansion is done only when the return statement is
+ -- not part of a handled sequence of statements.
+
+ if Nkind_In (Expr, N_Aggregate,
+ N_Extension_Aggregate)
+ and then Needs_Finalization (R_Type)
+ and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
+ then
+ Rewrite (N,
+ Make_Block_Statement (Loc,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (Relocate_Node (N)))));
+
+ Analyze (N);
+ return;
+ end if;
+
+ Analyze_And_Resolve (Expr, R_Type);
+ Check_Limited_Return (Expr);
+ end if;
+
+ -- RETURN only allowed in SPARK as the last statement in function
+
+ if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
+ and then
+ (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
+ or else Present (Next (N)))
+ then
+ Check_SPARK_Restriction
+ ("RETURN should be the last statement in function", N);
+ end if;
+
+ else
+ Check_SPARK_Restriction ("extended RETURN is not allowed", N);
+
+ -- Analyze parts specific to extended_return_statement:
+
+ declare
+ Obj_Decl : constant Node_Id :=
+ Last (Return_Object_Declarations (N));
+ Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
+ HSS : constant Node_Id := Handled_Statement_Sequence (N);
+
+ begin
+ Expr := Expression (Obj_Decl);
+
+ -- Note: The check for OK_For_Limited_Init will happen in
+ -- Analyze_Object_Declaration; we treat it as a normal
+ -- object declaration.
+
+ Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
+ Analyze (Obj_Decl);
+
+ Check_Return_Subtype_Indication (Obj_Decl);
+
+ if Present (HSS) then
+ Analyze (HSS);
+
+ if Present (Exception_Handlers (HSS)) then
+
+ -- ???Has_Nested_Block_With_Handler needs to be set.
+ -- Probably by creating an actual N_Block_Statement.
+ -- Probably in Expand.
+
+ null;
+ end if;
+ end if;
+
+ -- Mark the return object as referenced, since the return is an
+ -- implicit reference of the object.
+
+ Set_Referenced (Defining_Identifier (Obj_Decl));
+
+ Check_References (Stm_Entity);
+
+ -- Check RM 6.5 (5.9/3)
+
+ if Has_Aliased then
+ if Ada_Version < Ada_2012 then
+
+ -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
+ -- Can it really happen (extended return???)
+
+ Error_Msg_N
+ ("aliased only allowed for limited"
+ & " return objects in Ada 2012?", N);
+
+ elsif not Is_Limited_View (R_Type) then
+ Error_Msg_N ("aliased only allowed for limited"
+ & " return objects", N);
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- Case of Expr present
+
+ if Present (Expr)
+
+ -- Defend against previous errors
+
+ and then Nkind (Expr) /= N_Empty
+ and then Present (Etype (Expr))
+ then
+ -- Apply constraint check. Note that this is done before the implicit
+ -- conversion of the expression done for anonymous access types to
+ -- ensure correct generation of the null-excluding check associated
+ -- with null-excluding expressions found in return statements.
+
+ Apply_Constraint_Check (Expr, R_Type);
+
+ -- Ada 2005 (AI-318-02): When the result type is an anonymous access
+ -- type, apply an implicit conversion of the expression to that type
+ -- to force appropriate static and run-time accessibility checks.
+
+ if Ada_Version >= Ada_2005
+ and then Ekind (R_Type) = E_Anonymous_Access_Type
+ then
+ Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
+ Analyze_And_Resolve (Expr, R_Type);
+
+ -- If this is a local anonymous access to subprogram, the
+ -- accessibility check can be applied statically. The return is
+ -- illegal if the access type of the return expression is declared
+ -- inside of the subprogram (except if it is the subtype indication
+ -- of an extended return statement).
+
+ elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
+ if not Comes_From_Source (Current_Scope)
+ or else Ekind (Current_Scope) = E_Return_Statement
+ then
+ null;
+
+ elsif
+ Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
+ then
+ Error_Msg_N ("cannot return local access to subprogram", N);
+ end if;
+ end if;
+
+ -- If the result type is class-wide, then check that the return
+ -- expression's type is not declared at a deeper level than the
+ -- function (RM05-6.5(5.6/2)).
+
+ if Ada_Version >= Ada_2005
+ and then Is_Class_Wide_Type (R_Type)
+ then
+ if Type_Access_Level (Etype (Expr)) >
+ Subprogram_Access_Level (Scope_Id)
+ then
+ Error_Msg_N
+ ("level of return expression type is deeper than " &
+ "class-wide function!", Expr);
+ end if;
+ end if;
+
+ -- Check incorrect use of dynamically tagged expression
+
+ if Is_Tagged_Type (R_Type) then
+ Check_Dynamically_Tagged_Expression
+ (Expr => Expr,
+ Typ => R_Type,
+ Related_Nod => N);
+ end if;
+
+ -- ??? A real run-time accessibility check is needed in cases
+ -- involving dereferences of access parameters. For now we just
+ -- check the static cases.
+
+ if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
+ and then Is_Limited_View (Etype (Scope_Id))
+ and then Object_Access_Level (Expr) >
+ Subprogram_Access_Level (Scope_Id)
+ then
+ -- Suppress the message in a generic, where the rewriting
+ -- is irrelevant.
+
+ if Inside_A_Generic then
+ null;
+
+ else
+ Rewrite (N,
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Accessibility_Check_Failed));
+ Analyze (N);
+
+ Error_Msg_Warn := SPARK_Mode /= On;
+ Error_Msg_N ("cannot return a local value by reference<<", N);
+ Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
+ end if;
+ end if;
+
+ if Known_Null (Expr)
+ and then Nkind (Parent (Scope_Id)) = N_Function_Specification
+ and then Null_Exclusion_Present (Parent (Scope_Id))
+ then
+ Apply_Compile_Time_Constraint_Error
+ (N => Expr,
+ Msg => "(Ada 2005) null not allowed for "
+ & "null-excluding return??",
+ Reason => CE_Null_Not_Allowed);
+ end if;
+ end if;
+ end Analyze_Function_Return;
+
+ -------------------------------------
+ -- Analyze_Generic_Subprogram_Body --
+ -------------------------------------
+
+ procedure Analyze_Generic_Subprogram_Body
+ (N : Node_Id;
+ Gen_Id : Entity_Id)
+ is
+ Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
+ Kind : constant Entity_Kind := Ekind (Gen_Id);
+ Body_Id : Entity_Id;
+ New_N : Node_Id;
+ Spec : Node_Id;
+
+ begin
+ -- Copy body and disable expansion while analyzing the generic For a
+ -- stub, do not copy the stub (which would load the proper body), this
+ -- will be done when the proper body is analyzed.
+
+ if Nkind (N) /= N_Subprogram_Body_Stub then
+ New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
+ Rewrite (N, New_N);
+ Start_Generic;
+ end if;
+
+ Spec := Specification (N);
+
+ -- Within the body of the generic, the subprogram is callable, and
+ -- behaves like the corresponding non-generic unit.
+
+ Body_Id := Defining_Entity (Spec);
+
+ if Kind = E_Generic_Procedure
+ and then Nkind (Spec) /= N_Procedure_Specification
+ then
+ Error_Msg_N ("invalid body for generic procedure ", Body_Id);
+ return;
+
+ elsif Kind = E_Generic_Function
+ and then Nkind (Spec) /= N_Function_Specification
+ then
+ Error_Msg_N ("invalid body for generic function ", Body_Id);
+ return;
+ end if;
+
+ Set_Corresponding_Body (Gen_Decl, Body_Id);
+
+ if Has_Completion (Gen_Id)
+ and then Nkind (Parent (N)) /= N_Subunit
+ then
+ Error_Msg_N ("duplicate generic body", N);
+ return;
+ else
+ Set_Has_Completion (Gen_Id);
+ end if;
+
+ if Nkind (N) = N_Subprogram_Body_Stub then
+ Set_Ekind (Defining_Entity (Specification (N)), Kind);
+ else
+ Set_Corresponding_Spec (N, Gen_Id);
+ end if;
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
+ end if;
+
+ -- Make generic parameters immediately visible in the body. They are
+ -- needed to process the formals declarations. Then make the formals
+ -- visible in a separate step.
+
+ Push_Scope (Gen_Id);
+
+ declare
+ E : Entity_Id;
+ First_Ent : Entity_Id;
+
+ begin
+ First_Ent := First_Entity (Gen_Id);
+
+ E := First_Ent;
+ while Present (E) and then not Is_Formal (E) loop
+ Install_Entity (E);
+ Next_Entity (E);
+ end loop;
+
+ Set_Use (Generic_Formal_Declarations (Gen_Decl));
+
+ -- Now generic formals are visible, and the specification can be
+ -- analyzed, for subsequent conformance check.
+
+ Body_Id := Analyze_Subprogram_Specification (Spec);
+
+ -- Make formal parameters visible
+
+ if Present (E) then
+
+ -- E is the first formal parameter, we loop through the formals
+ -- installing them so that they will be visible.
+
+ Set_First_Entity (Gen_Id, E);
+ while Present (E) loop
+ Install_Entity (E);
+ Next_Formal (E);
+ end loop;
+ end if;
+
+ -- Visible generic entity is callable within its own body
+
+ Set_Ekind (Gen_Id, Ekind (Body_Id));
+ Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
+ Set_Ekind (Body_Id, E_Subprogram_Body);
+ Set_Convention (Body_Id, Convention (Gen_Id));
+ Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
+ Set_Scope (Body_Id, Scope (Gen_Id));
+ Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
+
+ if Nkind (N) = N_Subprogram_Body_Stub then
+
+ -- No body to analyze, so restore state of generic unit
+
+ Set_Ekind (Gen_Id, Kind);
+ Set_Ekind (Body_Id, Kind);
+
+ if Present (First_Ent) then
+ Set_First_Entity (Gen_Id, First_Ent);
+ end if;
+
+ End_Scope;
+ return;
+ end if;
+
+ -- If this is a compilation unit, it must be made visible explicitly,
+ -- because the compilation of the declaration, unlike other library
+ -- unit declarations, does not. If it is not a unit, the following
+ -- is redundant but harmless.
+
+ Set_Is_Immediately_Visible (Gen_Id);
+ Reference_Body_Formals (Gen_Id, Body_Id);
+
+ if Is_Child_Unit (Gen_Id) then
+ Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
+ end if;
+
+ Set_Actual_Subtypes (N, Current_Scope);
+
+ -- Deal with [refined] preconditions, postconditions, Contract_Cases,
+ -- invariants and predicates associated with the body and its spec.
+ -- Note that this is not pure expansion as Expand_Subprogram_Contract
+ -- prepares the contract assertions for generic subprograms or for
+ -- ASIS. Do not generate contract checks in SPARK mode.
+
+ if not GNATprove_Mode then
+ Expand_Subprogram_Contract (N, Gen_Id, Body_Id);
+ end if;
+
+ -- If the generic unit carries pre- or post-conditions, copy them
+ -- to the original generic tree, so that they are properly added
+ -- to any instantiation.
+
+ declare
+ Orig : constant Node_Id := Original_Node (N);
+ Cond : Node_Id;
+
+ begin
+ Cond := First (Declarations (N));
+ while Present (Cond) loop
+ if Nkind (Cond) = N_Pragma
+ and then Pragma_Name (Cond) = Name_Check
+ then
+ Prepend (New_Copy_Tree (Cond), Declarations (Orig));
+
+ elsif Nkind (Cond) = N_Pragma
+ and then Pragma_Name (Cond) = Name_Postcondition
+ then
+ Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
+ Prepend (New_Copy_Tree (Cond), Declarations (Orig));
+ else
+ exit;
+ end if;
+
+ Next (Cond);
+ end loop;
+ end;
+
+ Check_SPARK_Mode_In_Generic (N);
+
+ Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
+ Set_SPARK_Pragma_Inherited (Body_Id, True);
+
+ Analyze_Declarations (Declarations (N));
+ Check_Completion;
+ Analyze (Handled_Statement_Sequence (N));
+
+ Save_Global_References (Original_Node (N));
+
+ -- Prior to exiting the scope, include generic formals again (if any
+ -- are present) in the set of local entities.
+
+ if Present (First_Ent) then
+ Set_First_Entity (Gen_Id, First_Ent);
+ end if;
+
+ Check_References (Gen_Id);
+ end;
+
+ Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
+ End_Scope;
+ Check_Subprogram_Order (N);
+
+ -- Outside of its body, unit is generic again
+
+ Set_Ekind (Gen_Id, Kind);
+ Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
+
+ if Style_Check then
+ Style.Check_Identifier (Body_Id, Gen_Id);
+ end if;
+
+ End_Generic;
+ end Analyze_Generic_Subprogram_Body;
+
+ ----------------------------
+ -- Analyze_Null_Procedure --
+ ----------------------------
+
+ procedure Analyze_Null_Procedure
+ (N : Node_Id;
+ Is_Completion : out Boolean)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Spec : constant Node_Id := Specification (N);
+ Designator : Entity_Id;
+ Form : Node_Id;
+ Null_Body : Node_Id := Empty;
+ Prev : Entity_Id;
+
+ begin
+ -- Capture the profile of the null procedure before analysis, for
+ -- expansion at the freeze point and at each point of call. The body is
+ -- used if the procedure has preconditions, or if it is a completion. In
+ -- the first case the body is analyzed at the freeze point, in the other
+ -- it replaces the null procedure declaration.
+
+ Null_Body :=
+ Make_Subprogram_Body (Loc,
+ Specification => New_Copy_Tree (Spec),
+ Declarations => New_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (Make_Null_Statement (Loc))));
+
+ -- Create new entities for body and formals
+
+ Set_Defining_Unit_Name (Specification (Null_Body),
+ Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))));
+
+ Form := First (Parameter_Specifications (Specification (Null_Body)));
+ while Present (Form) loop
+ Set_Defining_Identifier (Form,
+ Make_Defining_Identifier (Loc, Chars (Defining_Identifier (Form))));
+ Next (Form);
+ end loop;
+
+ -- Determine whether the null procedure may be a completion of a generic
+ -- suprogram, in which case we use the new null body as the completion
+ -- and set minimal semantic information on the original declaration,
+ -- which is rewritten as a null statement.
+
+ Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
+
+ if Present (Prev) and then Is_Generic_Subprogram (Prev) then
+ Insert_Before (N, Null_Body);
+ Set_Ekind (Defining_Entity (N), Ekind (Prev));
+ Set_Contract (Defining_Entity (N), Make_Contract (Loc));
+
+ Rewrite (N, Make_Null_Statement (Loc));
+ Analyze_Generic_Subprogram_Body (Null_Body, Prev);
+ Is_Completion := True;
+ return;
+
+ else
+ -- Resolve the types of the formals now, because the freeze point
+ -- may appear in a different context, e.g. an instantiation.
+
+ Form := First (Parameter_Specifications (Specification (Null_Body)));
+ while Present (Form) loop
+ if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
+ Find_Type (Parameter_Type (Form));
+
+ elsif
+ No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
+ then
+ Find_Type (Subtype_Mark (Parameter_Type (Form)));
+
+ else
+ -- The case of a null procedure with a formal that is an
+ -- access_to_subprogram type, and that is used as an actual
+ -- in an instantiation is left to the enthusiastic reader.
+
+ null;
+ end if;
+
+ Next (Form);
+ end loop;
+ end if;
+
+ -- If there are previous overloadable entities with the same name,
+ -- check whether any of them is completed by the null procedure.
+
+ if Present (Prev) and then Is_Overloadable (Prev) then
+ Designator := Analyze_Subprogram_Specification (Spec);
+ Prev := Find_Corresponding_Spec (N);
+ end if;
+
+ if No (Prev) or else not Comes_From_Source (Prev) then
+ Designator := Analyze_Subprogram_Specification (Spec);
+ Set_Has_Completion (Designator);
+
+ -- Signal to caller that this is a procedure declaration
+
+ Is_Completion := False;
+
+ -- Null procedures are always inlined, but generic formal subprograms
+ -- which appear as such in the internal instance of formal packages,
+ -- need no completion and are not marked Inline.
+
+ if Expander_Active
+ and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
+ then
+ Set_Corresponding_Body (N, Defining_Entity (Null_Body));
+ Set_Body_To_Inline (N, Null_Body);
+ Set_Is_Inlined (Designator);
+ end if;
+
+ else
+ -- The null procedure is a completion
+
+ Is_Completion := True;
+
+ if Expander_Active then
+ Rewrite (N, Null_Body);
+ Analyze (N);
+
+ else
+ Designator := Analyze_Subprogram_Specification (Spec);
+ Set_Has_Completion (Designator);
+ Set_Has_Completion (Prev);
+ end if;
+ end if;
+ end Analyze_Null_Procedure;
+
+ -----------------------------
+ -- Analyze_Operator_Symbol --
+ -----------------------------
+
+ -- An operator symbol such as "+" or "and" may appear in context where the
+ -- literal denotes an entity name, such as "+"(x, y) or in context when it
+ -- is just a string, as in (conjunction = "or"). In these cases the parser
+ -- generates this node, and the semantics does the disambiguation. Other
+ -- such case are actuals in an instantiation, the generic unit in an
+ -- instantiation, and pragma arguments.
+
+ procedure Analyze_Operator_Symbol (N : Node_Id) is
+ Par : constant Node_Id := Parent (N);
+
+ begin
+ if (Nkind (Par) = N_Function_Call and then N = Name (Par))
+ or else Nkind (Par) = N_Function_Instantiation
+ or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
+ or else (Nkind (Par) = N_Pragma_Argument_Association
+ and then not Is_Pragma_String_Literal (Par))
+ or else Nkind (Par) = N_Subprogram_Renaming_Declaration
+ or else (Nkind (Par) = N_Attribute_Reference
+ and then Attribute_Name (Par) /= Name_Value)
+ then
+ Find_Direct_Name (N);
+
+ else
+ Change_Operator_Symbol_To_String_Literal (N);
+ Analyze (N);
+ end if;
+ end Analyze_Operator_Symbol;
+
+ -----------------------------------
+ -- Analyze_Parameter_Association --
+ -----------------------------------
+
+ procedure Analyze_Parameter_Association (N : Node_Id) is
+ begin
+ Analyze (Explicit_Actual_Parameter (N));
+ end Analyze_Parameter_Association;
+
+ ----------------------------
+ -- Analyze_Procedure_Call --
+ ----------------------------
+
+ procedure Analyze_Procedure_Call (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ P : constant Node_Id := Name (N);
+ Actuals : constant List_Id := Parameter_Associations (N);
+ Actual : Node_Id;
+ New_N : Node_Id;
+
+ procedure Analyze_Call_And_Resolve;
+ -- Do Analyze and Resolve calls for procedure call
+ -- At end, check illegal order dependence.
+
+ ------------------------------
+ -- Analyze_Call_And_Resolve --
+ ------------------------------
+
+ procedure Analyze_Call_And_Resolve is
+ begin
+ if Nkind (N) = N_Procedure_Call_Statement then
+ Analyze_Call (N);
+ Resolve (N, Standard_Void_Type);
+ else
+ Analyze (N);
+ end if;
+ end Analyze_Call_And_Resolve;
+
+ -- Start of processing for Analyze_Procedure_Call
+
+ begin
+ -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
+ -- a procedure call or an entry call. The prefix may denote an access
+ -- to subprogram type, in which case an implicit dereference applies.
+ -- If the prefix is an indexed component (without implicit dereference)
+ -- then the construct denotes a call to a member of an entire family.
+ -- If the prefix is a simple name, it may still denote a call to a
+ -- parameterless member of an entry family. Resolution of these various
+ -- interpretations is delicate.
+
+ Analyze (P);
+
+ -- If this is a call of the form Obj.Op, the call may have been
+ -- analyzed and possibly rewritten into a block, in which case
+ -- we are done.
+
+ if Analyzed (N) then
+ return;
+ end if;
+
+ -- If there is an error analyzing the name (which may have been
+ -- rewritten if the original call was in prefix notation) then error
+ -- has been emitted already, mark node and return.
+
+ if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- Otherwise analyze the parameters
+
+ if Present (Actuals) then
+ Actual := First (Actuals);
+
+ while Present (Actual) loop
+ Analyze (Actual);
+ Check_Parameterless_Call (Actual);
+ Next (Actual);
+ end loop;
+ end if;
+
+ -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
+
+ if Nkind (P) = N_Attribute_Reference
+ and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
+ Name_Elab_Body,
+ Name_Elab_Subp_Body)
+ then
+ if Present (Actuals) then
+ Error_Msg_N
+ ("no parameters allowed for this call", First (Actuals));
+ return;
+ end if;
+
+ Set_Etype (N, Standard_Void_Type);
+ Set_Analyzed (N);
+
+ elsif Is_Entity_Name (P)
+ and then Is_Record_Type (Etype (Entity (P)))
+ and then Remote_AST_I_Dereference (P)
+ then
+ return;
+
+ elsif Is_Entity_Name (P)
+ and then Ekind (Entity (P)) /= E_Entry_Family
+ then
+ if Is_Access_Type (Etype (P))
+ and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
+ and then No (Actuals)
+ and then Comes_From_Source (N)
+ then
+ Error_Msg_N ("missing explicit dereference in call", N);
+ end if;
+
+ Analyze_Call_And_Resolve;
+
+ -- If the prefix is the simple name of an entry family, this is
+ -- a parameterless call from within the task body itself.
+
+ elsif Is_Entity_Name (P)
+ and then Nkind (P) = N_Identifier
+ and then Ekind (Entity (P)) = E_Entry_Family
+ and then Present (Actuals)
+ and then No (Next (First (Actuals)))
+ then
+ -- Can be call to parameterless entry family. What appears to be the
+ -- sole argument is in fact the entry index. Rewrite prefix of node
+ -- accordingly. Source representation is unchanged by this
+ -- transformation.
+
+ New_N :=
+ Make_Indexed_Component (Loc,
+ Prefix =>
+ Make_Selected_Component (Loc,
+ Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
+ Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
+ Expressions => Actuals);
+ Set_Name (N, New_N);
+ Set_Etype (New_N, Standard_Void_Type);
+ Set_Parameter_Associations (N, No_List);
+ Analyze_Call_And_Resolve;
+
+ elsif Nkind (P) = N_Explicit_Dereference then
+ if Ekind (Etype (P)) = E_Subprogram_Type then
+ Analyze_Call_And_Resolve;
+ else
+ Error_Msg_N ("expect access to procedure in call", P);
+ end if;
+
+ -- The name can be a selected component or an indexed component that
+ -- yields an access to subprogram. Such a prefix is legal if the call
+ -- has parameter associations.
+
+ elsif Is_Access_Type (Etype (P))
+ and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
+ then
+ if Present (Actuals) then
+ Analyze_Call_And_Resolve;
+ else
+ Error_Msg_N ("missing explicit dereference in call ", N);
+ end if;
+
+ -- If not an access to subprogram, then the prefix must resolve to the
+ -- name of an entry, entry family, or protected operation.
+
+ -- For the case of a simple entry call, P is a selected component where
+ -- the prefix is the task and the selector name is the entry. A call to
+ -- a protected procedure will have the same syntax. If the protected
+ -- object contains overloaded operations, the entity may appear as a
+ -- function, the context will select the operation whose type is Void.
+
+ elsif Nkind (P) = N_Selected_Component
+ and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
+ E_Procedure,
+ E_Function)
+ then
+ Analyze_Call_And_Resolve;
+
+ elsif Nkind (P) = N_Selected_Component
+ and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
+ and then Present (Actuals)
+ and then No (Next (First (Actuals)))
+ then
+ -- Can be call to parameterless entry family. What appears to be the
+ -- sole argument is in fact the entry index. Rewrite prefix of node
+ -- accordingly. Source representation is unchanged by this
+ -- transformation.
+
+ New_N :=
+ Make_Indexed_Component (Loc,
+ Prefix => New_Copy (P),
+ Expressions => Actuals);
+ Set_Name (N, New_N);
+ Set_Etype (New_N, Standard_Void_Type);
+ Set_Parameter_Associations (N, No_List);
+ Analyze_Call_And_Resolve;
+
+ -- For the case of a reference to an element of an entry family, P is
+ -- an indexed component whose prefix is a selected component (task and
+ -- entry family), and whose index is the entry family index.
+
+ elsif Nkind (P) = N_Indexed_Component
+ and then Nkind (Prefix (P)) = N_Selected_Component
+ and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
+ then
+ Analyze_Call_And_Resolve;
+
+ -- If the prefix is the name of an entry family, it is a call from
+ -- within the task body itself.
+
+ elsif Nkind (P) = N_Indexed_Component
+ and then Nkind (Prefix (P)) = N_Identifier
+ and then Ekind (Entity (Prefix (P))) = E_Entry_Family
+ then
+ New_N :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
+ Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
+ Rewrite (Prefix (P), New_N);
+ Analyze (P);
+ Analyze_Call_And_Resolve;
+
+ -- In Ada 2012. a qualified expression is a name, but it cannot be a
+ -- procedure name, so the construct can only be a qualified expression.
+
+ elsif Nkind (P) = N_Qualified_Expression
+ and then Ada_Version >= Ada_2012
+ then
+ Rewrite (N, Make_Code_Statement (Loc, Expression => P));
+ Analyze (N);
+
+ -- Anything else is an error
+
+ else
+ Error_Msg_N ("invalid procedure or entry call", N);
+ end if;
+ end Analyze_Procedure_Call;
+
+ ------------------------------
+ -- Analyze_Return_Statement --
+ ------------------------------
+
+ procedure Analyze_Return_Statement (N : Node_Id) is
+
+ pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
+ N_Extended_Return_Statement));
+
+ Returns_Object : constant Boolean :=
+ Nkind (N) = N_Extended_Return_Statement
+ or else
+ (Nkind (N) = N_Simple_Return_Statement
+ and then Present (Expression (N)));
+ -- True if we're returning something; that is, "return <expression>;"
+ -- or "return Result : T [:= ...]". False for "return;". Used for error
+ -- checking: If Returns_Object is True, N should apply to a function
+ -- body; otherwise N should apply to a procedure body, entry body,
+ -- accept statement, or extended return statement.
+
+ function Find_What_It_Applies_To return Entity_Id;
+ -- Find the entity representing the innermost enclosing body, accept
+ -- statement, or extended return statement. If the result is a callable
+ -- construct or extended return statement, then this will be the value
+ -- of the Return_Applies_To attribute. Otherwise, the program is
+ -- illegal. See RM-6.5(4/2).
+
+ -----------------------------
+ -- Find_What_It_Applies_To --
+ -----------------------------
+
+ function Find_What_It_Applies_To return Entity_Id is
+ Result : Entity_Id := Empty;
+
+ begin
+ -- Loop outward through the Scope_Stack, skipping blocks, loops,
+ -- and postconditions.
+
+ for J in reverse 0 .. Scope_Stack.Last loop
+ Result := Scope_Stack.Table (J).Entity;
+ exit when not Ekind_In (Result, E_Block, E_Loop)
+ and then Chars (Result) /= Name_uPostconditions;
+ end loop;
+
+ pragma Assert (Present (Result));
+ return Result;
+ end Find_What_It_Applies_To;
+
+ -- Local declarations
+
+ Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
+ Kind : constant Entity_Kind := Ekind (Scope_Id);
+ Loc : constant Source_Ptr := Sloc (N);
+ Stm_Entity : constant Entity_Id :=
+ New_Internal_Entity
+ (E_Return_Statement, Current_Scope, Loc, 'R');
+
+ -- Start of processing for Analyze_Return_Statement
+
+ begin
+ Set_Return_Statement_Entity (N, Stm_Entity);
+
+ Set_Etype (Stm_Entity, Standard_Void_Type);
+ Set_Return_Applies_To (Stm_Entity, Scope_Id);
+
+ -- Place Return entity on scope stack, to simplify enforcement of 6.5
+ -- (4/2): an inner return statement will apply to this extended return.
+
+ if Nkind (N) = N_Extended_Return_Statement then
+ Push_Scope (Stm_Entity);
+ end if;
+
+ -- Check that pragma No_Return is obeyed. Don't complain about the
+ -- implicitly-generated return that is placed at the end.
+
+ if No_Return (Scope_Id) and then Comes_From_Source (N) then
+ Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
+ end if;
+
+ -- Warn on any unassigned OUT parameters if in procedure
+
+ if Ekind (Scope_Id) = E_Procedure then
+ Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
+ end if;
+
+ -- Check that functions return objects, and other things do not
+
+ if Kind = E_Function or else Kind = E_Generic_Function then
+ if not Returns_Object then
+ Error_Msg_N ("missing expression in return from function", N);
+ end if;
+
+ elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
+ if Returns_Object then
+ Error_Msg_N ("procedure cannot return value (use function)", N);
+ end if;
+
+ elsif Kind = E_Entry or else Kind = E_Entry_Family then
+ if Returns_Object then
+ if Is_Protected_Type (Scope (Scope_Id)) then
+ Error_Msg_N ("entry body cannot return value", N);
+ else
+ Error_Msg_N ("accept statement cannot return value", N);
+ end if;
+ end if;
+
+ elsif Kind = E_Return_Statement then
+
+ -- We are nested within another return statement, which must be an
+ -- extended_return_statement.
+
+ if Returns_Object then
+ if Nkind (N) = N_Extended_Return_Statement then
+ Error_Msg_N
+ ("extended return statement cannot be nested (use `RETURN;`)",
+ N);
+
+ -- Case of a simple return statement with a value inside extended
+ -- return statement.
+
+ else
+ Error_Msg_N
+ ("return nested in extended return statement cannot return " &
+ "value (use `RETURN;`)", N);
+ end if;
+ end if;
+
+ else
+ Error_Msg_N ("illegal context for return statement", N);
+ end if;
+
+ if Ekind_In (Kind, E_Function, E_Generic_Function) then
+ Analyze_Function_Return (N);
+
+ elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
+ Set_Return_Present (Scope_Id);
+ end if;
+
+ if Nkind (N) = N_Extended_Return_Statement then
+ End_Scope;
+ end if;
+
+ Kill_Current_Values (Last_Assignment_Only => True);
+ Check_Unreachable_Code (N);
+
+ Analyze_Dimension (N);
+ end Analyze_Return_Statement;
+
+ -------------------------------------
+ -- Analyze_Simple_Return_Statement --
+ -------------------------------------
+
+ procedure Analyze_Simple_Return_Statement (N : Node_Id) is
+ begin
+ if Present (Expression (N)) then
+ Mark_Coextensions (N, Expression (N));
+ end if;
+
+ Analyze_Return_Statement (N);
+ end Analyze_Simple_Return_Statement;
+
+ -------------------------
+ -- Analyze_Return_Type --
+ -------------------------
+
+ procedure Analyze_Return_Type (N : Node_Id) is
+ Designator : constant Entity_Id := Defining_Entity (N);
+ Typ : Entity_Id := Empty;
+
+ begin
+ -- Normal case where result definition does not indicate an error
+
+ if Result_Definition (N) /= Error then
+ if Nkind (Result_Definition (N)) = N_Access_Definition then
+ Check_SPARK_Restriction
+ ("access result is not allowed", Result_Definition (N));
+
+ -- Ada 2005 (AI-254): Handle anonymous access to subprograms
+
+ declare
+ AD : constant Node_Id :=
+ Access_To_Subprogram_Definition (Result_Definition (N));
+ begin
+ if Present (AD) and then Protected_Present (AD) then
+ Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
+ else
+ Typ := Access_Definition (N, Result_Definition (N));
+ end if;
+ end;
+
+ Set_Parent (Typ, Result_Definition (N));
+ Set_Is_Local_Anonymous_Access (Typ);
+ Set_Etype (Designator, Typ);
+
+ -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
+
+ Null_Exclusion_Static_Checks (N);
+
+ -- Subtype_Mark case
+
+ else
+ Find_Type (Result_Definition (N));
+ Typ := Entity (Result_Definition (N));
+ Set_Etype (Designator, Typ);
+
+ -- Unconstrained array as result is not allowed in SPARK
+
+ if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
+ Check_SPARK_Restriction
+ ("returning an unconstrained array is not allowed",
+ Result_Definition (N));
+ end if;
+
+ -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
+
+ Null_Exclusion_Static_Checks (N);
+
+ -- If a null exclusion is imposed on the result type, then create
+ -- a null-excluding itype (an access subtype) and use it as the
+ -- function's Etype. Note that the null exclusion checks are done
+ -- right before this, because they don't get applied to types that
+ -- do not come from source.
+
+ if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
+ Set_Etype (Designator,
+ Create_Null_Excluding_Itype
+ (T => Typ,
+ Related_Nod => N,
+ Scope_Id => Scope (Current_Scope)));
+
+ -- The new subtype must be elaborated before use because
+ -- it is visible outside of the function. However its base
+ -- type may not be frozen yet, so the reference that will
+ -- force elaboration must be attached to the freezing of
+ -- the base type.
+
+ -- If the return specification appears on a proper body,
+ -- the subtype will have been created already on the spec.
+
+ if Is_Frozen (Typ) then
+ if Nkind (Parent (N)) = N_Subprogram_Body
+ and then Nkind (Parent (Parent (N))) = N_Subunit
+ then
+ null;
+ else
+ Build_Itype_Reference (Etype (Designator), Parent (N));
+ end if;
+
+ else
+ Ensure_Freeze_Node (Typ);
+
+ declare
+ IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
+ begin
+ Set_Itype (IR, Etype (Designator));
+ Append_Freeze_Actions (Typ, New_List (IR));
+ end;
+ end if;
+
+ else
+ Set_Etype (Designator, Typ);
+ end if;
+
+ if Ekind (Typ) = E_Incomplete_Type
+ and then Is_Value_Type (Typ)
+ then
+ null;
+
+ elsif Ekind (Typ) = E_Incomplete_Type
+ or else (Is_Class_Wide_Type (Typ)
+ and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
+ then
+ -- AI05-0151: Tagged incomplete types are allowed in all formal
+ -- parts. Untagged incomplete types are not allowed in bodies.
+
+ if Ada_Version >= Ada_2012 then
+ if Is_Tagged_Type (Typ) then
+ null;
+
+ elsif Nkind (Parent (N)) = N_Subprogram_Body
+ or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
+ N_Entry_Body)
+ then
+ Error_Msg_NE
+ ("invalid use of untagged incomplete type&",
+ Designator, Typ);
+ end if;
+
+ -- The type must be completed in the current package. This
+ -- is checked at the end of the package declaration when
+ -- Taft-amendment types are identified. If the return type
+ -- is class-wide, there is no required check, the type can
+ -- be a bona fide TAT.
+
+ if Ekind (Scope (Current_Scope)) = E_Package
+ and then In_Private_Part (Scope (Current_Scope))
+ and then not Is_Class_Wide_Type (Typ)
+ then
+ Append_Elmt (Designator, Private_Dependents (Typ));
+ end if;
+
+ else
+ Error_Msg_NE
+ ("invalid use of incomplete type&", Designator, Typ);
+ end if;
+ end if;
+ end if;
+
+ -- Case where result definition does indicate an error
+
+ else
+ Set_Etype (Designator, Any_Type);
+ end if;
+ end Analyze_Return_Type;
+
+ -----------------------------
+ -- Analyze_Subprogram_Body --
+ -----------------------------
+
+ procedure Analyze_Subprogram_Body (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Body_Spec : constant Node_Id := Specification (N);
+ Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
+
+ begin
+ if Debug_Flag_C then
+ Write_Str ("==> subprogram body ");
+ Write_Name (Chars (Body_Id));
+ Write_Str (" from ");
+ Write_Location (Loc);
+ Write_Eol;
+ Indent;
+ end if;
+
+ Trace_Scope (N, Body_Id, " Analyze subprogram: ");
+
+ -- The real work is split out into the helper, so it can do "return;"
+ -- without skipping the debug output:
+
+ Analyze_Subprogram_Body_Helper (N);
+
+ if Debug_Flag_C then
+ Outdent;
+ Write_Str ("<== subprogram body ");
+ Write_Name (Chars (Body_Id));
+ Write_Str (" from ");
+ Write_Location (Loc);
+ Write_Eol;
+ end if;
+ end Analyze_Subprogram_Body;
+
+ --------------------------------------
+ -- Analyze_Subprogram_Body_Contract --
+ --------------------------------------
+
+ procedure Analyze_Subprogram_Body_Contract (Body_Id : Entity_Id) is
+ Body_Decl : constant Node_Id := Parent (Parent (Body_Id));
+ Spec_Id : constant Entity_Id := Corresponding_Spec (Body_Decl);
+ Prag : Node_Id;
+ Ref_Depends : Node_Id := Empty;
+ Ref_Global : Node_Id := Empty;
+
+ begin
+ -- When a subprogram body declaration is erroneous, its defining entity
+ -- is left unanalyzed. There is nothing left to do in this case because
+ -- the body lacks a contract.
+
+ if not Analyzed (Body_Id) then
+ return;
+ end if;
+
+ -- Locate and store pragmas Refined_Depends and Refined_Global since
+ -- their order of analysis matters.
+
+ Prag := Classifications (Contract (Body_Id));
+ while Present (Prag) loop
+ if Pragma_Name (Prag) = Name_Refined_Depends then
+ Ref_Depends := Prag;
+ elsif Pragma_Name (Prag) = Name_Refined_Global then
+ Ref_Global := Prag;
+ end if;
+
+ Prag := Next_Pragma (Prag);
+ end loop;
+
+ -- Analyze Refined_Global first as Refined_Depends may mention items
+ -- classified in the global refinement.
+
+ if Present (Ref_Global) then
+ Analyze_Refined_Global_In_Decl_Part (Ref_Global);
+
+ -- When the corresponding Global aspect/pragma references a state with
+ -- visible refinement, the body requires Refined_Global. Refinement is
+ -- not required when SPARK checks are suppressed.
+
+ elsif Present (Spec_Id) then
+ Prag := Get_Pragma (Spec_Id, Pragma_Global);
+
+ if SPARK_Mode /= Off
+ and then Present (Prag)
+ and then Contains_Refined_State (Prag)
+ then
+ Error_Msg_NE
+ ("body of subprogram & requires global refinement",
+ Body_Decl, Spec_Id);
+ end if;
+ end if;
+
+ -- Refined_Depends must be analyzed after Refined_Global in order to see
+ -- the modes of all global refinements.
+
+ if Present (Ref_Depends) then
+ Analyze_Refined_Depends_In_Decl_Part (Ref_Depends);
+
+ -- When the corresponding Depends aspect/pragma references a state with
+ -- visible refinement, the body requires Refined_Depends. Refinement is
+ -- not required when SPARK checks are suppressed.
+
+ elsif Present (Spec_Id) then
+ Prag := Get_Pragma (Spec_Id, Pragma_Depends);
+
+ if SPARK_Mode /= Off
+ and then Present (Prag)
+ and then Contains_Refined_State (Prag)
+ then
+ Error_Msg_NE
+ ("body of subprogram & requires dependance refinement",
+ Body_Decl, Spec_Id);
+ end if;
+ end if;
+ end Analyze_Subprogram_Body_Contract;
+
+ ------------------------------------
+ -- Analyze_Subprogram_Body_Helper --
+ ------------------------------------
+
+ -- This procedure is called for regular subprogram bodies, generic bodies,
+ -- and for subprogram stubs of both kinds. In the case of stubs, only the
+ -- specification matters, and is used to create a proper declaration for
+ -- the subprogram, or to perform conformance checks.
+
+ procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Body_Spec : constant Node_Id := Specification (N);
+ Body_Id : Entity_Id := Defining_Entity (Body_Spec);
+ Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
+ Conformant : Boolean;
+ HSS : Node_Id;
+ Prot_Typ : Entity_Id := Empty;
+ Spec_Id : Entity_Id;
+ Spec_Decl : Node_Id := Empty;
+
+ Last_Real_Spec_Entity : Entity_Id := Empty;
+ -- When we analyze a separate spec, the entity chain ends up containing
+ -- the formals, as well as any itypes generated during analysis of the
+ -- default expressions for parameters, or the arguments of associated
+ -- precondition/postcondition pragmas (which are analyzed in the context
+ -- of the spec since they have visibility on formals).
+ --
+ -- These entities belong with the spec and not the body. However we do
+ -- the analysis of the body in the context of the spec (again to obtain
+ -- visibility to the formals), and all the entities generated during
+ -- this analysis end up also chained to the entity chain of the spec.
+ -- But they really belong to the body, and there is circuitry to move
+ -- them from the spec to the body.
+ --
+ -- However, when we do this move, we don't want to move the real spec
+ -- entities (first para above) to the body. The Last_Real_Spec_Entity
+ -- variable points to the last real spec entity, so we only move those
+ -- chained beyond that point. It is initialized to Empty to deal with
+ -- the case where there is no separate spec.
+
+ procedure Check_Anonymous_Return;
+ -- Ada 2005: if a function returns an access type that denotes a task,
+ -- or a type that contains tasks, we must create a master entity for
+ -- the anonymous type, which typically will be used in an allocator
+ -- in the body of the function.
+
+ procedure Check_Inline_Pragma (Spec : in out Node_Id);
+ -- Look ahead to recognize a pragma that may appear after the body.
+ -- If there is a previous spec, check that it appears in the same
+ -- declarative part. If the pragma is Inline_Always, perform inlining
+ -- unconditionally, otherwise only if Front_End_Inlining is requested.
+ -- If the body acts as a spec, and inlining is required, we create a
+ -- subprogram declaration for it, in order to attach the body to inline.
+ -- If pragma does not appear after the body, check whether there is
+ -- an inline pragma before any local declarations.
+
+ procedure Check_Missing_Return;
+ -- Checks for a function with a no return statements, and also performs
+ -- the warning checks implemented by Check_Returns. In formal mode, also
+ -- verify that a function ends with a RETURN and that a procedure does
+ -- not contain any RETURN.
+
+ procedure Diagnose_Misplaced_Aspect_Specifications;
+ -- It is known that subprogram body N has aspects, but they are not
+ -- properly placed. Provide specific error messages depending on the
+ -- aspects involved.
+
+ function Disambiguate_Spec return Entity_Id;
+ -- When a primitive is declared between the private view and the full
+ -- view of a concurrent type which implements an interface, a special
+ -- mechanism is used to find the corresponding spec of the primitive
+ -- body.
+
+ procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
+ -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
+ -- incomplete types coming from a limited context and swap their limited
+ -- views with the non-limited ones.
+
+ function Is_Private_Concurrent_Primitive
+ (Subp_Id : Entity_Id) return Boolean;
+ -- Determine whether subprogram Subp_Id is a primitive of a concurrent
+ -- type that implements an interface and has a private view.
+
+ procedure Set_Trivial_Subprogram (N : Node_Id);
+ -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
+ -- subprogram whose body is being analyzed. N is the statement node
+ -- causing the flag to be set, if the following statement is a return
+ -- of an entity, we mark the entity as set in source to suppress any
+ -- warning on the stylized use of function stubs with a dummy return.
+
+ procedure Verify_Overriding_Indicator;
+ -- If there was a previous spec, the entity has been entered in the
+ -- current scope previously. If the body itself carries an overriding
+ -- indicator, check that it is consistent with the known status of the
+ -- entity.
+
+ ----------------------------
+ -- Check_Anonymous_Return --
+ ----------------------------
+
+ procedure Check_Anonymous_Return is
+ Decl : Node_Id;
+ Par : Node_Id;
+ Scop : Entity_Id;
+
+ begin
+ if Present (Spec_Id) then
+ Scop := Spec_Id;
+ else
+ Scop := Body_Id;
+ end if;
+
+ if Ekind (Scop) = E_Function
+ and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
+ and then not Is_Thunk (Scop)
+ and then (Has_Task (Designated_Type (Etype (Scop)))
+ or else
+ (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
+ and then
+ Is_Limited_Record (Designated_Type (Etype (Scop)))))
+ and then Expander_Active
+
+ -- Avoid cases with no tasking support
+
+ and then RTE_Available (RE_Current_Master)
+ and then not Restriction_Active (No_Task_Hierarchy)
+ then
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_uMaster),
+ Constant_Present => True,
+ Object_Definition =>
+ New_Occurrence_Of (RTE (RE_Master_Id), Loc),
+ Expression =>
+ Make_Explicit_Dereference (Loc,
+ New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
+
+ if Present (Declarations (N)) then
+ Prepend (Decl, Declarations (N));
+ else
+ Set_Declarations (N, New_List (Decl));
+ end if;
+
+ Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
+ Set_Has_Master_Entity (Scop);
+
+ -- Now mark the containing scope as a task master
+
+ Par := N;
+ while Nkind (Par) /= N_Compilation_Unit loop
+ Par := Parent (Par);
+ pragma Assert (Present (Par));
+
+ -- If we fall off the top, we are at the outer level, and
+ -- the environment task is our effective master, so nothing
+ -- to mark.
+
+ if Nkind_In
+ (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
+ then
+ Set_Is_Task_Master (Par, True);
+ exit;
+ end if;
+ end loop;
+ end if;
+ end Check_Anonymous_Return;
+
+ -------------------------
+ -- Check_Inline_Pragma --
+ -------------------------
+
+ procedure Check_Inline_Pragma (Spec : in out Node_Id) is
+ Prag : Node_Id;
+ Plist : List_Id;
+
+ function Is_Inline_Pragma (N : Node_Id) return Boolean;
+ -- True when N is a pragma Inline or Inline_Always that applies
+ -- to this subprogram.
+
+ -----------------------
+ -- Is_Inline_Pragma --
+ -----------------------
+
+ function Is_Inline_Pragma (N : Node_Id) return Boolean is
+ begin
+ return
+ Nkind (N) = N_Pragma
+ and then
+ (Pragma_Name (N) = Name_Inline_Always
+ or else
+ (Front_End_Inlining
+ and then Pragma_Name (N) = Name_Inline))
+ and then
+ Chars
+ (Expression (First (Pragma_Argument_Associations (N)))) =
+ Chars (Body_Id);
+ end Is_Inline_Pragma;
+
+ -- Start of processing for Check_Inline_Pragma
+
+ begin
+ if not Expander_Active then
+ return;
+ end if;
+
+ if Is_List_Member (N)
+ and then Present (Next (N))
+ and then Is_Inline_Pragma (Next (N))
+ then
+ Prag := Next (N);
+
+ elsif Nkind (N) /= N_Subprogram_Body_Stub
+ and then Present (Declarations (N))
+ and then Is_Inline_Pragma (First (Declarations (N)))
+ then
+ Prag := First (Declarations (N));
+
+ else
+ Prag := Empty;
+ end if;
+
+ if Present (Prag) then
+ if Present (Spec_Id) then
+ if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
+ Analyze (Prag);
+ end if;
+
+ else
+ -- Create a subprogram declaration, to make treatment uniform
+
+ declare
+ Subp : constant Entity_Id :=
+ Make_Defining_Identifier (Loc, Chars (Body_Id));
+ Decl : constant Node_Id :=
+ Make_Subprogram_Declaration (Loc,
+ Specification =>
+ New_Copy_Tree (Specification (N)));
+
+ begin
+ Set_Defining_Unit_Name (Specification (Decl), Subp);
+
+ if Present (First_Formal (Body_Id)) then
+ Plist := Copy_Parameter_List (Body_Id);
+ Set_Parameter_Specifications
+ (Specification (Decl), Plist);
+ end if;
+
+ Insert_Before (N, Decl);
+ Analyze (Decl);
+ Analyze (Prag);
+ Set_Has_Pragma_Inline (Subp);
+
+ if Pragma_Name (Prag) = Name_Inline_Always then
+ Set_Is_Inlined (Subp);
+ Set_Has_Pragma_Inline_Always (Subp);
+ end if;
+
+ -- Prior to copying the subprogram body to create a template
+ -- for it for subsequent inlining, remove the pragma from
+ -- the current body so that the copy that will produce the
+ -- new body will start from a completely unanalyzed tree.
+
+ if Nkind (Parent (Prag)) = N_Subprogram_Body then
+ Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
+ end if;
+
+ Spec := Subp;
+ end;
+ end if;
+ end if;
+ end Check_Inline_Pragma;
+
+ --------------------------
+ -- Check_Missing_Return --
+ --------------------------
+
+ procedure Check_Missing_Return is
+ Id : Entity_Id;
+ Missing_Ret : Boolean;
+
+ begin
+ if Nkind (Body_Spec) = N_Function_Specification then
+ if Present (Spec_Id) then
+ Id := Spec_Id;
+ else
+ Id := Body_Id;
+ end if;
+
+ if Return_Present (Id) then
+ Check_Returns (HSS, 'F', Missing_Ret);
+
+ if Missing_Ret then
+ Set_Has_Missing_Return (Id);
+ end if;
+
+ elsif Is_Generic_Subprogram (Id)
+ or else not Is_Machine_Code_Subprogram (Id)
+ then
+ Error_Msg_N ("missing RETURN statement in function body", N);
+ end if;
+
+ -- If procedure with No_Return, check returns
+
+ elsif Nkind (Body_Spec) = N_Procedure_Specification
+ and then Present (Spec_Id)
+ and then No_Return (Spec_Id)
+ then
+ Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
+ end if;
+
+ -- Special checks in SPARK mode
+
+ if Nkind (Body_Spec) = N_Function_Specification then
+
+ -- In SPARK mode, last statement of a function should be a return
+
+ declare
+ Stat : constant Node_Id := Last_Source_Statement (HSS);
+ begin
+ if Present (Stat)
+ and then not Nkind_In (Stat, N_Simple_Return_Statement,
+ N_Extended_Return_Statement)
+ then
+ Check_SPARK_Restriction
+ ("last statement in function should be RETURN", Stat);
+ end if;
+ end;
+
+ -- In SPARK mode, verify that a procedure has no return
+
+ elsif Nkind (Body_Spec) = N_Procedure_Specification then
+ if Present (Spec_Id) then
+ Id := Spec_Id;
+ else
+ Id := Body_Id;
+ end if;
+
+ -- Would be nice to point to return statement here, can we
+ -- borrow the Check_Returns procedure here ???
+
+ if Return_Present (Id) then
+ Check_SPARK_Restriction
+ ("procedure should not have RETURN", N);
+ end if;
+ end if;
+ end Check_Missing_Return;
+
+ ----------------------------------------------
+ -- Diagnose_Misplaced_Aspect_Specifications --
+ ----------------------------------------------
+
+ procedure Diagnose_Misplaced_Aspect_Specifications is
+ Asp : Node_Id;
+ Asp_Nam : Name_Id;
+ Asp_Id : Aspect_Id;
+ -- The current aspect along with its name and id
+
+ procedure SPARK_Aspect_Error (Ref_Nam : Name_Id);
+ -- Emit an error message concerning SPARK aspect Asp. Ref_Nam is the
+ -- name of the refined version of the aspect.
+
+ ------------------------
+ -- SPARK_Aspect_Error --
+ ------------------------
+
+ procedure SPARK_Aspect_Error (Ref_Nam : Name_Id) is
+ begin
+ -- The corresponding spec already contains the aspect in question
+ -- and the one appearing on the body must be the refined form:
+
+ -- procedure P with Global ...;
+ -- procedure P with Global ... is ... end P;
+ -- ^
+ -- Refined_Global
+
+ if Has_Aspect (Spec_Id, Asp_Id) then
+ Error_Msg_Name_1 := Asp_Nam;
+
+ -- Subunits cannot carry aspects that apply to a subprogram
+ -- declaration.
+
+ if Nkind (Parent (N)) = N_Subunit then
+ Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
+
+ else
+ Error_Msg_Name_2 := Ref_Nam;
+ Error_Msg_N ("aspect % should be %", Asp);
+ end if;
+
+ -- Otherwise the aspect must appear in the spec, not in the body:
+
+ -- procedure P;
+ -- procedure P with Global ... is ... end P;
+
+ else
+ Error_Msg_N
+ ("aspect specification must appear in subprogram declaration",
+ Asp);
+ end if;
+ end SPARK_Aspect_Error;
+
+ -- Start of processing for Diagnose_Misplaced_Aspect_Specifications
+
+ begin
+ -- Iterate over the aspect specifications and emit specific errors
+ -- where applicable.
+
+ Asp := First (Aspect_Specifications (N));
+ while Present (Asp) loop
+ Asp_Nam := Chars (Identifier (Asp));
+ Asp_Id := Get_Aspect_Id (Asp_Nam);
+
+ -- Do not emit errors on aspects that can appear on a subprogram
+ -- body. This scenario occurs when the aspect specification list
+ -- contains both misplaced and properly placed aspects.
+
+ if Aspect_On_Body_Or_Stub_OK (Asp_Id) then
+ null;
+
+ -- Special diagnostics for SPARK aspects
+
+ elsif Asp_Nam = Name_Depends then
+ SPARK_Aspect_Error (Name_Refined_Depends);
+
+ elsif Asp_Nam = Name_Global then
+ SPARK_Aspect_Error (Name_Refined_Global);
+
+ elsif Asp_Nam = Name_Post then
+ SPARK_Aspect_Error (Name_Refined_Post);
+
+ else
+ Error_Msg_N
+ ("aspect specification must appear in subprogram declaration",
+ Asp);
+ end if;
+
+ Next (Asp);
+ end loop;
+ end Diagnose_Misplaced_Aspect_Specifications;
+
+ -----------------------
+ -- Disambiguate_Spec --
+ -----------------------
+
+ function Disambiguate_Spec return Entity_Id is
+ Priv_Spec : Entity_Id;
+ Spec_N : Entity_Id;
+
+ procedure Replace_Types (To_Corresponding : Boolean);
+ -- Depending on the flag, replace the type of formal parameters of
+ -- Body_Id if it is a concurrent type implementing interfaces with
+ -- the corresponding record type or the other way around.
+
+ procedure Replace_Types (To_Corresponding : Boolean) is
+ Formal : Entity_Id;
+ Formal_Typ : Entity_Id;
+
+ begin
+ Formal := First_Formal (Body_Id);
+ while Present (Formal) loop
+ Formal_Typ := Etype (Formal);
+
+ if Is_Class_Wide_Type (Formal_Typ) then
+ Formal_Typ := Root_Type (Formal_Typ);
+ end if;
+
+ -- From concurrent type to corresponding record
+
+ if To_Corresponding then
+ if Is_Concurrent_Type (Formal_Typ)
+ and then Present (Corresponding_Record_Type (Formal_Typ))
+ and then Present (Interfaces (
+ Corresponding_Record_Type (Formal_Typ)))
+ then
+ Set_Etype (Formal,
+ Corresponding_Record_Type (Formal_Typ));
+ end if;
+
+ -- From corresponding record to concurrent type
+
+ else
+ if Is_Concurrent_Record_Type (Formal_Typ)
+ and then Present (Interfaces (Formal_Typ))
+ then
+ Set_Etype (Formal,
+ Corresponding_Concurrent_Type (Formal_Typ));
+ end if;
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+ end Replace_Types;
+
+ -- Start of processing for Disambiguate_Spec
+
+ begin
+ -- Try to retrieve the specification of the body as is. All error
+ -- messages are suppressed because the body may not have a spec in
+ -- its current state.
+
+ Spec_N := Find_Corresponding_Spec (N, False);
+
+ -- It is possible that this is the body of a primitive declared
+ -- between a private and a full view of a concurrent type. The
+ -- controlling parameter of the spec carries the concurrent type,
+ -- not the corresponding record type as transformed by Analyze_
+ -- Subprogram_Specification. In such cases, we undo the change
+ -- made by the analysis of the specification and try to find the
+ -- spec again.
+
+ -- Note that wrappers already have their corresponding specs and
+ -- bodies set during their creation, so if the candidate spec is
+ -- a wrapper, then we definitely need to swap all types to their
+ -- original concurrent status.
+
+ if No (Spec_N)
+ or else Is_Primitive_Wrapper (Spec_N)
+ then
+ -- Restore all references of corresponding record types to the
+ -- original concurrent types.
+
+ Replace_Types (To_Corresponding => False);
+ Priv_Spec := Find_Corresponding_Spec (N, False);
+
+ -- The current body truly belongs to a primitive declared between
+ -- a private and a full view. We leave the modified body as is,
+ -- and return the true spec.
+
+ if Present (Priv_Spec)
+ and then Is_Private_Primitive (Priv_Spec)
+ then
+ return Priv_Spec;
+ end if;
+
+ -- In case that this is some sort of error, restore the original
+ -- state of the body.
+
+ Replace_Types (To_Corresponding => True);
+ end if;
+
+ return Spec_N;
+ end Disambiguate_Spec;
+
+ ----------------------------
+ -- Exchange_Limited_Views --
+ ----------------------------
+
+ procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
+ procedure Detect_And_Exchange (Id : Entity_Id);
+ -- Determine whether Id's type denotes an incomplete type associated
+ -- with a limited with clause and exchange the limited view with the
+ -- non-limited one.
+
+ -------------------------
+ -- Detect_And_Exchange --
+ -------------------------
+
+ procedure Detect_And_Exchange (Id : Entity_Id) is
+ Typ : constant Entity_Id := Etype (Id);
+
+ begin
+ if Ekind (Typ) = E_Incomplete_Type
+ and then From_Limited_With (Typ)
+ and then Present (Non_Limited_View (Typ))
+ then
+ Set_Etype (Id, Non_Limited_View (Typ));
+ end if;
+ end Detect_And_Exchange;
+
+ -- Local variables
+
+ Formal : Entity_Id;
+
+ -- Start of processing for Exchange_Limited_Views
+
+ begin
+ if No (Subp_Id) then
+ return;
+
+ -- Do not process subprogram bodies as they already use the non-
+ -- limited view of types.
+
+ elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
+ return;
+ end if;
+
+ -- Examine all formals and swap views when applicable
+
+ Formal := First_Formal (Subp_Id);
+ while Present (Formal) loop
+ Detect_And_Exchange (Formal);
+
+ Next_Formal (Formal);
+ end loop;
+
+ -- Process the return type of a function
+
+ if Ekind (Subp_Id) = E_Function then
+ Detect_And_Exchange (Subp_Id);
+ end if;
+ end Exchange_Limited_Views;
+
+ -------------------------------------
+ -- Is_Private_Concurrent_Primitive --
+ -------------------------------------
+
+ function Is_Private_Concurrent_Primitive
+ (Subp_Id : Entity_Id) return Boolean
+ is
+ Formal_Typ : Entity_Id;
+
+ begin
+ if Present (First_Formal (Subp_Id)) then
+ Formal_Typ := Etype (First_Formal (Subp_Id));
+
+ if Is_Concurrent_Record_Type (Formal_Typ) then
+ if Is_Class_Wide_Type (Formal_Typ) then
+ Formal_Typ := Root_Type (Formal_Typ);
+ end if;
+
+ Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
+ end if;
+
+ -- The type of the first formal is a concurrent tagged type with
+ -- a private view.
+
+ return
+ Is_Concurrent_Type (Formal_Typ)
+ and then Is_Tagged_Type (Formal_Typ)
+ and then Has_Private_Declaration (Formal_Typ);
+ end if;
+
+ return False;
+ end Is_Private_Concurrent_Primitive;
+
+ ----------------------------
+ -- Set_Trivial_Subprogram --
+ ----------------------------
+
+ procedure Set_Trivial_Subprogram (N : Node_Id) is
+ Nxt : constant Node_Id := Next (N);
+
+ begin
+ Set_Is_Trivial_Subprogram (Body_Id);
+
+ if Present (Spec_Id) then
+ Set_Is_Trivial_Subprogram (Spec_Id);
+ end if;
+
+ if Present (Nxt)
+ and then Nkind (Nxt) = N_Simple_Return_Statement
+ and then No (Next (Nxt))
+ and then Present (Expression (Nxt))
+ and then Is_Entity_Name (Expression (Nxt))
+ then
+ Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
+ end if;
+ end Set_Trivial_Subprogram;
+
+ ---------------------------------
+ -- Verify_Overriding_Indicator --
+ ---------------------------------
+
+ procedure Verify_Overriding_Indicator is
+ begin
+ if Must_Override (Body_Spec) then
+ if Nkind (Spec_Id) = N_Defining_Operator_Symbol
+ and then Operator_Matches_Spec (Spec_Id, Spec_Id)
+ then
+ null;
+
+ elsif not Present (Overridden_Operation (Spec_Id)) then
+ Error_Msg_NE
+ ("subprogram& is not overriding", Body_Spec, Spec_Id);
+ end if;
+
+ elsif Must_Not_Override (Body_Spec) then
+ if Present (Overridden_Operation (Spec_Id)) then
+ Error_Msg_NE
+ ("subprogram& overrides inherited operation",
+ Body_Spec, Spec_Id);
+
+ elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
+ and then Operator_Matches_Spec (Spec_Id, Spec_Id)
+ then
+ Error_Msg_NE
+ ("subprogram & overrides predefined operator ",
+ Body_Spec, Spec_Id);
+
+ -- If this is not a primitive operation or protected subprogram,
+ -- then the overriding indicator is altogether illegal.
+
+ elsif not Is_Primitive (Spec_Id)
+ and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
+ then
+ Error_Msg_N
+ ("overriding indicator only allowed " &
+ "if subprogram is primitive",
+ Body_Spec);
+ end if;
+
+ elsif Style_Check
+ and then Present (Overridden_Operation (Spec_Id))
+ then
+ pragma Assert (Unit_Declaration_Node (Body_Id) = N);
+ Style.Missing_Overriding (N, Body_Id);
+
+ elsif Style_Check
+ and then Can_Override_Operator (Spec_Id)
+ and then not Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Spec_Id)))
+ then
+ pragma Assert (Unit_Declaration_Node (Body_Id) = N);
+ Style.Missing_Overriding (N, Body_Id);
+ end if;
+ end Verify_Overriding_Indicator;
+
+ -- Start of processing for Analyze_Subprogram_Body_Helper
+
+ begin
+ -- Generic subprograms are handled separately. They always have a
+ -- generic specification. Determine whether current scope has a
+ -- previous declaration.
+
+ -- If the subprogram body is defined within an instance of the same
+ -- name, the instance appears as a package renaming, and will be hidden
+ -- within the subprogram.
+
+ if Present (Prev_Id)
+ and then not Is_Overloadable (Prev_Id)
+ and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
+ or else Comes_From_Source (Prev_Id))
+ then
+ if Is_Generic_Subprogram (Prev_Id) then
+ Spec_Id := Prev_Id;
+ Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
+ Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
+
+ Analyze_Generic_Subprogram_Body (N, Spec_Id);
+
+ if Nkind (N) = N_Subprogram_Body then
+ HSS := Handled_Statement_Sequence (N);
+ Check_Missing_Return;
+ end if;
+
+ return;
+
+ else
+ -- Previous entity conflicts with subprogram name. Attempting to
+ -- enter name will post error.
+
+ Enter_Name (Body_Id);
+ return;
+ end if;
+
+ -- Non-generic case, find the subprogram declaration, if one was seen,
+ -- or enter new overloaded entity in the current scope. If the
+ -- Current_Entity is the Body_Id itself, the unit is being analyzed as
+ -- part of the context of one of its subunits. No need to redo the
+ -- analysis.
+
+ elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
+ return;
+
+ else
+ Body_Id := Analyze_Subprogram_Specification (Body_Spec);
+
+ if Nkind (N) = N_Subprogram_Body_Stub
+ or else No (Corresponding_Spec (N))
+ then
+ if Is_Private_Concurrent_Primitive (Body_Id) then
+ Spec_Id := Disambiguate_Spec;
+ else
+ Spec_Id := Find_Corresponding_Spec (N);
+ end if;
+
+ -- If this is a duplicate body, no point in analyzing it
+
+ if Error_Posted (N) then
+ return;
+ end if;
+
+ -- A subprogram body should cause freezing of its own declaration,
+ -- but if there was no previous explicit declaration, then the
+ -- subprogram will get frozen too late (there may be code within
+ -- the body that depends on the subprogram having been frozen,
+ -- such as uses of extra formals), so we force it to be frozen
+ -- here. Same holds if the body and spec are compilation units.
+ -- Finally, if the return type is an anonymous access to protected
+ -- subprogram, it must be frozen before the body because its
+ -- expansion has generated an equivalent type that is used when
+ -- elaborating the body.
+
+ -- An exception in the case of Ada 2012, AI05-177: The bodies
+ -- created for expression functions do not freeze.
+
+ if No (Spec_Id)
+ and then Nkind (Original_Node (N)) /= N_Expression_Function
+ then
+ Freeze_Before (N, Body_Id);
+
+ elsif Nkind (Parent (N)) = N_Compilation_Unit then
+ Freeze_Before (N, Spec_Id);
+
+ elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
+ Freeze_Before (N, Etype (Body_Id));
+ end if;
+
+ else
+ Spec_Id := Corresponding_Spec (N);
+ end if;
+ end if;
+
+ -- Language-defined aspects cannot appear on a subprogram body [stub] if
+ -- the subprogram has a spec. Certain implementation-defined aspects are
+ -- allowed to break this rule (see table Aspect_On_Body_Or_Stub_OK).
+
+ if Has_Aspects (N) then
+ if Present (Spec_Id)
+ and then not Aspects_On_Body_Or_Stub_OK (N)
+ then
+ Diagnose_Misplaced_Aspect_Specifications;
+
+ else
+ Analyze_Aspect_Specifications (N, Body_Id);
+ end if;
+ end if;
+
+ -- Previously we scanned the body to look for nested subprograms, and
+ -- rejected an inline directive if nested subprograms were present,
+ -- because the back-end would generate conflicting symbols for the
+ -- nested bodies. This is now unnecessary.
+
+ -- Look ahead to recognize a pragma Inline that appears after the body
+
+ Check_Inline_Pragma (Spec_Id);
+
+ -- Deal with special case of a fully private operation in the body of
+ -- the protected type. We must create a declaration for the subprogram,
+ -- in order to attach the protected subprogram that will be used in
+ -- internal calls. We exclude compiler generated bodies from the
+ -- expander since the issue does not arise for those cases.
+
+ if No (Spec_Id)
+ and then Comes_From_Source (N)
+ and then Is_Protected_Type (Current_Scope)
+ then
+ Spec_Id := Build_Private_Protected_Declaration (N);
+ end if;
+
+ -- If a separate spec is present, then deal with freezing issues
+
+ if Present (Spec_Id) then
+ Spec_Decl := Unit_Declaration_Node (Spec_Id);
+ Verify_Overriding_Indicator;
+
+ -- In general, the spec will be frozen when we start analyzing the
+ -- body. However, for internally generated operations, such as
+ -- wrapper functions for inherited operations with controlling
+ -- results, the spec may not have been frozen by the time we expand
+ -- the freeze actions that include the bodies. In particular, extra
+ -- formals for accessibility or for return-in-place may need to be
+ -- generated. Freeze nodes, if any, are inserted before the current
+ -- body. These freeze actions are also needed in ASIS mode to enable
+ -- the proper back-annotations.
+
+ if not Is_Frozen (Spec_Id)
+ and then (Expander_Active or ASIS_Mode)
+ then
+ -- Force the generation of its freezing node to ensure proper
+ -- management of access types in the backend.
+
+ -- This is definitely needed for some cases, but it is not clear
+ -- why, to be investigated further???
+
+ Set_Has_Delayed_Freeze (Spec_Id);
+ Freeze_Before (N, Spec_Id);
+ end if;
+ end if;
+
+ -- Mark presence of postcondition procedure in current scope and mark
+ -- the procedure itself as needing debug info. The latter is important
+ -- when analyzing decision coverage (for example, for MC/DC coverage).
+
+ if Chars (Body_Id) = Name_uPostconditions then
+ Set_Has_Postconditions (Current_Scope);
+ Set_Debug_Info_Needed (Body_Id);
+ end if;
+
+ -- Place subprogram on scope stack, and make formals visible. If there
+ -- is a spec, the visible entity remains that of the spec.
+
+ if Present (Spec_Id) then
+ Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
+
+ if Is_Child_Unit (Spec_Id) then
+ Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
+ end if;
+
+ if Style_Check then
+ Style.Check_Identifier (Body_Id, Spec_Id);
+ end if;
+
+ Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
+ Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
+
+ if Is_Abstract_Subprogram (Spec_Id) then
+ Error_Msg_N ("an abstract subprogram cannot have a body", N);
+ return;
+
+ else
+ Set_Convention (Body_Id, Convention (Spec_Id));
+ Set_Has_Completion (Spec_Id);
+
+ if Is_Protected_Type (Scope (Spec_Id)) then
+ Prot_Typ := Scope (Spec_Id);
+ end if;
+
+ -- If this is a body generated for a renaming, do not check for
+ -- full conformance. The check is redundant, because the spec of
+ -- the body is a copy of the spec in the renaming declaration,
+ -- and the test can lead to spurious errors on nested defaults.
+
+ if Present (Spec_Decl)
+ and then not Comes_From_Source (N)
+ and then
+ (Nkind (Original_Node (Spec_Decl)) =
+ N_Subprogram_Renaming_Declaration
+ or else (Present (Corresponding_Body (Spec_Decl))
+ and then
+ Nkind (Unit_Declaration_Node
+ (Corresponding_Body (Spec_Decl))) =
+ N_Subprogram_Renaming_Declaration))
+ then
+ Conformant := True;
+
+ -- Conversely, the spec may have been generated for specless body
+ -- with an inline pragma.
+
+ elsif Comes_From_Source (N)
+ and then not Comes_From_Source (Spec_Id)
+ and then Has_Pragma_Inline (Spec_Id)
+ then
+ Conformant := True;
+
+ else
+ Check_Conformance
+ (Body_Id, Spec_Id,
+ Fully_Conformant, True, Conformant, Body_Id);
+ end if;
+
+ -- If the body is not fully conformant, we have to decide if we
+ -- should analyze it or not. If it has a really messed up profile
+ -- then we probably should not analyze it, since we will get too
+ -- many bogus messages.
+
+ -- Our decision is to go ahead in the non-fully conformant case
+ -- only if it is at least mode conformant with the spec. Note
+ -- that the call to Check_Fully_Conformant has issued the proper
+ -- error messages to complain about the lack of conformance.
+
+ if not Conformant
+ and then not Mode_Conformant (Body_Id, Spec_Id)
+ then
+ return;
+ end if;
+ end if;
+
+ if Spec_Id /= Body_Id then
+ Reference_Body_Formals (Spec_Id, Body_Id);
+ end if;
+
+ Set_Ekind (Body_Id, E_Subprogram_Body);
+
+ if Nkind (N) = N_Subprogram_Body_Stub then
+ Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
+
+ -- Regular body
+
+ else
+ Set_Corresponding_Spec (N, Spec_Id);
+
+ -- Ada 2005 (AI-345): If the operation is a primitive operation
+ -- of a concurrent type, the type of the first parameter has been
+ -- replaced with the corresponding record, which is the proper
+ -- run-time structure to use. However, within the body there may
+ -- be uses of the formals that depend on primitive operations
+ -- of the type (in particular calls in prefixed form) for which
+ -- we need the original concurrent type. The operation may have
+ -- several controlling formals, so the replacement must be done
+ -- for all of them.
+
+ if Comes_From_Source (Spec_Id)
+ and then Present (First_Entity (Spec_Id))
+ and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
+ and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
+ and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
+ and then Present (Corresponding_Concurrent_Type
+ (Etype (First_Entity (Spec_Id))))
+ then
+ declare
+ Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
+ Form : Entity_Id;
+
+ begin
+ Form := First_Formal (Spec_Id);
+ while Present (Form) loop
+ if Etype (Form) = Typ then
+ Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
+ end if;
+
+ Next_Formal (Form);
+ end loop;
+ end;
+ end if;
+
+ -- Make the formals visible, and place subprogram on scope stack.
+ -- This is also the point at which we set Last_Real_Spec_Entity
+ -- to mark the entities which will not be moved to the body.
+
+ Install_Formals (Spec_Id);
+ Last_Real_Spec_Entity := Last_Entity (Spec_Id);
+
+ -- Within an instance, add local renaming declarations so that
+ -- gdb can retrieve the values of actuals more easily. This is
+ -- only relevant if generating code (and indeed we definitely
+ -- do not want these definitions -gnatc mode, because that would
+ -- confuse ASIS).
+
+ if Is_Generic_Instance (Spec_Id)
+ and then Is_Wrapper_Package (Current_Scope)
+ and then Expander_Active
+ then
+ Build_Subprogram_Instance_Renamings (N, Current_Scope);
+ end if;
+
+ Push_Scope (Spec_Id);
+
+ -- Make sure that the subprogram is immediately visible. For
+ -- child units that have no separate spec this is indispensable.
+ -- Otherwise it is safe albeit redundant.
+
+ Set_Is_Immediately_Visible (Spec_Id);
+ end if;
+
+ Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
+ Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
+ Set_Scope (Body_Id, Scope (Spec_Id));
+ Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
+
+ -- Case of subprogram body with no previous spec
+
+ else
+ -- Check for style warning required
+
+ if Style_Check
+
+ -- Only apply check for source level subprograms for which checks
+ -- have not been suppressed.
+
+ and then Comes_From_Source (Body_Id)
+ and then not Suppress_Style_Checks (Body_Id)
+
+ -- No warnings within an instance
+
+ and then not In_Instance
+
+ -- No warnings for expression functions
+
+ and then Nkind (Original_Node (N)) /= N_Expression_Function
+ then
+ Style.Body_With_No_Spec (N);
+ end if;
+
+ New_Overloaded_Entity (Body_Id);
+
+ if Nkind (N) /= N_Subprogram_Body_Stub then
+ Set_Acts_As_Spec (N);
+ Generate_Definition (Body_Id);
+ Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
+ Generate_Reference
+ (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
+ Install_Formals (Body_Id);
+
+ Push_Scope (Body_Id);
+ end if;
+
+ -- For stubs and bodies with no previous spec, generate references to
+ -- formals.
+
+ Generate_Reference_To_Formals (Body_Id);
+ end if;
+
+ -- Set SPARK_Mode from context
+
+ Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
+ Set_SPARK_Pragma_Inherited (Body_Id, True);
+
+ -- If the return type is an anonymous access type whose designated type
+ -- is the limited view of a class-wide type and the non-limited view is
+ -- available, update the return type accordingly.
+
+ if Ada_Version >= Ada_2005 and then Comes_From_Source (N) then
+ declare
+ Etyp : Entity_Id;
+ Rtyp : Entity_Id;
+
+ begin
+ Rtyp := Etype (Current_Scope);
+
+ if Ekind (Rtyp) = E_Anonymous_Access_Type then
+ Etyp := Directly_Designated_Type (Rtyp);
+
+ if Is_Class_Wide_Type (Etyp)
+ and then From_Limited_With (Etyp)
+ then
+ Set_Directly_Designated_Type
+ (Etype (Current_Scope), Available_View (Etyp));
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- If this is the proper body of a stub, we must verify that the stub
+ -- conforms to the body, and to the previous spec if one was present.
+ -- We know already that the body conforms to that spec. This test is
+ -- only required for subprograms that come from source.
+
+ if Nkind (Parent (N)) = N_Subunit
+ and then Comes_From_Source (N)
+ and then not Error_Posted (Body_Id)
+ and then Nkind (Corresponding_Stub (Parent (N))) =
+ N_Subprogram_Body_Stub
+ then
+ declare
+ Old_Id : constant Entity_Id :=
+ Defining_Entity
+ (Specification (Corresponding_Stub (Parent (N))));
+
+ Conformant : Boolean := False;
+
+ begin
+ if No (Spec_Id) then
+ Check_Fully_Conformant (Body_Id, Old_Id);
+
+ else
+ Check_Conformance
+ (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
+
+ if not Conformant then
+
+ -- The stub was taken to be a new declaration. Indicate that
+ -- it lacks a body.
+
+ Set_Has_Completion (Old_Id, False);
+ end if;
+ end if;
+ end;
+ end if;
+
+ Set_Has_Completion (Body_Id);
+ Check_Eliminated (Body_Id);
+
+ if Nkind (N) = N_Subprogram_Body_Stub then
+ return;
+ end if;
+
+ -- Handle frontend inlining. There is no need to prepare us for inlining
+ -- if we will not generate the code.
+
+ -- Old semantics
+
+ if not Debug_Flag_Dot_K then
+ if Present (Spec_Id)
+ and then Expander_Active
+ and then
+ (Has_Pragma_Inline_Always (Spec_Id)
+ or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
+ then
+ Build_Body_To_Inline (N, Spec_Id);
+ end if;
+
+ -- New semantics
+
+ elsif Expander_Active
+ and then Serious_Errors_Detected = 0
+ and then Present (Spec_Id)
+ and then Has_Pragma_Inline (Spec_Id)
+ then
+ Check_And_Build_Body_To_Inline (N, Spec_Id, Body_Id);
+ end if;
+
+ -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
+ -- of the specification we have to install the private withed units.
+ -- This holds for child units as well.
+
+ if Is_Compilation_Unit (Body_Id)
+ or else Nkind (Parent (N)) = N_Compilation_Unit
+ then
+ Install_Private_With_Clauses (Body_Id);
+ end if;
+
+ Check_Anonymous_Return;
+
+ -- Set the Protected_Formal field of each extra formal of the protected
+ -- subprogram to reference the corresponding extra formal of the
+ -- subprogram that implements it. For regular formals this occurs when
+ -- the protected subprogram's declaration is expanded, but the extra
+ -- formals don't get created until the subprogram is frozen. We need to
+ -- do this before analyzing the protected subprogram's body so that any
+ -- references to the original subprogram's extra formals will be changed
+ -- refer to the implementing subprogram's formals (see Expand_Formal).
+
+ if Present (Spec_Id)
+ and then Is_Protected_Type (Scope (Spec_Id))
+ and then Present (Protected_Body_Subprogram (Spec_Id))
+ then
+ declare
+ Impl_Subp : constant Entity_Id :=
+ Protected_Body_Subprogram (Spec_Id);
+ Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
+ Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
+ begin
+ while Present (Prot_Ext_Formal) loop
+ pragma Assert (Present (Impl_Ext_Formal));
+ Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
+ Next_Formal_With_Extras (Prot_Ext_Formal);
+ Next_Formal_With_Extras (Impl_Ext_Formal);
+ end loop;
+ end;
+ end if;
+
+ -- Now we can go on to analyze the body
+
+ HSS := Handled_Statement_Sequence (N);
+ Set_Actual_Subtypes (N, Current_Scope);
+
+ -- Deal with [refined] preconditions, postconditions, Contract_Cases,
+ -- invariants and predicates associated with the body and its spec.
+ -- Note that this is not pure expansion as Expand_Subprogram_Contract
+ -- prepares the contract assertions for generic subprograms or for ASIS.
+ -- Do not generate contract checks in SPARK mode.
+
+ if not GNATprove_Mode then
+ Expand_Subprogram_Contract (N, Spec_Id, Body_Id);
+ end if;
+
+ -- Add a declaration for the Protection object, renaming declarations
+ -- for discriminals and privals and finally a declaration for the entry
+ -- family index (if applicable). This form of early expansion is done
+ -- when the Expander is active because Install_Private_Data_Declarations
+ -- references entities which were created during regular expansion. The
+ -- subprogram entity must come from source, and not be an internally
+ -- generated subprogram.
+
+ if Expander_Active
+ and then Present (Prot_Typ)
+ and then Present (Spec_Id)
+ and then Comes_From_Source (Spec_Id)
+ and then not Is_Eliminated (Spec_Id)
+ then
+ Install_Private_Data_Declarations
+ (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
+ end if;
+
+ -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
+ -- may now appear in parameter and result profiles. Since the analysis
+ -- of a subprogram body may use the parameter and result profile of the
+ -- spec, swap any limited views with their non-limited counterpart.
+
+ if Ada_Version >= Ada_2012 then
+ Exchange_Limited_Views (Spec_Id);
+ end if;
+
+ -- Analyze the declarations (this call will analyze the precondition
+ -- Check pragmas we prepended to the list, as well as the declaration
+ -- of the _Postconditions procedure).
+
+ Analyze_Declarations (Declarations (N));
+
+ -- After declarations have been analyzed, the body has been set
+ -- its final value of SPARK_Mode. Check that SPARK_Mode for body
+ -- is consistent with SPARK_Mode for spec.
+
+ if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
+ if Present (SPARK_Pragma (Spec_Id)) then
+ if Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Spec_Id)) = Off
+ and then
+ Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Body_Id)) = On
+ then
+ Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
+ Error_Msg_N ("incorrect application of SPARK_Mode#", N);
+ Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
+ Error_Msg_NE
+ ("\value Off was set for SPARK_Mode on&#", N, Spec_Id);
+ end if;
+
+ elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
+ null;
+
+ else
+ Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
+ Error_Msg_N ("incorrect application of SPARK_Mode#", N);
+ Error_Msg_Sloc := Sloc (Spec_Id);
+ Error_Msg_NE ("\no value was set for SPARK_Mode on&#", N, Spec_Id);
+ end if;
+ end if;
+
+ -- Check completion, and analyze the statements
+
+ Check_Completion;
+ Inspect_Deferred_Constant_Completion (Declarations (N));
+ Analyze (HSS);
+
+ -- Deal with end of scope processing for the body
+
+ Process_End_Label (HSS, 't', Current_Scope);
+ End_Scope;
+ Check_Subprogram_Order (N);
+ Set_Analyzed (Body_Id);
+
+ -- If we have a separate spec, then the analysis of the declarations
+ -- caused the entities in the body to be chained to the spec id, but
+ -- we want them chained to the body id. Only the formal parameters
+ -- end up chained to the spec id in this case.
+
+ if Present (Spec_Id) then
+
+ -- We must conform to the categorization of our spec
+
+ Validate_Categorization_Dependency (N, Spec_Id);
+
+ -- And if this is a child unit, the parent units must conform
+
+ if Is_Child_Unit (Spec_Id) then
+ Validate_Categorization_Dependency
+ (Unit_Declaration_Node (Spec_Id), Spec_Id);
+ end if;
+
+ -- Here is where we move entities from the spec to the body
+
+ -- Case where there are entities that stay with the spec
+
+ if Present (Last_Real_Spec_Entity) then
+
+ -- No body entities (happens when the only real spec entities come
+ -- from precondition and postcondition pragmas).
+
+ if No (Last_Entity (Body_Id)) then
+ Set_First_Entity
+ (Body_Id, Next_Entity (Last_Real_Spec_Entity));
+
+ -- Body entities present (formals), so chain stuff past them
+
+ else
+ Set_Next_Entity
+ (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
+ end if;
+
+ Set_Next_Entity (Last_Real_Spec_Entity, Empty);
+ Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
+ Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
+
+ -- Case where there are no spec entities, in this case there can be
+ -- no body entities either, so just move everything.
+
+ else
+ pragma Assert (No (Last_Entity (Body_Id)));
+ Set_First_Entity (Body_Id, First_Entity (Spec_Id));
+ Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
+ Set_First_Entity (Spec_Id, Empty);
+ Set_Last_Entity (Spec_Id, Empty);
+ end if;
+ end if;
+
+ Check_Missing_Return;
+
+ -- Now we are going to check for variables that are never modified in
+ -- the body of the procedure. But first we deal with a special case
+ -- where we want to modify this check. If the body of the subprogram
+ -- starts with a raise statement or its equivalent, or if the body
+ -- consists entirely of a null statement, then it is pretty obvious that
+ -- it is OK to not reference the parameters. For example, this might be
+ -- the following common idiom for a stubbed function: statement of the
+ -- procedure raises an exception. In particular this deals with the
+ -- common idiom of a stubbed function, which appears something like:
+
+ -- function F (A : Integer) return Some_Type;
+ -- X : Some_Type;
+ -- begin
+ -- raise Program_Error;
+ -- return X;
+ -- end F;
+
+ -- Here the purpose of X is simply to satisfy the annoying requirement
+ -- in Ada that there be at least one return, and we certainly do not
+ -- want to go posting warnings on X that it is not initialized. On
+ -- the other hand, if X is entirely unreferenced that should still
+ -- get a warning.
+
+ -- What we do is to detect these cases, and if we find them, flag the
+ -- subprogram as being Is_Trivial_Subprogram and then use that flag to
+ -- suppress unwanted warnings. For the case of the function stub above
+ -- we have a special test to set X as apparently assigned to suppress
+ -- the warning.
+
+ declare
+ Stm : Node_Id;
+
+ begin
+ -- Skip initial labels (for one thing this occurs when we are in
+ -- front end ZCX mode, but in any case it is irrelevant), and also
+ -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
+
+ Stm := First (Statements (HSS));
+ while Nkind (Stm) = N_Label
+ or else Nkind (Stm) in N_Push_xxx_Label
+ loop
+ Next (Stm);
+ end loop;
+
+ -- Do the test on the original statement before expansion
+
+ declare
+ Ostm : constant Node_Id := Original_Node (Stm);
+
+ begin
+ -- If explicit raise statement, turn on flag
+
+ if Nkind (Ostm) = N_Raise_Statement then
+ Set_Trivial_Subprogram (Stm);
+
+ -- If null statement, and no following statements, turn on flag
+
+ elsif Nkind (Stm) = N_Null_Statement
+ and then Comes_From_Source (Stm)
+ and then No (Next (Stm))
+ then
+ Set_Trivial_Subprogram (Stm);
+
+ -- Check for explicit call cases which likely raise an exception
+
+ elsif Nkind (Ostm) = N_Procedure_Call_Statement then
+ if Is_Entity_Name (Name (Ostm)) then
+ declare
+ Ent : constant Entity_Id := Entity (Name (Ostm));
+
+ begin
+ -- If the procedure is marked No_Return, then likely it
+ -- raises an exception, but in any case it is not coming
+ -- back here, so turn on the flag.
+
+ if Present (Ent)
+ and then Ekind (Ent) = E_Procedure
+ and then No_Return (Ent)
+ then
+ Set_Trivial_Subprogram (Stm);
+ end if;
+ end;
+ end if;
+ end if;
+ end;
+ end;
+
+ -- Check for variables that are never modified
+
+ declare
+ E1, E2 : Entity_Id;
+
+ begin
+ -- If there is a separate spec, then transfer Never_Set_In_Source
+ -- flags from out parameters to the corresponding entities in the
+ -- body. The reason we do that is we want to post error flags on
+ -- the body entities, not the spec entities.
+
+ if Present (Spec_Id) then
+ E1 := First_Entity (Spec_Id);
+ while Present (E1) loop
+ if Ekind (E1) = E_Out_Parameter then
+ E2 := First_Entity (Body_Id);
+ while Present (E2) loop
+ exit when Chars (E1) = Chars (E2);
+ Next_Entity (E2);
+ end loop;
+
+ if Present (E2) then
+ Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
+ end if;
+ end if;
+
+ Next_Entity (E1);
+ end loop;
+ end if;
+
+ -- Check references in body
+
+ Check_References (Body_Id);
+ end;
+ end Analyze_Subprogram_Body_Helper;
+
+ ---------------------------------
+ -- Analyze_Subprogram_Contract --
+ ---------------------------------
+
+ procedure Analyze_Subprogram_Contract (Subp : Entity_Id) is
+ Items : constant Node_Id := Contract (Subp);
+ Case_Prag : Node_Id := Empty;
+ Depends : Node_Id := Empty;
+ Global : Node_Id := Empty;
+ Nam : Name_Id;
+ Post_Prag : Node_Id := Empty;
+ Prag : Node_Id;
+ Seen_In_Case : Boolean := False;
+ Seen_In_Post : Boolean := False;
+
+ begin
+ if Present (Items) then
+
+ -- Analyze pre- and postconditions
+
+ Prag := Pre_Post_Conditions (Items);
+ while Present (Prag) loop
+ Analyze_Pre_Post_Condition_In_Decl_Part (Prag, Subp);
+
+ -- Verify whether a postcondition mentions attribute 'Result and
+ -- its expression introduces a post-state.
+
+ if Warn_On_Suspicious_Contract
+ and then Pragma_Name (Prag) = Name_Postcondition
+ then
+ Post_Prag := Prag;
+ Check_Result_And_Post_State (Prag, Seen_In_Post);
+ end if;
+
+ Prag := Next_Pragma (Prag);
+ end loop;
+
+ -- Analyze contract-cases and test-cases
+
+ Prag := Contract_Test_Cases (Items);
+ while Present (Prag) loop
+ Nam := Pragma_Name (Prag);
+
+ if Nam = Name_Contract_Cases then
+ Analyze_Contract_Cases_In_Decl_Part (Prag);
+
+ -- Verify whether contract-cases mention attribute 'Result and
+ -- its expression introduces a post-state. Perform the check
+ -- only when the pragma is legal.
+
+ if Warn_On_Suspicious_Contract
+ and then not Error_Posted (Prag)
+ then
+ Case_Prag := Prag;
+ Check_Result_And_Post_State (Prag, Seen_In_Case);
+ end if;
+
+ else
+ pragma Assert (Nam = Name_Test_Case);
+ Analyze_Test_Case_In_Decl_Part (Prag, Subp);
+ end if;
+
+ Prag := Next_Pragma (Prag);
+ end loop;
+
+ -- Analyze classification pragmas
+
+ Prag := Classifications (Items);
+ while Present (Prag) loop
+ Nam := Pragma_Name (Prag);
+
+ if Nam = Name_Depends then
+ Depends := Prag;
+ else pragma Assert (Nam = Name_Global);
+ Global := Prag;
+ end if;
+
+ Prag := Next_Pragma (Prag);
+ end loop;
+
+ -- Analyze Global first as Depends may mention items classified in
+ -- the global categorization.
+
+ if Present (Global) then
+ Analyze_Global_In_Decl_Part (Global);
+ end if;
+
+ -- Depends must be analyzed after Global in order to see the modes of
+ -- all global items.
+
+ if Present (Depends) then
+ Analyze_Depends_In_Decl_Part (Depends);
+ end if;
+ end if;
+
+ -- Emit an error when neither the postconditions nor the contract-cases
+ -- mention attribute 'Result in the context of a function.
+
+ if Warn_On_Suspicious_Contract
+ and then Ekind_In (Subp, E_Function, E_Generic_Function)
+ then
+ if Present (Case_Prag)
+ and then not Seen_In_Case
+ and then Present (Post_Prag)
+ and then not Seen_In_Post
+ then
+ Error_Msg_N
+ ("neither function postcondition nor contract cases mention "
+ & "result?T?", Post_Prag);
+
+ elsif Present (Case_Prag) and then not Seen_In_Case then
+ Error_Msg_N
+ ("contract cases do not mention result?T?", Case_Prag);
+
+ -- OK if we have at least one IN OUT parameter
+
+ elsif Present (Post_Prag) and then not Seen_In_Post then
+ declare
+ F : Entity_Id;
+ begin
+ F := First_Formal (Subp);
+ while Present (F) loop
+ if Ekind (F) = E_In_Out_Parameter then
+ return;
+ else
+ Next_Formal (F);
+ end if;
+ end loop;
+ end;
+
+ -- If no in-out parameters and no mention of Result, the contract
+ -- is certainly suspicious.
+
+ Error_Msg_N
+ ("function postcondition does not mention result?T?", Post_Prag);
+ end if;
+ end if;
+ end Analyze_Subprogram_Contract;
+
+ ------------------------------------
+ -- Analyze_Subprogram_Declaration --
+ ------------------------------------
+
+ procedure Analyze_Subprogram_Declaration (N : Node_Id) is
+ Scop : constant Entity_Id := Current_Scope;
+ Designator : Entity_Id;
+
+ Is_Completion : Boolean;
+ -- Indicates whether a null procedure declaration is a completion
+
+ begin
+ -- Null procedures are not allowed in SPARK
+
+ if Nkind (Specification (N)) = N_Procedure_Specification
+ and then Null_Present (Specification (N))
+ then
+ Check_SPARK_Restriction ("null procedure is not allowed", N);
+
+ if Is_Protected_Type (Current_Scope) then
+ Error_Msg_N ("protected operation cannot be a null procedure", N);
+ end if;
+
+ Analyze_Null_Procedure (N, Is_Completion);
+
+ if Is_Completion then
+
+ -- The null procedure acts as a body, nothing further is needed.
+
+ return;
+ end if;
+ end if;
+
+ Designator := Analyze_Subprogram_Specification (Specification (N));
+
+ -- A reference may already have been generated for the unit name, in
+ -- which case the following call is redundant. However it is needed for
+ -- declarations that are the rewriting of an expression function.
+
+ Generate_Definition (Designator);
+
+ -- Set SPARK mode from current context (may be overwritten later with
+ -- explicit pragma).
+
+ Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
+ Set_SPARK_Pragma_Inherited (Designator, True);
+
+ if Debug_Flag_C then
+ Write_Str ("==> subprogram spec ");
+ Write_Name (Chars (Designator));
+ Write_Str (" from ");
+ Write_Location (Sloc (N));
+ Write_Eol;
+ Indent;
+ end if;
+
+ Validate_RCI_Subprogram_Declaration (N);
+ New_Overloaded_Entity (Designator);
+ Check_Delayed_Subprogram (Designator);
+
+ -- If the type of the first formal of the current subprogram is a non-
+ -- generic tagged private type, mark the subprogram as being a private
+ -- primitive. Ditto if this is a function with controlling result, and
+ -- the return type is currently private. In both cases, the type of the
+ -- controlling argument or result must be in the current scope for the
+ -- operation to be primitive.
+
+ if Has_Controlling_Result (Designator)
+ and then Is_Private_Type (Etype (Designator))
+ and then Scope (Etype (Designator)) = Current_Scope
+ and then not Is_Generic_Actual_Type (Etype (Designator))
+ then
+ Set_Is_Private_Primitive (Designator);
+
+ elsif Present (First_Formal (Designator)) then
+ declare
+ Formal_Typ : constant Entity_Id :=
+ Etype (First_Formal (Designator));
+ begin
+ Set_Is_Private_Primitive (Designator,
+ Is_Tagged_Type (Formal_Typ)
+ and then Scope (Formal_Typ) = Current_Scope
+ and then Is_Private_Type (Formal_Typ)
+ and then not Is_Generic_Actual_Type (Formal_Typ));
+ end;
+ end if;
+
+ -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
+ -- or null.
+
+ if Ada_Version >= Ada_2005
+ and then Comes_From_Source (N)
+ and then Is_Dispatching_Operation (Designator)
+ then
+ declare
+ E : Entity_Id;
+ Etyp : Entity_Id;
+
+ begin
+ if Has_Controlling_Result (Designator) then
+ Etyp := Etype (Designator);
+
+ else
+ E := First_Entity (Designator);
+ while Present (E)
+ and then Is_Formal (E)
+ and then not Is_Controlling_Formal (E)
+ loop
+ Next_Entity (E);
+ end loop;
+
+ Etyp := Etype (E);
+ end if;
+
+ if Is_Access_Type (Etyp) then
+ Etyp := Directly_Designated_Type (Etyp);
+ end if;
+
+ if Is_Interface (Etyp)
+ and then not Is_Abstract_Subprogram (Designator)
+ and then not (Ekind (Designator) = E_Procedure
+ and then Null_Present (Specification (N)))
+ then
+ Error_Msg_Name_1 := Chars (Defining_Entity (N));
+
+ -- Specialize error message based on procedures vs. functions,
+ -- since functions can't be null subprograms.
+
+ if Ekind (Designator) = E_Procedure then
+ Error_Msg_N
+ ("interface procedure % must be abstract or null", N);
+ else
+ Error_Msg_N ("interface function % must be abstract", N);
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- What is the following code for, it used to be
+
+ -- ??? Set_Suppress_Elaboration_Checks
+ -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
+
+ -- The following seems equivalent, but a bit dubious
+
+ if Elaboration_Checks_Suppressed (Designator) then
+ Set_Kill_Elaboration_Checks (Designator);
+ end if;
+
+ if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
+ Set_Categorization_From_Scope (Designator, Scop);
+
+ else
+ -- For a compilation unit, check for library-unit pragmas
+
+ Push_Scope (Designator);
+ Set_Categorization_From_Pragmas (N);
+ Validate_Categorization_Dependency (N, Designator);
+ Pop_Scope;
+ end if;
+
+ -- For a compilation unit, set body required. This flag will only be
+ -- reset if a valid Import or Interface pragma is processed later on.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ Set_Body_Required (Parent (N), True);
+
+ if Ada_Version >= Ada_2005
+ and then Nkind (Specification (N)) = N_Procedure_Specification
+ and then Null_Present (Specification (N))
+ then
+ Error_Msg_N
+ ("null procedure cannot be declared at library level", N);
+ end if;
+ end if;
+
+ Generate_Reference_To_Formals (Designator);
+ Check_Eliminated (Designator);
+
+ if Debug_Flag_C then
+ Outdent;
+ Write_Str ("<== subprogram spec ");
+ Write_Name (Chars (Designator));
+ Write_Str (" from ");
+ Write_Location (Sloc (N));
+ Write_Eol;
+ end if;
+
+ if Is_Protected_Type (Current_Scope) then
+
+ -- Indicate that this is a protected operation, because it may be
+ -- used in subsequent declarations within the protected type.
+
+ Set_Convention (Designator, Convention_Protected);
+ end if;
+
+ List_Inherited_Pre_Post_Aspects (Designator);
+
+ if Has_Aspects (N) then
+ Analyze_Aspect_Specifications (N, Designator);
+ end if;
+ end Analyze_Subprogram_Declaration;
+
+ --------------------------------------
+ -- Analyze_Subprogram_Specification --
+ --------------------------------------
+
+ -- Reminder: N here really is a subprogram specification (not a subprogram
+ -- declaration). This procedure is called to analyze the specification in
+ -- both subprogram bodies and subprogram declarations (specs).
+
+ function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
+ Designator : constant Entity_Id := Defining_Entity (N);
+ Formals : constant List_Id := Parameter_Specifications (N);
+
+ -- Start of processing for Analyze_Subprogram_Specification
+
+ begin
+ -- User-defined operator is not allowed in SPARK, except as a renaming
+
+ if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
+ and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
+ then
+ Check_SPARK_Restriction ("user-defined operator is not allowed", N);
+ end if;
+
+ -- Proceed with analysis. Do not emit a cross-reference entry if the
+ -- specification comes from an expression function, because it may be
+ -- the completion of a previous declaration. It is is not, the cross-
+ -- reference entry will be emitted for the new subprogram declaration.
+
+ if Nkind (Parent (N)) /= N_Expression_Function then
+ Generate_Definition (Designator);
+ end if;
+
+ Set_Contract (Designator, Make_Contract (Sloc (Designator)));
+
+ if Nkind (N) = N_Function_Specification then
+ Set_Ekind (Designator, E_Function);
+ Set_Mechanism (Designator, Default_Mechanism);
+ else
+ Set_Ekind (Designator, E_Procedure);
+ Set_Etype (Designator, Standard_Void_Type);
+ end if;
+
+ -- Introduce new scope for analysis of the formals and the return type
+
+ Set_Scope (Designator, Current_Scope);
+
+ if Present (Formals) then
+ Push_Scope (Designator);
+ Process_Formals (Formals, N);
+
+ -- Check dimensions in N for formals with default expression
+
+ Analyze_Dimension_Formals (N, Formals);
+
+ -- Ada 2005 (AI-345): If this is an overriding operation of an
+ -- inherited interface operation, and the controlling type is
+ -- a synchronized type, replace the type with its corresponding
+ -- record, to match the proper signature of an overriding operation.
+ -- Same processing for an access parameter whose designated type is
+ -- derived from a synchronized interface.
+
+ if Ada_Version >= Ada_2005 then
+ declare
+ Formal : Entity_Id;
+ Formal_Typ : Entity_Id;
+ Rec_Typ : Entity_Id;
+ Desig_Typ : Entity_Id;
+
+ begin
+ Formal := First_Formal (Designator);
+ while Present (Formal) loop
+ Formal_Typ := Etype (Formal);
+
+ if Is_Concurrent_Type (Formal_Typ)
+ and then Present (Corresponding_Record_Type (Formal_Typ))
+ then
+ Rec_Typ := Corresponding_Record_Type (Formal_Typ);
+
+ if Present (Interfaces (Rec_Typ)) then
+ Set_Etype (Formal, Rec_Typ);
+ end if;
+
+ elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
+ Desig_Typ := Designated_Type (Formal_Typ);
+
+ if Is_Concurrent_Type (Desig_Typ)
+ and then Present (Corresponding_Record_Type (Desig_Typ))
+ then
+ Rec_Typ := Corresponding_Record_Type (Desig_Typ);
+
+ if Present (Interfaces (Rec_Typ)) then
+ Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
+ end if;
+ end if;
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+ end;
+ end if;
+
+ End_Scope;
+
+ -- The subprogram scope is pushed and popped around the processing of
+ -- the return type for consistency with call above to Process_Formals
+ -- (which itself can call Analyze_Return_Type), and to ensure that any
+ -- itype created for the return type will be associated with the proper
+ -- scope.
+
+ elsif Nkind (N) = N_Function_Specification then
+ Push_Scope (Designator);
+ Analyze_Return_Type (N);
+ End_Scope;
+ end if;
+
+ -- Function case
+
+ if Nkind (N) = N_Function_Specification then
+
+ -- Deal with operator symbol case
+
+ if Nkind (Designator) = N_Defining_Operator_Symbol then
+ Valid_Operator_Definition (Designator);
+ end if;
+
+ May_Need_Actuals (Designator);
+
+ -- Ada 2005 (AI-251): If the return type is abstract, verify that
+ -- the subprogram is abstract also. This does not apply to renaming
+ -- declarations, where abstractness is inherited, and to subprogram
+ -- bodies generated for stream operations, which become renamings as
+ -- bodies.
+
+ -- In case of primitives associated with abstract interface types
+ -- the check is applied later (see Analyze_Subprogram_Declaration).
+
+ if not Nkind_In (Original_Node (Parent (N)),
+ N_Subprogram_Renaming_Declaration,
+ N_Abstract_Subprogram_Declaration,
+ N_Formal_Abstract_Subprogram_Declaration)
+ then
+ if Is_Abstract_Type (Etype (Designator))
+ and then not Is_Interface (Etype (Designator))
+ then
+ Error_Msg_N
+ ("function that returns abstract type must be abstract", N);
+
+ -- Ada 2012 (AI-0073): Extend this test to subprograms with an
+ -- access result whose designated type is abstract.
+
+ elsif Nkind (Result_Definition (N)) = N_Access_Definition
+ and then
+ not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
+ and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
+ and then Ada_Version >= Ada_2012
+ then
+ Error_Msg_N ("function whose access result designates "
+ & "abstract type must be abstract", N);
+ end if;
+ end if;
+ end if;
+
+ return Designator;
+ end Analyze_Subprogram_Specification;
+
+ --------------------------
+ -- Build_Body_To_Inline --
+ --------------------------
+
+ procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
+ Decl : constant Node_Id := Unit_Declaration_Node (Subp);
+ Original_Body : Node_Id;
+ Body_To_Analyze : Node_Id;
+ Max_Size : constant := 10;
+ Stat_Count : Integer := 0;
+
+ function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
+ -- Check for declarations that make inlining not worthwhile
+
+ function Has_Excluded_Statement (Stats : List_Id) return Boolean;
+ -- Check for statements that make inlining not worthwhile: any tasking
+ -- statement, nested at any level. Keep track of total number of
+ -- elementary statements, as a measure of acceptable size.
+
+ function Has_Pending_Instantiation return Boolean;
+ -- If some enclosing body contains instantiations that appear before the
+ -- corresponding generic body, the enclosing body has a freeze node so
+ -- that it can be elaborated after the generic itself. This might
+ -- conflict with subsequent inlinings, so that it is unsafe to try to
+ -- inline in such a case.
+
+ function Has_Single_Return return Boolean;
+ -- In general we cannot inline functions that return unconstrained type.
+ -- However, we can handle such functions if all return statements return
+ -- a local variable that is the only declaration in the body of the
+ -- function. In that case the call can be replaced by that local
+ -- variable as is done for other inlined calls.
+
+ procedure Remove_Pragmas;
+ -- A pragma Unreferenced or pragma Unmodified that mentions a formal
+ -- parameter has no meaning when the body is inlined and the formals
+ -- are rewritten. Remove it from body to inline. The analysis of the
+ -- non-inlined body will handle the pragma properly.
+
+ function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
+ -- If the body of the subprogram includes a call that returns an
+ -- unconstrained type, the secondary stack is involved, and it
+ -- is not worth inlining.
+
+ ------------------------------
+ -- Has_Excluded_Declaration --
+ ------------------------------
+
+ function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
+ D : Node_Id;
+
+ function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
+ -- Nested subprograms make a given body ineligible for inlining, but
+ -- we make an exception for instantiations of unchecked conversion.
+ -- The body has not been analyzed yet, so check the name, and verify
+ -- that the visible entity with that name is the predefined unit.
+
+ -----------------------------
+ -- Is_Unchecked_Conversion --
+ -----------------------------
+
+ function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
+ Id : constant Node_Id := Name (D);
+ Conv : Entity_Id;
+
+ begin
+ if Nkind (Id) = N_Identifier
+ and then Chars (Id) = Name_Unchecked_Conversion
+ then
+ Conv := Current_Entity (Id);
+
+ elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
+ and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
+ then
+ Conv := Current_Entity (Selector_Name (Id));
+ else
+ return False;
+ end if;
+
+ return Present (Conv)
+ and then Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Conv)))
+ and then Is_Intrinsic_Subprogram (Conv);
+ end Is_Unchecked_Conversion;
+
+ -- Start of processing for Has_Excluded_Declaration
+
+ begin
+ D := First (Decls);
+ while Present (D) loop
+ if (Nkind (D) = N_Function_Instantiation
+ and then not Is_Unchecked_Conversion (D))
+ or else Nkind_In (D, N_Protected_Type_Declaration,
+ N_Package_Declaration,
+ N_Package_Instantiation,
+ N_Subprogram_Body,
+ N_Procedure_Instantiation,
+ N_Task_Type_Declaration)
+ then
+ Cannot_Inline
+ ("cannot inline & (non-allowed declaration)?", D, Subp);
+ return True;
+ end if;
+
+ Next (D);
+ end loop;
+
+ return False;
+ end Has_Excluded_Declaration;
+
+ ----------------------------
+ -- Has_Excluded_Statement --
+ ----------------------------
+
+ function Has_Excluded_Statement (Stats : List_Id) return Boolean is
+ S : Node_Id;
+ E : Node_Id;
+
+ begin
+ S := First (Stats);
+ while Present (S) loop
+ Stat_Count := Stat_Count + 1;
+
+ if Nkind_In (S, N_Abort_Statement,
+ N_Asynchronous_Select,
+ N_Conditional_Entry_Call,
+ N_Delay_Relative_Statement,
+ N_Delay_Until_Statement,
+ N_Selective_Accept,
+ N_Timed_Entry_Call)
+ then
+ Cannot_Inline
+ ("cannot inline & (non-allowed statement)?", S, Subp);
+ return True;
+
+ elsif Nkind (S) = N_Block_Statement then
+ if Present (Declarations (S))
+ and then Has_Excluded_Declaration (Declarations (S))
+ then
+ return True;
+
+ elsif Present (Handled_Statement_Sequence (S))
+ and then
+ (Present
+ (Exception_Handlers (Handled_Statement_Sequence (S)))
+ or else
+ Has_Excluded_Statement
+ (Statements (Handled_Statement_Sequence (S))))
+ then
+ return True;
+ end if;
+
+ elsif Nkind (S) = N_Case_Statement then
+ E := First (Alternatives (S));
+ while Present (E) loop
+ if Has_Excluded_Statement (Statements (E)) then
+ return True;
+ end if;
+
+ Next (E);
+ end loop;
+
+ elsif Nkind (S) = N_If_Statement then
+ if Has_Excluded_Statement (Then_Statements (S)) then
+ return True;
+ end if;
+
+ if Present (Elsif_Parts (S)) then
+ E := First (Elsif_Parts (S));
+ while Present (E) loop
+ if Has_Excluded_Statement (Then_Statements (E)) then
+ return True;
+ end if;
+
+ Next (E);
+ end loop;
+ end if;
+
+ if Present (Else_Statements (S))
+ and then Has_Excluded_Statement (Else_Statements (S))
+ then
+ return True;
+ end if;
+
+ elsif Nkind (S) = N_Loop_Statement
+ and then Has_Excluded_Statement (Statements (S))
+ then
+ return True;
+
+ elsif Nkind (S) = N_Extended_Return_Statement then
+ if Has_Excluded_Statement
+ (Statements (Handled_Statement_Sequence (S)))
+ or else Present
+ (Exception_Handlers (Handled_Statement_Sequence (S)))
+ then
+ return True;
+ end if;
+ end if;
+
+ Next (S);
+ end loop;
+
+ return False;
+ end Has_Excluded_Statement;
+
+ -------------------------------
+ -- Has_Pending_Instantiation --
+ -------------------------------
+
+ function Has_Pending_Instantiation return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S) loop
+ if Is_Compilation_Unit (S)
+ or else Is_Child_Unit (S)
+ then
+ return False;
+
+ elsif Ekind (S) = E_Package
+ and then Has_Forward_Instantiation (S)
+ then
+ return True;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end Has_Pending_Instantiation;
+
+ ------------------------
+ -- Has_Single_Return --
+ ------------------------
+
+ function Has_Single_Return return Boolean is
+ Return_Statement : Node_Id := Empty;
+
+ function Check_Return (N : Node_Id) return Traverse_Result;
+
+ ------------------
+ -- Check_Return --
+ ------------------
+
+ function Check_Return (N : Node_Id) return Traverse_Result is
+ begin
+ if Nkind (N) = N_Simple_Return_Statement then
+ if Present (Expression (N))
+ and then Is_Entity_Name (Expression (N))
+ then
+ if No (Return_Statement) then
+ Return_Statement := N;
+ return OK;
+
+ elsif Chars (Expression (N)) =
+ Chars (Expression (Return_Statement))
+ then
+ return OK;
+
+ else
+ return Abandon;
+ end if;
+
+ -- A return statement within an extended return is a noop
+ -- after inlining.
+
+ elsif No (Expression (N))
+ and then Nkind (Parent (Parent (N))) =
+ N_Extended_Return_Statement
+ then
+ return OK;
+
+ else
+ -- Expression has wrong form
+
+ return Abandon;
+ end if;
+
+ -- We can only inline a build-in-place function if
+ -- it has a single extended return.
+
+ elsif Nkind (N) = N_Extended_Return_Statement then
+ if No (Return_Statement) then
+ Return_Statement := N;
+ return OK;
+
+ else
+ return Abandon;
+ end if;
+
+ else
+ return OK;
+ end if;
+ end Check_Return;
+
+ function Check_All_Returns is new Traverse_Func (Check_Return);
+
+ -- Start of processing for Has_Single_Return
+
+ begin
+ if Check_All_Returns (N) /= OK then
+ return False;
+
+ elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
+ return True;
+
+ else
+ return Present (Declarations (N))
+ and then Present (First (Declarations (N)))
+ and then Chars (Expression (Return_Statement)) =
+ Chars (Defining_Identifier (First (Declarations (N))));
+ end if;
+ end Has_Single_Return;
+
+ --------------------
+ -- Remove_Pragmas --
+ --------------------
+
+ procedure Remove_Pragmas is
+ Decl : Node_Id;
+ Nxt : Node_Id;
+
+ begin
+ Decl := First (Declarations (Body_To_Analyze));
+ while Present (Decl) loop
+ Nxt := Next (Decl);
+
+ if Nkind (Decl) = N_Pragma
+ and then Nam_In (Pragma_Name (Decl), Name_Unreferenced,
+ Name_Unmodified)
+ then
+ Remove (Decl);
+ end if;
+
+ Decl := Nxt;
+ end loop;
+ end Remove_Pragmas;
+
+ --------------------------
+ -- Uses_Secondary_Stack --
+ --------------------------
+
+ function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
+ function Check_Call (N : Node_Id) return Traverse_Result;
+ -- Look for function calls that return an unconstrained type
+
+ ----------------
+ -- Check_Call --
+ ----------------
+
+ function Check_Call (N : Node_Id) return Traverse_Result is
+ begin
+ if Nkind (N) = N_Function_Call
+ and then Is_Entity_Name (Name (N))
+ and then Is_Composite_Type (Etype (Entity (Name (N))))
+ and then not Is_Constrained (Etype (Entity (Name (N))))
+ then
+ Cannot_Inline
+ ("cannot inline & (call returns unconstrained type)?",
+ N, Subp);
+ return Abandon;
+ else
+ return OK;
+ end if;
+ end Check_Call;
+
+ function Check_Calls is new Traverse_Func (Check_Call);
+
+ begin
+ return Check_Calls (Bod) = Abandon;
+ end Uses_Secondary_Stack;
+
+ -- Start of processing for Build_Body_To_Inline
+
+ begin
+ -- Return immediately if done already
+
+ if Nkind (Decl) = N_Subprogram_Declaration
+ and then Present (Body_To_Inline (Decl))
+ then
+ return;
+
+ -- Functions that return unconstrained composite types require
+ -- secondary stack handling, and cannot currently be inlined, unless
+ -- all return statements return a local variable that is the first
+ -- local declaration in the body.
+
+ elsif Ekind (Subp) = E_Function
+ and then not Is_Scalar_Type (Etype (Subp))
+ and then not Is_Access_Type (Etype (Subp))
+ and then not Is_Constrained (Etype (Subp))
+ then
+ if not Has_Single_Return then
+ Cannot_Inline
+ ("cannot inline & (unconstrained return type)?", N, Subp);
+ return;
+ end if;
+
+ -- Ditto for functions that return controlled types, where controlled
+ -- actions interfere in complex ways with inlining.
+
+ elsif Ekind (Subp) = E_Function
+ and then Needs_Finalization (Etype (Subp))
+ then
+ Cannot_Inline
+ ("cannot inline & (controlled return type)?", N, Subp);
+ return;
+ end if;
+
+ if Present (Declarations (N))
+ and then Has_Excluded_Declaration (Declarations (N))
+ then
+ return;
+ end if;
+
+ if Present (Handled_Statement_Sequence (N)) then
+ if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
+ Cannot_Inline
+ ("cannot inline& (exception handler)?",
+ First (Exception_Handlers (Handled_Statement_Sequence (N))),
+ Subp);
+ return;
+ elsif
+ Has_Excluded_Statement
+ (Statements (Handled_Statement_Sequence (N)))
+ then
+ return;
+ end if;
+ end if;
+
+ -- We do not inline a subprogram that is too large, unless it is
+ -- marked Inline_Always. This pragma does not suppress the other
+ -- checks on inlining (forbidden declarations, handlers, etc).
+
+ if Stat_Count > Max_Size
+ and then not Has_Pragma_Inline_Always (Subp)
+ then
+ Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
+ return;
+ end if;
+
+ if Has_Pending_Instantiation then
+ Cannot_Inline
+ ("cannot inline& (forward instance within enclosing body)?",
+ N, Subp);
+ return;
+ end if;
+
+ -- Within an instance, the body to inline must be treated as a nested
+ -- generic, so that the proper global references are preserved.
+
+ -- Note that we do not do this at the library level, because it is not
+ -- needed, and furthermore this causes trouble if front end inlining
+ -- is activated (-gnatN).
+
+ if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
+ Save_Env (Scope (Current_Scope), Scope (Current_Scope));
+ Original_Body := Copy_Generic_Node (N, Empty, True);
+ else
+ Original_Body := Copy_Separate_Tree (N);
+ end if;
+
+ -- We need to capture references to the formals in order to substitute
+ -- the actuals at the point of inlining, i.e. instantiation. To treat
+ -- the formals as globals to the body to inline, we nest it within
+ -- a dummy parameterless subprogram, declared within the real one.
+ -- To avoid generating an internal name (which is never public, and
+ -- which affects serial numbers of other generated names), we use
+ -- an internal symbol that cannot conflict with user declarations.
+
+ Set_Parameter_Specifications (Specification (Original_Body), No_List);
+ Set_Defining_Unit_Name
+ (Specification (Original_Body),
+ Make_Defining_Identifier (Sloc (N), Name_uParent));
+ Set_Corresponding_Spec (Original_Body, Empty);
+
+ Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
+
+ -- Set return type of function, which is also global and does not need
+ -- to be resolved.
+
+ if Ekind (Subp) = E_Function then
+ Set_Result_Definition (Specification (Body_To_Analyze),
+ New_Occurrence_Of (Etype (Subp), Sloc (N)));
+ end if;
+
+ if No (Declarations (N)) then
+ Set_Declarations (N, New_List (Body_To_Analyze));
+ else
+ Append (Body_To_Analyze, Declarations (N));
+ end if;
+
+ Expander_Mode_Save_And_Set (False);
+ Remove_Pragmas;
+
+ Analyze (Body_To_Analyze);
+ Push_Scope (Defining_Entity (Body_To_Analyze));
+ Save_Global_References (Original_Body);
+ End_Scope;
+ Remove (Body_To_Analyze);
+
+ Expander_Mode_Restore;
+
+ -- Restore environment if previously saved
+
+ if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
+ Restore_Env;
+ end if;
+
+ -- If secondary stk used there is no point in inlining. We have
+ -- already issued the warning in this case, so nothing to do.
+
+ if Uses_Secondary_Stack (Body_To_Analyze) then
+ return;
+ end if;
+
+ Set_Body_To_Inline (Decl, Original_Body);
+ Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
+ Set_Is_Inlined (Subp);
+ end Build_Body_To_Inline;
+
+ -------------------
+ -- Cannot_Inline --
+ -------------------
+
+ procedure Cannot_Inline
+ (Msg : String;
+ N : Node_Id;
+ Subp : Entity_Id;
+ Is_Serious : Boolean := False)
+ is
+ begin
+ pragma Assert (Msg (Msg'Last) = '?');
+
+ -- Old semantics
+
+ if not Debug_Flag_Dot_K then
+
+ -- Do not emit warning if this is a predefined unit which is not
+ -- the main unit. With validity checks enabled, some predefined
+ -- subprograms may contain nested subprograms and become ineligible
+ -- for inlining.
+
+ if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
+ and then not In_Extended_Main_Source_Unit (Subp)
+ then
+ null;
+
+ elsif Has_Pragma_Inline_Always (Subp) then
+
+ -- Remove last character (question mark) to make this into an
+ -- error, because the Inline_Always pragma cannot be obeyed.
+
+ Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
+
+ elsif Ineffective_Inline_Warnings then
+ Error_Msg_NE (Msg & "p?", N, Subp);
+ end if;
+
+ return;
+
+ -- New semantics
+
+ elsif Is_Serious then
+
+ -- Remove last character (question mark) to make this into an error.
+
+ Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
+
+ elsif Optimization_Level = 0 then
+
+ -- Do not emit warning if this is a predefined unit which is not
+ -- the main unit. This behavior is currently provided for backward
+ -- compatibility but it will be removed when we enforce the
+ -- strictness of the new rules.
+
+ if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
+ and then not In_Extended_Main_Source_Unit (Subp)
+ then
+ null;
+
+ elsif Has_Pragma_Inline_Always (Subp) then
+
+ -- Emit a warning if this is a call to a runtime subprogram
+ -- which is located inside a generic. Previously this call
+ -- was silently skipped.
+
+ if Is_Generic_Instance (Subp) then
+ declare
+ Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
+ begin
+ if Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Gen_P)))
+ then
+ Set_Is_Inlined (Subp, False);
+ Error_Msg_NE (Msg & "p?", N, Subp);
+ return;
+ end if;
+ end;
+ end if;
+
+ -- Remove last character (question mark) to make this into an
+ -- error, because the Inline_Always pragma cannot be obeyed.
+
+ Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
+
+ else pragma Assert (Front_End_Inlining);
+ Set_Is_Inlined (Subp, False);
+
+ -- When inlining cannot take place we must issue an error.
+ -- For backward compatibility we still report a warning.
+
+ if Ineffective_Inline_Warnings then
+ Error_Msg_NE (Msg & "p?", N, Subp);
+ end if;
+ end if;
+
+ -- Compiling with optimizations enabled it is too early to report
+ -- problems since the backend may still perform inlining. In order
+ -- to report unhandled inlinings the program must be compiled with
+ -- -Winline and the error is reported by the backend.
+
+ else
+ null;
+ end if;
+ end Cannot_Inline;
+
+ ------------------------------------
+ -- Check_And_Build_Body_To_Inline --
+ ------------------------------------
+
+ procedure Check_And_Build_Body_To_Inline
+ (N : Node_Id;
+ Spec_Id : Entity_Id;
+ Body_Id : Entity_Id)
+ is
+ procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
+ -- Use generic machinery to build an unexpanded body for the subprogram.
+ -- This body is subsequently used for inline expansions at call sites.
+
+ function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
+ -- Return true if we generate code for the function body N, the function
+ -- body N has no local declarations and its unique statement is a single
+ -- extended return statement with a handled statements sequence.
+
+ function Check_Body_To_Inline
+ (N : Node_Id;
+ Subp : Entity_Id) return Boolean;
+ -- N is the N_Subprogram_Body of Subp. Return true if Subp can be
+ -- inlined by the frontend. These are the rules:
+ -- * At -O0 use fe inlining when inline_always is specified except if
+ -- the function returns a controlled type.
+ -- * At other optimization levels use the fe inlining for both inline
+ -- and inline_always in the following cases:
+ -- - function returning a known at compile time constant
+ -- - function returning a call to an intrinsic function
+ -- - function returning an unconstrained type (see Can_Split
+ -- Unconstrained_Function).
+ -- - function returning a call to a frontend-inlined function
+ -- Use the back-end mechanism otherwise
+ --
+ -- In addition, in the following cases the function cannot be inlined by
+ -- the frontend:
+ -- - functions that uses the secondary stack
+ -- - functions that have declarations of:
+ -- - Concurrent types
+ -- - Packages
+ -- - Instantiations
+ -- - Subprograms
+ -- - functions that have some of the following statements:
+ -- - abort
+ -- - asynchronous-select
+ -- - conditional-entry-call
+ -- - delay-relative
+ -- - delay-until
+ -- - selective-accept
+ -- - timed-entry-call
+ -- - functions that have exception handlers
+ -- - functions that have some enclosing body containing instantiations
+ -- that appear before the corresponding generic body.
+
+ procedure Generate_Body_To_Inline
+ (N : Node_Id;
+ Body_To_Inline : out Node_Id);
+ -- Generate a parameterless duplicate of subprogram body N. Occurrences
+ -- of pragmas referencing the formals are removed since they have no
+ -- meaning when the body is inlined and the formals are rewritten (the
+ -- analysis of the non-inlined body will handle these pragmas properly).
+ -- A new internal name is associated with Body_To_Inline.
+
+ procedure Split_Unconstrained_Function
+ (N : Node_Id;
+ Spec_Id : Entity_Id);
+ -- N is an inlined function body that returns an unconstrained type and
+ -- has a single extended return statement. Split N in two subprograms:
+ -- a procedure P' and a function F'. The formals of P' duplicate the
+ -- formals of N plus an extra formal which is used return a value;
+ -- its body is composed by the declarations and list of statements
+ -- of the extended return statement of N.
+
+ --------------------------
+ -- Build_Body_To_Inline --
+ --------------------------
+
+ procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
+ Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
+ Original_Body : Node_Id;
+ Body_To_Analyze : Node_Id;
+
+ begin
+ pragma Assert (Current_Scope = Spec_Id);
+
+ -- Within an instance, the body to inline must be treated as a nested
+ -- generic, so that the proper global references are preserved. We
+ -- do not do this at the library level, because it is not needed, and
+ -- furthermore this causes trouble if front end inlining is activated
+ -- (-gnatN).
+
+ if In_Instance
+ and then Scope (Current_Scope) /= Standard_Standard
+ then
+ Save_Env (Scope (Current_Scope), Scope (Current_Scope));
+ end if;
+
+ -- We need to capture references to the formals in order
+ -- to substitute the actuals at the point of inlining, i.e.
+ -- instantiation. To treat the formals as globals to the body to
+ -- inline, we nest it within a dummy parameterless subprogram,
+ -- declared within the real one.
+
+ Generate_Body_To_Inline (N, Original_Body);
+ Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
+
+ -- Set return type of function, which is also global and does not
+ -- need to be resolved.
+
+ if Ekind (Spec_Id) = E_Function then
+ Set_Result_Definition (Specification (Body_To_Analyze),
+ New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
+ end if;
+
+ if No (Declarations (N)) then
+ Set_Declarations (N, New_List (Body_To_Analyze));
+ else
+ Append_To (Declarations (N), Body_To_Analyze);
+ end if;
+
+ Preanalyze (Body_To_Analyze);
+
+ Push_Scope (Defining_Entity (Body_To_Analyze));
+ Save_Global_References (Original_Body);
+ End_Scope;
+ Remove (Body_To_Analyze);
+
+ -- Restore environment if previously saved
+
+ if In_Instance
+ and then Scope (Current_Scope) /= Standard_Standard
+ then
+ Restore_Env;
+ end if;
+
+ pragma Assert (No (Body_To_Inline (Decl)));
+ Set_Body_To_Inline (Decl, Original_Body);
+ Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
+ end Build_Body_To_Inline;
+
+ --------------------------
+ -- Check_Body_To_Inline --
+ --------------------------
+
+ function Check_Body_To_Inline
+ (N : Node_Id;
+ Subp : Entity_Id) return Boolean
+ is
+ Max_Size : constant := 10;
+ Stat_Count : Integer := 0;
+
+ function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
+ -- Check for declarations that make inlining not worthwhile
+
+ function Has_Excluded_Statement (Stats : List_Id) return Boolean;
+ -- Check for statements that make inlining not worthwhile: any
+ -- tasking statement, nested at any level. Keep track of total
+ -- number of elementary statements, as a measure of acceptable size.
+
+ function Has_Pending_Instantiation return Boolean;
+ -- Return True if some enclosing body contains instantiations that
+ -- appear before the corresponding generic body.
+
+ function Returns_Compile_Time_Constant (N : Node_Id) return Boolean;
+ -- Return True if all the return statements of the function body N
+ -- are simple return statements and return a compile time constant
+
+ function Returns_Intrinsic_Function_Call (N : Node_Id) return Boolean;
+ -- Return True if all the return statements of the function body N
+ -- are simple return statements and return an intrinsic function call
+
+ function Uses_Secondary_Stack (N : Node_Id) return Boolean;
+ -- If the body of the subprogram includes a call that returns an
+ -- unconstrained type, the secondary stack is involved, and it
+ -- is not worth inlining.
+
+ ------------------------------
+ -- Has_Excluded_Declaration --
+ ------------------------------
+
+ function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
+ D : Node_Id;
+
+ function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
+ -- Nested subprograms make a given body ineligible for inlining,
+ -- but we make an exception for instantiations of unchecked
+ -- conversion. The body has not been analyzed yet, so check the
+ -- name, and verify that the visible entity with that name is the
+ -- predefined unit.
+
+ -----------------------------
+ -- Is_Unchecked_Conversion --
+ -----------------------------
+
+ function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
+ Id : constant Node_Id := Name (D);
+ Conv : Entity_Id;
+
+ begin
+ if Nkind (Id) = N_Identifier
+ and then Chars (Id) = Name_Unchecked_Conversion
+ then
+ Conv := Current_Entity (Id);
+
+ elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
+ and then
+ Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
+ then
+ Conv := Current_Entity (Selector_Name (Id));
+ else
+ return False;
+ end if;
+
+ return Present (Conv)
+ and then Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Conv)))
+ and then Is_Intrinsic_Subprogram (Conv);
+ end Is_Unchecked_Conversion;
+
+ -- Start of processing for Has_Excluded_Declaration
+
+ begin
+ D := First (Decls);
+ while Present (D) loop
+ if (Nkind (D) = N_Function_Instantiation
+ and then not Is_Unchecked_Conversion (D))
+ or else Nkind_In (D, N_Protected_Type_Declaration,
+ N_Package_Declaration,
+ N_Package_Instantiation,
+ N_Subprogram_Body,
+ N_Procedure_Instantiation,
+ N_Task_Type_Declaration)
+ then
+ Cannot_Inline
+ ("cannot inline & (non-allowed declaration)?", D, Subp);
+
+ return True;
+ end if;
+
+ Next (D);
+ end loop;
+
+ return False;
+ end Has_Excluded_Declaration;
+
+ ----------------------------
+ -- Has_Excluded_Statement --
+ ----------------------------
+
+ function Has_Excluded_Statement (Stats : List_Id) return Boolean is
+ S : Node_Id;
+ E : Node_Id;
+
+ begin
+ S := First (Stats);
+ while Present (S) loop
+ Stat_Count := Stat_Count + 1;
+
+ if Nkind_In (S, N_Abort_Statement,
+ N_Asynchronous_Select,
+ N_Conditional_Entry_Call,
+ N_Delay_Relative_Statement,
+ N_Delay_Until_Statement,
+ N_Selective_Accept,
+ N_Timed_Entry_Call)
+ then
+ Cannot_Inline
+ ("cannot inline & (non-allowed statement)?", S, Subp);
+ return True;
+
+ elsif Nkind (S) = N_Block_Statement then
+ if Present (Declarations (S))
+ and then Has_Excluded_Declaration (Declarations (S))
+ then
+ return True;
+
+ elsif Present (Handled_Statement_Sequence (S)) then
+ if Present
+ (Exception_Handlers (Handled_Statement_Sequence (S)))
+ then
+ Cannot_Inline
+ ("cannot inline& (exception handler)?",
+ First (Exception_Handlers
+ (Handled_Statement_Sequence (S))),
+ Subp);
+ return True;
+
+ elsif Has_Excluded_Statement
+ (Statements (Handled_Statement_Sequence (S)))
+ then
+ return True;
+ end if;
+ end if;
+
+ elsif Nkind (S) = N_Case_Statement then
+ E := First (Alternatives (S));
+ while Present (E) loop
+ if Has_Excluded_Statement (Statements (E)) then
+ return True;
+ end if;
+
+ Next (E);
+ end loop;
+
+ elsif Nkind (S) = N_If_Statement then
+ if Has_Excluded_Statement (Then_Statements (S)) then
+ return True;
+ end if;
+
+ if Present (Elsif_Parts (S)) then
+ E := First (Elsif_Parts (S));
+ while Present (E) loop
+ if Has_Excluded_Statement (Then_Statements (E)) then
+ return True;
+ end if;
+ Next (E);
+ end loop;
+ end if;
+
+ if Present (Else_Statements (S))
+ and then Has_Excluded_Statement (Else_Statements (S))
+ then
+ return True;
+ end if;
+
+ elsif Nkind (S) = N_Loop_Statement
+ and then Has_Excluded_Statement (Statements (S))
+ then
+ return True;
+
+ elsif Nkind (S) = N_Extended_Return_Statement then
+ if Present (Handled_Statement_Sequence (S))
+ and then
+ Has_Excluded_Statement
+ (Statements (Handled_Statement_Sequence (S)))
+ then
+ return True;
+
+ elsif Present (Handled_Statement_Sequence (S))
+ and then
+ Present (Exception_Handlers
+ (Handled_Statement_Sequence (S)))
+ then
+ Cannot_Inline
+ ("cannot inline& (exception handler)?",
+ First (Exception_Handlers
+ (Handled_Statement_Sequence (S))),
+ Subp);
+ return True;
+ end if;
+ end if;
+
+ Next (S);
+ end loop;
+
+ return False;
+ end Has_Excluded_Statement;
+
+ -------------------------------
+ -- Has_Pending_Instantiation --
+ -------------------------------
+
+ function Has_Pending_Instantiation return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S) loop
+ if Is_Compilation_Unit (S)
+ or else Is_Child_Unit (S)
+ then
+ return False;
+
+ elsif Ekind (S) = E_Package
+ and then Has_Forward_Instantiation (S)
+ then
+ return True;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end Has_Pending_Instantiation;
+
+ ------------------------------------
+ -- Returns_Compile_Time_Constant --
+ ------------------------------------
+
+ function Returns_Compile_Time_Constant (N : Node_Id) return Boolean is
+
+ function Check_Return (N : Node_Id) return Traverse_Result;
+
+ ------------------
+ -- Check_Return --
+ ------------------
+
+ function Check_Return (N : Node_Id) return Traverse_Result is
+ begin
+ if Nkind (N) = N_Extended_Return_Statement then
+ return Abandon;
+
+ elsif Nkind (N) = N_Simple_Return_Statement then
+ if Present (Expression (N)) then
+ declare
+ Orig_Expr : constant Node_Id :=
+ Original_Node (Expression (N));
+
+ begin
+ if Nkind_In (Orig_Expr, N_Integer_Literal,
+ N_Real_Literal,
+ N_Character_Literal)
+ then
+ return OK;
+
+ elsif Is_Entity_Name (Orig_Expr)
+ and then Ekind (Entity (Orig_Expr)) = E_Constant
+ and then Is_Static_Expression (Orig_Expr)
+ then
+ return OK;
+ else
+ return Abandon;
+ end if;
+ end;
+
+ -- Expression has wrong form
+
+ else
+ return Abandon;
+ end if;
+
+ -- Continue analyzing statements
+
+ else
+ return OK;
+ end if;
+ end Check_Return;
+
+ function Check_All_Returns is new Traverse_Func (Check_Return);
+
+ -- Start of processing for Returns_Compile_Time_Constant
+
+ begin
+ return Check_All_Returns (N) = OK;
+ end Returns_Compile_Time_Constant;
+
+ --------------------------------------
+ -- Returns_Intrinsic_Function_Call --
+ --------------------------------------
+
+ function Returns_Intrinsic_Function_Call
+ (N : Node_Id) return Boolean
+ is
+ function Check_Return (N : Node_Id) return Traverse_Result;
+
+ ------------------
+ -- Check_Return --
+ ------------------
+
+ function Check_Return (N : Node_Id) return Traverse_Result is
+ begin
+ if Nkind (N) = N_Extended_Return_Statement then
+ return Abandon;
+
+ elsif Nkind (N) = N_Simple_Return_Statement then
+ if Present (Expression (N)) then
+ declare
+ Orig_Expr : constant Node_Id :=
+ Original_Node (Expression (N));
+
+ begin
+ if Nkind (Orig_Expr) in N_Op
+ and then Is_Intrinsic_Subprogram (Entity (Orig_Expr))
+ then
+ return OK;
+
+ elsif Nkind (Orig_Expr) in N_Has_Entity
+ and then Present (Entity (Orig_Expr))
+ and then Ekind (Entity (Orig_Expr)) = E_Function
+ and then Is_Inlined (Entity (Orig_Expr))
+ then
+ return OK;
+
+ elsif Nkind (Orig_Expr) in N_Has_Entity
+ and then Present (Entity (Orig_Expr))
+ and then Is_Intrinsic_Subprogram (Entity (Orig_Expr))
+ then
+ return OK;
+
+ else
+ return Abandon;
+ end if;
+ end;
+
+ -- Expression has wrong form
+
+ else
+ return Abandon;
+ end if;
+
+ -- Continue analyzing statements
+
+ else
+ return OK;
+ end if;
+ end Check_Return;
+
+ function Check_All_Returns is new Traverse_Func (Check_Return);
+
+ -- Start of processing for Returns_Intrinsic_Function_Call
+
+ begin
+ return Check_All_Returns (N) = OK;
+ end Returns_Intrinsic_Function_Call;
+
+ --------------------------
+ -- Uses_Secondary_Stack --
+ --------------------------
+
+ function Uses_Secondary_Stack (N : Node_Id) return Boolean is
+
+ function Check_Call (N : Node_Id) return Traverse_Result;
+ -- Look for function calls that return an unconstrained type
+
+ ----------------
+ -- Check_Call --
+ ----------------
+
+ function Check_Call (N : Node_Id) return Traverse_Result is
+ begin
+ if Nkind (N) = N_Function_Call
+ and then Is_Entity_Name (Name (N))
+ and then Is_Composite_Type (Etype (Entity (Name (N))))
+ and then not Is_Constrained (Etype (Entity (Name (N))))
+ then
+ Cannot_Inline
+ ("cannot inline & (call returns unconstrained type)?",
+ N, Subp);
+
+ return Abandon;
+ else
+ return OK;
+ end if;
+ end Check_Call;
+
+ function Check_Calls is new Traverse_Func (Check_Call);
+
+ -- Start of processing for Uses_Secondary_Stack
+
+ begin
+ return Check_Calls (N) = Abandon;
+ end Uses_Secondary_Stack;
+
+ -- Local variables
+
+ Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
+ May_Inline : constant Boolean :=
+ Has_Pragma_Inline_Always (Spec_Id)
+ or else (Has_Pragma_Inline (Spec_Id)
+ and then ((Optimization_Level > 0
+ and then Ekind (Spec_Id)
+ = E_Function)
+ or else Front_End_Inlining));
+ Body_To_Analyze : Node_Id;
+
+ -- Start of processing for Check_Body_To_Inline
+
+ begin
+ -- No action needed in stubs since the attribute Body_To_Inline
+ -- is not available
+
+ if Nkind (Decl) = N_Subprogram_Body_Stub then
+ return False;
+
+ -- Cannot build the body to inline if the attribute is already set.
+ -- This attribute may have been set if this is a subprogram renaming
+ -- declarations (see Freeze.Build_Renamed_Body).
+
+ elsif Present (Body_To_Inline (Decl)) then
+ return False;
+
+ -- No action needed if the subprogram does not fulfill the minimum
+ -- conditions to be inlined by the frontend
+
+ elsif not May_Inline then
+ return False;
+ end if;
+
+ -- Check excluded declarations
+
+ if Present (Declarations (N))
+ and then Has_Excluded_Declaration (Declarations (N))
+ then
+ return False;
+ end if;
+
+ -- Check excluded statements
+
+ if Present (Handled_Statement_Sequence (N)) then
+ if Present
+ (Exception_Handlers (Handled_Statement_Sequence (N)))
+ then
+ Cannot_Inline
+ ("cannot inline& (exception handler)?",
+ First
+ (Exception_Handlers (Handled_Statement_Sequence (N))),
+ Subp);
+
+ return False;
+
+ elsif Has_Excluded_Statement
+ (Statements (Handled_Statement_Sequence (N)))
+ then
+ return False;
+ end if;
+ end if;
+
+ -- For backward compatibility, compiling under -gnatN we do not
+ -- inline a subprogram that is too large, unless it is marked
+ -- Inline_Always. This pragma does not suppress the other checks
+ -- on inlining (forbidden declarations, handlers, etc).
+
+ if Front_End_Inlining
+ and then not Has_Pragma_Inline_Always (Subp)
+ and then Stat_Count > Max_Size
+ then
+ Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
+ return False;
+ end if;
+
+ -- If some enclosing body contains instantiations that appear before
+ -- the corresponding generic body, the enclosing body has a freeze
+ -- node so that it can be elaborated after the generic itself. This
+ -- might conflict with subsequent inlinings, so that it is unsafe to
+ -- try to inline in such a case.
+
+ if Has_Pending_Instantiation then
+ Cannot_Inline
+ ("cannot inline& (forward instance within enclosing body)?",
+ N, Subp);
+
+ return False;
+ end if;
+
+ -- Generate and preanalyze the body to inline (needed to perform
+ -- the rest of the checks)
+
+ Generate_Body_To_Inline (N, Body_To_Analyze);
+
+ if Ekind (Subp) = E_Function then
+ Set_Result_Definition (Specification (Body_To_Analyze),
+ New_Occurrence_Of (Etype (Subp), Sloc (N)));
+ end if;
+
+ -- Nest the body to analyze within the real one
+
+ if No (Declarations (N)) then
+ Set_Declarations (N, New_List (Body_To_Analyze));
+ else
+ Append_To (Declarations (N), Body_To_Analyze);
+ end if;
+
+ Preanalyze (Body_To_Analyze);
+ Remove (Body_To_Analyze);
+
+ -- Keep separate checks needed when compiling without optimizations
+
+ if Optimization_Level = 0
+
+ -- AAMP and VM targets have no support for inlining in the backend
+ -- and hence we use frontend inlining at all optimization levels.
+
+ or else AAMP_On_Target
+ or else VM_Target /= No_VM
+ then
+ -- Cannot inline functions whose body has a call that returns an
+ -- unconstrained type since the secondary stack is involved, and
+ -- it is not worth inlining.
+
+ if Uses_Secondary_Stack (Body_To_Analyze) then
+ return False;
+
+ -- Cannot inline functions that return controlled types since
+ -- controlled actions interfere in complex ways with inlining.
+
+ elsif Ekind (Subp) = E_Function
+ and then Needs_Finalization (Etype (Subp))
+ then
+ Cannot_Inline
+ ("cannot inline & (controlled return type)?", N, Subp);
+ return False;
+
+ elsif Returns_Unconstrained_Type (Subp) then
+ Cannot_Inline
+ ("cannot inline & (unconstrained return type)?", N, Subp);
+ return False;
+ end if;
+
+ -- Compiling with optimizations enabled
+
+ else
+ -- Procedures are never frontend inlined in this case
+
+ if Ekind (Subp) /= E_Function then
+ return False;
+
+ -- Functions returning unconstrained types are tested
+ -- separately (see Can_Split_Unconstrained_Function).
+
+ elsif Returns_Unconstrained_Type (Subp) then
+ null;
+
+ -- Check supported cases
+
+ elsif not Returns_Compile_Time_Constant (Body_To_Analyze)
+ and then Convention (Subp) /= Convention_Intrinsic
+ and then not Returns_Intrinsic_Function_Call (Body_To_Analyze)
+ then
+ return False;
+ end if;
+ end if;
+
+ return True;
+ end Check_Body_To_Inline;
+
+ --------------------------------------
+ -- Can_Split_Unconstrained_Function --
+ --------------------------------------
+
+ function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean
+ is
+ Ret_Node : constant Node_Id :=
+ First (Statements (Handled_Statement_Sequence (N)));
+ D : Node_Id;
+
+ begin
+ -- No user defined declarations allowed in the function except inside
+ -- the unique return statement; implicit labels are the only allowed
+ -- declarations.
+
+ if not Is_Empty_List (Declarations (N)) then
+ D := First (Declarations (N));
+ while Present (D) loop
+ if Nkind (D) /= N_Implicit_Label_Declaration then
+ return False;
+ end if;
+
+ Next (D);
+ end loop;
+ end if;
+
+ -- We only split the inlined function when we are generating the code
+ -- of its body; otherwise we leave duplicated split subprograms in
+ -- the tree which (if referenced) generate wrong references at link
+ -- time.
+
+ return In_Extended_Main_Code_Unit (N)
+ and then Present (Ret_Node)
+ and then Nkind (Ret_Node) = N_Extended_Return_Statement
+ and then No (Next (Ret_Node))
+ and then Present (Handled_Statement_Sequence (Ret_Node));
+ end Can_Split_Unconstrained_Function;
+
+ -----------------------------
+ -- Generate_Body_To_Inline --
+ -----------------------------
+
+ procedure Generate_Body_To_Inline
+ (N : Node_Id;
+ Body_To_Inline : out Node_Id)
+ is
+ procedure Remove_Pragmas (N : Node_Id);
+ -- Remove occurrences of pragmas that may reference the formals of
+ -- N. The analysis of the non-inlined body will handle these pragmas
+ -- properly.
+
+ --------------------
+ -- Remove_Pragmas --
+ --------------------
+
+ procedure Remove_Pragmas (N : Node_Id) is
+ Decl : Node_Id;
+ Nxt : Node_Id;
+
+ begin
+ Decl := First (Declarations (N));
+ while Present (Decl) loop
+ Nxt := Next (Decl);
+
+ if Nkind (Decl) = N_Pragma
+ and then Nam_In (Pragma_Name (Decl), Name_Unreferenced,
+ Name_Unmodified)
+ then
+ Remove (Decl);
+ end if;
+
+ Decl := Nxt;
+ end loop;
+ end Remove_Pragmas;
+
+ -- Start of processing for Generate_Body_To_Inline
+
+ begin
+ -- Within an instance, the body to inline must be treated as a nested
+ -- generic, so that the proper global references are preserved.
+
+ -- Note that we do not do this at the library level, because it
+ -- is not needed, and furthermore this causes trouble if front
+ -- end inlining is activated (-gnatN).
+
+ if In_Instance
+ and then Scope (Current_Scope) /= Standard_Standard
+ then
+ Body_To_Inline := Copy_Generic_Node (N, Empty, True);
+ else
+ Body_To_Inline := Copy_Separate_Tree (N);
+ end if;
+
+ -- A pragma Unreferenced or pragma Unmodified that mentions a formal
+ -- parameter has no meaning when the body is inlined and the formals
+ -- are rewritten. Remove it from body to inline. The analysis of the
+ -- non-inlined body will handle the pragma properly.
+
+ Remove_Pragmas (Body_To_Inline);
+
+ -- We need to capture references to the formals in order
+ -- to substitute the actuals at the point of inlining, i.e.
+ -- instantiation. To treat the formals as globals to the body to
+ -- inline, we nest it within a dummy parameterless subprogram,
+ -- declared within the real one.
+
+ Set_Parameter_Specifications
+ (Specification (Body_To_Inline), No_List);
+
+ -- A new internal name is associated with Body_To_Inline to avoid
+ -- conflicts when the non-inlined body N is analyzed.
+
+ Set_Defining_Unit_Name (Specification (Body_To_Inline),
+ Make_Defining_Identifier (Sloc (N), New_Internal_Name ('P')));
+ Set_Corresponding_Spec (Body_To_Inline, Empty);
+ end Generate_Body_To_Inline;
+
+ ----------------------------------
+ -- Split_Unconstrained_Function --
+ ----------------------------------
+
+ procedure Split_Unconstrained_Function
+ (N : Node_Id;
+ Spec_Id : Entity_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Ret_Node : constant Node_Id :=
+ First (Statements (Handled_Statement_Sequence (N)));
+ Ret_Obj : constant Node_Id :=
+ First (Return_Object_Declarations (Ret_Node));
+
+ procedure Build_Procedure
+ (Proc_Id : out Entity_Id;
+ Decl_List : out List_Id);
+ -- Build a procedure containing the statements found in the extended
+ -- return statement of the unconstrained function body N.
+
+ procedure Build_Procedure
+ (Proc_Id : out Entity_Id;
+ Decl_List : out List_Id)
+ is
+ Formal : Entity_Id;
+ Formal_List : constant List_Id := New_List;
+ Proc_Spec : Node_Id;
+ Proc_Body : Node_Id;
+ Subp_Name : constant Name_Id := New_Internal_Name ('F');
+ Body_Decl_List : List_Id := No_List;
+ Param_Type : Node_Id;
+
+ begin
+ if Nkind (Object_Definition (Ret_Obj)) = N_Identifier then
+ Param_Type := New_Copy (Object_Definition (Ret_Obj));
+ else
+ Param_Type :=
+ New_Copy (Subtype_Mark (Object_Definition (Ret_Obj)));
+ end if;
+
+ Append_To (Formal_List,
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc,
+ Chars => Chars (Defining_Identifier (Ret_Obj))),
+ In_Present => False,
+ Out_Present => True,
+ Null_Exclusion_Present => False,
+ Parameter_Type => Param_Type));
+
+ Formal := First_Formal (Spec_Id);
+ while Present (Formal) loop
+ Append_To (Formal_List,
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Sloc (Formal),
+ Chars => Chars (Formal)),
+ In_Present => In_Present (Parent (Formal)),
+ Out_Present => Out_Present (Parent (Formal)),
+ Null_Exclusion_Present =>
+ Null_Exclusion_Present (Parent (Formal)),
+ Parameter_Type =>
+ New_Occurrence_Of (Etype (Formal), Loc),
+ Expression =>
+ Copy_Separate_Tree (Expression (Parent (Formal)))));
+
+ Next_Formal (Formal);
+ end loop;
+
+ Proc_Id :=
+ Make_Defining_Identifier (Loc, Chars => Subp_Name);
+
+ Proc_Spec :=
+ Make_Procedure_Specification (Loc,
+ Defining_Unit_Name => Proc_Id,
+ Parameter_Specifications => Formal_List);
+
+ Decl_List := New_List;
+
+ Append_To (Decl_List,
+ Make_Subprogram_Declaration (Loc, Proc_Spec));
+
+ -- Can_Convert_Unconstrained_Function checked that the function
+ -- has no local declarations except implicit label declarations.
+ -- Copy these declarations to the built procedure.
+
+ if Present (Declarations (N)) then
+ Body_Decl_List := New_List;
+
+ declare
+ D : Node_Id;
+ New_D : Node_Id;
+
+ begin
+ D := First (Declarations (N));
+ while Present (D) loop
+ pragma Assert (Nkind (D) = N_Implicit_Label_Declaration);
+
+ New_D :=
+ Make_Implicit_Label_Declaration (Loc,
+ Make_Defining_Identifier (Loc,
+ Chars => Chars (Defining_Identifier (D))),
+ Label_Construct => Empty);
+ Append_To (Body_Decl_List, New_D);
+
+ Next (D);
+ end loop;
+ end;
+ end if;
+
+ pragma Assert (Present (Handled_Statement_Sequence (Ret_Node)));
+
+ Proc_Body :=
+ Make_Subprogram_Body (Loc,
+ Specification => Copy_Separate_Tree (Proc_Spec),
+ Declarations => Body_Decl_List,
+ Handled_Statement_Sequence =>
+ Copy_Separate_Tree (Handled_Statement_Sequence (Ret_Node)));
+
+ Set_Defining_Unit_Name (Specification (Proc_Body),
+ Make_Defining_Identifier (Loc, Subp_Name));
+
+ Append_To (Decl_List, Proc_Body);
+ end Build_Procedure;
+
+ -- Local variables
+
+ New_Obj : constant Node_Id := Copy_Separate_Tree (Ret_Obj);
+ Blk_Stmt : Node_Id;
+ Proc_Id : Entity_Id;
+ Proc_Call : Node_Id;
+
+ -- Start of processing for Split_Unconstrained_Function
+
+ begin
+ -- Build the associated procedure, analyze it and insert it before
+ -- the function body N
+
+ declare
+ Scope : constant Entity_Id := Current_Scope;
+ Decl_List : List_Id;
+ begin
+ Pop_Scope;
+ Build_Procedure (Proc_Id, Decl_List);
+ Insert_Actions (N, Decl_List);
+ Push_Scope (Scope);
+ end;
+
+ -- Build the call to the generated procedure
+
+ declare
+ Actual_List : constant List_Id := New_List;
+ Formal : Entity_Id;
+
+ begin
+ Append_To (Actual_List,
+ New_Occurrence_Of (Defining_Identifier (New_Obj), Loc));
+
+ Formal := First_Formal (Spec_Id);
+ while Present (Formal) loop
+ Append_To (Actual_List, New_Occurrence_Of (Formal, Loc));
+
+ -- Avoid spurious warning on unreferenced formals
+
+ Set_Referenced (Formal);
+ Next_Formal (Formal);
+ end loop;
+
+ Proc_Call :=
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Occurrence_Of (Proc_Id, Loc),
+ Parameter_Associations => Actual_List);
+ end;
+
+ -- Generate
+
+ -- declare
+ -- New_Obj : ...
+ -- begin
+ -- main_1__F1b (New_Obj, ...);
+ -- return Obj;
+ -- end B10b;
+
+ Blk_Stmt :=
+ Make_Block_Statement (Loc,
+ Declarations => New_List (New_Obj),
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+
+ Proc_Call,
+
+ Make_Simple_Return_Statement (Loc,
+ Expression =>
+ New_Occurrence_Of
+ (Defining_Identifier (New_Obj), Loc)))));
+
+ Rewrite (Ret_Node, Blk_Stmt);
+ end Split_Unconstrained_Function;
+
+ -- Start of processing for Check_And_Build_Body_To_Inline
+
+ begin
+ -- Do not inline any subprogram that contains nested subprograms, since
+ -- the backend inlining circuit seems to generate uninitialized
+ -- references in this case. We know this happens in the case of front
+ -- end ZCX support, but it also appears it can happen in other cases as
+ -- well. The backend often rejects attempts to inline in the case of
+ -- nested procedures anyway, so little if anything is lost by this.
+ -- Note that this is test is for the benefit of the back-end. There is
+ -- a separate test for front-end inlining that also rejects nested
+ -- subprograms.
+
+ -- Do not do this test if errors have been detected, because in some
+ -- error cases, this code blows up, and we don't need it anyway if
+ -- there have been errors, since we won't get to the linker anyway.
+
+ if Comes_From_Source (Body_Id)
+ and then (Has_Pragma_Inline_Always (Spec_Id)
+ or else Optimization_Level > 0)
+ and then Serious_Errors_Detected = 0
+ then
+ declare
+ P_Ent : Node_Id;
+
+ begin
+ P_Ent := Body_Id;
+ loop
+ P_Ent := Scope (P_Ent);
+ exit when No (P_Ent) or else P_Ent = Standard_Standard;
+
+ if Is_Subprogram (P_Ent) then
+ Set_Is_Inlined (P_Ent, False);
+
+ if Comes_From_Source (P_Ent)
+ and then Has_Pragma_Inline (P_Ent)
+ then
+ Cannot_Inline
+ ("cannot inline& (nested subprogram)?", N, P_Ent,
+ Is_Serious => True);
+ end if;
+ end if;
+ end loop;
+ end;
+ end if;
+
+ -- Build the body to inline only if really needed
+
+ if Check_Body_To_Inline (N, Spec_Id)
+ and then Serious_Errors_Detected = 0
+ then
+ if Returns_Unconstrained_Type (Spec_Id) then
+ if Can_Split_Unconstrained_Function (N) then
+ Split_Unconstrained_Function (N, Spec_Id);
+ Build_Body_To_Inline (N, Spec_Id);
+ Set_Is_Inlined (Spec_Id);
+ end if;
+ else
+ Build_Body_To_Inline (N, Spec_Id);
+ Set_Is_Inlined (Spec_Id);
+ end if;
+ end if;
+ end Check_And_Build_Body_To_Inline;
+
+ -----------------------
+ -- Check_Conformance --
+ -----------------------
+
+ procedure Check_Conformance
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Ctype : Conformance_Type;
+ Errmsg : Boolean;
+ Conforms : out Boolean;
+ Err_Loc : Node_Id := Empty;
+ Get_Inst : Boolean := False;
+ Skip_Controlling_Formals : Boolean := False)
+ is
+ procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
+ -- Sets Conforms to False. If Errmsg is False, then that's all it does.
+ -- If Errmsg is True, then processing continues to post an error message
+ -- for conformance error on given node. Two messages are output. The
+ -- first message points to the previous declaration with a general "no
+ -- conformance" message. The second is the detailed reason, supplied as
+ -- Msg. The parameter N provide information for a possible & insertion
+ -- in the message, and also provides the location for posting the
+ -- message in the absence of a specified Err_Loc location.
+
+ -----------------------
+ -- Conformance_Error --
+ -----------------------
+
+ procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
+ Enode : Node_Id;
+
+ begin
+ Conforms := False;
+
+ if Errmsg then
+ if No (Err_Loc) then
+ Enode := N;
+ else
+ Enode := Err_Loc;
+ end if;
+
+ Error_Msg_Sloc := Sloc (Old_Id);
+
+ case Ctype is
+ when Type_Conformant =>
+ Error_Msg_N -- CODEFIX
+ ("not type conformant with declaration#!", Enode);
+
+ when Mode_Conformant =>
+ if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
+ Error_Msg_N
+ ("not mode conformant with operation inherited#!",
+ Enode);
+ else
+ Error_Msg_N
+ ("not mode conformant with declaration#!", Enode);
+ end if;
+
+ when Subtype_Conformant =>
+ if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
+ Error_Msg_N
+ ("not subtype conformant with operation inherited#!",
+ Enode);
+ else
+ Error_Msg_N
+ ("not subtype conformant with declaration#!", Enode);
+ end if;
+
+ when Fully_Conformant =>
+ if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
+ Error_Msg_N -- CODEFIX
+ ("not fully conformant with operation inherited#!",
+ Enode);
+ else
+ Error_Msg_N -- CODEFIX
+ ("not fully conformant with declaration#!", Enode);
+ end if;
+ end case;
+
+ Error_Msg_NE (Msg, Enode, N);
+ end if;
+ end Conformance_Error;
+
+ -- Local Variables
+
+ Old_Type : constant Entity_Id := Etype (Old_Id);
+ New_Type : constant Entity_Id := Etype (New_Id);
+ Old_Formal : Entity_Id;
+ New_Formal : Entity_Id;
+ Access_Types_Match : Boolean;
+ Old_Formal_Base : Entity_Id;
+ New_Formal_Base : Entity_Id;
+
+ -- Start of processing for Check_Conformance
+
+ begin
+ Conforms := True;
+
+ -- We need a special case for operators, since they don't appear
+ -- explicitly.
+
+ if Ctype = Type_Conformant then
+ if Ekind (New_Id) = E_Operator
+ and then Operator_Matches_Spec (New_Id, Old_Id)
+ then
+ return;
+ end if;
+ end if;
+
+ -- If both are functions/operators, check return types conform
+
+ if Old_Type /= Standard_Void_Type
+ and then New_Type /= Standard_Void_Type
+ then
+
+ -- If we are checking interface conformance we omit controlling
+ -- arguments and result, because we are only checking the conformance
+ -- of the remaining parameters.
+
+ if Has_Controlling_Result (Old_Id)
+ and then Has_Controlling_Result (New_Id)
+ and then Skip_Controlling_Formals
+ then
+ null;
+
+ elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
+ if Ctype >= Subtype_Conformant
+ and then not Predicates_Match (Old_Type, New_Type)
+ then
+ Conformance_Error
+ ("\predicate of return type does not match!", New_Id);
+ else
+ Conformance_Error
+ ("\return type does not match!", New_Id);
+ end if;
+
+ return;
+ end if;
+
+ -- Ada 2005 (AI-231): In case of anonymous access types check the
+ -- null-exclusion and access-to-constant attributes match.
+
+ if Ada_Version >= Ada_2005
+ and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
+ and then
+ (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
+ or else Is_Access_Constant (Etype (Old_Type)) /=
+ Is_Access_Constant (Etype (New_Type)))
+ then
+ Conformance_Error ("\return type does not match!", New_Id);
+ return;
+ end if;
+
+ -- If either is a function/operator and the other isn't, error
+
+ elsif Old_Type /= Standard_Void_Type
+ or else New_Type /= Standard_Void_Type
+ then
+ Conformance_Error ("\functions can only match functions!", New_Id);
+ return;
+ end if;
+
+ -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
+ -- If this is a renaming as body, refine error message to indicate that
+ -- the conflict is with the original declaration. If the entity is not
+ -- frozen, the conventions don't have to match, the one of the renamed
+ -- entity is inherited.
+
+ if Ctype >= Subtype_Conformant then
+ if Convention (Old_Id) /= Convention (New_Id) then
+ if not Is_Frozen (New_Id) then
+ null;
+
+ elsif Present (Err_Loc)
+ and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
+ and then Present (Corresponding_Spec (Err_Loc))
+ then
+ Error_Msg_Name_1 := Chars (New_Id);
+ Error_Msg_Name_2 :=
+ Name_Ada + Convention_Id'Pos (Convention (New_Id));
+ Conformance_Error ("\prior declaration for% has convention %!");
+
+ else
+ Conformance_Error ("\calling conventions do not match!");
+ end if;
+
+ return;
+
+ elsif Is_Formal_Subprogram (Old_Id)
+ or else Is_Formal_Subprogram (New_Id)
+ then
+ Conformance_Error ("\formal subprograms not allowed!");
+ return;
+ end if;
+ end if;
+
+ -- Deal with parameters
+
+ -- Note: we use the entity information, rather than going directly
+ -- to the specification in the tree. This is not only simpler, but
+ -- absolutely necessary for some cases of conformance tests between
+ -- operators, where the declaration tree simply does not exist.
+
+ Old_Formal := First_Formal (Old_Id);
+ New_Formal := First_Formal (New_Id);
+ while Present (Old_Formal) and then Present (New_Formal) loop
+ if Is_Controlling_Formal (Old_Formal)
+ and then Is_Controlling_Formal (New_Formal)
+ and then Skip_Controlling_Formals
+ then
+ -- The controlling formals will have different types when
+ -- comparing an interface operation with its match, but both
+ -- or neither must be access parameters.
+
+ if Is_Access_Type (Etype (Old_Formal))
+ =
+ Is_Access_Type (Etype (New_Formal))
+ then
+ goto Skip_Controlling_Formal;
+ else
+ Conformance_Error
+ ("\access parameter does not match!", New_Formal);
+ end if;
+ end if;
+
+ -- Ada 2012: Mode conformance also requires that formal parameters
+ -- be both aliased, or neither.
+
+ if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
+ if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
+ Conformance_Error
+ ("\aliased parameter mismatch!", New_Formal);
+ end if;
+ end if;
+
+ if Ctype = Fully_Conformant then
+
+ -- Names must match. Error message is more accurate if we do
+ -- this before checking that the types of the formals match.
+
+ if Chars (Old_Formal) /= Chars (New_Formal) then
+ Conformance_Error ("\name & does not match!", New_Formal);
+
+ -- Set error posted flag on new formal as well to stop
+ -- junk cascaded messages in some cases.
+
+ Set_Error_Posted (New_Formal);
+ return;
+ end if;
+
+ -- Null exclusion must match
+
+ if Null_Exclusion_Present (Parent (Old_Formal))
+ /=
+ Null_Exclusion_Present (Parent (New_Formal))
+ then
+ -- Only give error if both come from source. This should be
+ -- investigated some time, since it should not be needed ???
+
+ if Comes_From_Source (Old_Formal)
+ and then
+ Comes_From_Source (New_Formal)
+ then
+ Conformance_Error
+ ("\null exclusion for & does not match", New_Formal);
+
+ -- Mark error posted on the new formal to avoid duplicated
+ -- complaint about types not matching.
+
+ Set_Error_Posted (New_Formal);
+ end if;
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
+ -- case occurs whenever a subprogram is being renamed and one of its
+ -- parameters imposes a null exclusion. For example:
+
+ -- type T is null record;
+ -- type Acc_T is access T;
+ -- subtype Acc_T_Sub is Acc_T;
+
+ -- procedure P (Obj : not null Acc_T_Sub); -- itype
+ -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
+ -- renames P;
+
+ Old_Formal_Base := Etype (Old_Formal);
+ New_Formal_Base := Etype (New_Formal);
+
+ if Get_Inst then
+ Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
+ New_Formal_Base := Get_Instance_Of (New_Formal_Base);
+ end if;
+
+ Access_Types_Match := Ada_Version >= Ada_2005
+
+ -- Ensure that this rule is only applied when New_Id is a
+ -- renaming of Old_Id.
+
+ and then Nkind (Parent (Parent (New_Id))) =
+ N_Subprogram_Renaming_Declaration
+ and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
+ and then Present (Entity (Name (Parent (Parent (New_Id)))))
+ and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
+
+ -- Now handle the allowed access-type case
+
+ and then Is_Access_Type (Old_Formal_Base)
+ and then Is_Access_Type (New_Formal_Base)
+
+ -- The type kinds must match. The only exception occurs with
+ -- multiple generics of the form:
+
+ -- generic generic
+ -- type F is private; type A is private;
+ -- type F_Ptr is access F; type A_Ptr is access A;
+ -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
+ -- package F_Pack is ... package A_Pack is
+ -- package F_Inst is
+ -- new F_Pack (A, A_Ptr, A_P);
+
+ -- When checking for conformance between the parameters of A_P
+ -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
+ -- because the compiler has transformed A_Ptr into a subtype of
+ -- F_Ptr. We catch this case in the code below.
+
+ and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
+ or else
+ (Is_Generic_Type (Old_Formal_Base)
+ and then Is_Generic_Type (New_Formal_Base)
+ and then Is_Internal (New_Formal_Base)
+ and then Etype (Etype (New_Formal_Base)) =
+ Old_Formal_Base))
+ and then Directly_Designated_Type (Old_Formal_Base) =
+ Directly_Designated_Type (New_Formal_Base)
+ and then ((Is_Itype (Old_Formal_Base)
+ and then Can_Never_Be_Null (Old_Formal_Base))
+ or else
+ (Is_Itype (New_Formal_Base)
+ and then Can_Never_Be_Null (New_Formal_Base)));
+
+ -- Types must always match. In the visible part of an instance,
+ -- usual overloading rules for dispatching operations apply, and
+ -- we check base types (not the actual subtypes).
+
+ if In_Instance_Visible_Part
+ and then Is_Dispatching_Operation (New_Id)
+ then
+ if not Conforming_Types
+ (T1 => Base_Type (Etype (Old_Formal)),
+ T2 => Base_Type (Etype (New_Formal)),
+ Ctype => Ctype,
+ Get_Inst => Get_Inst)
+ and then not Access_Types_Match
+ then
+ Conformance_Error ("\type of & does not match!", New_Formal);
+ return;
+ end if;
+
+ elsif not Conforming_Types
+ (T1 => Old_Formal_Base,
+ T2 => New_Formal_Base,
+ Ctype => Ctype,
+ Get_Inst => Get_Inst)
+ and then not Access_Types_Match
+ then
+ -- Don't give error message if old type is Any_Type. This test
+ -- avoids some cascaded errors, e.g. in case of a bad spec.
+
+ if Errmsg and then Old_Formal_Base = Any_Type then
+ Conforms := False;
+ else
+ if Ctype >= Subtype_Conformant
+ and then
+ not Predicates_Match (Old_Formal_Base, New_Formal_Base)
+ then
+ Conformance_Error
+ ("\predicate of & does not match!", New_Formal);
+ else
+ Conformance_Error
+ ("\type of & does not match!", New_Formal);
+ end if;
+ end if;
+
+ return;
+ end if;
+
+ -- For mode conformance, mode must match
+
+ if Ctype >= Mode_Conformant then
+ if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
+ if not Ekind_In (New_Id, E_Function, E_Procedure)
+ or else not Is_Primitive_Wrapper (New_Id)
+ then
+ Conformance_Error ("\mode of & does not match!", New_Formal);
+
+ else
+ declare
+ T : constant Entity_Id := Find_Dispatching_Type (New_Id);
+ begin
+ if Is_Protected_Type
+ (Corresponding_Concurrent_Type (T))
+ then
+ Error_Msg_PT (T, New_Id);
+ else
+ Conformance_Error
+ ("\mode of & does not match!", New_Formal);
+ end if;
+ end;
+ end if;
+
+ return;
+
+ -- Part of mode conformance for access types is having the same
+ -- constant modifier.
+
+ elsif Access_Types_Match
+ and then Is_Access_Constant (Old_Formal_Base) /=
+ Is_Access_Constant (New_Formal_Base)
+ then
+ Conformance_Error
+ ("\constant modifier does not match!", New_Formal);
+ return;
+ end if;
+ end if;
+
+ if Ctype >= Subtype_Conformant then
+
+ -- Ada 2005 (AI-231): In case of anonymous access types check
+ -- the null-exclusion and access-to-constant attributes must
+ -- match. For null exclusion, we test the types rather than the
+ -- formals themselves, since the attribute is only set reliably
+ -- on the formals in the Ada 95 case, and we exclude the case
+ -- where Old_Formal is marked as controlling, to avoid errors
+ -- when matching completing bodies with dispatching declarations
+ -- (access formals in the bodies aren't marked Can_Never_Be_Null).
+
+ if Ada_Version >= Ada_2005
+ and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
+ and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
+ and then
+ ((Can_Never_Be_Null (Etype (Old_Formal)) /=
+ Can_Never_Be_Null (Etype (New_Formal))
+ and then
+ not Is_Controlling_Formal (Old_Formal))
+ or else
+ Is_Access_Constant (Etype (Old_Formal)) /=
+ Is_Access_Constant (Etype (New_Formal)))
+
+ -- Do not complain if error already posted on New_Formal. This
+ -- avoids some redundant error messages.
+
+ and then not Error_Posted (New_Formal)
+ then
+ -- It is allowed to omit the null-exclusion in case of stream
+ -- attribute subprograms. We recognize stream subprograms
+ -- through their TSS-generated suffix.
+
+ declare
+ TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
+
+ begin
+ if TSS_Name /= TSS_Stream_Read
+ and then TSS_Name /= TSS_Stream_Write
+ and then TSS_Name /= TSS_Stream_Input
+ and then TSS_Name /= TSS_Stream_Output
+ then
+ -- Here we have a definite conformance error. It is worth
+ -- special casing the error message for the case of a
+ -- controlling formal (which excludes null).
+
+ if Is_Controlling_Formal (New_Formal) then
+ Error_Msg_Node_2 := Scope (New_Formal);
+ Conformance_Error
+ ("\controlling formal& of& excludes null, "
+ & "declaration must exclude null as well",
+ New_Formal);
+
+ -- Normal case (couldn't we give more detail here???)
+
+ else
+ Conformance_Error
+ ("\type of & does not match!", New_Formal);
+ end if;
+
+ return;
+ end if;
+ end;
+ end if;
+ end if;
+
+ -- Full conformance checks
+
+ if Ctype = Fully_Conformant then
+
+ -- We have checked already that names match
+
+ if Parameter_Mode (Old_Formal) = E_In_Parameter then
+
+ -- Check default expressions for in parameters
+
+ declare
+ NewD : constant Boolean :=
+ Present (Default_Value (New_Formal));
+ OldD : constant Boolean :=
+ Present (Default_Value (Old_Formal));
+ begin
+ if NewD or OldD then
+
+ -- The old default value has been analyzed because the
+ -- current full declaration will have frozen everything
+ -- before. The new default value has not been analyzed,
+ -- so analyze it now before we check for conformance.
+
+ if NewD then
+ Push_Scope (New_Id);
+ Preanalyze_Spec_Expression
+ (Default_Value (New_Formal), Etype (New_Formal));
+ End_Scope;
+ end if;
+
+ if not (NewD and OldD)
+ or else not Fully_Conformant_Expressions
+ (Default_Value (Old_Formal),
+ Default_Value (New_Formal))
+ then
+ Conformance_Error
+ ("\default expression for & does not match!",
+ New_Formal);
+ return;
+ end if;
+ end if;
+ end;
+ end if;
+ end if;
+
+ -- A couple of special checks for Ada 83 mode. These checks are
+ -- skipped if either entity is an operator in package Standard,
+ -- or if either old or new instance is not from the source program.
+
+ if Ada_Version = Ada_83
+ and then Sloc (Old_Id) > Standard_Location
+ and then Sloc (New_Id) > Standard_Location
+ and then Comes_From_Source (Old_Id)
+ and then Comes_From_Source (New_Id)
+ then
+ declare
+ Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
+ New_Param : constant Node_Id := Declaration_Node (New_Formal);
+
+ begin
+ -- Explicit IN must be present or absent in both cases. This
+ -- test is required only in the full conformance case.
+
+ if In_Present (Old_Param) /= In_Present (New_Param)
+ and then Ctype = Fully_Conformant
+ then
+ Conformance_Error
+ ("\(Ada 83) IN must appear in both declarations",
+ New_Formal);
+ return;
+ end if;
+
+ -- Grouping (use of comma in param lists) must be the same
+ -- This is where we catch a misconformance like:
+
+ -- A, B : Integer
+ -- A : Integer; B : Integer
+
+ -- which are represented identically in the tree except
+ -- for the setting of the flags More_Ids and Prev_Ids.
+
+ if More_Ids (Old_Param) /= More_Ids (New_Param)
+ or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
+ then
+ Conformance_Error
+ ("\grouping of & does not match!", New_Formal);
+ return;
+ end if;
+ end;
+ end if;
+
+ -- This label is required when skipping controlling formals
+
+ <<Skip_Controlling_Formal>>
+
+ Next_Formal (Old_Formal);
+ Next_Formal (New_Formal);
+ end loop;
+
+ if Present (Old_Formal) then
+ Conformance_Error ("\too few parameters!");
+ return;
+
+ elsif Present (New_Formal) then
+ Conformance_Error ("\too many parameters!", New_Formal);
+ return;
+ end if;
+ end Check_Conformance;
+
+ -----------------------
+ -- Check_Conventions --
+ -----------------------
+
+ procedure Check_Conventions (Typ : Entity_Id) is
+ Ifaces_List : Elist_Id;
+
+ procedure Check_Convention (Op : Entity_Id);
+ -- Verify that the convention of inherited dispatching operation Op is
+ -- consistent among all subprograms it overrides. In order to minimize
+ -- the search, Search_From is utilized to designate a specific point in
+ -- the list rather than iterating over the whole list once more.
+
+ ----------------------
+ -- Check_Convention --
+ ----------------------
+
+ procedure Check_Convention (Op : Entity_Id) is
+ function Convention_Of (Id : Entity_Id) return Convention_Id;
+ -- Given an entity, return its convention. The function treats Ghost
+ -- as convention Ada because the two have the same dynamic semantics.
+
+ -------------------
+ -- Convention_Of --
+ -------------------
+
+ function Convention_Of (Id : Entity_Id) return Convention_Id is
+ Conv : constant Convention_Id := Convention (Id);
+ begin
+ if Conv = Convention_Ghost then
+ return Convention_Ada;
+ else
+ return Conv;
+ end if;
+ end Convention_Of;
+
+ -- Local variables
+
+ Op_Conv : constant Convention_Id := Convention_Of (Op);
+ Iface_Conv : Convention_Id;
+ Iface_Elmt : Elmt_Id;
+ Iface_Prim_Elmt : Elmt_Id;
+ Iface_Prim : Entity_Id;
+
+ -- Start of processing for Check_Convention
+
+ begin
+ Iface_Elmt := First_Elmt (Ifaces_List);
+ while Present (Iface_Elmt) loop
+ Iface_Prim_Elmt :=
+ First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
+ while Present (Iface_Prim_Elmt) loop
+ Iface_Prim := Node (Iface_Prim_Elmt);
+ Iface_Conv := Convention_Of (Iface_Prim);
+
+ if Is_Interface_Conformant (Typ, Iface_Prim, Op)
+ and then Iface_Conv /= Op_Conv
+ then
+ Error_Msg_N
+ ("inconsistent conventions in primitive operations", Typ);
+
+ Error_Msg_Name_1 := Chars (Op);
+ Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
+ Error_Msg_Sloc := Sloc (Op);
+
+ if Comes_From_Source (Op) or else No (Alias (Op)) then
+ if not Present (Overridden_Operation (Op)) then
+ Error_Msg_N ("\\primitive % defined #", Typ);
+ else
+ Error_Msg_N
+ ("\\overriding operation % with " &
+ "convention % defined #", Typ);
+ end if;
+
+ else pragma Assert (Present (Alias (Op)));
+ Error_Msg_Sloc := Sloc (Alias (Op));
+ Error_Msg_N
+ ("\\inherited operation % with " &
+ "convention % defined #", Typ);
+ end if;
+
+ Error_Msg_Name_1 := Chars (Op);
+ Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
+ Error_Msg_Sloc := Sloc (Iface_Prim);
+ Error_Msg_N
+ ("\\overridden operation % with " &
+ "convention % defined #", Typ);
+
+ -- Avoid cascading errors
+
+ return;
+ end if;
+
+ Next_Elmt (Iface_Prim_Elmt);
+ end loop;
+
+ Next_Elmt (Iface_Elmt);
+ end loop;
+ end Check_Convention;
+
+ -- Local variables
+
+ Prim_Op : Entity_Id;
+ Prim_Op_Elmt : Elmt_Id;
+
+ -- Start of processing for Check_Conventions
+
+ begin
+ if not Has_Interfaces (Typ) then
+ return;
+ end if;
+
+ Collect_Interfaces (Typ, Ifaces_List);
+
+ -- The algorithm checks every overriding dispatching operation against
+ -- all the corresponding overridden dispatching operations, detecting
+ -- differences in conventions.
+
+ Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
+ while Present (Prim_Op_Elmt) loop
+ Prim_Op := Node (Prim_Op_Elmt);
+
+ -- A small optimization: skip the predefined dispatching operations
+ -- since they always have the same convention.
+
+ if not Is_Predefined_Dispatching_Operation (Prim_Op) then
+ Check_Convention (Prim_Op);
+ end if;
+
+ Next_Elmt (Prim_Op_Elmt);
+ end loop;
+ end Check_Conventions;
+
+ ------------------------------
+ -- Check_Delayed_Subprogram --
+ ------------------------------
+
+ procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
+ F : Entity_Id;
+
+ procedure Possible_Freeze (T : Entity_Id);
+ -- T is the type of either a formal parameter or of the return type.
+ -- If T is not yet frozen and needs a delayed freeze, then the
+ -- subprogram itself must be delayed. If T is the limited view of an
+ -- incomplete type the subprogram must be frozen as well, because
+ -- T may depend on local types that have not been frozen yet.
+
+ ---------------------
+ -- Possible_Freeze --
+ ---------------------
+
+ procedure Possible_Freeze (T : Entity_Id) is
+ begin
+ if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
+ Set_Has_Delayed_Freeze (Designator);
+
+ elsif Is_Access_Type (T)
+ and then Has_Delayed_Freeze (Designated_Type (T))
+ and then not Is_Frozen (Designated_Type (T))
+ then
+ Set_Has_Delayed_Freeze (Designator);
+
+ elsif Ekind (T) = E_Incomplete_Type
+ and then From_Limited_With (T)
+ then
+ Set_Has_Delayed_Freeze (Designator);
+
+ -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
+ -- of a subprogram or entry declaration.
+
+ elsif Ekind (T) = E_Incomplete_Type
+ and then Ada_Version >= Ada_2012
+ then
+ Set_Has_Delayed_Freeze (Designator);
+ end if;
+
+ end Possible_Freeze;
+
+ -- Start of processing for Check_Delayed_Subprogram
+
+ begin
+ -- All subprograms, including abstract subprograms, may need a freeze
+ -- node if some formal type or the return type needs one.
+
+ Possible_Freeze (Etype (Designator));
+ Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
+
+ -- Need delayed freeze if any of the formal types themselves need
+ -- a delayed freeze and are not yet frozen.
+
+ F := First_Formal (Designator);
+ while Present (F) loop
+ Possible_Freeze (Etype (F));
+ Possible_Freeze (Base_Type (Etype (F))); -- needed ???
+ Next_Formal (F);
+ end loop;
+
+ -- Mark functions that return by reference. Note that it cannot be
+ -- done for delayed_freeze subprograms because the underlying
+ -- returned type may not be known yet (for private types)
+
+ if not Has_Delayed_Freeze (Designator) and then Expander_Active then
+ declare
+ Typ : constant Entity_Id := Etype (Designator);
+ Utyp : constant Entity_Id := Underlying_Type (Typ);
+ begin
+ if Is_Limited_View (Typ) then
+ Set_Returns_By_Ref (Designator);
+ elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
+ Set_Returns_By_Ref (Designator);
+ end if;
+ end;
+ end if;
+ end Check_Delayed_Subprogram;
+
+ ------------------------------------
+ -- Check_Discriminant_Conformance --
+ ------------------------------------
+
+ procedure Check_Discriminant_Conformance
+ (N : Node_Id;
+ Prev : Entity_Id;
+ Prev_Loc : Node_Id)
+ is
+ Old_Discr : Entity_Id := First_Discriminant (Prev);
+ New_Discr : Node_Id := First (Discriminant_Specifications (N));
+ New_Discr_Id : Entity_Id;
+ New_Discr_Type : Entity_Id;
+
+ procedure Conformance_Error (Msg : String; N : Node_Id);
+ -- Post error message for conformance error on given node. Two messages
+ -- are output. The first points to the previous declaration with a
+ -- general "no conformance" message. The second is the detailed reason,
+ -- supplied as Msg. The parameter N provide information for a possible
+ -- & insertion in the message.
+
+ -----------------------
+ -- Conformance_Error --
+ -----------------------
+
+ procedure Conformance_Error (Msg : String; N : Node_Id) is
+ begin
+ Error_Msg_Sloc := Sloc (Prev_Loc);
+ Error_Msg_N -- CODEFIX
+ ("not fully conformant with declaration#!", N);
+ Error_Msg_NE (Msg, N, N);
+ end Conformance_Error;
+
+ -- Start of processing for Check_Discriminant_Conformance
+
+ begin
+ while Present (Old_Discr) and then Present (New_Discr) loop
+ New_Discr_Id := Defining_Identifier (New_Discr);
+
+ -- The subtype mark of the discriminant on the full type has not
+ -- been analyzed so we do it here. For an access discriminant a new
+ -- type is created.
+
+ if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
+ New_Discr_Type :=
+ Access_Definition (N, Discriminant_Type (New_Discr));
+
+ else
+ Analyze (Discriminant_Type (New_Discr));
+ New_Discr_Type := Etype (Discriminant_Type (New_Discr));
+
+ -- Ada 2005: if the discriminant definition carries a null
+ -- exclusion, create an itype to check properly for consistency
+ -- with partial declaration.
+
+ if Is_Access_Type (New_Discr_Type)
+ and then Null_Exclusion_Present (New_Discr)
+ then
+ New_Discr_Type :=
+ Create_Null_Excluding_Itype
+ (T => New_Discr_Type,
+ Related_Nod => New_Discr,
+ Scope_Id => Current_Scope);
+ end if;
+ end if;
+
+ if not Conforming_Types
+ (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
+ then
+ Conformance_Error ("type of & does not match!", New_Discr_Id);
+ return;
+ else
+ -- Treat the new discriminant as an occurrence of the old one,
+ -- for navigation purposes, and fill in some semantic
+ -- information, for completeness.
+
+ Generate_Reference (Old_Discr, New_Discr_Id, 'r');
+ Set_Etype (New_Discr_Id, Etype (Old_Discr));
+ Set_Scope (New_Discr_Id, Scope (Old_Discr));
+ end if;
+
+ -- Names must match
+
+ if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
+ Conformance_Error ("name & does not match!", New_Discr_Id);
+ return;
+ end if;
+
+ -- Default expressions must match
+
+ declare
+ NewD : constant Boolean :=
+ Present (Expression (New_Discr));
+ OldD : constant Boolean :=
+ Present (Expression (Parent (Old_Discr)));
+
+ begin
+ if NewD or OldD then
+
+ -- The old default value has been analyzed and expanded,
+ -- because the current full declaration will have frozen
+ -- everything before. The new default values have not been
+ -- expanded, so expand now to check conformance.
+
+ if NewD then
+ Preanalyze_Spec_Expression
+ (Expression (New_Discr), New_Discr_Type);
+ end if;
+
+ if not (NewD and OldD)
+ or else not Fully_Conformant_Expressions
+ (Expression (Parent (Old_Discr)),
+ Expression (New_Discr))
+
+ then
+ Conformance_Error
+ ("default expression for & does not match!",
+ New_Discr_Id);
+ return;
+ end if;
+ end if;
+ end;
+
+ -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
+
+ if Ada_Version = Ada_83 then
+ declare
+ Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
+
+ begin
+ -- Grouping (use of comma in param lists) must be the same
+ -- This is where we catch a misconformance like:
+
+ -- A, B : Integer
+ -- A : Integer; B : Integer
+
+ -- which are represented identically in the tree except
+ -- for the setting of the flags More_Ids and Prev_Ids.
+
+ if More_Ids (Old_Disc) /= More_Ids (New_Discr)
+ or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
+ then
+ Conformance_Error
+ ("grouping of & does not match!", New_Discr_Id);
+ return;
+ end if;
+ end;
+ end if;
+
+ Next_Discriminant (Old_Discr);
+ Next (New_Discr);
+ end loop;
+
+ if Present (Old_Discr) then
+ Conformance_Error ("too few discriminants!", Defining_Identifier (N));
+ return;
+
+ elsif Present (New_Discr) then
+ Conformance_Error
+ ("too many discriminants!", Defining_Identifier (New_Discr));
+ return;
+ end if;
+ end Check_Discriminant_Conformance;
+
+ ----------------------------
+ -- Check_Fully_Conformant --
+ ----------------------------
+
+ procedure Check_Fully_Conformant
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Err_Loc : Node_Id := Empty)
+ is
+ Result : Boolean;
+ pragma Warnings (Off, Result);
+ begin
+ Check_Conformance
+ (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
+ end Check_Fully_Conformant;
+
+ ---------------------------
+ -- Check_Mode_Conformant --
+ ---------------------------
+
+ procedure Check_Mode_Conformant
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Err_Loc : Node_Id := Empty;
+ Get_Inst : Boolean := False)
+ is
+ Result : Boolean;
+ pragma Warnings (Off, Result);
+ begin
+ Check_Conformance
+ (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
+ end Check_Mode_Conformant;
+
+ --------------------------------
+ -- Check_Overriding_Indicator --
+ --------------------------------
+
+ procedure Check_Overriding_Indicator
+ (Subp : Entity_Id;
+ Overridden_Subp : Entity_Id;
+ Is_Primitive : Boolean)
+ is
+ Decl : Node_Id;
+ Spec : Node_Id;
+
+ begin
+ -- No overriding indicator for literals
+
+ if Ekind (Subp) = E_Enumeration_Literal then
+ return;
+
+ elsif Ekind (Subp) = E_Entry then
+ Decl := Parent (Subp);
+
+ -- No point in analyzing a malformed operator
+
+ elsif Nkind (Subp) = N_Defining_Operator_Symbol
+ and then Error_Posted (Subp)
+ then
+ return;
+
+ else
+ Decl := Unit_Declaration_Node (Subp);
+ end if;
+
+ if Nkind_In (Decl, N_Subprogram_Body,
+ N_Subprogram_Body_Stub,
+ N_Subprogram_Declaration,
+ N_Abstract_Subprogram_Declaration,
+ N_Subprogram_Renaming_Declaration)
+ then
+ Spec := Specification (Decl);
+
+ elsif Nkind (Decl) = N_Entry_Declaration then
+ Spec := Decl;
+
+ else
+ return;
+ end if;
+
+ -- The overriding operation is type conformant with the overridden one,
+ -- but the names of the formals are not required to match. If the names
+ -- appear permuted in the overriding operation, this is a possible
+ -- source of confusion that is worth diagnosing. Controlling formals
+ -- often carry names that reflect the type, and it is not worthwhile
+ -- requiring that their names match.
+
+ if Present (Overridden_Subp)
+ and then Nkind (Subp) /= N_Defining_Operator_Symbol
+ then
+ declare
+ Form1 : Entity_Id;
+ Form2 : Entity_Id;
+
+ begin
+ Form1 := First_Formal (Subp);
+ Form2 := First_Formal (Overridden_Subp);
+
+ -- If the overriding operation is a synchronized operation, skip
+ -- the first parameter of the overridden operation, which is
+ -- implicit in the new one. If the operation is declared in the
+ -- body it is not primitive and all formals must match.
+
+ if Is_Concurrent_Type (Scope (Subp))
+ and then Is_Tagged_Type (Scope (Subp))
+ and then not Has_Completion (Scope (Subp))
+ then
+ Form2 := Next_Formal (Form2);
+ end if;
+
+ if Present (Form1) then
+ Form1 := Next_Formal (Form1);
+ Form2 := Next_Formal (Form2);
+ end if;
+
+ while Present (Form1) loop
+ if not Is_Controlling_Formal (Form1)
+ and then Present (Next_Formal (Form2))
+ and then Chars (Form1) = Chars (Next_Formal (Form2))
+ then
+ Error_Msg_Node_2 := Alias (Overridden_Subp);
+ Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
+ Error_Msg_NE
+ ("& does not match corresponding formal of&#",
+ Form1, Form1);
+ exit;
+ end if;
+
+ Next_Formal (Form1);
+ Next_Formal (Form2);
+ end loop;
+ end;
+ end if;
+
+ -- If there is an overridden subprogram, then check that there is no
+ -- "not overriding" indicator, and mark the subprogram as overriding.
+ -- This is not done if the overridden subprogram is marked as hidden,
+ -- which can occur for the case of inherited controlled operations
+ -- (see Derive_Subprogram), unless the inherited subprogram's parent
+ -- subprogram is not itself hidden. (Note: This condition could probably
+ -- be simplified, leaving out the testing for the specific controlled
+ -- cases, but it seems safer and clearer this way, and echoes similar
+ -- special-case tests of this kind in other places.)
+
+ if Present (Overridden_Subp)
+ and then (not Is_Hidden (Overridden_Subp)
+ or else
+ (Nam_In (Chars (Overridden_Subp), Name_Initialize,
+ Name_Adjust,
+ Name_Finalize)
+ and then Present (Alias (Overridden_Subp))
+ and then not Is_Hidden (Alias (Overridden_Subp))))
+ then
+ if Must_Not_Override (Spec) then
+ Error_Msg_Sloc := Sloc (Overridden_Subp);
+
+ if Ekind (Subp) = E_Entry then
+ Error_Msg_NE
+ ("entry & overrides inherited operation #", Spec, Subp);
+ else
+ Error_Msg_NE
+ ("subprogram & overrides inherited operation #", Spec, Subp);
+ end if;
+
+ -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
+ -- as an extension of Root_Controlled, and thus has a useless Adjust
+ -- operation. This operation should not be inherited by other limited
+ -- controlled types. An explicit Adjust for them is not overriding.
+
+ elsif Must_Override (Spec)
+ and then Chars (Overridden_Subp) = Name_Adjust
+ and then Is_Limited_Type (Etype (First_Formal (Subp)))
+ and then Present (Alias (Overridden_Subp))
+ and then
+ Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
+ then
+ Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
+
+ elsif Is_Subprogram (Subp) then
+ if Is_Init_Proc (Subp) then
+ null;
+
+ elsif No (Overridden_Operation (Subp)) then
+
+ -- For entities generated by Derive_Subprograms the overridden
+ -- operation is the inherited primitive (which is available
+ -- through the attribute alias)
+
+ if (Is_Dispatching_Operation (Subp)
+ or else Is_Dispatching_Operation (Overridden_Subp))
+ and then not Comes_From_Source (Overridden_Subp)
+ and then Find_Dispatching_Type (Overridden_Subp) =
+ Find_Dispatching_Type (Subp)
+ and then Present (Alias (Overridden_Subp))
+ and then Comes_From_Source (Alias (Overridden_Subp))
+ then
+ Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
+
+ else
+ Set_Overridden_Operation (Subp, Overridden_Subp);
+ end if;
+ end if;
+ end if;
+
+ -- If primitive flag is set or this is a protected operation, then
+ -- the operation is overriding at the point of its declaration, so
+ -- warn if necessary. Otherwise it may have been declared before the
+ -- operation it overrides and no check is required.
+
+ if Style_Check
+ and then not Must_Override (Spec)
+ and then (Is_Primitive
+ or else Ekind (Scope (Subp)) = E_Protected_Type)
+ then
+ Style.Missing_Overriding (Decl, Subp);
+ end if;
+
+ -- If Subp is an operator, it may override a predefined operation, if
+ -- it is defined in the same scope as the type to which it applies.
+ -- In that case Overridden_Subp is empty because of our implicit
+ -- representation for predefined operators. We have to check whether the
+ -- signature of Subp matches that of a predefined operator. Note that
+ -- first argument provides the name of the operator, and the second
+ -- argument the signature that may match that of a standard operation.
+ -- If the indicator is overriding, then the operator must match a
+ -- predefined signature, because we know already that there is no
+ -- explicit overridden operation.
+
+ elsif Nkind (Subp) = N_Defining_Operator_Symbol then
+ if Must_Not_Override (Spec) then
+
+ -- If this is not a primitive or a protected subprogram, then
+ -- "not overriding" is illegal.
+
+ if not Is_Primitive
+ and then Ekind (Scope (Subp)) /= E_Protected_Type
+ then
+ Error_Msg_N
+ ("overriding indicator only allowed "
+ & "if subprogram is primitive", Subp);
+
+ elsif Can_Override_Operator (Subp) then
+ Error_Msg_NE
+ ("subprogram& overrides predefined operator ", Spec, Subp);
+ end if;
+
+ elsif Must_Override (Spec) then
+ if No (Overridden_Operation (Subp))
+ and then not Can_Override_Operator (Subp)
+ then
+ Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
+ end if;
+
+ elsif not Error_Posted (Subp)
+ and then Style_Check
+ and then Can_Override_Operator (Subp)
+ and then
+ not Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Subp)))
+ then
+ -- If style checks are enabled, indicate that the indicator is
+ -- missing. However, at the point of declaration, the type of
+ -- which this is a primitive operation may be private, in which
+ -- case the indicator would be premature.
+
+ if Has_Private_Declaration (Etype (Subp))
+ or else Has_Private_Declaration (Etype (First_Formal (Subp)))
+ then
+ null;
+ else
+ Style.Missing_Overriding (Decl, Subp);
+ end if;
+ end if;
+
+ elsif Must_Override (Spec) then
+ if Ekind (Subp) = E_Entry then
+ Error_Msg_NE ("entry & is not overriding", Spec, Subp);
+ else
+ Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
+ end if;
+
+ -- If the operation is marked "not overriding" and it's not primitive
+ -- then an error is issued, unless this is an operation of a task or
+ -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
+ -- has been specified have already been checked above.
+
+ elsif Must_Not_Override (Spec)
+ and then not Is_Primitive
+ and then Ekind (Subp) /= E_Entry
+ and then Ekind (Scope (Subp)) /= E_Protected_Type
+ then
+ Error_Msg_N
+ ("overriding indicator only allowed if subprogram is primitive",
+ Subp);
+ return;
+ end if;
+ end Check_Overriding_Indicator;
+
+ -------------------
+ -- Check_Returns --
+ -------------------
+
+ -- Note: this procedure needs to know far too much about how the expander
+ -- messes with exceptions. The use of the flag Exception_Junk and the
+ -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
+ -- works, but is not very clean. It would be better if the expansion
+ -- routines would leave Original_Node working nicely, and we could use
+ -- Original_Node here to ignore all the peculiar expander messing ???
+
+ procedure Check_Returns
+ (HSS : Node_Id;
+ Mode : Character;
+ Err : out Boolean;
+ Proc : Entity_Id := Empty)
+ is
+ Handler : Node_Id;
+
+ procedure Check_Statement_Sequence (L : List_Id);
+ -- Internal recursive procedure to check a list of statements for proper
+ -- termination by a return statement (or a transfer of control or a
+ -- compound statement that is itself internally properly terminated).
+
+ ------------------------------
+ -- Check_Statement_Sequence --
+ ------------------------------
+
+ procedure Check_Statement_Sequence (L : List_Id) is
+ Last_Stm : Node_Id;
+ Stm : Node_Id;
+ Kind : Node_Kind;
+
+ function Assert_False return Boolean;
+ -- Returns True if Last_Stm is a pragma Assert (False) that has been
+ -- rewritten as a null statement when assertions are off. The assert
+ -- is not active, but it is still enough to kill the warning.
+
+ ------------------
+ -- Assert_False --
+ ------------------
+
+ function Assert_False return Boolean is
+ Orig : constant Node_Id := Original_Node (Last_Stm);
+
+ begin
+ if Nkind (Orig) = N_Pragma
+ and then Pragma_Name (Orig) = Name_Assert
+ and then not Error_Posted (Orig)
+ then
+ declare
+ Arg : constant Node_Id :=
+ First (Pragma_Argument_Associations (Orig));
+ Exp : constant Node_Id := Expression (Arg);
+ begin
+ return Nkind (Exp) = N_Identifier
+ and then Chars (Exp) = Name_False;
+ end;
+
+ else
+ return False;
+ end if;
+ end Assert_False;
+
+ -- Local variables
+
+ Raise_Exception_Call : Boolean;
+ -- Set True if statement sequence terminated by Raise_Exception call
+ -- or a Reraise_Occurrence call.
+
+ -- Start of processing for Check_Statement_Sequence
+
+ begin
+ Raise_Exception_Call := False;
+
+ -- Get last real statement
+
+ Last_Stm := Last (L);
+
+ -- Deal with digging out exception handler statement sequences that
+ -- have been transformed by the local raise to goto optimization.
+ -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
+ -- optimization has occurred, we are looking at something like:
+
+ -- begin
+ -- original stmts in block
+
+ -- exception \
+ -- when excep1 => |
+ -- goto L1; | omitted if No_Exception_Propagation
+ -- when excep2 => |
+ -- goto L2; /
+ -- end;
+
+ -- goto L3; -- skip handler when exception not raised
+
+ -- <<L1>> -- target label for local exception
+ -- begin
+ -- estmts1
+ -- end;
+
+ -- goto L3;
+
+ -- <<L2>>
+ -- begin
+ -- estmts2
+ -- end;
+
+ -- <<L3>>
+
+ -- and what we have to do is to dig out the estmts1 and estmts2
+ -- sequences (which were the original sequences of statements in
+ -- the exception handlers) and check them.
+
+ if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
+ Stm := Last_Stm;
+ loop
+ Prev (Stm);
+ exit when No (Stm);
+ exit when Nkind (Stm) /= N_Block_Statement;
+ exit when not Exception_Junk (Stm);
+ Prev (Stm);
+ exit when No (Stm);
+ exit when Nkind (Stm) /= N_Label;
+ exit when not Exception_Junk (Stm);
+ Check_Statement_Sequence
+ (Statements (Handled_Statement_Sequence (Next (Stm))));
+
+ Prev (Stm);
+ Last_Stm := Stm;
+ exit when No (Stm);
+ exit when Nkind (Stm) /= N_Goto_Statement;
+ exit when not Exception_Junk (Stm);
+ end loop;
+ end if;
+
+ -- Don't count pragmas
+
+ while Nkind (Last_Stm) = N_Pragma
+
+ -- Don't count call to SS_Release (can happen after Raise_Exception)
+
+ or else
+ (Nkind (Last_Stm) = N_Procedure_Call_Statement
+ and then
+ Nkind (Name (Last_Stm)) = N_Identifier
+ and then
+ Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
+
+ -- Don't count exception junk
+
+ or else
+ (Nkind_In (Last_Stm, N_Goto_Statement,
+ N_Label,
+ N_Object_Declaration)
+ and then Exception_Junk (Last_Stm))
+ or else Nkind (Last_Stm) in N_Push_xxx_Label
+ or else Nkind (Last_Stm) in N_Pop_xxx_Label
+
+ -- Inserted code, such as finalization calls, is irrelevant: we only
+ -- need to check original source.
+
+ or else Is_Rewrite_Insertion (Last_Stm)
+ loop
+ Prev (Last_Stm);
+ end loop;
+
+ -- Here we have the "real" last statement
+
+ Kind := Nkind (Last_Stm);
+
+ -- Transfer of control, OK. Note that in the No_Return procedure
+ -- case, we already diagnosed any explicit return statements, so
+ -- we can treat them as OK in this context.
+
+ if Is_Transfer (Last_Stm) then
+ return;
+
+ -- Check cases of explicit non-indirect procedure calls
+
+ elsif Kind = N_Procedure_Call_Statement
+ and then Is_Entity_Name (Name (Last_Stm))
+ then
+ -- Check call to Raise_Exception procedure which is treated
+ -- specially, as is a call to Reraise_Occurrence.
+
+ -- We suppress the warning in these cases since it is likely that
+ -- the programmer really does not expect to deal with the case
+ -- of Null_Occurrence, and thus would find a warning about a
+ -- missing return curious, and raising Program_Error does not
+ -- seem such a bad behavior if this does occur.
+
+ -- Note that in the Ada 2005 case for Raise_Exception, the actual
+ -- behavior will be to raise Constraint_Error (see AI-329).
+
+ if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
+ or else
+ Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
+ then
+ Raise_Exception_Call := True;
+
+ -- For Raise_Exception call, test first argument, if it is
+ -- an attribute reference for a 'Identity call, then we know
+ -- that the call cannot possibly return.
+
+ declare
+ Arg : constant Node_Id :=
+ Original_Node (First_Actual (Last_Stm));
+ begin
+ if Nkind (Arg) = N_Attribute_Reference
+ and then Attribute_Name (Arg) = Name_Identity
+ then
+ return;
+ end if;
+ end;
+ end if;
+
+ -- If statement, need to look inside if there is an else and check
+ -- each constituent statement sequence for proper termination.
+
+ elsif Kind = N_If_Statement
+ and then Present (Else_Statements (Last_Stm))
+ then
+ Check_Statement_Sequence (Then_Statements (Last_Stm));
+ Check_Statement_Sequence (Else_Statements (Last_Stm));
+
+ if Present (Elsif_Parts (Last_Stm)) then
+ declare
+ Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
+
+ begin
+ while Present (Elsif_Part) loop
+ Check_Statement_Sequence (Then_Statements (Elsif_Part));
+ Next (Elsif_Part);
+ end loop;
+ end;
+ end if;
+
+ return;
+
+ -- Case statement, check each case for proper termination
+
+ elsif Kind = N_Case_Statement then
+ declare
+ Case_Alt : Node_Id;
+ begin
+ Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
+ while Present (Case_Alt) loop
+ Check_Statement_Sequence (Statements (Case_Alt));
+ Next_Non_Pragma (Case_Alt);
+ end loop;
+ end;
+
+ return;
+
+ -- Block statement, check its handled sequence of statements
+
+ elsif Kind = N_Block_Statement then
+ declare
+ Err1 : Boolean;
+
+ begin
+ Check_Returns
+ (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
+
+ if Err1 then
+ Err := True;
+ end if;
+
+ return;
+ end;
+
+ -- Loop statement. If there is an iteration scheme, we can definitely
+ -- fall out of the loop. Similarly if there is an exit statement, we
+ -- can fall out. In either case we need a following return.
+
+ elsif Kind = N_Loop_Statement then
+ if Present (Iteration_Scheme (Last_Stm))
+ or else Has_Exit (Entity (Identifier (Last_Stm)))
+ then
+ null;
+
+ -- A loop with no exit statement or iteration scheme is either
+ -- an infinite loop, or it has some other exit (raise/return).
+ -- In either case, no warning is required.
+
+ else
+ return;
+ end if;
+
+ -- Timed entry call, check entry call and delay alternatives
+
+ -- Note: in expanded code, the timed entry call has been converted
+ -- to a set of expanded statements on which the check will work
+ -- correctly in any case.
+
+ elsif Kind = N_Timed_Entry_Call then
+ declare
+ ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
+ DCA : constant Node_Id := Delay_Alternative (Last_Stm);
+
+ begin
+ -- If statement sequence of entry call alternative is missing,
+ -- then we can definitely fall through, and we post the error
+ -- message on the entry call alternative itself.
+
+ if No (Statements (ECA)) then
+ Last_Stm := ECA;
+
+ -- If statement sequence of delay alternative is missing, then
+ -- we can definitely fall through, and we post the error
+ -- message on the delay alternative itself.
+
+ -- Note: if both ECA and DCA are missing the return, then we
+ -- post only one message, should be enough to fix the bugs.
+ -- If not we will get a message next time on the DCA when the
+ -- ECA is fixed.
+
+ elsif No (Statements (DCA)) then
+ Last_Stm := DCA;
+
+ -- Else check both statement sequences
+
+ else
+ Check_Statement_Sequence (Statements (ECA));
+ Check_Statement_Sequence (Statements (DCA));
+ return;
+ end if;
+ end;
+
+ -- Conditional entry call, check entry call and else part
+
+ -- Note: in expanded code, the conditional entry call has been
+ -- converted to a set of expanded statements on which the check
+ -- will work correctly in any case.
+
+ elsif Kind = N_Conditional_Entry_Call then
+ declare
+ ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
+
+ begin
+ -- If statement sequence of entry call alternative is missing,
+ -- then we can definitely fall through, and we post the error
+ -- message on the entry call alternative itself.
+
+ if No (Statements (ECA)) then
+ Last_Stm := ECA;
+
+ -- Else check statement sequence and else part
+
+ else
+ Check_Statement_Sequence (Statements (ECA));
+ Check_Statement_Sequence (Else_Statements (Last_Stm));
+ return;
+ end if;
+ end;
+ end if;
+
+ -- If we fall through, issue appropriate message
+
+ if Mode = 'F' then
+
+ -- Kill warning if last statement is a raise exception call,
+ -- or a pragma Assert (False). Note that with assertions enabled,
+ -- such a pragma has been converted into a raise exception call
+ -- already, so the Assert_False is for the assertions off case.
+
+ if not Raise_Exception_Call and then not Assert_False then
+
+ -- In GNATprove mode, it is an error to have a missing return
+
+ Error_Msg_Warn := SPARK_Mode /= On;
+
+ -- Issue error message or warning
+
+ Error_Msg_N
+ ("RETURN statement missing following this statement<<!",
+ Last_Stm);
+ Error_Msg_N
+ ("\Program_Error ]<<!", Last_Stm);
+ end if;
+
+ -- Note: we set Err even though we have not issued a warning
+ -- because we still have a case of a missing return. This is
+ -- an extremely marginal case, probably will never be noticed
+ -- but we might as well get it right.
+
+ Err := True;
+
+ -- Otherwise we have the case of a procedure marked No_Return
+
+ else
+ if not Raise_Exception_Call then
+ if GNATprove_Mode then
+ Error_Msg_N
+ ("implied return after this statement "
+ & "would have raised Program_Error", Last_Stm);
+ else
+ Error_Msg_N
+ ("implied return after this statement "
+ & "will raise Program_Error??", Last_Stm);
+ end if;
+
+ Error_Msg_Warn := SPARK_Mode /= On;
+ Error_Msg_NE
+ ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
+ end if;
+
+ declare
+ RE : constant Node_Id :=
+ Make_Raise_Program_Error (Sloc (Last_Stm),
+ Reason => PE_Implicit_Return);
+ begin
+ Insert_After (Last_Stm, RE);
+ Analyze (RE);
+ end;
+ end if;
+ end Check_Statement_Sequence;
+
+ -- Start of processing for Check_Returns
+
+ begin
+ Err := False;
+ Check_Statement_Sequence (Statements (HSS));
+
+ if Present (Exception_Handlers (HSS)) then
+ Handler := First_Non_Pragma (Exception_Handlers (HSS));
+ while Present (Handler) loop
+ Check_Statement_Sequence (Statements (Handler));
+ Next_Non_Pragma (Handler);
+ end loop;
+ end if;
+ end Check_Returns;
+
+ ----------------------------
+ -- Check_Subprogram_Order --
+ ----------------------------
+
+ procedure Check_Subprogram_Order (N : Node_Id) is
+
+ function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
+ -- This is used to check if S1 > S2 in the sense required by this test,
+ -- for example nameab < namec, but name2 < name10.
+
+ -----------------------------
+ -- Subprogram_Name_Greater --
+ -----------------------------
+
+ function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
+ L1, L2 : Positive;
+ N1, N2 : Natural;
+
+ begin
+ -- Deal with special case where names are identical except for a
+ -- numerical suffix. These are handled specially, taking the numeric
+ -- ordering from the suffix into account.
+
+ L1 := S1'Last;
+ while S1 (L1) in '0' .. '9' loop
+ L1 := L1 - 1;
+ end loop;
+
+ L2 := S2'Last;
+ while S2 (L2) in '0' .. '9' loop
+ L2 := L2 - 1;
+ end loop;
+
+ -- If non-numeric parts non-equal, do straight compare
+
+ if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
+ return S1 > S2;
+
+ -- If non-numeric parts equal, compare suffixed numeric parts. Note
+ -- that a missing suffix is treated as numeric zero in this test.
+
+ else
+ N1 := 0;
+ while L1 < S1'Last loop
+ L1 := L1 + 1;
+ N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
+ end loop;
+
+ N2 := 0;
+ while L2 < S2'Last loop
+ L2 := L2 + 1;
+ N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
+ end loop;
+
+ return N1 > N2;
+ end if;
+ end Subprogram_Name_Greater;
+
+ -- Start of processing for Check_Subprogram_Order
+
+ begin
+ -- Check body in alpha order if this is option
+
+ if Style_Check
+ and then Style_Check_Order_Subprograms
+ and then Nkind (N) = N_Subprogram_Body
+ and then Comes_From_Source (N)
+ and then In_Extended_Main_Source_Unit (N)
+ then
+ declare
+ LSN : String_Ptr
+ renames Scope_Stack.Table
+ (Scope_Stack.Last).Last_Subprogram_Name;
+
+ Body_Id : constant Entity_Id :=
+ Defining_Entity (Specification (N));
+
+ begin
+ Get_Decoded_Name_String (Chars (Body_Id));
+
+ if LSN /= null then
+ if Subprogram_Name_Greater
+ (LSN.all, Name_Buffer (1 .. Name_Len))
+ then
+ Style.Subprogram_Not_In_Alpha_Order (Body_Id);
+ end if;
+
+ Free (LSN);
+ end if;
+
+ LSN := new String'(Name_Buffer (1 .. Name_Len));
+ end;
+ end if;
+ end Check_Subprogram_Order;
+
+ ------------------------------
+ -- Check_Subtype_Conformant --
+ ------------------------------
+
+ procedure Check_Subtype_Conformant
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Err_Loc : Node_Id := Empty;
+ Skip_Controlling_Formals : Boolean := False;
+ Get_Inst : Boolean := False)
+ is
+ Result : Boolean;
+ pragma Warnings (Off, Result);
+ begin
+ Check_Conformance
+ (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
+ Skip_Controlling_Formals => Skip_Controlling_Formals,
+ Get_Inst => Get_Inst);
+ end Check_Subtype_Conformant;
+
+ ---------------------------
+ -- Check_Type_Conformant --
+ ---------------------------
+
+ procedure Check_Type_Conformant
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Err_Loc : Node_Id := Empty)
+ is
+ Result : Boolean;
+ pragma Warnings (Off, Result);
+ begin
+ Check_Conformance
+ (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
+ end Check_Type_Conformant;
+
+ ---------------------------
+ -- Can_Override_Operator --
+ ---------------------------
+
+ function Can_Override_Operator (Subp : Entity_Id) return Boolean is
+ Typ : Entity_Id;
+
+ begin
+ if Nkind (Subp) /= N_Defining_Operator_Symbol then
+ return False;
+
+ else
+ Typ := Base_Type (Etype (First_Formal (Subp)));
+
+ -- Check explicitly that the operation is a primitive of the type
+
+ return Operator_Matches_Spec (Subp, Subp)
+ and then not Is_Generic_Type (Typ)
+ and then Scope (Subp) = Scope (Typ)
+ and then not Is_Class_Wide_Type (Typ);
+ end if;
+ end Can_Override_Operator;
+
+ ----------------------
+ -- Conforming_Types --
+ ----------------------
+
+ function Conforming_Types
+ (T1 : Entity_Id;
+ T2 : Entity_Id;
+ Ctype : Conformance_Type;
+ Get_Inst : Boolean := False) return Boolean
+ is
+ Type_1 : Entity_Id := T1;
+ Type_2 : Entity_Id := T2;
+ Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
+
+ function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
+ -- If neither T1 nor T2 are generic actual types, or if they are in
+ -- different scopes (e.g. parent and child instances), then verify that
+ -- the base types are equal. Otherwise T1 and T2 must be on the same
+ -- subtype chain. The whole purpose of this procedure is to prevent
+ -- spurious ambiguities in an instantiation that may arise if two
+ -- distinct generic types are instantiated with the same actual.
+
+ function Find_Designated_Type (T : Entity_Id) return Entity_Id;
+ -- An access parameter can designate an incomplete type. If the
+ -- incomplete type is the limited view of a type from a limited_
+ -- with_clause, check whether the non-limited view is available. If
+ -- it is a (non-limited) incomplete type, get the full view.
+
+ function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
+ -- Returns True if and only if either T1 denotes a limited view of T2
+ -- or T2 denotes a limited view of T1. This can arise when the limited
+ -- with view of a type is used in a subprogram declaration and the
+ -- subprogram body is in the scope of a regular with clause for the
+ -- same unit. In such a case, the two type entities can be considered
+ -- identical for purposes of conformance checking.
+
+ ----------------------
+ -- Base_Types_Match --
+ ----------------------
+
+ function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
+ BT1 : constant Entity_Id := Base_Type (T1);
+ BT2 : constant Entity_Id := Base_Type (T2);
+
+ begin
+ if T1 = T2 then
+ return True;
+
+ elsif BT1 = BT2 then
+
+ -- The following is too permissive. A more precise test should
+ -- check that the generic actual is an ancestor subtype of the
+ -- other ???.
+
+ -- See code in Find_Corresponding_Spec that applies an additional
+ -- filter to handle accidental amiguities in instances.
+
+ return not Is_Generic_Actual_Type (T1)
+ or else not Is_Generic_Actual_Type (T2)
+ or else Scope (T1) /= Scope (T2);
+
+ -- If T2 is a generic actual type it is declared as the subtype of
+ -- the actual. If that actual is itself a subtype we need to use its
+ -- own base type to check for compatibility.
+
+ elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
+ return True;
+
+ elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
+ return True;
+
+ else
+ return False;
+ end if;
+ end Base_Types_Match;
+
+ --------------------------
+ -- Find_Designated_Type --
+ --------------------------
+
+ function Find_Designated_Type (T : Entity_Id) return Entity_Id is
+ Desig : Entity_Id;
+
+ begin
+ Desig := Directly_Designated_Type (T);
+
+ if Ekind (Desig) = E_Incomplete_Type then
+
+ -- If regular incomplete type, get full view if available
+
+ if Present (Full_View (Desig)) then
+ Desig := Full_View (Desig);
+
+ -- If limited view of a type, get non-limited view if available,
+ -- and check again for a regular incomplete type.
+
+ elsif Present (Non_Limited_View (Desig)) then
+ Desig := Get_Full_View (Non_Limited_View (Desig));
+ end if;
+ end if;
+
+ return Desig;
+ end Find_Designated_Type;
+
+ -------------------------------
+ -- Matches_Limited_With_View --
+ -------------------------------
+
+ function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
+ begin
+ -- In some cases a type imported through a limited_with clause, and
+ -- its nonlimited view are both visible, for example in an anonymous
+ -- access-to-class-wide type in a formal. Both entities designate the
+ -- same type.
+
+ if From_Limited_With (T1) and then T2 = Available_View (T1) then
+ return True;
+
+ elsif From_Limited_With (T2) and then T1 = Available_View (T2) then
+ return True;
+
+ elsif From_Limited_With (T1)
+ and then From_Limited_With (T2)
+ and then Available_View (T1) = Available_View (T2)
+ then
+ return True;
+
+ else
+ return False;
+ end if;
+ end Matches_Limited_With_View;
+
+ -- Start of processing for Conforming_Types
+
+ begin
+ -- The context is an instance association for a formal access-to-
+ -- subprogram type; the formal parameter types require mapping because
+ -- they may denote other formal parameters of the generic unit.
+
+ if Get_Inst then
+ Type_1 := Get_Instance_Of (T1);
+ Type_2 := Get_Instance_Of (T2);
+ end if;
+
+ -- If one of the types is a view of the other introduced by a limited
+ -- with clause, treat these as conforming for all purposes.
+
+ if Matches_Limited_With_View (T1, T2) then
+ return True;
+
+ elsif Base_Types_Match (Type_1, Type_2) then
+ return Ctype <= Mode_Conformant
+ or else Subtypes_Statically_Match (Type_1, Type_2);
+
+ elsif Is_Incomplete_Or_Private_Type (Type_1)
+ and then Present (Full_View (Type_1))
+ and then Base_Types_Match (Full_View (Type_1), Type_2)
+ then
+ return Ctype <= Mode_Conformant
+ or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
+
+ elsif Ekind (Type_2) = E_Incomplete_Type
+ and then Present (Full_View (Type_2))
+ and then Base_Types_Match (Type_1, Full_View (Type_2))
+ then
+ return Ctype <= Mode_Conformant
+ or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
+
+ elsif Is_Private_Type (Type_2)
+ and then In_Instance
+ and then Present (Full_View (Type_2))
+ and then Base_Types_Match (Type_1, Full_View (Type_2))
+ then
+ return Ctype <= Mode_Conformant
+ or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
+ end if;
+
+ -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
+ -- treated recursively because they carry a signature. As far as
+ -- conformance is concerned, convention plays no role, and either
+ -- or both could be access to protected subprograms.
+
+ Are_Anonymous_Access_To_Subprogram_Types :=
+ Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
+ E_Anonymous_Access_Protected_Subprogram_Type)
+ and then
+ Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
+ E_Anonymous_Access_Protected_Subprogram_Type);
+
+ -- Test anonymous access type case. For this case, static subtype
+ -- matching is required for mode conformance (RM 6.3.1(15)). We check
+ -- the base types because we may have built internal subtype entities
+ -- to handle null-excluding types (see Process_Formals).
+
+ if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
+ and then
+ Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
+
+ -- Ada 2005 (AI-254)
+
+ or else Are_Anonymous_Access_To_Subprogram_Types
+ then
+ declare
+ Desig_1 : Entity_Id;
+ Desig_2 : Entity_Id;
+
+ begin
+ -- In Ada 2005, access constant indicators must match for
+ -- subtype conformance.
+
+ if Ada_Version >= Ada_2005
+ and then Ctype >= Subtype_Conformant
+ and then
+ Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
+ then
+ return False;
+ end if;
+
+ Desig_1 := Find_Designated_Type (Type_1);
+ Desig_2 := Find_Designated_Type (Type_2);
+
+ -- If the context is an instance association for a formal
+ -- access-to-subprogram type; formal access parameter designated
+ -- types require mapping because they may denote other formal
+ -- parameters of the generic unit.
+
+ if Get_Inst then
+ Desig_1 := Get_Instance_Of (Desig_1);
+ Desig_2 := Get_Instance_Of (Desig_2);
+ end if;
+
+ -- It is possible for a Class_Wide_Type to be introduced for an
+ -- incomplete type, in which case there is a separate class_ wide
+ -- type for the full view. The types conform if their Etypes
+ -- conform, i.e. one may be the full view of the other. This can
+ -- only happen in the context of an access parameter, other uses
+ -- of an incomplete Class_Wide_Type are illegal.
+
+ if Is_Class_Wide_Type (Desig_1)
+ and then
+ Is_Class_Wide_Type (Desig_2)
+ then
+ return
+ Conforming_Types
+ (Etype (Base_Type (Desig_1)),
+ Etype (Base_Type (Desig_2)), Ctype);
+
+ elsif Are_Anonymous_Access_To_Subprogram_Types then
+ if Ada_Version < Ada_2005 then
+ return Ctype = Type_Conformant
+ or else
+ Subtypes_Statically_Match (Desig_1, Desig_2);
+
+ -- We must check the conformance of the signatures themselves
+
+ else
+ declare
+ Conformant : Boolean;
+ begin
+ Check_Conformance
+ (Desig_1, Desig_2, Ctype, False, Conformant);
+ return Conformant;
+ end;
+ end if;
+
+ else
+ return Base_Type (Desig_1) = Base_Type (Desig_2)
+ and then (Ctype = Type_Conformant
+ or else
+ Subtypes_Statically_Match (Desig_1, Desig_2));
+ end if;
+ end;
+
+ -- Otherwise definitely no match
+
+ else
+ if ((Ekind (Type_1) = E_Anonymous_Access_Type
+ and then Is_Access_Type (Type_2))
+ or else (Ekind (Type_2) = E_Anonymous_Access_Type
+ and then Is_Access_Type (Type_1)))
+ and then
+ Conforming_Types
+ (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
+ then
+ May_Hide_Profile := True;
+ end if;
+
+ return False;
+ end if;
+ end Conforming_Types;
+
+ --------------------------
+ -- Create_Extra_Formals --
+ --------------------------
+
+ procedure Create_Extra_Formals (E : Entity_Id) is
+ Formal : Entity_Id;
+ First_Extra : Entity_Id := Empty;
+ Last_Extra : Entity_Id;
+ Formal_Type : Entity_Id;
+ P_Formal : Entity_Id := Empty;
+
+ function Add_Extra_Formal
+ (Assoc_Entity : Entity_Id;
+ Typ : Entity_Id;
+ Scope : Entity_Id;
+ Suffix : String) return Entity_Id;
+ -- Add an extra formal to the current list of formals and extra formals.
+ -- The extra formal is added to the end of the list of extra formals,
+ -- and also returned as the result. These formals are always of mode IN.
+ -- The new formal has the type Typ, is declared in Scope, and its name
+ -- is given by a concatenation of the name of Assoc_Entity and Suffix.
+ -- The following suffixes are currently used. They should not be changed
+ -- without coordinating with CodePeer, which makes use of these to
+ -- provide better messages.
+
+ -- O denotes the Constrained bit.
+ -- L denotes the accessibility level.
+ -- BIP_xxx denotes an extra formal for a build-in-place function. See
+ -- the full list in exp_ch6.BIP_Formal_Kind.
+
+ ----------------------
+ -- Add_Extra_Formal --
+ ----------------------
+
+ function Add_Extra_Formal
+ (Assoc_Entity : Entity_Id;
+ Typ : Entity_Id;
+ Scope : Entity_Id;
+ Suffix : String) return Entity_Id
+ is
+ EF : constant Entity_Id :=
+ Make_Defining_Identifier (Sloc (Assoc_Entity),
+ Chars => New_External_Name (Chars (Assoc_Entity),
+ Suffix => Suffix));
+
+ begin
+ -- A little optimization. Never generate an extra formal for the
+ -- _init operand of an initialization procedure, since it could
+ -- never be used.
+
+ if Chars (Formal) = Name_uInit then
+ return Empty;
+ end if;
+
+ Set_Ekind (EF, E_In_Parameter);
+ Set_Actual_Subtype (EF, Typ);
+ Set_Etype (EF, Typ);
+ Set_Scope (EF, Scope);
+ Set_Mechanism (EF, Default_Mechanism);
+ Set_Formal_Validity (EF);
+
+ if No (First_Extra) then
+ First_Extra := EF;
+ Set_Extra_Formals (Scope, First_Extra);
+ end if;
+
+ if Present (Last_Extra) then
+ Set_Extra_Formal (Last_Extra, EF);
+ end if;
+
+ Last_Extra := EF;
+
+ return EF;
+ end Add_Extra_Formal;
+
+ -- Start of processing for Create_Extra_Formals
+
+ begin
+ -- We never generate extra formals if expansion is not active because we
+ -- don't need them unless we are generating code.
+
+ if not Expander_Active then
+ return;
+ end if;
+
+ -- No need to generate extra formals in interface thunks whose target
+ -- primitive has no extra formals.
+
+ if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
+ return;
+ end if;
+
+ -- If this is a derived subprogram then the subtypes of the parent
+ -- subprogram's formal parameters will be used to determine the need
+ -- for extra formals.
+
+ if Is_Overloadable (E) and then Present (Alias (E)) then
+ P_Formal := First_Formal (Alias (E));
+ end if;
+
+ Last_Extra := Empty;
+ Formal := First_Formal (E);
+ while Present (Formal) loop
+ Last_Extra := Formal;
+ Next_Formal (Formal);
+ end loop;
+
+ -- If Extra_formals were already created, don't do it again. This
+ -- situation may arise for subprogram types created as part of
+ -- dispatching calls (see Expand_Dispatching_Call)
+
+ if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
+ return;
+ end if;
+
+ -- If the subprogram is a predefined dispatching subprogram then don't
+ -- generate any extra constrained or accessibility level formals. In
+ -- general we suppress these for internal subprograms (by not calling
+ -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
+ -- generated stream attributes do get passed through because extra
+ -- build-in-place formals are needed in some cases (limited 'Input).
+
+ if Is_Predefined_Internal_Operation (E) then
+ goto Test_For_Func_Result_Extras;
+ end if;
+
+ Formal := First_Formal (E);
+ while Present (Formal) loop
+
+ -- Create extra formal for supporting the attribute 'Constrained.
+ -- The case of a private type view without discriminants also
+ -- requires the extra formal if the underlying type has defaulted
+ -- discriminants.
+
+ if Ekind (Formal) /= E_In_Parameter then
+ if Present (P_Formal) then
+ Formal_Type := Etype (P_Formal);
+ else
+ Formal_Type := Etype (Formal);
+ end if;
+
+ -- Do not produce extra formals for Unchecked_Union parameters.
+ -- Jump directly to the end of the loop.
+
+ if Is_Unchecked_Union (Base_Type (Formal_Type)) then
+ goto Skip_Extra_Formal_Generation;
+ end if;
+
+ if not Has_Discriminants (Formal_Type)
+ and then Ekind (Formal_Type) in Private_Kind
+ and then Present (Underlying_Type (Formal_Type))
+ then
+ Formal_Type := Underlying_Type (Formal_Type);
+ end if;
+
+ -- Suppress the extra formal if formal's subtype is constrained or
+ -- indefinite, or we're compiling for Ada 2012 and the underlying
+ -- type is tagged and limited. In Ada 2012, a limited tagged type
+ -- can have defaulted discriminants, but 'Constrained is required
+ -- to return True, so the formal is never needed (see AI05-0214).
+ -- Note that this ensures consistency of calling sequences for
+ -- dispatching operations when some types in a class have defaults
+ -- on discriminants and others do not (and requiring the extra
+ -- formal would introduce distributed overhead).
+
+ -- If the type does not have a completion yet, treat as prior to
+ -- Ada 2012 for consistency.
+
+ if Has_Discriminants (Formal_Type)
+ and then not Is_Constrained (Formal_Type)
+ and then not Is_Indefinite_Subtype (Formal_Type)
+ and then (Ada_Version < Ada_2012
+ or else No (Underlying_Type (Formal_Type))
+ or else not
+ (Is_Limited_Type (Formal_Type)
+ and then
+ (Is_Tagged_Type
+ (Underlying_Type (Formal_Type)))))
+ then
+ Set_Extra_Constrained
+ (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
+ end if;
+ end if;
+
+ -- Create extra formal for supporting accessibility checking. This
+ -- is done for both anonymous access formals and formals of named
+ -- access types that are marked as controlling formals. The latter
+ -- case can occur when Expand_Dispatching_Call creates a subprogram
+ -- type and substitutes the types of access-to-class-wide actuals
+ -- for the anonymous access-to-specific-type of controlling formals.
+ -- Base_Type is applied because in cases where there is a null
+ -- exclusion the formal may have an access subtype.
+
+ -- This is suppressed if we specifically suppress accessibility
+ -- checks at the package level for either the subprogram, or the
+ -- package in which it resides. However, we do not suppress it
+ -- simply if the scope has accessibility checks suppressed, since
+ -- this could cause trouble when clients are compiled with a
+ -- different suppression setting. The explicit checks at the
+ -- package level are safe from this point of view.
+
+ if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
+ or else (Is_Controlling_Formal (Formal)
+ and then Is_Access_Type (Base_Type (Etype (Formal)))))
+ and then not
+ (Explicit_Suppress (E, Accessibility_Check)
+ or else
+ Explicit_Suppress (Scope (E), Accessibility_Check))
+ and then
+ (No (P_Formal)
+ or else Present (Extra_Accessibility (P_Formal)))
+ then
+ Set_Extra_Accessibility
+ (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
+ end if;
+
+ -- This label is required when skipping extra formal generation for
+ -- Unchecked_Union parameters.
+
+ <<Skip_Extra_Formal_Generation>>
+
+ if Present (P_Formal) then
+ Next_Formal (P_Formal);
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+
+ <<Test_For_Func_Result_Extras>>
+
+ -- Ada 2012 (AI05-234): "the accessibility level of the result of a
+ -- function call is ... determined by the point of call ...".
+
+ if Needs_Result_Accessibility_Level (E) then
+ Set_Extra_Accessibility_Of_Result
+ (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
+ end if;
+
+ -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
+ -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
+
+ if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
+ declare
+ Result_Subt : constant Entity_Id := Etype (E);
+ Full_Subt : constant Entity_Id := Available_View (Result_Subt);
+ Formal_Typ : Entity_Id;
+
+ Discard : Entity_Id;
+ pragma Warnings (Off, Discard);
+
+ begin
+ -- In the case of functions with unconstrained result subtypes,
+ -- add a 4-state formal indicating whether the return object is
+ -- allocated by the caller (1), or should be allocated by the
+ -- callee on the secondary stack (2), in the global heap (3), or
+ -- in a user-defined storage pool (4). For the moment we just use
+ -- Natural for the type of this formal. Note that this formal
+ -- isn't usually needed in the case where the result subtype is
+ -- constrained, but it is needed when the function has a tagged
+ -- result, because generally such functions can be called in a
+ -- dispatching context and such calls must be handled like calls
+ -- to a class-wide function.
+
+ if Needs_BIP_Alloc_Form (E) then
+ Discard :=
+ Add_Extra_Formal
+ (E, Standard_Natural,
+ E, BIP_Formal_Suffix (BIP_Alloc_Form));
+
+ -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
+ -- use a user-defined pool. This formal is not added on
+ -- .NET/JVM/ZFP as those targets do not support pools.
+
+ if VM_Target = No_VM
+ and then RTE_Available (RE_Root_Storage_Pool_Ptr)
+ then
+ Discard :=
+ Add_Extra_Formal
+ (E, RTE (RE_Root_Storage_Pool_Ptr),
+ E, BIP_Formal_Suffix (BIP_Storage_Pool));
+ end if;
+ end if;
+
+ -- In the case of functions whose result type needs finalization,
+ -- add an extra formal which represents the finalization master.
+
+ if Needs_BIP_Finalization_Master (E) then
+ Discard :=
+ Add_Extra_Formal
+ (E, RTE (RE_Finalization_Master_Ptr),
+ E, BIP_Formal_Suffix (BIP_Finalization_Master));
+ end if;
+
+ -- When the result type contains tasks, add two extra formals: the
+ -- master of the tasks to be created, and the caller's activation
+ -- chain.
+
+ if Has_Task (Full_Subt) then
+ Discard :=
+ Add_Extra_Formal
+ (E, RTE (RE_Master_Id),
+ E, BIP_Formal_Suffix (BIP_Task_Master));
+ Discard :=
+ Add_Extra_Formal
+ (E, RTE (RE_Activation_Chain_Access),
+ E, BIP_Formal_Suffix (BIP_Activation_Chain));
+ end if;
+
+ -- All build-in-place functions get an extra formal that will be
+ -- passed the address of the return object within the caller.
+
+ Formal_Typ :=
+ Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
+
+ Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
+ Set_Etype (Formal_Typ, Formal_Typ);
+ Set_Depends_On_Private
+ (Formal_Typ, Has_Private_Component (Formal_Typ));
+ Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
+ Set_Is_Access_Constant (Formal_Typ, False);
+
+ -- Ada 2005 (AI-50217): Propagate the attribute that indicates
+ -- the designated type comes from the limited view (for back-end
+ -- purposes).
+
+ Set_From_Limited_With
+ (Formal_Typ, From_Limited_With (Result_Subt));
+
+ Layout_Type (Formal_Typ);
+
+ Discard :=
+ Add_Extra_Formal
+ (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
+ end;
+ end if;
+ end Create_Extra_Formals;
+
+ -----------------------------
+ -- Enter_Overloaded_Entity --
+ -----------------------------
+
+ procedure Enter_Overloaded_Entity (S : Entity_Id) is
+ E : Entity_Id := Current_Entity_In_Scope (S);
+ C_E : Entity_Id := Current_Entity (S);
+
+ begin
+ if Present (E) then
+ Set_Has_Homonym (E);
+ Set_Has_Homonym (S);
+ end if;
+
+ Set_Is_Immediately_Visible (S);
+ Set_Scope (S, Current_Scope);
+
+ -- Chain new entity if front of homonym in current scope, so that
+ -- homonyms are contiguous.
+
+ if Present (E) and then E /= C_E then
+ while Homonym (C_E) /= E loop
+ C_E := Homonym (C_E);
+ end loop;
+
+ Set_Homonym (C_E, S);
+
+ else
+ E := C_E;
+ Set_Current_Entity (S);
+ end if;
+
+ Set_Homonym (S, E);
+
+ if Is_Inherited_Operation (S) then
+ Append_Inherited_Subprogram (S);
+ else
+ Append_Entity (S, Current_Scope);
+ end if;
+
+ Set_Public_Status (S);
+
+ if Debug_Flag_E then
+ Write_Str ("New overloaded entity chain: ");
+ Write_Name (Chars (S));
+
+ E := S;
+ while Present (E) loop
+ Write_Str (" "); Write_Int (Int (E));
+ E := Homonym (E);
+ end loop;
+
+ Write_Eol;
+ end if;
+
+ -- Generate warning for hiding
+
+ if Warn_On_Hiding
+ and then Comes_From_Source (S)
+ and then In_Extended_Main_Source_Unit (S)
+ then
+ E := S;
+ loop
+ E := Homonym (E);
+ exit when No (E);
+
+ -- Warn unless genuine overloading. Do not emit warning on
+ -- hiding predefined operators in Standard (these are either an
+ -- (artifact of our implicit declarations, or simple noise) but
+ -- keep warning on a operator defined on a local subtype, because
+ -- of the real danger that different operators may be applied in
+ -- various parts of the program.
+
+ -- Note that if E and S have the same scope, there is never any
+ -- hiding. Either the two conflict, and the program is illegal,
+ -- or S is overriding an implicit inherited subprogram.
+
+ if Scope (E) /= Scope (S)
+ and then (not Is_Overloadable (E)
+ or else Subtype_Conformant (E, S))
+ and then (Is_Immediately_Visible (E)
+ or else
+ Is_Potentially_Use_Visible (S))
+ then
+ if Scope (E) /= Standard_Standard then
+ Error_Msg_Sloc := Sloc (E);
+ Error_Msg_N ("declaration of & hides one#?h?", S);
+
+ elsif Nkind (S) = N_Defining_Operator_Symbol
+ and then
+ Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
+ then
+ Error_Msg_N
+ ("declaration of & hides predefined operator?h?", S);
+ end if;
+ end if;
+ end loop;
+ end if;
+ end Enter_Overloaded_Entity;
+
+ -----------------------------
+ -- Check_Untagged_Equality --
+ -----------------------------
+
+ procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
+ Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
+ Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
+ Obj_Decl : Node_Id;
+
+ begin
+ -- This check applies only if we have a subprogram declaration with a
+ -- non-tagged record type.
+
+ if Nkind (Decl) /= N_Subprogram_Declaration
+ or else not Is_Record_Type (Typ)
+ or else Is_Tagged_Type (Typ)
+ then
+ return;
+ end if;
+
+ -- In Ada 2012 case, we will output errors or warnings depending on
+ -- the setting of debug flag -gnatd.E.
+
+ if Ada_Version >= Ada_2012 then
+ Error_Msg_Warn := Debug_Flag_Dot_EE;
+
+ -- In earlier versions of Ada, nothing to do unless we are warning on
+ -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
+
+ else
+ if not Warn_On_Ada_2012_Compatibility then
+ return;
+ end if;
+ end if;
+
+ -- Cases where the type has already been frozen
+
+ if Is_Frozen (Typ) then
+
+ -- If the type is not declared in a package, or if we are in the body
+ -- of the package or in some other scope, the new operation is not
+ -- primitive, and therefore legal, though suspicious. Should we
+ -- generate a warning in this case ???
+
+ if Ekind (Scope (Typ)) /= E_Package
+ or else Scope (Typ) /= Current_Scope
+ then
+ return;
+
+ -- If the type is a generic actual (sub)type, the operation is not
+ -- primitive either because the base type is declared elsewhere.
+
+ elsif Is_Generic_Actual_Type (Typ) then
+ return;
+
+ -- Here we have a definite error of declaration after freezing
+
+ else
+ if Ada_Version >= Ada_2012 then
+ Error_Msg_NE
+ ("equality operator must be declared before type& is "
+ & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
+
+ -- In Ada 2012 mode with error turned to warning, output one
+ -- more warning to warn that the equality operation may not
+ -- compose. This is the consequence of ignoring the error.
+
+ if Error_Msg_Warn then
+ Error_Msg_N ("\equality operation may not compose??", Eq_Op);
+ end if;
+
+ else
+ Error_Msg_NE
+ ("equality operator must be declared before type& is "
+ & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
+ end if;
+
+ -- If we are in the package body, we could just move the
+ -- declaration to the package spec, so add a message saying that.
+
+ if In_Package_Body (Scope (Typ)) then
+ if Ada_Version >= Ada_2012 then
+ Error_Msg_N
+ ("\move declaration to package spec<<", Eq_Op);
+ else
+ Error_Msg_N
+ ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
+ end if;
+
+ -- Otherwise try to find the freezing point
+
+ else
+ Obj_Decl := Next (Parent (Typ));
+ while Present (Obj_Decl) and then Obj_Decl /= Decl loop
+ if Nkind (Obj_Decl) = N_Object_Declaration
+ and then Etype (Defining_Identifier (Obj_Decl)) = Typ
+ then
+ -- Freezing point, output warnings
+
+ if Ada_Version >= Ada_2012 then
+ Error_Msg_NE
+ ("type& is frozen by declaration??", Obj_Decl, Typ);
+ Error_Msg_N
+ ("\an equality operator cannot be declared after "
+ & "this point??",
+ Obj_Decl);
+ else
+ Error_Msg_NE
+ ("type& is frozen by declaration (Ada 2012)?y?",
+ Obj_Decl, Typ);
+ Error_Msg_N
+ ("\an equality operator cannot be declared after "
+ & "this point (Ada 2012)?y?",
+ Obj_Decl);
+ end if;
+
+ exit;
+ end if;
+
+ Next (Obj_Decl);
+ end loop;
+ end if;
+ end if;
+
+ -- Here if type is not frozen yet. It is illegal to have a primitive
+ -- equality declared in the private part if the type is visible.
+
+ elsif not In_Same_List (Parent (Typ), Decl)
+ and then not Is_Limited_Type (Typ)
+ then
+ -- Shouldn't we give an RM reference here???
+
+ if Ada_Version >= Ada_2012 then
+ Error_Msg_N
+ ("equality operator appears too late<<", Eq_Op);
+ else
+ Error_Msg_N
+ ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
+ end if;
+
+ -- No error detected
+
+ else
+ return;
+ end if;
+ end Check_Untagged_Equality;
+
+ -----------------------------
+ -- Find_Corresponding_Spec --
+ -----------------------------
+
+ function Find_Corresponding_Spec
+ (N : Node_Id;
+ Post_Error : Boolean := True) return Entity_Id
+ is
+ Spec : constant Node_Id := Specification (N);
+ Designator : constant Entity_Id := Defining_Entity (Spec);
+
+ E : Entity_Id;
+
+ function Different_Generic_Profile (E : Entity_Id) return Boolean;
+ -- Even if fully conformant, a body may depend on a generic actual when
+ -- the spec does not, or vice versa, in which case they were distinct
+ -- entities in the generic.
+
+ -------------------------------
+ -- Different_Generic_Profile --
+ -------------------------------
+
+ function Different_Generic_Profile (E : Entity_Id) return Boolean is
+ F1, F2 : Entity_Id;
+
+ function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
+ -- Check that the types of corresponding formals have the same
+ -- generic actual if any. We have to account for subtypes of a
+ -- generic formal, declared between a spec and a body, which may
+ -- appear distinct in an instance but matched in the generic.
+
+ -------------------------
+ -- Same_Generic_Actual --
+ -------------------------
+
+ function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
+ begin
+ return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
+ or else
+ (Present (Parent (T1))
+ and then Comes_From_Source (Parent (T1))
+ and then Nkind (Parent (T1)) = N_Subtype_Declaration
+ and then Is_Entity_Name (Subtype_Indication (Parent (T1)))
+ and then Entity (Subtype_Indication (Parent (T1))) = T2);
+ end Same_Generic_Actual;
+
+ -- Start of processing for Different_Generic_Profile
+
+ begin
+ if not In_Instance then
+ return False;
+
+ elsif Ekind (E) = E_Function
+ and then not Same_Generic_Actual (Etype (E), Etype (Designator))
+ then
+ return True;
+ end if;
+
+ F1 := First_Formal (Designator);
+ F2 := First_Formal (E);
+ while Present (F1) loop
+ if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
+ return True;
+ end if;
+
+ Next_Formal (F1);
+ Next_Formal (F2);
+ end loop;
+
+ return False;
+ end Different_Generic_Profile;
+
+ -- Start of processing for Find_Corresponding_Spec
+
+ begin
+ E := Current_Entity (Designator);
+ while Present (E) loop
+
+ -- We are looking for a matching spec. It must have the same scope,
+ -- and the same name, and either be type conformant, or be the case
+ -- of a library procedure spec and its body (which belong to one
+ -- another regardless of whether they are type conformant or not).
+
+ if Scope (E) = Current_Scope then
+ if Current_Scope = Standard_Standard
+ or else (Ekind (E) = Ekind (Designator)
+ and then Type_Conformant (E, Designator))
+ then
+ -- Within an instantiation, we know that spec and body are
+ -- subtype conformant, because they were subtype conformant in
+ -- the generic. We choose the subtype-conformant entity here as
+ -- well, to resolve spurious ambiguities in the instance that
+ -- were not present in the generic (i.e. when two different
+ -- types are given the same actual). If we are looking for a
+ -- spec to match a body, full conformance is expected.
+
+ if In_Instance then
+ Set_Convention (Designator, Convention (E));
+
+ -- Skip past subprogram bodies and subprogram renamings that
+ -- may appear to have a matching spec, but that aren't fully
+ -- conformant with it. That can occur in cases where an
+ -- actual type causes unrelated homographs in the instance.
+
+ if Nkind_In (N, N_Subprogram_Body,
+ N_Subprogram_Renaming_Declaration)
+ and then Present (Homonym (E))
+ and then not Fully_Conformant (Designator, E)
+ then
+ goto Next_Entity;
+
+ elsif not Subtype_Conformant (Designator, E) then
+ goto Next_Entity;
+
+ elsif Different_Generic_Profile (E) then
+ goto Next_Entity;
+ end if;
+ end if;
+
+ -- Ada 2012 (AI05-0165): For internally generated bodies of
+ -- null procedures locate the internally generated spec. We
+ -- enforce mode conformance since a tagged type may inherit
+ -- from interfaces several null primitives which differ only
+ -- in the mode of the formals.
+
+ if not (Comes_From_Source (E))
+ and then Is_Null_Procedure (E)
+ and then not Mode_Conformant (Designator, E)
+ then
+ null;
+
+ -- For null procedures coming from source that are completions,
+ -- analysis of the generated body will establish the link.
+
+ elsif Comes_From_Source (E)
+ and then Nkind (Spec) = N_Procedure_Specification
+ and then Null_Present (Spec)
+ then
+ return E;
+
+ elsif not Has_Completion (E) then
+ if Nkind (N) /= N_Subprogram_Body_Stub then
+ Set_Corresponding_Spec (N, E);
+ end if;
+
+ Set_Has_Completion (E);
+ return E;
+
+ elsif Nkind (Parent (N)) = N_Subunit then
+
+ -- If this is the proper body of a subunit, the completion
+ -- flag is set when analyzing the stub.
+
+ return E;
+
+ -- If E is an internal function with a controlling result that
+ -- was created for an operation inherited by a null extension,
+ -- it may be overridden by a body without a previous spec (one
+ -- more reason why these should be shunned). In that case we
+ -- remove the generated body if present, because the current
+ -- one is the explicit overriding.
+
+ elsif Ekind (E) = E_Function
+ and then Ada_Version >= Ada_2005
+ and then not Comes_From_Source (E)
+ and then Has_Controlling_Result (E)
+ and then Is_Null_Extension (Etype (E))
+ and then Comes_From_Source (Spec)
+ then
+ Set_Has_Completion (E, False);
+
+ if Expander_Active
+ and then Nkind (Parent (E)) = N_Function_Specification
+ then
+ Remove
+ (Unit_Declaration_Node
+ (Corresponding_Body (Unit_Declaration_Node (E))));
+
+ return E;
+
+ -- If expansion is disabled, or if the wrapper function has
+ -- not been generated yet, this a late body overriding an
+ -- inherited operation, or it is an overriding by some other
+ -- declaration before the controlling result is frozen. In
+ -- either case this is a declaration of a new entity.
+
+ else
+ return Empty;
+ end if;
+
+ -- If the body already exists, then this is an error unless
+ -- the previous declaration is the implicit declaration of a
+ -- derived subprogram. It is also legal for an instance to
+ -- contain type conformant overloadable declarations (but the
+ -- generic declaration may not), per 8.3(26/2).
+
+ elsif No (Alias (E))
+ and then not Is_Intrinsic_Subprogram (E)
+ and then not In_Instance
+ and then Post_Error
+ then
+ Error_Msg_Sloc := Sloc (E);
+
+ if Is_Imported (E) then
+ Error_Msg_NE
+ ("body not allowed for imported subprogram & declared#",
+ N, E);
+ else
+ Error_Msg_NE ("duplicate body for & declared#", N, E);
+ end if;
+ end if;
+
+ -- Child units cannot be overloaded, so a conformance mismatch
+ -- between body and a previous spec is an error.
+
+ elsif Is_Child_Unit (E)
+ and then
+ Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
+ and then
+ Nkind (Parent (Unit_Declaration_Node (Designator))) =
+ N_Compilation_Unit
+ and then Post_Error
+ then
+ Error_Msg_N
+ ("body of child unit does not match previous declaration", N);
+ end if;
+ end if;
+
+ <<Next_Entity>>
+ E := Homonym (E);
+ end loop;
+
+ -- On exit, we know that no previous declaration of subprogram exists
+
+ return Empty;
+ end Find_Corresponding_Spec;
+
+ ----------------------
+ -- Fully_Conformant --
+ ----------------------
+
+ function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
+ Result : Boolean;
+ begin
+ Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
+ return Result;
+ end Fully_Conformant;
+
+ ----------------------------------
+ -- Fully_Conformant_Expressions --
+ ----------------------------------
+
+ function Fully_Conformant_Expressions
+ (Given_E1 : Node_Id;
+ Given_E2 : Node_Id) return Boolean
+ is
+ E1 : constant Node_Id := Original_Node (Given_E1);
+ E2 : constant Node_Id := Original_Node (Given_E2);
+ -- We always test conformance on original nodes, since it is possible
+ -- for analysis and/or expansion to make things look as though they
+ -- conform when they do not, e.g. by converting 1+2 into 3.
+
+ function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
+ renames Fully_Conformant_Expressions;
+
+ function FCL (L1, L2 : List_Id) return Boolean;
+ -- Compare elements of two lists for conformance. Elements have to be
+ -- conformant, and actuals inserted as default parameters do not match
+ -- explicit actuals with the same value.
+
+ function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
+ -- Compare an operator node with a function call
+
+ ---------
+ -- FCL --
+ ---------
+
+ function FCL (L1, L2 : List_Id) return Boolean is
+ N1, N2 : Node_Id;
+
+ begin
+ if L1 = No_List then
+ N1 := Empty;
+ else
+ N1 := First (L1);
+ end if;
+
+ if L2 = No_List then
+ N2 := Empty;
+ else
+ N2 := First (L2);
+ end if;
+
+ -- Compare two lists, skipping rewrite insertions (we want to compare
+ -- the original trees, not the expanded versions).
+
+ loop
+ if Is_Rewrite_Insertion (N1) then
+ Next (N1);
+ elsif Is_Rewrite_Insertion (N2) then
+ Next (N2);
+ elsif No (N1) then
+ return No (N2);
+ elsif No (N2) then
+ return False;
+ elsif not FCE (N1, N2) then
+ return False;
+ else
+ Next (N1);
+ Next (N2);
+ end if;
+ end loop;
+ end FCL;
+
+ ---------
+ -- FCO --
+ ---------
+
+ function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
+ Actuals : constant List_Id := Parameter_Associations (Call_Node);
+ Act : Node_Id;
+
+ begin
+ if No (Actuals)
+ or else Entity (Op_Node) /= Entity (Name (Call_Node))
+ then
+ return False;
+
+ else
+ Act := First (Actuals);
+
+ if Nkind (Op_Node) in N_Binary_Op then
+ if not FCE (Left_Opnd (Op_Node), Act) then
+ return False;
+ end if;
+
+ Next (Act);
+ end if;
+
+ return Present (Act)
+ and then FCE (Right_Opnd (Op_Node), Act)
+ and then No (Next (Act));
+ end if;
+ end FCO;
+
+ -- Start of processing for Fully_Conformant_Expressions
+
+ begin
+ -- Non-conformant if paren count does not match. Note: if some idiot
+ -- complains that we don't do this right for more than 3 levels of
+ -- parentheses, they will be treated with the respect they deserve.
+
+ if Paren_Count (E1) /= Paren_Count (E2) then
+ return False;
+
+ -- If same entities are referenced, then they are conformant even if
+ -- they have different forms (RM 8.3.1(19-20)).
+
+ elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
+ if Present (Entity (E1)) then
+ return Entity (E1) = Entity (E2)
+ or else (Chars (Entity (E1)) = Chars (Entity (E2))
+ and then Ekind (Entity (E1)) = E_Discriminant
+ and then Ekind (Entity (E2)) = E_In_Parameter);
+
+ elsif Nkind (E1) = N_Expanded_Name
+ and then Nkind (E2) = N_Expanded_Name
+ and then Nkind (Selector_Name (E1)) = N_Character_Literal
+ and then Nkind (Selector_Name (E2)) = N_Character_Literal
+ then
+ return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
+
+ else
+ -- Identifiers in component associations don't always have
+ -- entities, but their names must conform.
+
+ return Nkind (E1) = N_Identifier
+ and then Nkind (E2) = N_Identifier
+ and then Chars (E1) = Chars (E2);
+ end if;
+
+ elsif Nkind (E1) = N_Character_Literal
+ and then Nkind (E2) = N_Expanded_Name
+ then
+ return Nkind (Selector_Name (E2)) = N_Character_Literal
+ and then Chars (E1) = Chars (Selector_Name (E2));
+
+ elsif Nkind (E2) = N_Character_Literal
+ and then Nkind (E1) = N_Expanded_Name
+ then
+ return Nkind (Selector_Name (E1)) = N_Character_Literal
+ and then Chars (E2) = Chars (Selector_Name (E1));
+
+ elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
+ return FCO (E1, E2);
+
+ elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
+ return FCO (E2, E1);
+
+ -- Otherwise we must have the same syntactic entity
+
+ elsif Nkind (E1) /= Nkind (E2) then
+ return False;
+
+ -- At this point, we specialize by node type
+
+ else
+ case Nkind (E1) is
+
+ when N_Aggregate =>
+ return
+ FCL (Expressions (E1), Expressions (E2))
+ and then
+ FCL (Component_Associations (E1),
+ Component_Associations (E2));
+
+ when N_Allocator =>
+ if Nkind (Expression (E1)) = N_Qualified_Expression
+ or else
+ Nkind (Expression (E2)) = N_Qualified_Expression
+ then
+ return FCE (Expression (E1), Expression (E2));
+
+ -- Check that the subtype marks and any constraints
+ -- are conformant
+
+ else
+ declare
+ Indic1 : constant Node_Id := Expression (E1);
+ Indic2 : constant Node_Id := Expression (E2);
+ Elt1 : Node_Id;
+ Elt2 : Node_Id;
+
+ begin
+ if Nkind (Indic1) /= N_Subtype_Indication then
+ return
+ Nkind (Indic2) /= N_Subtype_Indication
+ and then Entity (Indic1) = Entity (Indic2);
+
+ elsif Nkind (Indic2) /= N_Subtype_Indication then
+ return
+ Nkind (Indic1) /= N_Subtype_Indication
+ and then Entity (Indic1) = Entity (Indic2);
+
+ else
+ if Entity (Subtype_Mark (Indic1)) /=
+ Entity (Subtype_Mark (Indic2))
+ then
+ return False;
+ end if;
+
+ Elt1 := First (Constraints (Constraint (Indic1)));
+ Elt2 := First (Constraints (Constraint (Indic2)));
+ while Present (Elt1) and then Present (Elt2) loop
+ if not FCE (Elt1, Elt2) then
+ return False;
+ end if;
+
+ Next (Elt1);
+ Next (Elt2);
+ end loop;
+
+ return True;
+ end if;
+ end;
+ end if;
+
+ when N_Attribute_Reference =>
+ return
+ Attribute_Name (E1) = Attribute_Name (E2)
+ and then FCL (Expressions (E1), Expressions (E2));
+
+ when N_Binary_Op =>
+ return
+ Entity (E1) = Entity (E2)
+ and then FCE (Left_Opnd (E1), Left_Opnd (E2))
+ and then FCE (Right_Opnd (E1), Right_Opnd (E2));
+
+ when N_Short_Circuit | N_Membership_Test =>
+ return
+ FCE (Left_Opnd (E1), Left_Opnd (E2))
+ and then
+ FCE (Right_Opnd (E1), Right_Opnd (E2));
+
+ when N_Case_Expression =>
+ declare
+ Alt1 : Node_Id;
+ Alt2 : Node_Id;
+
+ begin
+ if not FCE (Expression (E1), Expression (E2)) then
+ return False;
+
+ else
+ Alt1 := First (Alternatives (E1));
+ Alt2 := First (Alternatives (E2));
+ loop
+ if Present (Alt1) /= Present (Alt2) then
+ return False;
+ elsif No (Alt1) then
+ return True;
+ end if;
+
+ if not FCE (Expression (Alt1), Expression (Alt2))
+ or else not FCL (Discrete_Choices (Alt1),
+ Discrete_Choices (Alt2))
+ then
+ return False;
+ end if;
+
+ Next (Alt1);
+ Next (Alt2);
+ end loop;
+ end if;
+ end;
+
+ when N_Character_Literal =>
+ return
+ Char_Literal_Value (E1) = Char_Literal_Value (E2);
+
+ when N_Component_Association =>
+ return
+ FCL (Choices (E1), Choices (E2))
+ and then
+ FCE (Expression (E1), Expression (E2));
+
+ when N_Explicit_Dereference =>
+ return
+ FCE (Prefix (E1), Prefix (E2));
+
+ when N_Extension_Aggregate =>
+ return
+ FCL (Expressions (E1), Expressions (E2))
+ and then Null_Record_Present (E1) =
+ Null_Record_Present (E2)
+ and then FCL (Component_Associations (E1),
+ Component_Associations (E2));
+
+ when N_Function_Call =>
+ return
+ FCE (Name (E1), Name (E2))
+ and then
+ FCL (Parameter_Associations (E1),
+ Parameter_Associations (E2));
+
+ when N_If_Expression =>
+ return
+ FCL (Expressions (E1), Expressions (E2));
+
+ when N_Indexed_Component =>
+ return
+ FCE (Prefix (E1), Prefix (E2))
+ and then
+ FCL (Expressions (E1), Expressions (E2));
+
+ when N_Integer_Literal =>
+ return (Intval (E1) = Intval (E2));
+
+ when N_Null =>
+ return True;
+
+ when N_Operator_Symbol =>
+ return
+ Chars (E1) = Chars (E2);
+
+ when N_Others_Choice =>
+ return True;
+
+ when N_Parameter_Association =>
+ return
+ Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
+ and then FCE (Explicit_Actual_Parameter (E1),
+ Explicit_Actual_Parameter (E2));
+
+ when N_Qualified_Expression =>
+ return
+ FCE (Subtype_Mark (E1), Subtype_Mark (E2))
+ and then
+ FCE (Expression (E1), Expression (E2));
+
+ when N_Quantified_Expression =>
+ if not FCE (Condition (E1), Condition (E2)) then
+ return False;
+ end if;
+
+ if Present (Loop_Parameter_Specification (E1))
+ and then Present (Loop_Parameter_Specification (E2))
+ then
+ declare
+ L1 : constant Node_Id :=
+ Loop_Parameter_Specification (E1);
+ L2 : constant Node_Id :=
+ Loop_Parameter_Specification (E2);
+
+ begin
+ return
+ Reverse_Present (L1) = Reverse_Present (L2)
+ and then
+ FCE (Defining_Identifier (L1),
+ Defining_Identifier (L2))
+ and then
+ FCE (Discrete_Subtype_Definition (L1),
+ Discrete_Subtype_Definition (L2));
+ end;
+
+ elsif Present (Iterator_Specification (E1))
+ and then Present (Iterator_Specification (E2))
+ then
+ declare
+ I1 : constant Node_Id := Iterator_Specification (E1);
+ I2 : constant Node_Id := Iterator_Specification (E2);
+
+ begin
+ return
+ FCE (Defining_Identifier (I1),
+ Defining_Identifier (I2))
+ and then
+ Of_Present (I1) = Of_Present (I2)
+ and then
+ Reverse_Present (I1) = Reverse_Present (I2)
+ and then FCE (Name (I1), Name (I2))
+ and then FCE (Subtype_Indication (I1),
+ Subtype_Indication (I2));
+ end;
+
+ -- The quantified expressions used different specifications to
+ -- walk their respective ranges.
+
+ else
+ return False;
+ end if;
+
+ when N_Range =>
+ return
+ FCE (Low_Bound (E1), Low_Bound (E2))
+ and then
+ FCE (High_Bound (E1), High_Bound (E2));
+
+ when N_Real_Literal =>
+ return (Realval (E1) = Realval (E2));
+
+ when N_Selected_Component =>
+ return
+ FCE (Prefix (E1), Prefix (E2))
+ and then
+ FCE (Selector_Name (E1), Selector_Name (E2));
+
+ when N_Slice =>
+ return
+ FCE (Prefix (E1), Prefix (E2))
+ and then
+ FCE (Discrete_Range (E1), Discrete_Range (E2));
+
+ when N_String_Literal =>
+ declare
+ S1 : constant String_Id := Strval (E1);
+ S2 : constant String_Id := Strval (E2);
+ L1 : constant Nat := String_Length (S1);
+ L2 : constant Nat := String_Length (S2);
+
+ begin
+ if L1 /= L2 then
+ return False;
+
+ else
+ for J in 1 .. L1 loop
+ if Get_String_Char (S1, J) /=
+ Get_String_Char (S2, J)
+ then
+ return False;
+ end if;
+ end loop;
+
+ return True;
+ end if;
+ end;
+
+ when N_Type_Conversion =>
+ return
+ FCE (Subtype_Mark (E1), Subtype_Mark (E2))
+ and then
+ FCE (Expression (E1), Expression (E2));
+
+ when N_Unary_Op =>
+ return
+ Entity (E1) = Entity (E2)
+ and then
+ FCE (Right_Opnd (E1), Right_Opnd (E2));
+
+ when N_Unchecked_Type_Conversion =>
+ return
+ FCE (Subtype_Mark (E1), Subtype_Mark (E2))
+ and then
+ FCE (Expression (E1), Expression (E2));
+
+ -- All other node types cannot appear in this context. Strictly
+ -- we should raise a fatal internal error. Instead we just ignore
+ -- the nodes. This means that if anyone makes a mistake in the
+ -- expander and mucks an expression tree irretrievably, the result
+ -- will be a failure to detect a (probably very obscure) case
+ -- of non-conformance, which is better than bombing on some
+ -- case where two expressions do in fact conform.
+
+ when others =>
+ return True;
+
+ end case;
+ end if;
+ end Fully_Conformant_Expressions;
+
+ ----------------------------------------
+ -- Fully_Conformant_Discrete_Subtypes --
+ ----------------------------------------
+
+ function Fully_Conformant_Discrete_Subtypes
+ (Given_S1 : Node_Id;
+ Given_S2 : Node_Id) return Boolean
+ is
+ S1 : constant Node_Id := Original_Node (Given_S1);
+ S2 : constant Node_Id := Original_Node (Given_S2);
+
+ function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
+ -- Special-case for a bound given by a discriminant, which in the body
+ -- is replaced with the discriminal of the enclosing type.
+
+ function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
+ -- Check both bounds
+
+ -----------------------
+ -- Conforming_Bounds --
+ -----------------------
+
+ function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
+ begin
+ if Is_Entity_Name (B1)
+ and then Is_Entity_Name (B2)
+ and then Ekind (Entity (B1)) = E_Discriminant
+ then
+ return Chars (B1) = Chars (B2);
+
+ else
+ return Fully_Conformant_Expressions (B1, B2);
+ end if;
+ end Conforming_Bounds;
+
+ -----------------------
+ -- Conforming_Ranges --
+ -----------------------
+
+ function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
+ begin
+ return
+ Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
+ and then
+ Conforming_Bounds (High_Bound (R1), High_Bound (R2));
+ end Conforming_Ranges;
+
+ -- Start of processing for Fully_Conformant_Discrete_Subtypes
+
+ begin
+ if Nkind (S1) /= Nkind (S2) then
+ return False;
+
+ elsif Is_Entity_Name (S1) then
+ return Entity (S1) = Entity (S2);
+
+ elsif Nkind (S1) = N_Range then
+ return Conforming_Ranges (S1, S2);
+
+ elsif Nkind (S1) = N_Subtype_Indication then
+ return
+ Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
+ and then
+ Conforming_Ranges
+ (Range_Expression (Constraint (S1)),
+ Range_Expression (Constraint (S2)));
+ else
+ return True;
+ end if;
+ end Fully_Conformant_Discrete_Subtypes;
+
+ --------------------
+ -- Install_Entity --
+ --------------------
+
+ procedure Install_Entity (E : Entity_Id) is
+ Prev : constant Entity_Id := Current_Entity (E);
+ begin
+ Set_Is_Immediately_Visible (E);
+ Set_Current_Entity (E);
+ Set_Homonym (E, Prev);
+ end Install_Entity;
+
+ ---------------------
+ -- Install_Formals --
+ ---------------------
+
+ procedure Install_Formals (Id : Entity_Id) is
+ F : Entity_Id;
+ begin
+ F := First_Formal (Id);
+ while Present (F) loop
+ Install_Entity (F);
+ Next_Formal (F);
+ end loop;
+ end Install_Formals;
+
+ -----------------------------
+ -- Is_Interface_Conformant --
+ -----------------------------
+
+ function Is_Interface_Conformant
+ (Tagged_Type : Entity_Id;
+ Iface_Prim : Entity_Id;
+ Prim : Entity_Id) return Boolean
+ is
+ -- The operation may in fact be an inherited (implicit) operation
+ -- rather than the original interface primitive, so retrieve the
+ -- ultimate ancestor.
+
+ Iface : constant Entity_Id :=
+ Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
+ Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
+
+ function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
+ -- Return the controlling formal of Prim
+
+ ------------------------
+ -- Controlling_Formal --
+ ------------------------
+
+ function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
+ E : Entity_Id;
+
+ begin
+ E := First_Entity (Prim);
+ while Present (E) loop
+ if Is_Formal (E) and then Is_Controlling_Formal (E) then
+ return E;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+
+ return Empty;
+ end Controlling_Formal;
+
+ -- Local variables
+
+ Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
+ Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
+
+ -- Start of processing for Is_Interface_Conformant
+
+ begin
+ pragma Assert (Is_Subprogram (Iface_Prim)
+ and then Is_Subprogram (Prim)
+ and then Is_Dispatching_Operation (Iface_Prim)
+ and then Is_Dispatching_Operation (Prim));
+
+ pragma Assert (Is_Interface (Iface)
+ or else (Present (Alias (Iface_Prim))
+ and then
+ Is_Interface
+ (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
+
+ if Prim = Iface_Prim
+ or else not Is_Subprogram (Prim)
+ or else Ekind (Prim) /= Ekind (Iface_Prim)
+ or else not Is_Dispatching_Operation (Prim)
+ or else Scope (Prim) /= Scope (Tagged_Type)
+ or else No (Typ)
+ or else Base_Type (Typ) /= Base_Type (Tagged_Type)
+ or else not Primitive_Names_Match (Iface_Prim, Prim)
+ then
+ return False;
+
+ -- The mode of the controlling formals must match
+
+ elsif Present (Iface_Ctrl_F)
+ and then Present (Prim_Ctrl_F)
+ and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
+ then
+ return False;
+
+ -- Case of a procedure, or a function whose result type matches the
+ -- result type of the interface primitive, or a function that has no
+ -- controlling result (I or access I).
+
+ elsif Ekind (Iface_Prim) = E_Procedure
+ or else Etype (Prim) = Etype (Iface_Prim)
+ or else not Has_Controlling_Result (Prim)
+ then
+ return Type_Conformant
+ (Iface_Prim, Prim, Skip_Controlling_Formals => True);
+
+ -- Case of a function returning an interface, or an access to one. Check
+ -- that the return types correspond.
+
+ elsif Implements_Interface (Typ, Iface) then
+ if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
+ /=
+ (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
+ then
+ return False;
+ else
+ return
+ Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
+ Skip_Controlling_Formals => True);
+ end if;
+
+ else
+ return False;
+ end if;
+ end Is_Interface_Conformant;
+
+ ---------------------------------
+ -- Is_Non_Overriding_Operation --
+ ---------------------------------
+
+ function Is_Non_Overriding_Operation
+ (Prev_E : Entity_Id;
+ New_E : Entity_Id) return Boolean
+ is
+ Formal : Entity_Id;
+ F_Typ : Entity_Id;
+ G_Typ : Entity_Id := Empty;
+
+ function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
+ -- If F_Type is a derived type associated with a generic actual subtype,
+ -- then return its Generic_Parent_Type attribute, else return Empty.
+
+ function Types_Correspond
+ (P_Type : Entity_Id;
+ N_Type : Entity_Id) return Boolean;
+ -- Returns true if and only if the types (or designated types in the
+ -- case of anonymous access types) are the same or N_Type is derived
+ -- directly or indirectly from P_Type.
+
+ -----------------------------
+ -- Get_Generic_Parent_Type --
+ -----------------------------
+
+ function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
+ G_Typ : Entity_Id;
+ Defn : Node_Id;
+ Indic : Node_Id;
+
+ begin
+ if Is_Derived_Type (F_Typ)
+ and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
+ then
+ -- The tree must be traversed to determine the parent subtype in
+ -- the generic unit, which unfortunately isn't always available
+ -- via semantic attributes. ??? (Note: The use of Original_Node
+ -- is needed for cases where a full derived type has been
+ -- rewritten.)
+
+ Defn := Type_Definition (Original_Node (Parent (F_Typ)));
+ if Nkind (Defn) = N_Derived_Type_Definition then
+ Indic := Subtype_Indication (Defn);
+
+ if Nkind (Indic) = N_Subtype_Indication then
+ G_Typ := Entity (Subtype_Mark (Indic));
+ else
+ G_Typ := Entity (Indic);
+ end if;
+
+ if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
+ and then Present (Generic_Parent_Type (Parent (G_Typ)))
+ then
+ return Generic_Parent_Type (Parent (G_Typ));
+ end if;
+ end if;
+ end if;
+
+ return Empty;
+ end Get_Generic_Parent_Type;
+
+ ----------------------
+ -- Types_Correspond --
+ ----------------------
+
+ function Types_Correspond
+ (P_Type : Entity_Id;
+ N_Type : Entity_Id) return Boolean
+ is
+ Prev_Type : Entity_Id := Base_Type (P_Type);
+ New_Type : Entity_Id := Base_Type (N_Type);
+
+ begin
+ if Ekind (Prev_Type) = E_Anonymous_Access_Type then
+ Prev_Type := Designated_Type (Prev_Type);
+ end if;
+
+ if Ekind (New_Type) = E_Anonymous_Access_Type then
+ New_Type := Designated_Type (New_Type);
+ end if;
+
+ if Prev_Type = New_Type then
+ return True;
+
+ elsif not Is_Class_Wide_Type (New_Type) then
+ while Etype (New_Type) /= New_Type loop
+ New_Type := Etype (New_Type);
+ if New_Type = Prev_Type then
+ return True;
+ end if;
+ end loop;
+ end if;
+ return False;
+ end Types_Correspond;
+
+ -- Start of processing for Is_Non_Overriding_Operation
+
+ begin
+ -- In the case where both operations are implicit derived subprograms
+ -- then neither overrides the other. This can only occur in certain
+ -- obscure cases (e.g., derivation from homographs created in a generic
+ -- instantiation).
+
+ if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
+ return True;
+
+ elsif Ekind (Current_Scope) = E_Package
+ and then Is_Generic_Instance (Current_Scope)
+ and then In_Private_Part (Current_Scope)
+ and then Comes_From_Source (New_E)
+ then
+ -- We examine the formals and result type of the inherited operation,
+ -- to determine whether their type is derived from (the instance of)
+ -- a generic type. The first such formal or result type is the one
+ -- tested.
+
+ Formal := First_Formal (Prev_E);
+ while Present (Formal) loop
+ F_Typ := Base_Type (Etype (Formal));
+
+ if Ekind (F_Typ) = E_Anonymous_Access_Type then
+ F_Typ := Designated_Type (F_Typ);
+ end if;
+
+ G_Typ := Get_Generic_Parent_Type (F_Typ);
+ exit when Present (G_Typ);
+
+ Next_Formal (Formal);
+ end loop;
+
+ if No (G_Typ) and then Ekind (Prev_E) = E_Function then
+ G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
+ end if;
+
+ if No (G_Typ) then
+ return False;
+ end if;
+
+ -- If the generic type is a private type, then the original operation
+ -- was not overriding in the generic, because there was no primitive
+ -- operation to override.
+
+ if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
+ and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
+ N_Formal_Private_Type_Definition
+ then
+ return True;
+
+ -- The generic parent type is the ancestor of a formal derived
+ -- type declaration. We need to check whether it has a primitive
+ -- operation that should be overridden by New_E in the generic.
+
+ else
+ declare
+ P_Formal : Entity_Id;
+ N_Formal : Entity_Id;
+ P_Typ : Entity_Id;
+ N_Typ : Entity_Id;
+ P_Prim : Entity_Id;
+ Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
+
+ begin
+ while Present (Prim_Elt) loop
+ P_Prim := Node (Prim_Elt);
+
+ if Chars (P_Prim) = Chars (New_E)
+ and then Ekind (P_Prim) = Ekind (New_E)
+ then
+ P_Formal := First_Formal (P_Prim);
+ N_Formal := First_Formal (New_E);
+ while Present (P_Formal) and then Present (N_Formal) loop
+ P_Typ := Etype (P_Formal);
+ N_Typ := Etype (N_Formal);
+
+ if not Types_Correspond (P_Typ, N_Typ) then
+ exit;
+ end if;
+
+ Next_Entity (P_Formal);
+ Next_Entity (N_Formal);
+ end loop;
+
+ -- Found a matching primitive operation belonging to the
+ -- formal ancestor type, so the new subprogram is
+ -- overriding.
+
+ if No (P_Formal)
+ and then No (N_Formal)
+ and then (Ekind (New_E) /= E_Function
+ or else
+ Types_Correspond
+ (Etype (P_Prim), Etype (New_E)))
+ then
+ return False;
+ end if;
+ end if;
+
+ Next_Elmt (Prim_Elt);
+ end loop;
+
+ -- If no match found, then the new subprogram does not override
+ -- in the generic (nor in the instance).
+
+ -- If the type in question is not abstract, and the subprogram
+ -- is, this will be an error if the new operation is in the
+ -- private part of the instance. Emit a warning now, which will
+ -- make the subsequent error message easier to understand.
+
+ if not Is_Abstract_Type (F_Typ)
+ and then Is_Abstract_Subprogram (Prev_E)
+ and then In_Private_Part (Current_Scope)
+ then
+ Error_Msg_Node_2 := F_Typ;
+ Error_Msg_NE
+ ("private operation& in generic unit does not override " &
+ "any primitive operation of& (RM 12.3 (18))??",
+ New_E, New_E);
+ end if;
+
+ return True;
+ end;
+ end if;
+ else
+ return False;
+ end if;
+ end Is_Non_Overriding_Operation;
+
+ -------------------------------------
+ -- List_Inherited_Pre_Post_Aspects --
+ -------------------------------------
+
+ procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
+ begin
+ if Opt.List_Inherited_Aspects
+ and then (Is_Subprogram (E) or else Is_Generic_Subprogram (E))
+ then
+ declare
+ Inherited : constant Subprogram_List := Inherited_Subprograms (E);
+ P : Node_Id;
+
+ begin
+ for J in Inherited'Range loop
+ P := Pre_Post_Conditions (Contract (Inherited (J)));
+ while Present (P) loop
+ Error_Msg_Sloc := Sloc (P);
+
+ if Class_Present (P) and then not Split_PPC (P) then
+ if Pragma_Name (P) = Name_Precondition then
+ Error_Msg_N
+ ("info: & inherits `Pre''Class` aspect from #?L?",
+ E);
+ else
+ Error_Msg_N
+ ("info: & inherits `Post''Class` aspect from #?L?",
+ E);
+ end if;
+ end if;
+
+ P := Next_Pragma (P);
+ end loop;
+ end loop;
+ end;
+ end if;
+ end List_Inherited_Pre_Post_Aspects;
+
+ ------------------------------
+ -- Make_Inequality_Operator --
+ ------------------------------
+
+ -- S is the defining identifier of an equality operator. We build a
+ -- subprogram declaration with the right signature. This operation is
+ -- intrinsic, because it is always expanded as the negation of the
+ -- call to the equality function.
+
+ procedure Make_Inequality_Operator (S : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (S);
+ Decl : Node_Id;
+ Formals : List_Id;
+ Op_Name : Entity_Id;
+
+ FF : constant Entity_Id := First_Formal (S);
+ NF : constant Entity_Id := Next_Formal (FF);
+
+ begin
+ -- Check that equality was properly defined, ignore call if not
+
+ if No (NF) then
+ return;
+ end if;
+
+ declare
+ A : constant Entity_Id :=
+ Make_Defining_Identifier (Sloc (FF),
+ Chars => Chars (FF));
+
+ B : constant Entity_Id :=
+ Make_Defining_Identifier (Sloc (NF),
+ Chars => Chars (NF));
+
+ begin
+ Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
+
+ Formals := New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => A,
+ Parameter_Type =>
+ New_Occurrence_Of (Etype (First_Formal (S)),
+ Sloc (Etype (First_Formal (S))))),
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => B,
+ Parameter_Type =>
+ New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
+ Sloc (Etype (Next_Formal (First_Formal (S)))))));
+
+ Decl :=
+ Make_Subprogram_Declaration (Loc,
+ Specification =>
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => Op_Name,
+ Parameter_Specifications => Formals,
+ Result_Definition =>
+ New_Occurrence_Of (Standard_Boolean, Loc)));
+
+ -- Insert inequality right after equality if it is explicit or after
+ -- the derived type when implicit. These entities are created only
+ -- for visibility purposes, and eventually replaced in the course
+ -- of expansion, so they do not need to be attached to the tree and
+ -- seen by the back-end. Keeping them internal also avoids spurious
+ -- freezing problems. The declaration is inserted in the tree for
+ -- analysis, and removed afterwards. If the equality operator comes
+ -- from an explicit declaration, attach the inequality immediately
+ -- after. Else the equality is inherited from a derived type
+ -- declaration, so insert inequality after that declaration.
+
+ if No (Alias (S)) then
+ Insert_After (Unit_Declaration_Node (S), Decl);
+ elsif Is_List_Member (Parent (S)) then
+ Insert_After (Parent (S), Decl);
+ else
+ Insert_After (Parent (Etype (First_Formal (S))), Decl);
+ end if;
+
+ Mark_Rewrite_Insertion (Decl);
+ Set_Is_Intrinsic_Subprogram (Op_Name);
+ Analyze (Decl);
+ Remove (Decl);
+ Set_Has_Completion (Op_Name);
+ Set_Corresponding_Equality (Op_Name, S);
+ Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
+ end;
+ end Make_Inequality_Operator;
+
+ ----------------------
+ -- May_Need_Actuals --
+ ----------------------
+
+ procedure May_Need_Actuals (Fun : Entity_Id) is
+ F : Entity_Id;
+ B : Boolean;
+
+ begin
+ F := First_Formal (Fun);
+ B := True;
+ while Present (F) loop
+ if No (Default_Value (F)) then
+ B := False;
+ exit;
+ end if;
+
+ Next_Formal (F);
+ end loop;
+
+ Set_Needs_No_Actuals (Fun, B);
+ end May_Need_Actuals;
+
+ ---------------------
+ -- Mode_Conformant --
+ ---------------------
+
+ function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
+ Result : Boolean;
+ begin
+ Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
+ return Result;
+ end Mode_Conformant;
+
+ ---------------------------
+ -- New_Overloaded_Entity --
+ ---------------------------
+
+ procedure New_Overloaded_Entity
+ (S : Entity_Id;
+ Derived_Type : Entity_Id := Empty)
+ is
+ Overridden_Subp : Entity_Id := Empty;
+ -- Set if the current scope has an operation that is type-conformant
+ -- with S, and becomes hidden by S.
+
+ Is_Primitive_Subp : Boolean;
+ -- Set to True if the new subprogram is primitive
+
+ E : Entity_Id;
+ -- Entity that S overrides
+
+ Prev_Vis : Entity_Id := Empty;
+ -- Predecessor of E in Homonym chain
+
+ procedure Check_For_Primitive_Subprogram
+ (Is_Primitive : out Boolean;
+ Is_Overriding : Boolean := False);
+ -- If the subprogram being analyzed is a primitive operation of the type
+ -- of a formal or result, set the Has_Primitive_Operations flag on the
+ -- type, and set Is_Primitive to True (otherwise set to False). Set the
+ -- corresponding flag on the entity itself for later use.
+
+ procedure Check_Synchronized_Overriding
+ (Def_Id : Entity_Id;
+ Overridden_Subp : out Entity_Id);
+ -- First determine if Def_Id is an entry or a subprogram either defined
+ -- in the scope of a task or protected type, or is a primitive of such
+ -- a type. Check whether Def_Id overrides a subprogram of an interface
+ -- implemented by the synchronized type, return the overridden entity
+ -- or Empty.
+
+ function Is_Private_Declaration (E : Entity_Id) return Boolean;
+ -- Check that E is declared in the private part of the current package,
+ -- or in the package body, where it may hide a previous declaration.
+ -- We can't use In_Private_Part by itself because this flag is also
+ -- set when freezing entities, so we must examine the place of the
+ -- declaration in the tree, and recognize wrapper packages as well.
+
+ function Is_Overriding_Alias
+ (Old_E : Entity_Id;
+ New_E : Entity_Id) return Boolean;
+ -- Check whether new subprogram and old subprogram are both inherited
+ -- from subprograms that have distinct dispatch table entries. This can
+ -- occur with derivations from instances with accidental homonyms. The
+ -- function is conservative given that the converse is only true within
+ -- instances that contain accidental overloadings.
+
+ ------------------------------------
+ -- Check_For_Primitive_Subprogram --
+ ------------------------------------
+
+ procedure Check_For_Primitive_Subprogram
+ (Is_Primitive : out Boolean;
+ Is_Overriding : Boolean := False)
+ is
+ Formal : Entity_Id;
+ F_Typ : Entity_Id;
+ B_Typ : Entity_Id;
+
+ function Visible_Part_Type (T : Entity_Id) return Boolean;
+ -- Returns true if T is declared in the visible part of the current
+ -- package scope; otherwise returns false. Assumes that T is declared
+ -- in a package.
+
+ procedure Check_Private_Overriding (T : Entity_Id);
+ -- Checks that if a primitive abstract subprogram of a visible
+ -- abstract type is declared in a private part, then it must override
+ -- an abstract subprogram declared in the visible part. Also checks
+ -- that if a primitive function with a controlling result is declared
+ -- in a private part, then it must override a function declared in
+ -- the visible part.
+
+ ------------------------------
+ -- Check_Private_Overriding --
+ ------------------------------
+
+ procedure Check_Private_Overriding (T : Entity_Id) is
+ begin
+ if Is_Package_Or_Generic_Package (Current_Scope)
+ and then In_Private_Part (Current_Scope)
+ and then Visible_Part_Type (T)
+ and then not In_Instance
+ then
+ if Is_Abstract_Type (T)
+ and then Is_Abstract_Subprogram (S)
+ and then (not Is_Overriding
+ or else not Is_Abstract_Subprogram (E))
+ then
+ Error_Msg_N
+ ("abstract subprograms must be visible "
+ & "(RM 3.9.3(10))!", S);
+
+ elsif Ekind (S) = E_Function and then not Is_Overriding then
+ if Is_Tagged_Type (T) and then T = Base_Type (Etype (S)) then
+ Error_Msg_N
+ ("private function with tagged result must"
+ & " override visible-part function", S);
+ Error_Msg_N
+ ("\move subprogram to the visible part"
+ & " (RM 3.9.3(10))", S);
+
+ -- AI05-0073: extend this test to the case of a function
+ -- with a controlling access result.
+
+ elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
+ and then Is_Tagged_Type (Designated_Type (Etype (S)))
+ and then
+ not Is_Class_Wide_Type (Designated_Type (Etype (S)))
+ and then Ada_Version >= Ada_2012
+ then
+ Error_Msg_N
+ ("private function with controlling access result "
+ & "must override visible-part function", S);
+ Error_Msg_N
+ ("\move subprogram to the visible part"
+ & " (RM 3.9.3(10))", S);
+ end if;
+ end if;
+ end if;
+ end Check_Private_Overriding;
+
+ -----------------------
+ -- Visible_Part_Type --
+ -----------------------
+
+ function Visible_Part_Type (T : Entity_Id) return Boolean is
+ P : constant Node_Id := Unit_Declaration_Node (Scope (T));
+ N : Node_Id;
+
+ begin
+ -- If the entity is a private type, then it must be declared in a
+ -- visible part.
+
+ if Ekind (T) in Private_Kind then
+ return True;
+ end if;
+
+ -- Otherwise, we traverse the visible part looking for its
+ -- corresponding declaration. We cannot use the declaration
+ -- node directly because in the private part the entity of a
+ -- private type is the one in the full view, which does not
+ -- indicate that it is the completion of something visible.
+
+ N := First (Visible_Declarations (Specification (P)));
+ while Present (N) loop
+ if Nkind (N) = N_Full_Type_Declaration
+ and then Present (Defining_Identifier (N))
+ and then T = Defining_Identifier (N)
+ then
+ return True;
+
+ elsif Nkind_In (N, N_Private_Type_Declaration,
+ N_Private_Extension_Declaration)
+ and then Present (Defining_Identifier (N))
+ and then T = Full_View (Defining_Identifier (N))
+ then
+ return True;
+ end if;
+
+ Next (N);
+ end loop;
+
+ return False;
+ end Visible_Part_Type;
+
+ -- Start of processing for Check_For_Primitive_Subprogram
+
+ begin
+ Is_Primitive := False;
+
+ if not Comes_From_Source (S) then
+ null;
+
+ -- If subprogram is at library level, it is not primitive operation
+
+ elsif Current_Scope = Standard_Standard then
+ null;
+
+ elsif (Is_Package_Or_Generic_Package (Current_Scope)
+ and then not In_Package_Body (Current_Scope))
+ or else Is_Overriding
+ then
+ -- For function, check return type
+
+ if Ekind (S) = E_Function then
+ if Ekind (Etype (S)) = E_Anonymous_Access_Type then
+ F_Typ := Designated_Type (Etype (S));
+ else
+ F_Typ := Etype (S);
+ end if;
+
+ B_Typ := Base_Type (F_Typ);
+
+ if Scope (B_Typ) = Current_Scope
+ and then not Is_Class_Wide_Type (B_Typ)
+ and then not Is_Generic_Type (B_Typ)
+ then
+ Is_Primitive := True;
+ Set_Has_Primitive_Operations (B_Typ);
+ Set_Is_Primitive (S);
+ Check_Private_Overriding (B_Typ);
+ end if;
+ end if;
+
+ -- For all subprograms, check formals
+
+ Formal := First_Formal (S);
+ while Present (Formal) loop
+ if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
+ F_Typ := Designated_Type (Etype (Formal));
+ else
+ F_Typ := Etype (Formal);
+ end if;
+
+ B_Typ := Base_Type (F_Typ);
+
+ if Ekind (B_Typ) = E_Access_Subtype then
+ B_Typ := Base_Type (B_Typ);
+ end if;
+
+ if Scope (B_Typ) = Current_Scope
+ and then not Is_Class_Wide_Type (B_Typ)
+ and then not Is_Generic_Type (B_Typ)
+ then
+ Is_Primitive := True;
+ Set_Is_Primitive (S);
+ Set_Has_Primitive_Operations (B_Typ);
+ Check_Private_Overriding (B_Typ);
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+
+ -- Special case: An equality function can be redefined for a type
+ -- occurring in a declarative part, and won't otherwise be treated as
+ -- a primitive because it doesn't occur in a package spec and doesn't
+ -- override an inherited subprogram. It's important that we mark it
+ -- primitive so it can be returned by Collect_Primitive_Operations
+ -- and be used in composing the equality operation of later types
+ -- that have a component of the type.
+
+ elsif Chars (S) = Name_Op_Eq
+ and then Etype (S) = Standard_Boolean
+ then
+ B_Typ := Base_Type (Etype (First_Formal (S)));
+
+ if Scope (B_Typ) = Current_Scope
+ and then
+ Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
+ and then not Is_Limited_Type (B_Typ)
+ then
+ Is_Primitive := True;
+ Set_Is_Primitive (S);
+ Set_Has_Primitive_Operations (B_Typ);
+ Check_Private_Overriding (B_Typ);
+ end if;
+ end if;
+ end Check_For_Primitive_Subprogram;
+
+ -----------------------------------
+ -- Check_Synchronized_Overriding --
+ -----------------------------------
+
+ procedure Check_Synchronized_Overriding
+ (Def_Id : Entity_Id;
+ Overridden_Subp : out Entity_Id)
+ is
+ Ifaces_List : Elist_Id;
+ In_Scope : Boolean;
+ Typ : Entity_Id;
+
+ function Matches_Prefixed_View_Profile
+ (Prim_Params : List_Id;
+ Iface_Params : List_Id) return Boolean;
+ -- Determine whether a subprogram's parameter profile Prim_Params
+ -- matches that of a potentially overridden interface subprogram
+ -- Iface_Params. Also determine if the type of first parameter of
+ -- Iface_Params is an implemented interface.
+
+ -----------------------------------
+ -- Matches_Prefixed_View_Profile --
+ -----------------------------------
+
+ function Matches_Prefixed_View_Profile
+ (Prim_Params : List_Id;
+ Iface_Params : List_Id) return Boolean
+ is
+ Iface_Id : Entity_Id;
+ Iface_Param : Node_Id;
+ Iface_Typ : Entity_Id;
+ Prim_Id : Entity_Id;
+ Prim_Param : Node_Id;
+ Prim_Typ : Entity_Id;
+
+ function Is_Implemented
+ (Ifaces_List : Elist_Id;
+ Iface : Entity_Id) return Boolean;
+ -- Determine if Iface is implemented by the current task or
+ -- protected type.
+
+ --------------------
+ -- Is_Implemented --
+ --------------------
+
+ function Is_Implemented
+ (Ifaces_List : Elist_Id;
+ Iface : Entity_Id) return Boolean
+ is
+ Iface_Elmt : Elmt_Id;
+
+ begin
+ Iface_Elmt := First_Elmt (Ifaces_List);
+ while Present (Iface_Elmt) loop
+ if Node (Iface_Elmt) = Iface then
+ return True;
+ end if;
+
+ Next_Elmt (Iface_Elmt);
+ end loop;
+
+ return False;
+ end Is_Implemented;
+
+ -- Start of processing for Matches_Prefixed_View_Profile
+
+ begin
+ Iface_Param := First (Iface_Params);
+ Iface_Typ := Etype (Defining_Identifier (Iface_Param));
+
+ if Is_Access_Type (Iface_Typ) then
+ Iface_Typ := Designated_Type (Iface_Typ);
+ end if;
+
+ Prim_Param := First (Prim_Params);
+
+ -- The first parameter of the potentially overridden subprogram
+ -- must be an interface implemented by Prim.
+
+ if not Is_Interface (Iface_Typ)
+ or else not Is_Implemented (Ifaces_List, Iface_Typ)
+ then
+ return False;
+ end if;
+
+ -- The checks on the object parameters are done, move onto the
+ -- rest of the parameters.
+
+ if not In_Scope then
+ Prim_Param := Next (Prim_Param);
+ end if;
+
+ Iface_Param := Next (Iface_Param);
+ while Present (Iface_Param) and then Present (Prim_Param) loop
+ Iface_Id := Defining_Identifier (Iface_Param);
+ Iface_Typ := Find_Parameter_Type (Iface_Param);
+
+ Prim_Id := Defining_Identifier (Prim_Param);
+ Prim_Typ := Find_Parameter_Type (Prim_Param);
+
+ if Ekind (Iface_Typ) = E_Anonymous_Access_Type
+ and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
+ and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
+ then
+ Iface_Typ := Designated_Type (Iface_Typ);
+ Prim_Typ := Designated_Type (Prim_Typ);
+ end if;
+
+ -- Case of multiple interface types inside a parameter profile
+
+ -- (Obj_Param : in out Iface; ...; Param : Iface)
+
+ -- If the interface type is implemented, then the matching type
+ -- in the primitive should be the implementing record type.
+
+ if Ekind (Iface_Typ) = E_Record_Type
+ and then Is_Interface (Iface_Typ)
+ and then Is_Implemented (Ifaces_List, Iface_Typ)
+ then
+ if Prim_Typ /= Typ then
+ return False;
+ end if;
+
+ -- The two parameters must be both mode and subtype conformant
+
+ elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
+ or else not
+ Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
+ then
+ return False;
+ end if;
+
+ Next (Iface_Param);
+ Next (Prim_Param);
+ end loop;
+
+ -- One of the two lists contains more parameters than the other
+
+ if Present (Iface_Param) or else Present (Prim_Param) then
+ return False;
+ end if;
+
+ return True;
+ end Matches_Prefixed_View_Profile;
+
+ -- Start of processing for Check_Synchronized_Overriding
+
+ begin
+ Overridden_Subp := Empty;
+
+ -- Def_Id must be an entry or a subprogram. We should skip predefined
+ -- primitives internally generated by the frontend; however at this
+ -- stage predefined primitives are still not fully decorated. As a
+ -- minor optimization we skip here internally generated subprograms.
+
+ if (Ekind (Def_Id) /= E_Entry
+ and then Ekind (Def_Id) /= E_Function
+ and then Ekind (Def_Id) /= E_Procedure)
+ or else not Comes_From_Source (Def_Id)
+ then
+ return;
+ end if;
+
+ -- Search for the concurrent declaration since it contains the list
+ -- of all implemented interfaces. In this case, the subprogram is
+ -- declared within the scope of a protected or a task type.
+
+ if Present (Scope (Def_Id))
+ and then Is_Concurrent_Type (Scope (Def_Id))
+ and then not Is_Generic_Actual_Type (Scope (Def_Id))
+ then
+ Typ := Scope (Def_Id);
+ In_Scope := True;
+
+ -- The enclosing scope is not a synchronized type and the subprogram
+ -- has no formals.
+
+ elsif No (First_Formal (Def_Id)) then
+ return;
+
+ -- The subprogram has formals and hence it may be a primitive of a
+ -- concurrent type.
+
+ else
+ Typ := Etype (First_Formal (Def_Id));
+
+ if Is_Access_Type (Typ) then
+ Typ := Directly_Designated_Type (Typ);
+ end if;
+
+ if Is_Concurrent_Type (Typ)
+ and then not Is_Generic_Actual_Type (Typ)
+ then
+ In_Scope := False;
+
+ -- This case occurs when the concurrent type is declared within
+ -- a generic unit. As a result the corresponding record has been
+ -- built and used as the type of the first formal, we just have
+ -- to retrieve the corresponding concurrent type.
+
+ elsif Is_Concurrent_Record_Type (Typ)
+ and then not Is_Class_Wide_Type (Typ)
+ and then Present (Corresponding_Concurrent_Type (Typ))
+ then
+ Typ := Corresponding_Concurrent_Type (Typ);
+ In_Scope := False;
+
+ else
+ return;
+ end if;
+ end if;
+
+ -- There is no overriding to check if is an inherited operation in a
+ -- type derivation on for a generic actual.
+
+ Collect_Interfaces (Typ, Ifaces_List);
+
+ if Is_Empty_Elmt_List (Ifaces_List) then
+ return;
+ end if;
+
+ -- Determine whether entry or subprogram Def_Id overrides a primitive
+ -- operation that belongs to one of the interfaces in Ifaces_List.
+
+ declare
+ Candidate : Entity_Id := Empty;
+ Hom : Entity_Id := Empty;
+ Iface_Typ : Entity_Id;
+ Subp : Entity_Id := Empty;
+
+ begin
+ -- Traverse the homonym chain, looking for a potentially
+ -- overridden subprogram that belongs to an implemented
+ -- interface.
+
+ Hom := Current_Entity_In_Scope (Def_Id);
+ while Present (Hom) loop
+ Subp := Hom;
+
+ if Subp = Def_Id
+ or else not Is_Overloadable (Subp)
+ or else not Is_Primitive (Subp)
+ or else not Is_Dispatching_Operation (Subp)
+ or else not Present (Find_Dispatching_Type (Subp))
+ or else not Is_Interface (Find_Dispatching_Type (Subp))
+ then
+ null;
+
+ -- Entries and procedures can override abstract or null
+ -- interface procedures.
+
+ elsif (Ekind (Def_Id) = E_Procedure
+ or else Ekind (Def_Id) = E_Entry)
+ and then Ekind (Subp) = E_Procedure
+ and then Matches_Prefixed_View_Profile
+ (Parameter_Specifications (Parent (Def_Id)),
+ Parameter_Specifications (Parent (Subp)))
+ then
+ Candidate := Subp;
+
+ -- For an overridden subprogram Subp, check whether the mode
+ -- of its first parameter is correct depending on the kind
+ -- of synchronized type.
+
+ declare
+ Formal : constant Node_Id := First_Formal (Candidate);
+
+ begin
+ -- In order for an entry or a protected procedure to
+ -- override, the first parameter of the overridden
+ -- routine must be of mode "out", "in out" or
+ -- access-to-variable.
+
+ if Ekind_In (Candidate, E_Entry, E_Procedure)
+ and then Is_Protected_Type (Typ)
+ and then Ekind (Formal) /= E_In_Out_Parameter
+ and then Ekind (Formal) /= E_Out_Parameter
+ and then Nkind (Parameter_Type (Parent (Formal))) /=
+ N_Access_Definition
+ then
+ null;
+
+ -- All other cases are OK since a task entry or routine
+ -- does not have a restriction on the mode of the first
+ -- parameter of the overridden interface routine.
+
+ else
+ Overridden_Subp := Candidate;
+ return;
+ end if;
+ end;
+
+ -- Functions can override abstract interface functions
+
+ elsif Ekind (Def_Id) = E_Function
+ and then Ekind (Subp) = E_Function
+ and then Matches_Prefixed_View_Profile
+ (Parameter_Specifications (Parent (Def_Id)),
+ Parameter_Specifications (Parent (Subp)))
+ and then Etype (Result_Definition (Parent (Def_Id))) =
+ Etype (Result_Definition (Parent (Subp)))
+ then
+ Overridden_Subp := Subp;
+ return;
+ end if;
+
+ Hom := Homonym (Hom);
+ end loop;
+
+ -- After examining all candidates for overriding, we are left with
+ -- the best match which is a mode incompatible interface routine.
+ -- Do not emit an error if the Expander is active since this error
+ -- will be detected later on after all concurrent types are
+ -- expanded and all wrappers are built. This check is meant for
+ -- spec-only compilations.
+
+ if Present (Candidate) and then not Expander_Active then
+ Iface_Typ :=
+ Find_Parameter_Type (Parent (First_Formal (Candidate)));
+
+ -- Def_Id is primitive of a protected type, declared inside the
+ -- type, and the candidate is primitive of a limited or
+ -- synchronized interface.
+
+ if In_Scope
+ and then Is_Protected_Type (Typ)
+ and then
+ (Is_Limited_Interface (Iface_Typ)
+ or else Is_Protected_Interface (Iface_Typ)
+ or else Is_Synchronized_Interface (Iface_Typ)
+ or else Is_Task_Interface (Iface_Typ))
+ then
+ Error_Msg_PT (Parent (Typ), Candidate);
+ end if;
+ end if;
+
+ Overridden_Subp := Candidate;
+ return;
+ end;
+ end Check_Synchronized_Overriding;
+
+ ----------------------------
+ -- Is_Private_Declaration --
+ ----------------------------
+
+ function Is_Private_Declaration (E : Entity_Id) return Boolean is
+ Priv_Decls : List_Id;
+ Decl : constant Node_Id := Unit_Declaration_Node (E);
+
+ begin
+ if Is_Package_Or_Generic_Package (Current_Scope)
+ and then In_Private_Part (Current_Scope)
+ then
+ Priv_Decls :=
+ Private_Declarations (Package_Specification (Current_Scope));
+
+ return In_Package_Body (Current_Scope)
+ or else
+ (Is_List_Member (Decl)
+ and then List_Containing (Decl) = Priv_Decls)
+ or else (Nkind (Parent (Decl)) = N_Package_Specification
+ and then not
+ Is_Compilation_Unit
+ (Defining_Entity (Parent (Decl)))
+ and then List_Containing (Parent (Parent (Decl))) =
+ Priv_Decls);
+ else
+ return False;
+ end if;
+ end Is_Private_Declaration;
+
+ --------------------------
+ -- Is_Overriding_Alias --
+ --------------------------
+
+ function Is_Overriding_Alias
+ (Old_E : Entity_Id;
+ New_E : Entity_Id) return Boolean
+ is
+ AO : constant Entity_Id := Alias (Old_E);
+ AN : constant Entity_Id := Alias (New_E);
+
+ begin
+ return Scope (AO) /= Scope (AN)
+ or else No (DTC_Entity (AO))
+ or else No (DTC_Entity (AN))
+ or else DT_Position (AO) = DT_Position (AN);
+ end Is_Overriding_Alias;
+
+ -- Start of processing for New_Overloaded_Entity
+
+ begin
+ -- We need to look for an entity that S may override. This must be a
+ -- homonym in the current scope, so we look for the first homonym of
+ -- S in the current scope as the starting point for the search.
+
+ E := Current_Entity_In_Scope (S);
+
+ -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
+ -- They are directly added to the list of primitive operations of
+ -- Derived_Type, unless this is a rederivation in the private part
+ -- of an operation that was already derived in the visible part of
+ -- the current package.
+
+ if Ada_Version >= Ada_2005
+ and then Present (Derived_Type)
+ and then Present (Alias (S))
+ and then Is_Dispatching_Operation (Alias (S))
+ and then Present (Find_Dispatching_Type (Alias (S)))
+ and then Is_Interface (Find_Dispatching_Type (Alias (S)))
+ then
+ -- For private types, when the full-view is processed we propagate to
+ -- the full view the non-overridden entities whose attribute "alias"
+ -- references an interface primitive. These entities were added by
+ -- Derive_Subprograms to ensure that interface primitives are
+ -- covered.
+
+ -- Inside_Freeze_Actions is non zero when S corresponds with an
+ -- internal entity that links an interface primitive with its
+ -- covering primitive through attribute Interface_Alias (see
+ -- Add_Internal_Interface_Entities).
+
+ if Inside_Freezing_Actions = 0
+ and then Is_Package_Or_Generic_Package (Current_Scope)
+ and then In_Private_Part (Current_Scope)
+ and then Nkind (Parent (E)) = N_Private_Extension_Declaration
+ and then Nkind (Parent (S)) = N_Full_Type_Declaration
+ and then Full_View (Defining_Identifier (Parent (E)))
+ = Defining_Identifier (Parent (S))
+ and then Alias (E) = Alias (S)
+ then
+ Check_Operation_From_Private_View (S, E);
+ Set_Is_Dispatching_Operation (S);
+
+ -- Common case
+
+ else
+ Enter_Overloaded_Entity (S);
+ Check_Dispatching_Operation (S, Empty);
+ Check_For_Primitive_Subprogram (Is_Primitive_Subp);
+ end if;
+
+ return;
+ end if;
+
+ -- If there is no homonym then this is definitely not overriding
+
+ if No (E) then
+ Enter_Overloaded_Entity (S);
+ Check_Dispatching_Operation (S, Empty);
+ Check_For_Primitive_Subprogram (Is_Primitive_Subp);
+
+ -- If subprogram has an explicit declaration, check whether it has an
+ -- overriding indicator.
+
+ if Comes_From_Source (S) then
+ Check_Synchronized_Overriding (S, Overridden_Subp);
+
+ -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
+ -- it may have overridden some hidden inherited primitive. Update
+ -- Overridden_Subp to avoid spurious errors when checking the
+ -- overriding indicator.
+
+ if Ada_Version >= Ada_2012
+ and then No (Overridden_Subp)
+ and then Is_Dispatching_Operation (S)
+ and then Present (Overridden_Operation (S))
+ then
+ Overridden_Subp := Overridden_Operation (S);
+ end if;
+
+ Check_Overriding_Indicator
+ (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
+ end if;
+
+ -- If there is a homonym that is not overloadable, then we have an
+ -- error, except for the special cases checked explicitly below.
+
+ elsif not Is_Overloadable (E) then
+
+ -- Check for spurious conflict produced by a subprogram that has the
+ -- same name as that of the enclosing generic package. The conflict
+ -- occurs within an instance, between the subprogram and the renaming
+ -- declaration for the package. After the subprogram, the package
+ -- renaming declaration becomes hidden.
+
+ if Ekind (E) = E_Package
+ and then Present (Renamed_Object (E))
+ and then Renamed_Object (E) = Current_Scope
+ and then Nkind (Parent (Renamed_Object (E))) =
+ N_Package_Specification
+ and then Present (Generic_Parent (Parent (Renamed_Object (E))))
+ then
+ Set_Is_Hidden (E);
+ Set_Is_Immediately_Visible (E, False);
+ Enter_Overloaded_Entity (S);
+ Set_Homonym (S, Homonym (E));
+ Check_Dispatching_Operation (S, Empty);
+ Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
+
+ -- If the subprogram is implicit it is hidden by the previous
+ -- declaration. However if it is dispatching, it must appear in the
+ -- dispatch table anyway, because it can be dispatched to even if it
+ -- cannot be called directly.
+
+ elsif Present (Alias (S)) and then not Comes_From_Source (S) then
+ Set_Scope (S, Current_Scope);
+
+ if Is_Dispatching_Operation (Alias (S)) then
+ Check_Dispatching_Operation (S, Empty);
+ end if;
+
+ return;
+
+ else
+ Error_Msg_Sloc := Sloc (E);
+
+ -- Generate message, with useful additional warning if in generic
+
+ if Is_Generic_Unit (E) then
+ Error_Msg_N ("previous generic unit cannot be overloaded", S);
+ Error_Msg_N ("\& conflicts with declaration#", S);
+ else
+ Error_Msg_N ("& conflicts with declaration#", S);
+ end if;
+
+ return;
+ end if;
+
+ -- E exists and is overloadable
+
+ else
+ Check_Synchronized_Overriding (S, Overridden_Subp);
+
+ -- Loop through E and its homonyms to determine if any of them is
+ -- the candidate for overriding by S.
+
+ while Present (E) loop
+
+ -- Definitely not interesting if not in the current scope
+
+ if Scope (E) /= Current_Scope then
+ null;
+
+ -- A function can overload the name of an abstract state. The
+ -- state can be viewed as a function with a profile that cannot
+ -- be matched by anything.
+
+ elsif Ekind (S) = E_Function
+ and then Ekind (E) = E_Abstract_State
+ then
+ Enter_Overloaded_Entity (S);
+ return;
+
+ -- Ada 2012 (AI05-0165): For internally generated bodies of null
+ -- procedures locate the internally generated spec. We enforce
+ -- mode conformance since a tagged type may inherit from
+ -- interfaces several null primitives which differ only in
+ -- the mode of the formals.
+
+ elsif not Comes_From_Source (S)
+ and then Is_Null_Procedure (S)
+ and then not Mode_Conformant (E, S)
+ then
+ null;
+
+ -- Check if we have type conformance
+
+ elsif Type_Conformant (E, S) then
+
+ -- If the old and new entities have the same profile and one
+ -- is not the body of the other, then this is an error, unless
+ -- one of them is implicitly declared.
+
+ -- There are some cases when both can be implicit, for example
+ -- when both a literal and a function that overrides it are
+ -- inherited in a derivation, or when an inherited operation
+ -- of a tagged full type overrides the inherited operation of
+ -- a private extension. Ada 83 had a special rule for the
+ -- literal case. In Ada 95, the later implicit operation hides
+ -- the former, and the literal is always the former. In the
+ -- odd case where both are derived operations declared at the
+ -- same point, both operations should be declared, and in that
+ -- case we bypass the following test and proceed to the next
+ -- part. This can only occur for certain obscure cases in
+ -- instances, when an operation on a type derived from a formal
+ -- private type does not override a homograph inherited from
+ -- the actual. In subsequent derivations of such a type, the
+ -- DT positions of these operations remain distinct, if they
+ -- have been set.
+
+ if Present (Alias (S))
+ and then (No (Alias (E))
+ or else Comes_From_Source (E)
+ or else Is_Abstract_Subprogram (S)
+ or else
+ (Is_Dispatching_Operation (E)
+ and then Is_Overriding_Alias (E, S)))
+ and then Ekind (E) /= E_Enumeration_Literal
+ then
+ -- When an derived operation is overloaded it may be due to
+ -- the fact that the full view of a private extension
+ -- re-inherits. It has to be dealt with.
+
+ if Is_Package_Or_Generic_Package (Current_Scope)
+ and then In_Private_Part (Current_Scope)
+ then
+ Check_Operation_From_Private_View (S, E);
+ end if;
+
+ -- In any case the implicit operation remains hidden by the
+ -- existing declaration, which is overriding. Indicate that
+ -- E overrides the operation from which S is inherited.
+
+ if Present (Alias (S)) then
+ Set_Overridden_Operation (E, Alias (S));
+ else
+ Set_Overridden_Operation (E, S);
+ end if;
+
+ if Comes_From_Source (E) then
+ Check_Overriding_Indicator (E, S, Is_Primitive => False);
+ end if;
+
+ return;
+
+ -- Within an instance, the renaming declarations for actual
+ -- subprograms may become ambiguous, but they do not hide each
+ -- other.
+
+ elsif Ekind (E) /= E_Entry
+ and then not Comes_From_Source (E)
+ and then not Is_Generic_Instance (E)
+ and then (Present (Alias (E))
+ or else Is_Intrinsic_Subprogram (E))
+ and then (not In_Instance
+ or else No (Parent (E))
+ or else Nkind (Unit_Declaration_Node (E)) /=
+ N_Subprogram_Renaming_Declaration)
+ then
+ -- A subprogram child unit is not allowed to override an
+ -- inherited subprogram (10.1.1(20)).
+
+ if Is_Child_Unit (S) then
+ Error_Msg_N
+ ("child unit overrides inherited subprogram in parent",
+ S);
+ return;
+ end if;
+
+ if Is_Non_Overriding_Operation (E, S) then
+ Enter_Overloaded_Entity (S);
+
+ if No (Derived_Type)
+ or else Is_Tagged_Type (Derived_Type)
+ then
+ Check_Dispatching_Operation (S, Empty);
+ end if;
+
+ return;
+ end if;
+
+ -- E is a derived operation or an internal operator which
+ -- is being overridden. Remove E from further visibility.
+ -- Furthermore, if E is a dispatching operation, it must be
+ -- replaced in the list of primitive operations of its type
+ -- (see Override_Dispatching_Operation).
+
+ Overridden_Subp := E;
+
+ declare
+ Prev : Entity_Id;
+
+ begin
+ Prev := First_Entity (Current_Scope);
+ while Present (Prev) and then Next_Entity (Prev) /= E loop
+ Next_Entity (Prev);
+ end loop;
+
+ -- It is possible for E to be in the current scope and
+ -- yet not in the entity chain. This can only occur in a
+ -- generic context where E is an implicit concatenation
+ -- in the formal part, because in a generic body the
+ -- entity chain starts with the formals.
+
+ pragma Assert
+ (Present (Prev) or else Chars (E) = Name_Op_Concat);
+
+ -- E must be removed both from the entity_list of the
+ -- current scope, and from the visibility chain
+
+ if Debug_Flag_E then
+ Write_Str ("Override implicit operation ");
+ Write_Int (Int (E));
+ Write_Eol;
+ end if;
+
+ -- If E is a predefined concatenation, it stands for four
+ -- different operations. As a result, a single explicit
+ -- declaration does not hide it. In a possible ambiguous
+ -- situation, Disambiguate chooses the user-defined op,
+ -- so it is correct to retain the previous internal one.
+
+ if Chars (E) /= Name_Op_Concat
+ or else Ekind (E) /= E_Operator
+ then
+ -- For nondispatching derived operations that are
+ -- overridden by a subprogram declared in the private
+ -- part of a package, we retain the derived subprogram
+ -- but mark it as not immediately visible. If the
+ -- derived operation was declared in the visible part
+ -- then this ensures that it will still be visible
+ -- outside the package with the proper signature
+ -- (calls from outside must also be directed to this
+ -- version rather than the overriding one, unlike the
+ -- dispatching case). Calls from inside the package
+ -- will still resolve to the overriding subprogram
+ -- since the derived one is marked as not visible
+ -- within the package.
+
+ -- If the private operation is dispatching, we achieve
+ -- the overriding by keeping the implicit operation
+ -- but setting its alias to be the overriding one. In
+ -- this fashion the proper body is executed in all
+ -- cases, but the original signature is used outside
+ -- of the package.
+
+ -- If the overriding is not in the private part, we
+ -- remove the implicit operation altogether.
+
+ if Is_Private_Declaration (S) then
+ if not Is_Dispatching_Operation (E) then
+ Set_Is_Immediately_Visible (E, False);
+ else
+ -- Work done in Override_Dispatching_Operation,
+ -- so nothing else needs to be done here.
+
+ null;
+ end if;
+
+ else
+ -- Find predecessor of E in Homonym chain
+
+ if E = Current_Entity (E) then
+ Prev_Vis := Empty;
+ else
+ Prev_Vis := Current_Entity (E);
+ while Homonym (Prev_Vis) /= E loop
+ Prev_Vis := Homonym (Prev_Vis);
+ end loop;
+ end if;
+
+ if Prev_Vis /= Empty then
+
+ -- Skip E in the visibility chain
+
+ Set_Homonym (Prev_Vis, Homonym (E));
+
+ else
+ Set_Name_Entity_Id (Chars (E), Homonym (E));
+ end if;
+
+ Set_Next_Entity (Prev, Next_Entity (E));
+
+ if No (Next_Entity (Prev)) then
+ Set_Last_Entity (Current_Scope, Prev);
+ end if;
+ end if;
+ end if;
+
+ Enter_Overloaded_Entity (S);
+
+ -- For entities generated by Derive_Subprograms the
+ -- overridden operation is the inherited primitive
+ -- (which is available through the attribute alias).
+
+ if not (Comes_From_Source (E))
+ and then Is_Dispatching_Operation (E)
+ and then Find_Dispatching_Type (E) =
+ Find_Dispatching_Type (S)
+ and then Present (Alias (E))
+ and then Comes_From_Source (Alias (E))
+ then
+ Set_Overridden_Operation (S, Alias (E));
+
+ -- Normal case of setting entity as overridden
+
+ -- Note: Static_Initialization and Overridden_Operation
+ -- attributes use the same field in subprogram entities.
+ -- Static_Initialization is only defined for internal
+ -- initialization procedures, where Overridden_Operation
+ -- is irrelevant. Therefore the setting of this attribute
+ -- must check whether the target is an init_proc.
+
+ elsif not Is_Init_Proc (S) then
+ Set_Overridden_Operation (S, E);
+ end if;
+
+ Check_Overriding_Indicator (S, E, Is_Primitive => True);
+
+ -- If S is a user-defined subprogram or a null procedure
+ -- expanded to override an inherited null procedure, or a
+ -- predefined dispatching primitive then indicate that E
+ -- overrides the operation from which S is inherited.
+
+ if Comes_From_Source (S)
+ or else
+ (Present (Parent (S))
+ and then
+ Nkind (Parent (S)) = N_Procedure_Specification
+ and then
+ Null_Present (Parent (S)))
+ or else
+ (Present (Alias (E))
+ and then
+ Is_Predefined_Dispatching_Operation (Alias (E)))
+ then
+ if Present (Alias (E)) then
+ Set_Overridden_Operation (S, Alias (E));
+ end if;
+ end if;
+
+ if Is_Dispatching_Operation (E) then
+
+ -- An overriding dispatching subprogram inherits the
+ -- convention of the overridden subprogram (AI-117).
+
+ Set_Convention (S, Convention (E));
+ Check_Dispatching_Operation (S, E);
+
+ else
+ Check_Dispatching_Operation (S, Empty);
+ end if;
+
+ Check_For_Primitive_Subprogram
+ (Is_Primitive_Subp, Is_Overriding => True);
+ goto Check_Inequality;
+ end;
+
+ -- Apparent redeclarations in instances can occur when two
+ -- formal types get the same actual type. The subprograms in
+ -- in the instance are legal, even if not callable from the
+ -- outside. Calls from within are disambiguated elsewhere.
+ -- For dispatching operations in the visible part, the usual
+ -- rules apply, and operations with the same profile are not
+ -- legal (B830001).
+
+ elsif (In_Instance_Visible_Part
+ and then not Is_Dispatching_Operation (E))
+ or else In_Instance_Not_Visible
+ then
+ null;
+
+ -- Here we have a real error (identical profile)
+
+ else
+ Error_Msg_Sloc := Sloc (E);
+
+ -- Avoid cascaded errors if the entity appears in
+ -- subsequent calls.
+
+ Set_Scope (S, Current_Scope);
+
+ -- Generate error, with extra useful warning for the case
+ -- of a generic instance with no completion.
+
+ if Is_Generic_Instance (S)
+ and then not Has_Completion (E)
+ then
+ Error_Msg_N
+ ("instantiation cannot provide body for&", S);
+ Error_Msg_N ("\& conflicts with declaration#", S);
+ else
+ Error_Msg_N ("& conflicts with declaration#", S);
+ end if;
+
+ return;
+ end if;
+
+ else
+ -- If one subprogram has an access parameter and the other
+ -- a parameter of an access type, calls to either might be
+ -- ambiguous. Verify that parameters match except for the
+ -- access parameter.
+
+ if May_Hide_Profile then
+ declare
+ F1 : Entity_Id;
+ F2 : Entity_Id;
+
+ begin
+ F1 := First_Formal (S);
+ F2 := First_Formal (E);
+ while Present (F1) and then Present (F2) loop
+ if Is_Access_Type (Etype (F1)) then
+ if not Is_Access_Type (Etype (F2))
+ or else not Conforming_Types
+ (Designated_Type (Etype (F1)),
+ Designated_Type (Etype (F2)),
+ Type_Conformant)
+ then
+ May_Hide_Profile := False;
+ end if;
+
+ elsif
+ not Conforming_Types
+ (Etype (F1), Etype (F2), Type_Conformant)
+ then
+ May_Hide_Profile := False;
+ end if;
+
+ Next_Formal (F1);
+ Next_Formal (F2);
+ end loop;
+
+ if May_Hide_Profile
+ and then No (F1)
+ and then No (F2)
+ then
+ Error_Msg_NE ("calls to& may be ambiguous??", S, S);
+ end if;
+ end;
+ end if;
+ end if;
+
+ E := Homonym (E);
+ end loop;
+
+ -- On exit, we know that S is a new entity
+
+ Enter_Overloaded_Entity (S);
+ Check_For_Primitive_Subprogram (Is_Primitive_Subp);
+ Check_Overriding_Indicator
+ (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
+
+ -- Overloading is not allowed in SPARK, except for operators
+
+ if Nkind (S) /= N_Defining_Operator_Symbol then
+ Error_Msg_Sloc := Sloc (Homonym (S));
+ Check_SPARK_Restriction
+ ("overloading not allowed with entity#", S);
+ end if;
+
+ -- If S is a derived operation for an untagged type then by
+ -- definition it's not a dispatching operation (even if the parent
+ -- operation was dispatching), so Check_Dispatching_Operation is not
+ -- called in that case.
+
+ if No (Derived_Type)
+ or else Is_Tagged_Type (Derived_Type)
+ then
+ Check_Dispatching_Operation (S, Empty);
+ end if;
+ end if;
+
+ -- If this is a user-defined equality operator that is not a derived
+ -- subprogram, create the corresponding inequality. If the operation is
+ -- dispatching, the expansion is done elsewhere, and we do not create
+ -- an explicit inequality operation.
+
+ <<Check_Inequality>>
+ if Chars (S) = Name_Op_Eq
+ and then Etype (S) = Standard_Boolean
+ and then Present (Parent (S))
+ and then not Is_Dispatching_Operation (S)
+ then
+ Make_Inequality_Operator (S);
+ Check_Untagged_Equality (S);
+ end if;
+ end New_Overloaded_Entity;
+
+ ---------------------
+ -- Process_Formals --
+ ---------------------
+
+ procedure Process_Formals
+ (T : List_Id;
+ Related_Nod : Node_Id)
+ is
+ Param_Spec : Node_Id;
+ Formal : Entity_Id;
+ Formal_Type : Entity_Id;
+ Default : Node_Id;
+ Ptype : Entity_Id;
+
+ Num_Out_Params : Nat := 0;
+ First_Out_Param : Entity_Id := Empty;
+ -- Used for setting Is_Only_Out_Parameter
+
+ function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
+ -- Determine whether an access type designates a type coming from a
+ -- limited view.
+
+ function Is_Class_Wide_Default (D : Node_Id) return Boolean;
+ -- Check whether the default has a class-wide type. After analysis the
+ -- default has the type of the formal, so we must also check explicitly
+ -- for an access attribute.
+
+ ----------------------------------
+ -- Designates_From_Limited_With --
+ ----------------------------------
+
+ function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
+ Desig : Entity_Id := Typ;
+
+ begin
+ if Is_Access_Type (Desig) then
+ Desig := Directly_Designated_Type (Desig);
+ end if;
+
+ if Is_Class_Wide_Type (Desig) then
+ Desig := Root_Type (Desig);
+ end if;
+
+ return
+ Ekind (Desig) = E_Incomplete_Type
+ and then From_Limited_With (Desig);
+ end Designates_From_Limited_With;
+
+ ---------------------------
+ -- Is_Class_Wide_Default --
+ ---------------------------
+
+ function Is_Class_Wide_Default (D : Node_Id) return Boolean is
+ begin
+ return Is_Class_Wide_Type (Designated_Type (Etype (D)))
+ or else (Nkind (D) = N_Attribute_Reference
+ and then Attribute_Name (D) = Name_Access
+ and then Is_Class_Wide_Type (Etype (Prefix (D))));
+ end Is_Class_Wide_Default;
+
+ -- Start of processing for Process_Formals
+
+ begin
+ -- In order to prevent premature use of the formals in the same formal
+ -- part, the Ekind is left undefined until all default expressions are
+ -- analyzed. The Ekind is established in a separate loop at the end.
+
+ Param_Spec := First (T);
+ while Present (Param_Spec) loop
+ Formal := Defining_Identifier (Param_Spec);
+ Set_Never_Set_In_Source (Formal, True);
+ Enter_Name (Formal);
+
+ -- Case of ordinary parameters
+
+ if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
+ Find_Type (Parameter_Type (Param_Spec));
+ Ptype := Parameter_Type (Param_Spec);
+
+ if Ptype = Error then
+ goto Continue;
+ end if;
+
+ Formal_Type := Entity (Ptype);
+
+ if Is_Incomplete_Type (Formal_Type)
+ or else
+ (Is_Class_Wide_Type (Formal_Type)
+ and then Is_Incomplete_Type (Root_Type (Formal_Type)))
+ then
+ -- Ada 2005 (AI-326): Tagged incomplete types allowed in
+ -- primitive operations, as long as their completion is
+ -- in the same declarative part. If in the private part
+ -- this means that the type cannot be a Taft-amendment type.
+ -- Check is done on package exit. For access to subprograms,
+ -- the use is legal for Taft-amendment types.
+
+ -- Ada 2012: tagged incomplete types are allowed as generic
+ -- formal types. They do not introduce dependencies and the
+ -- corresponding generic subprogram does not have a delayed
+ -- freeze, because it does not need a freeze node. However,
+ -- it is still the case that untagged incomplete types cannot
+ -- be Taft-amendment types and must be completed in private
+ -- part, so the subprogram must appear in the list of private
+ -- dependents of the type.
+
+ if Is_Tagged_Type (Formal_Type)
+ or else Ada_Version >= Ada_2012
+ then
+ if Ekind (Scope (Current_Scope)) = E_Package
+ and then not From_Limited_With (Formal_Type)
+ and then not Is_Generic_Type (Formal_Type)
+ and then not Is_Class_Wide_Type (Formal_Type)
+ then
+ if not Nkind_In
+ (Parent (T), N_Access_Function_Definition,
+ N_Access_Procedure_Definition)
+ then
+ Append_Elmt
+ (Current_Scope,
+ Private_Dependents (Base_Type (Formal_Type)));
+
+ -- Freezing is delayed to ensure that Register_Prim
+ -- will get called for this operation, which is needed
+ -- in cases where static dispatch tables aren't built.
+ -- (Note that the same is done for controlling access
+ -- parameter cases in function Access_Definition.)
+
+ Set_Has_Delayed_Freeze (Current_Scope);
+ end if;
+ end if;
+
+ -- Special handling of Value_Type for CIL case
+
+ elsif Is_Value_Type (Formal_Type) then
+ null;
+
+ elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
+ N_Access_Procedure_Definition)
+ then
+ -- AI05-0151: Tagged incomplete types are allowed in all
+ -- formal parts. Untagged incomplete types are not allowed
+ -- in bodies.
+
+ if Ada_Version >= Ada_2012 then
+ if Is_Tagged_Type (Formal_Type) then
+ null;
+
+ elsif Nkind_In (Parent (Parent (T)), N_Accept_Statement,
+ N_Entry_Body,
+ N_Subprogram_Body)
+ then
+ Error_Msg_NE
+ ("invalid use of untagged incomplete type&",
+ Ptype, Formal_Type);
+ end if;
+
+ else
+ Error_Msg_NE
+ ("invalid use of incomplete type&",
+ Param_Spec, Formal_Type);
+
+ -- Further checks on the legality of incomplete types
+ -- in formal parts are delayed until the freeze point
+ -- of the enclosing subprogram or access to subprogram.
+ end if;
+ end if;
+
+ elsif Ekind (Formal_Type) = E_Void then
+ Error_Msg_NE
+ ("premature use of&",
+ Parameter_Type (Param_Spec), Formal_Type);
+ end if;
+
+ -- Ada 2012 (AI-142): Handle aliased parameters
+
+ if Ada_Version >= Ada_2012
+ and then Aliased_Present (Param_Spec)
+ then
+ Set_Is_Aliased (Formal);
+ end if;
+
+ -- Ada 2005 (AI-231): Create and decorate an internal subtype
+ -- declaration corresponding to the null-excluding type of the
+ -- formal in the enclosing scope. Finally, replace the parameter
+ -- type of the formal with the internal subtype.
+
+ if Ada_Version >= Ada_2005
+ and then Null_Exclusion_Present (Param_Spec)
+ then
+ if not Is_Access_Type (Formal_Type) then
+ Error_Msg_N
+ ("`NOT NULL` allowed only for an access type", Param_Spec);
+
+ else
+ if Can_Never_Be_Null (Formal_Type)
+ and then Comes_From_Source (Related_Nod)
+ then
+ Error_Msg_NE
+ ("`NOT NULL` not allowed (& already excludes null)",
+ Param_Spec, Formal_Type);
+ end if;
+
+ Formal_Type :=
+ Create_Null_Excluding_Itype
+ (T => Formal_Type,
+ Related_Nod => Related_Nod,
+ Scope_Id => Scope (Current_Scope));
+
+ -- If the designated type of the itype is an itype that is
+ -- not frozen yet, we set the Has_Delayed_Freeze attribute
+ -- on the access subtype, to prevent order-of-elaboration
+ -- issues in the backend.
+
+ -- Example:
+ -- type T is access procedure;
+ -- procedure Op (O : not null T);
+
+ if Is_Itype (Directly_Designated_Type (Formal_Type))
+ and then
+ not Is_Frozen (Directly_Designated_Type (Formal_Type))
+ then
+ Set_Has_Delayed_Freeze (Formal_Type);
+ end if;
+ end if;
+ end if;
+
+ -- An access formal type
+
+ else
+ Formal_Type :=
+ Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
+
+ -- No need to continue if we already notified errors
+
+ if not Present (Formal_Type) then
+ return;
+ end if;
+
+ -- Ada 2005 (AI-254)
+
+ declare
+ AD : constant Node_Id :=
+ Access_To_Subprogram_Definition
+ (Parameter_Type (Param_Spec));
+ begin
+ if Present (AD) and then Protected_Present (AD) then
+ Formal_Type :=
+ Replace_Anonymous_Access_To_Protected_Subprogram
+ (Param_Spec);
+ end if;
+ end;
+ end if;
+
+ Set_Etype (Formal, Formal_Type);
+
+ -- Deal with default expression if present
+
+ Default := Expression (Param_Spec);
+
+ if Present (Default) then
+ Check_SPARK_Restriction
+ ("default expression is not allowed", Default);
+
+ if Out_Present (Param_Spec) then
+ Error_Msg_N
+ ("default initialization only allowed for IN parameters",
+ Param_Spec);
+ end if;
+
+ -- Do the special preanalysis of the expression (see section on
+ -- "Handling of Default Expressions" in the spec of package Sem).
+
+ Preanalyze_Spec_Expression (Default, Formal_Type);
+
+ -- An access to constant cannot be the default for
+ -- an access parameter that is an access to variable.
+
+ if Ekind (Formal_Type) = E_Anonymous_Access_Type
+ and then not Is_Access_Constant (Formal_Type)
+ and then Is_Access_Type (Etype (Default))
+ and then Is_Access_Constant (Etype (Default))
+ then
+ Error_Msg_N
+ ("formal that is access to variable cannot be initialized " &
+ "with an access-to-constant expression", Default);
+ end if;
+
+ -- Check that the designated type of an access parameter's default
+ -- is not a class-wide type unless the parameter's designated type
+ -- is also class-wide.
+
+ if Ekind (Formal_Type) = E_Anonymous_Access_Type
+ and then not Designates_From_Limited_With (Formal_Type)
+ and then Is_Class_Wide_Default (Default)
+ and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
+ then
+ Error_Msg_N
+ ("access to class-wide expression not allowed here", Default);
+ end if;
+
+ -- Check incorrect use of dynamically tagged expressions
+
+ if Is_Tagged_Type (Formal_Type) then
+ Check_Dynamically_Tagged_Expression
+ (Expr => Default,
+ Typ => Formal_Type,
+ Related_Nod => Default);
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-231): Static checks
+
+ if Ada_Version >= Ada_2005
+ and then Is_Access_Type (Etype (Formal))
+ and then Can_Never_Be_Null (Etype (Formal))
+ then
+ Null_Exclusion_Static_Checks (Param_Spec);
+ end if;
+
+ -- The following checks are relevant when SPARK_Mode is on as these
+ -- are not standard Ada legality rules.
+
+ if SPARK_Mode = On
+ and then Ekind_In (Scope (Formal), E_Function, E_Generic_Function)
+ then
+ -- A function cannot have a parameter of mode IN OUT or OUT
+ -- (SPARK RM 6.1).
+
+ if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
+ Error_Msg_N
+ ("function cannot have parameter of mode `OUT` or `IN OUT`",
+ Formal);
+
+ -- A function cannot have a volatile formal parameter
+ -- (SPARK RM 7.1.3(10)).
+
+ elsif Is_SPARK_Volatile_Object (Formal) then
+ Error_Msg_N
+ ("function cannot have a volatile formal parameter", Formal);
+ end if;
+ end if;
+
+ <<Continue>>
+ Next (Param_Spec);
+ end loop;
+
+ -- If this is the formal part of a function specification, analyze the
+ -- subtype mark in the context where the formals are visible but not
+ -- yet usable, and may hide outer homographs.
+
+ if Nkind (Related_Nod) = N_Function_Specification then
+ Analyze_Return_Type (Related_Nod);
+ end if;
+
+ -- Now set the kind (mode) of each formal
+
+ Param_Spec := First (T);
+ while Present (Param_Spec) loop
+ Formal := Defining_Identifier (Param_Spec);
+ Set_Formal_Mode (Formal);
+
+ if Ekind (Formal) = E_In_Parameter then
+ Set_Default_Value (Formal, Expression (Param_Spec));
+
+ if Present (Expression (Param_Spec)) then
+ Default := Expression (Param_Spec);
+
+ if Is_Scalar_Type (Etype (Default)) then
+ if Nkind (Parameter_Type (Param_Spec)) /=
+ N_Access_Definition
+ then
+ Formal_Type := Entity (Parameter_Type (Param_Spec));
+ else
+ Formal_Type :=
+ Access_Definition
+ (Related_Nod, Parameter_Type (Param_Spec));
+ end if;
+
+ Apply_Scalar_Range_Check (Default, Formal_Type);
+ end if;
+ end if;
+
+ elsif Ekind (Formal) = E_Out_Parameter then
+ Num_Out_Params := Num_Out_Params + 1;
+
+ if Num_Out_Params = 1 then
+ First_Out_Param := Formal;
+ end if;
+
+ elsif Ekind (Formal) = E_In_Out_Parameter then
+ Num_Out_Params := Num_Out_Params + 1;
+ end if;
+
+ -- Skip remaining processing if formal type was in error
+
+ if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
+ goto Next_Parameter;
+ end if;
+
+ -- Force call by reference if aliased
+
+ if Is_Aliased (Formal) then
+ Set_Mechanism (Formal, By_Reference);
+
+ -- Warn if user asked this to be passed by copy
+
+ if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
+ Error_Msg_N
+ ("cannot pass aliased parameter & by copy?", Formal);
+ end if;
+
+ -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
+
+ elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
+ Set_Mechanism (Formal, By_Copy);
+
+ elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
+ Set_Mechanism (Formal, By_Reference);
+ end if;
+
+ <<Next_Parameter>>
+ Next (Param_Spec);
+ end loop;
+
+ if Present (First_Out_Param) and then Num_Out_Params = 1 then
+ Set_Is_Only_Out_Parameter (First_Out_Param);
+ end if;
+ end Process_Formals;
+
+ ----------------------------
+ -- Reference_Body_Formals --
+ ----------------------------
+
+ procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
+ Fs : Entity_Id;
+ Fb : Entity_Id;
+
+ begin
+ if Error_Posted (Spec) then
+ return;
+ end if;
+
+ -- Iterate over both lists. They may be of different lengths if the two
+ -- specs are not conformant.
+
+ Fs := First_Formal (Spec);
+ Fb := First_Formal (Bod);
+ while Present (Fs) and then Present (Fb) loop
+ Generate_Reference (Fs, Fb, 'b');
+
+ if Style_Check then
+ Style.Check_Identifier (Fb, Fs);
+ end if;
+
+ Set_Spec_Entity (Fb, Fs);
+ Set_Referenced (Fs, False);
+ Next_Formal (Fs);
+ Next_Formal (Fb);
+ end loop;
+ end Reference_Body_Formals;
+
+ -------------------------
+ -- Set_Actual_Subtypes --
+ -------------------------
+
+ procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
+ Decl : Node_Id;
+ Formal : Entity_Id;
+ T : Entity_Id;
+ First_Stmt : Node_Id := Empty;
+ AS_Needed : Boolean;
+
+ begin
+ -- If this is an empty initialization procedure, no need to create
+ -- actual subtypes (small optimization).
+
+ if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
+ return;
+ end if;
+
+ Formal := First_Formal (Subp);
+ while Present (Formal) loop
+ T := Etype (Formal);
+
+ -- We never need an actual subtype for a constrained formal
+
+ if Is_Constrained (T) then
+ AS_Needed := False;
+
+ -- If we have unknown discriminants, then we do not need an actual
+ -- subtype, or more accurately we cannot figure it out. Note that
+ -- all class-wide types have unknown discriminants.
+
+ elsif Has_Unknown_Discriminants (T) then
+ AS_Needed := False;
+
+ -- At this stage we have an unconstrained type that may need an
+ -- actual subtype. For sure the actual subtype is needed if we have
+ -- an unconstrained array type.
+
+ elsif Is_Array_Type (T) then
+ AS_Needed := True;
+
+ -- The only other case needing an actual subtype is an unconstrained
+ -- record type which is an IN parameter (we cannot generate actual
+ -- subtypes for the OUT or IN OUT case, since an assignment can
+ -- change the discriminant values. However we exclude the case of
+ -- initialization procedures, since discriminants are handled very
+ -- specially in this context, see the section entitled "Handling of
+ -- Discriminants" in Einfo.
+
+ -- We also exclude the case of Discrim_SO_Functions (functions used
+ -- in front end layout mode for size/offset values), since in such
+ -- functions only discriminants are referenced, and not only are such
+ -- subtypes not needed, but they cannot always be generated, because
+ -- of order of elaboration issues.
+
+ elsif Is_Record_Type (T)
+ and then Ekind (Formal) = E_In_Parameter
+ and then Chars (Formal) /= Name_uInit
+ and then not Is_Unchecked_Union (T)
+ and then not Is_Discrim_SO_Function (Subp)
+ then
+ AS_Needed := True;
+
+ -- All other cases do not need an actual subtype
+
+ else
+ AS_Needed := False;
+ end if;
+
+ -- Generate actual subtypes for unconstrained arrays and
+ -- unconstrained discriminated records.
+
+ if AS_Needed then
+ if Nkind (N) = N_Accept_Statement then
+
+ -- If expansion is active, the formal is replaced by a local
+ -- variable that renames the corresponding entry of the
+ -- parameter block, and it is this local variable that may
+ -- require an actual subtype.
+
+ if Expander_Active then
+ Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
+ else
+ Decl := Build_Actual_Subtype (T, Formal);
+ end if;
+
+ if Present (Handled_Statement_Sequence (N)) then
+ First_Stmt :=
+ First (Statements (Handled_Statement_Sequence (N)));
+ Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
+ Mark_Rewrite_Insertion (Decl);
+ else
+ -- If the accept statement has no body, there will be no
+ -- reference to the actuals, so no need to compute actual
+ -- subtypes.
+
+ return;
+ end if;
+
+ else
+ Decl := Build_Actual_Subtype (T, Formal);
+ Prepend (Decl, Declarations (N));
+ Mark_Rewrite_Insertion (Decl);
+ end if;
+
+ -- The declaration uses the bounds of an existing object, and
+ -- therefore needs no constraint checks.
+
+ Analyze (Decl, Suppress => All_Checks);
+
+ -- We need to freeze manually the generated type when it is
+ -- inserted anywhere else than in a declarative part.
+
+ if Present (First_Stmt) then
+ Insert_List_Before_And_Analyze (First_Stmt,
+ Freeze_Entity (Defining_Identifier (Decl), N));
+
+ -- Ditto if the type has a dynamic predicate, because the
+ -- generated function will mention the actual subtype.
+
+ elsif Has_Dynamic_Predicate_Aspect (T) then
+ Insert_List_Before_And_Analyze (Decl,
+ Freeze_Entity (Defining_Identifier (Decl), N));
+ end if;
+
+ if Nkind (N) = N_Accept_Statement
+ and then Expander_Active
+ then
+ Set_Actual_Subtype (Renamed_Object (Formal),
+ Defining_Identifier (Decl));
+ else
+ Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
+ end if;
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+ end Set_Actual_Subtypes;
+
+ ---------------------
+ -- Set_Formal_Mode --
+ ---------------------
+
+ procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
+ Spec : constant Node_Id := Parent (Formal_Id);
+
+ begin
+ -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
+ -- since we ensure that corresponding actuals are always valid at the
+ -- point of the call.
+
+ if Out_Present (Spec) then
+ if Ekind (Scope (Formal_Id)) = E_Function
+ or else Ekind (Scope (Formal_Id)) = E_Generic_Function
+ then
+ -- [IN] OUT parameters allowed for functions in Ada 2012
+
+ if Ada_Version >= Ada_2012 then
+
+ -- Even in Ada 2012 operators can only have IN parameters
+
+ if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
+ Error_Msg_N ("operators can only have IN parameters", Spec);
+ end if;
+
+ if In_Present (Spec) then
+ Set_Ekind (Formal_Id, E_In_Out_Parameter);
+ else
+ Set_Ekind (Formal_Id, E_Out_Parameter);
+ end if;
+
+ -- But not in earlier versions of Ada
+
+ else
+ Error_Msg_N ("functions can only have IN parameters", Spec);
+ Set_Ekind (Formal_Id, E_In_Parameter);
+ end if;
+
+ elsif In_Present (Spec) then
+ Set_Ekind (Formal_Id, E_In_Out_Parameter);
+
+ else
+ Set_Ekind (Formal_Id, E_Out_Parameter);
+ Set_Never_Set_In_Source (Formal_Id, True);
+ Set_Is_True_Constant (Formal_Id, False);
+ Set_Current_Value (Formal_Id, Empty);
+ end if;
+
+ else
+ Set_Ekind (Formal_Id, E_In_Parameter);
+ end if;
+
+ -- Set Is_Known_Non_Null for access parameters since the language
+ -- guarantees that access parameters are always non-null. We also set
+ -- Can_Never_Be_Null, since there is no way to change the value.
+
+ if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
+
+ -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
+ -- null; In Ada 2005, only if then null_exclusion is explicit.
+
+ if Ada_Version < Ada_2005
+ or else Can_Never_Be_Null (Etype (Formal_Id))
+ then
+ Set_Is_Known_Non_Null (Formal_Id);
+ Set_Can_Never_Be_Null (Formal_Id);
+ end if;
+
+ -- Ada 2005 (AI-231): Null-exclusion access subtype
+
+ elsif Is_Access_Type (Etype (Formal_Id))
+ and then Can_Never_Be_Null (Etype (Formal_Id))
+ then
+ Set_Is_Known_Non_Null (Formal_Id);
+
+ -- We can also set Can_Never_Be_Null (thus preventing some junk
+ -- access checks) for the case of an IN parameter, which cannot
+ -- be changed, or for an IN OUT parameter, which can be changed but
+ -- not to a null value. But for an OUT parameter, the initial value
+ -- passed in can be null, so we can't set this flag in that case.
+
+ if Ekind (Formal_Id) /= E_Out_Parameter then
+ Set_Can_Never_Be_Null (Formal_Id);
+ end if;
+ end if;
+
+ Set_Mechanism (Formal_Id, Default_Mechanism);
+ Set_Formal_Validity (Formal_Id);
+ end Set_Formal_Mode;
+
+ -------------------------
+ -- Set_Formal_Validity --
+ -------------------------
+
+ procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
+ begin
+ -- If no validity checking, then we cannot assume anything about the
+ -- validity of parameters, since we do not know there is any checking
+ -- of the validity on the call side.
+
+ if not Validity_Checks_On then
+ return;
+
+ -- If validity checking for parameters is enabled, this means we are
+ -- not supposed to make any assumptions about argument values.
+
+ elsif Validity_Check_Parameters then
+ return;
+
+ -- If we are checking in parameters, we will assume that the caller is
+ -- also checking parameters, so we can assume the parameter is valid.
+
+ elsif Ekind (Formal_Id) = E_In_Parameter
+ and then Validity_Check_In_Params
+ then
+ Set_Is_Known_Valid (Formal_Id, True);
+
+ -- Similar treatment for IN OUT parameters
+
+ elsif Ekind (Formal_Id) = E_In_Out_Parameter
+ and then Validity_Check_In_Out_Params
+ then
+ Set_Is_Known_Valid (Formal_Id, True);
+ end if;
+ end Set_Formal_Validity;
+
+ ------------------------
+ -- Subtype_Conformant --
+ ------------------------
+
+ function Subtype_Conformant
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Skip_Controlling_Formals : Boolean := False) return Boolean
+ is
+ Result : Boolean;
+ begin
+ Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
+ Skip_Controlling_Formals => Skip_Controlling_Formals);
+ return Result;
+ end Subtype_Conformant;
+
+ ---------------------
+ -- Type_Conformant --
+ ---------------------
+
+ function Type_Conformant
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Skip_Controlling_Formals : Boolean := False) return Boolean
+ is
+ Result : Boolean;
+ begin
+ May_Hide_Profile := False;
+
+ Check_Conformance
+ (New_Id, Old_Id, Type_Conformant, False, Result,
+ Skip_Controlling_Formals => Skip_Controlling_Formals);
+ return Result;
+ end Type_Conformant;
+
+ -------------------------------
+ -- Valid_Operator_Definition --
+ -------------------------------
+
+ procedure Valid_Operator_Definition (Designator : Entity_Id) is
+ N : Integer := 0;
+ F : Entity_Id;
+ Id : constant Name_Id := Chars (Designator);
+ N_OK : Boolean;
+
+ begin
+ F := First_Formal (Designator);
+ while Present (F) loop
+ N := N + 1;
+
+ if Present (Default_Value (F)) then
+ Error_Msg_N
+ ("default values not allowed for operator parameters",
+ Parent (F));
+ end if;
+
+ Next_Formal (F);
+ end loop;
+
+ -- Verify that user-defined operators have proper number of arguments
+ -- First case of operators which can only be unary
+
+ if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
+ N_OK := (N = 1);
+
+ -- Case of operators which can be unary or binary
+
+ elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
+ N_OK := (N in 1 .. 2);
+
+ -- All other operators can only be binary
+
+ else
+ N_OK := (N = 2);
+ end if;
+
+ if not N_OK then
+ Error_Msg_N
+ ("incorrect number of arguments for operator", Designator);
+ end if;
+
+ if Id = Name_Op_Ne
+ and then Base_Type (Etype (Designator)) = Standard_Boolean
+ and then not Is_Intrinsic_Subprogram (Designator)
+ then
+ Error_Msg_N
+ ("explicit definition of inequality not allowed", Designator);
+ end if;
+ end Valid_Operator_Definition;
+
+end Sem_Ch6;