aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/ada/sem_ch13.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/ada/sem_ch13.adb')
-rw-r--r--gcc-4.9/gcc/ada/sem_ch13.adb11922
1 files changed, 11922 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/ada/sem_ch13.adb b/gcc-4.9/gcc/ada/sem_ch13.adb
new file mode 100644
index 000000000..1f8d73f25
--- /dev/null
+++ b/gcc-4.9/gcc/ada/sem_ch13.adb
@@ -0,0 +1,11922 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- S E M _ C H 1 3 --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Aspects; use Aspects;
+with Atree; use Atree;
+with Checks; use Checks;
+with Debug; use Debug;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Errout; use Errout;
+with Exp_Disp; use Exp_Disp;
+with Exp_Tss; use Exp_Tss;
+with Exp_Util; use Exp_Util;
+with Lib; use Lib;
+with Lib.Xref; use Lib.Xref;
+with Namet; use Namet;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Restrict; use Restrict;
+with Rident; use Rident;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Aux; use Sem_Aux;
+with Sem_Case; use Sem_Case;
+with Sem_Ch3; use Sem_Ch3;
+with Sem_Ch6; use Sem_Ch6;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Ch9; use Sem_Ch9;
+with Sem_Dim; use Sem_Dim;
+with Sem_Disp; use Sem_Disp;
+with Sem_Eval; use Sem_Eval;
+with Sem_Prag; use Sem_Prag;
+with Sem_Res; use Sem_Res;
+with Sem_Type; use Sem_Type;
+with Sem_Util; use Sem_Util;
+with Sem_Warn; use Sem_Warn;
+with Sinput; use Sinput;
+with Snames; use Snames;
+with Stand; use Stand;
+with Sinfo; use Sinfo;
+with Stringt; use Stringt;
+with Targparm; use Targparm;
+with Ttypes; use Ttypes;
+with Tbuild; use Tbuild;
+with Urealp; use Urealp;
+with Warnsw; use Warnsw;
+
+with GNAT.Heap_Sort_G;
+
+package body Sem_Ch13 is
+
+ SSU : constant Pos := System_Storage_Unit;
+ -- Convenient short hand for commonly used constant
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
+ -- This routine is called after setting one of the sizes of type entity
+ -- Typ to Size. The purpose is to deal with the situation of a derived
+ -- type whose inherited alignment is no longer appropriate for the new
+ -- size value. In this case, we reset the Alignment to unknown.
+
+ procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
+ -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
+ -- then either there are pragma Predicate entries on the rep chain for the
+ -- type (note that Predicate aspects are converted to pragma Predicate), or
+ -- there are inherited aspects from a parent type, or ancestor subtypes.
+ -- This procedure builds the spec and body for the Predicate function that
+ -- tests these predicates. N is the freeze node for the type. The spec of
+ -- the function is inserted before the freeze node, and the body of the
+ -- function is inserted after the freeze node. If the predicate expression
+ -- has at least one Raise_Expression, then this procedure also builds the
+ -- M version of the predicate function for use in membership tests.
+
+ procedure Build_Static_Predicate
+ (Typ : Entity_Id;
+ Expr : Node_Id;
+ Nam : Name_Id);
+ -- Given a predicated type Typ, where Typ is a discrete static subtype,
+ -- whose predicate expression is Expr, tests if Expr is a static predicate,
+ -- and if so, builds the predicate range list. Nam is the name of the one
+ -- argument to the predicate function. Occurrences of the type name in the
+ -- predicate expression have been replaced by identifier references to this
+ -- name, which is unique, so any identifier with Chars matching Nam must be
+ -- a reference to the type. If the predicate is non-static, this procedure
+ -- returns doing nothing. If the predicate is static, then the predicate
+ -- list is stored in Static_Predicate (Typ), and the Expr is rewritten as
+ -- a canonicalized membership operation.
+
+ procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
+ -- Called if both Storage_Pool and Storage_Size attribute definition
+ -- clauses (SP and SS) are present for entity Ent. Issue error message.
+
+ procedure Freeze_Entity_Checks (N : Node_Id);
+ -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
+ -- to generate appropriate semantic checks that are delayed until this
+ -- point (they had to be delayed this long for cases of delayed aspects,
+ -- e.g. analysis of statically predicated subtypes in choices, for which
+ -- we have to be sure the subtypes in question are frozen before checking.
+
+ function Get_Alignment_Value (Expr : Node_Id) return Uint;
+ -- Given the expression for an alignment value, returns the corresponding
+ -- Uint value. If the value is inappropriate, then error messages are
+ -- posted as required, and a value of No_Uint is returned.
+
+ function Is_Operational_Item (N : Node_Id) return Boolean;
+ -- A specification for a stream attribute is allowed before the full type
+ -- is declared, as explained in AI-00137 and the corrigendum. Attributes
+ -- that do not specify a representation characteristic are operational
+ -- attributes.
+
+ procedure New_Stream_Subprogram
+ (N : Node_Id;
+ Ent : Entity_Id;
+ Subp : Entity_Id;
+ Nam : TSS_Name_Type);
+ -- Create a subprogram renaming of a given stream attribute to the
+ -- designated subprogram and then in the tagged case, provide this as a
+ -- primitive operation, or in the non-tagged case make an appropriate TSS
+ -- entry. This is more properly an expansion activity than just semantics,
+ -- but the presence of user-defined stream functions for limited types is a
+ -- legality check, which is why this takes place here rather than in
+ -- exp_ch13, where it was previously. Nam indicates the name of the TSS
+ -- function to be generated.
+ --
+ -- To avoid elaboration anomalies with freeze nodes, for untagged types
+ -- we generate both a subprogram declaration and a subprogram renaming
+ -- declaration, so that the attribute specification is handled as a
+ -- renaming_as_body. For tagged types, the specification is one of the
+ -- primitive specs.
+
+ generic
+ with procedure Replace_Type_Reference (N : Node_Id);
+ procedure Replace_Type_References_Generic (N : Node_Id; TName : Name_Id);
+ -- This is used to scan an expression for a predicate or invariant aspect
+ -- replacing occurrences of the name TName (the name of the subtype to
+ -- which the aspect applies) with appropriate references to the parameter
+ -- of the predicate function or invariant procedure. The procedure passed
+ -- as a generic parameter does the actual replacement of node N, which is
+ -- either a simple direct reference to TName, or a selected component that
+ -- represents an appropriately qualified occurrence of TName.
+
+ procedure Resolve_Iterable_Operation
+ (N : Node_Id;
+ Cursor : Entity_Id;
+ Typ : Entity_Id;
+ Nam : Name_Id);
+ -- If the name of a primitive operation for an Iterable aspect is
+ -- overloaded, resolve according to required signature.
+
+ procedure Set_Biased
+ (E : Entity_Id;
+ N : Node_Id;
+ Msg : String;
+ Biased : Boolean := True);
+ -- If Biased is True, sets Has_Biased_Representation flag for E, and
+ -- outputs a warning message at node N if Warn_On_Biased_Representation is
+ -- is True. This warning inserts the string Msg to describe the construct
+ -- causing biasing.
+
+ ----------------------------------------------
+ -- Table for Validate_Unchecked_Conversions --
+ ----------------------------------------------
+
+ -- The following table collects unchecked conversions for validation.
+ -- Entries are made by Validate_Unchecked_Conversion and then the call
+ -- to Validate_Unchecked_Conversions does the actual error checking and
+ -- posting of warnings. The reason for this delayed processing is to take
+ -- advantage of back-annotations of size and alignment values performed by
+ -- the back end.
+
+ -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
+ -- that by the time Validate_Unchecked_Conversions is called, Sprint will
+ -- already have modified all Sloc values if the -gnatD option is set.
+
+ type UC_Entry is record
+ Eloc : Source_Ptr; -- node used for posting warnings
+ Source : Entity_Id; -- source type for unchecked conversion
+ Target : Entity_Id; -- target type for unchecked conversion
+ Act_Unit : Entity_Id; -- actual function instantiated
+ end record;
+
+ package Unchecked_Conversions is new Table.Table (
+ Table_Component_Type => UC_Entry,
+ Table_Index_Type => Int,
+ Table_Low_Bound => 1,
+ Table_Initial => 50,
+ Table_Increment => 200,
+ Table_Name => "Unchecked_Conversions");
+
+ ----------------------------------------
+ -- Table for Validate_Address_Clauses --
+ ----------------------------------------
+
+ -- If an address clause has the form
+
+ -- for X'Address use Expr
+
+ -- where Expr is of the form Y'Address or recursively is a reference to a
+ -- constant of either of these forms, and X and Y are entities of objects,
+ -- then if Y has a smaller alignment than X, that merits a warning about
+ -- possible bad alignment. The following table collects address clauses of
+ -- this kind. We put these in a table so that they can be checked after the
+ -- back end has completed annotation of the alignments of objects, since we
+ -- can catch more cases that way.
+
+ type Address_Clause_Check_Record is record
+ N : Node_Id;
+ -- The address clause
+
+ X : Entity_Id;
+ -- The entity of the object overlaying Y
+
+ Y : Entity_Id;
+ -- The entity of the object being overlaid
+
+ Off : Boolean;
+ -- Whether the address is offset within Y
+ end record;
+
+ package Address_Clause_Checks is new Table.Table (
+ Table_Component_Type => Address_Clause_Check_Record,
+ Table_Index_Type => Int,
+ Table_Low_Bound => 1,
+ Table_Initial => 20,
+ Table_Increment => 200,
+ Table_Name => "Address_Clause_Checks");
+
+ -----------------------------------------
+ -- Adjust_Record_For_Reverse_Bit_Order --
+ -----------------------------------------
+
+ procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
+ Comp : Node_Id;
+ CC : Node_Id;
+
+ begin
+ -- Processing depends on version of Ada
+
+ -- For Ada 95, we just renumber bits within a storage unit. We do the
+ -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
+ -- Ada 83, and are free to add this extension.
+
+ if Ada_Version < Ada_2005 then
+ Comp := First_Component_Or_Discriminant (R);
+ while Present (Comp) loop
+ CC := Component_Clause (Comp);
+
+ -- If component clause is present, then deal with the non-default
+ -- bit order case for Ada 95 mode.
+
+ -- We only do this processing for the base type, and in fact that
+ -- is important, since otherwise if there are record subtypes, we
+ -- could reverse the bits once for each subtype, which is wrong.
+
+ if Present (CC) and then Ekind (R) = E_Record_Type then
+ declare
+ CFB : constant Uint := Component_Bit_Offset (Comp);
+ CSZ : constant Uint := Esize (Comp);
+ CLC : constant Node_Id := Component_Clause (Comp);
+ Pos : constant Node_Id := Position (CLC);
+ FB : constant Node_Id := First_Bit (CLC);
+
+ Storage_Unit_Offset : constant Uint :=
+ CFB / System_Storage_Unit;
+
+ Start_Bit : constant Uint :=
+ CFB mod System_Storage_Unit;
+
+ begin
+ -- Cases where field goes over storage unit boundary
+
+ if Start_Bit + CSZ > System_Storage_Unit then
+
+ -- Allow multi-byte field but generate warning
+
+ if Start_Bit mod System_Storage_Unit = 0
+ and then CSZ mod System_Storage_Unit = 0
+ then
+ Error_Msg_N
+ ("multi-byte field specified with non-standard"
+ & " Bit_Order??", CLC);
+
+ if Bytes_Big_Endian then
+ Error_Msg_N
+ ("bytes are not reversed "
+ & "(component is big-endian)??", CLC);
+ else
+ Error_Msg_N
+ ("bytes are not reversed "
+ & "(component is little-endian)??", CLC);
+ end if;
+
+ -- Do not allow non-contiguous field
+
+ else
+ Error_Msg_N
+ ("attempt to specify non-contiguous field "
+ & "not permitted", CLC);
+ Error_Msg_N
+ ("\caused by non-standard Bit_Order "
+ & "specified", CLC);
+ Error_Msg_N
+ ("\consider possibility of using "
+ & "Ada 2005 mode here", CLC);
+ end if;
+
+ -- Case where field fits in one storage unit
+
+ else
+ -- Give warning if suspicious component clause
+
+ if Intval (FB) >= System_Storage_Unit
+ and then Warn_On_Reverse_Bit_Order
+ then
+ Error_Msg_N
+ ("Bit_Order clause does not affect " &
+ "byte ordering?V?", Pos);
+ Error_Msg_Uint_1 :=
+ Intval (Pos) + Intval (FB) /
+ System_Storage_Unit;
+ Error_Msg_N
+ ("position normalized to ^ before bit " &
+ "order interpreted?V?", Pos);
+ end if;
+
+ -- Here is where we fix up the Component_Bit_Offset value
+ -- to account for the reverse bit order. Some examples of
+ -- what needs to be done are:
+
+ -- First_Bit .. Last_Bit Component_Bit_Offset
+ -- old new old new
+
+ -- 0 .. 0 7 .. 7 0 7
+ -- 0 .. 1 6 .. 7 0 6
+ -- 0 .. 2 5 .. 7 0 5
+ -- 0 .. 7 0 .. 7 0 4
+
+ -- 1 .. 1 6 .. 6 1 6
+ -- 1 .. 4 3 .. 6 1 3
+ -- 4 .. 7 0 .. 3 4 0
+
+ -- The rule is that the first bit is is obtained by
+ -- subtracting the old ending bit from storage_unit - 1.
+
+ Set_Component_Bit_Offset
+ (Comp,
+ (Storage_Unit_Offset * System_Storage_Unit) +
+ (System_Storage_Unit - 1) -
+ (Start_Bit + CSZ - 1));
+
+ Set_Normalized_First_Bit
+ (Comp,
+ Component_Bit_Offset (Comp) mod
+ System_Storage_Unit);
+ end if;
+ end;
+ end if;
+
+ Next_Component_Or_Discriminant (Comp);
+ end loop;
+
+ -- For Ada 2005, we do machine scalar processing, as fully described In
+ -- AI-133. This involves gathering all components which start at the
+ -- same byte offset and processing them together. Same approach is still
+ -- valid in later versions including Ada 2012.
+
+ else
+ declare
+ Max_Machine_Scalar_Size : constant Uint :=
+ UI_From_Int
+ (Standard_Long_Long_Integer_Size);
+ -- We use this as the maximum machine scalar size
+
+ Num_CC : Natural;
+ SSU : constant Uint := UI_From_Int (System_Storage_Unit);
+
+ begin
+ -- This first loop through components does two things. First it
+ -- deals with the case of components with component clauses whose
+ -- length is greater than the maximum machine scalar size (either
+ -- accepting them or rejecting as needed). Second, it counts the
+ -- number of components with component clauses whose length does
+ -- not exceed this maximum for later processing.
+
+ Num_CC := 0;
+ Comp := First_Component_Or_Discriminant (R);
+ while Present (Comp) loop
+ CC := Component_Clause (Comp);
+
+ if Present (CC) then
+ declare
+ Fbit : constant Uint := Static_Integer (First_Bit (CC));
+ Lbit : constant Uint := Static_Integer (Last_Bit (CC));
+
+ begin
+ -- Case of component with last bit >= max machine scalar
+
+ if Lbit >= Max_Machine_Scalar_Size then
+
+ -- This is allowed only if first bit is zero, and
+ -- last bit + 1 is a multiple of storage unit size.
+
+ if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
+
+ -- This is the case to give a warning if enabled
+
+ if Warn_On_Reverse_Bit_Order then
+ Error_Msg_N
+ ("multi-byte field specified with "
+ & " non-standard Bit_Order?V?", CC);
+
+ if Bytes_Big_Endian then
+ Error_Msg_N
+ ("\bytes are not reversed "
+ & "(component is big-endian)?V?", CC);
+ else
+ Error_Msg_N
+ ("\bytes are not reversed "
+ & "(component is little-endian)?V?", CC);
+ end if;
+ end if;
+
+ -- Give error message for RM 13.5.1(10) violation
+
+ else
+ Error_Msg_FE
+ ("machine scalar rules not followed for&",
+ First_Bit (CC), Comp);
+
+ Error_Msg_Uint_1 := Lbit;
+ Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
+ Error_Msg_F
+ ("\last bit (^) exceeds maximum machine "
+ & "scalar size (^)",
+ First_Bit (CC));
+
+ if (Lbit + 1) mod SSU /= 0 then
+ Error_Msg_Uint_1 := SSU;
+ Error_Msg_F
+ ("\and is not a multiple of Storage_Unit (^) "
+ & "(RM 13.4.1(10))",
+ First_Bit (CC));
+
+ else
+ Error_Msg_Uint_1 := Fbit;
+ Error_Msg_F
+ ("\and first bit (^) is non-zero "
+ & "(RM 13.4.1(10))",
+ First_Bit (CC));
+ end if;
+ end if;
+
+ -- OK case of machine scalar related component clause,
+ -- For now, just count them.
+
+ else
+ Num_CC := Num_CC + 1;
+ end if;
+ end;
+ end if;
+
+ Next_Component_Or_Discriminant (Comp);
+ end loop;
+
+ -- We need to sort the component clauses on the basis of the
+ -- Position values in the clause, so we can group clauses with
+ -- the same Position. together to determine the relevant machine
+ -- scalar size.
+
+ Sort_CC : declare
+ Comps : array (0 .. Num_CC) of Entity_Id;
+ -- Array to collect component and discriminant entities. The
+ -- data starts at index 1, the 0'th entry is for the sort
+ -- routine.
+
+ function CP_Lt (Op1, Op2 : Natural) return Boolean;
+ -- Compare routine for Sort
+
+ procedure CP_Move (From : Natural; To : Natural);
+ -- Move routine for Sort
+
+ package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
+
+ Start : Natural;
+ Stop : Natural;
+ -- Start and stop positions in the component list of the set of
+ -- components with the same starting position (that constitute
+ -- components in a single machine scalar).
+
+ MaxL : Uint;
+ -- Maximum last bit value of any component in this set
+
+ MSS : Uint;
+ -- Corresponding machine scalar size
+
+ -----------
+ -- CP_Lt --
+ -----------
+
+ function CP_Lt (Op1, Op2 : Natural) return Boolean is
+ begin
+ return Position (Component_Clause (Comps (Op1))) <
+ Position (Component_Clause (Comps (Op2)));
+ end CP_Lt;
+
+ -------------
+ -- CP_Move --
+ -------------
+
+ procedure CP_Move (From : Natural; To : Natural) is
+ begin
+ Comps (To) := Comps (From);
+ end CP_Move;
+
+ -- Start of processing for Sort_CC
+
+ begin
+ -- Collect the machine scalar relevant component clauses
+
+ Num_CC := 0;
+ Comp := First_Component_Or_Discriminant (R);
+ while Present (Comp) loop
+ declare
+ CC : constant Node_Id := Component_Clause (Comp);
+
+ begin
+ -- Collect only component clauses whose last bit is less
+ -- than machine scalar size. Any component clause whose
+ -- last bit exceeds this value does not take part in
+ -- machine scalar layout considerations. The test for
+ -- Error_Posted makes sure we exclude component clauses
+ -- for which we already posted an error.
+
+ if Present (CC)
+ and then not Error_Posted (Last_Bit (CC))
+ and then Static_Integer (Last_Bit (CC)) <
+ Max_Machine_Scalar_Size
+ then
+ Num_CC := Num_CC + 1;
+ Comps (Num_CC) := Comp;
+ end if;
+ end;
+
+ Next_Component_Or_Discriminant (Comp);
+ end loop;
+
+ -- Sort by ascending position number
+
+ Sorting.Sort (Num_CC);
+
+ -- We now have all the components whose size does not exceed
+ -- the max machine scalar value, sorted by starting position.
+ -- In this loop we gather groups of clauses starting at the
+ -- same position, to process them in accordance with AI-133.
+
+ Stop := 0;
+ while Stop < Num_CC loop
+ Start := Stop + 1;
+ Stop := Start;
+ MaxL :=
+ Static_Integer
+ (Last_Bit (Component_Clause (Comps (Start))));
+ while Stop < Num_CC loop
+ if Static_Integer
+ (Position (Component_Clause (Comps (Stop + 1)))) =
+ Static_Integer
+ (Position (Component_Clause (Comps (Stop))))
+ then
+ Stop := Stop + 1;
+ MaxL :=
+ UI_Max
+ (MaxL,
+ Static_Integer
+ (Last_Bit
+ (Component_Clause (Comps (Stop)))));
+ else
+ exit;
+ end if;
+ end loop;
+
+ -- Now we have a group of component clauses from Start to
+ -- Stop whose positions are identical, and MaxL is the
+ -- maximum last bit value of any of these components.
+
+ -- We need to determine the corresponding machine scalar
+ -- size. This loop assumes that machine scalar sizes are
+ -- even, and that each possible machine scalar has twice
+ -- as many bits as the next smaller one.
+
+ MSS := Max_Machine_Scalar_Size;
+ while MSS mod 2 = 0
+ and then (MSS / 2) >= SSU
+ and then (MSS / 2) > MaxL
+ loop
+ MSS := MSS / 2;
+ end loop;
+
+ -- Here is where we fix up the Component_Bit_Offset value
+ -- to account for the reverse bit order. Some examples of
+ -- what needs to be done for the case of a machine scalar
+ -- size of 8 are:
+
+ -- First_Bit .. Last_Bit Component_Bit_Offset
+ -- old new old new
+
+ -- 0 .. 0 7 .. 7 0 7
+ -- 0 .. 1 6 .. 7 0 6
+ -- 0 .. 2 5 .. 7 0 5
+ -- 0 .. 7 0 .. 7 0 4
+
+ -- 1 .. 1 6 .. 6 1 6
+ -- 1 .. 4 3 .. 6 1 3
+ -- 4 .. 7 0 .. 3 4 0
+
+ -- The rule is that the first bit is obtained by subtracting
+ -- the old ending bit from machine scalar size - 1.
+
+ for C in Start .. Stop loop
+ declare
+ Comp : constant Entity_Id := Comps (C);
+ CC : constant Node_Id := Component_Clause (Comp);
+
+ LB : constant Uint := Static_Integer (Last_Bit (CC));
+ NFB : constant Uint := MSS - Uint_1 - LB;
+ NLB : constant Uint := NFB + Esize (Comp) - 1;
+ Pos : constant Uint := Static_Integer (Position (CC));
+
+ begin
+ if Warn_On_Reverse_Bit_Order then
+ Error_Msg_Uint_1 := MSS;
+ Error_Msg_N
+ ("info: reverse bit order in machine " &
+ "scalar of length^?V?", First_Bit (CC));
+ Error_Msg_Uint_1 := NFB;
+ Error_Msg_Uint_2 := NLB;
+
+ if Bytes_Big_Endian then
+ Error_Msg_NE
+ ("\info: big-endian range for "
+ & "component & is ^ .. ^?V?",
+ First_Bit (CC), Comp);
+ else
+ Error_Msg_NE
+ ("\info: little-endian range "
+ & "for component & is ^ .. ^?V?",
+ First_Bit (CC), Comp);
+ end if;
+ end if;
+
+ Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
+ Set_Normalized_First_Bit (Comp, NFB mod SSU);
+ end;
+ end loop;
+ end loop;
+ end Sort_CC;
+ end;
+ end if;
+ end Adjust_Record_For_Reverse_Bit_Order;
+
+ -------------------------------------
+ -- Alignment_Check_For_Size_Change --
+ -------------------------------------
+
+ procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
+ begin
+ -- If the alignment is known, and not set by a rep clause, and is
+ -- inconsistent with the size being set, then reset it to unknown,
+ -- we assume in this case that the size overrides the inherited
+ -- alignment, and that the alignment must be recomputed.
+
+ if Known_Alignment (Typ)
+ and then not Has_Alignment_Clause (Typ)
+ and then Size mod (Alignment (Typ) * SSU) /= 0
+ then
+ Init_Alignment (Typ);
+ end if;
+ end Alignment_Check_For_Size_Change;
+
+ -------------------------------------
+ -- Analyze_Aspects_At_Freeze_Point --
+ -------------------------------------
+
+ procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
+ ASN : Node_Id;
+ A_Id : Aspect_Id;
+ Ritem : Node_Id;
+
+ procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
+ -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
+ -- the aspect specification node ASN.
+
+ procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
+ -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
+ -- a derived type can inherit aspects from its parent which have been
+ -- specified at the time of the derivation using an aspect, as in:
+ --
+ -- type A is range 1 .. 10
+ -- with Size => Not_Defined_Yet;
+ -- ..
+ -- type B is new A;
+ -- ..
+ -- Not_Defined_Yet : constant := 64;
+ --
+ -- In this example, the Size of A is considered to be specified prior
+ -- to the derivation, and thus inherited, even though the value is not
+ -- known at the time of derivation. To deal with this, we use two entity
+ -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
+ -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
+ -- the derived type (B here). If this flag is set when the derived type
+ -- is frozen, then this procedure is called to ensure proper inheritance
+ -- of all delayed aspects from the parent type. The derived type is E,
+ -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
+ -- aspect specification node in the Rep_Item chain for the parent type.
+
+ procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
+ -- Given an aspect specification node ASN whose expression is an
+ -- optional Boolean, this routines creates the corresponding pragma
+ -- at the freezing point.
+
+ ----------------------------------
+ -- Analyze_Aspect_Default_Value --
+ ----------------------------------
+
+ procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
+ Ent : constant Entity_Id := Entity (ASN);
+ Expr : constant Node_Id := Expression (ASN);
+ Id : constant Node_Id := Identifier (ASN);
+
+ begin
+ Error_Msg_Name_1 := Chars (Id);
+
+ if not Is_Type (Ent) then
+ Error_Msg_N ("aspect% can only apply to a type", Id);
+ return;
+
+ elsif not Is_First_Subtype (Ent) then
+ Error_Msg_N ("aspect% cannot apply to subtype", Id);
+ return;
+
+ elsif A_Id = Aspect_Default_Value
+ and then not Is_Scalar_Type (Ent)
+ then
+ Error_Msg_N ("aspect% can only be applied to scalar type", Id);
+ return;
+
+ elsif A_Id = Aspect_Default_Component_Value then
+ if not Is_Array_Type (Ent) then
+ Error_Msg_N ("aspect% can only be applied to array type", Id);
+ return;
+
+ elsif not Is_Scalar_Type (Component_Type (Ent)) then
+ Error_Msg_N ("aspect% requires scalar components", Id);
+ return;
+ end if;
+ end if;
+
+ Set_Has_Default_Aspect (Base_Type (Ent));
+
+ if Is_Scalar_Type (Ent) then
+ Set_Default_Aspect_Value (Base_Type (Ent), Expr);
+ else
+ Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
+ end if;
+ end Analyze_Aspect_Default_Value;
+
+ ---------------------------------
+ -- Inherit_Delayed_Rep_Aspects --
+ ---------------------------------
+
+ procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
+ P : constant Entity_Id := Entity (ASN);
+ -- Entithy for parent type
+
+ N : Node_Id;
+ -- Item from Rep_Item chain
+
+ A : Aspect_Id;
+
+ begin
+ -- Loop through delayed aspects for the parent type
+
+ N := ASN;
+ while Present (N) loop
+ if Nkind (N) = N_Aspect_Specification then
+ exit when Entity (N) /= P;
+
+ if Is_Delayed_Aspect (N) then
+ A := Get_Aspect_Id (Chars (Identifier (N)));
+
+ -- Process delayed rep aspect. For Boolean attributes it is
+ -- not possible to cancel an attribute once set (the attempt
+ -- to use an aspect with xxx => False is an error) for a
+ -- derived type. So for those cases, we do not have to check
+ -- if a clause has been given for the derived type, since it
+ -- is harmless to set it again if it is already set.
+
+ case A is
+
+ -- Alignment
+
+ when Aspect_Alignment =>
+ if not Has_Alignment_Clause (E) then
+ Set_Alignment (E, Alignment (P));
+ end if;
+
+ -- Atomic
+
+ when Aspect_Atomic =>
+ if Is_Atomic (P) then
+ Set_Is_Atomic (E);
+ end if;
+
+ -- Atomic_Components
+
+ when Aspect_Atomic_Components =>
+ if Has_Atomic_Components (P) then
+ Set_Has_Atomic_Components (Base_Type (E));
+ end if;
+
+ -- Bit_Order
+
+ when Aspect_Bit_Order =>
+ if Is_Record_Type (E)
+ and then No (Get_Attribute_Definition_Clause
+ (E, Attribute_Bit_Order))
+ and then Reverse_Bit_Order (P)
+ then
+ Set_Reverse_Bit_Order (Base_Type (E));
+ end if;
+
+ -- Component_Size
+
+ when Aspect_Component_Size =>
+ if Is_Array_Type (E)
+ and then not Has_Component_Size_Clause (E)
+ then
+ Set_Component_Size
+ (Base_Type (E), Component_Size (P));
+ end if;
+
+ -- Machine_Radix
+
+ when Aspect_Machine_Radix =>
+ if Is_Decimal_Fixed_Point_Type (E)
+ and then not Has_Machine_Radix_Clause (E)
+ then
+ Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
+ end if;
+
+ -- Object_Size (also Size which also sets Object_Size)
+
+ when Aspect_Object_Size | Aspect_Size =>
+ if not Has_Size_Clause (E)
+ and then
+ No (Get_Attribute_Definition_Clause
+ (E, Attribute_Object_Size))
+ then
+ Set_Esize (E, Esize (P));
+ end if;
+
+ -- Pack
+
+ when Aspect_Pack =>
+ if not Is_Packed (E) then
+ Set_Is_Packed (Base_Type (E));
+
+ if Is_Bit_Packed_Array (P) then
+ Set_Is_Bit_Packed_Array (Base_Type (E));
+ Set_Packed_Array_Type (E, Packed_Array_Type (P));
+ end if;
+ end if;
+
+ -- Scalar_Storage_Order
+
+ when Aspect_Scalar_Storage_Order =>
+ if (Is_Record_Type (E) or else Is_Array_Type (E))
+ and then No (Get_Attribute_Definition_Clause
+ (E, Attribute_Scalar_Storage_Order))
+ and then Reverse_Storage_Order (P)
+ then
+ Set_Reverse_Storage_Order (Base_Type (E));
+ end if;
+
+ -- Small
+
+ when Aspect_Small =>
+ if Is_Fixed_Point_Type (E)
+ and then not Has_Small_Clause (E)
+ then
+ Set_Small_Value (E, Small_Value (P));
+ end if;
+
+ -- Storage_Size
+
+ when Aspect_Storage_Size =>
+ if (Is_Access_Type (E) or else Is_Task_Type (E))
+ and then not Has_Storage_Size_Clause (E)
+ then
+ Set_Storage_Size_Variable
+ (Base_Type (E), Storage_Size_Variable (P));
+ end if;
+
+ -- Value_Size
+
+ when Aspect_Value_Size =>
+
+ -- Value_Size is never inherited, it is either set by
+ -- default, or it is explicitly set for the derived
+ -- type. So nothing to do here.
+
+ null;
+
+ -- Volatile
+
+ when Aspect_Volatile =>
+ if Is_Volatile (P) then
+ Set_Is_Volatile (E);
+ end if;
+
+ -- Volatile_Components
+
+ when Aspect_Volatile_Components =>
+ if Has_Volatile_Components (P) then
+ Set_Has_Volatile_Components (Base_Type (E));
+ end if;
+
+ -- That should be all the Rep Aspects
+
+ when others =>
+ pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
+ null;
+
+ end case;
+ end if;
+ end if;
+
+ N := Next_Rep_Item (N);
+ end loop;
+ end Inherit_Delayed_Rep_Aspects;
+
+ -------------------------------------
+ -- Make_Pragma_From_Boolean_Aspect --
+ -------------------------------------
+
+ procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
+ Ident : constant Node_Id := Identifier (ASN);
+ A_Name : constant Name_Id := Chars (Ident);
+ A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
+ Ent : constant Entity_Id := Entity (ASN);
+ Expr : constant Node_Id := Expression (ASN);
+ Loc : constant Source_Ptr := Sloc (ASN);
+
+ Prag : Node_Id;
+
+ procedure Check_False_Aspect_For_Derived_Type;
+ -- This procedure checks for the case of a false aspect for a derived
+ -- type, which improperly tries to cancel an aspect inherited from
+ -- the parent.
+
+ -----------------------------------------
+ -- Check_False_Aspect_For_Derived_Type --
+ -----------------------------------------
+
+ procedure Check_False_Aspect_For_Derived_Type is
+ Par : Node_Id;
+
+ begin
+ -- We are only checking derived types
+
+ if not Is_Derived_Type (E) then
+ return;
+ end if;
+
+ Par := Nearest_Ancestor (E);
+
+ case A_Id is
+ when Aspect_Atomic | Aspect_Shared =>
+ if not Is_Atomic (Par) then
+ return;
+ end if;
+
+ when Aspect_Atomic_Components =>
+ if not Has_Atomic_Components (Par) then
+ return;
+ end if;
+
+ when Aspect_Discard_Names =>
+ if not Discard_Names (Par) then
+ return;
+ end if;
+
+ when Aspect_Pack =>
+ if not Is_Packed (Par) then
+ return;
+ end if;
+
+ when Aspect_Unchecked_Union =>
+ if not Is_Unchecked_Union (Par) then
+ return;
+ end if;
+
+ when Aspect_Volatile =>
+ if not Is_Volatile (Par) then
+ return;
+ end if;
+
+ when Aspect_Volatile_Components =>
+ if not Has_Volatile_Components (Par) then
+ return;
+ end if;
+
+ when others =>
+ return;
+ end case;
+
+ -- Fall through means we are canceling an inherited aspect
+
+ Error_Msg_Name_1 := A_Name;
+ Error_Msg_NE
+ ("derived type& inherits aspect%, cannot cancel", Expr, E);
+
+ end Check_False_Aspect_For_Derived_Type;
+
+ -- Start of processing for Make_Pragma_From_Boolean_Aspect
+
+ begin
+ -- Note that we know Expr is present, because for a missing Expr
+ -- argument, we knew it was True and did not need to delay the
+ -- evaluation to the freeze point.
+
+ if Is_False (Static_Boolean (Expr)) then
+ Check_False_Aspect_For_Derived_Type;
+
+ else
+ Prag :=
+ Make_Pragma (Loc,
+ Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Sloc (Ident),
+ Expression => New_Occurrence_Of (Ent, Sloc (Ident)))),
+
+ Pragma_Identifier =>
+ Make_Identifier (Sloc (Ident), Chars (Ident)));
+
+ Set_From_Aspect_Specification (Prag, True);
+ Set_Corresponding_Aspect (Prag, ASN);
+ Set_Aspect_Rep_Item (ASN, Prag);
+ Set_Is_Delayed_Aspect (Prag);
+ Set_Parent (Prag, ASN);
+ end if;
+ end Make_Pragma_From_Boolean_Aspect;
+
+ -- Start of processing for Analyze_Aspects_At_Freeze_Point
+
+ begin
+ -- Must be visible in current scope
+
+ if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
+ return;
+ end if;
+
+ -- Look for aspect specification entries for this entity
+
+ ASN := First_Rep_Item (E);
+ while Present (ASN) loop
+ if Nkind (ASN) = N_Aspect_Specification then
+ exit when Entity (ASN) /= E;
+
+ if Is_Delayed_Aspect (ASN) then
+ A_Id := Get_Aspect_Id (ASN);
+
+ case A_Id is
+
+ -- For aspects whose expression is an optional Boolean, make
+ -- the corresponding pragma at the freezing point.
+
+ when Boolean_Aspects |
+ Library_Unit_Aspects =>
+ Make_Pragma_From_Boolean_Aspect (ASN);
+
+ -- Special handling for aspects that don't correspond to
+ -- pragmas/attributes.
+
+ when Aspect_Default_Value |
+ Aspect_Default_Component_Value =>
+ Analyze_Aspect_Default_Value (ASN);
+
+ -- Ditto for iterator aspects, because the corresponding
+ -- attributes may not have been analyzed yet.
+
+ when Aspect_Constant_Indexing |
+ Aspect_Variable_Indexing |
+ Aspect_Default_Iterator |
+ Aspect_Iterator_Element =>
+ Analyze (Expression (ASN));
+
+ when Aspect_Iterable =>
+ Validate_Iterable_Aspect (E, ASN);
+
+ when others =>
+ null;
+ end case;
+
+ Ritem := Aspect_Rep_Item (ASN);
+
+ if Present (Ritem) then
+ Analyze (Ritem);
+ end if;
+ end if;
+ end if;
+
+ Next_Rep_Item (ASN);
+ end loop;
+
+ -- This is where we inherit delayed rep aspects from our parent. Note
+ -- that if we fell out of the above loop with ASN non-empty, it means
+ -- we hit an aspect for an entity other than E, and it must be the
+ -- type from which we were derived.
+
+ if May_Inherit_Delayed_Rep_Aspects (E) then
+ Inherit_Delayed_Rep_Aspects (ASN);
+ end if;
+ end Analyze_Aspects_At_Freeze_Point;
+
+ -----------------------------------
+ -- Analyze_Aspect_Specifications --
+ -----------------------------------
+
+ procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
+ procedure Decorate_Aspect_And_Pragma
+ (Asp : Node_Id;
+ Prag : Node_Id;
+ Delayed : Boolean := False);
+ -- Establish the linkages between an aspect and its corresponding
+ -- pragma. Flag Delayed should be set when both constructs are delayed.
+
+ procedure Insert_Delayed_Pragma (Prag : Node_Id);
+ -- Insert a postcondition-like pragma into the tree depending on the
+ -- context. Prag must denote one of the following: Pre, Post, Depends,
+ -- Global or Contract_Cases.
+
+ --------------------------------
+ -- Decorate_Aspect_And_Pragma --
+ --------------------------------
+
+ procedure Decorate_Aspect_And_Pragma
+ (Asp : Node_Id;
+ Prag : Node_Id;
+ Delayed : Boolean := False)
+ is
+ begin
+ Set_Aspect_Rep_Item (Asp, Prag);
+ Set_Corresponding_Aspect (Prag, Asp);
+ Set_From_Aspect_Specification (Prag);
+ Set_Is_Delayed_Aspect (Prag, Delayed);
+ Set_Is_Delayed_Aspect (Asp, Delayed);
+ Set_Parent (Prag, Asp);
+ end Decorate_Aspect_And_Pragma;
+
+ ---------------------------
+ -- Insert_Delayed_Pragma --
+ ---------------------------
+
+ procedure Insert_Delayed_Pragma (Prag : Node_Id) is
+ Aux : Node_Id;
+
+ begin
+ -- When the context is a library unit, the pragma is added to the
+ -- Pragmas_After list.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ Aux := Aux_Decls_Node (Parent (N));
+
+ if No (Pragmas_After (Aux)) then
+ Set_Pragmas_After (Aux, New_List);
+ end if;
+
+ Prepend (Prag, Pragmas_After (Aux));
+
+ -- Pragmas associated with subprogram bodies are inserted in the
+ -- declarative part.
+
+ elsif Nkind (N) = N_Subprogram_Body then
+ if No (Declarations (N)) then
+ Set_Declarations (N, New_List (Prag));
+ else
+ declare
+ D : Node_Id;
+ begin
+
+ -- There may be several aspects associated with the body;
+ -- preserve the ordering of the corresponding pragmas.
+
+ D := First (Declarations (N));
+ while Present (D) loop
+ exit when Nkind (D) /= N_Pragma
+ or else not From_Aspect_Specification (D);
+ Next (D);
+ end loop;
+
+ if No (D) then
+ Append (Prag, Declarations (N));
+ else
+ Insert_Before (D, Prag);
+ end if;
+ end;
+ end if;
+
+ -- Default
+
+ else
+ Insert_After (N, Prag);
+ end if;
+ end Insert_Delayed_Pragma;
+
+ -- Local variables
+
+ Aspect : Node_Id;
+ Aitem : Node_Id;
+ Ent : Node_Id;
+
+ L : constant List_Id := Aspect_Specifications (N);
+
+ Ins_Node : Node_Id := N;
+ -- Insert pragmas/attribute definition clause after this node when no
+ -- delayed analysis is required.
+
+ -- Start of processing for Analyze_Aspect_Specifications
+
+ -- The general processing involves building an attribute definition
+ -- clause or a pragma node that corresponds to the aspect. Then in order
+ -- to delay the evaluation of this aspect to the freeze point, we attach
+ -- the corresponding pragma/attribute definition clause to the aspect
+ -- specification node, which is then placed in the Rep Item chain. In
+ -- this case we mark the entity by setting the flag Has_Delayed_Aspects
+ -- and we evaluate the rep item at the freeze point. When the aspect
+ -- doesn't have a corresponding pragma/attribute definition clause, then
+ -- its analysis is simply delayed at the freeze point.
+
+ -- Some special cases don't require delay analysis, thus the aspect is
+ -- analyzed right now.
+
+ -- Note that there is a special handling for Pre, Post, Test_Case,
+ -- Contract_Cases aspects. In these cases, we do not have to worry
+ -- about delay issues, since the pragmas themselves deal with delay
+ -- of visibility for the expression analysis. Thus, we just insert
+ -- the pragma after the node N.
+
+ begin
+ pragma Assert (Present (L));
+
+ -- Loop through aspects
+
+ Aspect := First (L);
+ Aspect_Loop : while Present (Aspect) loop
+ Analyze_One_Aspect : declare
+ Expr : constant Node_Id := Expression (Aspect);
+ Id : constant Node_Id := Identifier (Aspect);
+ Loc : constant Source_Ptr := Sloc (Aspect);
+ Nam : constant Name_Id := Chars (Id);
+ A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
+ Anod : Node_Id;
+
+ Delay_Required : Boolean;
+ -- Set False if delay is not required
+
+ Eloc : Source_Ptr := No_Location;
+ -- Source location of expression, modified when we split PPC's. It
+ -- is set below when Expr is present.
+
+ procedure Analyze_Aspect_External_Or_Link_Name;
+ -- Perform analysis of the External_Name or Link_Name aspects
+
+ procedure Analyze_Aspect_Implicit_Dereference;
+ -- Perform analysis of the Implicit_Dereference aspects
+
+ procedure Make_Aitem_Pragma
+ (Pragma_Argument_Associations : List_Id;
+ Pragma_Name : Name_Id);
+ -- This is a wrapper for Make_Pragma used for converting aspects
+ -- to pragmas. It takes care of Sloc (set from Loc) and building
+ -- the pragma identifier from the given name. In addition the
+ -- flags Class_Present and Split_PPC are set from the aspect
+ -- node, as well as Is_Ignored. This routine also sets the
+ -- From_Aspect_Specification in the resulting pragma node to
+ -- True, and sets Corresponding_Aspect to point to the aspect.
+ -- The resulting pragma is assigned to Aitem.
+
+ ------------------------------------------
+ -- Analyze_Aspect_External_Or_Link_Name --
+ ------------------------------------------
+
+ procedure Analyze_Aspect_External_Or_Link_Name is
+ begin
+ -- Verify that there is an Import/Export aspect defined for the
+ -- entity. The processing of that aspect in turn checks that
+ -- there is a Convention aspect declared. The pragma is
+ -- constructed when processing the Convention aspect.
+
+ declare
+ A : Node_Id;
+
+ begin
+ A := First (L);
+ while Present (A) loop
+ exit when Nam_In (Chars (Identifier (A)), Name_Export,
+ Name_Import);
+ Next (A);
+ end loop;
+
+ if No (A) then
+ Error_Msg_N
+ ("missing Import/Export for Link/External name",
+ Aspect);
+ end if;
+ end;
+ end Analyze_Aspect_External_Or_Link_Name;
+
+ -----------------------------------------
+ -- Analyze_Aspect_Implicit_Dereference --
+ -----------------------------------------
+
+ procedure Analyze_Aspect_Implicit_Dereference is
+ begin
+ if not Is_Type (E) or else not Has_Discriminants (E) then
+ Error_Msg_N
+ ("aspect must apply to a type with discriminants", N);
+
+ else
+ declare
+ Disc : Entity_Id;
+
+ begin
+ Disc := First_Discriminant (E);
+ while Present (Disc) loop
+ if Chars (Expr) = Chars (Disc)
+ and then Ekind (Etype (Disc)) =
+ E_Anonymous_Access_Type
+ then
+ Set_Has_Implicit_Dereference (E);
+ Set_Has_Implicit_Dereference (Disc);
+ return;
+ end if;
+
+ Next_Discriminant (Disc);
+ end loop;
+
+ -- Error if no proper access discriminant.
+
+ Error_Msg_NE
+ ("not an access discriminant of&", Expr, E);
+ end;
+ end if;
+ end Analyze_Aspect_Implicit_Dereference;
+
+ -----------------------
+ -- Make_Aitem_Pragma --
+ -----------------------
+
+ procedure Make_Aitem_Pragma
+ (Pragma_Argument_Associations : List_Id;
+ Pragma_Name : Name_Id)
+ is
+ Args : List_Id := Pragma_Argument_Associations;
+
+ begin
+ -- We should never get here if aspect was disabled
+
+ pragma Assert (not Is_Disabled (Aspect));
+
+ -- Certain aspects allow for an optional name or expression. Do
+ -- not generate a pragma with empty argument association list.
+
+ if No (Args) or else No (Expression (First (Args))) then
+ Args := No_List;
+ end if;
+
+ -- Build the pragma
+
+ Aitem :=
+ Make_Pragma (Loc,
+ Pragma_Argument_Associations => Args,
+ Pragma_Identifier =>
+ Make_Identifier (Sloc (Id), Pragma_Name),
+ Class_Present => Class_Present (Aspect),
+ Split_PPC => Split_PPC (Aspect));
+
+ -- Set additional semantic fields
+
+ if Is_Ignored (Aspect) then
+ Set_Is_Ignored (Aitem);
+ elsif Is_Checked (Aspect) then
+ Set_Is_Checked (Aitem);
+ end if;
+
+ Set_Corresponding_Aspect (Aitem, Aspect);
+ Set_From_Aspect_Specification (Aitem, True);
+ end Make_Aitem_Pragma;
+
+ -- Start of processing for Analyze_One_Aspect
+
+ begin
+ -- Skip aspect if already analyzed (not clear if this is needed)
+
+ if Analyzed (Aspect) then
+ goto Continue;
+ end if;
+
+ -- Skip looking at aspect if it is totally disabled. Just mark it
+ -- as such for later reference in the tree. This also sets the
+ -- Is_Ignored and Is_Checked flags appropriately.
+
+ Check_Applicable_Policy (Aspect);
+
+ if Is_Disabled (Aspect) then
+ goto Continue;
+ end if;
+
+ -- Set the source location of expression, used in the case of
+ -- a failed precondition/postcondition or invariant. Note that
+ -- the source location of the expression is not usually the best
+ -- choice here. For example, it gets located on the last AND
+ -- keyword in a chain of boolean expressiond AND'ed together.
+ -- It is best to put the message on the first character of the
+ -- assertion, which is the effect of the First_Node call here.
+
+ if Present (Expr) then
+ Eloc := Sloc (First_Node (Expr));
+ end if;
+
+ -- Check restriction No_Implementation_Aspect_Specifications
+
+ if Implementation_Defined_Aspect (A_Id) then
+ Check_Restriction
+ (No_Implementation_Aspect_Specifications, Aspect);
+ end if;
+
+ -- Check restriction No_Specification_Of_Aspect
+
+ Check_Restriction_No_Specification_Of_Aspect (Aspect);
+
+ -- Analyze this aspect (actual analysis is delayed till later)
+
+ Set_Analyzed (Aspect);
+ Set_Entity (Aspect, E);
+ Ent := New_Occurrence_Of (E, Sloc (Id));
+
+ -- Check for duplicate aspect. Note that the Comes_From_Source
+ -- test allows duplicate Pre/Post's that we generate internally
+ -- to escape being flagged here.
+
+ if No_Duplicates_Allowed (A_Id) then
+ Anod := First (L);
+ while Anod /= Aspect loop
+ if Comes_From_Source (Aspect)
+ and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
+ then
+ Error_Msg_Name_1 := Nam;
+ Error_Msg_Sloc := Sloc (Anod);
+
+ -- Case of same aspect specified twice
+
+ if Class_Present (Anod) = Class_Present (Aspect) then
+ if not Class_Present (Anod) then
+ Error_Msg_NE
+ ("aspect% for & previously given#",
+ Id, E);
+ else
+ Error_Msg_NE
+ ("aspect `%''Class` for & previously given#",
+ Id, E);
+ end if;
+ end if;
+ end if;
+
+ Next (Anod);
+ end loop;
+ end if;
+
+ -- Check some general restrictions on language defined aspects
+
+ if not Implementation_Defined_Aspect (A_Id) then
+ Error_Msg_Name_1 := Nam;
+
+ -- Not allowed for renaming declarations
+
+ if Nkind (N) in N_Renaming_Declaration then
+ Error_Msg_N
+ ("aspect % not allowed for renaming declaration",
+ Aspect);
+ end if;
+
+ -- Not allowed for formal type declarations
+
+ if Nkind (N) = N_Formal_Type_Declaration then
+ Error_Msg_N
+ ("aspect % not allowed for formal type declaration",
+ Aspect);
+ end if;
+ end if;
+
+ -- Copy expression for later processing by the procedures
+ -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
+
+ Set_Entity (Id, New_Copy_Tree (Expr));
+
+ -- Set Delay_Required as appropriate to aspect
+
+ case Aspect_Delay (A_Id) is
+ when Always_Delay =>
+ Delay_Required := True;
+
+ when Never_Delay =>
+ Delay_Required := False;
+
+ when Rep_Aspect =>
+
+ -- If expression has the form of an integer literal, then
+ -- do not delay, since we know the value cannot change.
+ -- This optimization catches most rep clause cases.
+
+ if (Present (Expr) and then Nkind (Expr) = N_Integer_Literal)
+ or else (A_Id in Boolean_Aspects and then No (Expr))
+ then
+ Delay_Required := False;
+ else
+ Delay_Required := True;
+ Set_Has_Delayed_Rep_Aspects (E);
+ end if;
+ end case;
+
+ -- Processing based on specific aspect
+
+ case A_Id is
+
+ -- No_Aspect should be impossible
+
+ when No_Aspect =>
+ raise Program_Error;
+
+ -- Case 1: Aspects corresponding to attribute definition
+ -- clauses.
+
+ when Aspect_Address |
+ Aspect_Alignment |
+ Aspect_Bit_Order |
+ Aspect_Component_Size |
+ Aspect_Constant_Indexing |
+ Aspect_Default_Iterator |
+ Aspect_Dispatching_Domain |
+ Aspect_External_Tag |
+ Aspect_Input |
+ Aspect_Iterable |
+ Aspect_Iterator_Element |
+ Aspect_Machine_Radix |
+ Aspect_Object_Size |
+ Aspect_Output |
+ Aspect_Read |
+ Aspect_Scalar_Storage_Order |
+ Aspect_Size |
+ Aspect_Small |
+ Aspect_Simple_Storage_Pool |
+ Aspect_Storage_Pool |
+ Aspect_Stream_Size |
+ Aspect_Value_Size |
+ Aspect_Variable_Indexing |
+ Aspect_Write =>
+
+ -- Indexing aspects apply only to tagged type
+
+ if (A_Id = Aspect_Constant_Indexing
+ or else
+ A_Id = Aspect_Variable_Indexing)
+ and then not (Is_Type (E)
+ and then Is_Tagged_Type (E))
+ then
+ Error_Msg_N ("indexing applies to a tagged type", N);
+ goto Continue;
+ end if;
+
+ -- For case of address aspect, we don't consider that we
+ -- know the entity is never set in the source, since it is
+ -- is likely aliasing is occurring.
+
+ -- Note: one might think that the analysis of the resulting
+ -- attribute definition clause would take care of that, but
+ -- that's not the case since it won't be from source.
+
+ if A_Id = Aspect_Address then
+ Set_Never_Set_In_Source (E, False);
+ end if;
+
+ -- Construct the attribute definition clause
+
+ Aitem :=
+ Make_Attribute_Definition_Clause (Loc,
+ Name => Ent,
+ Chars => Chars (Id),
+ Expression => Relocate_Node (Expr));
+
+ -- If the address is specified, then we treat the entity as
+ -- referenced, to avoid spurious warnings. This is analogous
+ -- to what is done with an attribute definition clause, but
+ -- here we don't want to generate a reference because this
+ -- is the point of definition of the entity.
+
+ if A_Id = Aspect_Address then
+ Set_Referenced (E);
+ end if;
+
+ -- Case 2: Aspects corresponding to pragmas
+
+ -- Case 2a: Aspects corresponding to pragmas with two
+ -- arguments, where the first argument is a local name
+ -- referring to the entity, and the second argument is the
+ -- aspect definition expression.
+
+ -- Linker_Section/Suppress/Unsuppress
+
+ when Aspect_Linker_Section |
+ Aspect_Suppress |
+ Aspect_Unsuppress =>
+
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => New_Occurrence_Of (E, Loc)),
+ Make_Pragma_Argument_Association (Sloc (Expr),
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Chars (Id));
+
+ -- Synchronization
+
+ -- Corresponds to pragma Implemented, construct the pragma
+
+ when Aspect_Synchronization =>
+
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => New_Occurrence_Of (E, Loc)),
+ Make_Pragma_Argument_Association (Sloc (Expr),
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Name_Implemented);
+
+ -- Attach Handler
+
+ when Aspect_Attach_Handler =>
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Sloc (Ent),
+ Expression => Ent),
+ Make_Pragma_Argument_Association (Sloc (Expr),
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Name_Attach_Handler);
+
+ -- Dynamic_Predicate, Predicate, Static_Predicate
+
+ when Aspect_Dynamic_Predicate |
+ Aspect_Predicate |
+ Aspect_Static_Predicate =>
+
+ -- Construct the pragma (always a pragma Predicate, with
+ -- flags recording whether it is static/dynamic). We also
+ -- set flags recording this in the type itself.
+
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Sloc (Ent),
+ Expression => Ent),
+ Make_Pragma_Argument_Association (Sloc (Expr),
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Name_Predicate);
+
+ -- Mark type has predicates, and remember what kind of
+ -- aspect lead to this predicate (we need this to access
+ -- the right set of check policies later on).
+
+ Set_Has_Predicates (E);
+
+ if A_Id = Aspect_Dynamic_Predicate then
+ Set_Has_Dynamic_Predicate_Aspect (E);
+ elsif A_Id = Aspect_Static_Predicate then
+ Set_Has_Static_Predicate_Aspect (E);
+ end if;
+
+ -- If the type is private, indicate that its completion
+ -- has a freeze node, because that is the one that will
+ -- be visible at freeze time.
+
+ if Is_Private_Type (E) and then Present (Full_View (E)) then
+ Set_Has_Predicates (Full_View (E));
+
+ if A_Id = Aspect_Dynamic_Predicate then
+ Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
+ elsif A_Id = Aspect_Static_Predicate then
+ Set_Has_Static_Predicate_Aspect (Full_View (E));
+ end if;
+
+ Set_Has_Delayed_Aspects (Full_View (E));
+ Ensure_Freeze_Node (Full_View (E));
+ end if;
+
+ -- Case 2b: Aspects corresponding to pragmas with two
+ -- arguments, where the second argument is a local name
+ -- referring to the entity, and the first argument is the
+ -- aspect definition expression.
+
+ -- Convention
+
+ when Aspect_Convention =>
+
+ -- The aspect may be part of the specification of an import
+ -- or export pragma. Scan the aspect list to gather the
+ -- other components, if any. The name of the generated
+ -- pragma is one of Convention/Import/Export.
+
+ declare
+ P_Name : Name_Id;
+ A_Name : Name_Id;
+ A : Node_Id;
+ Arg_List : List_Id;
+ Found : Boolean;
+ L_Assoc : Node_Id;
+ E_Assoc : Node_Id;
+
+ begin
+ P_Name := Chars (Id);
+ Found := False;
+ Arg_List := New_List;
+ L_Assoc := Empty;
+ E_Assoc := Empty;
+
+ A := First (L);
+ while Present (A) loop
+ A_Name := Chars (Identifier (A));
+
+ if Nam_In (A_Name, Name_Import, Name_Export) then
+ if Found then
+ Error_Msg_N ("conflicting", A);
+ else
+ Found := True;
+ end if;
+
+ P_Name := A_Name;
+
+ elsif A_Name = Name_Link_Name then
+ L_Assoc :=
+ Make_Pragma_Argument_Association (Loc,
+ Chars => A_Name,
+ Expression => Relocate_Node (Expression (A)));
+
+ elsif A_Name = Name_External_Name then
+ E_Assoc :=
+ Make_Pragma_Argument_Association (Loc,
+ Chars => A_Name,
+ Expression => Relocate_Node (Expression (A)));
+ end if;
+
+ Next (A);
+ end loop;
+
+ Arg_List := New_List (
+ Make_Pragma_Argument_Association (Sloc (Expr),
+ Expression => Relocate_Node (Expr)),
+ Make_Pragma_Argument_Association (Sloc (Ent),
+ Expression => Ent));
+
+ if Present (L_Assoc) then
+ Append_To (Arg_List, L_Assoc);
+ end if;
+
+ if Present (E_Assoc) then
+ Append_To (Arg_List, E_Assoc);
+ end if;
+
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => Arg_List,
+ Pragma_Name => P_Name);
+ end;
+
+ -- CPU, Interrupt_Priority, Priority
+
+ -- These three aspects can be specified for a subprogram spec
+ -- or body, in which case we analyze the expression and export
+ -- the value of the aspect.
+
+ -- Previously, we generated an equivalent pragma for bodies
+ -- (note that the specs cannot contain these pragmas). The
+ -- pragma was inserted ahead of local declarations, rather than
+ -- after the body. This leads to a certain duplication between
+ -- the processing performed for the aspect and the pragma, but
+ -- given the straightforward handling required it is simpler
+ -- to duplicate than to translate the aspect in the spec into
+ -- a pragma in the declarative part of the body.
+
+ when Aspect_CPU |
+ Aspect_Interrupt_Priority |
+ Aspect_Priority =>
+
+ if Nkind_In (N, N_Subprogram_Body,
+ N_Subprogram_Declaration)
+ then
+ -- Analyze the aspect expression
+
+ Analyze_And_Resolve (Expr, Standard_Integer);
+
+ -- Interrupt_Priority aspect not allowed for main
+ -- subprograms. ARM D.1 does not forbid this explicitly,
+ -- but ARM J.15.11 (6/3) does not permit pragma
+ -- Interrupt_Priority for subprograms.
+
+ if A_Id = Aspect_Interrupt_Priority then
+ Error_Msg_N
+ ("Interrupt_Priority aspect cannot apply to "
+ & "subprogram", Expr);
+
+ -- The expression must be static
+
+ elsif not Is_Static_Expression (Expr) then
+ Flag_Non_Static_Expr
+ ("aspect requires static expression!", Expr);
+
+ -- Check whether this is the main subprogram. Issue a
+ -- warning only if it is obviously not a main program
+ -- (when it has parameters or when the subprogram is
+ -- within a package).
+
+ elsif Present (Parameter_Specifications
+ (Specification (N)))
+ or else not Is_Compilation_Unit (Defining_Entity (N))
+ then
+ -- See ARM D.1 (14/3) and D.16 (12/3)
+
+ Error_Msg_N
+ ("aspect applied to subprogram other than the "
+ & "main subprogram has no effect??", Expr);
+
+ -- Otherwise check in range and export the value
+
+ -- For the CPU aspect
+
+ elsif A_Id = Aspect_CPU then
+ if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
+
+ -- Value is correct so we export the value to make
+ -- it available at execution time.
+
+ Set_Main_CPU
+ (Main_Unit, UI_To_Int (Expr_Value (Expr)));
+
+ else
+ Error_Msg_N
+ ("main subprogram CPU is out of range", Expr);
+ end if;
+
+ -- For the Priority aspect
+
+ elsif A_Id = Aspect_Priority then
+ if Is_In_Range (Expr, RTE (RE_Priority)) then
+
+ -- Value is correct so we export the value to make
+ -- it available at execution time.
+
+ Set_Main_Priority
+ (Main_Unit, UI_To_Int (Expr_Value (Expr)));
+
+ -- Ignore pragma if Relaxed_RM_Semantics to support
+ -- other targets/non GNAT compilers.
+
+ elsif not Relaxed_RM_Semantics then
+ Error_Msg_N
+ ("main subprogram priority is out of range",
+ Expr);
+ end if;
+ end if;
+
+ -- Load an arbitrary entity from System.Tasking.Stages
+ -- or System.Tasking.Restricted.Stages (depending on
+ -- the supported profile) to make sure that one of these
+ -- packages is implicitly with'ed, since we need to have
+ -- the tasking run time active for the pragma Priority to
+ -- have any effect. Previously with with'ed the package
+ -- System.Tasking, but this package does not trigger the
+ -- required initialization of the run-time library.
+
+ declare
+ Discard : Entity_Id;
+ pragma Warnings (Off, Discard);
+ begin
+ if Restricted_Profile then
+ Discard := RTE (RE_Activate_Restricted_Tasks);
+ else
+ Discard := RTE (RE_Activate_Tasks);
+ end if;
+ end;
+
+ -- Handling for these Aspects in subprograms is complete
+
+ goto Continue;
+
+ -- For tasks
+
+ else
+ -- Pass the aspect as an attribute
+
+ Aitem :=
+ Make_Attribute_Definition_Clause (Loc,
+ Name => Ent,
+ Chars => Chars (Id),
+ Expression => Relocate_Node (Expr));
+ end if;
+
+ -- Warnings
+
+ when Aspect_Warnings =>
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Sloc (Expr),
+ Expression => Relocate_Node (Expr)),
+ Make_Pragma_Argument_Association (Loc,
+ Expression => New_Occurrence_Of (E, Loc))),
+ Pragma_Name => Chars (Id));
+
+ -- Case 2c: Aspects corresponding to pragmas with three
+ -- arguments.
+
+ -- Invariant aspects have a first argument that references the
+ -- entity, a second argument that is the expression and a third
+ -- argument that is an appropriate message.
+
+ -- Invariant, Type_Invariant
+
+ when Aspect_Invariant |
+ Aspect_Type_Invariant =>
+
+ -- Analysis of the pragma will verify placement legality:
+ -- an invariant must apply to a private type, or appear in
+ -- the private part of a spec and apply to a completion.
+
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Sloc (Ent),
+ Expression => Ent),
+ Make_Pragma_Argument_Association (Sloc (Expr),
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Name_Invariant);
+
+ -- Add message unless exception messages are suppressed
+
+ if not Opt.Exception_Locations_Suppressed then
+ Append_To (Pragma_Argument_Associations (Aitem),
+ Make_Pragma_Argument_Association (Eloc,
+ Chars => Name_Message,
+ Expression =>
+ Make_String_Literal (Eloc,
+ Strval => "failed invariant from "
+ & Build_Location_String (Eloc))));
+ end if;
+
+ -- For Invariant case, insert immediately after the entity
+ -- declaration. We do not have to worry about delay issues
+ -- since the pragma processing takes care of this.
+
+ Delay_Required := False;
+
+ -- Case 2d : Aspects that correspond to a pragma with one
+ -- argument.
+
+ -- Abstract_State
+
+ -- Aspect Abstract_State introduces implicit declarations for
+ -- all state abstraction entities it defines. To emulate this
+ -- behavior, insert the pragma at the beginning of the visible
+ -- declarations of the related package so that it is analyzed
+ -- immediately.
+
+ when Aspect_Abstract_State => Abstract_State : declare
+ Context : Node_Id := N;
+ Decl : Node_Id;
+ Decls : List_Id;
+
+ begin
+ -- When aspect Abstract_State appears on a generic package,
+ -- it is propageted to the package instance. The context in
+ -- this case is the instance spec.
+
+ if Nkind (Context) = N_Package_Instantiation then
+ Context := Instance_Spec (Context);
+ end if;
+
+ if Nkind_In (Context, N_Generic_Package_Declaration,
+ N_Package_Declaration)
+ then
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Name_Abstract_State);
+ Decorate_Aspect_And_Pragma (Aspect, Aitem);
+
+ Decls := Visible_Declarations (Specification (Context));
+
+ -- In general pragma Abstract_State must be at the top
+ -- of the existing visible declarations to emulate its
+ -- source counterpart. The only exception to this is a
+ -- generic instance in which case the pragma must be
+ -- inserted after the association renamings.
+
+ if Present (Decls) then
+
+ -- The visible declarations of a generic instance have
+ -- the following structure:
+
+ -- <renamings of generic formals>
+ -- <renamings of internally-generated spec and body>
+ -- <first source declaration>
+
+ -- The pragma must be inserted before the first source
+ -- declaration.
+
+ if Is_Generic_Instance (Defining_Entity (Context)) then
+
+ -- Skip the instance "header"
+
+ Decl := First (Decls);
+ while Present (Decl)
+ and then not Comes_From_Source (Decl)
+ loop
+ Decl := Next (Decl);
+ end loop;
+
+ if Present (Decl) then
+ Insert_Before (Decl, Aitem);
+ else
+ Append_To (Decls, Aitem);
+ end if;
+
+ -- The related package is not a generic instance, the
+ -- corresponding pragma must be the first declaration.
+
+ else
+ Prepend_To (Decls, Aitem);
+ end if;
+
+ -- Otherwise the pragma forms a new declarative list
+
+ else
+ Set_Visible_Declarations
+ (Specification (Context), New_List (Aitem));
+ end if;
+
+ else
+ Error_Msg_NE
+ ("aspect & must apply to a package declaration",
+ Aspect, Id);
+ end if;
+
+ goto Continue;
+ end Abstract_State;
+
+ -- Depends
+
+ -- Aspect Depends must be delayed because it mentions names
+ -- of inputs and output that are classified by aspect Global.
+ -- The aspect and pragma are treated the same way as a post
+ -- condition.
+
+ when Aspect_Depends =>
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Name_Depends);
+
+ Decorate_Aspect_And_Pragma
+ (Aspect, Aitem, Delayed => True);
+ Insert_Delayed_Pragma (Aitem);
+ goto Continue;
+
+ -- Global
+
+ -- Aspect Global must be delayed because it can mention names
+ -- and benefit from the forward visibility rules applicable to
+ -- aspects of subprograms. The aspect and pragma are treated
+ -- the same way as a post condition.
+
+ when Aspect_Global =>
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Name_Global);
+
+ Decorate_Aspect_And_Pragma
+ (Aspect, Aitem, Delayed => True);
+ Insert_Delayed_Pragma (Aitem);
+ goto Continue;
+
+ -- Initial_Condition
+
+ -- Aspect Initial_Condition covers the visible declarations of
+ -- a package and all hidden states through functions. As such,
+ -- it must be evaluated at the end of the said declarations.
+
+ when Aspect_Initial_Condition => Initial_Condition : declare
+ Context : Node_Id := N;
+ Decls : List_Id;
+
+ begin
+ -- When aspect Abstract_State appears on a generic package,
+ -- it is propageted to the package instance. The context in
+ -- this case is the instance spec.
+
+ if Nkind (Context) = N_Package_Instantiation then
+ Context := Instance_Spec (Context);
+ end if;
+
+ if Nkind_In (Context, N_Generic_Package_Declaration,
+ N_Package_Declaration)
+ then
+ Decls := Visible_Declarations (Specification (Context));
+
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name =>
+ Name_Initial_Condition);
+
+ Decorate_Aspect_And_Pragma
+ (Aspect, Aitem, Delayed => True);
+
+ if No (Decls) then
+ Decls := New_List;
+ Set_Visible_Declarations (Context, Decls);
+ end if;
+
+ Prepend_To (Decls, Aitem);
+
+ else
+ Error_Msg_NE
+ ("aspect & must apply to a package declaration",
+ Aspect, Id);
+ end if;
+
+ goto Continue;
+ end Initial_Condition;
+
+ -- Initializes
+
+ -- Aspect Initializes coverts the visible declarations of a
+ -- package. As such, it must be evaluated at the end of the
+ -- said declarations.
+
+ when Aspect_Initializes => Initializes : declare
+ Context : Node_Id := N;
+ Decls : List_Id;
+
+ begin
+ -- When aspect Abstract_State appears on a generic package,
+ -- it is propageted to the package instance. The context in
+ -- this case is the instance spec.
+
+ if Nkind (Context) = N_Package_Instantiation then
+ Context := Instance_Spec (Context);
+ end if;
+
+ if Nkind_In (Context, N_Generic_Package_Declaration,
+ N_Package_Declaration)
+ then
+ Decls := Visible_Declarations (Specification (Context));
+
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Name_Initializes);
+
+ Decorate_Aspect_And_Pragma
+ (Aspect, Aitem, Delayed => True);
+
+ if No (Decls) then
+ Decls := New_List;
+ Set_Visible_Declarations (Context, Decls);
+ end if;
+
+ Prepend_To (Decls, Aitem);
+
+ else
+ Error_Msg_NE
+ ("aspect & must apply to a package declaration",
+ Aspect, Id);
+ end if;
+
+ goto Continue;
+ end Initializes;
+
+ -- Part_Of
+
+ when Aspect_Part_Of =>
+ if Nkind_In (N, N_Object_Declaration,
+ N_Package_Instantiation)
+ then
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Name_Part_Of);
+
+ else
+ Error_Msg_NE
+ ("aspect & must apply to a variable or package "
+ & "instantiation", Aspect, Id);
+ end if;
+
+ -- SPARK_Mode
+
+ when Aspect_SPARK_Mode => SPARK_Mode : declare
+ Decls : List_Id;
+
+ begin
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Name_SPARK_Mode);
+
+ -- When the aspect appears on a package body, insert the
+ -- generated pragma at the top of the body declarations to
+ -- emulate the behavior of a source pragma.
+
+ if Nkind (N) = N_Package_Body then
+ Decorate_Aspect_And_Pragma (Aspect, Aitem);
+
+ Decls := Declarations (N);
+
+ if No (Decls) then
+ Decls := New_List;
+ Set_Declarations (N, Decls);
+ end if;
+
+ Prepend_To (Decls, Aitem);
+ goto Continue;
+
+ -- When the aspect is associated with package declaration,
+ -- insert the generated pragma at the top of the visible
+ -- declarations to emulate the behavior of a source pragma.
+
+ elsif Nkind (N) = N_Package_Declaration then
+ Decorate_Aspect_And_Pragma (Aspect, Aitem);
+
+ Decls := Visible_Declarations (Specification (N));
+
+ if No (Decls) then
+ Decls := New_List;
+ Set_Visible_Declarations (Specification (N), Decls);
+ end if;
+
+ Prepend_To (Decls, Aitem);
+ goto Continue;
+ end if;
+ end SPARK_Mode;
+
+ -- Refined_Depends
+
+ -- Aspect Refined_Depends must be delayed because it can
+ -- mention state refinements introduced by aspect Refined_State
+ -- and further classified by aspect Refined_Global. Since both
+ -- those aspects are delayed, so is Refined_Depends.
+
+ when Aspect_Refined_Depends =>
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Name_Refined_Depends);
+
+ Decorate_Aspect_And_Pragma
+ (Aspect, Aitem, Delayed => True);
+ Insert_Delayed_Pragma (Aitem);
+ goto Continue;
+
+ -- Refined_Global
+
+ -- Aspect Refined_Global must be delayed because it can mention
+ -- state refinements introduced by aspect Refined_State. Since
+ -- Refined_State is already delayed due to forward references,
+ -- so is Refined_Global.
+
+ when Aspect_Refined_Global =>
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Name_Refined_Global);
+
+ Decorate_Aspect_And_Pragma (Aspect, Aitem, Delayed => True);
+ Insert_Delayed_Pragma (Aitem);
+ goto Continue;
+
+ -- Refined_Post
+
+ when Aspect_Refined_Post =>
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Name_Refined_Post);
+
+ -- Refined_State
+
+ when Aspect_Refined_State => Refined_State : declare
+ Decl : Node_Id;
+ Decls : List_Id;
+
+ begin
+ -- The corresponding pragma for Refined_State is inserted in
+ -- the declarations of the related package body. This action
+ -- synchronizes both the source and from-aspect versions of
+ -- the pragma.
+
+ if Nkind (N) = N_Package_Body then
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Name_Refined_State);
+ Decorate_Aspect_And_Pragma (Aspect, Aitem);
+
+ Decls := Declarations (N);
+
+ -- When the package body is subject to pragma SPARK_Mode,
+ -- insert pragma Refined_State after SPARK_Mode.
+
+ if Present (Decls) then
+ Decl := First (Decls);
+
+ if Nkind (Decl) = N_Pragma
+ and then Pragma_Name (Decl) = Name_SPARK_Mode
+ then
+ Insert_After (Decl, Aitem);
+
+ -- The related package body lacks SPARK_Mode, the
+ -- corresponding pragma must be the first declaration.
+
+ else
+ Prepend_To (Decls, Aitem);
+ end if;
+
+ -- Otherwise the pragma forms a new declarative list
+
+ else
+ Set_Declarations (N, New_List (Aitem));
+ end if;
+
+ else
+ Error_Msg_NE
+ ("aspect & must apply to a package body", Aspect, Id);
+ end if;
+
+ goto Continue;
+ end Refined_State;
+
+ -- Relative_Deadline
+
+ when Aspect_Relative_Deadline =>
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Name_Relative_Deadline);
+
+ -- If the aspect applies to a task, the corresponding pragma
+ -- must appear within its declarations, not after.
+
+ if Nkind (N) = N_Task_Type_Declaration then
+ declare
+ Def : Node_Id;
+ V : List_Id;
+
+ begin
+ if No (Task_Definition (N)) then
+ Set_Task_Definition (N,
+ Make_Task_Definition (Loc,
+ Visible_Declarations => New_List,
+ End_Label => Empty));
+ end if;
+
+ Def := Task_Definition (N);
+ V := Visible_Declarations (Def);
+ if not Is_Empty_List (V) then
+ Insert_Before (First (V), Aitem);
+
+ else
+ Set_Visible_Declarations (Def, New_List (Aitem));
+ end if;
+
+ goto Continue;
+ end;
+ end if;
+
+ -- Case 3 : Aspects that don't correspond to pragma/attribute
+ -- definition clause.
+
+ -- Case 3a: The aspects listed below don't correspond to
+ -- pragmas/attributes but do require delayed analysis.
+
+ -- Default_Value, Default_Component_Value
+
+ when Aspect_Default_Value |
+ Aspect_Default_Component_Value =>
+ Aitem := Empty;
+
+ -- Case 3b: The aspects listed below don't correspond to
+ -- pragmas/attributes and don't need delayed analysis.
+
+ -- Implicit_Dereference
+
+ -- For Implicit_Dereference, External_Name and Link_Name, only
+ -- the legality checks are done during the analysis, thus no
+ -- delay is required.
+
+ when Aspect_Implicit_Dereference =>
+ Analyze_Aspect_Implicit_Dereference;
+ goto Continue;
+
+ -- External_Name, Link_Name
+
+ when Aspect_External_Name |
+ Aspect_Link_Name =>
+ Analyze_Aspect_External_Or_Link_Name;
+ goto Continue;
+
+ -- Dimension
+
+ when Aspect_Dimension =>
+ Analyze_Aspect_Dimension (N, Id, Expr);
+ goto Continue;
+
+ -- Dimension_System
+
+ when Aspect_Dimension_System =>
+ Analyze_Aspect_Dimension_System (N, Id, Expr);
+ goto Continue;
+
+ -- Case 4: Aspects requiring special handling
+
+ -- Pre/Post/Test_Case/Contract_Cases whose corresponding
+ -- pragmas take care of the delay.
+
+ -- Pre/Post
+
+ -- Aspects Pre/Post generate Precondition/Postcondition pragmas
+ -- with a first argument that is the expression, and a second
+ -- argument that is an informative message if the test fails.
+ -- This is inserted right after the declaration, to get the
+ -- required pragma placement. The processing for the pragmas
+ -- takes care of the required delay.
+
+ when Pre_Post_Aspects => Pre_Post : declare
+ Pname : Name_Id;
+
+ begin
+ if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
+ Pname := Name_Precondition;
+ else
+ Pname := Name_Postcondition;
+ end if;
+
+ -- If the expressions is of the form A and then B, then
+ -- we generate separate Pre/Post aspects for the separate
+ -- clauses. Since we allow multiple pragmas, there is no
+ -- problem in allowing multiple Pre/Post aspects internally.
+ -- These should be treated in reverse order (B first and
+ -- A second) since they are later inserted just after N in
+ -- the order they are treated. This way, the pragma for A
+ -- ends up preceding the pragma for B, which may have an
+ -- importance for the error raised (either constraint error
+ -- or precondition error).
+
+ -- We do not do this for Pre'Class, since we have to put
+ -- these conditions together in a complex OR expression
+
+ -- We do not do this in ASIS mode, as ASIS relies on the
+ -- original node representing the complete expression, when
+ -- retrieving it through the source aspect table.
+
+ if not ASIS_Mode
+ and then (Pname = Name_Postcondition
+ or else not Class_Present (Aspect))
+ then
+ while Nkind (Expr) = N_And_Then loop
+ Insert_After (Aspect,
+ Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
+ Identifier => Identifier (Aspect),
+ Expression => Relocate_Node (Left_Opnd (Expr)),
+ Class_Present => Class_Present (Aspect),
+ Split_PPC => True));
+ Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
+ Eloc := Sloc (Expr);
+ end loop;
+ end if;
+
+ -- Build the precondition/postcondition pragma
+
+ -- Add note about why we do NOT need Copy_Tree here ???
+
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Eloc,
+ Chars => Name_Check,
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Pname);
+
+ -- Add message unless exception messages are suppressed
+
+ if not Opt.Exception_Locations_Suppressed then
+ Append_To (Pragma_Argument_Associations (Aitem),
+ Make_Pragma_Argument_Association (Eloc,
+ Chars => Name_Message,
+ Expression =>
+ Make_String_Literal (Eloc,
+ Strval => "failed "
+ & Get_Name_String (Pname)
+ & " from "
+ & Build_Location_String (Eloc))));
+ end if;
+
+ Set_Is_Delayed_Aspect (Aspect);
+
+ -- For Pre/Post cases, insert immediately after the entity
+ -- declaration, since that is the required pragma placement.
+ -- Note that for these aspects, we do not have to worry
+ -- about delay issues, since the pragmas themselves deal
+ -- with delay of visibility for the expression analysis.
+
+ Insert_Delayed_Pragma (Aitem);
+ goto Continue;
+ end Pre_Post;
+
+ -- Test_Case
+
+ when Aspect_Test_Case => Test_Case : declare
+ Args : List_Id;
+ Comp_Expr : Node_Id;
+ Comp_Assn : Node_Id;
+ New_Expr : Node_Id;
+
+ begin
+ Args := New_List;
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ Error_Msg_Name_1 := Nam;
+ Error_Msg_N ("incorrect placement of aspect `%`", E);
+ goto Continue;
+ end if;
+
+ if Nkind (Expr) /= N_Aggregate then
+ Error_Msg_Name_1 := Nam;
+ Error_Msg_NE
+ ("wrong syntax for aspect `%` for &", Id, E);
+ goto Continue;
+ end if;
+
+ -- Make pragma expressions refer to the original aspect
+ -- expressions through the Original_Node link. This is
+ -- used in semantic analysis for ASIS mode, so that the
+ -- original expression also gets analyzed.
+
+ Comp_Expr := First (Expressions (Expr));
+ while Present (Comp_Expr) loop
+ New_Expr := Relocate_Node (Comp_Expr);
+ Set_Original_Node (New_Expr, Comp_Expr);
+ Append_To (Args,
+ Make_Pragma_Argument_Association (Sloc (Comp_Expr),
+ Expression => New_Expr));
+ Next (Comp_Expr);
+ end loop;
+
+ Comp_Assn := First (Component_Associations (Expr));
+ while Present (Comp_Assn) loop
+ if List_Length (Choices (Comp_Assn)) /= 1
+ or else
+ Nkind (First (Choices (Comp_Assn))) /= N_Identifier
+ then
+ Error_Msg_Name_1 := Nam;
+ Error_Msg_NE
+ ("wrong syntax for aspect `%` for &", Id, E);
+ goto Continue;
+ end if;
+
+ New_Expr := Relocate_Node (Expression (Comp_Assn));
+ Set_Original_Node (New_Expr, Expression (Comp_Assn));
+ Append_To (Args,
+ Make_Pragma_Argument_Association (Sloc (Comp_Assn),
+ Chars => Chars (First (Choices (Comp_Assn))),
+ Expression => New_Expr));
+ Next (Comp_Assn);
+ end loop;
+
+ -- Build the test-case pragma
+
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => Args,
+ Pragma_Name => Nam);
+ end Test_Case;
+
+ -- Contract_Cases
+
+ when Aspect_Contract_Cases =>
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Nam);
+
+ Decorate_Aspect_And_Pragma
+ (Aspect, Aitem, Delayed => True);
+ Insert_Delayed_Pragma (Aitem);
+ goto Continue;
+
+ -- Case 5: Special handling for aspects with an optional
+ -- boolean argument.
+
+ -- In the general case, the corresponding pragma cannot be
+ -- generated yet because the evaluation of the boolean needs
+ -- to be delayed till the freeze point.
+
+ when Boolean_Aspects |
+ Library_Unit_Aspects =>
+
+ Set_Is_Boolean_Aspect (Aspect);
+
+ -- Lock_Free aspect only apply to protected objects
+
+ if A_Id = Aspect_Lock_Free then
+ if Ekind (E) /= E_Protected_Type then
+ Error_Msg_Name_1 := Nam;
+ Error_Msg_N
+ ("aspect % only applies to a protected object",
+ Aspect);
+
+ else
+ -- Set the Uses_Lock_Free flag to True if there is no
+ -- expression or if the expression is True. The
+ -- evaluation of this aspect should be delayed to the
+ -- freeze point (why???)
+
+ if No (Expr)
+ or else Is_True (Static_Boolean (Expr))
+ then
+ Set_Uses_Lock_Free (E);
+ end if;
+
+ Record_Rep_Item (E, Aspect);
+ end if;
+
+ goto Continue;
+
+ elsif A_Id = Aspect_Import or else A_Id = Aspect_Export then
+
+ -- Verify that there is an aspect Convention that will
+ -- incorporate the Import/Export aspect, and eventual
+ -- Link/External names.
+
+ declare
+ A : Node_Id;
+
+ begin
+ A := First (L);
+ while Present (A) loop
+ exit when Chars (Identifier (A)) = Name_Convention;
+ Next (A);
+ end loop;
+
+ -- It is legal to specify Import for a variable, in
+ -- order to suppress initialization for it, without
+ -- specifying explicitly its convention. However this
+ -- is only legal if the convention of the object type
+ -- is Ada or similar.
+
+ if No (A) then
+ if Ekind (E) = E_Variable
+ and then A_Id = Aspect_Import
+ then
+ declare
+ C : constant Convention_Id :=
+ Convention (Etype (E));
+ begin
+ if C = Convention_Ada or else
+ C = Convention_Ada_Pass_By_Copy or else
+ C = Convention_Ada_Pass_By_Reference
+ then
+ goto Continue;
+ end if;
+ end;
+ end if;
+
+ -- Otherwise, Convention must be specified
+
+ Error_Msg_N
+ ("missing Convention aspect for Export/Import",
+ Aspect);
+ end if;
+ end;
+
+ goto Continue;
+ end if;
+
+ -- Library unit aspects require special handling in the case
+ -- of a package declaration, the pragma needs to be inserted
+ -- in the list of declarations for the associated package.
+ -- There is no issue of visibility delay for these aspects.
+
+ if A_Id in Library_Unit_Aspects
+ and then
+ Nkind_In (N, N_Package_Declaration,
+ N_Generic_Package_Declaration)
+ and then Nkind (Parent (N)) /= N_Compilation_Unit
+ then
+ Error_Msg_N
+ ("incorrect context for library unit aspect&", Id);
+ goto Continue;
+ end if;
+
+ -- Cases where we do not delay, includes all cases where
+ -- the expression is missing other than the above cases.
+
+ if not Delay_Required or else No (Expr) then
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Sloc (Ent),
+ Expression => Ent)),
+ Pragma_Name => Chars (Id));
+ Delay_Required := False;
+
+ -- In general cases, the corresponding pragma/attribute
+ -- definition clause will be inserted later at the freezing
+ -- point, and we do not need to build it now
+
+ else
+ Aitem := Empty;
+ end if;
+
+ -- Storage_Size
+
+ -- This is special because for access types we need to generate
+ -- an attribute definition clause. This also works for single
+ -- task declarations, but it does not work for task type
+ -- declarations, because we have the case where the expression
+ -- references a discriminant of the task type. That can't use
+ -- an attribute definition clause because we would not have
+ -- visibility on the discriminant. For that case we must
+ -- generate a pragma in the task definition.
+
+ when Aspect_Storage_Size =>
+
+ -- Task type case
+
+ if Ekind (E) = E_Task_Type then
+ declare
+ Decl : constant Node_Id := Declaration_Node (E);
+
+ begin
+ pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
+
+ -- If no task definition, create one
+
+ if No (Task_Definition (Decl)) then
+ Set_Task_Definition (Decl,
+ Make_Task_Definition (Loc,
+ Visible_Declarations => Empty_List,
+ End_Label => Empty));
+ end if;
+
+ -- Create a pragma and put it at the start of the
+ -- task definition for the task type declaration.
+
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Relocate_Node (Expr))),
+ Pragma_Name => Name_Storage_Size);
+
+ Prepend
+ (Aitem,
+ Visible_Declarations (Task_Definition (Decl)));
+ goto Continue;
+ end;
+
+ -- All other cases, generate attribute definition
+
+ else
+ Aitem :=
+ Make_Attribute_Definition_Clause (Loc,
+ Name => Ent,
+ Chars => Chars (Id),
+ Expression => Relocate_Node (Expr));
+ end if;
+ end case;
+
+ -- Attach the corresponding pragma/attribute definition clause to
+ -- the aspect specification node.
+
+ if Present (Aitem) then
+ Set_From_Aspect_Specification (Aitem, True);
+ end if;
+
+ -- In the context of a compilation unit, we directly put the
+ -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
+ -- node (no delay is required here) except for aspects on a
+ -- subprogram body (see below) and a generic package, for which
+ -- we need to introduce the pragma before building the generic
+ -- copy (see sem_ch12), and for package instantiations, where
+ -- the library unit pragmas are better handled early.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit
+ and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
+ then
+ declare
+ Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
+
+ begin
+ pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
+
+ -- For a Boolean aspect, create the corresponding pragma if
+ -- no expression or if the value is True.
+
+ if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
+ if Is_True (Static_Boolean (Expr)) then
+ Make_Aitem_Pragma
+ (Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Sloc (Ent),
+ Expression => Ent)),
+ Pragma_Name => Chars (Id));
+
+ Set_From_Aspect_Specification (Aitem, True);
+ Set_Corresponding_Aspect (Aitem, Aspect);
+
+ else
+ goto Continue;
+ end if;
+ end if;
+
+ -- If the aspect is on a subprogram body (relevant aspect
+ -- is Inline), add the pragma in front of the declarations.
+
+ if Nkind (N) = N_Subprogram_Body then
+ if No (Declarations (N)) then
+ Set_Declarations (N, New_List);
+ end if;
+
+ Prepend (Aitem, Declarations (N));
+
+ elsif Nkind (N) = N_Generic_Package_Declaration then
+ if No (Visible_Declarations (Specification (N))) then
+ Set_Visible_Declarations (Specification (N), New_List);
+ end if;
+
+ Prepend (Aitem,
+ Visible_Declarations (Specification (N)));
+
+ elsif Nkind (N) = N_Package_Instantiation then
+ declare
+ Spec : constant Node_Id :=
+ Specification (Instance_Spec (N));
+ begin
+ if No (Visible_Declarations (Spec)) then
+ Set_Visible_Declarations (Spec, New_List);
+ end if;
+
+ Prepend (Aitem, Visible_Declarations (Spec));
+ end;
+
+ else
+ if No (Pragmas_After (Aux)) then
+ Set_Pragmas_After (Aux, New_List);
+ end if;
+
+ Append (Aitem, Pragmas_After (Aux));
+ end if;
+
+ goto Continue;
+ end;
+ end if;
+
+ -- The evaluation of the aspect is delayed to the freezing point.
+ -- The pragma or attribute clause if there is one is then attached
+ -- to the aspect specification which is put in the rep item list.
+
+ if Delay_Required then
+ if Present (Aitem) then
+ Set_Is_Delayed_Aspect (Aitem);
+ Set_Aspect_Rep_Item (Aspect, Aitem);
+ Set_Parent (Aitem, Aspect);
+ end if;
+
+ Set_Is_Delayed_Aspect (Aspect);
+
+ -- In the case of Default_Value, link the aspect to base type
+ -- as well, even though it appears on a first subtype. This is
+ -- mandated by the semantics of the aspect. Do not establish
+ -- the link when processing the base type itself as this leads
+ -- to a rep item circularity. Verify that we are dealing with
+ -- a scalar type to prevent cascaded errors.
+
+ if A_Id = Aspect_Default_Value
+ and then Is_Scalar_Type (E)
+ and then Base_Type (E) /= E
+ then
+ Set_Has_Delayed_Aspects (Base_Type (E));
+ Record_Rep_Item (Base_Type (E), Aspect);
+ end if;
+
+ Set_Has_Delayed_Aspects (E);
+ Record_Rep_Item (E, Aspect);
+
+ -- When delay is not required and the context is a package or a
+ -- subprogram body, insert the pragma in the body declarations.
+
+ elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
+ if No (Declarations (N)) then
+ Set_Declarations (N, New_List);
+ end if;
+
+ -- The pragma is added before source declarations
+
+ Prepend_To (Declarations (N), Aitem);
+
+ -- When delay is not required and the context is not a compilation
+ -- unit, we simply insert the pragma/attribute definition clause
+ -- in sequence.
+
+ else
+ Insert_After (Ins_Node, Aitem);
+ Ins_Node := Aitem;
+ end if;
+ end Analyze_One_Aspect;
+
+ <<Continue>>
+ Next (Aspect);
+ end loop Aspect_Loop;
+
+ if Has_Delayed_Aspects (E) then
+ Ensure_Freeze_Node (E);
+ end if;
+ end Analyze_Aspect_Specifications;
+
+ -----------------------
+ -- Analyze_At_Clause --
+ -----------------------
+
+ -- An at clause is replaced by the corresponding Address attribute
+ -- definition clause that is the preferred approach in Ada 95.
+
+ procedure Analyze_At_Clause (N : Node_Id) is
+ CS : constant Boolean := Comes_From_Source (N);
+
+ begin
+ -- This is an obsolescent feature
+
+ Check_Restriction (No_Obsolescent_Features, N);
+
+ if Warn_On_Obsolescent_Feature then
+ Error_Msg_N
+ ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
+ Error_Msg_N
+ ("\?j?use address attribute definition clause instead", N);
+ end if;
+
+ -- Rewrite as address clause
+
+ Rewrite (N,
+ Make_Attribute_Definition_Clause (Sloc (N),
+ Name => Identifier (N),
+ Chars => Name_Address,
+ Expression => Expression (N)));
+
+ -- We preserve Comes_From_Source, since logically the clause still comes
+ -- from the source program even though it is changed in form.
+
+ Set_Comes_From_Source (N, CS);
+
+ -- Analyze rewritten clause
+
+ Analyze_Attribute_Definition_Clause (N);
+ end Analyze_At_Clause;
+
+ -----------------------------------------
+ -- Analyze_Attribute_Definition_Clause --
+ -----------------------------------------
+
+ procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Nam : constant Node_Id := Name (N);
+ Attr : constant Name_Id := Chars (N);
+ Expr : constant Node_Id := Expression (N);
+ Id : constant Attribute_Id := Get_Attribute_Id (Attr);
+
+ Ent : Entity_Id;
+ -- The entity of Nam after it is analyzed. In the case of an incomplete
+ -- type, this is the underlying type.
+
+ U_Ent : Entity_Id;
+ -- The underlying entity to which the attribute applies. Generally this
+ -- is the Underlying_Type of Ent, except in the case where the clause
+ -- applies to full view of incomplete type or private type in which case
+ -- U_Ent is just a copy of Ent.
+
+ FOnly : Boolean := False;
+ -- Reset to True for subtype specific attribute (Alignment, Size)
+ -- and for stream attributes, i.e. those cases where in the call
+ -- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
+ -- rules are checked. Note that the case of stream attributes is not
+ -- clear from the RM, but see AI95-00137. Also, the RM seems to
+ -- disallow Storage_Size for derived task types, but that is also
+ -- clearly unintentional.
+
+ procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
+ -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
+ -- definition clauses.
+
+ function Duplicate_Clause return Boolean;
+ -- This routine checks if the aspect for U_Ent being given by attribute
+ -- definition clause N is for an aspect that has already been specified,
+ -- and if so gives an error message. If there is a duplicate, True is
+ -- returned, otherwise if there is no error, False is returned.
+
+ procedure Check_Indexing_Functions;
+ -- Check that the function in Constant_Indexing or Variable_Indexing
+ -- attribute has the proper type structure. If the name is overloaded,
+ -- check that some interpretation is legal.
+
+ procedure Check_Iterator_Functions;
+ -- Check that there is a single function in Default_Iterator attribute
+ -- has the proper type structure.
+
+ function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
+ -- Common legality check for the previous two
+
+ -----------------------------------
+ -- Analyze_Stream_TSS_Definition --
+ -----------------------------------
+
+ procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
+ Subp : Entity_Id := Empty;
+ I : Interp_Index;
+ It : Interp;
+ Pnam : Entity_Id;
+
+ Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
+ -- True for Read attribute, false for other attributes
+
+ function Has_Good_Profile (Subp : Entity_Id) return Boolean;
+ -- Return true if the entity is a subprogram with an appropriate
+ -- profile for the attribute being defined.
+
+ ----------------------
+ -- Has_Good_Profile --
+ ----------------------
+
+ function Has_Good_Profile (Subp : Entity_Id) return Boolean is
+ F : Entity_Id;
+ Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
+ Expected_Ekind : constant array (Boolean) of Entity_Kind :=
+ (False => E_Procedure, True => E_Function);
+ Typ : Entity_Id;
+
+ begin
+ if Ekind (Subp) /= Expected_Ekind (Is_Function) then
+ return False;
+ end if;
+
+ F := First_Formal (Subp);
+
+ if No (F)
+ or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
+ or else Designated_Type (Etype (F)) /=
+ Class_Wide_Type (RTE (RE_Root_Stream_Type))
+ then
+ return False;
+ end if;
+
+ if not Is_Function then
+ Next_Formal (F);
+
+ declare
+ Expected_Mode : constant array (Boolean) of Entity_Kind :=
+ (False => E_In_Parameter,
+ True => E_Out_Parameter);
+ begin
+ if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
+ return False;
+ end if;
+ end;
+
+ Typ := Etype (F);
+
+ else
+ Typ := Etype (Subp);
+ end if;
+
+ return Base_Type (Typ) = Base_Type (Ent)
+ and then No (Next_Formal (F));
+ end Has_Good_Profile;
+
+ -- Start of processing for Analyze_Stream_TSS_Definition
+
+ begin
+ FOnly := True;
+
+ if not Is_Type (U_Ent) then
+ Error_Msg_N ("local name must be a subtype", Nam);
+ return;
+ end if;
+
+ Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
+
+ -- If Pnam is present, it can be either inherited from an ancestor
+ -- type (in which case it is legal to redefine it for this type), or
+ -- be a previous definition of the attribute for the same type (in
+ -- which case it is illegal).
+
+ -- In the first case, it will have been analyzed already, and we
+ -- can check that its profile does not match the expected profile
+ -- for a stream attribute of U_Ent. In the second case, either Pnam
+ -- has been analyzed (and has the expected profile), or it has not
+ -- been analyzed yet (case of a type that has not been frozen yet
+ -- and for which the stream attribute has been set using Set_TSS).
+
+ if Present (Pnam)
+ and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
+ then
+ Error_Msg_Sloc := Sloc (Pnam);
+ Error_Msg_Name_1 := Attr;
+ Error_Msg_N ("% attribute already defined #", Nam);
+ return;
+ end if;
+
+ Analyze (Expr);
+
+ if Is_Entity_Name (Expr) then
+ if not Is_Overloaded (Expr) then
+ if Has_Good_Profile (Entity (Expr)) then
+ Subp := Entity (Expr);
+ end if;
+
+ else
+ Get_First_Interp (Expr, I, It);
+ while Present (It.Nam) loop
+ if Has_Good_Profile (It.Nam) then
+ Subp := It.Nam;
+ exit;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end if;
+ end if;
+
+ if Present (Subp) then
+ if Is_Abstract_Subprogram (Subp) then
+ Error_Msg_N ("stream subprogram must not be abstract", Expr);
+ return;
+ end if;
+
+ Set_Entity (Expr, Subp);
+ Set_Etype (Expr, Etype (Subp));
+
+ New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
+
+ else
+ Error_Msg_Name_1 := Attr;
+ Error_Msg_N ("incorrect expression for% attribute", Expr);
+ end if;
+ end Analyze_Stream_TSS_Definition;
+
+ ------------------------------
+ -- Check_Indexing_Functions --
+ ------------------------------
+
+ procedure Check_Indexing_Functions is
+ Indexing_Found : Boolean;
+
+ procedure Check_One_Function (Subp : Entity_Id);
+ -- Check one possible interpretation. Sets Indexing_Found True if an
+ -- indexing function is found.
+
+ ------------------------
+ -- Check_One_Function --
+ ------------------------
+
+ procedure Check_One_Function (Subp : Entity_Id) is
+ Default_Element : constant Node_Id :=
+ Find_Value_Of_Aspect
+ (Etype (First_Formal (Subp)),
+ Aspect_Iterator_Element);
+
+ begin
+ if not Check_Primitive_Function (Subp)
+ and then not Is_Overloaded (Expr)
+ then
+ Error_Msg_NE
+ ("aspect Indexing requires a function that applies to type&",
+ Subp, Ent);
+ end if;
+
+ -- An indexing function must return either the default element of
+ -- the container, or a reference type. For variable indexing it
+ -- must be the latter.
+
+ if Present (Default_Element) then
+ Analyze (Default_Element);
+
+ if Is_Entity_Name (Default_Element)
+ and then Covers (Entity (Default_Element), Etype (Subp))
+ then
+ Indexing_Found := True;
+ return;
+ end if;
+ end if;
+
+ -- For variable_indexing the return type must be a reference type
+
+ if Attr = Name_Variable_Indexing
+ and then not Has_Implicit_Dereference (Etype (Subp))
+ then
+ Error_Msg_N
+ ("function for indexing must return a reference type", Subp);
+
+ else
+ Indexing_Found := True;
+ end if;
+ end Check_One_Function;
+
+ -- Start of processing for Check_Indexing_Functions
+
+ begin
+ if In_Instance then
+ return;
+ end if;
+
+ Analyze (Expr);
+
+ if not Is_Overloaded (Expr) then
+ Check_One_Function (Entity (Expr));
+
+ else
+ declare
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ Indexing_Found := False;
+ Get_First_Interp (Expr, I, It);
+ while Present (It.Nam) loop
+
+ -- Note that analysis will have added the interpretation
+ -- that corresponds to the dereference. We only check the
+ -- subprogram itself.
+
+ if Is_Overloadable (It.Nam) then
+ Check_One_Function (It.Nam);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ if not Indexing_Found then
+ Error_Msg_NE
+ ("aspect Indexing requires a function that "
+ & "applies to type&", Expr, Ent);
+ end if;
+ end;
+ end if;
+ end Check_Indexing_Functions;
+
+ ------------------------------
+ -- Check_Iterator_Functions --
+ ------------------------------
+
+ procedure Check_Iterator_Functions is
+ Default : Entity_Id;
+
+ function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
+ -- Check one possible interpretation for validity
+
+ ----------------------------
+ -- Valid_Default_Iterator --
+ ----------------------------
+
+ function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
+ Formal : Entity_Id;
+
+ begin
+ if not Check_Primitive_Function (Subp) then
+ return False;
+ else
+ Formal := First_Formal (Subp);
+ end if;
+
+ -- False if any subsequent formal has no default expression
+
+ Formal := Next_Formal (Formal);
+ while Present (Formal) loop
+ if No (Expression (Parent (Formal))) then
+ return False;
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+
+ -- True if all subsequent formals have default expressions
+
+ return True;
+ end Valid_Default_Iterator;
+
+ -- Start of processing for Check_Iterator_Functions
+
+ begin
+ Analyze (Expr);
+
+ if not Is_Entity_Name (Expr) then
+ Error_Msg_N ("aspect Iterator must be a function name", Expr);
+ end if;
+
+ if not Is_Overloaded (Expr) then
+ if not Check_Primitive_Function (Entity (Expr)) then
+ Error_Msg_NE
+ ("aspect Indexing requires a function that applies to type&",
+ Entity (Expr), Ent);
+ end if;
+
+ if not Valid_Default_Iterator (Entity (Expr)) then
+ Error_Msg_N ("improper function for default iterator", Expr);
+ end if;
+
+ else
+ Default := Empty;
+ declare
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ Get_First_Interp (Expr, I, It);
+ while Present (It.Nam) loop
+ if not Check_Primitive_Function (It.Nam)
+ or else not Valid_Default_Iterator (It.Nam)
+ then
+ Remove_Interp (I);
+
+ elsif Present (Default) then
+ Error_Msg_N ("default iterator must be unique", Expr);
+
+ else
+ Default := It.Nam;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+
+ if Present (Default) then
+ Set_Entity (Expr, Default);
+ Set_Is_Overloaded (Expr, False);
+ end if;
+ end if;
+ end Check_Iterator_Functions;
+
+ -------------------------------
+ -- Check_Primitive_Function --
+ -------------------------------
+
+ function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
+ Ctrl : Entity_Id;
+
+ begin
+ if Ekind (Subp) /= E_Function then
+ return False;
+ end if;
+
+ if No (First_Formal (Subp)) then
+ return False;
+ else
+ Ctrl := Etype (First_Formal (Subp));
+ end if;
+
+ if Ctrl = Ent
+ or else Ctrl = Class_Wide_Type (Ent)
+ or else
+ (Ekind (Ctrl) = E_Anonymous_Access_Type
+ and then
+ (Designated_Type (Ctrl) = Ent
+ or else Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
+ then
+ null;
+
+ else
+ return False;
+ end if;
+
+ return True;
+ end Check_Primitive_Function;
+
+ ----------------------
+ -- Duplicate_Clause --
+ ----------------------
+
+ function Duplicate_Clause return Boolean is
+ A : Node_Id;
+
+ begin
+ -- Nothing to do if this attribute definition clause comes from
+ -- an aspect specification, since we could not be duplicating an
+ -- explicit clause, and we dealt with the case of duplicated aspects
+ -- in Analyze_Aspect_Specifications.
+
+ if From_Aspect_Specification (N) then
+ return False;
+ end if;
+
+ -- Otherwise current clause may duplicate previous clause, or a
+ -- previously given pragma or aspect specification for the same
+ -- aspect.
+
+ A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
+
+ if Present (A) then
+ Error_Msg_Name_1 := Chars (N);
+ Error_Msg_Sloc := Sloc (A);
+
+ Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
+ return True;
+ end if;
+
+ return False;
+ end Duplicate_Clause;
+
+ -- Start of processing for Analyze_Attribute_Definition_Clause
+
+ begin
+ -- The following code is a defense against recursion. Not clear that
+ -- this can happen legitimately, but perhaps some error situations
+ -- can cause it, and we did see this recursion during testing.
+
+ if Analyzed (N) then
+ return;
+ else
+ Set_Analyzed (N, True);
+ end if;
+
+ -- Ignore some selected attributes in CodePeer mode since they are not
+ -- relevant in this context.
+
+ if CodePeer_Mode then
+ case Id is
+
+ -- Ignore Component_Size in CodePeer mode, to avoid changing the
+ -- internal representation of types by implicitly packing them.
+
+ when Attribute_Component_Size =>
+ Rewrite (N, Make_Null_Statement (Sloc (N)));
+ return;
+
+ when others =>
+ null;
+ end case;
+ end if;
+
+ -- Process Ignore_Rep_Clauses option
+
+ if Ignore_Rep_Clauses then
+ case Id is
+
+ -- The following should be ignored. They do not affect legality
+ -- and may be target dependent. The basic idea of -gnatI is to
+ -- ignore any rep clauses that may be target dependent but do not
+ -- affect legality (except possibly to be rejected because they
+ -- are incompatible with the compilation target).
+
+ when Attribute_Alignment |
+ Attribute_Bit_Order |
+ Attribute_Component_Size |
+ Attribute_Machine_Radix |
+ Attribute_Object_Size |
+ Attribute_Size |
+ Attribute_Stream_Size |
+ Attribute_Value_Size =>
+ Rewrite (N, Make_Null_Statement (Sloc (N)));
+ return;
+
+ -- Perhaps 'Small should not be ignored by Ignore_Rep_Clauses ???
+
+ when Attribute_Small =>
+ if Ignore_Rep_Clauses then
+ Rewrite (N, Make_Null_Statement (Sloc (N)));
+ return;
+ end if;
+
+ -- The following should not be ignored, because in the first place
+ -- they are reasonably portable, and should not cause problems in
+ -- compiling code from another target, and also they do affect
+ -- legality, e.g. failing to provide a stream attribute for a
+ -- type may make a program illegal.
+
+ when Attribute_External_Tag |
+ Attribute_Input |
+ Attribute_Output |
+ Attribute_Read |
+ Attribute_Simple_Storage_Pool |
+ Attribute_Storage_Pool |
+ Attribute_Storage_Size |
+ Attribute_Write =>
+ null;
+
+ -- Other cases are errors ("attribute& cannot be set with
+ -- definition clause"), which will be caught below.
+
+ when others =>
+ null;
+ end case;
+ end if;
+
+ Analyze (Nam);
+ Ent := Entity (Nam);
+
+ if Rep_Item_Too_Early (Ent, N) then
+ return;
+ end if;
+
+ -- Rep clause applies to full view of incomplete type or private type if
+ -- we have one (if not, this is a premature use of the type). However,
+ -- certain semantic checks need to be done on the specified entity (i.e.
+ -- the private view), so we save it in Ent.
+
+ if Is_Private_Type (Ent)
+ and then Is_Derived_Type (Ent)
+ and then not Is_Tagged_Type (Ent)
+ and then No (Full_View (Ent))
+ then
+ -- If this is a private type whose completion is a derivation from
+ -- another private type, there is no full view, and the attribute
+ -- belongs to the type itself, not its underlying parent.
+
+ U_Ent := Ent;
+
+ elsif Ekind (Ent) = E_Incomplete_Type then
+
+ -- The attribute applies to the full view, set the entity of the
+ -- attribute definition accordingly.
+
+ Ent := Underlying_Type (Ent);
+ U_Ent := Ent;
+ Set_Entity (Nam, Ent);
+
+ else
+ U_Ent := Underlying_Type (Ent);
+ end if;
+
+ -- Avoid cascaded error
+
+ if Etype (Nam) = Any_Type then
+ return;
+
+ -- Must be declared in current scope or in case of an aspect
+ -- specification, must be visible in current scope.
+
+ elsif Scope (Ent) /= Current_Scope
+ and then
+ not (From_Aspect_Specification (N)
+ and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
+ then
+ Error_Msg_N ("entity must be declared in this scope", Nam);
+ return;
+
+ -- Must not be a source renaming (we do have some cases where the
+ -- expander generates a renaming, and those cases are OK, in such
+ -- cases any attribute applies to the renamed object as well).
+
+ elsif Is_Object (Ent)
+ and then Present (Renamed_Object (Ent))
+ then
+ -- Case of renamed object from source, this is an error
+
+ if Comes_From_Source (Renamed_Object (Ent)) then
+ Get_Name_String (Chars (N));
+ Error_Msg_Strlen := Name_Len;
+ Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
+ Error_Msg_N
+ ("~ clause not allowed for a renaming declaration "
+ & "(RM 13.1(6))", Nam);
+ return;
+
+ -- For the case of a compiler generated renaming, the attribute
+ -- definition clause applies to the renamed object created by the
+ -- expander. The easiest general way to handle this is to create a
+ -- copy of the attribute definition clause for this object.
+
+ elsif Is_Entity_Name (Renamed_Object (Ent)) then
+ Insert_Action (N,
+ Make_Attribute_Definition_Clause (Loc,
+ Name =>
+ New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
+ Chars => Chars (N),
+ Expression => Duplicate_Subexpr (Expression (N))));
+
+ -- If the renamed object is not an entity, it must be a dereference
+ -- of an unconstrained function call, and we must introduce a new
+ -- declaration to capture the expression. This is needed in the case
+ -- of 'Alignment, where the original declaration must be rewritten.
+
+ else
+ pragma Assert
+ (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
+ null;
+ end if;
+
+ -- If no underlying entity, use entity itself, applies to some
+ -- previously detected error cases ???
+
+ elsif No (U_Ent) then
+ U_Ent := Ent;
+
+ -- Cannot specify for a subtype (exception Object/Value_Size)
+
+ elsif Is_Type (U_Ent)
+ and then not Is_First_Subtype (U_Ent)
+ and then Id /= Attribute_Object_Size
+ and then Id /= Attribute_Value_Size
+ and then not From_At_Mod (N)
+ then
+ Error_Msg_N ("cannot specify attribute for subtype", Nam);
+ return;
+ end if;
+
+ Set_Entity (N, U_Ent);
+ Check_Restriction_No_Use_Of_Attribute (N);
+
+ -- Switch on particular attribute
+
+ case Id is
+
+ -------------
+ -- Address --
+ -------------
+
+ -- Address attribute definition clause
+
+ when Attribute_Address => Address : begin
+
+ -- A little error check, catch for X'Address use X'Address;
+
+ if Nkind (Nam) = N_Identifier
+ and then Nkind (Expr) = N_Attribute_Reference
+ and then Attribute_Name (Expr) = Name_Address
+ and then Nkind (Prefix (Expr)) = N_Identifier
+ and then Chars (Nam) = Chars (Prefix (Expr))
+ then
+ Error_Msg_NE
+ ("address for & is self-referencing", Prefix (Expr), Ent);
+ return;
+ end if;
+
+ -- Not that special case, carry on with analysis of expression
+
+ Analyze_And_Resolve (Expr, RTE (RE_Address));
+
+ -- Even when ignoring rep clauses we need to indicate that the
+ -- entity has an address clause and thus it is legal to declare
+ -- it imported.
+
+ if Ignore_Rep_Clauses then
+ if Ekind_In (U_Ent, E_Variable, E_Constant) then
+ Record_Rep_Item (U_Ent, N);
+ end if;
+
+ return;
+ end if;
+
+ if Duplicate_Clause then
+ null;
+
+ -- Case of address clause for subprogram
+
+ elsif Is_Subprogram (U_Ent) then
+ if Has_Homonym (U_Ent) then
+ Error_Msg_N
+ ("address clause cannot be given " &
+ "for overloaded subprogram",
+ Nam);
+ return;
+ end if;
+
+ -- For subprograms, all address clauses are permitted, and we
+ -- mark the subprogram as having a deferred freeze so that Gigi
+ -- will not elaborate it too soon.
+
+ -- Above needs more comments, what is too soon about???
+
+ Set_Has_Delayed_Freeze (U_Ent);
+
+ -- Case of address clause for entry
+
+ elsif Ekind (U_Ent) = E_Entry then
+ if Nkind (Parent (N)) = N_Task_Body then
+ Error_Msg_N
+ ("entry address must be specified in task spec", Nam);
+ return;
+ end if;
+
+ -- For entries, we require a constant address
+
+ Check_Constant_Address_Clause (Expr, U_Ent);
+
+ -- Special checks for task types
+
+ if Is_Task_Type (Scope (U_Ent))
+ and then Comes_From_Source (Scope (U_Ent))
+ then
+ Error_Msg_N
+ ("??entry address declared for entry in task type", N);
+ Error_Msg_N
+ ("\??only one task can be declared of this type", N);
+ end if;
+
+ -- Entry address clauses are obsolescent
+
+ Check_Restriction (No_Obsolescent_Features, N);
+
+ if Warn_On_Obsolescent_Feature then
+ Error_Msg_N
+ ("?j?attaching interrupt to task entry is an " &
+ "obsolescent feature (RM J.7.1)", N);
+ Error_Msg_N
+ ("\?j?use interrupt procedure instead", N);
+ end if;
+
+ -- Case of an address clause for a controlled object which we
+ -- consider to be erroneous.
+
+ elsif Is_Controlled (Etype (U_Ent))
+ or else Has_Controlled_Component (Etype (U_Ent))
+ then
+ Error_Msg_NE
+ ("??controlled object& must not be overlaid", Nam, U_Ent);
+ Error_Msg_N
+ ("\??Program_Error will be raised at run time", Nam);
+ Insert_Action (Declaration_Node (U_Ent),
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Overlaid_Controlled_Object));
+ return;
+
+ -- Case of address clause for a (non-controlled) object
+
+ elsif
+ Ekind (U_Ent) = E_Variable
+ or else
+ Ekind (U_Ent) = E_Constant
+ then
+ declare
+ Expr : constant Node_Id := Expression (N);
+ O_Ent : Entity_Id;
+ Off : Boolean;
+
+ begin
+ -- Exported variables cannot have an address clause, because
+ -- this cancels the effect of the pragma Export.
+
+ if Is_Exported (U_Ent) then
+ Error_Msg_N
+ ("cannot export object with address clause", Nam);
+ return;
+ end if;
+
+ Find_Overlaid_Entity (N, O_Ent, Off);
+
+ -- Overlaying controlled objects is erroneous
+
+ if Present (O_Ent)
+ and then (Has_Controlled_Component (Etype (O_Ent))
+ or else Is_Controlled (Etype (O_Ent)))
+ then
+ Error_Msg_N
+ ("??cannot overlay with controlled object", Expr);
+ Error_Msg_N
+ ("\??Program_Error will be raised at run time", Expr);
+ Insert_Action (Declaration_Node (U_Ent),
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Overlaid_Controlled_Object));
+ return;
+
+ elsif Present (O_Ent)
+ and then Ekind (U_Ent) = E_Constant
+ and then not Is_Constant_Object (O_Ent)
+ then
+ Error_Msg_N ("??constant overlays a variable", Expr);
+
+ -- Imported variables can have an address clause, but then
+ -- the import is pretty meaningless except to suppress
+ -- initializations, so we do not need such variables to
+ -- be statically allocated (and in fact it causes trouble
+ -- if the address clause is a local value).
+
+ elsif Is_Imported (U_Ent) then
+ Set_Is_Statically_Allocated (U_Ent, False);
+ end if;
+
+ -- We mark a possible modification of a variable with an
+ -- address clause, since it is likely aliasing is occurring.
+
+ Note_Possible_Modification (Nam, Sure => False);
+
+ -- Here we are checking for explicit overlap of one variable
+ -- by another, and if we find this then mark the overlapped
+ -- variable as also being volatile to prevent unwanted
+ -- optimizations. This is a significant pessimization so
+ -- avoid it when there is an offset, i.e. when the object
+ -- is composite; they cannot be optimized easily anyway.
+
+ if Present (O_Ent)
+ and then Is_Object (O_Ent)
+ and then not Off
+
+ -- The following test is an expedient solution to what
+ -- is really a problem in CodePeer. Suppressing the
+ -- Set_Treat_As_Volatile call here prevents later
+ -- generation (in some cases) of trees that CodePeer
+ -- should, but currently does not, handle correctly.
+ -- This test should probably be removed when CodePeer
+ -- is improved, just because we want the tree CodePeer
+ -- analyzes to match the tree for which we generate code
+ -- as closely as is practical. ???
+
+ and then not CodePeer_Mode
+ then
+ -- ??? O_Ent might not be in current unit
+
+ Set_Treat_As_Volatile (O_Ent);
+ end if;
+
+ -- Legality checks on the address clause for initialized
+ -- objects is deferred until the freeze point, because
+ -- a subsequent pragma might indicate that the object
+ -- is imported and thus not initialized. Also, the address
+ -- clause might involve entities that have yet to be
+ -- elaborated.
+
+ Set_Has_Delayed_Freeze (U_Ent);
+
+ -- If an initialization call has been generated for this
+ -- object, it needs to be deferred to after the freeze node
+ -- we have just now added, otherwise GIGI will see a
+ -- reference to the variable (as actual to the IP call)
+ -- before its definition.
+
+ declare
+ Init_Call : constant Node_Id :=
+ Remove_Init_Call (U_Ent, N);
+
+ begin
+ if Present (Init_Call) then
+ Append_Freeze_Action (U_Ent, Init_Call);
+
+ -- Reset Initialization_Statements pointer so that
+ -- if there is a pragma Import further down, it can
+ -- clear any default initialization.
+
+ Set_Initialization_Statements (U_Ent, Init_Call);
+ end if;
+ end;
+
+ if Is_Exported (U_Ent) then
+ Error_Msg_N
+ ("& cannot be exported if an address clause is given",
+ Nam);
+ Error_Msg_N
+ ("\define and export a variable "
+ & "that holds its address instead", Nam);
+ end if;
+
+ -- Entity has delayed freeze, so we will generate an
+ -- alignment check at the freeze point unless suppressed.
+
+ if not Range_Checks_Suppressed (U_Ent)
+ and then not Alignment_Checks_Suppressed (U_Ent)
+ then
+ Set_Check_Address_Alignment (N);
+ end if;
+
+ -- Kill the size check code, since we are not allocating
+ -- the variable, it is somewhere else.
+
+ Kill_Size_Check_Code (U_Ent);
+
+ -- If the address clause is of the form:
+
+ -- for Y'Address use X'Address
+
+ -- or
+
+ -- Const : constant Address := X'Address;
+ -- ...
+ -- for Y'Address use Const;
+
+ -- then we make an entry in the table for checking the size
+ -- and alignment of the overlaying variable. We defer this
+ -- check till after code generation to take full advantage
+ -- of the annotation done by the back end.
+
+ -- If the entity has a generic type, the check will be
+ -- performed in the instance if the actual type justifies
+ -- it, and we do not insert the clause in the table to
+ -- prevent spurious warnings.
+
+ -- Note: we used to test Comes_From_Source and only give
+ -- this warning for source entities, but we have removed
+ -- this test. It really seems bogus to generate overlays
+ -- that would trigger this warning in generated code.
+ -- Furthermore, by removing the test, we handle the
+ -- aspect case properly.
+
+ if Address_Clause_Overlay_Warnings
+ and then Present (O_Ent)
+ and then Is_Object (O_Ent)
+ then
+ if not Is_Generic_Type (Etype (U_Ent)) then
+ Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
+ end if;
+
+ -- If variable overlays a constant view, and we are
+ -- warning on overlays, then mark the variable as
+ -- overlaying a constant (we will give warnings later
+ -- if this variable is assigned).
+
+ if Is_Constant_Object (O_Ent)
+ and then Ekind (U_Ent) = E_Variable
+ then
+ Set_Overlays_Constant (U_Ent);
+ end if;
+ end if;
+ end;
+
+ -- Not a valid entity for an address clause
+
+ else
+ Error_Msg_N ("address cannot be given for &", Nam);
+ end if;
+ end Address;
+
+ ---------------
+ -- Alignment --
+ ---------------
+
+ -- Alignment attribute definition clause
+
+ when Attribute_Alignment => Alignment : declare
+ Align : constant Uint := Get_Alignment_Value (Expr);
+ Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
+
+ begin
+ FOnly := True;
+
+ if not Is_Type (U_Ent)
+ and then Ekind (U_Ent) /= E_Variable
+ and then Ekind (U_Ent) /= E_Constant
+ then
+ Error_Msg_N ("alignment cannot be given for &", Nam);
+
+ elsif Duplicate_Clause then
+ null;
+
+ elsif Align /= No_Uint then
+ Set_Has_Alignment_Clause (U_Ent);
+
+ -- Tagged type case, check for attempt to set alignment to a
+ -- value greater than Max_Align, and reset if so.
+
+ if Is_Tagged_Type (U_Ent) and then Align > Max_Align then
+ Error_Msg_N
+ ("alignment for & set to Maximum_Aligment??", Nam);
+ Set_Alignment (U_Ent, Max_Align);
+
+ -- All other cases
+
+ else
+ Set_Alignment (U_Ent, Align);
+ end if;
+
+ -- For an array type, U_Ent is the first subtype. In that case,
+ -- also set the alignment of the anonymous base type so that
+ -- other subtypes (such as the itypes for aggregates of the
+ -- type) also receive the expected alignment.
+
+ if Is_Array_Type (U_Ent) then
+ Set_Alignment (Base_Type (U_Ent), Align);
+ end if;
+ end if;
+ end Alignment;
+
+ ---------------
+ -- Bit_Order --
+ ---------------
+
+ -- Bit_Order attribute definition clause
+
+ when Attribute_Bit_Order => Bit_Order : declare
+ begin
+ if not Is_Record_Type (U_Ent) then
+ Error_Msg_N
+ ("Bit_Order can only be defined for record type", Nam);
+
+ elsif Duplicate_Clause then
+ null;
+
+ else
+ Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
+
+ if Etype (Expr) = Any_Type then
+ return;
+
+ elsif not Is_Static_Expression (Expr) then
+ Flag_Non_Static_Expr
+ ("Bit_Order requires static expression!", Expr);
+
+ else
+ if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
+ Set_Reverse_Bit_Order (U_Ent, True);
+ end if;
+ end if;
+ end if;
+ end Bit_Order;
+
+ --------------------
+ -- Component_Size --
+ --------------------
+
+ -- Component_Size attribute definition clause
+
+ when Attribute_Component_Size => Component_Size_Case : declare
+ Csize : constant Uint := Static_Integer (Expr);
+ Ctyp : Entity_Id;
+ Btype : Entity_Id;
+ Biased : Boolean;
+ New_Ctyp : Entity_Id;
+ Decl : Node_Id;
+
+ begin
+ if not Is_Array_Type (U_Ent) then
+ Error_Msg_N ("component size requires array type", Nam);
+ return;
+ end if;
+
+ Btype := Base_Type (U_Ent);
+ Ctyp := Component_Type (Btype);
+
+ if Duplicate_Clause then
+ null;
+
+ elsif Rep_Item_Too_Early (Btype, N) then
+ null;
+
+ elsif Csize /= No_Uint then
+ Check_Size (Expr, Ctyp, Csize, Biased);
+
+ -- For the biased case, build a declaration for a subtype that
+ -- will be used to represent the biased subtype that reflects
+ -- the biased representation of components. We need the subtype
+ -- to get proper conversions on referencing elements of the
+ -- array. Note: component size clauses are ignored in VM mode.
+
+ if VM_Target = No_VM then
+ if Biased then
+ New_Ctyp :=
+ Make_Defining_Identifier (Loc,
+ Chars =>
+ New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
+
+ Decl :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => New_Ctyp,
+ Subtype_Indication =>
+ New_Occurrence_Of (Component_Type (Btype), Loc));
+
+ Set_Parent (Decl, N);
+ Analyze (Decl, Suppress => All_Checks);
+
+ Set_Has_Delayed_Freeze (New_Ctyp, False);
+ Set_Esize (New_Ctyp, Csize);
+ Set_RM_Size (New_Ctyp, Csize);
+ Init_Alignment (New_Ctyp);
+ Set_Is_Itype (New_Ctyp, True);
+ Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
+
+ Set_Component_Type (Btype, New_Ctyp);
+ Set_Biased (New_Ctyp, N, "component size clause");
+ end if;
+
+ Set_Component_Size (Btype, Csize);
+
+ -- For VM case, we ignore component size clauses
+
+ else
+ -- Give a warning unless we are in GNAT mode, in which case
+ -- the warning is suppressed since it is not useful.
+
+ if not GNAT_Mode then
+ Error_Msg_N
+ ("component size ignored in this configuration??", N);
+ end if;
+ end if;
+
+ -- Deal with warning on overridden size
+
+ if Warn_On_Overridden_Size
+ and then Has_Size_Clause (Ctyp)
+ and then RM_Size (Ctyp) /= Csize
+ then
+ Error_Msg_NE
+ ("component size overrides size clause for&?S?", N, Ctyp);
+ end if;
+
+ Set_Has_Component_Size_Clause (Btype, True);
+ Set_Has_Non_Standard_Rep (Btype, True);
+ end if;
+ end Component_Size_Case;
+
+ -----------------------
+ -- Constant_Indexing --
+ -----------------------
+
+ when Attribute_Constant_Indexing =>
+ Check_Indexing_Functions;
+
+ ---------
+ -- CPU --
+ ---------
+
+ when Attribute_CPU => CPU :
+ begin
+ -- CPU attribute definition clause not allowed except from aspect
+ -- specification.
+
+ if From_Aspect_Specification (N) then
+ if not Is_Task_Type (U_Ent) then
+ Error_Msg_N ("CPU can only be defined for task", Nam);
+
+ elsif Duplicate_Clause then
+ null;
+
+ else
+ -- The expression must be analyzed in the special manner
+ -- described in "Handling of Default and Per-Object
+ -- Expressions" in sem.ads.
+
+ -- The visibility to the discriminants must be restored
+
+ Push_Scope_And_Install_Discriminants (U_Ent);
+ Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
+ Uninstall_Discriminants_And_Pop_Scope (U_Ent);
+
+ if not Is_Static_Expression (Expr) then
+ Check_Restriction (Static_Priorities, Expr);
+ end if;
+ end if;
+
+ else
+ Error_Msg_N
+ ("attribute& cannot be set with definition clause", N);
+ end if;
+ end CPU;
+
+ ----------------------
+ -- Default_Iterator --
+ ----------------------
+
+ when Attribute_Default_Iterator => Default_Iterator : declare
+ Func : Entity_Id;
+
+ begin
+ if not Is_Tagged_Type (U_Ent) then
+ Error_Msg_N
+ ("aspect Default_Iterator applies to tagged type", Nam);
+ end if;
+
+ Check_Iterator_Functions;
+
+ Analyze (Expr);
+
+ if not Is_Entity_Name (Expr)
+ or else Ekind (Entity (Expr)) /= E_Function
+ then
+ Error_Msg_N ("aspect Iterator must be a function", Expr);
+ else
+ Func := Entity (Expr);
+ end if;
+
+ if No (First_Formal (Func))
+ or else Etype (First_Formal (Func)) /= U_Ent
+ then
+ Error_Msg_NE
+ ("Default Iterator must be a primitive of&", Func, U_Ent);
+ end if;
+ end Default_Iterator;
+
+ ------------------------
+ -- Dispatching_Domain --
+ ------------------------
+
+ when Attribute_Dispatching_Domain => Dispatching_Domain :
+ begin
+ -- Dispatching_Domain attribute definition clause not allowed
+ -- except from aspect specification.
+
+ if From_Aspect_Specification (N) then
+ if not Is_Task_Type (U_Ent) then
+ Error_Msg_N ("Dispatching_Domain can only be defined" &
+ "for task",
+ Nam);
+
+ elsif Duplicate_Clause then
+ null;
+
+ else
+ -- The expression must be analyzed in the special manner
+ -- described in "Handling of Default and Per-Object
+ -- Expressions" in sem.ads.
+
+ -- The visibility to the discriminants must be restored
+
+ Push_Scope_And_Install_Discriminants (U_Ent);
+
+ Preanalyze_Spec_Expression
+ (Expr, RTE (RE_Dispatching_Domain));
+
+ Uninstall_Discriminants_And_Pop_Scope (U_Ent);
+ end if;
+
+ else
+ Error_Msg_N
+ ("attribute& cannot be set with definition clause", N);
+ end if;
+ end Dispatching_Domain;
+
+ ------------------
+ -- External_Tag --
+ ------------------
+
+ when Attribute_External_Tag => External_Tag :
+ begin
+ if not Is_Tagged_Type (U_Ent) then
+ Error_Msg_N ("should be a tagged type", Nam);
+ end if;
+
+ if Duplicate_Clause then
+ null;
+
+ else
+ Analyze_And_Resolve (Expr, Standard_String);
+
+ if not Is_Static_Expression (Expr) then
+ Flag_Non_Static_Expr
+ ("static string required for tag name!", Nam);
+ end if;
+
+ if VM_Target = No_VM then
+ Set_Has_External_Tag_Rep_Clause (U_Ent);
+ else
+ Error_Msg_Name_1 := Attr;
+ Error_Msg_N
+ ("% attribute unsupported in this configuration", Nam);
+ end if;
+
+ if not Is_Library_Level_Entity (U_Ent) then
+ Error_Msg_NE
+ ("??non-unique external tag supplied for &", N, U_Ent);
+ Error_Msg_N
+ ("\??same external tag applies to all "
+ & "subprogram calls", N);
+ Error_Msg_N
+ ("\??corresponding internal tag cannot be obtained", N);
+ end if;
+ end if;
+ end External_Tag;
+
+ --------------------------
+ -- Implicit_Dereference --
+ --------------------------
+
+ when Attribute_Implicit_Dereference =>
+
+ -- Legality checks already performed at the point of the type
+ -- declaration, aspect is not delayed.
+
+ null;
+
+ -----------
+ -- Input --
+ -----------
+
+ when Attribute_Input =>
+ Analyze_Stream_TSS_Definition (TSS_Stream_Input);
+ Set_Has_Specified_Stream_Input (Ent);
+
+ ------------------------
+ -- Interrupt_Priority --
+ ------------------------
+
+ when Attribute_Interrupt_Priority => Interrupt_Priority :
+ begin
+ -- Interrupt_Priority attribute definition clause not allowed
+ -- except from aspect specification.
+
+ if From_Aspect_Specification (N) then
+ if not (Is_Protected_Type (U_Ent)
+ or else Is_Task_Type (U_Ent))
+ then
+ Error_Msg_N
+ ("Interrupt_Priority can only be defined for task" &
+ "and protected object",
+ Nam);
+
+ elsif Duplicate_Clause then
+ null;
+
+ else
+ -- The expression must be analyzed in the special manner
+ -- described in "Handling of Default and Per-Object
+ -- Expressions" in sem.ads.
+
+ -- The visibility to the discriminants must be restored
+
+ Push_Scope_And_Install_Discriminants (U_Ent);
+
+ Preanalyze_Spec_Expression
+ (Expr, RTE (RE_Interrupt_Priority));
+
+ Uninstall_Discriminants_And_Pop_Scope (U_Ent);
+ end if;
+
+ else
+ Error_Msg_N
+ ("attribute& cannot be set with definition clause", N);
+ end if;
+ end Interrupt_Priority;
+
+ --------------
+ -- Iterable --
+ --------------
+
+ when Attribute_Iterable =>
+ Analyze (Expr);
+
+ if Nkind (Expr) /= N_Aggregate then
+ Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
+ end if;
+
+ declare
+ Assoc : Node_Id;
+
+ begin
+ Assoc := First (Component_Associations (Expr));
+ while Present (Assoc) loop
+ if not Is_Entity_Name (Expression (Assoc)) then
+ Error_Msg_N ("value must be a function", Assoc);
+ end if;
+
+ Next (Assoc);
+ end loop;
+ end;
+
+ ----------------------
+ -- Iterator_Element --
+ ----------------------
+
+ when Attribute_Iterator_Element =>
+ Analyze (Expr);
+
+ if not Is_Entity_Name (Expr)
+ or else not Is_Type (Entity (Expr))
+ then
+ Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
+ end if;
+
+ -------------------
+ -- Machine_Radix --
+ -------------------
+
+ -- Machine radix attribute definition clause
+
+ when Attribute_Machine_Radix => Machine_Radix : declare
+ Radix : constant Uint := Static_Integer (Expr);
+
+ begin
+ if not Is_Decimal_Fixed_Point_Type (U_Ent) then
+ Error_Msg_N ("decimal fixed-point type expected for &", Nam);
+
+ elsif Duplicate_Clause then
+ null;
+
+ elsif Radix /= No_Uint then
+ Set_Has_Machine_Radix_Clause (U_Ent);
+ Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
+
+ if Radix = 2 then
+ null;
+ elsif Radix = 10 then
+ Set_Machine_Radix_10 (U_Ent);
+ else
+ Error_Msg_N ("machine radix value must be 2 or 10", Expr);
+ end if;
+ end if;
+ end Machine_Radix;
+
+ -----------------
+ -- Object_Size --
+ -----------------
+
+ -- Object_Size attribute definition clause
+
+ when Attribute_Object_Size => Object_Size : declare
+ Size : constant Uint := Static_Integer (Expr);
+
+ Biased : Boolean;
+ pragma Warnings (Off, Biased);
+
+ begin
+ if not Is_Type (U_Ent) then
+ Error_Msg_N ("Object_Size cannot be given for &", Nam);
+
+ elsif Duplicate_Clause then
+ null;
+
+ else
+ Check_Size (Expr, U_Ent, Size, Biased);
+
+ if Is_Scalar_Type (U_Ent) then
+ if Size /= 8 and then Size /= 16 and then Size /= 32
+ and then UI_Mod (Size, 64) /= 0
+ then
+ Error_Msg_N
+ ("Object_Size must be 8, 16, 32, or multiple of 64",
+ Expr);
+ end if;
+
+ elsif Size mod 8 /= 0 then
+ Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
+ end if;
+
+ Set_Esize (U_Ent, Size);
+ Set_Has_Object_Size_Clause (U_Ent);
+ Alignment_Check_For_Size_Change (U_Ent, Size);
+ end if;
+ end Object_Size;
+
+ ------------
+ -- Output --
+ ------------
+
+ when Attribute_Output =>
+ Analyze_Stream_TSS_Definition (TSS_Stream_Output);
+ Set_Has_Specified_Stream_Output (Ent);
+
+ --------------
+ -- Priority --
+ --------------
+
+ when Attribute_Priority => Priority :
+ begin
+ -- Priority attribute definition clause not allowed except from
+ -- aspect specification.
+
+ if From_Aspect_Specification (N) then
+ if not (Is_Protected_Type (U_Ent)
+ or else Is_Task_Type (U_Ent)
+ or else Ekind (U_Ent) = E_Procedure)
+ then
+ Error_Msg_N
+ ("Priority can only be defined for task and protected " &
+ "object",
+ Nam);
+
+ elsif Duplicate_Clause then
+ null;
+
+ else
+ -- The expression must be analyzed in the special manner
+ -- described in "Handling of Default and Per-Object
+ -- Expressions" in sem.ads.
+
+ -- The visibility to the discriminants must be restored
+
+ Push_Scope_And_Install_Discriminants (U_Ent);
+ Preanalyze_Spec_Expression (Expr, Standard_Integer);
+ Uninstall_Discriminants_And_Pop_Scope (U_Ent);
+
+ if not Is_Static_Expression (Expr) then
+ Check_Restriction (Static_Priorities, Expr);
+ end if;
+ end if;
+
+ else
+ Error_Msg_N
+ ("attribute& cannot be set with definition clause", N);
+ end if;
+ end Priority;
+
+ ----------
+ -- Read --
+ ----------
+
+ when Attribute_Read =>
+ Analyze_Stream_TSS_Definition (TSS_Stream_Read);
+ Set_Has_Specified_Stream_Read (Ent);
+
+ --------------------------
+ -- Scalar_Storage_Order --
+ --------------------------
+
+ -- Scalar_Storage_Order attribute definition clause
+
+ when Attribute_Scalar_Storage_Order => Scalar_Storage_Order : declare
+ begin
+ if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
+ Error_Msg_N
+ ("Scalar_Storage_Order can only be defined for "
+ & "record or array type", Nam);
+
+ elsif Duplicate_Clause then
+ null;
+
+ else
+ Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
+
+ if Etype (Expr) = Any_Type then
+ return;
+
+ elsif not Is_Static_Expression (Expr) then
+ Flag_Non_Static_Expr
+ ("Scalar_Storage_Order requires static expression!", Expr);
+
+ elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
+
+ -- Here for the case of a non-default (i.e. non-confirming)
+ -- Scalar_Storage_Order attribute definition.
+
+ if Support_Nondefault_SSO_On_Target then
+ Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
+ else
+ Error_Msg_N
+ ("non-default Scalar_Storage_Order "
+ & "not supported on target", Expr);
+ end if;
+ end if;
+ end if;
+ end Scalar_Storage_Order;
+
+ ----------
+ -- Size --
+ ----------
+
+ -- Size attribute definition clause
+
+ when Attribute_Size => Size : declare
+ Size : constant Uint := Static_Integer (Expr);
+ Etyp : Entity_Id;
+ Biased : Boolean;
+
+ begin
+ FOnly := True;
+
+ if Duplicate_Clause then
+ null;
+
+ elsif not Is_Type (U_Ent)
+ and then Ekind (U_Ent) /= E_Variable
+ and then Ekind (U_Ent) /= E_Constant
+ then
+ Error_Msg_N ("size cannot be given for &", Nam);
+
+ elsif Is_Array_Type (U_Ent)
+ and then not Is_Constrained (U_Ent)
+ then
+ Error_Msg_N
+ ("size cannot be given for unconstrained array", Nam);
+
+ elsif Size /= No_Uint then
+ if VM_Target /= No_VM and then not GNAT_Mode then
+
+ -- Size clause is not handled properly on VM targets.
+ -- Display a warning unless we are in GNAT mode, in which
+ -- case this is useless.
+
+ Error_Msg_N
+ ("size clauses are ignored in this configuration??", N);
+ end if;
+
+ if Is_Type (U_Ent) then
+ Etyp := U_Ent;
+ else
+ Etyp := Etype (U_Ent);
+ end if;
+
+ -- Check size, note that Gigi is in charge of checking that the
+ -- size of an array or record type is OK. Also we do not check
+ -- the size in the ordinary fixed-point case, since it is too
+ -- early to do so (there may be subsequent small clause that
+ -- affects the size). We can check the size if a small clause
+ -- has already been given.
+
+ if not Is_Ordinary_Fixed_Point_Type (U_Ent)
+ or else Has_Small_Clause (U_Ent)
+ then
+ Check_Size (Expr, Etyp, Size, Biased);
+ Set_Biased (U_Ent, N, "size clause", Biased);
+ end if;
+
+ -- For types set RM_Size and Esize if possible
+
+ if Is_Type (U_Ent) then
+ Set_RM_Size (U_Ent, Size);
+
+ -- For elementary types, increase Object_Size to power of 2,
+ -- but not less than a storage unit in any case (normally
+ -- this means it will be byte addressable).
+
+ -- For all other types, nothing else to do, we leave Esize
+ -- (object size) unset, the back end will set it from the
+ -- size and alignment in an appropriate manner.
+
+ -- In both cases, we check whether the alignment must be
+ -- reset in the wake of the size change.
+
+ if Is_Elementary_Type (U_Ent) then
+ if Size <= System_Storage_Unit then
+ Init_Esize (U_Ent, System_Storage_Unit);
+ elsif Size <= 16 then
+ Init_Esize (U_Ent, 16);
+ elsif Size <= 32 then
+ Init_Esize (U_Ent, 32);
+ else
+ Set_Esize (U_Ent, (Size + 63) / 64 * 64);
+ end if;
+
+ Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
+ else
+ Alignment_Check_For_Size_Change (U_Ent, Size);
+ end if;
+
+ -- For objects, set Esize only
+
+ else
+ if Is_Elementary_Type (Etyp) then
+ if Size /= System_Storage_Unit
+ and then
+ Size /= System_Storage_Unit * 2
+ and then
+ Size /= System_Storage_Unit * 4
+ and then
+ Size /= System_Storage_Unit * 8
+ then
+ Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
+ Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
+ Error_Msg_N
+ ("size for primitive object must be a power of 2"
+ & " in the range ^-^", N);
+ end if;
+ end if;
+
+ Set_Esize (U_Ent, Size);
+ end if;
+
+ Set_Has_Size_Clause (U_Ent);
+ end if;
+ end Size;
+
+ -----------
+ -- Small --
+ -----------
+
+ -- Small attribute definition clause
+
+ when Attribute_Small => Small : declare
+ Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
+ Small : Ureal;
+
+ begin
+ Analyze_And_Resolve (Expr, Any_Real);
+
+ if Etype (Expr) = Any_Type then
+ return;
+
+ elsif not Is_Static_Expression (Expr) then
+ Flag_Non_Static_Expr
+ ("small requires static expression!", Expr);
+ return;
+
+ else
+ Small := Expr_Value_R (Expr);
+
+ if Small <= Ureal_0 then
+ Error_Msg_N ("small value must be greater than zero", Expr);
+ return;
+ end if;
+
+ end if;
+
+ if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
+ Error_Msg_N
+ ("small requires an ordinary fixed point type", Nam);
+
+ elsif Has_Small_Clause (U_Ent) then
+ Error_Msg_N ("small already given for &", Nam);
+
+ elsif Small > Delta_Value (U_Ent) then
+ Error_Msg_N
+ ("small value must not be greater than delta value", Nam);
+
+ else
+ Set_Small_Value (U_Ent, Small);
+ Set_Small_Value (Implicit_Base, Small);
+ Set_Has_Small_Clause (U_Ent);
+ Set_Has_Small_Clause (Implicit_Base);
+ Set_Has_Non_Standard_Rep (Implicit_Base);
+ end if;
+ end Small;
+
+ ------------------
+ -- Storage_Pool --
+ ------------------
+
+ -- Storage_Pool attribute definition clause
+
+ when Attribute_Storage_Pool | Attribute_Simple_Storage_Pool => declare
+ Pool : Entity_Id;
+ T : Entity_Id;
+
+ begin
+ if Ekind (U_Ent) = E_Access_Subprogram_Type then
+ Error_Msg_N
+ ("storage pool cannot be given for access-to-subprogram type",
+ Nam);
+ return;
+
+ elsif not
+ Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
+ then
+ Error_Msg_N
+ ("storage pool can only be given for access types", Nam);
+ return;
+
+ elsif Is_Derived_Type (U_Ent) then
+ Error_Msg_N
+ ("storage pool cannot be given for a derived access type",
+ Nam);
+
+ elsif Duplicate_Clause then
+ return;
+
+ elsif Present (Associated_Storage_Pool (U_Ent)) then
+ Error_Msg_N ("storage pool already given for &", Nam);
+ return;
+ end if;
+
+ -- Check for Storage_Size previously given
+
+ declare
+ SS : constant Node_Id :=
+ Get_Attribute_Definition_Clause
+ (U_Ent, Attribute_Storage_Size);
+ begin
+ if Present (SS) then
+ Check_Pool_Size_Clash (U_Ent, N, SS);
+ end if;
+ end;
+
+ -- Storage_Pool case
+
+ if Id = Attribute_Storage_Pool then
+ Analyze_And_Resolve
+ (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
+
+ -- In the Simple_Storage_Pool case, we allow a variable of any
+ -- simple storage pool type, so we Resolve without imposing an
+ -- expected type.
+
+ else
+ Analyze_And_Resolve (Expr);
+
+ if not Present (Get_Rep_Pragma
+ (Etype (Expr), Name_Simple_Storage_Pool_Type))
+ then
+ Error_Msg_N
+ ("expression must be of a simple storage pool type", Expr);
+ end if;
+ end if;
+
+ if not Denotes_Variable (Expr) then
+ Error_Msg_N ("storage pool must be a variable", Expr);
+ return;
+ end if;
+
+ if Nkind (Expr) = N_Type_Conversion then
+ T := Etype (Expression (Expr));
+ else
+ T := Etype (Expr);
+ end if;
+
+ -- The Stack_Bounded_Pool is used internally for implementing
+ -- access types with a Storage_Size. Since it only work properly
+ -- when used on one specific type, we need to check that it is not
+ -- hijacked improperly:
+
+ -- type T is access Integer;
+ -- for T'Storage_Size use n;
+ -- type Q is access Float;
+ -- for Q'Storage_Size use T'Storage_Size; -- incorrect
+
+ if RTE_Available (RE_Stack_Bounded_Pool)
+ and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
+ then
+ Error_Msg_N ("non-shareable internal Pool", Expr);
+ return;
+ end if;
+
+ -- If the argument is a name that is not an entity name, then
+ -- we construct a renaming operation to define an entity of
+ -- type storage pool.
+
+ if not Is_Entity_Name (Expr)
+ and then Is_Object_Reference (Expr)
+ then
+ Pool := Make_Temporary (Loc, 'P', Expr);
+
+ declare
+ Rnode : constant Node_Id :=
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Pool,
+ Subtype_Mark =>
+ New_Occurrence_Of (Etype (Expr), Loc),
+ Name => Expr);
+
+ begin
+ -- If the attribute definition clause comes from an aspect
+ -- clause, then insert the renaming before the associated
+ -- entity's declaration, since the attribute clause has
+ -- not yet been appended to the declaration list.
+
+ if From_Aspect_Specification (N) then
+ Insert_Before (Parent (Entity (N)), Rnode);
+ else
+ Insert_Before (N, Rnode);
+ end if;
+
+ Analyze (Rnode);
+ Set_Associated_Storage_Pool (U_Ent, Pool);
+ end;
+
+ elsif Is_Entity_Name (Expr) then
+ Pool := Entity (Expr);
+
+ -- If pool is a renamed object, get original one. This can
+ -- happen with an explicit renaming, and within instances.
+
+ while Present (Renamed_Object (Pool))
+ and then Is_Entity_Name (Renamed_Object (Pool))
+ loop
+ Pool := Entity (Renamed_Object (Pool));
+ end loop;
+
+ if Present (Renamed_Object (Pool))
+ and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
+ and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
+ then
+ Pool := Entity (Expression (Renamed_Object (Pool)));
+ end if;
+
+ Set_Associated_Storage_Pool (U_Ent, Pool);
+
+ elsif Nkind (Expr) = N_Type_Conversion
+ and then Is_Entity_Name (Expression (Expr))
+ and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
+ then
+ Pool := Entity (Expression (Expr));
+ Set_Associated_Storage_Pool (U_Ent, Pool);
+
+ else
+ Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
+ return;
+ end if;
+ end;
+
+ ------------------
+ -- Storage_Size --
+ ------------------
+
+ -- Storage_Size attribute definition clause
+
+ when Attribute_Storage_Size => Storage_Size : declare
+ Btype : constant Entity_Id := Base_Type (U_Ent);
+
+ begin
+ if Is_Task_Type (U_Ent) then
+
+ -- Check obsolescent (but never obsolescent if from aspect)
+
+ if not From_Aspect_Specification (N) then
+ Check_Restriction (No_Obsolescent_Features, N);
+
+ if Warn_On_Obsolescent_Feature then
+ Error_Msg_N
+ ("?j?storage size clause for task is an " &
+ "obsolescent feature (RM J.9)", N);
+ Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
+ end if;
+ end if;
+
+ FOnly := True;
+ end if;
+
+ if not Is_Access_Type (U_Ent)
+ and then Ekind (U_Ent) /= E_Task_Type
+ then
+ Error_Msg_N ("storage size cannot be given for &", Nam);
+
+ elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
+ Error_Msg_N
+ ("storage size cannot be given for a derived access type",
+ Nam);
+
+ elsif Duplicate_Clause then
+ null;
+
+ else
+ Analyze_And_Resolve (Expr, Any_Integer);
+
+ if Is_Access_Type (U_Ent) then
+
+ -- Check for Storage_Pool previously given
+
+ declare
+ SP : constant Node_Id :=
+ Get_Attribute_Definition_Clause
+ (U_Ent, Attribute_Storage_Pool);
+
+ begin
+ if Present (SP) then
+ Check_Pool_Size_Clash (U_Ent, SP, N);
+ end if;
+ end;
+
+ -- Special case of for x'Storage_Size use 0
+
+ if Is_OK_Static_Expression (Expr)
+ and then Expr_Value (Expr) = 0
+ then
+ Set_No_Pool_Assigned (Btype);
+ end if;
+ end if;
+
+ Set_Has_Storage_Size_Clause (Btype);
+ end if;
+ end Storage_Size;
+
+ -----------------
+ -- Stream_Size --
+ -----------------
+
+ when Attribute_Stream_Size => Stream_Size : declare
+ Size : constant Uint := Static_Integer (Expr);
+
+ begin
+ if Ada_Version <= Ada_95 then
+ Check_Restriction (No_Implementation_Attributes, N);
+ end if;
+
+ if Duplicate_Clause then
+ null;
+
+ elsif Is_Elementary_Type (U_Ent) then
+ if Size /= System_Storage_Unit
+ and then
+ Size /= System_Storage_Unit * 2
+ and then
+ Size /= System_Storage_Unit * 4
+ and then
+ Size /= System_Storage_Unit * 8
+ then
+ Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
+ Error_Msg_N
+ ("stream size for elementary type must be a"
+ & " power of 2 and at least ^", N);
+
+ elsif RM_Size (U_Ent) > Size then
+ Error_Msg_Uint_1 := RM_Size (U_Ent);
+ Error_Msg_N
+ ("stream size for elementary type must be a"
+ & " power of 2 and at least ^", N);
+ end if;
+
+ Set_Has_Stream_Size_Clause (U_Ent);
+
+ else
+ Error_Msg_N ("Stream_Size cannot be given for &", Nam);
+ end if;
+ end Stream_Size;
+
+ ----------------
+ -- Value_Size --
+ ----------------
+
+ -- Value_Size attribute definition clause
+
+ when Attribute_Value_Size => Value_Size : declare
+ Size : constant Uint := Static_Integer (Expr);
+ Biased : Boolean;
+
+ begin
+ if not Is_Type (U_Ent) then
+ Error_Msg_N ("Value_Size cannot be given for &", Nam);
+
+ elsif Duplicate_Clause then
+ null;
+
+ elsif Is_Array_Type (U_Ent)
+ and then not Is_Constrained (U_Ent)
+ then
+ Error_Msg_N
+ ("Value_Size cannot be given for unconstrained array", Nam);
+
+ else
+ if Is_Elementary_Type (U_Ent) then
+ Check_Size (Expr, U_Ent, Size, Biased);
+ Set_Biased (U_Ent, N, "value size clause", Biased);
+ end if;
+
+ Set_RM_Size (U_Ent, Size);
+ end if;
+ end Value_Size;
+
+ -----------------------
+ -- Variable_Indexing --
+ -----------------------
+
+ when Attribute_Variable_Indexing =>
+ Check_Indexing_Functions;
+
+ -----------
+ -- Write --
+ -----------
+
+ when Attribute_Write =>
+ Analyze_Stream_TSS_Definition (TSS_Stream_Write);
+ Set_Has_Specified_Stream_Write (Ent);
+
+ -- All other attributes cannot be set
+
+ when others =>
+ Error_Msg_N
+ ("attribute& cannot be set with definition clause", N);
+ end case;
+
+ -- The test for the type being frozen must be performed after any
+ -- expression the clause has been analyzed since the expression itself
+ -- might cause freezing that makes the clause illegal.
+
+ if Rep_Item_Too_Late (U_Ent, N, FOnly) then
+ return;
+ end if;
+ end Analyze_Attribute_Definition_Clause;
+
+ ----------------------------
+ -- Analyze_Code_Statement --
+ ----------------------------
+
+ procedure Analyze_Code_Statement (N : Node_Id) is
+ HSS : constant Node_Id := Parent (N);
+ SBody : constant Node_Id := Parent (HSS);
+ Subp : constant Entity_Id := Current_Scope;
+ Stmt : Node_Id;
+ Decl : Node_Id;
+ StmtO : Node_Id;
+ DeclO : Node_Id;
+
+ begin
+ -- Analyze and check we get right type, note that this implements the
+ -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
+ -- is the only way that Asm_Insn could possibly be visible.
+
+ Analyze_And_Resolve (Expression (N));
+
+ if Etype (Expression (N)) = Any_Type then
+ return;
+ elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
+ Error_Msg_N ("incorrect type for code statement", N);
+ return;
+ end if;
+
+ Check_Code_Statement (N);
+
+ -- Make sure we appear in the handled statement sequence of a
+ -- subprogram (RM 13.8(3)).
+
+ if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
+ or else Nkind (SBody) /= N_Subprogram_Body
+ then
+ Error_Msg_N
+ ("code statement can only appear in body of subprogram", N);
+ return;
+ end if;
+
+ -- Do remaining checks (RM 13.8(3)) if not already done
+
+ if not Is_Machine_Code_Subprogram (Subp) then
+ Set_Is_Machine_Code_Subprogram (Subp);
+
+ -- No exception handlers allowed
+
+ if Present (Exception_Handlers (HSS)) then
+ Error_Msg_N
+ ("exception handlers not permitted in machine code subprogram",
+ First (Exception_Handlers (HSS)));
+ end if;
+
+ -- No declarations other than use clauses and pragmas (we allow
+ -- certain internally generated declarations as well).
+
+ Decl := First (Declarations (SBody));
+ while Present (Decl) loop
+ DeclO := Original_Node (Decl);
+ if Comes_From_Source (DeclO)
+ and not Nkind_In (DeclO, N_Pragma,
+ N_Use_Package_Clause,
+ N_Use_Type_Clause,
+ N_Implicit_Label_Declaration)
+ then
+ Error_Msg_N
+ ("this declaration not allowed in machine code subprogram",
+ DeclO);
+ end if;
+
+ Next (Decl);
+ end loop;
+
+ -- No statements other than code statements, pragmas, and labels.
+ -- Again we allow certain internally generated statements.
+
+ -- In Ada 2012, qualified expressions are names, and the code
+ -- statement is initially parsed as a procedure call.
+
+ Stmt := First (Statements (HSS));
+ while Present (Stmt) loop
+ StmtO := Original_Node (Stmt);
+
+ -- A procedure call transformed into a code statement is OK.
+
+ if Ada_Version >= Ada_2012
+ and then Nkind (StmtO) = N_Procedure_Call_Statement
+ and then Nkind (Name (StmtO)) = N_Qualified_Expression
+ then
+ null;
+
+ elsif Comes_From_Source (StmtO)
+ and then not Nkind_In (StmtO, N_Pragma,
+ N_Label,
+ N_Code_Statement)
+ then
+ Error_Msg_N
+ ("this statement is not allowed in machine code subprogram",
+ StmtO);
+ end if;
+
+ Next (Stmt);
+ end loop;
+ end if;
+ end Analyze_Code_Statement;
+
+ -----------------------------------------------
+ -- Analyze_Enumeration_Representation_Clause --
+ -----------------------------------------------
+
+ procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
+ Ident : constant Node_Id := Identifier (N);
+ Aggr : constant Node_Id := Array_Aggregate (N);
+ Enumtype : Entity_Id;
+ Elit : Entity_Id;
+ Expr : Node_Id;
+ Assoc : Node_Id;
+ Choice : Node_Id;
+ Val : Uint;
+
+ Err : Boolean := False;
+ -- Set True to avoid cascade errors and crashes on incorrect source code
+
+ Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
+ Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
+ -- Allowed range of universal integer (= allowed range of enum lit vals)
+
+ Min : Uint;
+ Max : Uint;
+ -- Minimum and maximum values of entries
+
+ Max_Node : Node_Id;
+ -- Pointer to node for literal providing max value
+
+ begin
+ if Ignore_Rep_Clauses then
+ return;
+ end if;
+
+ -- Ignore enumeration rep clauses by default in CodePeer mode,
+ -- unless -gnatd.I is specified, as a work around for potential false
+ -- positive messages.
+
+ if CodePeer_Mode and not Debug_Flag_Dot_II then
+ return;
+ end if;
+
+ -- First some basic error checks
+
+ Find_Type (Ident);
+ Enumtype := Entity (Ident);
+
+ if Enumtype = Any_Type
+ or else Rep_Item_Too_Early (Enumtype, N)
+ then
+ return;
+ else
+ Enumtype := Underlying_Type (Enumtype);
+ end if;
+
+ if not Is_Enumeration_Type (Enumtype) then
+ Error_Msg_NE
+ ("enumeration type required, found}",
+ Ident, First_Subtype (Enumtype));
+ return;
+ end if;
+
+ -- Ignore rep clause on generic actual type. This will already have
+ -- been flagged on the template as an error, and this is the safest
+ -- way to ensure we don't get a junk cascaded message in the instance.
+
+ if Is_Generic_Actual_Type (Enumtype) then
+ return;
+
+ -- Type must be in current scope
+
+ elsif Scope (Enumtype) /= Current_Scope then
+ Error_Msg_N ("type must be declared in this scope", Ident);
+ return;
+
+ -- Type must be a first subtype
+
+ elsif not Is_First_Subtype (Enumtype) then
+ Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
+ return;
+
+ -- Ignore duplicate rep clause
+
+ elsif Has_Enumeration_Rep_Clause (Enumtype) then
+ Error_Msg_N ("duplicate enumeration rep clause ignored", N);
+ return;
+
+ -- Don't allow rep clause for standard [wide_[wide_]]character
+
+ elsif Is_Standard_Character_Type (Enumtype) then
+ Error_Msg_N ("enumeration rep clause not allowed for this type", N);
+ return;
+
+ -- Check that the expression is a proper aggregate (no parentheses)
+
+ elsif Paren_Count (Aggr) /= 0 then
+ Error_Msg
+ ("extra parentheses surrounding aggregate not allowed",
+ First_Sloc (Aggr));
+ return;
+
+ -- All tests passed, so set rep clause in place
+
+ else
+ Set_Has_Enumeration_Rep_Clause (Enumtype);
+ Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
+ end if;
+
+ -- Now we process the aggregate. Note that we don't use the normal
+ -- aggregate code for this purpose, because we don't want any of the
+ -- normal expansion activities, and a number of special semantic
+ -- rules apply (including the component type being any integer type)
+
+ Elit := First_Literal (Enumtype);
+
+ -- First the positional entries if any
+
+ if Present (Expressions (Aggr)) then
+ Expr := First (Expressions (Aggr));
+ while Present (Expr) loop
+ if No (Elit) then
+ Error_Msg_N ("too many entries in aggregate", Expr);
+ return;
+ end if;
+
+ Val := Static_Integer (Expr);
+
+ -- Err signals that we found some incorrect entries processing
+ -- the list. The final checks for completeness and ordering are
+ -- skipped in this case.
+
+ if Val = No_Uint then
+ Err := True;
+ elsif Val < Lo or else Hi < Val then
+ Error_Msg_N ("value outside permitted range", Expr);
+ Err := True;
+ end if;
+
+ Set_Enumeration_Rep (Elit, Val);
+ Set_Enumeration_Rep_Expr (Elit, Expr);
+ Next (Expr);
+ Next (Elit);
+ end loop;
+ end if;
+
+ -- Now process the named entries if present
+
+ if Present (Component_Associations (Aggr)) then
+ Assoc := First (Component_Associations (Aggr));
+ while Present (Assoc) loop
+ Choice := First (Choices (Assoc));
+
+ if Present (Next (Choice)) then
+ Error_Msg_N
+ ("multiple choice not allowed here", Next (Choice));
+ Err := True;
+ end if;
+
+ if Nkind (Choice) = N_Others_Choice then
+ Error_Msg_N ("others choice not allowed here", Choice);
+ Err := True;
+
+ elsif Nkind (Choice) = N_Range then
+
+ -- ??? should allow zero/one element range here
+
+ Error_Msg_N ("range not allowed here", Choice);
+ Err := True;
+
+ else
+ Analyze_And_Resolve (Choice, Enumtype);
+
+ if Error_Posted (Choice) then
+ Err := True;
+ end if;
+
+ if not Err then
+ if Is_Entity_Name (Choice)
+ and then Is_Type (Entity (Choice))
+ then
+ Error_Msg_N ("subtype name not allowed here", Choice);
+ Err := True;
+
+ -- ??? should allow static subtype with zero/one entry
+
+ elsif Etype (Choice) = Base_Type (Enumtype) then
+ if not Is_Static_Expression (Choice) then
+ Flag_Non_Static_Expr
+ ("non-static expression used for choice!", Choice);
+ Err := True;
+
+ else
+ Elit := Expr_Value_E (Choice);
+
+ if Present (Enumeration_Rep_Expr (Elit)) then
+ Error_Msg_Sloc :=
+ Sloc (Enumeration_Rep_Expr (Elit));
+ Error_Msg_NE
+ ("representation for& previously given#",
+ Choice, Elit);
+ Err := True;
+ end if;
+
+ Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
+
+ Expr := Expression (Assoc);
+ Val := Static_Integer (Expr);
+
+ if Val = No_Uint then
+ Err := True;
+
+ elsif Val < Lo or else Hi < Val then
+ Error_Msg_N ("value outside permitted range", Expr);
+ Err := True;
+ end if;
+
+ Set_Enumeration_Rep (Elit, Val);
+ end if;
+ end if;
+ end if;
+ end if;
+
+ Next (Assoc);
+ end loop;
+ end if;
+
+ -- Aggregate is fully processed. Now we check that a full set of
+ -- representations was given, and that they are in range and in order.
+ -- These checks are only done if no other errors occurred.
+
+ if not Err then
+ Min := No_Uint;
+ Max := No_Uint;
+
+ Elit := First_Literal (Enumtype);
+ while Present (Elit) loop
+ if No (Enumeration_Rep_Expr (Elit)) then
+ Error_Msg_NE ("missing representation for&!", N, Elit);
+
+ else
+ Val := Enumeration_Rep (Elit);
+
+ if Min = No_Uint then
+ Min := Val;
+ end if;
+
+ if Val /= No_Uint then
+ if Max /= No_Uint and then Val <= Max then
+ Error_Msg_NE
+ ("enumeration value for& not ordered!",
+ Enumeration_Rep_Expr (Elit), Elit);
+ end if;
+
+ Max_Node := Enumeration_Rep_Expr (Elit);
+ Max := Val;
+ end if;
+
+ -- If there is at least one literal whose representation is not
+ -- equal to the Pos value, then note that this enumeration type
+ -- has a non-standard representation.
+
+ if Val /= Enumeration_Pos (Elit) then
+ Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
+ end if;
+ end if;
+
+ Next (Elit);
+ end loop;
+
+ -- Now set proper size information
+
+ declare
+ Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
+
+ begin
+ if Has_Size_Clause (Enumtype) then
+
+ -- All OK, if size is OK now
+
+ if RM_Size (Enumtype) >= Minsize then
+ null;
+
+ else
+ -- Try if we can get by with biasing
+
+ Minsize :=
+ UI_From_Int (Minimum_Size (Enumtype, Biased => True));
+
+ -- Error message if even biasing does not work
+
+ if RM_Size (Enumtype) < Minsize then
+ Error_Msg_Uint_1 := RM_Size (Enumtype);
+ Error_Msg_Uint_2 := Max;
+ Error_Msg_N
+ ("previously given size (^) is too small "
+ & "for this value (^)", Max_Node);
+
+ -- If biasing worked, indicate that we now have biased rep
+
+ else
+ Set_Biased
+ (Enumtype, Size_Clause (Enumtype), "size clause");
+ end if;
+ end if;
+
+ else
+ Set_RM_Size (Enumtype, Minsize);
+ Set_Enum_Esize (Enumtype);
+ end if;
+
+ Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
+ Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
+ Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
+ end;
+ end if;
+
+ -- We repeat the too late test in case it froze itself
+
+ if Rep_Item_Too_Late (Enumtype, N) then
+ null;
+ end if;
+ end Analyze_Enumeration_Representation_Clause;
+
+ ----------------------------
+ -- Analyze_Free_Statement --
+ ----------------------------
+
+ procedure Analyze_Free_Statement (N : Node_Id) is
+ begin
+ Analyze (Expression (N));
+ end Analyze_Free_Statement;
+
+ ---------------------------
+ -- Analyze_Freeze_Entity --
+ ---------------------------
+
+ procedure Analyze_Freeze_Entity (N : Node_Id) is
+ begin
+ Freeze_Entity_Checks (N);
+ end Analyze_Freeze_Entity;
+
+ -----------------------------------
+ -- Analyze_Freeze_Generic_Entity --
+ -----------------------------------
+
+ procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
+ begin
+ Freeze_Entity_Checks (N);
+ end Analyze_Freeze_Generic_Entity;
+
+ ------------------------------------------
+ -- Analyze_Record_Representation_Clause --
+ ------------------------------------------
+
+ -- Note: we check as much as we can here, but we can't do any checks
+ -- based on the position values (e.g. overlap checks) until freeze time
+ -- because especially in Ada 2005 (machine scalar mode), the processing
+ -- for non-standard bit order can substantially change the positions.
+ -- See procedure Check_Record_Representation_Clause (called from Freeze)
+ -- for the remainder of this processing.
+
+ procedure Analyze_Record_Representation_Clause (N : Node_Id) is
+ Ident : constant Node_Id := Identifier (N);
+ Biased : Boolean;
+ CC : Node_Id;
+ Comp : Entity_Id;
+ Fbit : Uint;
+ Hbit : Uint := Uint_0;
+ Lbit : Uint;
+ Ocomp : Entity_Id;
+ Posit : Uint;
+ Rectype : Entity_Id;
+ Recdef : Node_Id;
+
+ function Is_Inherited (Comp : Entity_Id) return Boolean;
+ -- True if Comp is an inherited component in a record extension
+
+ ------------------
+ -- Is_Inherited --
+ ------------------
+
+ function Is_Inherited (Comp : Entity_Id) return Boolean is
+ Comp_Base : Entity_Id;
+
+ begin
+ if Ekind (Rectype) = E_Record_Subtype then
+ Comp_Base := Original_Record_Component (Comp);
+ else
+ Comp_Base := Comp;
+ end if;
+
+ return Comp_Base /= Original_Record_Component (Comp_Base);
+ end Is_Inherited;
+
+ -- Local variables
+
+ Is_Record_Extension : Boolean;
+ -- True if Rectype is a record extension
+
+ CR_Pragma : Node_Id := Empty;
+ -- Points to N_Pragma node if Complete_Representation pragma present
+
+ -- Start of processing for Analyze_Record_Representation_Clause
+
+ begin
+ if Ignore_Rep_Clauses then
+ return;
+ end if;
+
+ Find_Type (Ident);
+ Rectype := Entity (Ident);
+
+ if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
+ return;
+ else
+ Rectype := Underlying_Type (Rectype);
+ end if;
+
+ -- First some basic error checks
+
+ if not Is_Record_Type (Rectype) then
+ Error_Msg_NE
+ ("record type required, found}", Ident, First_Subtype (Rectype));
+ return;
+
+ elsif Scope (Rectype) /= Current_Scope then
+ Error_Msg_N ("type must be declared in this scope", N);
+ return;
+
+ elsif not Is_First_Subtype (Rectype) then
+ Error_Msg_N ("cannot give record rep clause for subtype", N);
+ return;
+
+ elsif Has_Record_Rep_Clause (Rectype) then
+ Error_Msg_N ("duplicate record rep clause ignored", N);
+ return;
+
+ elsif Rep_Item_Too_Late (Rectype, N) then
+ return;
+ end if;
+
+ -- We know we have a first subtype, now possibly go the the anonymous
+ -- base type to determine whether Rectype is a record extension.
+
+ Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
+ Is_Record_Extension :=
+ Nkind (Recdef) = N_Derived_Type_Definition
+ and then Present (Record_Extension_Part (Recdef));
+
+ if Present (Mod_Clause (N)) then
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ M : constant Node_Id := Mod_Clause (N);
+ P : constant List_Id := Pragmas_Before (M);
+ AtM_Nod : Node_Id;
+
+ Mod_Val : Uint;
+ pragma Warnings (Off, Mod_Val);
+
+ begin
+ Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
+
+ if Warn_On_Obsolescent_Feature then
+ Error_Msg_N
+ ("?j?mod clause is an obsolescent feature (RM J.8)", N);
+ Error_Msg_N
+ ("\?j?use alignment attribute definition clause instead", N);
+ end if;
+
+ if Present (P) then
+ Analyze_List (P);
+ end if;
+
+ -- In ASIS_Mode mode, expansion is disabled, but we must convert
+ -- the Mod clause into an alignment clause anyway, so that the
+ -- back-end can compute and back-annotate properly the size and
+ -- alignment of types that may include this record.
+
+ -- This seems dubious, this destroys the source tree in a manner
+ -- not detectable by ASIS ???
+
+ if Operating_Mode = Check_Semantics and then ASIS_Mode then
+ AtM_Nod :=
+ Make_Attribute_Definition_Clause (Loc,
+ Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
+ Chars => Name_Alignment,
+ Expression => Relocate_Node (Expression (M)));
+
+ Set_From_At_Mod (AtM_Nod);
+ Insert_After (N, AtM_Nod);
+ Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
+ Set_Mod_Clause (N, Empty);
+
+ else
+ -- Get the alignment value to perform error checking
+
+ Mod_Val := Get_Alignment_Value (Expression (M));
+ end if;
+ end;
+ end if;
+
+ -- For untagged types, clear any existing component clauses for the
+ -- type. If the type is derived, this is what allows us to override
+ -- a rep clause for the parent. For type extensions, the representation
+ -- of the inherited components is inherited, so we want to keep previous
+ -- component clauses for completeness.
+
+ if not Is_Tagged_Type (Rectype) then
+ Comp := First_Component_Or_Discriminant (Rectype);
+ while Present (Comp) loop
+ Set_Component_Clause (Comp, Empty);
+ Next_Component_Or_Discriminant (Comp);
+ end loop;
+ end if;
+
+ -- All done if no component clauses
+
+ CC := First (Component_Clauses (N));
+
+ if No (CC) then
+ return;
+ end if;
+
+ -- A representation like this applies to the base type
+
+ Set_Has_Record_Rep_Clause (Base_Type (Rectype));
+ Set_Has_Non_Standard_Rep (Base_Type (Rectype));
+ Set_Has_Specified_Layout (Base_Type (Rectype));
+
+ -- Process the component clauses
+
+ while Present (CC) loop
+
+ -- Pragma
+
+ if Nkind (CC) = N_Pragma then
+ Analyze (CC);
+
+ -- The only pragma of interest is Complete_Representation
+
+ if Pragma_Name (CC) = Name_Complete_Representation then
+ CR_Pragma := CC;
+ end if;
+
+ -- Processing for real component clause
+
+ else
+ Posit := Static_Integer (Position (CC));
+ Fbit := Static_Integer (First_Bit (CC));
+ Lbit := Static_Integer (Last_Bit (CC));
+
+ if Posit /= No_Uint
+ and then Fbit /= No_Uint
+ and then Lbit /= No_Uint
+ then
+ if Posit < 0 then
+ Error_Msg_N
+ ("position cannot be negative", Position (CC));
+
+ elsif Fbit < 0 then
+ Error_Msg_N
+ ("first bit cannot be negative", First_Bit (CC));
+
+ -- The Last_Bit specified in a component clause must not be
+ -- less than the First_Bit minus one (RM-13.5.1(10)).
+
+ elsif Lbit < Fbit - 1 then
+ Error_Msg_N
+ ("last bit cannot be less than first bit minus one",
+ Last_Bit (CC));
+
+ -- Values look OK, so find the corresponding record component
+ -- Even though the syntax allows an attribute reference for
+ -- implementation-defined components, GNAT does not allow the
+ -- tag to get an explicit position.
+
+ elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
+ if Attribute_Name (Component_Name (CC)) = Name_Tag then
+ Error_Msg_N ("position of tag cannot be specified", CC);
+ else
+ Error_Msg_N ("illegal component name", CC);
+ end if;
+
+ else
+ Comp := First_Entity (Rectype);
+ while Present (Comp) loop
+ exit when Chars (Comp) = Chars (Component_Name (CC));
+ Next_Entity (Comp);
+ end loop;
+
+ if No (Comp) then
+
+ -- Maybe component of base type that is absent from
+ -- statically constrained first subtype.
+
+ Comp := First_Entity (Base_Type (Rectype));
+ while Present (Comp) loop
+ exit when Chars (Comp) = Chars (Component_Name (CC));
+ Next_Entity (Comp);
+ end loop;
+ end if;
+
+ if No (Comp) then
+ Error_Msg_N
+ ("component clause is for non-existent field", CC);
+
+ -- Ada 2012 (AI05-0026): Any name that denotes a
+ -- discriminant of an object of an unchecked union type
+ -- shall not occur within a record_representation_clause.
+
+ -- The general restriction of using record rep clauses on
+ -- Unchecked_Union types has now been lifted. Since it is
+ -- possible to introduce a record rep clause which mentions
+ -- the discriminant of an Unchecked_Union in non-Ada 2012
+ -- code, this check is applied to all versions of the
+ -- language.
+
+ elsif Ekind (Comp) = E_Discriminant
+ and then Is_Unchecked_Union (Rectype)
+ then
+ Error_Msg_N
+ ("cannot reference discriminant of unchecked union",
+ Component_Name (CC));
+
+ elsif Is_Record_Extension and then Is_Inherited (Comp) then
+ Error_Msg_NE
+ ("component clause not allowed for inherited "
+ & "component&", CC, Comp);
+
+ elsif Present (Component_Clause (Comp)) then
+
+ -- Diagnose duplicate rep clause, or check consistency
+ -- if this is an inherited component. In a double fault,
+ -- there may be a duplicate inconsistent clause for an
+ -- inherited component.
+
+ if Scope (Original_Record_Component (Comp)) = Rectype
+ or else Parent (Component_Clause (Comp)) = N
+ then
+ Error_Msg_Sloc := Sloc (Component_Clause (Comp));
+ Error_Msg_N ("component clause previously given#", CC);
+
+ else
+ declare
+ Rep1 : constant Node_Id := Component_Clause (Comp);
+ begin
+ if Intval (Position (Rep1)) /=
+ Intval (Position (CC))
+ or else Intval (First_Bit (Rep1)) /=
+ Intval (First_Bit (CC))
+ or else Intval (Last_Bit (Rep1)) /=
+ Intval (Last_Bit (CC))
+ then
+ Error_Msg_N
+ ("component clause inconsistent "
+ & "with representation of ancestor", CC);
+
+ elsif Warn_On_Redundant_Constructs then
+ Error_Msg_N
+ ("?r?redundant confirming component clause "
+ & "for component!", CC);
+ end if;
+ end;
+ end if;
+
+ -- Normal case where this is the first component clause we
+ -- have seen for this entity, so set it up properly.
+
+ else
+ -- Make reference for field in record rep clause and set
+ -- appropriate entity field in the field identifier.
+
+ Generate_Reference
+ (Comp, Component_Name (CC), Set_Ref => False);
+ Set_Entity (Component_Name (CC), Comp);
+
+ -- Update Fbit and Lbit to the actual bit number
+
+ Fbit := Fbit + UI_From_Int (SSU) * Posit;
+ Lbit := Lbit + UI_From_Int (SSU) * Posit;
+
+ if Has_Size_Clause (Rectype)
+ and then RM_Size (Rectype) <= Lbit
+ then
+ Error_Msg_N
+ ("bit number out of range of specified size",
+ Last_Bit (CC));
+ else
+ Set_Component_Clause (Comp, CC);
+ Set_Component_Bit_Offset (Comp, Fbit);
+ Set_Esize (Comp, 1 + (Lbit - Fbit));
+ Set_Normalized_First_Bit (Comp, Fbit mod SSU);
+ Set_Normalized_Position (Comp, Fbit / SSU);
+
+ if Warn_On_Overridden_Size
+ and then Has_Size_Clause (Etype (Comp))
+ and then RM_Size (Etype (Comp)) /= Esize (Comp)
+ then
+ Error_Msg_NE
+ ("?S?component size overrides size clause for&",
+ Component_Name (CC), Etype (Comp));
+ end if;
+
+ -- This information is also set in the corresponding
+ -- component of the base type, found by accessing the
+ -- Original_Record_Component link if it is present.
+
+ Ocomp := Original_Record_Component (Comp);
+
+ if Hbit < Lbit then
+ Hbit := Lbit;
+ end if;
+
+ Check_Size
+ (Component_Name (CC),
+ Etype (Comp),
+ Esize (Comp),
+ Biased);
+
+ Set_Biased
+ (Comp, First_Node (CC), "component clause", Biased);
+
+ if Present (Ocomp) then
+ Set_Component_Clause (Ocomp, CC);
+ Set_Component_Bit_Offset (Ocomp, Fbit);
+ Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
+ Set_Normalized_Position (Ocomp, Fbit / SSU);
+ Set_Esize (Ocomp, 1 + (Lbit - Fbit));
+
+ Set_Normalized_Position_Max
+ (Ocomp, Normalized_Position (Ocomp));
+
+ -- Note: we don't use Set_Biased here, because we
+ -- already gave a warning above if needed, and we
+ -- would get a duplicate for the same name here.
+
+ Set_Has_Biased_Representation
+ (Ocomp, Has_Biased_Representation (Comp));
+ end if;
+
+ if Esize (Comp) < 0 then
+ Error_Msg_N ("component size is negative", CC);
+ end if;
+ end if;
+ end if;
+ end if;
+ end if;
+ end if;
+
+ Next (CC);
+ end loop;
+
+ -- Check missing components if Complete_Representation pragma appeared
+
+ if Present (CR_Pragma) then
+ Comp := First_Component_Or_Discriminant (Rectype);
+ while Present (Comp) loop
+ if No (Component_Clause (Comp)) then
+ Error_Msg_NE
+ ("missing component clause for &", CR_Pragma, Comp);
+ end if;
+
+ Next_Component_Or_Discriminant (Comp);
+ end loop;
+
+ -- Give missing components warning if required
+
+ elsif Warn_On_Unrepped_Components then
+ declare
+ Num_Repped_Components : Nat := 0;
+ Num_Unrepped_Components : Nat := 0;
+
+ begin
+ -- First count number of repped and unrepped components
+
+ Comp := First_Component_Or_Discriminant (Rectype);
+ while Present (Comp) loop
+ if Present (Component_Clause (Comp)) then
+ Num_Repped_Components := Num_Repped_Components + 1;
+ else
+ Num_Unrepped_Components := Num_Unrepped_Components + 1;
+ end if;
+
+ Next_Component_Or_Discriminant (Comp);
+ end loop;
+
+ -- We are only interested in the case where there is at least one
+ -- unrepped component, and at least half the components have rep
+ -- clauses. We figure that if less than half have them, then the
+ -- partial rep clause is really intentional. If the component
+ -- type has no underlying type set at this point (as for a generic
+ -- formal type), we don't know enough to give a warning on the
+ -- component.
+
+ if Num_Unrepped_Components > 0
+ and then Num_Unrepped_Components < Num_Repped_Components
+ then
+ Comp := First_Component_Or_Discriminant (Rectype);
+ while Present (Comp) loop
+ if No (Component_Clause (Comp))
+ and then Comes_From_Source (Comp)
+ and then Present (Underlying_Type (Etype (Comp)))
+ and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
+ or else Size_Known_At_Compile_Time
+ (Underlying_Type (Etype (Comp))))
+ and then not Has_Warnings_Off (Rectype)
+ then
+ Error_Msg_Sloc := Sloc (Comp);
+ Error_Msg_NE
+ ("?C?no component clause given for & declared #",
+ N, Comp);
+ end if;
+
+ Next_Component_Or_Discriminant (Comp);
+ end loop;
+ end if;
+ end;
+ end if;
+ end Analyze_Record_Representation_Clause;
+
+ -------------------------------------------
+ -- Build_Invariant_Procedure_Declaration --
+ -------------------------------------------
+
+ function Build_Invariant_Procedure_Declaration
+ (Typ : Entity_Id) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (Typ);
+ Object_Entity : constant Entity_Id :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('I'));
+ Spec : Node_Id;
+ SId : Entity_Id;
+
+ begin
+ Set_Etype (Object_Entity, Typ);
+
+ -- Check for duplicate definiations.
+
+ if Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)) then
+ return Empty;
+ end if;
+
+ SId :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_External_Name (Chars (Typ), "Invariant"));
+ Set_Has_Invariants (Typ);
+ Set_Ekind (SId, E_Procedure);
+ Set_Is_Invariant_Procedure (SId);
+ Set_Invariant_Procedure (Typ, SId);
+
+ Spec :=
+ Make_Procedure_Specification (Loc,
+ Defining_Unit_Name => SId,
+ Parameter_Specifications => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Object_Entity,
+ Parameter_Type => New_Occurrence_Of (Typ, Loc))));
+
+ return Make_Subprogram_Declaration (Loc, Specification => Spec);
+ end Build_Invariant_Procedure_Declaration;
+
+ -------------------------------
+ -- Build_Invariant_Procedure --
+ -------------------------------
+
+ -- The procedure that is constructed here has the form
+
+ -- procedure typInvariant (Ixxx : typ) is
+ -- begin
+ -- pragma Check (Invariant, exp, "failed invariant from xxx");
+ -- pragma Check (Invariant, exp, "failed invariant from xxx");
+ -- ...
+ -- pragma Check (Invariant, exp, "failed inherited invariant from xxx");
+ -- ...
+ -- end typInvariant;
+
+ procedure Build_Invariant_Procedure (Typ : Entity_Id; N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (Typ);
+ Stmts : List_Id;
+ Spec : Node_Id;
+ SId : Entity_Id;
+ PDecl : Node_Id;
+ PBody : Node_Id;
+
+ Visible_Decls : constant List_Id := Visible_Declarations (N);
+ Private_Decls : constant List_Id := Private_Declarations (N);
+
+ procedure Add_Invariants (T : Entity_Id; Inherit : Boolean);
+ -- Appends statements to Stmts for any invariants in the rep item chain
+ -- of the given type. If Inherit is False, then we only process entries
+ -- on the chain for the type Typ. If Inherit is True, then we ignore any
+ -- Invariant aspects, but we process all Invariant'Class aspects, adding
+ -- "inherited" to the exception message and generating an informational
+ -- message about the inheritance of an invariant.
+
+ Object_Name : Name_Id;
+ -- Name for argument of invariant procedure
+
+ Object_Entity : Node_Id;
+ -- The entity of the formal for the procedure
+
+ --------------------
+ -- Add_Invariants --
+ --------------------
+
+ procedure Add_Invariants (T : Entity_Id; Inherit : Boolean) is
+ Ritem : Node_Id;
+ Arg1 : Node_Id;
+ Arg2 : Node_Id;
+ Arg3 : Node_Id;
+ Exp : Node_Id;
+ Loc : Source_Ptr;
+ Assoc : List_Id;
+ Str : String_Id;
+
+ procedure Replace_Type_Reference (N : Node_Id);
+ -- Replace a single occurrence N of the subtype name with a reference
+ -- to the formal of the predicate function. N can be an identifier
+ -- referencing the subtype, or a selected component, representing an
+ -- appropriately qualified occurrence of the subtype name.
+
+ procedure Replace_Type_References is
+ new Replace_Type_References_Generic (Replace_Type_Reference);
+ -- Traverse an expression replacing all occurrences of the subtype
+ -- name with appropriate references to the object that is the formal
+ -- parameter of the predicate function. Note that we must ensure
+ -- that the type and entity information is properly set in the
+ -- replacement node, since we will do a Preanalyze call of this
+ -- expression without proper visibility of the procedure argument.
+
+ ----------------------------
+ -- Replace_Type_Reference --
+ ----------------------------
+
+ -- Note: See comments in Add_Predicates.Replace_Type_Reference
+ -- regarding handling of Sloc and Comes_From_Source.
+
+ procedure Replace_Type_Reference (N : Node_Id) is
+ begin
+
+ -- Add semantic information to node to be rewritten, for ASIS
+ -- navigation needs.
+
+ if Nkind (N) = N_Identifier then
+ Set_Entity (N, T);
+ Set_Etype (N, T);
+
+ elsif Nkind (N) = N_Selected_Component then
+ Analyze (Prefix (N));
+ Set_Entity (Selector_Name (N), T);
+ Set_Etype (Selector_Name (N), T);
+ end if;
+
+ -- Invariant'Class, replace with T'Class (obj)
+
+ if Class_Present (Ritem) then
+ Rewrite (N,
+ Make_Type_Conversion (Sloc (N),
+ Subtype_Mark =>
+ Make_Attribute_Reference (Sloc (N),
+ Prefix => New_Occurrence_Of (T, Sloc (N)),
+ Attribute_Name => Name_Class),
+ Expression => Make_Identifier (Sloc (N), Object_Name)));
+
+ Set_Entity (Expression (N), Object_Entity);
+ Set_Etype (Expression (N), Typ);
+
+ -- Invariant, replace with obj
+
+ else
+ Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
+ Set_Entity (N, Object_Entity);
+ Set_Etype (N, Typ);
+ end if;
+
+ Set_Comes_From_Source (N, True);
+ end Replace_Type_Reference;
+
+ -- Start of processing for Add_Invariants
+
+ begin
+ Ritem := First_Rep_Item (T);
+ while Present (Ritem) loop
+ if Nkind (Ritem) = N_Pragma
+ and then Pragma_Name (Ritem) = Name_Invariant
+ then
+ Arg1 := First (Pragma_Argument_Associations (Ritem));
+ Arg2 := Next (Arg1);
+ Arg3 := Next (Arg2);
+
+ Arg1 := Get_Pragma_Arg (Arg1);
+ Arg2 := Get_Pragma_Arg (Arg2);
+
+ -- For Inherit case, ignore Invariant, process only Class case
+
+ if Inherit then
+ if not Class_Present (Ritem) then
+ goto Continue;
+ end if;
+
+ -- For Inherit false, process only item for right type
+
+ else
+ if Entity (Arg1) /= Typ then
+ goto Continue;
+ end if;
+ end if;
+
+ if No (Stmts) then
+ Stmts := Empty_List;
+ end if;
+
+ Exp := New_Copy_Tree (Arg2);
+
+ -- Preserve sloc of original pragma Invariant
+
+ Loc := Sloc (Ritem);
+
+ -- We need to replace any occurrences of the name of the type
+ -- with references to the object, converted to type'Class in
+ -- the case of Invariant'Class aspects.
+
+ Replace_Type_References (Exp, Chars (T));
+
+ -- If this invariant comes from an aspect, find the aspect
+ -- specification, and replace the saved expression because
+ -- we need the subtype references replaced for the calls to
+ -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
+ -- and Check_Aspect_At_End_Of_Declarations.
+
+ if From_Aspect_Specification (Ritem) then
+ declare
+ Aitem : Node_Id;
+
+ begin
+ -- Loop to find corresponding aspect, note that this
+ -- must be present given the pragma is marked delayed.
+
+ Aitem := Next_Rep_Item (Ritem);
+ while Present (Aitem) loop
+ if Nkind (Aitem) = N_Aspect_Specification
+ and then Aspect_Rep_Item (Aitem) = Ritem
+ then
+ Set_Entity
+ (Identifier (Aitem), New_Copy_Tree (Exp));
+ exit;
+ end if;
+
+ Aitem := Next_Rep_Item (Aitem);
+ end loop;
+ end;
+ end if;
+
+ -- Now we need to preanalyze the expression to properly capture
+ -- the visibility in the visible part. The expression will not
+ -- be analyzed for real until the body is analyzed, but that is
+ -- at the end of the private part and has the wrong visibility.
+
+ Set_Parent (Exp, N);
+ Preanalyze_Assert_Expression (Exp, Standard_Boolean);
+
+ -- In ASIS mode, even if assertions are not enabled, we must
+ -- analyze the original expression in the aspect specification
+ -- because it is part of the original tree.
+
+ if ASIS_Mode then
+ declare
+ Inv : constant Node_Id :=
+ Expression (Corresponding_Aspect (Ritem));
+ begin
+ Replace_Type_References (Inv, Chars (T));
+ Preanalyze_Assert_Expression (Inv, Standard_Boolean);
+ end;
+ end if;
+
+ -- Build first two arguments for Check pragma
+
+ Assoc := New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Make_Identifier (Loc, Name_Invariant)),
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Exp));
+
+ -- Add message if present in Invariant pragma
+
+ if Present (Arg3) then
+ Str := Strval (Get_Pragma_Arg (Arg3));
+
+ -- If inherited case, and message starts "failed invariant",
+ -- change it to be "failed inherited invariant".
+
+ if Inherit then
+ String_To_Name_Buffer (Str);
+
+ if Name_Buffer (1 .. 16) = "failed invariant" then
+ Insert_Str_In_Name_Buffer ("inherited ", 8);
+ Str := String_From_Name_Buffer;
+ end if;
+ end if;
+
+ Append_To (Assoc,
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Make_String_Literal (Loc, Str)));
+ end if;
+
+ -- Add Check pragma to list of statements
+
+ Append_To (Stmts,
+ Make_Pragma (Loc,
+ Pragma_Identifier =>
+ Make_Identifier (Loc, Name_Check),
+ Pragma_Argument_Associations => Assoc));
+
+ -- If Inherited case and option enabled, output info msg. Note
+ -- that we know this is a case of Invariant'Class.
+
+ if Inherit and Opt.List_Inherited_Aspects then
+ Error_Msg_Sloc := Sloc (Ritem);
+ Error_Msg_N
+ ("?L?info: & inherits `Invariant''Class` aspect from #",
+ Typ);
+ end if;
+ end if;
+
+ <<Continue>>
+ Next_Rep_Item (Ritem);
+ end loop;
+ end Add_Invariants;
+
+ -- Start of processing for Build_Invariant_Procedure
+
+ begin
+ Stmts := No_List;
+ PDecl := Empty;
+ PBody := Empty;
+ SId := Empty;
+
+ -- If the aspect specification exists for some view of the type, the
+ -- declaration for the procedure has been created.
+
+ if Has_Invariants (Typ) then
+ SId := Invariant_Procedure (Typ);
+ end if;
+
+ if Present (SId) then
+ PDecl := Unit_Declaration_Node (SId);
+ else
+ PDecl := Build_Invariant_Procedure_Declaration (Typ);
+ end if;
+
+ -- Recover formal of procedure, for use in the calls to invariant
+ -- functions (including inherited ones).
+
+ Object_Entity :=
+ Defining_Identifier
+ (First (Parameter_Specifications (Specification (PDecl))));
+ Object_Name := Chars (Object_Entity);
+
+ -- Add invariants for the current type
+
+ Add_Invariants (Typ, Inherit => False);
+
+ -- Add invariants for parent types
+
+ declare
+ Current_Typ : Entity_Id;
+ Parent_Typ : Entity_Id;
+
+ begin
+ Current_Typ := Typ;
+ loop
+ Parent_Typ := Etype (Current_Typ);
+
+ if Is_Private_Type (Parent_Typ)
+ and then Present (Full_View (Base_Type (Parent_Typ)))
+ then
+ Parent_Typ := Full_View (Base_Type (Parent_Typ));
+ end if;
+
+ exit when Parent_Typ = Current_Typ;
+
+ Current_Typ := Parent_Typ;
+ Add_Invariants (Current_Typ, Inherit => True);
+ end loop;
+ end;
+
+ -- Build the procedure if we generated at least one Check pragma
+
+ if Stmts /= No_List then
+ Spec := Copy_Separate_Tree (Specification (PDecl));
+
+ PBody :=
+ Make_Subprogram_Body (Loc,
+ Specification => Spec,
+ Declarations => Empty_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => Stmts));
+
+ -- Insert procedure declaration and spec at the appropriate points.
+ -- If declaration is already analyzed, it was processed by the
+ -- generated pragma.
+
+ if Present (Private_Decls) then
+
+ -- The spec goes at the end of visible declarations, but they have
+ -- already been analyzed, so we need to explicitly do the analyze.
+
+ if not Analyzed (PDecl) then
+ Append_To (Visible_Decls, PDecl);
+ Analyze (PDecl);
+ end if;
+
+ -- The body goes at the end of the private declarations, which we
+ -- have not analyzed yet, so we do not need to perform an explicit
+ -- analyze call. We skip this if there are no private declarations
+ -- (this is an error that will be caught elsewhere);
+
+ Append_To (Private_Decls, PBody);
+
+ -- If the invariant appears on the full view of a type, the
+ -- analysis of the private part is complete, and we must
+ -- analyze the new body explicitly.
+
+ if In_Private_Part (Current_Scope) then
+ Analyze (PBody);
+ end if;
+
+ -- If there are no private declarations this may be an error that
+ -- will be diagnosed elsewhere. However, if this is a non-private
+ -- type that inherits invariants, it needs no completion and there
+ -- may be no private part. In this case insert invariant procedure
+ -- at end of current declarative list, and analyze at once, given
+ -- that the type is about to be frozen.
+
+ elsif not Is_Private_Type (Typ) then
+ Append_To (Visible_Decls, PDecl);
+ Append_To (Visible_Decls, PBody);
+ Analyze (PDecl);
+ Analyze (PBody);
+ end if;
+ end if;
+ end Build_Invariant_Procedure;
+
+ -------------------------------
+ -- Build_Predicate_Functions --
+ -------------------------------
+
+ -- The procedures that are constructed here have the form:
+
+ -- function typPredicate (Ixxx : typ) return Boolean is
+ -- begin
+ -- return
+ -- exp1 and then exp2 and then ...
+ -- and then typ1Predicate (typ1 (Ixxx))
+ -- and then typ2Predicate (typ2 (Ixxx))
+ -- and then ...;
+ -- end typPredicate;
+
+ -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
+ -- this is the point at which these expressions get analyzed, providing the
+ -- required delay, and typ1, typ2, are entities from which predicates are
+ -- inherited. Note that we do NOT generate Check pragmas, that's because we
+ -- use this function even if checks are off, e.g. for membership tests.
+
+ -- If the expression has at least one Raise_Expression, then we also build
+ -- the typPredicateM version of the function, in which any occurrence of a
+ -- Raise_Expression is converted to "return False".
+
+ procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (Typ);
+
+ Expr : Node_Id;
+ -- This is the expression for the result of the function. It is
+ -- is build by connecting the component predicates with AND THEN.
+
+ Expr_M : Node_Id;
+ -- This is the corresponding return expression for the Predicate_M
+ -- function. It differs in that raise expressions are marked for
+ -- special expansion (see Process_REs).
+
+ Object_Name : constant Name_Id := New_Internal_Name ('I');
+ -- Name for argument of Predicate procedure. Note that we use the same
+ -- name for both predicate procedure. That way the reference within the
+ -- predicate expression is the same in both functions.
+
+ Object_Entity : constant Entity_Id :=
+ Make_Defining_Identifier (Loc, Chars => Object_Name);
+ -- Entity for argument of Predicate procedure
+
+ Object_Entity_M : constant Entity_Id :=
+ Make_Defining_Identifier (Loc, Chars => Object_Name);
+ -- Entity for argument of Predicate_M procedure
+
+ Raise_Expression_Present : Boolean := False;
+ -- Set True if Expr has at least one Raise_Expression
+
+ Static_Predic : Node_Id := Empty;
+ -- Set to N_Pragma node for a static predicate if one is encountered
+
+ procedure Add_Call (T : Entity_Id);
+ -- Includes a call to the predicate function for type T in Expr if T
+ -- has predicates and Predicate_Function (T) is non-empty.
+
+ procedure Add_Predicates;
+ -- Appends expressions for any Predicate pragmas in the rep item chain
+ -- Typ to Expr. Note that we look only at items for this exact entity.
+ -- Inheritance of predicates for the parent type is done by calling the
+ -- Predicate_Function of the parent type, using Add_Call above.
+
+ function Test_RE (N : Node_Id) return Traverse_Result;
+ -- Used in Test_REs, tests one node for being a raise expression, and if
+ -- so sets Raise_Expression_Present True.
+
+ procedure Test_REs is new Traverse_Proc (Test_RE);
+ -- Tests to see if Expr contains any raise expressions
+
+ function Process_RE (N : Node_Id) return Traverse_Result;
+ -- Used in Process REs, tests if node N is a raise expression, and if
+ -- so, marks it to be converted to return False.
+
+ procedure Process_REs is new Traverse_Proc (Process_RE);
+ -- Marks any raise expressions in Expr_M to return False
+
+ --------------
+ -- Add_Call --
+ --------------
+
+ procedure Add_Call (T : Entity_Id) is
+ Exp : Node_Id;
+
+ begin
+ if Present (T) and then Present (Predicate_Function (T)) then
+ Set_Has_Predicates (Typ);
+
+ -- Build the call to the predicate function of T
+
+ Exp :=
+ Make_Predicate_Call
+ (T, Convert_To (T, Make_Identifier (Loc, Object_Name)));
+
+ -- Add call to evolving expression, using AND THEN if needed
+
+ if No (Expr) then
+ Expr := Exp;
+ else
+ Expr :=
+ Make_And_Then (Loc,
+ Left_Opnd => Relocate_Node (Expr),
+ Right_Opnd => Exp);
+ end if;
+
+ -- Output info message on inheritance if required. Note we do not
+ -- give this information for generic actual types, since it is
+ -- unwelcome noise in that case in instantiations. We also
+ -- generally suppress the message in instantiations, and also
+ -- if it involves internal names.
+
+ if Opt.List_Inherited_Aspects
+ and then not Is_Generic_Actual_Type (Typ)
+ and then Instantiation_Depth (Sloc (Typ)) = 0
+ and then not Is_Internal_Name (Chars (T))
+ and then not Is_Internal_Name (Chars (Typ))
+ then
+ Error_Msg_Sloc := Sloc (Predicate_Function (T));
+ Error_Msg_Node_2 := T;
+ Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
+ end if;
+ end if;
+ end Add_Call;
+
+ --------------------
+ -- Add_Predicates --
+ --------------------
+
+ procedure Add_Predicates is
+ Ritem : Node_Id;
+ Arg1 : Node_Id;
+ Arg2 : Node_Id;
+
+ procedure Replace_Type_Reference (N : Node_Id);
+ -- Replace a single occurrence N of the subtype name with a reference
+ -- to the formal of the predicate function. N can be an identifier
+ -- referencing the subtype, or a selected component, representing an
+ -- appropriately qualified occurrence of the subtype name.
+
+ procedure Replace_Type_References is
+ new Replace_Type_References_Generic (Replace_Type_Reference);
+ -- Traverse an expression changing every occurrence of an identifier
+ -- whose name matches the name of the subtype with a reference to
+ -- the formal parameter of the predicate function.
+
+ ----------------------------
+ -- Replace_Type_Reference --
+ ----------------------------
+
+ procedure Replace_Type_Reference (N : Node_Id) is
+ begin
+ Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
+ -- Use the Sloc of the usage name, not the defining name
+
+ Set_Etype (N, Typ);
+ Set_Entity (N, Object_Entity);
+
+ -- We want to treat the node as if it comes from source, so that
+ -- ASIS will not ignore it
+
+ Set_Comes_From_Source (N, True);
+ end Replace_Type_Reference;
+
+ -- Start of processing for Add_Predicates
+
+ begin
+ Ritem := First_Rep_Item (Typ);
+ while Present (Ritem) loop
+ if Nkind (Ritem) = N_Pragma
+ and then Pragma_Name (Ritem) = Name_Predicate
+ then
+ -- Save the static predicate of the type for diagnostics and
+ -- error reporting purposes.
+
+ if Present (Corresponding_Aspect (Ritem))
+ and then Chars (Identifier (Corresponding_Aspect (Ritem))) =
+ Name_Static_Predicate
+ then
+ Static_Predic := Ritem;
+ end if;
+
+ -- Acquire arguments
+
+ Arg1 := First (Pragma_Argument_Associations (Ritem));
+ Arg2 := Next (Arg1);
+
+ Arg1 := Get_Pragma_Arg (Arg1);
+ Arg2 := Get_Pragma_Arg (Arg2);
+
+ -- See if this predicate pragma is for the current type or for
+ -- its full view. A predicate on a private completion is placed
+ -- on the partial view beause this is the visible entity that
+ -- is frozen.
+
+ if Entity (Arg1) = Typ
+ or else Full_View (Entity (Arg1)) = Typ
+ then
+ -- We have a match, this entry is for our subtype
+
+ -- We need to replace any occurrences of the name of the
+ -- type with references to the object.
+
+ Replace_Type_References (Arg2, Chars (Typ));
+
+ -- If this predicate comes from an aspect, find the aspect
+ -- specification, and replace the saved expression because
+ -- we need the subtype references replaced for the calls to
+ -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
+ -- and Check_Aspect_At_End_Of_Declarations.
+
+ if From_Aspect_Specification (Ritem) then
+ declare
+ Aitem : Node_Id;
+
+ begin
+ -- Loop to find corresponding aspect, note that this
+ -- must be present given the pragma is marked delayed.
+
+ Aitem := Next_Rep_Item (Ritem);
+ loop
+ if Nkind (Aitem) = N_Aspect_Specification
+ and then Aspect_Rep_Item (Aitem) = Ritem
+ then
+ Set_Entity
+ (Identifier (Aitem), New_Copy_Tree (Arg2));
+ exit;
+ end if;
+
+ Aitem := Next_Rep_Item (Aitem);
+ end loop;
+ end;
+ end if;
+
+ -- Now we can add the expression
+
+ if No (Expr) then
+ Expr := Relocate_Node (Arg2);
+
+ -- There already was a predicate, so add to it
+
+ else
+ Expr :=
+ Make_And_Then (Loc,
+ Left_Opnd => Relocate_Node (Expr),
+ Right_Opnd => Relocate_Node (Arg2));
+ end if;
+ end if;
+ end if;
+
+ Next_Rep_Item (Ritem);
+ end loop;
+ end Add_Predicates;
+
+ ----------------
+ -- Process_RE --
+ ----------------
+
+ function Process_RE (N : Node_Id) return Traverse_Result is
+ begin
+ if Nkind (N) = N_Raise_Expression then
+ Set_Convert_To_Return_False (N);
+ return Skip;
+ else
+ return OK;
+ end if;
+ end Process_RE;
+
+ -------------
+ -- Test_RE --
+ -------------
+
+ function Test_RE (N : Node_Id) return Traverse_Result is
+ begin
+ if Nkind (N) = N_Raise_Expression then
+ Raise_Expression_Present := True;
+ return Abandon;
+ else
+ return OK;
+ end if;
+ end Test_RE;
+
+ -- Start of processing for Build_Predicate_Functions
+
+ begin
+ -- Return if already built or if type does not have predicates
+
+ if not Has_Predicates (Typ)
+ or else Present (Predicate_Function (Typ))
+ then
+ return;
+ end if;
+
+ -- Prepare to construct predicate expression
+
+ Expr := Empty;
+
+ -- Add Predicates for the current type
+
+ Add_Predicates;
+
+ -- Add predicates for ancestor if present
+
+ declare
+ Atyp : constant Entity_Id := Nearest_Ancestor (Typ);
+ begin
+ if Present (Atyp) then
+ Add_Call (Atyp);
+ end if;
+ end;
+
+ -- Case where predicates are present
+
+ if Present (Expr) then
+
+ -- Test for raise expression present
+
+ Test_REs (Expr);
+
+ -- If raise expression is present, capture a copy of Expr for use
+ -- in building the predicateM function version later on. For this
+ -- copy we replace references to Object_Entity by Object_Entity_M.
+
+ if Raise_Expression_Present then
+ declare
+ Map : constant Elist_Id := New_Elmt_List;
+ begin
+ Append_Elmt (Object_Entity, Map);
+ Append_Elmt (Object_Entity_M, Map);
+ Expr_M := New_Copy_Tree (Expr, Map => Map);
+ end;
+ end if;
+
+ -- Build the main predicate function
+
+ declare
+ SId : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_External_Name (Chars (Typ), "Predicate"));
+ -- The entity for the the function spec
+
+ SIdB : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_External_Name (Chars (Typ), "Predicate"));
+ -- The entity for the function body
+
+ Spec : Node_Id;
+ FDecl : Node_Id;
+ FBody : Node_Id;
+
+ begin
+ -- Build function declaration
+
+ Set_Ekind (SId, E_Function);
+ Set_Is_Internal (SId);
+ Set_Is_Predicate_Function (SId);
+ Set_Predicate_Function (Typ, SId);
+
+ -- The predicate function is shared between views of a type
+
+ if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
+ Set_Predicate_Function (Full_View (Typ), SId);
+ end if;
+
+ Spec :=
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => SId,
+ Parameter_Specifications => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Object_Entity,
+ Parameter_Type => New_Occurrence_Of (Typ, Loc))),
+ Result_Definition =>
+ New_Occurrence_Of (Standard_Boolean, Loc));
+
+ FDecl :=
+ Make_Subprogram_Declaration (Loc,
+ Specification => Spec);
+
+ -- Build function body
+
+ Spec :=
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => SIdB,
+ Parameter_Specifications => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Object_Name),
+ Parameter_Type =>
+ New_Occurrence_Of (Typ, Loc))),
+ Result_Definition =>
+ New_Occurrence_Of (Standard_Boolean, Loc));
+
+ FBody :=
+ Make_Subprogram_Body (Loc,
+ Specification => Spec,
+ Declarations => Empty_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+ Make_Simple_Return_Statement (Loc,
+ Expression => Expr))));
+
+ -- Insert declaration before freeze node and body after
+
+ Insert_Before_And_Analyze (N, FDecl);
+ Insert_After_And_Analyze (N, FBody);
+ end;
+
+ -- Test for raise expressions present and if so build M version
+
+ if Raise_Expression_Present then
+ declare
+ SId : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_External_Name (Chars (Typ), "PredicateM"));
+ -- The entity for the the function spec
+
+ SIdB : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_External_Name (Chars (Typ), "PredicateM"));
+ -- The entity for the function body
+
+ Spec : Node_Id;
+ FDecl : Node_Id;
+ FBody : Node_Id;
+ BTemp : Entity_Id;
+
+ begin
+ -- Mark any raise expressions for special expansion
+
+ Process_REs (Expr_M);
+
+ -- Build function declaration
+
+ Set_Ekind (SId, E_Function);
+ Set_Is_Predicate_Function_M (SId);
+ Set_Predicate_Function_M (Typ, SId);
+
+ -- The predicate function is shared between views of a type
+
+ if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
+ Set_Predicate_Function_M (Full_View (Typ), SId);
+ end if;
+
+ Spec :=
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => SId,
+ Parameter_Specifications => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Object_Entity_M,
+ Parameter_Type => New_Occurrence_Of (Typ, Loc))),
+ Result_Definition =>
+ New_Occurrence_Of (Standard_Boolean, Loc));
+
+ FDecl :=
+ Make_Subprogram_Declaration (Loc,
+ Specification => Spec);
+
+ -- Build function body
+
+ Spec :=
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => SIdB,
+ Parameter_Specifications => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Object_Name),
+ Parameter_Type =>
+ New_Occurrence_Of (Typ, Loc))),
+ Result_Definition =>
+ New_Occurrence_Of (Standard_Boolean, Loc));
+
+ -- Build the body, we declare the boolean expression before
+ -- doing the return, because we are not really confident of
+ -- what happens if a return appears within a return.
+
+ BTemp :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('B'));
+
+ FBody :=
+ Make_Subprogram_Body (Loc,
+ Specification => Spec,
+
+ Declarations => New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => BTemp,
+ Constant_Present => True,
+ Object_Definition =>
+ New_Occurrence_Of (Standard_Boolean, Loc),
+ Expression => Expr_M)),
+
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+ Make_Simple_Return_Statement (Loc,
+ Expression => New_Occurrence_Of (BTemp, Loc)))));
+
+ -- Insert declaration before freeze node and body after
+
+ Insert_Before_And_Analyze (N, FDecl);
+ Insert_After_And_Analyze (N, FBody);
+ end;
+ end if;
+
+ if Is_Scalar_Type (Typ) then
+
+ -- Attempt to build a static predicate for a discrete or a real
+ -- subtype. This action may fail because the actual expression may
+ -- not be static. Note that the presence of an inherited or
+ -- explicitly declared dynamic predicate is orthogonal to this
+ -- check because we are only interested in the static predicate.
+
+ if Ekind_In (Typ, E_Decimal_Fixed_Point_Subtype,
+ E_Enumeration_Subtype,
+ E_Floating_Point_Subtype,
+ E_Modular_Integer_Subtype,
+ E_Ordinary_Fixed_Point_Subtype,
+ E_Signed_Integer_Subtype)
+ then
+ Build_Static_Predicate (Typ, Expr, Object_Name);
+
+ -- Emit an error when the predicate is categorized as static
+ -- but its expression is dynamic.
+
+ if Present (Static_Predic)
+ and then No (Static_Predicate (Typ))
+ then
+ Error_Msg_F
+ ("expression does not have required form for "
+ & "static predicate",
+ Next (First (Pragma_Argument_Associations
+ (Static_Predic))));
+ end if;
+ end if;
+
+ -- If a static predicate applies on other types, that's an error:
+ -- either the type is scalar but non-static, or it's not even a
+ -- scalar type. We do not issue an error on generated types, as
+ -- these may be duplicates of the same error on a source type.
+
+ elsif Present (Static_Predic) and then Comes_From_Source (Typ) then
+ if Is_Scalar_Type (Typ) then
+ Error_Msg_FE
+ ("static predicate not allowed for non-static type&",
+ Typ, Typ);
+ else
+ Error_Msg_FE
+ ("static predicate not allowed for non-scalar type&",
+ Typ, Typ);
+ end if;
+ end if;
+ end if;
+ end Build_Predicate_Functions;
+
+ ----------------------------
+ -- Build_Static_Predicate --
+ ----------------------------
+
+ procedure Build_Static_Predicate
+ (Typ : Entity_Id;
+ Expr : Node_Id;
+ Nam : Name_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Expr);
+
+ Non_Static : exception;
+ -- Raised if something non-static is found
+
+ Btyp : constant Entity_Id := Base_Type (Typ);
+
+ BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
+ BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
+ -- Low bound and high bound value of base type of Typ
+
+ TLo : constant Uint := Expr_Value (Type_Low_Bound (Typ));
+ THi : constant Uint := Expr_Value (Type_High_Bound (Typ));
+ -- Low bound and high bound values of static subtype Typ
+
+ type REnt is record
+ Lo, Hi : Uint;
+ end record;
+ -- One entry in a Rlist value, a single REnt (range entry) value denotes
+ -- one range from Lo to Hi. To represent a single value range Lo = Hi =
+ -- value.
+
+ type RList is array (Nat range <>) of REnt;
+ -- A list of ranges. The ranges are sorted in increasing order, and are
+ -- disjoint (there is a gap of at least one value between each range in
+ -- the table). A value is in the set of ranges in Rlist if it lies
+ -- within one of these ranges.
+
+ False_Range : constant RList :=
+ RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
+ -- An empty set of ranges represents a range list that can never be
+ -- satisfied, since there are no ranges in which the value could lie,
+ -- so it does not lie in any of them. False_Range is a canonical value
+ -- for this empty set, but general processing should test for an Rlist
+ -- with length zero (see Is_False predicate), since other null ranges
+ -- may appear which must be treated as False.
+
+ True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
+ -- Range representing True, value must be in the base range
+
+ function "and" (Left : RList; Right : RList) return RList;
+ -- And's together two range lists, returning a range list. This is a set
+ -- intersection operation.
+
+ function "or" (Left : RList; Right : RList) return RList;
+ -- Or's together two range lists, returning a range list. This is a set
+ -- union operation.
+
+ function "not" (Right : RList) return RList;
+ -- Returns complement of a given range list, i.e. a range list
+ -- representing all the values in TLo .. THi that are not in the input
+ -- operand Right.
+
+ function Build_Val (V : Uint) return Node_Id;
+ -- Return an analyzed N_Identifier node referencing this value, suitable
+ -- for use as an entry in the Static_Predicate list. This node is typed
+ -- with the base type.
+
+ function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
+ -- Return an analyzed N_Range node referencing this range, suitable for
+ -- use as an entry in the Static_Predicate list. This node is typed with
+ -- the base type.
+
+ function Get_RList (Exp : Node_Id) return RList;
+ -- This is a recursive routine that converts the given expression into a
+ -- list of ranges, suitable for use in building the static predicate.
+
+ function Is_False (R : RList) return Boolean;
+ pragma Inline (Is_False);
+ -- Returns True if the given range list is empty, and thus represents a
+ -- False list of ranges that can never be satisfied.
+
+ function Is_True (R : RList) return Boolean;
+ -- Returns True if R trivially represents the True predicate by having a
+ -- single range from BLo to BHi.
+
+ function Is_Type_Ref (N : Node_Id) return Boolean;
+ pragma Inline (Is_Type_Ref);
+ -- Returns if True if N is a reference to the type for the predicate in
+ -- the expression (i.e. if it is an identifier whose Chars field matches
+ -- the Nam given in the call).
+
+ function Lo_Val (N : Node_Id) return Uint;
+ -- Given static expression or static range from a Static_Predicate list,
+ -- gets expression value or low bound of range.
+
+ function Hi_Val (N : Node_Id) return Uint;
+ -- Given static expression or static range from a Static_Predicate list,
+ -- gets expression value of high bound of range.
+
+ function Membership_Entry (N : Node_Id) return RList;
+ -- Given a single membership entry (range, value, or subtype), returns
+ -- the corresponding range list. Raises Static_Error if not static.
+
+ function Membership_Entries (N : Node_Id) return RList;
+ -- Given an element on an alternatives list of a membership operation,
+ -- returns the range list corresponding to this entry and all following
+ -- entries (i.e. returns the "or" of this list of values).
+
+ function Stat_Pred (Typ : Entity_Id) return RList;
+ -- Given a type, if it has a static predicate, then return the predicate
+ -- as a range list, otherwise raise Non_Static.
+
+ -----------
+ -- "and" --
+ -----------
+
+ function "and" (Left : RList; Right : RList) return RList is
+ FEnt : REnt;
+ -- First range of result
+
+ SLeft : Nat := Left'First;
+ -- Start of rest of left entries
+
+ SRight : Nat := Right'First;
+ -- Start of rest of right entries
+
+ begin
+ -- If either range is True, return the other
+
+ if Is_True (Left) then
+ return Right;
+ elsif Is_True (Right) then
+ return Left;
+ end if;
+
+ -- If either range is False, return False
+
+ if Is_False (Left) or else Is_False (Right) then
+ return False_Range;
+ end if;
+
+ -- Loop to remove entries at start that are disjoint, and thus just
+ -- get discarded from the result entirely.
+
+ loop
+ -- If no operands left in either operand, result is false
+
+ if SLeft > Left'Last or else SRight > Right'Last then
+ return False_Range;
+
+ -- Discard first left operand entry if disjoint with right
+
+ elsif Left (SLeft).Hi < Right (SRight).Lo then
+ SLeft := SLeft + 1;
+
+ -- Discard first right operand entry if disjoint with left
+
+ elsif Right (SRight).Hi < Left (SLeft).Lo then
+ SRight := SRight + 1;
+
+ -- Otherwise we have an overlapping entry
+
+ else
+ exit;
+ end if;
+ end loop;
+
+ -- Now we have two non-null operands, and first entries overlap. The
+ -- first entry in the result will be the overlapping part of these
+ -- two entries.
+
+ FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
+ Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
+
+ -- Now we can remove the entry that ended at a lower value, since its
+ -- contribution is entirely contained in Fent.
+
+ if Left (SLeft).Hi <= Right (SRight).Hi then
+ SLeft := SLeft + 1;
+ else
+ SRight := SRight + 1;
+ end if;
+
+ -- Compute result by concatenating this first entry with the "and" of
+ -- the remaining parts of the left and right operands. Note that if
+ -- either of these is empty, "and" will yield empty, so that we will
+ -- end up with just Fent, which is what we want in that case.
+
+ return
+ FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
+ end "and";
+
+ -----------
+ -- "not" --
+ -----------
+
+ function "not" (Right : RList) return RList is
+ begin
+ -- Return True if False range
+
+ if Is_False (Right) then
+ return True_Range;
+ end if;
+
+ -- Return False if True range
+
+ if Is_True (Right) then
+ return False_Range;
+ end if;
+
+ -- Here if not trivial case
+
+ declare
+ Result : RList (1 .. Right'Length + 1);
+ -- May need one more entry for gap at beginning and end
+
+ Count : Nat := 0;
+ -- Number of entries stored in Result
+
+ begin
+ -- Gap at start
+
+ if Right (Right'First).Lo > TLo then
+ Count := Count + 1;
+ Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
+ end if;
+
+ -- Gaps between ranges
+
+ for J in Right'First .. Right'Last - 1 loop
+ Count := Count + 1;
+ Result (Count) :=
+ REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
+ end loop;
+
+ -- Gap at end
+
+ if Right (Right'Last).Hi < THi then
+ Count := Count + 1;
+ Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
+ end if;
+
+ return Result (1 .. Count);
+ end;
+ end "not";
+
+ ----------
+ -- "or" --
+ ----------
+
+ function "or" (Left : RList; Right : RList) return RList is
+ FEnt : REnt;
+ -- First range of result
+
+ SLeft : Nat := Left'First;
+ -- Start of rest of left entries
+
+ SRight : Nat := Right'First;
+ -- Start of rest of right entries
+
+ begin
+ -- If either range is True, return True
+
+ if Is_True (Left) or else Is_True (Right) then
+ return True_Range;
+ end if;
+
+ -- If either range is False (empty), return the other
+
+ if Is_False (Left) then
+ return Right;
+ elsif Is_False (Right) then
+ return Left;
+ end if;
+
+ -- Initialize result first entry from left or right operand depending
+ -- on which starts with the lower range.
+
+ if Left (SLeft).Lo < Right (SRight).Lo then
+ FEnt := Left (SLeft);
+ SLeft := SLeft + 1;
+ else
+ FEnt := Right (SRight);
+ SRight := SRight + 1;
+ end if;
+
+ -- This loop eats ranges from left and right operands that are
+ -- contiguous with the first range we are gathering.
+
+ loop
+ -- Eat first entry in left operand if contiguous or overlapped by
+ -- gathered first operand of result.
+
+ if SLeft <= Left'Last
+ and then Left (SLeft).Lo <= FEnt.Hi + 1
+ then
+ FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
+ SLeft := SLeft + 1;
+
+ -- Eat first entry in right operand if contiguous or overlapped by
+ -- gathered right operand of result.
+
+ elsif SRight <= Right'Last
+ and then Right (SRight).Lo <= FEnt.Hi + 1
+ then
+ FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
+ SRight := SRight + 1;
+
+ -- All done if no more entries to eat
+
+ else
+ exit;
+ end if;
+ end loop;
+
+ -- Obtain result as the first entry we just computed, concatenated
+ -- to the "or" of the remaining results (if one operand is empty,
+ -- this will just concatenate with the other
+
+ return
+ FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
+ end "or";
+
+ -----------------
+ -- Build_Range --
+ -----------------
+
+ function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
+ Result : Node_Id;
+
+ begin
+ Result :=
+ Make_Range (Loc,
+ Low_Bound => Build_Val (Lo),
+ High_Bound => Build_Val (Hi));
+ Set_Etype (Result, Btyp);
+ Set_Analyzed (Result);
+
+ return Result;
+ end Build_Range;
+
+ ---------------
+ -- Build_Val --
+ ---------------
+
+ function Build_Val (V : Uint) return Node_Id is
+ Result : Node_Id;
+
+ begin
+ if Is_Enumeration_Type (Typ) then
+ Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
+ else
+ Result := Make_Integer_Literal (Loc, V);
+ end if;
+
+ Set_Etype (Result, Btyp);
+ Set_Is_Static_Expression (Result);
+ Set_Analyzed (Result);
+ return Result;
+ end Build_Val;
+
+ ---------------
+ -- Get_RList --
+ ---------------
+
+ function Get_RList (Exp : Node_Id) return RList is
+ Op : Node_Kind;
+ Val : Uint;
+
+ begin
+ -- Static expression can only be true or false
+
+ if Is_OK_Static_Expression (Exp) then
+
+ -- For False
+
+ if Expr_Value (Exp) = 0 then
+ return False_Range;
+ else
+ return True_Range;
+ end if;
+ end if;
+
+ -- Otherwise test node type
+
+ Op := Nkind (Exp);
+
+ case Op is
+
+ -- And
+
+ when N_Op_And | N_And_Then =>
+ return Get_RList (Left_Opnd (Exp))
+ and
+ Get_RList (Right_Opnd (Exp));
+
+ -- Or
+
+ when N_Op_Or | N_Or_Else =>
+ return Get_RList (Left_Opnd (Exp))
+ or
+ Get_RList (Right_Opnd (Exp));
+
+ -- Not
+
+ when N_Op_Not =>
+ return not Get_RList (Right_Opnd (Exp));
+
+ -- Comparisons of type with static value
+
+ when N_Op_Compare =>
+
+ -- Type is left operand
+
+ if Is_Type_Ref (Left_Opnd (Exp))
+ and then Is_OK_Static_Expression (Right_Opnd (Exp))
+ then
+ Val := Expr_Value (Right_Opnd (Exp));
+
+ -- Typ is right operand
+
+ elsif Is_Type_Ref (Right_Opnd (Exp))
+ and then Is_OK_Static_Expression (Left_Opnd (Exp))
+ then
+ Val := Expr_Value (Left_Opnd (Exp));
+
+ -- Invert sense of comparison
+
+ case Op is
+ when N_Op_Gt => Op := N_Op_Lt;
+ when N_Op_Lt => Op := N_Op_Gt;
+ when N_Op_Ge => Op := N_Op_Le;
+ when N_Op_Le => Op := N_Op_Ge;
+ when others => null;
+ end case;
+
+ -- Other cases are non-static
+
+ else
+ raise Non_Static;
+ end if;
+
+ -- Construct range according to comparison operation
+
+ case Op is
+ when N_Op_Eq =>
+ return RList'(1 => REnt'(Val, Val));
+
+ when N_Op_Ge =>
+ return RList'(1 => REnt'(Val, BHi));
+
+ when N_Op_Gt =>
+ return RList'(1 => REnt'(Val + 1, BHi));
+
+ when N_Op_Le =>
+ return RList'(1 => REnt'(BLo, Val));
+
+ when N_Op_Lt =>
+ return RList'(1 => REnt'(BLo, Val - 1));
+
+ when N_Op_Ne =>
+ return RList'(REnt'(BLo, Val - 1),
+ REnt'(Val + 1, BHi));
+
+ when others =>
+ raise Program_Error;
+ end case;
+
+ -- Membership (IN)
+
+ when N_In =>
+ if not Is_Type_Ref (Left_Opnd (Exp)) then
+ raise Non_Static;
+ end if;
+
+ if Present (Right_Opnd (Exp)) then
+ return Membership_Entry (Right_Opnd (Exp));
+ else
+ return Membership_Entries (First (Alternatives (Exp)));
+ end if;
+
+ -- Negative membership (NOT IN)
+
+ when N_Not_In =>
+ if not Is_Type_Ref (Left_Opnd (Exp)) then
+ raise Non_Static;
+ end if;
+
+ if Present (Right_Opnd (Exp)) then
+ return not Membership_Entry (Right_Opnd (Exp));
+ else
+ return not Membership_Entries (First (Alternatives (Exp)));
+ end if;
+
+ -- Function call, may be call to static predicate
+
+ when N_Function_Call =>
+ if Is_Entity_Name (Name (Exp)) then
+ declare
+ Ent : constant Entity_Id := Entity (Name (Exp));
+ begin
+ if Is_Predicate_Function (Ent)
+ or else
+ Is_Predicate_Function_M (Ent)
+ then
+ return Stat_Pred (Etype (First_Formal (Ent)));
+ end if;
+ end;
+ end if;
+
+ -- Other function call cases are non-static
+
+ raise Non_Static;
+
+ -- Qualified expression, dig out the expression
+
+ when N_Qualified_Expression =>
+ return Get_RList (Expression (Exp));
+
+ -- Expression with actions: if no actions, dig out expression
+
+ when N_Expression_With_Actions =>
+ if Is_Empty_List (Actions (Exp)) then
+ return Get_RList (Expression (Exp));
+
+ else
+ raise Non_Static;
+ end if;
+
+ -- Xor operator
+
+ when N_Op_Xor =>
+ return (Get_RList (Left_Opnd (Exp))
+ and not Get_RList (Right_Opnd (Exp)))
+ or (Get_RList (Right_Opnd (Exp))
+ and not Get_RList (Left_Opnd (Exp)));
+
+ -- Any other node type is non-static
+
+ when others =>
+ raise Non_Static;
+ end case;
+ end Get_RList;
+
+ ------------
+ -- Hi_Val --
+ ------------
+
+ function Hi_Val (N : Node_Id) return Uint is
+ begin
+ if Is_Static_Expression (N) then
+ return Expr_Value (N);
+ else
+ pragma Assert (Nkind (N) = N_Range);
+ return Expr_Value (High_Bound (N));
+ end if;
+ end Hi_Val;
+
+ --------------
+ -- Is_False --
+ --------------
+
+ function Is_False (R : RList) return Boolean is
+ begin
+ return R'Length = 0;
+ end Is_False;
+
+ -------------
+ -- Is_True --
+ -------------
+
+ function Is_True (R : RList) return Boolean is
+ begin
+ return R'Length = 1
+ and then R (R'First).Lo = BLo
+ and then R (R'First).Hi = BHi;
+ end Is_True;
+
+ -----------------
+ -- Is_Type_Ref --
+ -----------------
+
+ function Is_Type_Ref (N : Node_Id) return Boolean is
+ begin
+ return Nkind (N) = N_Identifier and then Chars (N) = Nam;
+ end Is_Type_Ref;
+
+ ------------
+ -- Lo_Val --
+ ------------
+
+ function Lo_Val (N : Node_Id) return Uint is
+ begin
+ if Is_Static_Expression (N) then
+ return Expr_Value (N);
+ else
+ pragma Assert (Nkind (N) = N_Range);
+ return Expr_Value (Low_Bound (N));
+ end if;
+ end Lo_Val;
+
+ ------------------------
+ -- Membership_Entries --
+ ------------------------
+
+ function Membership_Entries (N : Node_Id) return RList is
+ begin
+ if No (Next (N)) then
+ return Membership_Entry (N);
+ else
+ return Membership_Entry (N) or Membership_Entries (Next (N));
+ end if;
+ end Membership_Entries;
+
+ ----------------------
+ -- Membership_Entry --
+ ----------------------
+
+ function Membership_Entry (N : Node_Id) return RList is
+ Val : Uint;
+ SLo : Uint;
+ SHi : Uint;
+
+ begin
+ -- Range case
+
+ if Nkind (N) = N_Range then
+ if not Is_Static_Expression (Low_Bound (N))
+ or else
+ not Is_Static_Expression (High_Bound (N))
+ then
+ raise Non_Static;
+ else
+ SLo := Expr_Value (Low_Bound (N));
+ SHi := Expr_Value (High_Bound (N));
+ return RList'(1 => REnt'(SLo, SHi));
+ end if;
+
+ -- Static expression case
+
+ elsif Is_Static_Expression (N) then
+ Val := Expr_Value (N);
+ return RList'(1 => REnt'(Val, Val));
+
+ -- Identifier (other than static expression) case
+
+ else pragma Assert (Nkind (N) = N_Identifier);
+
+ -- Type case
+
+ if Is_Type (Entity (N)) then
+
+ -- If type has predicates, process them
+
+ if Has_Predicates (Entity (N)) then
+ return Stat_Pred (Entity (N));
+
+ -- For static subtype without predicates, get range
+
+ elsif Is_Static_Subtype (Entity (N)) then
+ SLo := Expr_Value (Type_Low_Bound (Entity (N)));
+ SHi := Expr_Value (Type_High_Bound (Entity (N)));
+ return RList'(1 => REnt'(SLo, SHi));
+
+ -- Any other type makes us non-static
+
+ else
+ raise Non_Static;
+ end if;
+
+ -- Any other kind of identifier in predicate (e.g. a non-static
+ -- expression value) means this is not a static predicate.
+
+ else
+ raise Non_Static;
+ end if;
+ end if;
+ end Membership_Entry;
+
+ ---------------
+ -- Stat_Pred --
+ ---------------
+
+ function Stat_Pred (Typ : Entity_Id) return RList is
+ begin
+ -- Not static if type does not have static predicates
+
+ if not Has_Predicates (Typ) or else No (Static_Predicate (Typ)) then
+ raise Non_Static;
+ end if;
+
+ -- Otherwise we convert the predicate list to a range list
+
+ declare
+ Result : RList (1 .. List_Length (Static_Predicate (Typ)));
+ P : Node_Id;
+
+ begin
+ P := First (Static_Predicate (Typ));
+ for J in Result'Range loop
+ Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
+ Next (P);
+ end loop;
+
+ return Result;
+ end;
+ end Stat_Pred;
+
+ -- Start of processing for Build_Static_Predicate
+
+ begin
+ -- Now analyze the expression to see if it is a static predicate
+
+ declare
+ Ranges : constant RList := Get_RList (Expr);
+ -- Range list from expression if it is static
+
+ Plist : List_Id;
+
+ begin
+ -- Convert range list into a form for the static predicate. In the
+ -- Ranges array, we just have raw ranges, these must be converted
+ -- to properly typed and analyzed static expressions or range nodes.
+
+ -- Note: here we limit ranges to the ranges of the subtype, so that
+ -- a predicate is always false for values outside the subtype. That
+ -- seems fine, such values are invalid anyway, and considering them
+ -- to fail the predicate seems allowed and friendly, and furthermore
+ -- simplifies processing for case statements and loops.
+
+ Plist := New_List;
+
+ for J in Ranges'Range loop
+ declare
+ Lo : Uint := Ranges (J).Lo;
+ Hi : Uint := Ranges (J).Hi;
+
+ begin
+ -- Ignore completely out of range entry
+
+ if Hi < TLo or else Lo > THi then
+ null;
+
+ -- Otherwise process entry
+
+ else
+ -- Adjust out of range value to subtype range
+
+ if Lo < TLo then
+ Lo := TLo;
+ end if;
+
+ if Hi > THi then
+ Hi := THi;
+ end if;
+
+ -- Convert range into required form
+
+ Append_To (Plist, Build_Range (Lo, Hi));
+ end if;
+ end;
+ end loop;
+
+ -- Processing was successful and all entries were static, so now we
+ -- can store the result as the predicate list.
+
+ Set_Static_Predicate (Typ, Plist);
+
+ -- The processing for static predicates put the expression into
+ -- canonical form as a series of ranges. It also eliminated
+ -- duplicates and collapsed and combined ranges. We might as well
+ -- replace the alternatives list of the right operand of the
+ -- membership test with the static predicate list, which will
+ -- usually be more efficient.
+
+ declare
+ New_Alts : constant List_Id := New_List;
+ Old_Node : Node_Id;
+ New_Node : Node_Id;
+
+ begin
+ Old_Node := First (Plist);
+ while Present (Old_Node) loop
+ New_Node := New_Copy (Old_Node);
+
+ if Nkind (New_Node) = N_Range then
+ Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
+ Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
+ end if;
+
+ Append_To (New_Alts, New_Node);
+ Next (Old_Node);
+ end loop;
+
+ -- If empty list, replace by False
+
+ if Is_Empty_List (New_Alts) then
+ Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
+
+ -- Else replace by set membership test
+
+ else
+ Rewrite (Expr,
+ Make_In (Loc,
+ Left_Opnd => Make_Identifier (Loc, Nam),
+ Right_Opnd => Empty,
+ Alternatives => New_Alts));
+
+ -- Resolve new expression in function context
+
+ Install_Formals (Predicate_Function (Typ));
+ Push_Scope (Predicate_Function (Typ));
+ Analyze_And_Resolve (Expr, Standard_Boolean);
+ Pop_Scope;
+ end if;
+ end;
+ end;
+
+ -- If non-static, return doing nothing
+
+ exception
+ when Non_Static =>
+ return;
+ end Build_Static_Predicate;
+
+ -----------------------------------------
+ -- Check_Aspect_At_End_Of_Declarations --
+ -----------------------------------------
+
+ procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
+ Ent : constant Entity_Id := Entity (ASN);
+ Ident : constant Node_Id := Identifier (ASN);
+ A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
+
+ End_Decl_Expr : constant Node_Id := Entity (Ident);
+ -- Expression to be analyzed at end of declarations
+
+ Freeze_Expr : constant Node_Id := Expression (ASN);
+ -- Expression from call to Check_Aspect_At_Freeze_Point
+
+ T : constant Entity_Id := Etype (Freeze_Expr);
+ -- Type required for preanalyze call
+
+ Err : Boolean;
+ -- Set False if error
+
+ -- On entry to this procedure, Entity (Ident) contains a copy of the
+ -- original expression from the aspect, saved for this purpose, and
+ -- but Expression (Ident) is a preanalyzed copy of the expression,
+ -- preanalyzed just after the freeze point.
+
+ procedure Check_Overloaded_Name;
+ -- For aspects whose expression is simply a name, this routine checks if
+ -- the name is overloaded or not. If so, it verifies there is an
+ -- interpretation that matches the entity obtained at the freeze point,
+ -- otherwise the compiler complains.
+
+ ---------------------------
+ -- Check_Overloaded_Name --
+ ---------------------------
+
+ procedure Check_Overloaded_Name is
+ begin
+ if not Is_Overloaded (End_Decl_Expr) then
+ Err := Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
+
+ else
+ Err := True;
+
+ declare
+ Index : Interp_Index;
+ It : Interp;
+
+ begin
+ Get_First_Interp (End_Decl_Expr, Index, It);
+ while Present (It.Typ) loop
+ if It.Nam = Entity (Freeze_Expr) then
+ Err := False;
+ exit;
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+ end;
+ end if;
+ end Check_Overloaded_Name;
+
+ -- Start of processing for Check_Aspect_At_End_Of_Declarations
+
+ begin
+ -- Case of aspects Dimension, Dimension_System and Synchronization
+
+ if A_Id = Aspect_Synchronization then
+ return;
+
+ -- Case of stream attributes, just have to compare entities. However,
+ -- the expression is just a name (possibly overloaded), and there may
+ -- be stream operations declared for unrelated types, so we just need
+ -- to verify that one of these interpretations is the one available at
+ -- at the freeze point.
+
+ elsif A_Id = Aspect_Input or else
+ A_Id = Aspect_Output or else
+ A_Id = Aspect_Read or else
+ A_Id = Aspect_Write
+ then
+ Analyze (End_Decl_Expr);
+ Check_Overloaded_Name;
+
+ elsif A_Id = Aspect_Variable_Indexing or else
+ A_Id = Aspect_Constant_Indexing or else
+ A_Id = Aspect_Default_Iterator or else
+ A_Id = Aspect_Iterator_Element
+ then
+ -- Make type unfrozen before analysis, to prevent spurious errors
+ -- about late attributes.
+
+ Set_Is_Frozen (Ent, False);
+ Analyze (End_Decl_Expr);
+ Set_Is_Frozen (Ent, True);
+
+ -- If the end of declarations comes before any other freeze
+ -- point, the Freeze_Expr is not analyzed: no check needed.
+
+ if Analyzed (Freeze_Expr) and then not In_Instance then
+ Check_Overloaded_Name;
+ else
+ Err := False;
+ end if;
+
+ -- All other cases
+
+ else
+ -- In a generic context the aspect expressions have not been
+ -- preanalyzed, so do it now. There are no conformance checks
+ -- to perform in this case.
+
+ if No (T) then
+ Check_Aspect_At_Freeze_Point (ASN);
+ return;
+
+ -- The default values attributes may be defined in the private part,
+ -- and the analysis of the expression may take place when only the
+ -- partial view is visible. The expression must be scalar, so use
+ -- the full view to resolve.
+
+ elsif (A_Id = Aspect_Default_Value
+ or else
+ A_Id = Aspect_Default_Component_Value)
+ and then Is_Private_Type (T)
+ then
+ Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
+ else
+ Preanalyze_Spec_Expression (End_Decl_Expr, T);
+ end if;
+
+ Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
+ end if;
+
+ -- Output error message if error
+
+ if Err then
+ Error_Msg_NE
+ ("visibility of aspect for& changes after freeze point",
+ ASN, Ent);
+ Error_Msg_NE
+ ("info: & is frozen here, aspects evaluated at this point??",
+ Freeze_Node (Ent), Ent);
+ end if;
+ end Check_Aspect_At_End_Of_Declarations;
+
+ ----------------------------------
+ -- Check_Aspect_At_Freeze_Point --
+ ----------------------------------
+
+ procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
+ Ident : constant Node_Id := Identifier (ASN);
+ -- Identifier (use Entity field to save expression)
+
+ A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
+
+ T : Entity_Id := Empty;
+ -- Type required for preanalyze call
+
+ begin
+ -- On entry to this procedure, Entity (Ident) contains a copy of the
+ -- original expression from the aspect, saved for this purpose.
+
+ -- On exit from this procedure Entity (Ident) is unchanged, still
+ -- containing that copy, but Expression (Ident) is a preanalyzed copy
+ -- of the expression, preanalyzed just after the freeze point.
+
+ -- Make a copy of the expression to be preanalyzed
+
+ Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
+
+ -- Find type for preanalyze call
+
+ case A_Id is
+
+ -- No_Aspect should be impossible
+
+ when No_Aspect =>
+ raise Program_Error;
+
+ -- Aspects taking an optional boolean argument
+
+ when Boolean_Aspects |
+ Library_Unit_Aspects =>
+
+ T := Standard_Boolean;
+
+ -- Aspects corresponding to attribute definition clauses
+
+ when Aspect_Address =>
+ T := RTE (RE_Address);
+
+ when Aspect_Attach_Handler =>
+ T := RTE (RE_Interrupt_ID);
+
+ when Aspect_Bit_Order | Aspect_Scalar_Storage_Order =>
+ T := RTE (RE_Bit_Order);
+
+ when Aspect_Convention =>
+ return;
+
+ when Aspect_CPU =>
+ T := RTE (RE_CPU_Range);
+
+ -- Default_Component_Value is resolved with the component type
+
+ when Aspect_Default_Component_Value =>
+ T := Component_Type (Entity (ASN));
+
+ -- Default_Value is resolved with the type entity in question
+
+ when Aspect_Default_Value =>
+ T := Entity (ASN);
+
+ -- Depends is a delayed aspect because it mentiones names first
+ -- introduced by aspect Global which is already delayed. There is
+ -- no action to be taken with respect to the aspect itself as the
+ -- analysis is done by the corresponding pragma.
+
+ when Aspect_Depends =>
+ return;
+
+ when Aspect_Dispatching_Domain =>
+ T := RTE (RE_Dispatching_Domain);
+
+ when Aspect_External_Tag =>
+ T := Standard_String;
+
+ when Aspect_External_Name =>
+ T := Standard_String;
+
+ -- Global is a delayed aspect because it may reference names that
+ -- have not been declared yet. There is no action to be taken with
+ -- respect to the aspect itself as the reference checking is done
+ -- on the corresponding pragma.
+
+ when Aspect_Global =>
+ return;
+
+ when Aspect_Link_Name =>
+ T := Standard_String;
+
+ when Aspect_Priority | Aspect_Interrupt_Priority =>
+ T := Standard_Integer;
+
+ when Aspect_Relative_Deadline =>
+ T := RTE (RE_Time_Span);
+
+ when Aspect_Small =>
+ T := Universal_Real;
+
+ -- For a simple storage pool, we have to retrieve the type of the
+ -- pool object associated with the aspect's corresponding attribute
+ -- definition clause.
+
+ when Aspect_Simple_Storage_Pool =>
+ T := Etype (Expression (Aspect_Rep_Item (ASN)));
+
+ when Aspect_Storage_Pool =>
+ T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
+
+ when Aspect_Alignment |
+ Aspect_Component_Size |
+ Aspect_Machine_Radix |
+ Aspect_Object_Size |
+ Aspect_Size |
+ Aspect_Storage_Size |
+ Aspect_Stream_Size |
+ Aspect_Value_Size =>
+ T := Any_Integer;
+
+ when Aspect_Linker_Section =>
+ T := Standard_String;
+
+ when Aspect_Synchronization =>
+ return;
+
+ -- Special case, the expression of these aspects is just an entity
+ -- that does not need any resolution, so just analyze.
+
+ when Aspect_Input |
+ Aspect_Output |
+ Aspect_Read |
+ Aspect_Suppress |
+ Aspect_Unsuppress |
+ Aspect_Warnings |
+ Aspect_Write =>
+ Analyze (Expression (ASN));
+ return;
+
+ -- Same for Iterator aspects, where the expression is a function
+ -- name. Legality rules are checked separately.
+
+ when Aspect_Constant_Indexing |
+ Aspect_Default_Iterator |
+ Aspect_Iterator_Element |
+ Aspect_Variable_Indexing =>
+ Analyze (Expression (ASN));
+ return;
+
+ -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
+
+ when Aspect_Iterable =>
+ T := Entity (ASN);
+
+ declare
+ Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
+ Assoc : Node_Id;
+ Expr : Node_Id;
+
+ begin
+ if Cursor = Any_Type then
+ return;
+ end if;
+
+ Assoc := First (Component_Associations (Expression (ASN)));
+ while Present (Assoc) loop
+ Expr := Expression (Assoc);
+ Analyze (Expr);
+
+ if not Error_Posted (Expr) then
+ Resolve_Iterable_Operation
+ (Expr, Cursor, T, Chars (First (Choices (Assoc))));
+ end if;
+
+ Next (Assoc);
+ end loop;
+ end;
+
+ return;
+
+ -- Invariant/Predicate take boolean expressions
+
+ when Aspect_Dynamic_Predicate |
+ Aspect_Invariant |
+ Aspect_Predicate |
+ Aspect_Static_Predicate |
+ Aspect_Type_Invariant =>
+ T := Standard_Boolean;
+
+ -- Here is the list of aspects that don't require delay analysis
+
+ when Aspect_Abstract_State |
+ Aspect_Contract_Cases |
+ Aspect_Dimension |
+ Aspect_Dimension_System |
+ Aspect_Implicit_Dereference |
+ Aspect_Initial_Condition |
+ Aspect_Initializes |
+ Aspect_Part_Of |
+ Aspect_Post |
+ Aspect_Postcondition |
+ Aspect_Pre |
+ Aspect_Precondition |
+ Aspect_Refined_Depends |
+ Aspect_Refined_Global |
+ Aspect_Refined_Post |
+ Aspect_Refined_State |
+ Aspect_SPARK_Mode |
+ Aspect_Test_Case =>
+ raise Program_Error;
+
+ end case;
+
+ -- Do the preanalyze call
+
+ Preanalyze_Spec_Expression (Expression (ASN), T);
+ end Check_Aspect_At_Freeze_Point;
+
+ -----------------------------------
+ -- Check_Constant_Address_Clause --
+ -----------------------------------
+
+ procedure Check_Constant_Address_Clause
+ (Expr : Node_Id;
+ U_Ent : Entity_Id)
+ is
+ procedure Check_At_Constant_Address (Nod : Node_Id);
+ -- Checks that the given node N represents a name whose 'Address is
+ -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
+ -- address value is the same at the point of declaration of U_Ent and at
+ -- the time of elaboration of the address clause.
+
+ procedure Check_Expr_Constants (Nod : Node_Id);
+ -- Checks that Nod meets the requirements for a constant address clause
+ -- in the sense of the enclosing procedure.
+
+ procedure Check_List_Constants (Lst : List_Id);
+ -- Check that all elements of list Lst meet the requirements for a
+ -- constant address clause in the sense of the enclosing procedure.
+
+ -------------------------------
+ -- Check_At_Constant_Address --
+ -------------------------------
+
+ procedure Check_At_Constant_Address (Nod : Node_Id) is
+ begin
+ if Is_Entity_Name (Nod) then
+ if Present (Address_Clause (Entity ((Nod)))) then
+ Error_Msg_NE
+ ("invalid address clause for initialized object &!",
+ Nod, U_Ent);
+ Error_Msg_NE
+ ("address for& cannot" &
+ " depend on another address clause! (RM 13.1(22))!",
+ Nod, U_Ent);
+
+ elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
+ and then Sloc (U_Ent) < Sloc (Entity (Nod))
+ then
+ Error_Msg_NE
+ ("invalid address clause for initialized object &!",
+ Nod, U_Ent);
+ Error_Msg_Node_2 := U_Ent;
+ Error_Msg_NE
+ ("\& must be defined before & (RM 13.1(22))!",
+ Nod, Entity (Nod));
+ end if;
+
+ elsif Nkind (Nod) = N_Selected_Component then
+ declare
+ T : constant Entity_Id := Etype (Prefix (Nod));
+
+ begin
+ if (Is_Record_Type (T)
+ and then Has_Discriminants (T))
+ or else
+ (Is_Access_Type (T)
+ and then Is_Record_Type (Designated_Type (T))
+ and then Has_Discriminants (Designated_Type (T)))
+ then
+ Error_Msg_NE
+ ("invalid address clause for initialized object &!",
+ Nod, U_Ent);
+ Error_Msg_N
+ ("\address cannot depend on component" &
+ " of discriminated record (RM 13.1(22))!",
+ Nod);
+ else
+ Check_At_Constant_Address (Prefix (Nod));
+ end if;
+ end;
+
+ elsif Nkind (Nod) = N_Indexed_Component then
+ Check_At_Constant_Address (Prefix (Nod));
+ Check_List_Constants (Expressions (Nod));
+
+ else
+ Check_Expr_Constants (Nod);
+ end if;
+ end Check_At_Constant_Address;
+
+ --------------------------
+ -- Check_Expr_Constants --
+ --------------------------
+
+ procedure Check_Expr_Constants (Nod : Node_Id) is
+ Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
+ Ent : Entity_Id := Empty;
+
+ begin
+ if Nkind (Nod) in N_Has_Etype
+ and then Etype (Nod) = Any_Type
+ then
+ return;
+ end if;
+
+ case Nkind (Nod) is
+ when N_Empty | N_Error =>
+ return;
+
+ when N_Identifier | N_Expanded_Name =>
+ Ent := Entity (Nod);
+
+ -- We need to look at the original node if it is different
+ -- from the node, since we may have rewritten things and
+ -- substituted an identifier representing the rewrite.
+
+ if Original_Node (Nod) /= Nod then
+ Check_Expr_Constants (Original_Node (Nod));
+
+ -- If the node is an object declaration without initial
+ -- value, some code has been expanded, and the expression
+ -- is not constant, even if the constituents might be
+ -- acceptable, as in A'Address + offset.
+
+ if Ekind (Ent) = E_Variable
+ and then
+ Nkind (Declaration_Node (Ent)) = N_Object_Declaration
+ and then
+ No (Expression (Declaration_Node (Ent)))
+ then
+ Error_Msg_NE
+ ("invalid address clause for initialized object &!",
+ Nod, U_Ent);
+
+ -- If entity is constant, it may be the result of expanding
+ -- a check. We must verify that its declaration appears
+ -- before the object in question, else we also reject the
+ -- address clause.
+
+ elsif Ekind (Ent) = E_Constant
+ and then In_Same_Source_Unit (Ent, U_Ent)
+ and then Sloc (Ent) > Loc_U_Ent
+ then
+ Error_Msg_NE
+ ("invalid address clause for initialized object &!",
+ Nod, U_Ent);
+ end if;
+
+ return;
+ end if;
+
+ -- Otherwise look at the identifier and see if it is OK
+
+ if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
+ or else Is_Type (Ent)
+ then
+ return;
+
+ elsif
+ Ekind (Ent) = E_Constant
+ or else
+ Ekind (Ent) = E_In_Parameter
+ then
+ -- This is the case where we must have Ent defined before
+ -- U_Ent. Clearly if they are in different units this
+ -- requirement is met since the unit containing Ent is
+ -- already processed.
+
+ if not In_Same_Source_Unit (Ent, U_Ent) then
+ return;
+
+ -- Otherwise location of Ent must be before the location
+ -- of U_Ent, that's what prior defined means.
+
+ elsif Sloc (Ent) < Loc_U_Ent then
+ return;
+
+ else
+ Error_Msg_NE
+ ("invalid address clause for initialized object &!",
+ Nod, U_Ent);
+ Error_Msg_Node_2 := U_Ent;
+ Error_Msg_NE
+ ("\& must be defined before & (RM 13.1(22))!",
+ Nod, Ent);
+ end if;
+
+ elsif Nkind (Original_Node (Nod)) = N_Function_Call then
+ Check_Expr_Constants (Original_Node (Nod));
+
+ else
+ Error_Msg_NE
+ ("invalid address clause for initialized object &!",
+ Nod, U_Ent);
+
+ if Comes_From_Source (Ent) then
+ Error_Msg_NE
+ ("\reference to variable& not allowed"
+ & " (RM 13.1(22))!", Nod, Ent);
+ else
+ Error_Msg_N
+ ("non-static expression not allowed"
+ & " (RM 13.1(22))!", Nod);
+ end if;
+ end if;
+
+ when N_Integer_Literal =>
+
+ -- If this is a rewritten unchecked conversion, in a system
+ -- where Address is an integer type, always use the base type
+ -- for a literal value. This is user-friendly and prevents
+ -- order-of-elaboration issues with instances of unchecked
+ -- conversion.
+
+ if Nkind (Original_Node (Nod)) = N_Function_Call then
+ Set_Etype (Nod, Base_Type (Etype (Nod)));
+ end if;
+
+ when N_Real_Literal |
+ N_String_Literal |
+ N_Character_Literal =>
+ return;
+
+ when N_Range =>
+ Check_Expr_Constants (Low_Bound (Nod));
+ Check_Expr_Constants (High_Bound (Nod));
+
+ when N_Explicit_Dereference =>
+ Check_Expr_Constants (Prefix (Nod));
+
+ when N_Indexed_Component =>
+ Check_Expr_Constants (Prefix (Nod));
+ Check_List_Constants (Expressions (Nod));
+
+ when N_Slice =>
+ Check_Expr_Constants (Prefix (Nod));
+ Check_Expr_Constants (Discrete_Range (Nod));
+
+ when N_Selected_Component =>
+ Check_Expr_Constants (Prefix (Nod));
+
+ when N_Attribute_Reference =>
+ if Nam_In (Attribute_Name (Nod), Name_Address,
+ Name_Access,
+ Name_Unchecked_Access,
+ Name_Unrestricted_Access)
+ then
+ Check_At_Constant_Address (Prefix (Nod));
+
+ else
+ Check_Expr_Constants (Prefix (Nod));
+ Check_List_Constants (Expressions (Nod));
+ end if;
+
+ when N_Aggregate =>
+ Check_List_Constants (Component_Associations (Nod));
+ Check_List_Constants (Expressions (Nod));
+
+ when N_Component_Association =>
+ Check_Expr_Constants (Expression (Nod));
+
+ when N_Extension_Aggregate =>
+ Check_Expr_Constants (Ancestor_Part (Nod));
+ Check_List_Constants (Component_Associations (Nod));
+ Check_List_Constants (Expressions (Nod));
+
+ when N_Null =>
+ return;
+
+ when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
+ Check_Expr_Constants (Left_Opnd (Nod));
+ Check_Expr_Constants (Right_Opnd (Nod));
+
+ when N_Unary_Op =>
+ Check_Expr_Constants (Right_Opnd (Nod));
+
+ when N_Type_Conversion |
+ N_Qualified_Expression |
+ N_Allocator |
+ N_Unchecked_Type_Conversion =>
+ Check_Expr_Constants (Expression (Nod));
+
+ when N_Function_Call =>
+ if not Is_Pure (Entity (Name (Nod))) then
+ Error_Msg_NE
+ ("invalid address clause for initialized object &!",
+ Nod, U_Ent);
+
+ Error_Msg_NE
+ ("\function & is not pure (RM 13.1(22))!",
+ Nod, Entity (Name (Nod)));
+
+ else
+ Check_List_Constants (Parameter_Associations (Nod));
+ end if;
+
+ when N_Parameter_Association =>
+ Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
+
+ when others =>
+ Error_Msg_NE
+ ("invalid address clause for initialized object &!",
+ Nod, U_Ent);
+ Error_Msg_NE
+ ("\must be constant defined before& (RM 13.1(22))!",
+ Nod, U_Ent);
+ end case;
+ end Check_Expr_Constants;
+
+ --------------------------
+ -- Check_List_Constants --
+ --------------------------
+
+ procedure Check_List_Constants (Lst : List_Id) is
+ Nod1 : Node_Id;
+
+ begin
+ if Present (Lst) then
+ Nod1 := First (Lst);
+ while Present (Nod1) loop
+ Check_Expr_Constants (Nod1);
+ Next (Nod1);
+ end loop;
+ end if;
+ end Check_List_Constants;
+
+ -- Start of processing for Check_Constant_Address_Clause
+
+ begin
+ -- If rep_clauses are to be ignored, no need for legality checks. In
+ -- particular, no need to pester user about rep clauses that violate
+ -- the rule on constant addresses, given that these clauses will be
+ -- removed by Freeze before they reach the back end.
+
+ if not Ignore_Rep_Clauses then
+ Check_Expr_Constants (Expr);
+ end if;
+ end Check_Constant_Address_Clause;
+
+ ---------------------------
+ -- Check_Pool_Size_Clash --
+ ---------------------------
+
+ procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
+ Post : Node_Id;
+
+ begin
+ -- We need to find out which one came first. Note that in the case of
+ -- aspects mixed with pragmas there are cases where the processing order
+ -- is reversed, which is why we do the check here.
+
+ if Sloc (SP) < Sloc (SS) then
+ Error_Msg_Sloc := Sloc (SP);
+ Post := SS;
+ Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
+
+ else
+ Error_Msg_Sloc := Sloc (SS);
+ Post := SP;
+ Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
+ end if;
+
+ Error_Msg_N
+ ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
+ end Check_Pool_Size_Clash;
+
+ ----------------------------------------
+ -- Check_Record_Representation_Clause --
+ ----------------------------------------
+
+ procedure Check_Record_Representation_Clause (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Ident : constant Node_Id := Identifier (N);
+ Rectype : Entity_Id;
+ Fent : Entity_Id;
+ CC : Node_Id;
+ Fbit : Uint;
+ Lbit : Uint;
+ Hbit : Uint := Uint_0;
+ Comp : Entity_Id;
+ Pcomp : Entity_Id;
+
+ Max_Bit_So_Far : Uint;
+ -- Records the maximum bit position so far. If all field positions
+ -- are monotonically increasing, then we can skip the circuit for
+ -- checking for overlap, since no overlap is possible.
+
+ Tagged_Parent : Entity_Id := Empty;
+ -- This is set in the case of a derived tagged type for which we have
+ -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
+ -- positioned by record representation clauses). In this case we must
+ -- check for overlap between components of this tagged type, and the
+ -- components of its parent. Tagged_Parent will point to this parent
+ -- type. For all other cases Tagged_Parent is left set to Empty.
+
+ Parent_Last_Bit : Uint;
+ -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
+ -- last bit position for any field in the parent type. We only need to
+ -- check overlap for fields starting below this point.
+
+ Overlap_Check_Required : Boolean;
+ -- Used to keep track of whether or not an overlap check is required
+
+ Overlap_Detected : Boolean := False;
+ -- Set True if an overlap is detected
+
+ Ccount : Natural := 0;
+ -- Number of component clauses in record rep clause
+
+ procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
+ -- Given two entities for record components or discriminants, checks
+ -- if they have overlapping component clauses and issues errors if so.
+
+ procedure Find_Component;
+ -- Finds component entity corresponding to current component clause (in
+ -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
+ -- start/stop bits for the field. If there is no matching component or
+ -- if the matching component does not have a component clause, then
+ -- that's an error and Comp is set to Empty, but no error message is
+ -- issued, since the message was already given. Comp is also set to
+ -- Empty if the current "component clause" is in fact a pragma.
+
+ -----------------------------
+ -- Check_Component_Overlap --
+ -----------------------------
+
+ procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
+ CC1 : constant Node_Id := Component_Clause (C1_Ent);
+ CC2 : constant Node_Id := Component_Clause (C2_Ent);
+
+ begin
+ if Present (CC1) and then Present (CC2) then
+
+ -- Exclude odd case where we have two tag components in the same
+ -- record, both at location zero. This seems a bit strange, but
+ -- it seems to happen in some circumstances, perhaps on an error.
+
+ if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
+ return;
+ end if;
+
+ -- Here we check if the two fields overlap
+
+ declare
+ S1 : constant Uint := Component_Bit_Offset (C1_Ent);
+ S2 : constant Uint := Component_Bit_Offset (C2_Ent);
+ E1 : constant Uint := S1 + Esize (C1_Ent);
+ E2 : constant Uint := S2 + Esize (C2_Ent);
+
+ begin
+ if E2 <= S1 or else E1 <= S2 then
+ null;
+ else
+ Error_Msg_Node_2 := Component_Name (CC2);
+ Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
+ Error_Msg_Node_1 := Component_Name (CC1);
+ Error_Msg_N
+ ("component& overlaps & #", Component_Name (CC1));
+ Overlap_Detected := True;
+ end if;
+ end;
+ end if;
+ end Check_Component_Overlap;
+
+ --------------------
+ -- Find_Component --
+ --------------------
+
+ procedure Find_Component is
+
+ procedure Search_Component (R : Entity_Id);
+ -- Search components of R for a match. If found, Comp is set
+
+ ----------------------
+ -- Search_Component --
+ ----------------------
+
+ procedure Search_Component (R : Entity_Id) is
+ begin
+ Comp := First_Component_Or_Discriminant (R);
+ while Present (Comp) loop
+
+ -- Ignore error of attribute name for component name (we
+ -- already gave an error message for this, so no need to
+ -- complain here)
+
+ if Nkind (Component_Name (CC)) = N_Attribute_Reference then
+ null;
+ else
+ exit when Chars (Comp) = Chars (Component_Name (CC));
+ end if;
+
+ Next_Component_Or_Discriminant (Comp);
+ end loop;
+ end Search_Component;
+
+ -- Start of processing for Find_Component
+
+ begin
+ -- Return with Comp set to Empty if we have a pragma
+
+ if Nkind (CC) = N_Pragma then
+ Comp := Empty;
+ return;
+ end if;
+
+ -- Search current record for matching component
+
+ Search_Component (Rectype);
+
+ -- If not found, maybe component of base type discriminant that is
+ -- absent from statically constrained first subtype.
+
+ if No (Comp) then
+ Search_Component (Base_Type (Rectype));
+ end if;
+
+ -- If no component, or the component does not reference the component
+ -- clause in question, then there was some previous error for which
+ -- we already gave a message, so just return with Comp Empty.
+
+ if No (Comp) or else Component_Clause (Comp) /= CC then
+ Check_Error_Detected;
+ Comp := Empty;
+
+ -- Normal case where we have a component clause
+
+ else
+ Fbit := Component_Bit_Offset (Comp);
+ Lbit := Fbit + Esize (Comp) - 1;
+ end if;
+ end Find_Component;
+
+ -- Start of processing for Check_Record_Representation_Clause
+
+ begin
+ Find_Type (Ident);
+ Rectype := Entity (Ident);
+
+ if Rectype = Any_Type then
+ return;
+ else
+ Rectype := Underlying_Type (Rectype);
+ end if;
+
+ -- See if we have a fully repped derived tagged type
+
+ declare
+ PS : constant Entity_Id := Parent_Subtype (Rectype);
+
+ begin
+ if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
+ Tagged_Parent := PS;
+
+ -- Find maximum bit of any component of the parent type
+
+ Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
+ Pcomp := First_Entity (Tagged_Parent);
+ while Present (Pcomp) loop
+ if Ekind_In (Pcomp, E_Discriminant, E_Component) then
+ if Component_Bit_Offset (Pcomp) /= No_Uint
+ and then Known_Static_Esize (Pcomp)
+ then
+ Parent_Last_Bit :=
+ UI_Max
+ (Parent_Last_Bit,
+ Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
+ end if;
+
+ Next_Entity (Pcomp);
+ end if;
+ end loop;
+ end if;
+ end;
+
+ -- All done if no component clauses
+
+ CC := First (Component_Clauses (N));
+
+ if No (CC) then
+ return;
+ end if;
+
+ -- If a tag is present, then create a component clause that places it
+ -- at the start of the record (otherwise gigi may place it after other
+ -- fields that have rep clauses).
+
+ Fent := First_Entity (Rectype);
+
+ if Nkind (Fent) = N_Defining_Identifier
+ and then Chars (Fent) = Name_uTag
+ then
+ Set_Component_Bit_Offset (Fent, Uint_0);
+ Set_Normalized_Position (Fent, Uint_0);
+ Set_Normalized_First_Bit (Fent, Uint_0);
+ Set_Normalized_Position_Max (Fent, Uint_0);
+ Init_Esize (Fent, System_Address_Size);
+
+ Set_Component_Clause (Fent,
+ Make_Component_Clause (Loc,
+ Component_Name => Make_Identifier (Loc, Name_uTag),
+
+ Position => Make_Integer_Literal (Loc, Uint_0),
+ First_Bit => Make_Integer_Literal (Loc, Uint_0),
+ Last_Bit =>
+ Make_Integer_Literal (Loc,
+ UI_From_Int (System_Address_Size))));
+
+ Ccount := Ccount + 1;
+ end if;
+
+ Max_Bit_So_Far := Uint_Minus_1;
+ Overlap_Check_Required := False;
+
+ -- Process the component clauses
+
+ while Present (CC) loop
+ Find_Component;
+
+ if Present (Comp) then
+ Ccount := Ccount + 1;
+
+ -- We need a full overlap check if record positions non-monotonic
+
+ if Fbit <= Max_Bit_So_Far then
+ Overlap_Check_Required := True;
+ end if;
+
+ Max_Bit_So_Far := Lbit;
+
+ -- Check bit position out of range of specified size
+
+ if Has_Size_Clause (Rectype)
+ and then RM_Size (Rectype) <= Lbit
+ then
+ Error_Msg_N
+ ("bit number out of range of specified size",
+ Last_Bit (CC));
+
+ -- Check for overlap with tag component
+
+ else
+ if Is_Tagged_Type (Rectype)
+ and then Fbit < System_Address_Size
+ then
+ Error_Msg_NE
+ ("component overlaps tag field of&",
+ Component_Name (CC), Rectype);
+ Overlap_Detected := True;
+ end if;
+
+ if Hbit < Lbit then
+ Hbit := Lbit;
+ end if;
+ end if;
+
+ -- Check parent overlap if component might overlap parent field
+
+ if Present (Tagged_Parent) and then Fbit <= Parent_Last_Bit then
+ Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
+ while Present (Pcomp) loop
+ if not Is_Tag (Pcomp)
+ and then Chars (Pcomp) /= Name_uParent
+ then
+ Check_Component_Overlap (Comp, Pcomp);
+ end if;
+
+ Next_Component_Or_Discriminant (Pcomp);
+ end loop;
+ end if;
+ end if;
+
+ Next (CC);
+ end loop;
+
+ -- Now that we have processed all the component clauses, check for
+ -- overlap. We have to leave this till last, since the components can
+ -- appear in any arbitrary order in the representation clause.
+
+ -- We do not need this check if all specified ranges were monotonic,
+ -- as recorded by Overlap_Check_Required being False at this stage.
+
+ -- This first section checks if there are any overlapping entries at
+ -- all. It does this by sorting all entries and then seeing if there are
+ -- any overlaps. If there are none, then that is decisive, but if there
+ -- are overlaps, they may still be OK (they may result from fields in
+ -- different variants).
+
+ if Overlap_Check_Required then
+ Overlap_Check1 : declare
+
+ OC_Fbit : array (0 .. Ccount) of Uint;
+ -- First-bit values for component clauses, the value is the offset
+ -- of the first bit of the field from start of record. The zero
+ -- entry is for use in sorting.
+
+ OC_Lbit : array (0 .. Ccount) of Uint;
+ -- Last-bit values for component clauses, the value is the offset
+ -- of the last bit of the field from start of record. The zero
+ -- entry is for use in sorting.
+
+ OC_Count : Natural := 0;
+ -- Count of entries in OC_Fbit and OC_Lbit
+
+ function OC_Lt (Op1, Op2 : Natural) return Boolean;
+ -- Compare routine for Sort
+
+ procedure OC_Move (From : Natural; To : Natural);
+ -- Move routine for Sort
+
+ package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
+
+ -----------
+ -- OC_Lt --
+ -----------
+
+ function OC_Lt (Op1, Op2 : Natural) return Boolean is
+ begin
+ return OC_Fbit (Op1) < OC_Fbit (Op2);
+ end OC_Lt;
+
+ -------------
+ -- OC_Move --
+ -------------
+
+ procedure OC_Move (From : Natural; To : Natural) is
+ begin
+ OC_Fbit (To) := OC_Fbit (From);
+ OC_Lbit (To) := OC_Lbit (From);
+ end OC_Move;
+
+ -- Start of processing for Overlap_Check
+
+ begin
+ CC := First (Component_Clauses (N));
+ while Present (CC) loop
+
+ -- Exclude component clause already marked in error
+
+ if not Error_Posted (CC) then
+ Find_Component;
+
+ if Present (Comp) then
+ OC_Count := OC_Count + 1;
+ OC_Fbit (OC_Count) := Fbit;
+ OC_Lbit (OC_Count) := Lbit;
+ end if;
+ end if;
+
+ Next (CC);
+ end loop;
+
+ Sorting.Sort (OC_Count);
+
+ Overlap_Check_Required := False;
+ for J in 1 .. OC_Count - 1 loop
+ if OC_Lbit (J) >= OC_Fbit (J + 1) then
+ Overlap_Check_Required := True;
+ exit;
+ end if;
+ end loop;
+ end Overlap_Check1;
+ end if;
+
+ -- If Overlap_Check_Required is still True, then we have to do the full
+ -- scale overlap check, since we have at least two fields that do
+ -- overlap, and we need to know if that is OK since they are in
+ -- different variant, or whether we have a definite problem.
+
+ if Overlap_Check_Required then
+ Overlap_Check2 : declare
+ C1_Ent, C2_Ent : Entity_Id;
+ -- Entities of components being checked for overlap
+
+ Clist : Node_Id;
+ -- Component_List node whose Component_Items are being checked
+
+ Citem : Node_Id;
+ -- Component declaration for component being checked
+
+ begin
+ C1_Ent := First_Entity (Base_Type (Rectype));
+
+ -- Loop through all components in record. For each component check
+ -- for overlap with any of the preceding elements on the component
+ -- list containing the component and also, if the component is in
+ -- a variant, check against components outside the case structure.
+ -- This latter test is repeated recursively up the variant tree.
+
+ Main_Component_Loop : while Present (C1_Ent) loop
+ if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
+ goto Continue_Main_Component_Loop;
+ end if;
+
+ -- Skip overlap check if entity has no declaration node. This
+ -- happens with discriminants in constrained derived types.
+ -- Possibly we are missing some checks as a result, but that
+ -- does not seem terribly serious.
+
+ if No (Declaration_Node (C1_Ent)) then
+ goto Continue_Main_Component_Loop;
+ end if;
+
+ Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
+
+ -- Loop through component lists that need checking. Check the
+ -- current component list and all lists in variants above us.
+
+ Component_List_Loop : loop
+
+ -- If derived type definition, go to full declaration
+ -- If at outer level, check discriminants if there are any.
+
+ if Nkind (Clist) = N_Derived_Type_Definition then
+ Clist := Parent (Clist);
+ end if;
+
+ -- Outer level of record definition, check discriminants
+
+ if Nkind_In (Clist, N_Full_Type_Declaration,
+ N_Private_Type_Declaration)
+ then
+ if Has_Discriminants (Defining_Identifier (Clist)) then
+ C2_Ent :=
+ First_Discriminant (Defining_Identifier (Clist));
+ while Present (C2_Ent) loop
+ exit when C1_Ent = C2_Ent;
+ Check_Component_Overlap (C1_Ent, C2_Ent);
+ Next_Discriminant (C2_Ent);
+ end loop;
+ end if;
+
+ -- Record extension case
+
+ elsif Nkind (Clist) = N_Derived_Type_Definition then
+ Clist := Empty;
+
+ -- Otherwise check one component list
+
+ else
+ Citem := First (Component_Items (Clist));
+ while Present (Citem) loop
+ if Nkind (Citem) = N_Component_Declaration then
+ C2_Ent := Defining_Identifier (Citem);
+ exit when C1_Ent = C2_Ent;
+ Check_Component_Overlap (C1_Ent, C2_Ent);
+ end if;
+
+ Next (Citem);
+ end loop;
+ end if;
+
+ -- Check for variants above us (the parent of the Clist can
+ -- be a variant, in which case its parent is a variant part,
+ -- and the parent of the variant part is a component list
+ -- whose components must all be checked against the current
+ -- component for overlap).
+
+ if Nkind (Parent (Clist)) = N_Variant then
+ Clist := Parent (Parent (Parent (Clist)));
+
+ -- Check for possible discriminant part in record, this
+ -- is treated essentially as another level in the
+ -- recursion. For this case the parent of the component
+ -- list is the record definition, and its parent is the
+ -- full type declaration containing the discriminant
+ -- specifications.
+
+ elsif Nkind (Parent (Clist)) = N_Record_Definition then
+ Clist := Parent (Parent ((Clist)));
+
+ -- If neither of these two cases, we are at the top of
+ -- the tree.
+
+ else
+ exit Component_List_Loop;
+ end if;
+ end loop Component_List_Loop;
+
+ <<Continue_Main_Component_Loop>>
+ Next_Entity (C1_Ent);
+
+ end loop Main_Component_Loop;
+ end Overlap_Check2;
+ end if;
+
+ -- The following circuit deals with warning on record holes (gaps). We
+ -- skip this check if overlap was detected, since it makes sense for the
+ -- programmer to fix this illegality before worrying about warnings.
+
+ if not Overlap_Detected and Warn_On_Record_Holes then
+ Record_Hole_Check : declare
+ Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
+ -- Full declaration of record type
+
+ procedure Check_Component_List
+ (CL : Node_Id;
+ Sbit : Uint;
+ DS : List_Id);
+ -- Check component list CL for holes. The starting bit should be
+ -- Sbit. which is zero for the main record component list and set
+ -- appropriately for recursive calls for variants. DS is set to
+ -- a list of discriminant specifications to be included in the
+ -- consideration of components. It is No_List if none to consider.
+
+ --------------------------
+ -- Check_Component_List --
+ --------------------------
+
+ procedure Check_Component_List
+ (CL : Node_Id;
+ Sbit : Uint;
+ DS : List_Id)
+ is
+ Compl : Integer;
+
+ begin
+ Compl := Integer (List_Length (Component_Items (CL)));
+
+ if DS /= No_List then
+ Compl := Compl + Integer (List_Length (DS));
+ end if;
+
+ declare
+ Comps : array (Natural range 0 .. Compl) of Entity_Id;
+ -- Gather components (zero entry is for sort routine)
+
+ Ncomps : Natural := 0;
+ -- Number of entries stored in Comps (starting at Comps (1))
+
+ Citem : Node_Id;
+ -- One component item or discriminant specification
+
+ Nbit : Uint;
+ -- Starting bit for next component
+
+ CEnt : Entity_Id;
+ -- Component entity
+
+ Variant : Node_Id;
+ -- One variant
+
+ function Lt (Op1, Op2 : Natural) return Boolean;
+ -- Compare routine for Sort
+
+ procedure Move (From : Natural; To : Natural);
+ -- Move routine for Sort
+
+ package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
+
+ --------
+ -- Lt --
+ --------
+
+ function Lt (Op1, Op2 : Natural) return Boolean is
+ begin
+ return Component_Bit_Offset (Comps (Op1))
+ <
+ Component_Bit_Offset (Comps (Op2));
+ end Lt;
+
+ ----------
+ -- Move --
+ ----------
+
+ procedure Move (From : Natural; To : Natural) is
+ begin
+ Comps (To) := Comps (From);
+ end Move;
+
+ begin
+ -- Gather discriminants into Comp
+
+ if DS /= No_List then
+ Citem := First (DS);
+ while Present (Citem) loop
+ if Nkind (Citem) = N_Discriminant_Specification then
+ declare
+ Ent : constant Entity_Id :=
+ Defining_Identifier (Citem);
+ begin
+ if Ekind (Ent) = E_Discriminant then
+ Ncomps := Ncomps + 1;
+ Comps (Ncomps) := Ent;
+ end if;
+ end;
+ end if;
+
+ Next (Citem);
+ end loop;
+ end if;
+
+ -- Gather component entities into Comp
+
+ Citem := First (Component_Items (CL));
+ while Present (Citem) loop
+ if Nkind (Citem) = N_Component_Declaration then
+ Ncomps := Ncomps + 1;
+ Comps (Ncomps) := Defining_Identifier (Citem);
+ end if;
+
+ Next (Citem);
+ end loop;
+
+ -- Now sort the component entities based on the first bit.
+ -- Note we already know there are no overlapping components.
+
+ Sorting.Sort (Ncomps);
+
+ -- Loop through entries checking for holes
+
+ Nbit := Sbit;
+ for J in 1 .. Ncomps loop
+ CEnt := Comps (J);
+ Error_Msg_Uint_1 := Component_Bit_Offset (CEnt) - Nbit;
+
+ if Error_Msg_Uint_1 > 0 then
+ Error_Msg_NE
+ ("?H?^-bit gap before component&",
+ Component_Name (Component_Clause (CEnt)), CEnt);
+ end if;
+
+ Nbit := Component_Bit_Offset (CEnt) + Esize (CEnt);
+ end loop;
+
+ -- Process variant parts recursively if present
+
+ if Present (Variant_Part (CL)) then
+ Variant := First (Variants (Variant_Part (CL)));
+ while Present (Variant) loop
+ Check_Component_List
+ (Component_List (Variant), Nbit, No_List);
+ Next (Variant);
+ end loop;
+ end if;
+ end;
+ end Check_Component_List;
+
+ -- Start of processing for Record_Hole_Check
+
+ begin
+ declare
+ Sbit : Uint;
+
+ begin
+ if Is_Tagged_Type (Rectype) then
+ Sbit := UI_From_Int (System_Address_Size);
+ else
+ Sbit := Uint_0;
+ end if;
+
+ if Nkind (Decl) = N_Full_Type_Declaration
+ and then Nkind (Type_Definition (Decl)) = N_Record_Definition
+ then
+ Check_Component_List
+ (Component_List (Type_Definition (Decl)),
+ Sbit,
+ Discriminant_Specifications (Decl));
+ end if;
+ end;
+ end Record_Hole_Check;
+ end if;
+
+ -- For records that have component clauses for all components, and whose
+ -- size is less than or equal to 32, we need to know the size in the
+ -- front end to activate possible packed array processing where the
+ -- component type is a record.
+
+ -- At this stage Hbit + 1 represents the first unused bit from all the
+ -- component clauses processed, so if the component clauses are
+ -- complete, then this is the length of the record.
+
+ -- For records longer than System.Storage_Unit, and for those where not
+ -- all components have component clauses, the back end determines the
+ -- length (it may for example be appropriate to round up the size
+ -- to some convenient boundary, based on alignment considerations, etc).
+
+ if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
+
+ -- Nothing to do if at least one component has no component clause
+
+ Comp := First_Component_Or_Discriminant (Rectype);
+ while Present (Comp) loop
+ exit when No (Component_Clause (Comp));
+ Next_Component_Or_Discriminant (Comp);
+ end loop;
+
+ -- If we fall out of loop, all components have component clauses
+ -- and so we can set the size to the maximum value.
+
+ if No (Comp) then
+ Set_RM_Size (Rectype, Hbit + 1);
+ end if;
+ end if;
+ end Check_Record_Representation_Clause;
+
+ ----------------
+ -- Check_Size --
+ ----------------
+
+ procedure Check_Size
+ (N : Node_Id;
+ T : Entity_Id;
+ Siz : Uint;
+ Biased : out Boolean)
+ is
+ UT : constant Entity_Id := Underlying_Type (T);
+ M : Uint;
+
+ begin
+ Biased := False;
+
+ -- Reject patently improper size values.
+
+ if Is_Elementary_Type (T)
+ and then Siz > UI_From_Int (Int'Last)
+ then
+ Error_Msg_N ("Size value too large for elementary type", N);
+
+ if Nkind (Original_Node (N)) = N_Op_Expon then
+ Error_Msg_N
+ ("\maybe '* was meant, rather than '*'*", Original_Node (N));
+ end if;
+ end if;
+
+ -- Dismiss generic types
+
+ if Is_Generic_Type (T)
+ or else
+ Is_Generic_Type (UT)
+ or else
+ Is_Generic_Type (Root_Type (UT))
+ then
+ return;
+
+ -- Guard against previous errors
+
+ elsif No (UT) or else UT = Any_Type then
+ Check_Error_Detected;
+ return;
+
+ -- Check case of bit packed array
+
+ elsif Is_Array_Type (UT)
+ and then Known_Static_Component_Size (UT)
+ and then Is_Bit_Packed_Array (UT)
+ then
+ declare
+ Asiz : Uint;
+ Indx : Node_Id;
+ Ityp : Entity_Id;
+
+ begin
+ Asiz := Component_Size (UT);
+ Indx := First_Index (UT);
+ loop
+ Ityp := Etype (Indx);
+
+ -- If non-static bound, then we are not in the business of
+ -- trying to check the length, and indeed an error will be
+ -- issued elsewhere, since sizes of non-static array types
+ -- cannot be set implicitly or explicitly.
+
+ if not Is_Static_Subtype (Ityp) then
+ return;
+ end if;
+
+ -- Otherwise accumulate next dimension
+
+ Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
+ Expr_Value (Type_Low_Bound (Ityp)) +
+ Uint_1);
+
+ Next_Index (Indx);
+ exit when No (Indx);
+ end loop;
+
+ if Asiz <= Siz then
+ return;
+
+ else
+ Error_Msg_Uint_1 := Asiz;
+ Error_Msg_NE
+ ("size for& too small, minimum allowed is ^", N, T);
+ Set_Esize (T, Asiz);
+ Set_RM_Size (T, Asiz);
+ end if;
+ end;
+
+ -- All other composite types are ignored
+
+ elsif Is_Composite_Type (UT) then
+ return;
+
+ -- For fixed-point types, don't check minimum if type is not frozen,
+ -- since we don't know all the characteristics of the type that can
+ -- affect the size (e.g. a specified small) till freeze time.
+
+ elsif Is_Fixed_Point_Type (UT)
+ and then not Is_Frozen (UT)
+ then
+ null;
+
+ -- Cases for which a minimum check is required
+
+ else
+ -- Ignore if specified size is correct for the type
+
+ if Known_Esize (UT) and then Siz = Esize (UT) then
+ return;
+ end if;
+
+ -- Otherwise get minimum size
+
+ M := UI_From_Int (Minimum_Size (UT));
+
+ if Siz < M then
+
+ -- Size is less than minimum size, but one possibility remains
+ -- that we can manage with the new size if we bias the type.
+
+ M := UI_From_Int (Minimum_Size (UT, Biased => True));
+
+ if Siz < M then
+ Error_Msg_Uint_1 := M;
+ Error_Msg_NE
+ ("size for& too small, minimum allowed is ^", N, T);
+ Set_Esize (T, M);
+ Set_RM_Size (T, M);
+ else
+ Biased := True;
+ end if;
+ end if;
+ end if;
+ end Check_Size;
+
+ --------------------------
+ -- Freeze_Entity_Checks --
+ --------------------------
+
+ procedure Freeze_Entity_Checks (N : Node_Id) is
+ E : constant Entity_Id := Entity (N);
+
+ Non_Generic_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
+ -- True in non-generic case. Some of the processing here is skipped
+ -- for the generic case since it is not needed. Basically in the
+ -- generic case, we only need to do stuff that might generate error
+ -- messages or warnings.
+ begin
+ -- Remember that we are processing a freezing entity. Required to
+ -- ensure correct decoration of internal entities associated with
+ -- interfaces (see New_Overloaded_Entity).
+
+ Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
+
+ -- For tagged types covering interfaces add internal entities that link
+ -- the primitives of the interfaces with the primitives that cover them.
+ -- Note: These entities were originally generated only when generating
+ -- code because their main purpose was to provide support to initialize
+ -- the secondary dispatch tables. They are now generated also when
+ -- compiling with no code generation to provide ASIS the relationship
+ -- between interface primitives and tagged type primitives. They are
+ -- also used to locate primitives covering interfaces when processing
+ -- generics (see Derive_Subprograms).
+
+ -- This is not needed in the generic case
+
+ if Ada_Version >= Ada_2005
+ and then Non_Generic_Case
+ and then Ekind (E) = E_Record_Type
+ and then Is_Tagged_Type (E)
+ and then not Is_Interface (E)
+ and then Has_Interfaces (E)
+ then
+ -- This would be a good common place to call the routine that checks
+ -- overriding of interface primitives (and thus factorize calls to
+ -- Check_Abstract_Overriding located at different contexts in the
+ -- compiler). However, this is not possible because it causes
+ -- spurious errors in case of late overriding.
+
+ Add_Internal_Interface_Entities (E);
+ end if;
+
+ -- Check CPP types
+
+ if Ekind (E) = E_Record_Type
+ and then Is_CPP_Class (E)
+ and then Is_Tagged_Type (E)
+ and then Tagged_Type_Expansion
+ then
+ if CPP_Num_Prims (E) = 0 then
+
+ -- If the CPP type has user defined components then it must import
+ -- primitives from C++. This is required because if the C++ class
+ -- has no primitives then the C++ compiler does not added the _tag
+ -- component to the type.
+
+ if First_Entity (E) /= Last_Entity (E) then
+ Error_Msg_N
+ ("'C'P'P type must import at least one primitive from C++??",
+ E);
+ end if;
+ end if;
+
+ -- Check that all its primitives are abstract or imported from C++.
+ -- Check also availability of the C++ constructor.
+
+ declare
+ Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
+ Elmt : Elmt_Id;
+ Error_Reported : Boolean := False;
+ Prim : Node_Id;
+
+ begin
+ Elmt := First_Elmt (Primitive_Operations (E));
+ while Present (Elmt) loop
+ Prim := Node (Elmt);
+
+ if Comes_From_Source (Prim) then
+ if Is_Abstract_Subprogram (Prim) then
+ null;
+
+ elsif not Is_Imported (Prim)
+ or else Convention (Prim) /= Convention_CPP
+ then
+ Error_Msg_N
+ ("primitives of 'C'P'P types must be imported from C++ "
+ & "or abstract??", Prim);
+
+ elsif not Has_Constructors
+ and then not Error_Reported
+ then
+ Error_Msg_Name_1 := Chars (E);
+ Error_Msg_N
+ ("??'C'P'P constructor required for type %", Prim);
+ Error_Reported := True;
+ end if;
+ end if;
+
+ Next_Elmt (Elmt);
+ end loop;
+ end;
+ end if;
+
+ -- Check Ada derivation of CPP type
+
+ if Expander_Active -- why? losing errors in -gnatc mode???
+ and then Tagged_Type_Expansion
+ and then Ekind (E) = E_Record_Type
+ and then Etype (E) /= E
+ and then Is_CPP_Class (Etype (E))
+ and then CPP_Num_Prims (Etype (E)) > 0
+ and then not Is_CPP_Class (E)
+ and then not Has_CPP_Constructors (Etype (E))
+ then
+ -- If the parent has C++ primitives but it has no constructor then
+ -- check that all the primitives are overridden in this derivation;
+ -- otherwise the constructor of the parent is needed to build the
+ -- dispatch table.
+
+ declare
+ Elmt : Elmt_Id;
+ Prim : Node_Id;
+
+ begin
+ Elmt := First_Elmt (Primitive_Operations (E));
+ while Present (Elmt) loop
+ Prim := Node (Elmt);
+
+ if not Is_Abstract_Subprogram (Prim)
+ and then No (Interface_Alias (Prim))
+ and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
+ then
+ Error_Msg_Name_1 := Chars (Etype (E));
+ Error_Msg_N
+ ("'C'P'P constructor required for parent type %", E);
+ exit;
+ end if;
+
+ Next_Elmt (Elmt);
+ end loop;
+ end;
+ end if;
+
+ Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
+
+ -- If we have a type with predicates, build predicate function. This
+ -- is not needed in the generic case, and is not needed within TSS
+ -- subprograms and other predefined primitives.
+
+ if Non_Generic_Case
+ and then Is_Type (E)
+ and then Has_Predicates (E)
+ and then not Within_Internal_Subprogram
+ then
+ Build_Predicate_Functions (E, N);
+ end if;
+
+ -- If type has delayed aspects, this is where we do the preanalysis at
+ -- the freeze point, as part of the consistent visibility check. Note
+ -- that this must be done after calling Build_Predicate_Functions or
+ -- Build_Invariant_Procedure since these subprograms fix occurrences of
+ -- the subtype name in the saved expression so that they will not cause
+ -- trouble in the preanalysis.
+
+ -- This is also not needed in the generic case
+
+ if Non_Generic_Case
+ and then Has_Delayed_Aspects (E)
+ and then Scope (E) = Current_Scope
+ then
+ -- Retrieve the visibility to the discriminants in order to properly
+ -- analyze the aspects.
+
+ Push_Scope_And_Install_Discriminants (E);
+
+ declare
+ Ritem : Node_Id;
+
+ begin
+ -- Look for aspect specification entries for this entity
+
+ Ritem := First_Rep_Item (E);
+ while Present (Ritem) loop
+ if Nkind (Ritem) = N_Aspect_Specification
+ and then Entity (Ritem) = E
+ and then Is_Delayed_Aspect (Ritem)
+ then
+ Check_Aspect_At_Freeze_Point (Ritem);
+ end if;
+
+ Next_Rep_Item (Ritem);
+ end loop;
+ end;
+
+ Uninstall_Discriminants_And_Pop_Scope (E);
+ end if;
+
+ -- For a record type, deal with variant parts. This has to be delayed
+ -- to this point, because of the issue of statically precicated
+ -- subtypes, which we have to ensure are frozen before checking
+ -- choices, since we need to have the static choice list set.
+
+ if Is_Record_Type (E) then
+ Check_Variant_Part : declare
+ D : constant Node_Id := Declaration_Node (E);
+ T : Node_Id;
+ C : Node_Id;
+ VP : Node_Id;
+
+ Others_Present : Boolean;
+ pragma Warnings (Off, Others_Present);
+ -- Indicates others present, not used in this case
+
+ procedure Non_Static_Choice_Error (Choice : Node_Id);
+ -- Error routine invoked by the generic instantiation below when
+ -- the variant part has a non static choice.
+
+ procedure Process_Declarations (Variant : Node_Id);
+ -- Processes declarations associated with a variant. We analyzed
+ -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
+ -- but we still need the recursive call to Check_Choices for any
+ -- nested variant to get its choices properly processed. This is
+ -- also where we expand out the choices if expansion is active.
+
+ package Variant_Choices_Processing is new
+ Generic_Check_Choices
+ (Process_Empty_Choice => No_OP,
+ Process_Non_Static_Choice => Non_Static_Choice_Error,
+ Process_Associated_Node => Process_Declarations);
+ use Variant_Choices_Processing;
+
+ -----------------------------
+ -- Non_Static_Choice_Error --
+ -----------------------------
+
+ procedure Non_Static_Choice_Error (Choice : Node_Id) is
+ begin
+ Flag_Non_Static_Expr
+ ("choice given in variant part is not static!", Choice);
+ end Non_Static_Choice_Error;
+
+ --------------------------
+ -- Process_Declarations --
+ --------------------------
+
+ procedure Process_Declarations (Variant : Node_Id) is
+ CL : constant Node_Id := Component_List (Variant);
+ VP : Node_Id;
+
+ begin
+ -- Check for static predicate present in this variant
+
+ if Has_SP_Choice (Variant) then
+
+ -- Here we expand. You might expect to find this call in
+ -- Expand_N_Variant_Part, but that is called when we first
+ -- see the variant part, and we cannot do this expansion
+ -- earlier than the freeze point, since for statically
+ -- predicated subtypes, the predicate is not known till
+ -- the freeze point.
+
+ -- Furthermore, we do this expansion even if the expander
+ -- is not active, because other semantic processing, e.g.
+ -- for aggregates, requires the expanded list of choices.
+
+ -- If the expander is not active, then we can't just clobber
+ -- the list since it would invalidate the ASIS -gnatct tree.
+ -- So we have to rewrite the variant part with a Rewrite
+ -- call that replaces it with a copy and clobber the copy.
+
+ if not Expander_Active then
+ declare
+ NewV : constant Node_Id := New_Copy (Variant);
+ begin
+ Set_Discrete_Choices
+ (NewV, New_Copy_List (Discrete_Choices (Variant)));
+ Rewrite (Variant, NewV);
+ end;
+ end if;
+
+ Expand_Static_Predicates_In_Choices (Variant);
+ end if;
+
+ -- We don't need to worry about the declarations in the variant
+ -- (since they were analyzed by Analyze_Choices when we first
+ -- encountered the variant), but we do need to take care of
+ -- expansion of any nested variants.
+
+ if not Null_Present (CL) then
+ VP := Variant_Part (CL);
+
+ if Present (VP) then
+ Check_Choices
+ (VP, Variants (VP), Etype (Name (VP)), Others_Present);
+ end if;
+ end if;
+ end Process_Declarations;
+
+ -- Start of processing for Check_Variant_Part
+
+ begin
+ -- Find component list
+
+ C := Empty;
+
+ if Nkind (D) = N_Full_Type_Declaration then
+ T := Type_Definition (D);
+
+ if Nkind (T) = N_Record_Definition then
+ C := Component_List (T);
+
+ elsif Nkind (T) = N_Derived_Type_Definition
+ and then Present (Record_Extension_Part (T))
+ then
+ C := Component_List (Record_Extension_Part (T));
+ end if;
+ end if;
+
+ -- Case of variant part present
+
+ if Present (C) and then Present (Variant_Part (C)) then
+ VP := Variant_Part (C);
+
+ -- Check choices
+
+ Check_Choices
+ (VP, Variants (VP), Etype (Name (VP)), Others_Present);
+
+ -- If the last variant does not contain the Others choice,
+ -- replace it with an N_Others_Choice node since Gigi always
+ -- wants an Others. Note that we do not bother to call Analyze
+ -- on the modified variant part, since its only effect would be
+ -- to compute the Others_Discrete_Choices node laboriously, and
+ -- of course we already know the list of choices corresponding
+ -- to the others choice (it's the list we're replacing).
+
+ -- We only want to do this if the expander is active, since
+ -- we do not want to clobber the ASIS tree.
+
+ if Expander_Active then
+ declare
+ Last_Var : constant Node_Id :=
+ Last_Non_Pragma (Variants (VP));
+
+ Others_Node : Node_Id;
+
+ begin
+ if Nkind (First (Discrete_Choices (Last_Var))) /=
+ N_Others_Choice
+ then
+ Others_Node := Make_Others_Choice (Sloc (Last_Var));
+ Set_Others_Discrete_Choices
+ (Others_Node, Discrete_Choices (Last_Var));
+ Set_Discrete_Choices
+ (Last_Var, New_List (Others_Node));
+ end if;
+ end;
+ end if;
+ end if;
+ end Check_Variant_Part;
+ end if;
+ end Freeze_Entity_Checks;
+
+ -------------------------
+ -- Get_Alignment_Value --
+ -------------------------
+
+ function Get_Alignment_Value (Expr : Node_Id) return Uint is
+ Align : constant Uint := Static_Integer (Expr);
+
+ begin
+ if Align = No_Uint then
+ return No_Uint;
+
+ elsif Align <= 0 then
+ Error_Msg_N ("alignment value must be positive", Expr);
+ return No_Uint;
+
+ else
+ for J in Int range 0 .. 64 loop
+ declare
+ M : constant Uint := Uint_2 ** J;
+
+ begin
+ exit when M = Align;
+
+ if M > Align then
+ Error_Msg_N
+ ("alignment value must be power of 2", Expr);
+ return No_Uint;
+ end if;
+ end;
+ end loop;
+
+ return Align;
+ end if;
+ end Get_Alignment_Value;
+
+ -------------------------------------
+ -- Inherit_Aspects_At_Freeze_Point --
+ -------------------------------------
+
+ procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
+ function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
+ (Rep_Item : Node_Id) return Boolean;
+ -- This routine checks if Rep_Item is either a pragma or an aspect
+ -- specification node whose correponding pragma (if any) is present in
+ -- the Rep Item chain of the entity it has been specified to.
+
+ --------------------------------------------------
+ -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
+ --------------------------------------------------
+
+ function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
+ (Rep_Item : Node_Id) return Boolean
+ is
+ begin
+ return Nkind (Rep_Item) = N_Pragma
+ or else Present_In_Rep_Item
+ (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
+ end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
+
+ -- Start of processing for Inherit_Aspects_At_Freeze_Point
+
+ begin
+ -- A representation item is either subtype-specific (Size and Alignment
+ -- clauses) or type-related (all others). Subtype-specific aspects may
+ -- differ for different subtypes of the same type (RM 13.1.8).
+
+ -- A derived type inherits each type-related representation aspect of
+ -- its parent type that was directly specified before the declaration of
+ -- the derived type (RM 13.1.15).
+
+ -- A derived subtype inherits each subtype-specific representation
+ -- aspect of its parent subtype that was directly specified before the
+ -- declaration of the derived type (RM 13.1.15).
+
+ -- The general processing involves inheriting a representation aspect
+ -- from a parent type whenever the first rep item (aspect specification,
+ -- attribute definition clause, pragma) corresponding to the given
+ -- representation aspect in the rep item chain of Typ, if any, isn't
+ -- directly specified to Typ but to one of its parents.
+
+ -- ??? Note that, for now, just a limited number of representation
+ -- aspects have been inherited here so far. Many of them are
+ -- still inherited in Sem_Ch3. This will be fixed soon. Here is
+ -- a non- exhaustive list of aspects that likely also need to
+ -- be moved to this routine: Alignment, Component_Alignment,
+ -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
+ -- Preelaborable_Initialization, RM_Size and Small.
+
+ if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
+ return;
+ end if;
+
+ -- Ada_05/Ada_2005
+
+ if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
+ and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
+ and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
+ (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
+ then
+ Set_Is_Ada_2005_Only (Typ);
+ end if;
+
+ -- Ada_12/Ada_2012
+
+ if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
+ and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
+ and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
+ (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
+ then
+ Set_Is_Ada_2012_Only (Typ);
+ end if;
+
+ -- Atomic/Shared
+
+ if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
+ and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
+ and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
+ (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
+ then
+ Set_Is_Atomic (Typ);
+ Set_Treat_As_Volatile (Typ);
+ Set_Is_Volatile (Typ);
+ end if;
+
+ -- Default_Component_Value
+
+ if Is_Array_Type (Typ)
+ and then Is_Base_Type (Typ)
+ and then Has_Rep_Item (Typ, Name_Default_Component_Value, False)
+ and then Has_Rep_Item (Typ, Name_Default_Component_Value)
+ then
+ Set_Default_Aspect_Component_Value (Typ,
+ Default_Aspect_Component_Value
+ (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
+ end if;
+
+ -- Default_Value
+
+ if Is_Scalar_Type (Typ)
+ and then Is_Base_Type (Typ)
+ and then Has_Rep_Item (Typ, Name_Default_Value, False)
+ and then Has_Rep_Item (Typ, Name_Default_Value)
+ then
+ Set_Default_Aspect_Value (Typ,
+ Default_Aspect_Value
+ (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
+ end if;
+
+ -- Discard_Names
+
+ if not Has_Rep_Item (Typ, Name_Discard_Names, False)
+ and then Has_Rep_Item (Typ, Name_Discard_Names)
+ and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
+ (Get_Rep_Item (Typ, Name_Discard_Names))
+ then
+ Set_Discard_Names (Typ);
+ end if;
+
+ -- Invariants
+
+ if not Has_Rep_Item (Typ, Name_Invariant, False)
+ and then Has_Rep_Item (Typ, Name_Invariant)
+ and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
+ (Get_Rep_Item (Typ, Name_Invariant))
+ then
+ Set_Has_Invariants (Typ);
+
+ if Class_Present (Get_Rep_Item (Typ, Name_Invariant)) then
+ Set_Has_Inheritable_Invariants (Typ);
+ end if;
+ end if;
+
+ -- Volatile
+
+ if not Has_Rep_Item (Typ, Name_Volatile, False)
+ and then Has_Rep_Item (Typ, Name_Volatile)
+ and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
+ (Get_Rep_Item (Typ, Name_Volatile))
+ then
+ Set_Treat_As_Volatile (Typ);
+ Set_Is_Volatile (Typ);
+ end if;
+
+ -- Inheritance for derived types only
+
+ if Is_Derived_Type (Typ) then
+ declare
+ Bas_Typ : constant Entity_Id := Base_Type (Typ);
+ Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
+
+ begin
+ -- Atomic_Components
+
+ if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
+ and then Has_Rep_Item (Typ, Name_Atomic_Components)
+ and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
+ (Get_Rep_Item (Typ, Name_Atomic_Components))
+ then
+ Set_Has_Atomic_Components (Imp_Bas_Typ);
+ end if;
+
+ -- Volatile_Components
+
+ if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
+ and then Has_Rep_Item (Typ, Name_Volatile_Components)
+ and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
+ (Get_Rep_Item (Typ, Name_Volatile_Components))
+ then
+ Set_Has_Volatile_Components (Imp_Bas_Typ);
+ end if;
+
+ -- Finalize_Storage_Only.
+
+ if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
+ and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
+ then
+ Set_Finalize_Storage_Only (Bas_Typ);
+ end if;
+
+ -- Universal_Aliasing
+
+ if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
+ and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
+ and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
+ (Get_Rep_Item (Typ, Name_Universal_Aliasing))
+ then
+ Set_Universal_Aliasing (Imp_Bas_Typ);
+ end if;
+
+ -- Record type specific aspects
+
+ if Is_Record_Type (Typ) then
+
+ -- Bit_Order
+
+ if not Has_Rep_Item (Typ, Name_Bit_Order, False)
+ and then Has_Rep_Item (Typ, Name_Bit_Order)
+ then
+ Set_Reverse_Bit_Order (Bas_Typ,
+ Reverse_Bit_Order (Entity (Name
+ (Get_Rep_Item (Typ, Name_Bit_Order)))));
+ end if;
+
+ -- Scalar_Storage_Order
+
+ if not Has_Rep_Item (Typ, Name_Scalar_Storage_Order, False)
+ and then Has_Rep_Item (Typ, Name_Scalar_Storage_Order)
+ then
+ Set_Reverse_Storage_Order (Bas_Typ,
+ Reverse_Storage_Order (Entity (Name
+ (Get_Rep_Item (Typ, Name_Scalar_Storage_Order)))));
+ end if;
+ end if;
+ end;
+ end if;
+ end Inherit_Aspects_At_Freeze_Point;
+
+ ----------------
+ -- Initialize --
+ ----------------
+
+ procedure Initialize is
+ begin
+ Address_Clause_Checks.Init;
+ Independence_Checks.Init;
+ Unchecked_Conversions.Init;
+ end Initialize;
+
+ -------------------------
+ -- Is_Operational_Item --
+ -------------------------
+
+ function Is_Operational_Item (N : Node_Id) return Boolean is
+ begin
+ if Nkind (N) /= N_Attribute_Definition_Clause then
+ return False;
+
+ else
+ declare
+ Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
+ begin
+ return Id = Attribute_Input
+ or else Id = Attribute_Output
+ or else Id = Attribute_Read
+ or else Id = Attribute_Write
+ or else Id = Attribute_External_Tag;
+ end;
+ end if;
+ end Is_Operational_Item;
+
+ ------------------
+ -- Minimum_Size --
+ ------------------
+
+ function Minimum_Size
+ (T : Entity_Id;
+ Biased : Boolean := False) return Nat
+ is
+ Lo : Uint := No_Uint;
+ Hi : Uint := No_Uint;
+ LoR : Ureal := No_Ureal;
+ HiR : Ureal := No_Ureal;
+ LoSet : Boolean := False;
+ HiSet : Boolean := False;
+ B : Uint;
+ S : Nat;
+ Ancest : Entity_Id;
+ R_Typ : constant Entity_Id := Root_Type (T);
+
+ begin
+ -- If bad type, return 0
+
+ if T = Any_Type then
+ return 0;
+
+ -- For generic types, just return zero. There cannot be any legitimate
+ -- need to know such a size, but this routine may be called with a
+ -- generic type as part of normal processing.
+
+ elsif Is_Generic_Type (R_Typ)
+ or else R_Typ = Any_Type
+ then
+ return 0;
+
+ -- Access types. Normally an access type cannot have a size smaller
+ -- than the size of System.Address. The exception is on VMS, where
+ -- we have short and long addresses, and it is possible for an access
+ -- type to have a short address size (and thus be less than the size
+ -- of System.Address itself). We simply skip the check for VMS, and
+ -- leave it to the back end to do the check.
+
+ elsif Is_Access_Type (T) then
+ if OpenVMS_On_Target then
+ return 0;
+ else
+ return System_Address_Size;
+ end if;
+
+ -- Floating-point types
+
+ elsif Is_Floating_Point_Type (T) then
+ return UI_To_Int (Esize (R_Typ));
+
+ -- Discrete types
+
+ elsif Is_Discrete_Type (T) then
+
+ -- The following loop is looking for the nearest compile time known
+ -- bounds following the ancestor subtype chain. The idea is to find
+ -- the most restrictive known bounds information.
+
+ Ancest := T;
+ loop
+ if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
+ return 0;
+ end if;
+
+ if not LoSet then
+ if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
+ Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
+ LoSet := True;
+ exit when HiSet;
+ end if;
+ end if;
+
+ if not HiSet then
+ if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
+ Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
+ HiSet := True;
+ exit when LoSet;
+ end if;
+ end if;
+
+ Ancest := Ancestor_Subtype (Ancest);
+
+ if No (Ancest) then
+ Ancest := Base_Type (T);
+
+ if Is_Generic_Type (Ancest) then
+ return 0;
+ end if;
+ end if;
+ end loop;
+
+ -- Fixed-point types. We can't simply use Expr_Value to get the
+ -- Corresponding_Integer_Value values of the bounds, since these do not
+ -- get set till the type is frozen, and this routine can be called
+ -- before the type is frozen. Similarly the test for bounds being static
+ -- needs to include the case where we have unanalyzed real literals for
+ -- the same reason.
+
+ elsif Is_Fixed_Point_Type (T) then
+
+ -- The following loop is looking for the nearest compile time known
+ -- bounds following the ancestor subtype chain. The idea is to find
+ -- the most restrictive known bounds information.
+
+ Ancest := T;
+ loop
+ if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
+ return 0;
+ end if;
+
+ -- Note: In the following two tests for LoSet and HiSet, it may
+ -- seem redundant to test for N_Real_Literal here since normally
+ -- one would assume that the test for the value being known at
+ -- compile time includes this case. However, there is a glitch.
+ -- If the real literal comes from folding a non-static expression,
+ -- then we don't consider any non- static expression to be known
+ -- at compile time if we are in configurable run time mode (needed
+ -- in some cases to give a clearer definition of what is and what
+ -- is not accepted). So the test is indeed needed. Without it, we
+ -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
+
+ if not LoSet then
+ if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
+ or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
+ then
+ LoR := Expr_Value_R (Type_Low_Bound (Ancest));
+ LoSet := True;
+ exit when HiSet;
+ end if;
+ end if;
+
+ if not HiSet then
+ if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
+ or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
+ then
+ HiR := Expr_Value_R (Type_High_Bound (Ancest));
+ HiSet := True;
+ exit when LoSet;
+ end if;
+ end if;
+
+ Ancest := Ancestor_Subtype (Ancest);
+
+ if No (Ancest) then
+ Ancest := Base_Type (T);
+
+ if Is_Generic_Type (Ancest) then
+ return 0;
+ end if;
+ end if;
+ end loop;
+
+ Lo := UR_To_Uint (LoR / Small_Value (T));
+ Hi := UR_To_Uint (HiR / Small_Value (T));
+
+ -- No other types allowed
+
+ else
+ raise Program_Error;
+ end if;
+
+ -- Fall through with Hi and Lo set. Deal with biased case
+
+ if (Biased
+ and then not Is_Fixed_Point_Type (T)
+ and then not (Is_Enumeration_Type (T)
+ and then Has_Non_Standard_Rep (T)))
+ or else Has_Biased_Representation (T)
+ then
+ Hi := Hi - Lo;
+ Lo := Uint_0;
+ end if;
+
+ -- Signed case. Note that we consider types like range 1 .. -1 to be
+ -- signed for the purpose of computing the size, since the bounds have
+ -- to be accommodated in the base type.
+
+ if Lo < 0 or else Hi < 0 then
+ S := 1;
+ B := Uint_1;
+
+ -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
+ -- Note that we accommodate the case where the bounds cross. This
+ -- can happen either because of the way the bounds are declared
+ -- or because of the algorithm in Freeze_Fixed_Point_Type.
+
+ while Lo < -B
+ or else Hi < -B
+ or else Lo >= B
+ or else Hi >= B
+ loop
+ B := Uint_2 ** S;
+ S := S + 1;
+ end loop;
+
+ -- Unsigned case
+
+ else
+ -- If both bounds are positive, make sure that both are represen-
+ -- table in the case where the bounds are crossed. This can happen
+ -- either because of the way the bounds are declared, or because of
+ -- the algorithm in Freeze_Fixed_Point_Type.
+
+ if Lo > Hi then
+ Hi := Lo;
+ end if;
+
+ -- S = size, (can accommodate 0 .. (2**size - 1))
+
+ S := 0;
+ while Hi >= Uint_2 ** S loop
+ S := S + 1;
+ end loop;
+ end if;
+
+ return S;
+ end Minimum_Size;
+
+ ---------------------------
+ -- New_Stream_Subprogram --
+ ---------------------------
+
+ procedure New_Stream_Subprogram
+ (N : Node_Id;
+ Ent : Entity_Id;
+ Subp : Entity_Id;
+ Nam : TSS_Name_Type)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
+ Subp_Id : Entity_Id;
+ Subp_Decl : Node_Id;
+ F : Entity_Id;
+ Etyp : Entity_Id;
+
+ Defer_Declaration : constant Boolean :=
+ Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
+ -- For a tagged type, there is a declaration for each stream attribute
+ -- at the freeze point, and we must generate only a completion of this
+ -- declaration. We do the same for private types, because the full view
+ -- might be tagged. Otherwise we generate a declaration at the point of
+ -- the attribute definition clause.
+
+ function Build_Spec return Node_Id;
+ -- Used for declaration and renaming declaration, so that this is
+ -- treated as a renaming_as_body.
+
+ ----------------
+ -- Build_Spec --
+ ----------------
+
+ function Build_Spec return Node_Id is
+ Out_P : constant Boolean := (Nam = TSS_Stream_Read);
+ Formals : List_Id;
+ Spec : Node_Id;
+ T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
+
+ begin
+ Subp_Id := Make_Defining_Identifier (Loc, Sname);
+
+ -- S : access Root_Stream_Type'Class
+
+ Formals := New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_S),
+ Parameter_Type =>
+ Make_Access_Definition (Loc,
+ Subtype_Mark =>
+ New_Occurrence_Of (
+ Designated_Type (Etype (F)), Loc))));
+
+ if Nam = TSS_Stream_Input then
+ Spec :=
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => Subp_Id,
+ Parameter_Specifications => Formals,
+ Result_Definition => T_Ref);
+ else
+ -- V : [out] T
+
+ Append_To (Formals,
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
+ Out_Present => Out_P,
+ Parameter_Type => T_Ref));
+
+ Spec :=
+ Make_Procedure_Specification (Loc,
+ Defining_Unit_Name => Subp_Id,
+ Parameter_Specifications => Formals);
+ end if;
+
+ return Spec;
+ end Build_Spec;
+
+ -- Start of processing for New_Stream_Subprogram
+
+ begin
+ F := First_Formal (Subp);
+
+ if Ekind (Subp) = E_Procedure then
+ Etyp := Etype (Next_Formal (F));
+ else
+ Etyp := Etype (Subp);
+ end if;
+
+ -- Prepare subprogram declaration and insert it as an action on the
+ -- clause node. The visibility for this entity is used to test for
+ -- visibility of the attribute definition clause (in the sense of
+ -- 8.3(23) as amended by AI-195).
+
+ if not Defer_Declaration then
+ Subp_Decl :=
+ Make_Subprogram_Declaration (Loc,
+ Specification => Build_Spec);
+
+ -- For a tagged type, there is always a visible declaration for each
+ -- stream TSS (it is a predefined primitive operation), and the
+ -- completion of this declaration occurs at the freeze point, which is
+ -- not always visible at places where the attribute definition clause is
+ -- visible. So, we create a dummy entity here for the purpose of
+ -- tracking the visibility of the attribute definition clause itself.
+
+ else
+ Subp_Id :=
+ Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
+ Subp_Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Subp_Id,
+ Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
+ end if;
+
+ Insert_Action (N, Subp_Decl);
+ Set_Entity (N, Subp_Id);
+
+ Subp_Decl :=
+ Make_Subprogram_Renaming_Declaration (Loc,
+ Specification => Build_Spec,
+ Name => New_Occurrence_Of (Subp, Loc));
+
+ if Defer_Declaration then
+ Set_TSS (Base_Type (Ent), Subp_Id);
+ else
+ Insert_Action (N, Subp_Decl);
+ Copy_TSS (Subp_Id, Base_Type (Ent));
+ end if;
+ end New_Stream_Subprogram;
+
+ ------------------------
+ -- Rep_Item_Too_Early --
+ ------------------------
+
+ function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
+ begin
+ -- Cannot apply non-operational rep items to generic types
+
+ if Is_Operational_Item (N) then
+ return False;
+
+ elsif Is_Type (T)
+ and then Is_Generic_Type (Root_Type (T))
+ then
+ Error_Msg_N ("representation item not allowed for generic type", N);
+ return True;
+ end if;
+
+ -- Otherwise check for incomplete type
+
+ if Is_Incomplete_Or_Private_Type (T)
+ and then No (Underlying_Type (T))
+ and then
+ (Nkind (N) /= N_Pragma
+ or else Get_Pragma_Id (N) /= Pragma_Import)
+ then
+ Error_Msg_N
+ ("representation item must be after full type declaration", N);
+ return True;
+
+ -- If the type has incomplete components, a representation clause is
+ -- illegal but stream attributes and Convention pragmas are correct.
+
+ elsif Has_Private_Component (T) then
+ if Nkind (N) = N_Pragma then
+ return False;
+
+ else
+ Error_Msg_N
+ ("representation item must appear after type is fully defined",
+ N);
+ return True;
+ end if;
+ else
+ return False;
+ end if;
+ end Rep_Item_Too_Early;
+
+ -----------------------
+ -- Rep_Item_Too_Late --
+ -----------------------
+
+ function Rep_Item_Too_Late
+ (T : Entity_Id;
+ N : Node_Id;
+ FOnly : Boolean := False) return Boolean
+ is
+ S : Entity_Id;
+ Parent_Type : Entity_Id;
+
+ procedure Too_Late;
+ -- Output the too late message. Note that this is not considered a
+ -- serious error, since the effect is simply that we ignore the
+ -- representation clause in this case.
+
+ --------------
+ -- Too_Late --
+ --------------
+
+ procedure Too_Late is
+ begin
+ -- Other compilers seem more relaxed about rep items appearing too
+ -- late. Since analysis tools typically don't care about rep items
+ -- anyway, no reason to be too strict about this.
+
+ if not Relaxed_RM_Semantics then
+ Error_Msg_N ("|representation item appears too late!", N);
+ end if;
+ end Too_Late;
+
+ -- Start of processing for Rep_Item_Too_Late
+
+ begin
+ -- First make sure entity is not frozen (RM 13.1(9))
+
+ if Is_Frozen (T)
+
+ -- Exclude imported types, which may be frozen if they appear in a
+ -- representation clause for a local type.
+
+ and then not From_Limited_With (T)
+
+ -- Exclude generated entities (not coming from source). The common
+ -- case is when we generate a renaming which prematurely freezes the
+ -- renamed internal entity, but we still want to be able to set copies
+ -- of attribute values such as Size/Alignment.
+
+ and then Comes_From_Source (T)
+ then
+ Too_Late;
+ S := First_Subtype (T);
+
+ if Present (Freeze_Node (S)) then
+ Error_Msg_NE
+ ("??no more representation items for }", Freeze_Node (S), S);
+ end if;
+
+ return True;
+
+ -- Check for case of non-tagged derived type whose parent either has
+ -- primitive operations, or is a by reference type (RM 13.1(10)).
+
+ elsif Is_Type (T)
+ and then not FOnly
+ and then Is_Derived_Type (T)
+ and then not Is_Tagged_Type (T)
+ then
+ Parent_Type := Etype (Base_Type (T));
+
+ if Has_Primitive_Operations (Parent_Type) then
+ Too_Late;
+ Error_Msg_NE
+ ("primitive operations already defined for&!", N, Parent_Type);
+ return True;
+
+ elsif Is_By_Reference_Type (Parent_Type) then
+ Too_Late;
+ Error_Msg_NE
+ ("parent type & is a by reference type!", N, Parent_Type);
+ return True;
+ end if;
+ end if;
+
+ -- No error, link item into head of chain of rep items for the entity,
+ -- but avoid chaining if we have an overloadable entity, and the pragma
+ -- is one that can apply to multiple overloaded entities.
+
+ if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
+ declare
+ Pname : constant Name_Id := Pragma_Name (N);
+ begin
+ if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
+ Name_External, Name_Interface)
+ then
+ return False;
+ end if;
+ end;
+ end if;
+
+ Record_Rep_Item (T, N);
+ return False;
+ end Rep_Item_Too_Late;
+
+ -------------------------------------
+ -- Replace_Type_References_Generic --
+ -------------------------------------
+
+ procedure Replace_Type_References_Generic (N : Node_Id; TName : Name_Id) is
+
+ function Replace_Node (N : Node_Id) return Traverse_Result;
+ -- Processes a single node in the traversal procedure below, checking
+ -- if node N should be replaced, and if so, doing the replacement.
+
+ procedure Replace_Type_Refs is new Traverse_Proc (Replace_Node);
+ -- This instantiation provides the body of Replace_Type_References
+
+ ------------------
+ -- Replace_Node --
+ ------------------
+
+ function Replace_Node (N : Node_Id) return Traverse_Result is
+ S : Entity_Id;
+ P : Node_Id;
+
+ begin
+ -- Case of identifier
+
+ if Nkind (N) = N_Identifier then
+
+ -- If not the type name, all done with this node
+
+ if Chars (N) /= TName then
+ return Skip;
+
+ -- Otherwise do the replacement and we are done with this node
+
+ else
+ Replace_Type_Reference (N);
+ return Skip;
+ end if;
+
+ -- Case of selected component (which is what a qualification
+ -- looks like in the unanalyzed tree, which is what we have.
+
+ elsif Nkind (N) = N_Selected_Component then
+
+ -- If selector name is not our type, keeping going (we might
+ -- still have an occurrence of the type in the prefix).
+
+ if Nkind (Selector_Name (N)) /= N_Identifier
+ or else Chars (Selector_Name (N)) /= TName
+ then
+ return OK;
+
+ -- Selector name is our type, check qualification
+
+ else
+ -- Loop through scopes and prefixes, doing comparison
+
+ S := Current_Scope;
+ P := Prefix (N);
+ loop
+ -- Continue if no more scopes or scope with no name
+
+ if No (S) or else Nkind (S) not in N_Has_Chars then
+ return OK;
+ end if;
+
+ -- Do replace if prefix is an identifier matching the
+ -- scope that we are currently looking at.
+
+ if Nkind (P) = N_Identifier
+ and then Chars (P) = Chars (S)
+ then
+ Replace_Type_Reference (N);
+ return Skip;
+ end if;
+
+ -- Go check scope above us if prefix is itself of the
+ -- form of a selected component, whose selector matches
+ -- the scope we are currently looking at.
+
+ if Nkind (P) = N_Selected_Component
+ and then Nkind (Selector_Name (P)) = N_Identifier
+ and then Chars (Selector_Name (P)) = Chars (S)
+ then
+ S := Scope (S);
+ P := Prefix (P);
+
+ -- For anything else, we don't have a match, so keep on
+ -- going, there are still some weird cases where we may
+ -- still have a replacement within the prefix.
+
+ else
+ return OK;
+ end if;
+ end loop;
+ end if;
+
+ -- Continue for any other node kind
+
+ else
+ return OK;
+ end if;
+ end Replace_Node;
+
+ begin
+ Replace_Type_Refs (N);
+ end Replace_Type_References_Generic;
+
+ -------------------------
+ -- Same_Representation --
+ -------------------------
+
+ function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
+ T1 : constant Entity_Id := Underlying_Type (Typ1);
+ T2 : constant Entity_Id := Underlying_Type (Typ2);
+
+ begin
+ -- A quick check, if base types are the same, then we definitely have
+ -- the same representation, because the subtype specific representation
+ -- attributes (Size and Alignment) do not affect representation from
+ -- the point of view of this test.
+
+ if Base_Type (T1) = Base_Type (T2) then
+ return True;
+
+ elsif Is_Private_Type (Base_Type (T2))
+ and then Base_Type (T1) = Full_View (Base_Type (T2))
+ then
+ return True;
+ end if;
+
+ -- Tagged types never have differing representations
+
+ if Is_Tagged_Type (T1) then
+ return True;
+ end if;
+
+ -- Representations are definitely different if conventions differ
+
+ if Convention (T1) /= Convention (T2) then
+ return False;
+ end if;
+
+ -- Representations are different if component alignments or scalar
+ -- storage orders differ.
+
+ if (Is_Record_Type (T1) or else Is_Array_Type (T1))
+ and then
+ (Is_Record_Type (T2) or else Is_Array_Type (T2))
+ and then
+ (Component_Alignment (T1) /= Component_Alignment (T2)
+ or else
+ Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
+ then
+ return False;
+ end if;
+
+ -- For arrays, the only real issue is component size. If we know the
+ -- component size for both arrays, and it is the same, then that's
+ -- good enough to know we don't have a change of representation.
+
+ if Is_Array_Type (T1) then
+ if Known_Component_Size (T1)
+ and then Known_Component_Size (T2)
+ and then Component_Size (T1) = Component_Size (T2)
+ then
+ if VM_Target = No_VM then
+ return True;
+
+ -- In VM targets the representation of arrays with aliased
+ -- components differs from arrays with non-aliased components
+
+ else
+ return Has_Aliased_Components (Base_Type (T1))
+ =
+ Has_Aliased_Components (Base_Type (T2));
+ end if;
+ end if;
+ end if;
+
+ -- Types definitely have same representation if neither has non-standard
+ -- representation since default representations are always consistent.
+ -- If only one has non-standard representation, and the other does not,
+ -- then we consider that they do not have the same representation. They
+ -- might, but there is no way of telling early enough.
+
+ if Has_Non_Standard_Rep (T1) then
+ if not Has_Non_Standard_Rep (T2) then
+ return False;
+ end if;
+ else
+ return not Has_Non_Standard_Rep (T2);
+ end if;
+
+ -- Here the two types both have non-standard representation, and we need
+ -- to determine if they have the same non-standard representation.
+
+ -- For arrays, we simply need to test if the component sizes are the
+ -- same. Pragma Pack is reflected in modified component sizes, so this
+ -- check also deals with pragma Pack.
+
+ if Is_Array_Type (T1) then
+ return Component_Size (T1) = Component_Size (T2);
+
+ -- Tagged types always have the same representation, because it is not
+ -- possible to specify different representations for common fields.
+
+ elsif Is_Tagged_Type (T1) then
+ return True;
+
+ -- Case of record types
+
+ elsif Is_Record_Type (T1) then
+
+ -- Packed status must conform
+
+ if Is_Packed (T1) /= Is_Packed (T2) then
+ return False;
+
+ -- Otherwise we must check components. Typ2 maybe a constrained
+ -- subtype with fewer components, so we compare the components
+ -- of the base types.
+
+ else
+ Record_Case : declare
+ CD1, CD2 : Entity_Id;
+
+ function Same_Rep return Boolean;
+ -- CD1 and CD2 are either components or discriminants. This
+ -- function tests whether they have the same representation.
+
+ --------------
+ -- Same_Rep --
+ --------------
+
+ function Same_Rep return Boolean is
+ begin
+ if No (Component_Clause (CD1)) then
+ return No (Component_Clause (CD2));
+ else
+ -- Note: at this point, component clauses have been
+ -- normalized to the default bit order, so that the
+ -- comparison of Component_Bit_Offsets is meaningful.
+
+ return
+ Present (Component_Clause (CD2))
+ and then
+ Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
+ and then
+ Esize (CD1) = Esize (CD2);
+ end if;
+ end Same_Rep;
+
+ -- Start of processing for Record_Case
+
+ begin
+ if Has_Discriminants (T1) then
+
+ -- The number of discriminants may be different if the
+ -- derived type has fewer (constrained by values). The
+ -- invisible discriminants retain the representation of
+ -- the original, so the discrepancy does not per se
+ -- indicate a different representation.
+
+ CD1 := First_Discriminant (T1);
+ CD2 := First_Discriminant (T2);
+ while Present (CD1) and then Present (CD2) loop
+ if not Same_Rep then
+ return False;
+ else
+ Next_Discriminant (CD1);
+ Next_Discriminant (CD2);
+ end if;
+ end loop;
+ end if;
+
+ CD1 := First_Component (Underlying_Type (Base_Type (T1)));
+ CD2 := First_Component (Underlying_Type (Base_Type (T2)));
+ while Present (CD1) loop
+ if not Same_Rep then
+ return False;
+ else
+ Next_Component (CD1);
+ Next_Component (CD2);
+ end if;
+ end loop;
+
+ return True;
+ end Record_Case;
+ end if;
+
+ -- For enumeration types, we must check each literal to see if the
+ -- representation is the same. Note that we do not permit enumeration
+ -- representation clauses for Character and Wide_Character, so these
+ -- cases were already dealt with.
+
+ elsif Is_Enumeration_Type (T1) then
+ Enumeration_Case : declare
+ L1, L2 : Entity_Id;
+
+ begin
+ L1 := First_Literal (T1);
+ L2 := First_Literal (T2);
+ while Present (L1) loop
+ if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
+ return False;
+ else
+ Next_Literal (L1);
+ Next_Literal (L2);
+ end if;
+ end loop;
+
+ return True;
+ end Enumeration_Case;
+
+ -- Any other types have the same representation for these purposes
+
+ else
+ return True;
+ end if;
+ end Same_Representation;
+
+ --------------------------------
+ -- Resolve_Iterable_Operation --
+ --------------------------------
+
+ procedure Resolve_Iterable_Operation
+ (N : Node_Id;
+ Cursor : Entity_Id;
+ Typ : Entity_Id;
+ Nam : Name_Id)
+ is
+ Ent : Entity_Id;
+ F1 : Entity_Id;
+ F2 : Entity_Id;
+
+ begin
+ if not Is_Overloaded (N) then
+ if not Is_Entity_Name (N)
+ or else Ekind (Entity (N)) /= E_Function
+ or else Scope (Entity (N)) /= Scope (Typ)
+ or else No (First_Formal (Entity (N)))
+ or else Etype (First_Formal (Entity (N))) /= Typ
+ then
+ Error_Msg_N ("iterable primitive must be local function name "
+ & "whose first formal is an iterable type", N);
+ return;
+ end if;
+
+ Ent := Entity (N);
+ F1 := First_Formal (Ent);
+ if Nam = Name_First then
+
+ -- First (Container) => Cursor
+
+ if Etype (Ent) /= Cursor then
+ Error_Msg_N ("primitive for First must yield a curosr", N);
+ end if;
+
+ elsif Nam = Name_Next then
+
+ -- Next (Container, Cursor) => Cursor
+
+ F2 := Next_Formal (F1);
+
+ if Etype (F2) /= Cursor
+ or else Etype (Ent) /= Cursor
+ or else Present (Next_Formal (F2))
+ then
+ Error_Msg_N ("no match for Next iterable primitive", N);
+ end if;
+
+ elsif Nam = Name_Has_Element then
+
+ -- Has_Element (Container, Cursor) => Boolean
+
+ F2 := Next_Formal (F1);
+ if Etype (F2) /= Cursor
+ or else Etype (Ent) /= Standard_Boolean
+ or else Present (Next_Formal (F2))
+ then
+ Error_Msg_N ("no match for Has_Element iterable primitive", N);
+ end if;
+
+ elsif Nam = Name_Element then
+ F2 := Next_Formal (F1);
+
+ if No (F2)
+ or else Etype (F2) /= Cursor
+ or else Present (Next_Formal (F2))
+ then
+ Error_Msg_N ("no match for Element iterable primitive", N);
+ end if;
+ null;
+
+ else
+ raise Program_Error;
+ end if;
+
+ else
+ -- Overloaded case: find subprogram with proper signature.
+ -- Caller will report error if no match is found.
+
+ declare
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ Get_First_Interp (N, I, It);
+ while Present (It.Typ) loop
+ if Ekind (It.Nam) = E_Function
+ and then Scope (It.Nam) = Scope (Typ)
+ and then Etype (First_Formal (It.Nam)) = Typ
+ then
+ F1 := First_Formal (It.Nam);
+
+ if Nam = Name_First then
+ if Etype (It.Nam) = Cursor
+ and then No (Next_Formal (F1))
+ then
+ Set_Entity (N, It.Nam);
+ exit;
+ end if;
+
+ elsif Nam = Name_Next then
+ F2 := Next_Formal (F1);
+
+ if Present (F2)
+ and then No (Next_Formal (F2))
+ and then Etype (F2) = Cursor
+ and then Etype (It.Nam) = Cursor
+ then
+ Set_Entity (N, It.Nam);
+ exit;
+ end if;
+
+ elsif Nam = Name_Has_Element then
+ F2 := Next_Formal (F1);
+
+ if Present (F2)
+ and then No (Next_Formal (F2))
+ and then Etype (F2) = Cursor
+ and then Etype (It.Nam) = Standard_Boolean
+ then
+ Set_Entity (N, It.Nam);
+ F2 := Next_Formal (F1);
+ exit;
+ end if;
+
+ elsif Nam = Name_Element then
+ F2 := Next_Formal (F1);
+
+ if Present (F2)
+ and then No (Next_Formal (F2))
+ and then Etype (F2) = Cursor
+ then
+ Set_Entity (N, It.Nam);
+ exit;
+ end if;
+ end if;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+ end if;
+ end Resolve_Iterable_Operation;
+
+ ----------------
+ -- Set_Biased --
+ ----------------
+
+ procedure Set_Biased
+ (E : Entity_Id;
+ N : Node_Id;
+ Msg : String;
+ Biased : Boolean := True)
+ is
+ begin
+ if Biased then
+ Set_Has_Biased_Representation (E);
+
+ if Warn_On_Biased_Representation then
+ Error_Msg_NE
+ ("?B?" & Msg & " forces biased representation for&", N, E);
+ end if;
+ end if;
+ end Set_Biased;
+
+ --------------------
+ -- Set_Enum_Esize --
+ --------------------
+
+ procedure Set_Enum_Esize (T : Entity_Id) is
+ Lo : Uint;
+ Hi : Uint;
+ Sz : Nat;
+
+ begin
+ Init_Alignment (T);
+
+ -- Find the minimum standard size (8,16,32,64) that fits
+
+ Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
+ Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
+
+ if Lo < 0 then
+ if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
+ Sz := Standard_Character_Size; -- May be > 8 on some targets
+
+ elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
+ Sz := 16;
+
+ elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
+ Sz := 32;
+
+ else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
+ Sz := 64;
+ end if;
+
+ else
+ if Hi < Uint_2**08 then
+ Sz := Standard_Character_Size; -- May be > 8 on some targets
+
+ elsif Hi < Uint_2**16 then
+ Sz := 16;
+
+ elsif Hi < Uint_2**32 then
+ Sz := 32;
+
+ else pragma Assert (Hi < Uint_2**63);
+ Sz := 64;
+ end if;
+ end if;
+
+ -- That minimum is the proper size unless we have a foreign convention
+ -- and the size required is 32 or less, in which case we bump the size
+ -- up to 32. This is required for C and C++ and seems reasonable for
+ -- all other foreign conventions.
+
+ if Has_Foreign_Convention (T)
+ and then Esize (T) < Standard_Integer_Size
+
+ -- Don't do this if Short_Enums on target
+
+ and then not Target_Short_Enums
+ then
+ Init_Esize (T, Standard_Integer_Size);
+ else
+ Init_Esize (T, Sz);
+ end if;
+ end Set_Enum_Esize;
+
+ ------------------------------
+ -- Validate_Address_Clauses --
+ ------------------------------
+
+ procedure Validate_Address_Clauses is
+ begin
+ for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
+ declare
+ ACCR : Address_Clause_Check_Record
+ renames Address_Clause_Checks.Table (J);
+
+ Expr : Node_Id;
+
+ X_Alignment : Uint;
+ Y_Alignment : Uint;
+
+ X_Size : Uint;
+ Y_Size : Uint;
+
+ begin
+ -- Skip processing of this entry if warning already posted
+
+ if not Address_Warning_Posted (ACCR.N) then
+ Expr := Original_Node (Expression (ACCR.N));
+
+ -- Get alignments
+
+ X_Alignment := Alignment (ACCR.X);
+ Y_Alignment := Alignment (ACCR.Y);
+
+ -- Similarly obtain sizes
+
+ X_Size := Esize (ACCR.X);
+ Y_Size := Esize (ACCR.Y);
+
+ -- Check for large object overlaying smaller one
+
+ if Y_Size > Uint_0
+ and then X_Size > Uint_0
+ and then X_Size > Y_Size
+ then
+ Error_Msg_NE
+ ("?& overlays smaller object", ACCR.N, ACCR.X);
+ Error_Msg_N
+ ("\??program execution may be erroneous", ACCR.N);
+ Error_Msg_Uint_1 := X_Size;
+ Error_Msg_NE
+ ("\??size of & is ^", ACCR.N, ACCR.X);
+ Error_Msg_Uint_1 := Y_Size;
+ Error_Msg_NE
+ ("\??size of & is ^", ACCR.N, ACCR.Y);
+
+ -- Check for inadequate alignment, both of the base object
+ -- and of the offset, if any.
+
+ -- Note: we do not check the alignment if we gave a size
+ -- warning, since it would likely be redundant.
+
+ elsif Y_Alignment /= Uint_0
+ and then (Y_Alignment < X_Alignment
+ or else (ACCR.Off
+ and then
+ Nkind (Expr) = N_Attribute_Reference
+ and then
+ Attribute_Name (Expr) = Name_Address
+ and then
+ Has_Compatible_Alignment
+ (ACCR.X, Prefix (Expr))
+ /= Known_Compatible))
+ then
+ Error_Msg_NE
+ ("??specified address for& may be inconsistent "
+ & "with alignment", ACCR.N, ACCR.X);
+ Error_Msg_N
+ ("\??program execution may be erroneous (RM 13.3(27))",
+ ACCR.N);
+ Error_Msg_Uint_1 := X_Alignment;
+ Error_Msg_NE
+ ("\??alignment of & is ^", ACCR.N, ACCR.X);
+ Error_Msg_Uint_1 := Y_Alignment;
+ Error_Msg_NE
+ ("\??alignment of & is ^", ACCR.N, ACCR.Y);
+ if Y_Alignment >= X_Alignment then
+ Error_Msg_N
+ ("\??but offset is not multiple of alignment", ACCR.N);
+ end if;
+ end if;
+ end if;
+ end;
+ end loop;
+ end Validate_Address_Clauses;
+
+ ---------------------------
+ -- Validate_Independence --
+ ---------------------------
+
+ procedure Validate_Independence is
+ SU : constant Uint := UI_From_Int (System_Storage_Unit);
+ N : Node_Id;
+ E : Entity_Id;
+ IC : Boolean;
+ Comp : Entity_Id;
+ Addr : Node_Id;
+ P : Node_Id;
+
+ procedure Check_Array_Type (Atyp : Entity_Id);
+ -- Checks if the array type Atyp has independent components, and
+ -- if not, outputs an appropriate set of error messages.
+
+ procedure No_Independence;
+ -- Output message that independence cannot be guaranteed
+
+ function OK_Component (C : Entity_Id) return Boolean;
+ -- Checks one component to see if it is independently accessible, and
+ -- if so yields True, otherwise yields False if independent access
+ -- cannot be guaranteed. This is a conservative routine, it only
+ -- returns True if it knows for sure, it returns False if it knows
+ -- there is a problem, or it cannot be sure there is no problem.
+
+ procedure Reason_Bad_Component (C : Entity_Id);
+ -- Outputs continuation message if a reason can be determined for
+ -- the component C being bad.
+
+ ----------------------
+ -- Check_Array_Type --
+ ----------------------
+
+ procedure Check_Array_Type (Atyp : Entity_Id) is
+ Ctyp : constant Entity_Id := Component_Type (Atyp);
+
+ begin
+ -- OK if no alignment clause, no pack, and no component size
+
+ if not Has_Component_Size_Clause (Atyp)
+ and then not Has_Alignment_Clause (Atyp)
+ and then not Is_Packed (Atyp)
+ then
+ return;
+ end if;
+
+ -- Check actual component size
+
+ if not Known_Component_Size (Atyp)
+ or else not (Addressable (Component_Size (Atyp))
+ and then Component_Size (Atyp) < 64)
+ or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
+ then
+ No_Independence;
+
+ -- Bad component size, check reason
+
+ if Has_Component_Size_Clause (Atyp) then
+ P := Get_Attribute_Definition_Clause
+ (Atyp, Attribute_Component_Size);
+
+ if Present (P) then
+ Error_Msg_Sloc := Sloc (P);
+ Error_Msg_N ("\because of Component_Size clause#", N);
+ return;
+ end if;
+ end if;
+
+ if Is_Packed (Atyp) then
+ P := Get_Rep_Pragma (Atyp, Name_Pack);
+
+ if Present (P) then
+ Error_Msg_Sloc := Sloc (P);
+ Error_Msg_N ("\because of pragma Pack#", N);
+ return;
+ end if;
+ end if;
+
+ -- No reason found, just return
+
+ return;
+ end if;
+
+ -- Array type is OK independence-wise
+
+ return;
+ end Check_Array_Type;
+
+ ---------------------
+ -- No_Independence --
+ ---------------------
+
+ procedure No_Independence is
+ begin
+ if Pragma_Name (N) = Name_Independent then
+ Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
+ else
+ Error_Msg_NE
+ ("independent components cannot be guaranteed for&", N, E);
+ end if;
+ end No_Independence;
+
+ ------------------
+ -- OK_Component --
+ ------------------
+
+ function OK_Component (C : Entity_Id) return Boolean is
+ Rec : constant Entity_Id := Scope (C);
+ Ctyp : constant Entity_Id := Etype (C);
+
+ begin
+ -- OK if no component clause, no Pack, and no alignment clause
+
+ if No (Component_Clause (C))
+ and then not Is_Packed (Rec)
+ and then not Has_Alignment_Clause (Rec)
+ then
+ return True;
+ end if;
+
+ -- Here we look at the actual component layout. A component is
+ -- addressable if its size is a multiple of the Esize of the
+ -- component type, and its starting position in the record has
+ -- appropriate alignment, and the record itself has appropriate
+ -- alignment to guarantee the component alignment.
+
+ -- Make sure sizes are static, always assume the worst for any
+ -- cases where we cannot check static values.
+
+ if not (Known_Static_Esize (C)
+ and then
+ Known_Static_Esize (Ctyp))
+ then
+ return False;
+ end if;
+
+ -- Size of component must be addressable or greater than 64 bits
+ -- and a multiple of bytes.
+
+ if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
+ return False;
+ end if;
+
+ -- Check size is proper multiple
+
+ if Esize (C) mod Esize (Ctyp) /= 0 then
+ return False;
+ end if;
+
+ -- Check alignment of component is OK
+
+ if not Known_Component_Bit_Offset (C)
+ or else Component_Bit_Offset (C) < Uint_0
+ or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
+ then
+ return False;
+ end if;
+
+ -- Check alignment of record type is OK
+
+ if not Known_Alignment (Rec)
+ or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
+ then
+ return False;
+ end if;
+
+ -- All tests passed, component is addressable
+
+ return True;
+ end OK_Component;
+
+ --------------------------
+ -- Reason_Bad_Component --
+ --------------------------
+
+ procedure Reason_Bad_Component (C : Entity_Id) is
+ Rec : constant Entity_Id := Scope (C);
+ Ctyp : constant Entity_Id := Etype (C);
+
+ begin
+ -- If component clause present assume that's the problem
+
+ if Present (Component_Clause (C)) then
+ Error_Msg_Sloc := Sloc (Component_Clause (C));
+ Error_Msg_N ("\because of Component_Clause#", N);
+ return;
+ end if;
+
+ -- If pragma Pack clause present, assume that's the problem
+
+ if Is_Packed (Rec) then
+ P := Get_Rep_Pragma (Rec, Name_Pack);
+
+ if Present (P) then
+ Error_Msg_Sloc := Sloc (P);
+ Error_Msg_N ("\because of pragma Pack#", N);
+ return;
+ end if;
+ end if;
+
+ -- See if record has bad alignment clause
+
+ if Has_Alignment_Clause (Rec)
+ and then Known_Alignment (Rec)
+ and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
+ then
+ P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
+
+ if Present (P) then
+ Error_Msg_Sloc := Sloc (P);
+ Error_Msg_N ("\because of Alignment clause#", N);
+ end if;
+ end if;
+
+ -- Couldn't find a reason, so return without a message
+
+ return;
+ end Reason_Bad_Component;
+
+ -- Start of processing for Validate_Independence
+
+ begin
+ for J in Independence_Checks.First .. Independence_Checks.Last loop
+ N := Independence_Checks.Table (J).N;
+ E := Independence_Checks.Table (J).E;
+ IC := Pragma_Name (N) = Name_Independent_Components;
+
+ -- Deal with component case
+
+ if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
+ if not OK_Component (E) then
+ No_Independence;
+ Reason_Bad_Component (E);
+ goto Continue;
+ end if;
+ end if;
+
+ -- Deal with record with Independent_Components
+
+ if IC and then Is_Record_Type (E) then
+ Comp := First_Component_Or_Discriminant (E);
+ while Present (Comp) loop
+ if not OK_Component (Comp) then
+ No_Independence;
+ Reason_Bad_Component (Comp);
+ goto Continue;
+ end if;
+
+ Next_Component_Or_Discriminant (Comp);
+ end loop;
+ end if;
+
+ -- Deal with address clause case
+
+ if Is_Object (E) then
+ Addr := Address_Clause (E);
+
+ if Present (Addr) then
+ No_Independence;
+ Error_Msg_Sloc := Sloc (Addr);
+ Error_Msg_N ("\because of Address clause#", N);
+ goto Continue;
+ end if;
+ end if;
+
+ -- Deal with independent components for array type
+
+ if IC and then Is_Array_Type (E) then
+ Check_Array_Type (E);
+ end if;
+
+ -- Deal with independent components for array object
+
+ if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
+ Check_Array_Type (Etype (E));
+ end if;
+
+ <<Continue>> null;
+ end loop;
+ end Validate_Independence;
+
+ ------------------------------
+ -- Validate_Iterable_Aspect --
+ ------------------------------
+
+ procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
+ Assoc : Node_Id;
+ Expr : Node_Id;
+
+ Prim : Node_Id;
+ Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
+
+ First_Id : Entity_Id;
+ Next_Id : Entity_Id;
+ Has_Element_Id : Entity_Id;
+ Element_Id : Entity_Id;
+
+ begin
+ -- If previous error aspect is unusable
+
+ if Cursor = Any_Type then
+ return;
+ end if;
+
+ First_Id := Empty;
+ Next_Id := Empty;
+ Has_Element_Id := Empty;
+ Element_Id := Empty;
+
+ -- Each expression must resolve to a function with the proper signature
+
+ Assoc := First (Component_Associations (Expression (ASN)));
+ while Present (Assoc) loop
+ Expr := Expression (Assoc);
+ Analyze (Expr);
+
+ Prim := First (Choices (Assoc));
+
+ if Nkind (Prim) /= N_Identifier
+ or else Present (Next (Prim))
+ then
+ Error_Msg_N ("illegal name in association", Prim);
+
+ elsif Chars (Prim) = Name_First then
+ Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
+ First_Id := Entity (Expr);
+
+ elsif Chars (Prim) = Name_Next then
+ Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
+ Next_Id := Entity (Expr);
+
+ elsif Chars (Prim) = Name_Has_Element then
+ Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
+ Has_Element_Id := Entity (Expr);
+
+ elsif Chars (Prim) = Name_Element then
+ Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
+ Element_Id := Entity (Expr);
+
+ else
+ Error_Msg_N ("invalid name for iterable function", Prim);
+ end if;
+
+ Next (Assoc);
+ end loop;
+
+ if No (First_Id) then
+ Error_Msg_N ("match for First primitive not found", ASN);
+
+ elsif No (Next_Id) then
+ Error_Msg_N ("match for Next primitive not found", ASN);
+
+ elsif No (Has_Element_Id) then
+ Error_Msg_N ("match for Has_Element primitive not found", ASN);
+
+ elsif No (Element_Id) then
+ null; -- Optional.
+ end if;
+ end Validate_Iterable_Aspect;
+
+ -----------------------------------
+ -- Validate_Unchecked_Conversion --
+ -----------------------------------
+
+ procedure Validate_Unchecked_Conversion
+ (N : Node_Id;
+ Act_Unit : Entity_Id)
+ is
+ Source : Entity_Id;
+ Target : Entity_Id;
+ Vnode : Node_Id;
+
+ begin
+ -- Obtain source and target types. Note that we call Ancestor_Subtype
+ -- here because the processing for generic instantiation always makes
+ -- subtypes, and we want the original frozen actual types.
+
+ -- If we are dealing with private types, then do the check on their
+ -- fully declared counterparts if the full declarations have been
+ -- encountered (they don't have to be visible, but they must exist).
+
+ Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
+
+ if Is_Private_Type (Source)
+ and then Present (Underlying_Type (Source))
+ then
+ Source := Underlying_Type (Source);
+ end if;
+
+ Target := Ancestor_Subtype (Etype (Act_Unit));
+
+ -- If either type is generic, the instantiation happens within a generic
+ -- unit, and there is nothing to check. The proper check will happen
+ -- when the enclosing generic is instantiated.
+
+ if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
+ return;
+ end if;
+
+ if Is_Private_Type (Target)
+ and then Present (Underlying_Type (Target))
+ then
+ Target := Underlying_Type (Target);
+ end if;
+
+ -- Source may be unconstrained array, but not target
+
+ if Is_Array_Type (Target) and then not Is_Constrained (Target) then
+ Error_Msg_N
+ ("unchecked conversion to unconstrained array not allowed", N);
+ return;
+ end if;
+
+ -- Warn if conversion between two different convention pointers
+
+ if Is_Access_Type (Target)
+ and then Is_Access_Type (Source)
+ and then Convention (Target) /= Convention (Source)
+ and then Warn_On_Unchecked_Conversion
+ then
+ -- Give warnings for subprogram pointers only on most targets. The
+ -- exception is VMS, where data pointers can have different lengths
+ -- depending on the pointer convention.
+
+ if Is_Access_Subprogram_Type (Target)
+ or else Is_Access_Subprogram_Type (Source)
+ or else OpenVMS_On_Target
+ then
+ Error_Msg_N
+ ("?z?conversion between pointers with different conventions!",
+ N);
+ end if;
+ end if;
+
+ -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
+ -- warning when compiling GNAT-related sources.
+
+ if Warn_On_Unchecked_Conversion
+ and then not In_Predefined_Unit (N)
+ and then RTU_Loaded (Ada_Calendar)
+ and then
+ (Chars (Source) = Name_Time
+ or else
+ Chars (Target) = Name_Time)
+ then
+ -- If Ada.Calendar is loaded and the name of one of the operands is
+ -- Time, there is a good chance that this is Ada.Calendar.Time.
+
+ declare
+ Calendar_Time : constant Entity_Id :=
+ Full_View (RTE (RO_CA_Time));
+ begin
+ pragma Assert (Present (Calendar_Time));
+
+ if Source = Calendar_Time or else Target = Calendar_Time then
+ Error_Msg_N
+ ("?z?representation of 'Time values may change between " &
+ "'G'N'A'T versions", N);
+ end if;
+ end;
+ end if;
+
+ -- Make entry in unchecked conversion table for later processing by
+ -- Validate_Unchecked_Conversions, which will check sizes and alignments
+ -- (using values set by the back-end where possible). This is only done
+ -- if the appropriate warning is active.
+
+ if Warn_On_Unchecked_Conversion then
+ Unchecked_Conversions.Append
+ (New_Val => UC_Entry'(Eloc => Sloc (N),
+ Source => Source,
+ Target => Target,
+ Act_Unit => Act_Unit));
+
+ -- If both sizes are known statically now, then back end annotation
+ -- is not required to do a proper check but if either size is not
+ -- known statically, then we need the annotation.
+
+ if Known_Static_RM_Size (Source)
+ and then
+ Known_Static_RM_Size (Target)
+ then
+ null;
+ else
+ Back_Annotate_Rep_Info := True;
+ end if;
+ end if;
+
+ -- If unchecked conversion to access type, and access type is declared
+ -- in the same unit as the unchecked conversion, then set the flag
+ -- No_Strict_Aliasing (no strict aliasing is implicit here)
+
+ if Is_Access_Type (Target) and then
+ In_Same_Source_Unit (Target, N)
+ then
+ Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
+ end if;
+
+ -- Generate N_Validate_Unchecked_Conversion node for back end in case
+ -- the back end needs to perform special validation checks.
+
+ -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
+ -- have full expansion and the back end is called ???
+
+ Vnode :=
+ Make_Validate_Unchecked_Conversion (Sloc (N));
+ Set_Source_Type (Vnode, Source);
+ Set_Target_Type (Vnode, Target);
+
+ -- If the unchecked conversion node is in a list, just insert before it.
+ -- If not we have some strange case, not worth bothering about.
+
+ if Is_List_Member (N) then
+ Insert_After (N, Vnode);
+ end if;
+ end Validate_Unchecked_Conversion;
+
+ ------------------------------------
+ -- Validate_Unchecked_Conversions --
+ ------------------------------------
+
+ procedure Validate_Unchecked_Conversions is
+ begin
+ for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
+ declare
+ T : UC_Entry renames Unchecked_Conversions.Table (N);
+
+ Eloc : constant Source_Ptr := T.Eloc;
+ Source : constant Entity_Id := T.Source;
+ Target : constant Entity_Id := T.Target;
+ Act_Unit : constant Entity_Id := T.Act_Unit;
+
+ Source_Siz : Uint;
+ Target_Siz : Uint;
+
+ begin
+ -- Skip if function marked as warnings off
+
+ if Warnings_Off (Act_Unit) then
+ goto Continue;
+ end if;
+
+ -- This validation check, which warns if we have unequal sizes for
+ -- unchecked conversion, and thus potentially implementation
+ -- dependent semantics, is one of the few occasions on which we
+ -- use the official RM size instead of Esize. See description in
+ -- Einfo "Handling of Type'Size Values" for details.
+
+ if Serious_Errors_Detected = 0
+ and then Known_Static_RM_Size (Source)
+ and then Known_Static_RM_Size (Target)
+
+ -- Don't do the check if warnings off for either type, note the
+ -- deliberate use of OR here instead of OR ELSE to get the flag
+ -- Warnings_Off_Used set for both types if appropriate.
+
+ and then not (Has_Warnings_Off (Source)
+ or
+ Has_Warnings_Off (Target))
+ then
+ Source_Siz := RM_Size (Source);
+ Target_Siz := RM_Size (Target);
+
+ if Source_Siz /= Target_Siz then
+ Error_Msg
+ ("?z?types for unchecked conversion have different sizes!",
+ Eloc);
+
+ if All_Errors_Mode then
+ Error_Msg_Name_1 := Chars (Source);
+ Error_Msg_Uint_1 := Source_Siz;
+ Error_Msg_Name_2 := Chars (Target);
+ Error_Msg_Uint_2 := Target_Siz;
+ Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
+
+ Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
+
+ if Is_Discrete_Type (Source)
+ and then
+ Is_Discrete_Type (Target)
+ then
+ if Source_Siz > Target_Siz then
+ Error_Msg
+ ("\?z?^ high order bits of source will "
+ & "be ignored!", Eloc);
+
+ elsif Is_Unsigned_Type (Source) then
+ Error_Msg
+ ("\?z?source will be extended with ^ high order "
+ & "zero bits?!", Eloc);
+
+ else
+ Error_Msg
+ ("\?z?source will be extended with ^ high order "
+ & "sign bits!", Eloc);
+ end if;
+
+ elsif Source_Siz < Target_Siz then
+ if Is_Discrete_Type (Target) then
+ if Bytes_Big_Endian then
+ Error_Msg
+ ("\?z?target value will include ^ undefined "
+ & "low order bits!", Eloc);
+ else
+ Error_Msg
+ ("\?z?target value will include ^ undefined "
+ & "high order bits!", Eloc);
+ end if;
+
+ else
+ Error_Msg
+ ("\?z?^ trailing bits of target value will be "
+ & "undefined!", Eloc);
+ end if;
+
+ else pragma Assert (Source_Siz > Target_Siz);
+ Error_Msg
+ ("\?z?^ trailing bits of source will be ignored!",
+ Eloc);
+ end if;
+ end if;
+ end if;
+ end if;
+
+ -- If both types are access types, we need to check the alignment.
+ -- If the alignment of both is specified, we can do it here.
+
+ if Serious_Errors_Detected = 0
+ and then Ekind (Source) in Access_Kind
+ and then Ekind (Target) in Access_Kind
+ and then Target_Strict_Alignment
+ and then Present (Designated_Type (Source))
+ and then Present (Designated_Type (Target))
+ then
+ declare
+ D_Source : constant Entity_Id := Designated_Type (Source);
+ D_Target : constant Entity_Id := Designated_Type (Target);
+
+ begin
+ if Known_Alignment (D_Source)
+ and then
+ Known_Alignment (D_Target)
+ then
+ declare
+ Source_Align : constant Uint := Alignment (D_Source);
+ Target_Align : constant Uint := Alignment (D_Target);
+
+ begin
+ if Source_Align < Target_Align
+ and then not Is_Tagged_Type (D_Source)
+
+ -- Suppress warning if warnings suppressed on either
+ -- type or either designated type. Note the use of
+ -- OR here instead of OR ELSE. That is intentional,
+ -- we would like to set flag Warnings_Off_Used in
+ -- all types for which warnings are suppressed.
+
+ and then not (Has_Warnings_Off (D_Source)
+ or
+ Has_Warnings_Off (D_Target)
+ or
+ Has_Warnings_Off (Source)
+ or
+ Has_Warnings_Off (Target))
+ then
+ Error_Msg_Uint_1 := Target_Align;
+ Error_Msg_Uint_2 := Source_Align;
+ Error_Msg_Node_1 := D_Target;
+ Error_Msg_Node_2 := D_Source;
+ Error_Msg
+ ("?z?alignment of & (^) is stricter than "
+ & "alignment of & (^)!", Eloc);
+ Error_Msg
+ ("\?z?resulting access value may have invalid "
+ & "alignment!", Eloc);
+ end if;
+ end;
+ end if;
+ end;
+ end if;
+ end;
+
+ <<Continue>>
+ null;
+ end loop;
+ end Validate_Unchecked_Conversions;
+
+end Sem_Ch13;