aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/ada/sem_ch12.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/ada/sem_ch12.adb')
-rw-r--r--gcc-4.9/gcc/ada/sem_ch12.adb14023
1 files changed, 14023 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/ada/sem_ch12.adb b/gcc-4.9/gcc/ada/sem_ch12.adb
new file mode 100644
index 000000000..5aa090446
--- /dev/null
+++ b/gcc-4.9/gcc/ada/sem_ch12.adb
@@ -0,0 +1,14023 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- S E M _ C H 1 2 --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Aspects; use Aspects;
+with Atree; use Atree;
+with Debug; use Debug;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Errout; use Errout;
+with Expander; use Expander;
+with Exp_Disp; use Exp_Disp;
+with Fname; use Fname;
+with Fname.UF; use Fname.UF;
+with Freeze; use Freeze;
+with Itypes; use Itypes;
+with Lib; use Lib;
+with Lib.Load; use Lib.Load;
+with Lib.Xref; use Lib.Xref;
+with Nlists; use Nlists;
+with Namet; use Namet;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Rident; use Rident;
+with Restrict; use Restrict;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Aux; use Sem_Aux;
+with Sem_Cat; use Sem_Cat;
+with Sem_Ch3; use Sem_Ch3;
+with Sem_Ch6; use Sem_Ch6;
+with Sem_Ch7; use Sem_Ch7;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Ch10; use Sem_Ch10;
+with Sem_Ch13; use Sem_Ch13;
+with Sem_Dim; use Sem_Dim;
+with Sem_Disp; use Sem_Disp;
+with Sem_Elab; use Sem_Elab;
+with Sem_Elim; use Sem_Elim;
+with Sem_Eval; use Sem_Eval;
+with Sem_Prag; use Sem_Prag;
+with Sem_Res; use Sem_Res;
+with Sem_Type; use Sem_Type;
+with Sem_Util; use Sem_Util;
+with Sem_Warn; use Sem_Warn;
+with Stand; use Stand;
+with Sinfo; use Sinfo;
+with Sinfo.CN; use Sinfo.CN;
+with Sinput; use Sinput;
+with Sinput.L; use Sinput.L;
+with Snames; use Snames;
+with Stringt; use Stringt;
+with Uname; use Uname;
+with Table;
+with Tbuild; use Tbuild;
+with Uintp; use Uintp;
+with Urealp; use Urealp;
+with Warnsw; use Warnsw;
+
+with GNAT.HTable;
+
+package body Sem_Ch12 is
+
+ ----------------------------------------------------------
+ -- Implementation of Generic Analysis and Instantiation --
+ ----------------------------------------------------------
+
+ -- GNAT implements generics by macro expansion. No attempt is made to share
+ -- generic instantiations (for now). Analysis of a generic definition does
+ -- not perform any expansion action, but the expander must be called on the
+ -- tree for each instantiation, because the expansion may of course depend
+ -- on the generic actuals. All of this is best achieved as follows:
+ --
+ -- a) Semantic analysis of a generic unit is performed on a copy of the
+ -- tree for the generic unit. All tree modifications that follow analysis
+ -- do not affect the original tree. Links are kept between the original
+ -- tree and the copy, in order to recognize non-local references within
+ -- the generic, and propagate them to each instance (recall that name
+ -- resolution is done on the generic declaration: generics are not really
+ -- macros). This is summarized in the following diagram:
+
+ -- .-----------. .----------.
+ -- | semantic |<--------------| generic |
+ -- | copy | | unit |
+ -- | |==============>| |
+ -- |___________| global |__________|
+ -- references | | |
+ -- | | |
+ -- .-----|--|.
+ -- | .-----|---.
+ -- | | .----------.
+ -- | | | generic |
+ -- |__| | |
+ -- |__| instance |
+ -- |__________|
+
+ -- b) Each instantiation copies the original tree, and inserts into it a
+ -- series of declarations that describe the mapping between generic formals
+ -- and actuals. For example, a generic In OUT parameter is an object
+ -- renaming of the corresponding actual, etc. Generic IN parameters are
+ -- constant declarations.
+
+ -- c) In order to give the right visibility for these renamings, we use
+ -- a different scheme for package and subprogram instantiations. For
+ -- packages, the list of renamings is inserted into the package
+ -- specification, before the visible declarations of the package. The
+ -- renamings are analyzed before any of the text of the instance, and are
+ -- thus visible at the right place. Furthermore, outside of the instance,
+ -- the generic parameters are visible and denote their corresponding
+ -- actuals.
+
+ -- For subprograms, we create a container package to hold the renamings
+ -- and the subprogram instance itself. Analysis of the package makes the
+ -- renaming declarations visible to the subprogram. After analyzing the
+ -- package, the defining entity for the subprogram is touched-up so that
+ -- it appears declared in the current scope, and not inside the container
+ -- package.
+
+ -- If the instantiation is a compilation unit, the container package is
+ -- given the same name as the subprogram instance. This ensures that
+ -- the elaboration procedure called by the binder, using the compilation
+ -- unit name, calls in fact the elaboration procedure for the package.
+
+ -- Not surprisingly, private types complicate this approach. By saving in
+ -- the original generic object the non-local references, we guarantee that
+ -- the proper entities are referenced at the point of instantiation.
+ -- However, for private types, this by itself does not insure that the
+ -- proper VIEW of the entity is used (the full type may be visible at the
+ -- point of generic definition, but not at instantiation, or vice-versa).
+ -- In order to reference the proper view, we special-case any reference
+ -- to private types in the generic object, by saving both views, one in
+ -- the generic and one in the semantic copy. At time of instantiation, we
+ -- check whether the two views are consistent, and exchange declarations if
+ -- necessary, in order to restore the correct visibility. Similarly, if
+ -- the instance view is private when the generic view was not, we perform
+ -- the exchange. After completing the instantiation, we restore the
+ -- current visibility. The flag Has_Private_View marks identifiers in the
+ -- the generic unit that require checking.
+
+ -- Visibility within nested generic units requires special handling.
+ -- Consider the following scheme:
+
+ -- type Global is ... -- outside of generic unit.
+ -- generic ...
+ -- package Outer is
+ -- ...
+ -- type Semi_Global is ... -- global to inner.
+
+ -- generic ... -- 1
+ -- procedure inner (X1 : Global; X2 : Semi_Global);
+
+ -- procedure in2 is new inner (...); -- 4
+ -- end Outer;
+
+ -- package New_Outer is new Outer (...); -- 2
+ -- procedure New_Inner is new New_Outer.Inner (...); -- 3
+
+ -- The semantic analysis of Outer captures all occurrences of Global.
+ -- The semantic analysis of Inner (at 1) captures both occurrences of
+ -- Global and Semi_Global.
+
+ -- At point 2 (instantiation of Outer), we also produce a generic copy
+ -- of Inner, even though Inner is, at that point, not being instantiated.
+ -- (This is just part of the semantic analysis of New_Outer).
+
+ -- Critically, references to Global within Inner must be preserved, while
+ -- references to Semi_Global should not preserved, because they must now
+ -- resolve to an entity within New_Outer. To distinguish between these, we
+ -- use a global variable, Current_Instantiated_Parent, which is set when
+ -- performing a generic copy during instantiation (at 2). This variable is
+ -- used when performing a generic copy that is not an instantiation, but
+ -- that is nested within one, as the occurrence of 1 within 2. The analysis
+ -- of a nested generic only preserves references that are global to the
+ -- enclosing Current_Instantiated_Parent. We use the Scope_Depth value to
+ -- determine whether a reference is external to the given parent.
+
+ -- The instantiation at point 3 requires no special treatment. The method
+ -- works as well for further nestings of generic units, but of course the
+ -- variable Current_Instantiated_Parent must be stacked because nested
+ -- instantiations can occur, e.g. the occurrence of 4 within 2.
+
+ -- The instantiation of package and subprogram bodies is handled in a
+ -- similar manner, except that it is delayed until after semantic
+ -- analysis is complete. In this fashion complex cross-dependencies
+ -- between several package declarations and bodies containing generics
+ -- can be compiled which otherwise would diagnose spurious circularities.
+
+ -- For example, it is possible to compile two packages A and B that
+ -- have the following structure:
+
+ -- package A is package B is
+ -- generic ... generic ...
+ -- package G_A is package G_B is
+
+ -- with B; with A;
+ -- package body A is package body B is
+ -- package N_B is new G_B (..) package N_A is new G_A (..)
+
+ -- The table Pending_Instantiations in package Inline is used to keep
+ -- track of body instantiations that are delayed in this manner. Inline
+ -- handles the actual calls to do the body instantiations. This activity
+ -- is part of Inline, since the processing occurs at the same point, and
+ -- for essentially the same reason, as the handling of inlined routines.
+
+ ----------------------------------------------
+ -- Detection of Instantiation Circularities --
+ ----------------------------------------------
+
+ -- If we have a chain of instantiations that is circular, this is static
+ -- error which must be detected at compile time. The detection of these
+ -- circularities is carried out at the point that we insert a generic
+ -- instance spec or body. If there is a circularity, then the analysis of
+ -- the offending spec or body will eventually result in trying to load the
+ -- same unit again, and we detect this problem as we analyze the package
+ -- instantiation for the second time.
+
+ -- At least in some cases after we have detected the circularity, we get
+ -- into trouble if we try to keep going. The following flag is set if a
+ -- circularity is detected, and used to abandon compilation after the
+ -- messages have been posted.
+
+ Circularity_Detected : Boolean := False;
+ -- This should really be reset on encountering a new main unit, but in
+ -- practice we are not using multiple main units so it is not critical.
+
+ --------------------------------------------------
+ -- Formal packages and partial parameterization --
+ --------------------------------------------------
+
+ -- When compiling a generic, a formal package is a local instantiation. If
+ -- declared with a box, its generic formals are visible in the enclosing
+ -- generic. If declared with a partial list of actuals, those actuals that
+ -- are defaulted (covered by an Others clause, or given an explicit box
+ -- initialization) are also visible in the enclosing generic, while those
+ -- that have a corresponding actual are not.
+
+ -- In our source model of instantiation, the same visibility must be
+ -- present in the spec and body of an instance: the names of the formals
+ -- that are defaulted must be made visible within the instance, and made
+ -- invisible (hidden) after the instantiation is complete, so that they
+ -- are not accessible outside of the instance.
+
+ -- In a generic, a formal package is treated like a special instantiation.
+ -- Our Ada 95 compiler handled formals with and without box in different
+ -- ways. With partial parameterization, we use a single model for both.
+ -- We create a package declaration that consists of the specification of
+ -- the generic package, and a set of declarations that map the actuals
+ -- into local renamings, just as we do for bona fide instantiations. For
+ -- defaulted parameters and formals with a box, we copy directly the
+ -- declarations of the formal into this local package. The result is a
+ -- a package whose visible declarations may include generic formals. This
+ -- package is only used for type checking and visibility analysis, and
+ -- never reaches the back-end, so it can freely violate the placement
+ -- rules for generic formal declarations.
+
+ -- The list of declarations (renamings and copies of formals) is built
+ -- by Analyze_Associations, just as for regular instantiations.
+
+ -- At the point of instantiation, conformance checking must be applied only
+ -- to those parameters that were specified in the formal. We perform this
+ -- checking by creating another internal instantiation, this one including
+ -- only the renamings and the formals (the rest of the package spec is not
+ -- relevant to conformance checking). We can then traverse two lists: the
+ -- list of actuals in the instance that corresponds to the formal package,
+ -- and the list of actuals produced for this bogus instantiation. We apply
+ -- the conformance rules to those actuals that are not defaulted (i.e.
+ -- which still appear as generic formals.
+
+ -- When we compile an instance body we must make the right parameters
+ -- visible again. The predicate Is_Generic_Formal indicates which of the
+ -- formals should have its Is_Hidden flag reset.
+
+ -----------------------
+ -- Local subprograms --
+ -----------------------
+
+ procedure Abandon_Instantiation (N : Node_Id);
+ pragma No_Return (Abandon_Instantiation);
+ -- Posts an error message "instantiation abandoned" at the indicated node
+ -- and then raises the exception Instantiation_Error to do it.
+
+ procedure Analyze_Formal_Array_Type
+ (T : in out Entity_Id;
+ Def : Node_Id);
+ -- A formal array type is treated like an array type declaration, and
+ -- invokes Array_Type_Declaration (sem_ch3) whose first parameter is
+ -- in-out, because in the case of an anonymous type the entity is
+ -- actually created in the procedure.
+
+ -- The following procedures treat other kinds of formal parameters
+
+ procedure Analyze_Formal_Derived_Interface_Type
+ (N : Node_Id;
+ T : Entity_Id;
+ Def : Node_Id);
+
+ procedure Analyze_Formal_Derived_Type
+ (N : Node_Id;
+ T : Entity_Id;
+ Def : Node_Id);
+
+ procedure Analyze_Formal_Interface_Type
+ (N : Node_Id;
+ T : Entity_Id;
+ Def : Node_Id);
+
+ -- The following subprograms create abbreviated declarations for formal
+ -- scalar types. We introduce an anonymous base of the proper class for
+ -- each of them, and define the formals as constrained first subtypes of
+ -- their bases. The bounds are expressions that are non-static in the
+ -- generic.
+
+ procedure Analyze_Formal_Decimal_Fixed_Point_Type
+ (T : Entity_Id; Def : Node_Id);
+ procedure Analyze_Formal_Discrete_Type (T : Entity_Id; Def : Node_Id);
+ procedure Analyze_Formal_Floating_Type (T : Entity_Id; Def : Node_Id);
+ procedure Analyze_Formal_Signed_Integer_Type (T : Entity_Id; Def : Node_Id);
+ procedure Analyze_Formal_Modular_Type (T : Entity_Id; Def : Node_Id);
+ procedure Analyze_Formal_Ordinary_Fixed_Point_Type
+ (T : Entity_Id; Def : Node_Id);
+
+ procedure Analyze_Formal_Private_Type
+ (N : Node_Id;
+ T : Entity_Id;
+ Def : Node_Id);
+ -- Creates a new private type, which does not require completion
+
+ procedure Analyze_Formal_Incomplete_Type (T : Entity_Id; Def : Node_Id);
+ -- Ada 2012: Creates a new incomplete type whose actual does not freeze
+
+ procedure Analyze_Generic_Formal_Part (N : Node_Id);
+ -- Analyze generic formal part
+
+ procedure Analyze_Generic_Access_Type (T : Entity_Id; Def : Node_Id);
+ -- Create a new access type with the given designated type
+
+ function Analyze_Associations
+ (I_Node : Node_Id;
+ Formals : List_Id;
+ F_Copy : List_Id) return List_Id;
+ -- At instantiation time, build the list of associations between formals
+ -- and actuals. Each association becomes a renaming declaration for the
+ -- formal entity. F_Copy is the analyzed list of formals in the generic
+ -- copy. It is used to apply legality checks to the actuals. I_Node is the
+ -- instantiation node itself.
+
+ procedure Analyze_Subprogram_Instantiation
+ (N : Node_Id;
+ K : Entity_Kind);
+
+ procedure Build_Instance_Compilation_Unit_Nodes
+ (N : Node_Id;
+ Act_Body : Node_Id;
+ Act_Decl : Node_Id);
+ -- This procedure is used in the case where the generic instance of a
+ -- subprogram body or package body is a library unit. In this case, the
+ -- original library unit node for the generic instantiation must be
+ -- replaced by the resulting generic body, and a link made to a new
+ -- compilation unit node for the generic declaration. The argument N is
+ -- the original generic instantiation. Act_Body and Act_Decl are the body
+ -- and declaration of the instance (either package body and declaration
+ -- nodes or subprogram body and declaration nodes depending on the case).
+ -- On return, the node N has been rewritten with the actual body.
+
+ procedure Check_Access_Definition (N : Node_Id);
+ -- Subsidiary routine to null exclusion processing. Perform an assertion
+ -- check on Ada version and the presence of an access definition in N.
+
+ procedure Check_Formal_Packages (P_Id : Entity_Id);
+ -- Apply the following to all formal packages in generic associations
+
+ procedure Check_Formal_Package_Instance
+ (Formal_Pack : Entity_Id;
+ Actual_Pack : Entity_Id);
+ -- Verify that the actuals of the actual instance match the actuals of
+ -- the template for a formal package that is not declared with a box.
+
+ procedure Check_Forward_Instantiation (Decl : Node_Id);
+ -- If the generic is a local entity and the corresponding body has not
+ -- been seen yet, flag enclosing packages to indicate that it will be
+ -- elaborated after the generic body. Subprograms declared in the same
+ -- package cannot be inlined by the front-end because front-end inlining
+ -- requires a strict linear order of elaboration.
+
+ function Check_Hidden_Primitives (Assoc_List : List_Id) return Elist_Id;
+ -- Check if some association between formals and actuals requires to make
+ -- visible primitives of a tagged type, and make those primitives visible.
+ -- Return the list of primitives whose visibility is modified (to restore
+ -- their visibility later through Restore_Hidden_Primitives). If no
+ -- candidate is found then return No_Elist.
+
+ procedure Check_Hidden_Child_Unit
+ (N : Node_Id;
+ Gen_Unit : Entity_Id;
+ Act_Decl_Id : Entity_Id);
+ -- If the generic unit is an implicit child instance within a parent
+ -- instance, we need to make an explicit test that it is not hidden by
+ -- a child instance of the same name and parent.
+
+ procedure Check_Generic_Actuals
+ (Instance : Entity_Id;
+ Is_Formal_Box : Boolean);
+ -- Similar to previous one. Check the actuals in the instantiation,
+ -- whose views can change between the point of instantiation and the point
+ -- of instantiation of the body. In addition, mark the generic renamings
+ -- as generic actuals, so that they are not compatible with other actuals.
+ -- Recurse on an actual that is a formal package whose declaration has
+ -- a box.
+
+ function Contains_Instance_Of
+ (Inner : Entity_Id;
+ Outer : Entity_Id;
+ N : Node_Id) return Boolean;
+ -- Inner is instantiated within the generic Outer. Check whether Inner
+ -- directly or indirectly contains an instance of Outer or of one of its
+ -- parents, in the case of a subunit. Each generic unit holds a list of
+ -- the entities instantiated within (at any depth). This procedure
+ -- determines whether the set of such lists contains a cycle, i.e. an
+ -- illegal circular instantiation.
+
+ function Denotes_Formal_Package
+ (Pack : Entity_Id;
+ On_Exit : Boolean := False;
+ Instance : Entity_Id := Empty) return Boolean;
+ -- Returns True if E is a formal package of an enclosing generic, or
+ -- the actual for such a formal in an enclosing instantiation. If such
+ -- a package is used as a formal in an nested generic, or as an actual
+ -- in a nested instantiation, the visibility of ITS formals should not
+ -- be modified. When called from within Restore_Private_Views, the flag
+ -- On_Exit is true, to indicate that the search for a possible enclosing
+ -- instance should ignore the current one. In that case Instance denotes
+ -- the declaration for which this is an actual. This declaration may be
+ -- an instantiation in the source, or the internal instantiation that
+ -- corresponds to the actual for a formal package.
+
+ function Earlier (N1, N2 : Node_Id) return Boolean;
+ -- Yields True if N1 and N2 appear in the same compilation unit,
+ -- ignoring subunits, and if N1 is to the left of N2 in a left-to-right
+ -- traversal of the tree for the unit. Used to determine the placement
+ -- of freeze nodes for instance bodies that may depend on other instances.
+
+ function Find_Actual_Type
+ (Typ : Entity_Id;
+ Gen_Type : Entity_Id) return Entity_Id;
+ -- When validating the actual types of a child instance, check whether
+ -- the formal is a formal type of the parent unit, and retrieve the current
+ -- actual for it. Typ is the entity in the analyzed formal type declaration
+ -- (component or index type of an array type, or designated type of an
+ -- access formal) and Gen_Type is the enclosing analyzed formal array
+ -- or access type. The desired actual may be a formal of a parent, or may
+ -- be declared in a formal package of a parent. In both cases it is a
+ -- generic actual type because it appears within a visible instance.
+ -- Finally, it may be declared in a parent unit without being a formal
+ -- of that unit, in which case it must be retrieved by visibility.
+ -- Ambiguities may still arise if two homonyms are declared in two formal
+ -- packages, and the prefix of the formal type may be needed to resolve
+ -- the ambiguity in the instance ???
+
+ function In_Same_Declarative_Part
+ (F_Node : Node_Id;
+ Inst : Node_Id) return Boolean;
+ -- True if the instantiation Inst and the given freeze_node F_Node appear
+ -- within the same declarative part, ignoring subunits, but with no inter-
+ -- vening subprograms or concurrent units. Used to find the proper plave
+ -- for the freeze node of an instance, when the generic is declared in a
+ -- previous instance. If predicate is true, the freeze node of the instance
+ -- can be placed after the freeze node of the previous instance, Otherwise
+ -- it has to be placed at the end of the current declarative part.
+
+ function In_Main_Context (E : Entity_Id) return Boolean;
+ -- Check whether an instantiation is in the context of the main unit.
+ -- Used to determine whether its body should be elaborated to allow
+ -- front-end inlining.
+
+ procedure Set_Instance_Env
+ (Gen_Unit : Entity_Id;
+ Act_Unit : Entity_Id);
+ -- Save current instance on saved environment, to be used to determine
+ -- the global status of entities in nested instances. Part of Save_Env.
+ -- called after verifying that the generic unit is legal for the instance,
+ -- The procedure also examines whether the generic unit is a predefined
+ -- unit, in order to set configuration switches accordingly. As a result
+ -- the procedure must be called after analyzing and freezing the actuals.
+
+ procedure Set_Instance_Of (A : Entity_Id; B : Entity_Id);
+ -- Associate analyzed generic parameter with corresponding
+ -- instance. Used for semantic checks at instantiation time.
+
+ function Has_Been_Exchanged (E : Entity_Id) return Boolean;
+ -- Traverse the Exchanged_Views list to see if a type was private
+ -- and has already been flipped during this phase of instantiation.
+
+ procedure Hide_Current_Scope;
+ -- When instantiating a generic child unit, the parent context must be
+ -- present, but the instance and all entities that may be generated
+ -- must be inserted in the current scope. We leave the current scope
+ -- on the stack, but make its entities invisible to avoid visibility
+ -- problems. This is reversed at the end of the instantiation. This is
+ -- not done for the instantiation of the bodies, which only require the
+ -- instances of the generic parents to be in scope.
+
+ procedure Install_Body
+ (Act_Body : Node_Id;
+ N : Node_Id;
+ Gen_Body : Node_Id;
+ Gen_Decl : Node_Id);
+ -- If the instantiation happens textually before the body of the generic,
+ -- the instantiation of the body must be analyzed after the generic body,
+ -- and not at the point of instantiation. Such early instantiations can
+ -- happen if the generic and the instance appear in a package declaration
+ -- because the generic body can only appear in the corresponding package
+ -- body. Early instantiations can also appear if generic, instance and
+ -- body are all in the declarative part of a subprogram or entry. Entities
+ -- of packages that are early instantiations are delayed, and their freeze
+ -- node appears after the generic body.
+
+ procedure Insert_Freeze_Node_For_Instance
+ (N : Node_Id;
+ F_Node : Node_Id);
+ -- N denotes a package or a subprogram instantiation and F_Node is the
+ -- associated freeze node. Insert the freeze node before the first source
+ -- body which follows immediately after N. If no such body is found, the
+ -- freeze node is inserted at the end of the declarative region which
+ -- contains N.
+
+ procedure Freeze_Subprogram_Body
+ (Inst_Node : Node_Id;
+ Gen_Body : Node_Id;
+ Pack_Id : Entity_Id);
+ -- The generic body may appear textually after the instance, including
+ -- in the proper body of a stub, or within a different package instance.
+ -- Given that the instance can only be elaborated after the generic, we
+ -- place freeze_nodes for the instance and/or for packages that may enclose
+ -- the instance and the generic, so that the back-end can establish the
+ -- proper order of elaboration.
+
+ procedure Init_Env;
+ -- Establish environment for subsequent instantiation. Separated from
+ -- Save_Env because data-structures for visibility handling must be
+ -- initialized before call to Check_Generic_Child_Unit.
+
+ procedure Install_Formal_Packages (Par : Entity_Id);
+ -- Install the visible part of any formal of the parent that is a formal
+ -- package. Note that for the case of a formal package with a box, this
+ -- includes the formal part of the formal package (12.7(10/2)).
+
+ procedure Install_Parent (P : Entity_Id; In_Body : Boolean := False);
+ -- When compiling an instance of a child unit the parent (which is
+ -- itself an instance) is an enclosing scope that must be made
+ -- immediately visible. This procedure is also used to install the non-
+ -- generic parent of a generic child unit when compiling its body, so
+ -- that full views of types in the parent are made visible.
+
+ procedure Remove_Parent (In_Body : Boolean := False);
+ -- Reverse effect after instantiation of child is complete
+
+ procedure Install_Hidden_Primitives
+ (Prims_List : in out Elist_Id;
+ Gen_T : Entity_Id;
+ Act_T : Entity_Id);
+ -- Remove suffix 'P' from hidden primitives of Act_T to match the
+ -- visibility of primitives of Gen_T. The list of primitives to which
+ -- the suffix is removed is added to Prims_List to restore them later.
+
+ procedure Restore_Hidden_Primitives (Prims_List : in out Elist_Id);
+ -- Restore suffix 'P' to primitives of Prims_List and leave Prims_List
+ -- set to No_Elist.
+
+ procedure Inline_Instance_Body
+ (N : Node_Id;
+ Gen_Unit : Entity_Id;
+ Act_Decl : Node_Id);
+ -- If front-end inlining is requested, instantiate the package body,
+ -- and preserve the visibility of its compilation unit, to insure
+ -- that successive instantiations succeed.
+
+ -- The functions Instantiate_XXX perform various legality checks and build
+ -- the declarations for instantiated generic parameters. In all of these
+ -- Formal is the entity in the generic unit, Actual is the entity of
+ -- expression in the generic associations, and Analyzed_Formal is the
+ -- formal in the generic copy, which contains the semantic information to
+ -- be used to validate the actual.
+
+ function Instantiate_Object
+ (Formal : Node_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id) return List_Id;
+
+ function Instantiate_Type
+ (Formal : Node_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id;
+ Actual_Decls : List_Id) return List_Id;
+
+ function Instantiate_Formal_Subprogram
+ (Formal : Node_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id) return Node_Id;
+
+ function Instantiate_Formal_Package
+ (Formal : Node_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id) return List_Id;
+ -- If the formal package is declared with a box, special visibility rules
+ -- apply to its formals: they are in the visible part of the package. This
+ -- is true in the declarative region of the formal package, that is to say
+ -- in the enclosing generic or instantiation. For an instantiation, the
+ -- parameters of the formal package are made visible in an explicit step.
+ -- Furthermore, if the actual has a visible USE clause, these formals must
+ -- be made potentially use-visible as well. On exit from the enclosing
+ -- instantiation, the reverse must be done.
+
+ -- For a formal package declared without a box, there are conformance rules
+ -- that apply to the actuals in the generic declaration and the actuals of
+ -- the actual package in the enclosing instantiation. The simplest way to
+ -- apply these rules is to repeat the instantiation of the formal package
+ -- in the context of the enclosing instance, and compare the generic
+ -- associations of this instantiation with those of the actual package.
+ -- This internal instantiation only needs to contain the renamings of the
+ -- formals: the visible and private declarations themselves need not be
+ -- created.
+
+ -- In Ada 2005, the formal package may be only partially parameterized.
+ -- In that case the visibility step must make visible those actuals whose
+ -- corresponding formals were given with a box. A final complication
+ -- involves inherited operations from formal derived types, which must
+ -- be visible if the type is.
+
+ function Is_In_Main_Unit (N : Node_Id) return Boolean;
+ -- Test if given node is in the main unit
+
+ procedure Load_Parent_Of_Generic
+ (N : Node_Id;
+ Spec : Node_Id;
+ Body_Optional : Boolean := False);
+ -- If the generic appears in a separate non-generic library unit, load the
+ -- corresponding body to retrieve the body of the generic. N is the node
+ -- for the generic instantiation, Spec is the generic package declaration.
+ --
+ -- Body_Optional is a flag that indicates that the body is being loaded to
+ -- ensure that temporaries are generated consistently when there are other
+ -- instances in the current declarative part that precede the one being
+ -- loaded. In that case a missing body is acceptable.
+
+ procedure Inherit_Context (Gen_Decl : Node_Id; Inst : Node_Id);
+ -- Add the context clause of the unit containing a generic unit to a
+ -- compilation unit that is, or contains, an instantiation.
+
+ function Get_Associated_Node (N : Node_Id) return Node_Id;
+ -- In order to propagate semantic information back from the analyzed copy
+ -- to the original generic, we maintain links between selected nodes in the
+ -- generic and their corresponding copies. At the end of generic analysis,
+ -- the routine Save_Global_References traverses the generic tree, examines
+ -- the semantic information, and preserves the links to those nodes that
+ -- contain global information. At instantiation, the information from the
+ -- associated node is placed on the new copy, so that name resolution is
+ -- not repeated.
+ --
+ -- Three kinds of source nodes have associated nodes:
+ --
+ -- a) those that can reference (denote) entities, that is identifiers,
+ -- character literals, expanded_names, operator symbols, operators,
+ -- and attribute reference nodes. These nodes have an Entity field
+ -- and are the set of nodes that are in N_Has_Entity.
+ --
+ -- b) aggregates (N_Aggregate and N_Extension_Aggregate)
+ --
+ -- c) selected components (N_Selected_Component)
+ --
+ -- For the first class, the associated node preserves the entity if it is
+ -- global. If the generic contains nested instantiations, the associated
+ -- node itself has been recopied, and a chain of them must be followed.
+ --
+ -- For aggregates, the associated node allows retrieval of the type, which
+ -- may otherwise not appear in the generic. The view of this type may be
+ -- different between generic and instantiation, and the full view can be
+ -- installed before the instantiation is analyzed. For aggregates of type
+ -- extensions, the same view exchange may have to be performed for some of
+ -- the ancestor types, if their view is private at the point of
+ -- instantiation.
+ --
+ -- Nodes that are selected components in the parse tree may be rewritten
+ -- as expanded names after resolution, and must be treated as potential
+ -- entity holders, which is why they also have an Associated_Node.
+ --
+ -- Nodes that do not come from source, such as freeze nodes, do not appear
+ -- in the generic tree, and need not have an associated node.
+ --
+ -- The associated node is stored in the Associated_Node field. Note that
+ -- this field overlaps Entity, which is fine, because the whole point is
+ -- that we don't need or want the normal Entity field in this situation.
+
+ procedure Map_Formal_Package_Entities (Form : Entity_Id; Act : Entity_Id);
+ -- Within the generic part, entities in the formal package are
+ -- visible. To validate subsequent type declarations, indicate
+ -- the correspondence between the entities in the analyzed formal,
+ -- and the entities in the actual package. There are three packages
+ -- involved in the instantiation of a formal package: the parent
+ -- generic P1 which appears in the generic declaration, the fake
+ -- instantiation P2 which appears in the analyzed generic, and whose
+ -- visible entities may be used in subsequent formals, and the actual
+ -- P3 in the instance. To validate subsequent formals, me indicate
+ -- that the entities in P2 are mapped into those of P3. The mapping of
+ -- entities has to be done recursively for nested packages.
+
+ procedure Move_Freeze_Nodes
+ (Out_Of : Entity_Id;
+ After : Node_Id;
+ L : List_Id);
+ -- Freeze nodes can be generated in the analysis of a generic unit, but
+ -- will not be seen by the back-end. It is necessary to move those nodes
+ -- to the enclosing scope if they freeze an outer entity. We place them
+ -- at the end of the enclosing generic package, which is semantically
+ -- neutral.
+
+ procedure Preanalyze_Actuals (N : Node_Id);
+ -- Analyze actuals to perform name resolution. Full resolution is done
+ -- later, when the expected types are known, but names have to be captured
+ -- before installing parents of generics, that are not visible for the
+ -- actuals themselves.
+
+ function True_Parent (N : Node_Id) return Node_Id;
+ -- For a subunit, return parent of corresponding stub, else return
+ -- parent of node.
+
+ procedure Valid_Default_Attribute (Nam : Entity_Id; Def : Node_Id);
+ -- Verify that an attribute that appears as the default for a formal
+ -- subprogram is a function or procedure with the correct profile.
+
+ -------------------------------------------
+ -- Data Structures for Generic Renamings --
+ -------------------------------------------
+
+ -- The map Generic_Renamings associates generic entities with their
+ -- corresponding actuals. Currently used to validate type instances. It
+ -- will eventually be used for all generic parameters to eliminate the
+ -- need for overload resolution in the instance.
+
+ type Assoc_Ptr is new Int;
+
+ Assoc_Null : constant Assoc_Ptr := -1;
+
+ type Assoc is record
+ Gen_Id : Entity_Id;
+ Act_Id : Entity_Id;
+ Next_In_HTable : Assoc_Ptr;
+ end record;
+
+ package Generic_Renamings is new Table.Table
+ (Table_Component_Type => Assoc,
+ Table_Index_Type => Assoc_Ptr,
+ Table_Low_Bound => 0,
+ Table_Initial => 10,
+ Table_Increment => 100,
+ Table_Name => "Generic_Renamings");
+
+ -- Variable to hold enclosing instantiation. When the environment is
+ -- saved for a subprogram inlining, the corresponding Act_Id is empty.
+
+ Current_Instantiated_Parent : Assoc := (Empty, Empty, Assoc_Null);
+
+ -- Hash table for associations
+
+ HTable_Size : constant := 37;
+ type HTable_Range is range 0 .. HTable_Size - 1;
+
+ procedure Set_Next_Assoc (E : Assoc_Ptr; Next : Assoc_Ptr);
+ function Next_Assoc (E : Assoc_Ptr) return Assoc_Ptr;
+ function Get_Gen_Id (E : Assoc_Ptr) return Entity_Id;
+ function Hash (F : Entity_Id) return HTable_Range;
+
+ package Generic_Renamings_HTable is new GNAT.HTable.Static_HTable (
+ Header_Num => HTable_Range,
+ Element => Assoc,
+ Elmt_Ptr => Assoc_Ptr,
+ Null_Ptr => Assoc_Null,
+ Set_Next => Set_Next_Assoc,
+ Next => Next_Assoc,
+ Key => Entity_Id,
+ Get_Key => Get_Gen_Id,
+ Hash => Hash,
+ Equal => "=");
+
+ Exchanged_Views : Elist_Id;
+ -- This list holds the private views that have been exchanged during
+ -- instantiation to restore the visibility of the generic declaration.
+ -- (see comments above). After instantiation, the current visibility is
+ -- reestablished by means of a traversal of this list.
+
+ Hidden_Entities : Elist_Id;
+ -- This list holds the entities of the current scope that are removed
+ -- from immediate visibility when instantiating a child unit. Their
+ -- visibility is restored in Remove_Parent.
+
+ -- Because instantiations can be recursive, the following must be saved
+ -- on entry and restored on exit from an instantiation (spec or body).
+ -- This is done by the two procedures Save_Env and Restore_Env. For
+ -- package and subprogram instantiations (but not for the body instances)
+ -- the action of Save_Env is done in two steps: Init_Env is called before
+ -- Check_Generic_Child_Unit, because setting the parent instances requires
+ -- that the visibility data structures be properly initialized. Once the
+ -- generic is unit is validated, Set_Instance_Env completes Save_Env.
+
+ Parent_Unit_Visible : Boolean := False;
+ -- Parent_Unit_Visible is used when the generic is a child unit, and
+ -- indicates whether the ultimate parent of the generic is visible in the
+ -- instantiation environment. It is used to reset the visibility of the
+ -- parent at the end of the instantiation (see Remove_Parent).
+
+ Instance_Parent_Unit : Entity_Id := Empty;
+ -- This records the ultimate parent unit of an instance of a generic
+ -- child unit and is used in conjunction with Parent_Unit_Visible to
+ -- indicate the unit to which the Parent_Unit_Visible flag corresponds.
+
+ type Instance_Env is record
+ Instantiated_Parent : Assoc;
+ Exchanged_Views : Elist_Id;
+ Hidden_Entities : Elist_Id;
+ Current_Sem_Unit : Unit_Number_Type;
+ Parent_Unit_Visible : Boolean := False;
+ Instance_Parent_Unit : Entity_Id := Empty;
+ Switches : Config_Switches_Type;
+ end record;
+
+ package Instance_Envs is new Table.Table (
+ Table_Component_Type => Instance_Env,
+ Table_Index_Type => Int,
+ Table_Low_Bound => 0,
+ Table_Initial => 32,
+ Table_Increment => 100,
+ Table_Name => "Instance_Envs");
+
+ procedure Restore_Private_Views
+ (Pack_Id : Entity_Id;
+ Is_Package : Boolean := True);
+ -- Restore the private views of external types, and unmark the generic
+ -- renamings of actuals, so that they become compatible subtypes again.
+ -- For subprograms, Pack_Id is the package constructed to hold the
+ -- renamings.
+
+ procedure Switch_View (T : Entity_Id);
+ -- Switch the partial and full views of a type and its private
+ -- dependents (i.e. its subtypes and derived types).
+
+ ------------------------------------
+ -- Structures for Error Reporting --
+ ------------------------------------
+
+ Instantiation_Node : Node_Id;
+ -- Used by subprograms that validate instantiation of formal parameters
+ -- where there might be no actual on which to place the error message.
+ -- Also used to locate the instantiation node for generic subunits.
+
+ Instantiation_Error : exception;
+ -- When there is a semantic error in the generic parameter matching,
+ -- there is no point in continuing the instantiation, because the
+ -- number of cascaded errors is unpredictable. This exception aborts
+ -- the instantiation process altogether.
+
+ S_Adjustment : Sloc_Adjustment;
+ -- Offset created for each node in an instantiation, in order to keep
+ -- track of the source position of the instantiation in each of its nodes.
+ -- A subsequent semantic error or warning on a construct of the instance
+ -- points to both places: the original generic node, and the point of
+ -- instantiation. See Sinput and Sinput.L for additional details.
+
+ ------------------------------------------------------------
+ -- Data structure for keeping track when inside a Generic --
+ ------------------------------------------------------------
+
+ -- The following table is used to save values of the Inside_A_Generic
+ -- flag (see spec of Sem) when they are saved by Start_Generic.
+
+ package Generic_Flags is new Table.Table (
+ Table_Component_Type => Boolean,
+ Table_Index_Type => Int,
+ Table_Low_Bound => 0,
+ Table_Initial => 32,
+ Table_Increment => 200,
+ Table_Name => "Generic_Flags");
+
+ ---------------------------
+ -- Abandon_Instantiation --
+ ---------------------------
+
+ procedure Abandon_Instantiation (N : Node_Id) is
+ begin
+ Error_Msg_N ("\instantiation abandoned!", N);
+ raise Instantiation_Error;
+ end Abandon_Instantiation;
+
+ --------------------------
+ -- Analyze_Associations --
+ --------------------------
+
+ function Analyze_Associations
+ (I_Node : Node_Id;
+ Formals : List_Id;
+ F_Copy : List_Id) return List_Id
+ is
+ Actuals_To_Freeze : constant Elist_Id := New_Elmt_List;
+ Assoc : constant List_Id := New_List;
+ Default_Actuals : constant Elist_Id := New_Elmt_List;
+ Gen_Unit : constant Entity_Id :=
+ Defining_Entity (Parent (F_Copy));
+
+ Actuals : List_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id;
+ First_Named : Node_Id := Empty;
+ Formal : Node_Id;
+ Match : Node_Id;
+ Named : Node_Id;
+ Saved_Formal : Node_Id;
+
+ Default_Formals : constant List_Id := New_List;
+ -- If an Others_Choice is present, some of the formals may be defaulted.
+ -- To simplify the treatment of visibility in an instance, we introduce
+ -- individual defaults for each such formal. These defaults are
+ -- appended to the list of associations and replace the Others_Choice.
+
+ Found_Assoc : Node_Id;
+ -- Association for the current formal being match. Empty if there are
+ -- no remaining actuals, or if there is no named association with the
+ -- name of the formal.
+
+ Is_Named_Assoc : Boolean;
+ Num_Matched : Int := 0;
+ Num_Actuals : Int := 0;
+
+ Others_Present : Boolean := False;
+ Others_Choice : Node_Id := Empty;
+ -- In Ada 2005, indicates partial parameterization of a formal
+ -- package. As usual an other association must be last in the list.
+
+ procedure Check_Overloaded_Formal_Subprogram (Formal : Entity_Id);
+ -- Apply RM 12.3 (9): if a formal subprogram is overloaded, the instance
+ -- cannot have a named association for it. AI05-0025 extends this rule
+ -- to formals of formal packages by AI05-0025, and it also applies to
+ -- box-initialized formals.
+
+ function Has_Fully_Defined_Profile (Subp : Entity_Id) return Boolean;
+ -- Determine whether the parameter types and the return type of Subp
+ -- are fully defined at the point of instantiation.
+
+ function Matching_Actual
+ (F : Entity_Id;
+ A_F : Entity_Id) return Node_Id;
+ -- Find actual that corresponds to a given a formal parameter. If the
+ -- actuals are positional, return the next one, if any. If the actuals
+ -- are named, scan the parameter associations to find the right one.
+ -- A_F is the corresponding entity in the analyzed generic,which is
+ -- placed on the selector name for ASIS use.
+ --
+ -- In Ada 2005, a named association may be given with a box, in which
+ -- case Matching_Actual sets Found_Assoc to the generic association,
+ -- but return Empty for the actual itself. In this case the code below
+ -- creates a corresponding declaration for the formal.
+
+ function Partial_Parameterization return Boolean;
+ -- Ada 2005: if no match is found for a given formal, check if the
+ -- association for it includes a box, or whether the associations
+ -- include an Others clause.
+
+ procedure Process_Default (F : Entity_Id);
+ -- Add a copy of the declaration of generic formal F to the list of
+ -- associations, and add an explicit box association for F if there
+ -- is none yet, and the default comes from an Others_Choice.
+
+ function Renames_Standard_Subprogram (Subp : Entity_Id) return Boolean;
+ -- Determine whether Subp renames one of the subprograms defined in the
+ -- generated package Standard.
+
+ procedure Set_Analyzed_Formal;
+ -- Find the node in the generic copy that corresponds to a given formal.
+ -- The semantic information on this node is used to perform legality
+ -- checks on the actuals. Because semantic analysis can introduce some
+ -- anonymous entities or modify the declaration node itself, the
+ -- correspondence between the two lists is not one-one. In addition to
+ -- anonymous types, the presence a formal equality will introduce an
+ -- implicit declaration for the corresponding inequality.
+
+ ----------------------------------------
+ -- Check_Overloaded_Formal_Subprogram --
+ ----------------------------------------
+
+ procedure Check_Overloaded_Formal_Subprogram (Formal : Entity_Id) is
+ Temp_Formal : Entity_Id;
+
+ begin
+ Temp_Formal := First (Formals);
+ while Present (Temp_Formal) loop
+ if Nkind (Temp_Formal) in N_Formal_Subprogram_Declaration
+ and then Temp_Formal /= Formal
+ and then
+ Chars (Defining_Unit_Name (Specification (Formal))) =
+ Chars (Defining_Unit_Name (Specification (Temp_Formal)))
+ then
+ if Present (Found_Assoc) then
+ Error_Msg_N
+ ("named association not allowed for overloaded formal",
+ Found_Assoc);
+
+ else
+ Error_Msg_N
+ ("named association not allowed for overloaded formal",
+ Others_Choice);
+ end if;
+
+ Abandon_Instantiation (Instantiation_Node);
+ end if;
+
+ Next (Temp_Formal);
+ end loop;
+ end Check_Overloaded_Formal_Subprogram;
+
+ -------------------------------
+ -- Has_Fully_Defined_Profile --
+ -------------------------------
+
+ function Has_Fully_Defined_Profile (Subp : Entity_Id) return Boolean is
+ function Is_Fully_Defined_Type (Typ : Entity_Id) return Boolean;
+ -- Determine whethet type Typ is fully defined
+
+ ---------------------------
+ -- Is_Fully_Defined_Type --
+ ---------------------------
+
+ function Is_Fully_Defined_Type (Typ : Entity_Id) return Boolean is
+ begin
+ -- A private type without a full view is not fully defined
+
+ if Is_Private_Type (Typ)
+ and then No (Full_View (Typ))
+ then
+ return False;
+
+ -- An incomplete type is never fully defined
+
+ elsif Is_Incomplete_Type (Typ) then
+ return False;
+
+ -- All other types are fully defined
+
+ else
+ return True;
+ end if;
+ end Is_Fully_Defined_Type;
+
+ -- Local declarations
+
+ Param : Entity_Id;
+
+ -- Start of processing for Has_Fully_Defined_Profile
+
+ begin
+ -- Check the parameters
+
+ Param := First_Formal (Subp);
+ while Present (Param) loop
+ if not Is_Fully_Defined_Type (Etype (Param)) then
+ return False;
+ end if;
+
+ Next_Formal (Param);
+ end loop;
+
+ -- Check the return type
+
+ return Is_Fully_Defined_Type (Etype (Subp));
+ end Has_Fully_Defined_Profile;
+
+ ---------------------
+ -- Matching_Actual --
+ ---------------------
+
+ function Matching_Actual
+ (F : Entity_Id;
+ A_F : Entity_Id) return Node_Id
+ is
+ Prev : Node_Id;
+ Act : Node_Id;
+
+ begin
+ Is_Named_Assoc := False;
+
+ -- End of list of purely positional parameters
+
+ if No (Actual) or else Nkind (Actual) = N_Others_Choice then
+ Found_Assoc := Empty;
+ Act := Empty;
+
+ -- Case of positional parameter corresponding to current formal
+
+ elsif No (Selector_Name (Actual)) then
+ Found_Assoc := Actual;
+ Act := Explicit_Generic_Actual_Parameter (Actual);
+ Num_Matched := Num_Matched + 1;
+ Next (Actual);
+
+ -- Otherwise scan list of named actuals to find the one with the
+ -- desired name. All remaining actuals have explicit names.
+
+ else
+ Is_Named_Assoc := True;
+ Found_Assoc := Empty;
+ Act := Empty;
+ Prev := Empty;
+
+ while Present (Actual) loop
+ if Chars (Selector_Name (Actual)) = Chars (F) then
+ Set_Entity (Selector_Name (Actual), A_F);
+ Set_Etype (Selector_Name (Actual), Etype (A_F));
+ Generate_Reference (A_F, Selector_Name (Actual));
+ Found_Assoc := Actual;
+ Act := Explicit_Generic_Actual_Parameter (Actual);
+ Num_Matched := Num_Matched + 1;
+ exit;
+ end if;
+
+ Prev := Actual;
+ Next (Actual);
+ end loop;
+
+ -- Reset for subsequent searches. In most cases the named
+ -- associations are in order. If they are not, we reorder them
+ -- to avoid scanning twice the same actual. This is not just a
+ -- question of efficiency: there may be multiple defaults with
+ -- boxes that have the same name. In a nested instantiation we
+ -- insert actuals for those defaults, and cannot rely on their
+ -- names to disambiguate them.
+
+ if Actual = First_Named then
+ Next (First_Named);
+
+ elsif Present (Actual) then
+ Insert_Before (First_Named, Remove_Next (Prev));
+ end if;
+
+ Actual := First_Named;
+ end if;
+
+ if Is_Entity_Name (Act) and then Present (Entity (Act)) then
+ Set_Used_As_Generic_Actual (Entity (Act));
+ end if;
+
+ return Act;
+ end Matching_Actual;
+
+ ------------------------------
+ -- Partial_Parameterization --
+ ------------------------------
+
+ function Partial_Parameterization return Boolean is
+ begin
+ return Others_Present
+ or else (Present (Found_Assoc) and then Box_Present (Found_Assoc));
+ end Partial_Parameterization;
+
+ ---------------------
+ -- Process_Default --
+ ---------------------
+
+ procedure Process_Default (F : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (I_Node);
+ F_Id : constant Entity_Id := Defining_Entity (F);
+ Decl : Node_Id;
+ Default : Node_Id;
+ Id : Entity_Id;
+
+ begin
+ -- Append copy of formal declaration to associations, and create new
+ -- defining identifier for it.
+
+ Decl := New_Copy_Tree (F);
+ Id := Make_Defining_Identifier (Sloc (F_Id), Chars (F_Id));
+
+ if Nkind (F) in N_Formal_Subprogram_Declaration then
+ Set_Defining_Unit_Name (Specification (Decl), Id);
+
+ else
+ Set_Defining_Identifier (Decl, Id);
+ end if;
+
+ Append (Decl, Assoc);
+
+ if No (Found_Assoc) then
+ Default :=
+ Make_Generic_Association (Loc,
+ Selector_Name => New_Occurrence_Of (Id, Loc),
+ Explicit_Generic_Actual_Parameter => Empty);
+ Set_Box_Present (Default);
+ Append (Default, Default_Formals);
+ end if;
+ end Process_Default;
+
+ ---------------------------------
+ -- Renames_Standard_Subprogram --
+ ---------------------------------
+
+ function Renames_Standard_Subprogram (Subp : Entity_Id) return Boolean is
+ Id : Entity_Id;
+
+ begin
+ Id := Alias (Subp);
+ while Present (Id) loop
+ if Scope (Id) = Standard_Standard then
+ return True;
+ end if;
+
+ Id := Alias (Id);
+ end loop;
+
+ return False;
+ end Renames_Standard_Subprogram;
+
+ -------------------------
+ -- Set_Analyzed_Formal --
+ -------------------------
+
+ procedure Set_Analyzed_Formal is
+ Kind : Node_Kind;
+
+ begin
+ while Present (Analyzed_Formal) loop
+ Kind := Nkind (Analyzed_Formal);
+
+ case Nkind (Formal) is
+
+ when N_Formal_Subprogram_Declaration =>
+ exit when Kind in N_Formal_Subprogram_Declaration
+ and then
+ Chars
+ (Defining_Unit_Name (Specification (Formal))) =
+ Chars
+ (Defining_Unit_Name (Specification (Analyzed_Formal)));
+
+ when N_Formal_Package_Declaration =>
+ exit when Nkind_In (Kind, N_Formal_Package_Declaration,
+ N_Generic_Package_Declaration,
+ N_Package_Declaration);
+
+ when N_Use_Package_Clause | N_Use_Type_Clause => exit;
+
+ when others =>
+
+ -- Skip freeze nodes, and nodes inserted to replace
+ -- unrecognized pragmas.
+
+ exit when
+ Kind not in N_Formal_Subprogram_Declaration
+ and then not Nkind_In (Kind, N_Subprogram_Declaration,
+ N_Freeze_Entity,
+ N_Null_Statement,
+ N_Itype_Reference)
+ and then Chars (Defining_Identifier (Formal)) =
+ Chars (Defining_Identifier (Analyzed_Formal));
+ end case;
+
+ Next (Analyzed_Formal);
+ end loop;
+ end Set_Analyzed_Formal;
+
+ -- Start of processing for Analyze_Associations
+
+ begin
+ Actuals := Generic_Associations (I_Node);
+
+ if Present (Actuals) then
+
+ -- Check for an Others choice, indicating a partial parameterization
+ -- for a formal package.
+
+ Actual := First (Actuals);
+ while Present (Actual) loop
+ if Nkind (Actual) = N_Others_Choice then
+ Others_Present := True;
+ Others_Choice := Actual;
+
+ if Present (Next (Actual)) then
+ Error_Msg_N ("others must be last association", Actual);
+ end if;
+
+ -- This subprogram is used both for formal packages and for
+ -- instantiations. For the latter, associations must all be
+ -- explicit.
+
+ if Nkind (I_Node) /= N_Formal_Package_Declaration
+ and then Comes_From_Source (I_Node)
+ then
+ Error_Msg_N
+ ("others association not allowed in an instance",
+ Actual);
+ end if;
+
+ -- In any case, nothing to do after the others association
+
+ exit;
+
+ elsif Box_Present (Actual)
+ and then Comes_From_Source (I_Node)
+ and then Nkind (I_Node) /= N_Formal_Package_Declaration
+ then
+ Error_Msg_N
+ ("box association not allowed in an instance", Actual);
+ end if;
+
+ Next (Actual);
+ end loop;
+
+ -- If named associations are present, save first named association
+ -- (it may of course be Empty) to facilitate subsequent name search.
+
+ First_Named := First (Actuals);
+ while Present (First_Named)
+ and then Nkind (First_Named) /= N_Others_Choice
+ and then No (Selector_Name (First_Named))
+ loop
+ Num_Actuals := Num_Actuals + 1;
+ Next (First_Named);
+ end loop;
+ end if;
+
+ Named := First_Named;
+ while Present (Named) loop
+ if Nkind (Named) /= N_Others_Choice
+ and then No (Selector_Name (Named))
+ then
+ Error_Msg_N ("invalid positional actual after named one", Named);
+ Abandon_Instantiation (Named);
+ end if;
+
+ -- A named association may lack an actual parameter, if it was
+ -- introduced for a default subprogram that turns out to be local
+ -- to the outer instantiation.
+
+ if Nkind (Named) /= N_Others_Choice
+ and then Present (Explicit_Generic_Actual_Parameter (Named))
+ then
+ Num_Actuals := Num_Actuals + 1;
+ end if;
+
+ Next (Named);
+ end loop;
+
+ if Present (Formals) then
+ Formal := First_Non_Pragma (Formals);
+ Analyzed_Formal := First_Non_Pragma (F_Copy);
+
+ if Present (Actuals) then
+ Actual := First (Actuals);
+
+ -- All formals should have default values
+
+ else
+ Actual := Empty;
+ end if;
+
+ while Present (Formal) loop
+ Set_Analyzed_Formal;
+ Saved_Formal := Next_Non_Pragma (Formal);
+
+ case Nkind (Formal) is
+ when N_Formal_Object_Declaration =>
+ Match :=
+ Matching_Actual (
+ Defining_Identifier (Formal),
+ Defining_Identifier (Analyzed_Formal));
+
+ if No (Match) and then Partial_Parameterization then
+ Process_Default (Formal);
+ else
+ Append_List
+ (Instantiate_Object (Formal, Match, Analyzed_Formal),
+ Assoc);
+ end if;
+
+ when N_Formal_Type_Declaration =>
+ Match :=
+ Matching_Actual (
+ Defining_Identifier (Formal),
+ Defining_Identifier (Analyzed_Formal));
+
+ if No (Match) then
+ if Partial_Parameterization then
+ Process_Default (Formal);
+
+ else
+ Error_Msg_Sloc := Sloc (Gen_Unit);
+ Error_Msg_NE
+ ("missing actual&",
+ Instantiation_Node,
+ Defining_Identifier (Formal));
+ Error_Msg_NE ("\in instantiation of & declared#",
+ Instantiation_Node, Gen_Unit);
+ Abandon_Instantiation (Instantiation_Node);
+ end if;
+
+ else
+ Analyze (Match);
+ Append_List
+ (Instantiate_Type
+ (Formal, Match, Analyzed_Formal, Assoc),
+ Assoc);
+
+ -- An instantiation is a freeze point for the actuals,
+ -- unless this is a rewritten formal package, or the
+ -- formal is an Ada 2012 formal incomplete type.
+
+ if Nkind (I_Node) = N_Formal_Package_Declaration
+ or else
+ (Ada_Version >= Ada_2012
+ and then
+ Ekind (Defining_Identifier (Analyzed_Formal)) =
+ E_Incomplete_Type)
+ then
+ null;
+
+ else
+ Append_Elmt (Entity (Match), Actuals_To_Freeze);
+ end if;
+ end if;
+
+ -- A remote access-to-class-wide type is not a legal actual
+ -- for a generic formal of an access type (E.2.2(17/2)).
+ -- In GNAT an exception to this rule is introduced when
+ -- the formal is marked as remote using implementation
+ -- defined aspect/pragma Remote_Access_Type. In that case
+ -- the actual must be remote as well.
+
+ -- If the current instantiation is the construction of a
+ -- local copy for a formal package the actuals may be
+ -- defaulted, and there is no matching actual to check.
+
+ if Nkind (Analyzed_Formal) = N_Formal_Type_Declaration
+ and then
+ Nkind (Formal_Type_Definition (Analyzed_Formal)) =
+ N_Access_To_Object_Definition
+ and then Present (Match)
+ then
+ declare
+ Formal_Ent : constant Entity_Id :=
+ Defining_Identifier (Analyzed_Formal);
+ begin
+ if Is_Remote_Access_To_Class_Wide_Type (Entity (Match))
+ = Is_Remote_Types (Formal_Ent)
+ then
+ -- Remoteness of formal and actual match
+
+ null;
+
+ elsif Is_Remote_Types (Formal_Ent) then
+
+ -- Remote formal, non-remote actual
+
+ Error_Msg_NE
+ ("actual for& must be remote", Match, Formal_Ent);
+
+ else
+ -- Non-remote formal, remote actual
+
+ Error_Msg_NE
+ ("actual for& may not be remote",
+ Match, Formal_Ent);
+ end if;
+ end;
+ end if;
+
+ when N_Formal_Subprogram_Declaration =>
+ Match :=
+ Matching_Actual
+ (Defining_Unit_Name (Specification (Formal)),
+ Defining_Unit_Name (Specification (Analyzed_Formal)));
+
+ -- If the formal subprogram has the same name as another
+ -- formal subprogram of the generic, then a named
+ -- association is illegal (12.3(9)). Exclude named
+ -- associations that are generated for a nested instance.
+
+ if Present (Match)
+ and then Is_Named_Assoc
+ and then Comes_From_Source (Found_Assoc)
+ then
+ Check_Overloaded_Formal_Subprogram (Formal);
+ end if;
+
+ -- If there is no corresponding actual, this may be case
+ -- of partial parameterization, or else the formal has a
+ -- default or a box.
+
+ if No (Match) and then Partial_Parameterization then
+ Process_Default (Formal);
+
+ if Nkind (I_Node) = N_Formal_Package_Declaration then
+ Check_Overloaded_Formal_Subprogram (Formal);
+ end if;
+
+ else
+ Append_To (Assoc,
+ Instantiate_Formal_Subprogram
+ (Formal, Match, Analyzed_Formal));
+
+ -- An instantiation is a freeze point for the actuals,
+ -- unless this is a rewritten formal package.
+
+ if Nkind (I_Node) /= N_Formal_Package_Declaration
+ and then Nkind (Match) = N_Identifier
+ and then Is_Subprogram (Entity (Match))
+
+ -- The actual subprogram may rename a routine defined
+ -- in Standard. Avoid freezing such renamings because
+ -- subprograms coming from Standard cannot be frozen.
+
+ and then
+ not Renames_Standard_Subprogram (Entity (Match))
+
+ -- If the actual subprogram comes from a different
+ -- unit, it is already frozen, either by a body in
+ -- that unit or by the end of the declarative part
+ -- of the unit. This check avoids the freezing of
+ -- subprograms defined in Standard which are used
+ -- as generic actuals.
+
+ and then In_Same_Code_Unit (Entity (Match), I_Node)
+ and then Has_Fully_Defined_Profile (Entity (Match))
+ then
+ -- Mark the subprogram as having a delayed freeze
+ -- since this may be an out-of-order action.
+
+ Set_Has_Delayed_Freeze (Entity (Match));
+ Append_Elmt (Entity (Match), Actuals_To_Freeze);
+ end if;
+ end if;
+
+ -- If this is a nested generic, preserve default for later
+ -- instantiations.
+
+ if No (Match)
+ and then Box_Present (Formal)
+ then
+ Append_Elmt
+ (Defining_Unit_Name (Specification (Last (Assoc))),
+ Default_Actuals);
+ end if;
+
+ when N_Formal_Package_Declaration =>
+ Match :=
+ Matching_Actual (
+ Defining_Identifier (Formal),
+ Defining_Identifier (Original_Node (Analyzed_Formal)));
+
+ if No (Match) then
+ if Partial_Parameterization then
+ Process_Default (Formal);
+
+ else
+ Error_Msg_Sloc := Sloc (Gen_Unit);
+ Error_Msg_NE
+ ("missing actual&",
+ Instantiation_Node, Defining_Identifier (Formal));
+ Error_Msg_NE ("\in instantiation of & declared#",
+ Instantiation_Node, Gen_Unit);
+
+ Abandon_Instantiation (Instantiation_Node);
+ end if;
+
+ else
+ Analyze (Match);
+ Append_List
+ (Instantiate_Formal_Package
+ (Formal, Match, Analyzed_Formal),
+ Assoc);
+ end if;
+
+ -- For use type and use package appearing in the generic part,
+ -- we have already copied them, so we can just move them where
+ -- they belong (we mustn't recopy them since this would mess up
+ -- the Sloc values).
+
+ when N_Use_Package_Clause |
+ N_Use_Type_Clause =>
+ if Nkind (Original_Node (I_Node)) =
+ N_Formal_Package_Declaration
+ then
+ Append (New_Copy_Tree (Formal), Assoc);
+ else
+ Remove (Formal);
+ Append (Formal, Assoc);
+ end if;
+
+ when others =>
+ raise Program_Error;
+
+ end case;
+
+ Formal := Saved_Formal;
+ Next_Non_Pragma (Analyzed_Formal);
+ end loop;
+
+ if Num_Actuals > Num_Matched then
+ Error_Msg_Sloc := Sloc (Gen_Unit);
+
+ if Present (Selector_Name (Actual)) then
+ Error_Msg_NE
+ ("unmatched actual&",
+ Actual, Selector_Name (Actual));
+ Error_Msg_NE ("\in instantiation of& declared#",
+ Actual, Gen_Unit);
+ else
+ Error_Msg_NE
+ ("unmatched actual in instantiation of& declared#",
+ Actual, Gen_Unit);
+ end if;
+ end if;
+
+ elsif Present (Actuals) then
+ Error_Msg_N
+ ("too many actuals in generic instantiation", Instantiation_Node);
+ end if;
+
+ -- An instantiation freezes all generic actuals. The only exceptions
+ -- to this are incomplete types and subprograms which are not fully
+ -- defined at the point of instantiation.
+
+ declare
+ Elmt : Elmt_Id := First_Elmt (Actuals_To_Freeze);
+ begin
+ while Present (Elmt) loop
+ Freeze_Before (I_Node, Node (Elmt));
+ Next_Elmt (Elmt);
+ end loop;
+ end;
+
+ -- If there are default subprograms, normalize the tree by adding
+ -- explicit associations for them. This is required if the instance
+ -- appears within a generic.
+
+ declare
+ Elmt : Elmt_Id;
+ Subp : Entity_Id;
+ New_D : Node_Id;
+
+ begin
+ Elmt := First_Elmt (Default_Actuals);
+ while Present (Elmt) loop
+ if No (Actuals) then
+ Actuals := New_List;
+ Set_Generic_Associations (I_Node, Actuals);
+ end if;
+
+ Subp := Node (Elmt);
+ New_D :=
+ Make_Generic_Association (Sloc (Subp),
+ Selector_Name => New_Occurrence_Of (Subp, Sloc (Subp)),
+ Explicit_Generic_Actual_Parameter =>
+ New_Occurrence_Of (Subp, Sloc (Subp)));
+ Mark_Rewrite_Insertion (New_D);
+ Append_To (Actuals, New_D);
+ Next_Elmt (Elmt);
+ end loop;
+ end;
+
+ -- If this is a formal package, normalize the parameter list by adding
+ -- explicit box associations for the formals that are covered by an
+ -- Others_Choice.
+
+ if not Is_Empty_List (Default_Formals) then
+ Append_List (Default_Formals, Formals);
+ end if;
+
+ return Assoc;
+ end Analyze_Associations;
+
+ -------------------------------
+ -- Analyze_Formal_Array_Type --
+ -------------------------------
+
+ procedure Analyze_Formal_Array_Type
+ (T : in out Entity_Id;
+ Def : Node_Id)
+ is
+ DSS : Node_Id;
+
+ begin
+ -- Treated like a non-generic array declaration, with additional
+ -- semantic checks.
+
+ Enter_Name (T);
+
+ if Nkind (Def) = N_Constrained_Array_Definition then
+ DSS := First (Discrete_Subtype_Definitions (Def));
+ while Present (DSS) loop
+ if Nkind_In (DSS, N_Subtype_Indication,
+ N_Range,
+ N_Attribute_Reference)
+ then
+ Error_Msg_N ("only a subtype mark is allowed in a formal", DSS);
+ end if;
+
+ Next (DSS);
+ end loop;
+ end if;
+
+ Array_Type_Declaration (T, Def);
+ Set_Is_Generic_Type (Base_Type (T));
+
+ if Ekind (Component_Type (T)) = E_Incomplete_Type
+ and then No (Full_View (Component_Type (T)))
+ then
+ Error_Msg_N ("premature usage of incomplete type", Def);
+
+ -- Check that range constraint is not allowed on the component type
+ -- of a generic formal array type (AARM 12.5.3(3))
+
+ elsif Is_Internal (Component_Type (T))
+ and then Present (Subtype_Indication (Component_Definition (Def)))
+ and then Nkind (Original_Node
+ (Subtype_Indication (Component_Definition (Def)))) =
+ N_Subtype_Indication
+ then
+ Error_Msg_N
+ ("in a formal, a subtype indication can only be "
+ & "a subtype mark (RM 12.5.3(3))",
+ Subtype_Indication (Component_Definition (Def)));
+ end if;
+
+ end Analyze_Formal_Array_Type;
+
+ ---------------------------------------------
+ -- Analyze_Formal_Decimal_Fixed_Point_Type --
+ ---------------------------------------------
+
+ -- As for other generic types, we create a valid type representation with
+ -- legal but arbitrary attributes, whose values are never considered
+ -- static. For all scalar types we introduce an anonymous base type, with
+ -- the same attributes. We choose the corresponding integer type to be
+ -- Standard_Integer.
+ -- Here and in other similar routines, the Sloc of the generated internal
+ -- type must be the same as the sloc of the defining identifier of the
+ -- formal type declaration, to provide proper source navigation.
+
+ procedure Analyze_Formal_Decimal_Fixed_Point_Type
+ (T : Entity_Id;
+ Def : Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Def);
+
+ Base : constant Entity_Id :=
+ New_Internal_Entity
+ (E_Decimal_Fixed_Point_Type,
+ Current_Scope,
+ Sloc (Defining_Identifier (Parent (Def))), 'G');
+
+ Int_Base : constant Entity_Id := Standard_Integer;
+ Delta_Val : constant Ureal := Ureal_1;
+ Digs_Val : constant Uint := Uint_6;
+
+ begin
+ Enter_Name (T);
+
+ Set_Etype (Base, Base);
+ Set_Size_Info (Base, Int_Base);
+ Set_RM_Size (Base, RM_Size (Int_Base));
+ Set_First_Rep_Item (Base, First_Rep_Item (Int_Base));
+ Set_Digits_Value (Base, Digs_Val);
+ Set_Delta_Value (Base, Delta_Val);
+ Set_Small_Value (Base, Delta_Val);
+ Set_Scalar_Range (Base,
+ Make_Range (Loc,
+ Low_Bound => Make_Real_Literal (Loc, Ureal_1),
+ High_Bound => Make_Real_Literal (Loc, Ureal_1)));
+
+ Set_Is_Generic_Type (Base);
+ Set_Parent (Base, Parent (Def));
+
+ Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
+ Set_Etype (T, Base);
+ Set_Size_Info (T, Int_Base);
+ Set_RM_Size (T, RM_Size (Int_Base));
+ Set_First_Rep_Item (T, First_Rep_Item (Int_Base));
+ Set_Digits_Value (T, Digs_Val);
+ Set_Delta_Value (T, Delta_Val);
+ Set_Small_Value (T, Delta_Val);
+ Set_Scalar_Range (T, Scalar_Range (Base));
+ Set_Is_Constrained (T);
+
+ Check_Restriction (No_Fixed_Point, Def);
+ end Analyze_Formal_Decimal_Fixed_Point_Type;
+
+ -------------------------------------------
+ -- Analyze_Formal_Derived_Interface_Type --
+ -------------------------------------------
+
+ procedure Analyze_Formal_Derived_Interface_Type
+ (N : Node_Id;
+ T : Entity_Id;
+ Def : Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Def);
+
+ begin
+ -- Rewrite as a type declaration of a derived type. This ensures that
+ -- the interface list and primitive operations are properly captured.
+
+ Rewrite (N,
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => T,
+ Type_Definition => Def));
+ Analyze (N);
+ Set_Is_Generic_Type (T);
+ end Analyze_Formal_Derived_Interface_Type;
+
+ ---------------------------------
+ -- Analyze_Formal_Derived_Type --
+ ---------------------------------
+
+ procedure Analyze_Formal_Derived_Type
+ (N : Node_Id;
+ T : Entity_Id;
+ Def : Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Def);
+ Unk_Disc : constant Boolean := Unknown_Discriminants_Present (N);
+ New_N : Node_Id;
+
+ begin
+ Set_Is_Generic_Type (T);
+
+ if Private_Present (Def) then
+ New_N :=
+ Make_Private_Extension_Declaration (Loc,
+ Defining_Identifier => T,
+ Discriminant_Specifications => Discriminant_Specifications (N),
+ Unknown_Discriminants_Present => Unk_Disc,
+ Subtype_Indication => Subtype_Mark (Def),
+ Interface_List => Interface_List (Def));
+
+ Set_Abstract_Present (New_N, Abstract_Present (Def));
+ Set_Limited_Present (New_N, Limited_Present (Def));
+ Set_Synchronized_Present (New_N, Synchronized_Present (Def));
+
+ else
+ New_N :=
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => T,
+ Discriminant_Specifications =>
+ Discriminant_Specifications (Parent (T)),
+ Type_Definition =>
+ Make_Derived_Type_Definition (Loc,
+ Subtype_Indication => Subtype_Mark (Def)));
+
+ Set_Abstract_Present
+ (Type_Definition (New_N), Abstract_Present (Def));
+ Set_Limited_Present
+ (Type_Definition (New_N), Limited_Present (Def));
+ end if;
+
+ Rewrite (N, New_N);
+ Analyze (N);
+
+ if Unk_Disc then
+ if not Is_Composite_Type (T) then
+ Error_Msg_N
+ ("unknown discriminants not allowed for elementary types", N);
+ else
+ Set_Has_Unknown_Discriminants (T);
+ Set_Is_Constrained (T, False);
+ end if;
+ end if;
+
+ -- If the parent type has a known size, so does the formal, which makes
+ -- legal representation clauses that involve the formal.
+
+ Set_Size_Known_At_Compile_Time
+ (T, Size_Known_At_Compile_Time (Entity (Subtype_Mark (Def))));
+ end Analyze_Formal_Derived_Type;
+
+ ----------------------------------
+ -- Analyze_Formal_Discrete_Type --
+ ----------------------------------
+
+ -- The operations defined for a discrete types are those of an enumeration
+ -- type. The size is set to an arbitrary value, for use in analyzing the
+ -- generic unit.
+
+ procedure Analyze_Formal_Discrete_Type (T : Entity_Id; Def : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (Def);
+ Lo : Node_Id;
+ Hi : Node_Id;
+
+ Base : constant Entity_Id :=
+ New_Internal_Entity
+ (E_Floating_Point_Type, Current_Scope,
+ Sloc (Defining_Identifier (Parent (Def))), 'G');
+
+ begin
+ Enter_Name (T);
+ Set_Ekind (T, E_Enumeration_Subtype);
+ Set_Etype (T, Base);
+ Init_Size (T, 8);
+ Init_Alignment (T);
+ Set_Is_Generic_Type (T);
+ Set_Is_Constrained (T);
+
+ -- For semantic analysis, the bounds of the type must be set to some
+ -- non-static value. The simplest is to create attribute nodes for those
+ -- bounds, that refer to the type itself. These bounds are never
+ -- analyzed but serve as place-holders.
+
+ Lo :=
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_First,
+ Prefix => New_Occurrence_Of (T, Loc));
+ Set_Etype (Lo, T);
+
+ Hi :=
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Last,
+ Prefix => New_Occurrence_Of (T, Loc));
+ Set_Etype (Hi, T);
+
+ Set_Scalar_Range (T,
+ Make_Range (Loc,
+ Low_Bound => Lo,
+ High_Bound => Hi));
+
+ Set_Ekind (Base, E_Enumeration_Type);
+ Set_Etype (Base, Base);
+ Init_Size (Base, 8);
+ Init_Alignment (Base);
+ Set_Is_Generic_Type (Base);
+ Set_Scalar_Range (Base, Scalar_Range (T));
+ Set_Parent (Base, Parent (Def));
+ end Analyze_Formal_Discrete_Type;
+
+ ----------------------------------
+ -- Analyze_Formal_Floating_Type --
+ ---------------------------------
+
+ procedure Analyze_Formal_Floating_Type (T : Entity_Id; Def : Node_Id) is
+ Base : constant Entity_Id :=
+ New_Internal_Entity
+ (E_Floating_Point_Type, Current_Scope,
+ Sloc (Defining_Identifier (Parent (Def))), 'G');
+
+ begin
+ -- The various semantic attributes are taken from the predefined type
+ -- Float, just so that all of them are initialized. Their values are
+ -- never used because no constant folding or expansion takes place in
+ -- the generic itself.
+
+ Enter_Name (T);
+ Set_Ekind (T, E_Floating_Point_Subtype);
+ Set_Etype (T, Base);
+ Set_Size_Info (T, (Standard_Float));
+ Set_RM_Size (T, RM_Size (Standard_Float));
+ Set_Digits_Value (T, Digits_Value (Standard_Float));
+ Set_Scalar_Range (T, Scalar_Range (Standard_Float));
+ Set_Is_Constrained (T);
+
+ Set_Is_Generic_Type (Base);
+ Set_Etype (Base, Base);
+ Set_Size_Info (Base, (Standard_Float));
+ Set_RM_Size (Base, RM_Size (Standard_Float));
+ Set_Digits_Value (Base, Digits_Value (Standard_Float));
+ Set_Scalar_Range (Base, Scalar_Range (Standard_Float));
+ Set_Parent (Base, Parent (Def));
+
+ Check_Restriction (No_Floating_Point, Def);
+ end Analyze_Formal_Floating_Type;
+
+ -----------------------------------
+ -- Analyze_Formal_Interface_Type;--
+ -----------------------------------
+
+ procedure Analyze_Formal_Interface_Type
+ (N : Node_Id;
+ T : Entity_Id;
+ Def : Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ New_N : Node_Id;
+
+ begin
+ New_N :=
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => T,
+ Type_Definition => Def);
+
+ Rewrite (N, New_N);
+ Analyze (N);
+ Set_Is_Generic_Type (T);
+ end Analyze_Formal_Interface_Type;
+
+ ---------------------------------
+ -- Analyze_Formal_Modular_Type --
+ ---------------------------------
+
+ procedure Analyze_Formal_Modular_Type (T : Entity_Id; Def : Node_Id) is
+ begin
+ -- Apart from their entity kind, generic modular types are treated like
+ -- signed integer types, and have the same attributes.
+
+ Analyze_Formal_Signed_Integer_Type (T, Def);
+ Set_Ekind (T, E_Modular_Integer_Subtype);
+ Set_Ekind (Etype (T), E_Modular_Integer_Type);
+
+ end Analyze_Formal_Modular_Type;
+
+ ---------------------------------------
+ -- Analyze_Formal_Object_Declaration --
+ ---------------------------------------
+
+ procedure Analyze_Formal_Object_Declaration (N : Node_Id) is
+ E : constant Node_Id := Default_Expression (N);
+ Id : constant Node_Id := Defining_Identifier (N);
+ K : Entity_Kind;
+ T : Node_Id;
+
+ begin
+ Enter_Name (Id);
+
+ -- Determine the mode of the formal object
+
+ if Out_Present (N) then
+ K := E_Generic_In_Out_Parameter;
+
+ if not In_Present (N) then
+ Error_Msg_N ("formal generic objects cannot have mode OUT", N);
+ end if;
+
+ else
+ K := E_Generic_In_Parameter;
+ end if;
+
+ if Present (Subtype_Mark (N)) then
+ Find_Type (Subtype_Mark (N));
+ T := Entity (Subtype_Mark (N));
+
+ -- Verify that there is no redundant null exclusion
+
+ if Null_Exclusion_Present (N) then
+ if not Is_Access_Type (T) then
+ Error_Msg_N
+ ("null exclusion can only apply to an access type", N);
+
+ elsif Can_Never_Be_Null (T) then
+ Error_Msg_NE
+ ("`NOT NULL` not allowed (& already excludes null)",
+ N, T);
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-423): Formal object with an access definition
+
+ else
+ Check_Access_Definition (N);
+ T := Access_Definition
+ (Related_Nod => N,
+ N => Access_Definition (N));
+ end if;
+
+ if Ekind (T) = E_Incomplete_Type then
+ declare
+ Error_Node : Node_Id;
+
+ begin
+ if Present (Subtype_Mark (N)) then
+ Error_Node := Subtype_Mark (N);
+ else
+ Check_Access_Definition (N);
+ Error_Node := Access_Definition (N);
+ end if;
+
+ Error_Msg_N ("premature usage of incomplete type", Error_Node);
+ end;
+ end if;
+
+ if K = E_Generic_In_Parameter then
+
+ -- Ada 2005 (AI-287): Limited aggregates allowed in generic formals
+
+ if Ada_Version < Ada_2005 and then Is_Limited_Type (T) then
+ Error_Msg_N
+ ("generic formal of mode IN must not be of limited type", N);
+ Explain_Limited_Type (T, N);
+ end if;
+
+ if Is_Abstract_Type (T) then
+ Error_Msg_N
+ ("generic formal of mode IN must not be of abstract type", N);
+ end if;
+
+ if Present (E) then
+ Preanalyze_Spec_Expression (E, T);
+
+ if Is_Limited_Type (T) and then not OK_For_Limited_Init (T, E) then
+ Error_Msg_N
+ ("initialization not allowed for limited types", E);
+ Explain_Limited_Type (T, E);
+ end if;
+ end if;
+
+ Set_Ekind (Id, K);
+ Set_Etype (Id, T);
+
+ -- Case of generic IN OUT parameter
+
+ else
+ -- If the formal has an unconstrained type, construct its actual
+ -- subtype, as is done for subprogram formals. In this fashion, all
+ -- its uses can refer to specific bounds.
+
+ Set_Ekind (Id, K);
+ Set_Etype (Id, T);
+
+ if (Is_Array_Type (T)
+ and then not Is_Constrained (T))
+ or else
+ (Ekind (T) = E_Record_Type
+ and then Has_Discriminants (T))
+ then
+ declare
+ Non_Freezing_Ref : constant Node_Id :=
+ New_Occurrence_Of (Id, Sloc (Id));
+ Decl : Node_Id;
+
+ begin
+ -- Make sure the actual subtype doesn't generate bogus freezing
+
+ Set_Must_Not_Freeze (Non_Freezing_Ref);
+ Decl := Build_Actual_Subtype (T, Non_Freezing_Ref);
+ Insert_Before_And_Analyze (N, Decl);
+ Set_Actual_Subtype (Id, Defining_Identifier (Decl));
+ end;
+ else
+ Set_Actual_Subtype (Id, T);
+ end if;
+
+ if Present (E) then
+ Error_Msg_N
+ ("initialization not allowed for `IN OUT` formals", N);
+ end if;
+ end if;
+
+ if Has_Aspects (N) then
+ Analyze_Aspect_Specifications (N, Id);
+ end if;
+ end Analyze_Formal_Object_Declaration;
+
+ ----------------------------------------------
+ -- Analyze_Formal_Ordinary_Fixed_Point_Type --
+ ----------------------------------------------
+
+ procedure Analyze_Formal_Ordinary_Fixed_Point_Type
+ (T : Entity_Id;
+ Def : Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Def);
+ Base : constant Entity_Id :=
+ New_Internal_Entity
+ (E_Ordinary_Fixed_Point_Type, Current_Scope,
+ Sloc (Defining_Identifier (Parent (Def))), 'G');
+
+ begin
+ -- The semantic attributes are set for completeness only, their values
+ -- will never be used, since all properties of the type are non-static.
+
+ Enter_Name (T);
+ Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
+ Set_Etype (T, Base);
+ Set_Size_Info (T, Standard_Integer);
+ Set_RM_Size (T, RM_Size (Standard_Integer));
+ Set_Small_Value (T, Ureal_1);
+ Set_Delta_Value (T, Ureal_1);
+ Set_Scalar_Range (T,
+ Make_Range (Loc,
+ Low_Bound => Make_Real_Literal (Loc, Ureal_1),
+ High_Bound => Make_Real_Literal (Loc, Ureal_1)));
+ Set_Is_Constrained (T);
+
+ Set_Is_Generic_Type (Base);
+ Set_Etype (Base, Base);
+ Set_Size_Info (Base, Standard_Integer);
+ Set_RM_Size (Base, RM_Size (Standard_Integer));
+ Set_Small_Value (Base, Ureal_1);
+ Set_Delta_Value (Base, Ureal_1);
+ Set_Scalar_Range (Base, Scalar_Range (T));
+ Set_Parent (Base, Parent (Def));
+
+ Check_Restriction (No_Fixed_Point, Def);
+ end Analyze_Formal_Ordinary_Fixed_Point_Type;
+
+ ----------------------------------------
+ -- Analyze_Formal_Package_Declaration --
+ ----------------------------------------
+
+ procedure Analyze_Formal_Package_Declaration (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Pack_Id : constant Entity_Id := Defining_Identifier (N);
+ Formal : Entity_Id;
+ Gen_Id : constant Node_Id := Name (N);
+ Gen_Decl : Node_Id;
+ Gen_Unit : Entity_Id;
+ New_N : Node_Id;
+ Parent_Installed : Boolean := False;
+ Renaming : Node_Id;
+ Parent_Instance : Entity_Id;
+ Renaming_In_Par : Entity_Id;
+ Associations : Boolean := True;
+
+ Vis_Prims_List : Elist_Id := No_Elist;
+ -- List of primitives made temporarily visible in the instantiation
+ -- to match the visibility of the formal type
+
+ function Build_Local_Package return Node_Id;
+ -- The formal package is rewritten so that its parameters are replaced
+ -- with corresponding declarations. For parameters with bona fide
+ -- associations these declarations are created by Analyze_Associations
+ -- as for a regular instantiation. For boxed parameters, we preserve
+ -- the formal declarations and analyze them, in order to introduce
+ -- entities of the right kind in the environment of the formal.
+
+ -------------------------
+ -- Build_Local_Package --
+ -------------------------
+
+ function Build_Local_Package return Node_Id is
+ Decls : List_Id;
+ Pack_Decl : Node_Id;
+
+ begin
+ -- Within the formal, the name of the generic package is a renaming
+ -- of the formal (as for a regular instantiation).
+
+ Pack_Decl :=
+ Make_Package_Declaration (Loc,
+ Specification =>
+ Copy_Generic_Node
+ (Specification (Original_Node (Gen_Decl)),
+ Empty, Instantiating => True));
+
+ Renaming := Make_Package_Renaming_Declaration (Loc,
+ Defining_Unit_Name =>
+ Make_Defining_Identifier (Loc, Chars (Gen_Unit)),
+ Name => New_Occurrence_Of (Formal, Loc));
+
+ if Nkind (Gen_Id) = N_Identifier
+ and then Chars (Gen_Id) = Chars (Pack_Id)
+ then
+ Error_Msg_NE
+ ("& is hidden within declaration of instance", Gen_Id, Gen_Unit);
+ end if;
+
+ -- If the formal is declared with a box, or with an others choice,
+ -- create corresponding declarations for all entities in the formal
+ -- part, so that names with the proper types are available in the
+ -- specification of the formal package.
+
+ -- On the other hand, if there are no associations, then all the
+ -- formals must have defaults, and this will be checked by the
+ -- call to Analyze_Associations.
+
+ if Box_Present (N)
+ or else Nkind (First (Generic_Associations (N))) = N_Others_Choice
+ then
+ declare
+ Formal_Decl : Node_Id;
+
+ begin
+ -- TBA : for a formal package, need to recurse ???
+
+ Decls := New_List;
+ Formal_Decl :=
+ First
+ (Generic_Formal_Declarations (Original_Node (Gen_Decl)));
+ while Present (Formal_Decl) loop
+ Append_To
+ (Decls, Copy_Generic_Node (Formal_Decl, Empty, True));
+ Next (Formal_Decl);
+ end loop;
+ end;
+
+ -- If generic associations are present, use Analyze_Associations to
+ -- create the proper renaming declarations.
+
+ else
+ declare
+ Act_Tree : constant Node_Id :=
+ Copy_Generic_Node
+ (Original_Node (Gen_Decl), Empty,
+ Instantiating => True);
+
+ begin
+ Generic_Renamings.Set_Last (0);
+ Generic_Renamings_HTable.Reset;
+ Instantiation_Node := N;
+
+ Decls :=
+ Analyze_Associations
+ (I_Node => Original_Node (N),
+ Formals => Generic_Formal_Declarations (Act_Tree),
+ F_Copy => Generic_Formal_Declarations (Gen_Decl));
+
+ Vis_Prims_List := Check_Hidden_Primitives (Decls);
+ end;
+ end if;
+
+ Append (Renaming, To => Decls);
+
+ -- Add generated declarations ahead of local declarations in
+ -- the package.
+
+ if No (Visible_Declarations (Specification (Pack_Decl))) then
+ Set_Visible_Declarations (Specification (Pack_Decl), Decls);
+ else
+ Insert_List_Before
+ (First (Visible_Declarations (Specification (Pack_Decl))),
+ Decls);
+ end if;
+
+ return Pack_Decl;
+ end Build_Local_Package;
+
+ -- Start of processing for Analyze_Formal_Package_Declaration
+
+ begin
+ Text_IO_Kludge (Gen_Id);
+
+ Init_Env;
+ Check_Generic_Child_Unit (Gen_Id, Parent_Installed);
+ Gen_Unit := Entity (Gen_Id);
+
+ -- Check for a formal package that is a package renaming
+
+ if Present (Renamed_Object (Gen_Unit)) then
+
+ -- Indicate that unit is used, before replacing it with renamed
+ -- entity for use below.
+
+ if In_Extended_Main_Source_Unit (N) then
+ Set_Is_Instantiated (Gen_Unit);
+ Generate_Reference (Gen_Unit, N);
+ end if;
+
+ Gen_Unit := Renamed_Object (Gen_Unit);
+ end if;
+
+ if Ekind (Gen_Unit) /= E_Generic_Package then
+ Error_Msg_N ("expect generic package name", Gen_Id);
+ Restore_Env;
+ goto Leave;
+
+ elsif Gen_Unit = Current_Scope then
+ Error_Msg_N
+ ("generic package cannot be used as a formal package of itself",
+ Gen_Id);
+ Restore_Env;
+ goto Leave;
+
+ elsif In_Open_Scopes (Gen_Unit) then
+ if Is_Compilation_Unit (Gen_Unit)
+ and then Is_Child_Unit (Current_Scope)
+ then
+ -- Special-case the error when the formal is a parent, and
+ -- continue analysis to minimize cascaded errors.
+
+ Error_Msg_N
+ ("generic parent cannot be used as formal package "
+ & "of a child unit",
+ Gen_Id);
+
+ else
+ Error_Msg_N
+ ("generic package cannot be used as a formal package "
+ & "within itself",
+ Gen_Id);
+ Restore_Env;
+ goto Leave;
+ end if;
+ end if;
+
+ -- Check that name of formal package does not hide name of generic,
+ -- or its leading prefix. This check must be done separately because
+ -- the name of the generic has already been analyzed.
+
+ declare
+ Gen_Name : Entity_Id;
+
+ begin
+ Gen_Name := Gen_Id;
+ while Nkind (Gen_Name) = N_Expanded_Name loop
+ Gen_Name := Prefix (Gen_Name);
+ end loop;
+
+ if Chars (Gen_Name) = Chars (Pack_Id) then
+ Error_Msg_NE
+ ("& is hidden within declaration of formal package",
+ Gen_Id, Gen_Name);
+ end if;
+ end;
+
+ if Box_Present (N)
+ or else No (Generic_Associations (N))
+ or else Nkind (First (Generic_Associations (N))) = N_Others_Choice
+ then
+ Associations := False;
+ end if;
+
+ -- If there are no generic associations, the generic parameters appear
+ -- as local entities and are instantiated like them. We copy the generic
+ -- package declaration as if it were an instantiation, and analyze it
+ -- like a regular package, except that we treat the formals as
+ -- additional visible components.
+
+ Gen_Decl := Unit_Declaration_Node (Gen_Unit);
+
+ if In_Extended_Main_Source_Unit (N) then
+ Set_Is_Instantiated (Gen_Unit);
+ Generate_Reference (Gen_Unit, N);
+ end if;
+
+ Formal := New_Copy (Pack_Id);
+ Create_Instantiation_Source (N, Gen_Unit, False, S_Adjustment);
+
+ begin
+ -- Make local generic without formals. The formals will be replaced
+ -- with internal declarations.
+
+ New_N := Build_Local_Package;
+
+ -- If there are errors in the parameter list, Analyze_Associations
+ -- raises Instantiation_Error. Patch the declaration to prevent
+ -- further exception propagation.
+
+ exception
+ when Instantiation_Error =>
+
+ Enter_Name (Formal);
+ Set_Ekind (Formal, E_Variable);
+ Set_Etype (Formal, Any_Type);
+ Restore_Hidden_Primitives (Vis_Prims_List);
+
+ if Parent_Installed then
+ Remove_Parent;
+ end if;
+
+ goto Leave;
+ end;
+
+ Rewrite (N, New_N);
+ Set_Defining_Unit_Name (Specification (New_N), Formal);
+ Set_Generic_Parent (Specification (N), Gen_Unit);
+ Set_Instance_Env (Gen_Unit, Formal);
+ Set_Is_Generic_Instance (Formal);
+
+ Enter_Name (Formal);
+ Set_Ekind (Formal, E_Package);
+ Set_Etype (Formal, Standard_Void_Type);
+ Set_Inner_Instances (Formal, New_Elmt_List);
+ Push_Scope (Formal);
+
+ if Is_Child_Unit (Gen_Unit)
+ and then Parent_Installed
+ then
+ -- Similarly, we have to make the name of the formal visible in the
+ -- parent instance, to resolve properly fully qualified names that
+ -- may appear in the generic unit. The parent instance has been
+ -- placed on the scope stack ahead of the current scope.
+
+ Parent_Instance := Scope_Stack.Table (Scope_Stack.Last - 1).Entity;
+
+ Renaming_In_Par :=
+ Make_Defining_Identifier (Loc, Chars (Gen_Unit));
+ Set_Ekind (Renaming_In_Par, E_Package);
+ Set_Etype (Renaming_In_Par, Standard_Void_Type);
+ Set_Scope (Renaming_In_Par, Parent_Instance);
+ Set_Parent (Renaming_In_Par, Parent (Formal));
+ Set_Renamed_Object (Renaming_In_Par, Formal);
+ Append_Entity (Renaming_In_Par, Parent_Instance);
+ end if;
+
+ Analyze (Specification (N));
+
+ -- The formals for which associations are provided are not visible
+ -- outside of the formal package. The others are still declared by a
+ -- formal parameter declaration.
+
+ -- If there are no associations, the only local entity to hide is the
+ -- generated package renaming itself.
+
+ declare
+ E : Entity_Id;
+
+ begin
+ E := First_Entity (Formal);
+ while Present (E) loop
+ if Associations
+ and then not Is_Generic_Formal (E)
+ then
+ Set_Is_Hidden (E);
+ end if;
+
+ if Ekind (E) = E_Package
+ and then Renamed_Entity (E) = Formal
+ then
+ Set_Is_Hidden (E);
+ exit;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end;
+
+ End_Package_Scope (Formal);
+ Restore_Hidden_Primitives (Vis_Prims_List);
+
+ if Parent_Installed then
+ Remove_Parent;
+ end if;
+
+ Restore_Env;
+
+ -- Inside the generic unit, the formal package is a regular package, but
+ -- no body is needed for it. Note that after instantiation, the defining
+ -- unit name we need is in the new tree and not in the original (see
+ -- Package_Instantiation). A generic formal package is an instance, and
+ -- can be used as an actual for an inner instance.
+
+ Set_Has_Completion (Formal, True);
+
+ -- Add semantic information to the original defining identifier.
+ -- for ASIS use.
+
+ Set_Ekind (Pack_Id, E_Package);
+ Set_Etype (Pack_Id, Standard_Void_Type);
+ Set_Scope (Pack_Id, Scope (Formal));
+ Set_Has_Completion (Pack_Id, True);
+
+ <<Leave>>
+ if Has_Aspects (N) then
+ Analyze_Aspect_Specifications (N, Pack_Id);
+ end if;
+ end Analyze_Formal_Package_Declaration;
+
+ ---------------------------------
+ -- Analyze_Formal_Private_Type --
+ ---------------------------------
+
+ procedure Analyze_Formal_Private_Type
+ (N : Node_Id;
+ T : Entity_Id;
+ Def : Node_Id)
+ is
+ begin
+ New_Private_Type (N, T, Def);
+
+ -- Set the size to an arbitrary but legal value
+
+ Set_Size_Info (T, Standard_Integer);
+ Set_RM_Size (T, RM_Size (Standard_Integer));
+ end Analyze_Formal_Private_Type;
+
+ ------------------------------------
+ -- Analyze_Formal_Incomplete_Type --
+ ------------------------------------
+
+ procedure Analyze_Formal_Incomplete_Type
+ (T : Entity_Id;
+ Def : Node_Id)
+ is
+ begin
+ Enter_Name (T);
+ Set_Ekind (T, E_Incomplete_Type);
+ Set_Etype (T, T);
+ Set_Private_Dependents (T, New_Elmt_List);
+
+ if Tagged_Present (Def) then
+ Set_Is_Tagged_Type (T);
+ Make_Class_Wide_Type (T);
+ Set_Direct_Primitive_Operations (T, New_Elmt_List);
+ end if;
+ end Analyze_Formal_Incomplete_Type;
+
+ ----------------------------------------
+ -- Analyze_Formal_Signed_Integer_Type --
+ ----------------------------------------
+
+ procedure Analyze_Formal_Signed_Integer_Type
+ (T : Entity_Id;
+ Def : Node_Id)
+ is
+ Base : constant Entity_Id :=
+ New_Internal_Entity
+ (E_Signed_Integer_Type,
+ Current_Scope,
+ Sloc (Defining_Identifier (Parent (Def))), 'G');
+
+ begin
+ Enter_Name (T);
+
+ Set_Ekind (T, E_Signed_Integer_Subtype);
+ Set_Etype (T, Base);
+ Set_Size_Info (T, Standard_Integer);
+ Set_RM_Size (T, RM_Size (Standard_Integer));
+ Set_Scalar_Range (T, Scalar_Range (Standard_Integer));
+ Set_Is_Constrained (T);
+
+ Set_Is_Generic_Type (Base);
+ Set_Size_Info (Base, Standard_Integer);
+ Set_RM_Size (Base, RM_Size (Standard_Integer));
+ Set_Etype (Base, Base);
+ Set_Scalar_Range (Base, Scalar_Range (Standard_Integer));
+ Set_Parent (Base, Parent (Def));
+ end Analyze_Formal_Signed_Integer_Type;
+
+ -------------------------------------------
+ -- Analyze_Formal_Subprogram_Declaration --
+ -------------------------------------------
+
+ procedure Analyze_Formal_Subprogram_Declaration (N : Node_Id) is
+ Spec : constant Node_Id := Specification (N);
+ Def : constant Node_Id := Default_Name (N);
+ Nam : constant Entity_Id := Defining_Unit_Name (Spec);
+ Subp : Entity_Id;
+
+ begin
+ if Nam = Error then
+ return;
+ end if;
+
+ if Nkind (Nam) = N_Defining_Program_Unit_Name then
+ Error_Msg_N ("name of formal subprogram must be a direct name", Nam);
+ goto Leave;
+ end if;
+
+ Analyze_Subprogram_Declaration (N);
+ Set_Is_Formal_Subprogram (Nam);
+ Set_Has_Completion (Nam);
+
+ if Nkind (N) = N_Formal_Abstract_Subprogram_Declaration then
+ Set_Is_Abstract_Subprogram (Nam);
+ Set_Is_Dispatching_Operation (Nam);
+
+ declare
+ Ctrl_Type : constant Entity_Id := Find_Dispatching_Type (Nam);
+ begin
+ if No (Ctrl_Type) then
+ Error_Msg_N
+ ("abstract formal subprogram must have a controlling type",
+ N);
+
+ elsif Ada_Version >= Ada_2012
+ and then Is_Incomplete_Type (Ctrl_Type)
+ then
+ Error_Msg_NE
+ ("controlling type of abstract formal subprogram cannot " &
+ "be incomplete type", N, Ctrl_Type);
+
+ else
+ Check_Controlling_Formals (Ctrl_Type, Nam);
+ end if;
+ end;
+ end if;
+
+ -- Default name is resolved at the point of instantiation
+
+ if Box_Present (N) then
+ null;
+
+ -- Else default is bound at the point of generic declaration
+
+ elsif Present (Def) then
+ if Nkind (Def) = N_Operator_Symbol then
+ Find_Direct_Name (Def);
+
+ elsif Nkind (Def) /= N_Attribute_Reference then
+ Analyze (Def);
+
+ else
+ -- For an attribute reference, analyze the prefix and verify
+ -- that it has the proper profile for the subprogram.
+
+ Analyze (Prefix (Def));
+ Valid_Default_Attribute (Nam, Def);
+ goto Leave;
+ end if;
+
+ -- Default name may be overloaded, in which case the interpretation
+ -- with the correct profile must be selected, as for a renaming.
+ -- If the definition is an indexed component, it must denote a
+ -- member of an entry family. If it is a selected component, it
+ -- can be a protected operation.
+
+ if Etype (Def) = Any_Type then
+ goto Leave;
+
+ elsif Nkind (Def) = N_Selected_Component then
+ if not Is_Overloadable (Entity (Selector_Name (Def))) then
+ Error_Msg_N ("expect valid subprogram name as default", Def);
+ end if;
+
+ elsif Nkind (Def) = N_Indexed_Component then
+ if Is_Entity_Name (Prefix (Def)) then
+ if Ekind (Entity (Prefix (Def))) /= E_Entry_Family then
+ Error_Msg_N ("expect valid subprogram name as default", Def);
+ end if;
+
+ elsif Nkind (Prefix (Def)) = N_Selected_Component then
+ if Ekind (Entity (Selector_Name (Prefix (Def)))) /=
+ E_Entry_Family
+ then
+ Error_Msg_N ("expect valid subprogram name as default", Def);
+ end if;
+
+ else
+ Error_Msg_N ("expect valid subprogram name as default", Def);
+ goto Leave;
+ end if;
+
+ elsif Nkind (Def) = N_Character_Literal then
+
+ -- Needs some type checks: subprogram should be parameterless???
+
+ Resolve (Def, (Etype (Nam)));
+
+ elsif not Is_Entity_Name (Def)
+ or else not Is_Overloadable (Entity (Def))
+ then
+ Error_Msg_N ("expect valid subprogram name as default", Def);
+ goto Leave;
+
+ elsif not Is_Overloaded (Def) then
+ Subp := Entity (Def);
+
+ if Subp = Nam then
+ Error_Msg_N ("premature usage of formal subprogram", Def);
+
+ elsif not Entity_Matches_Spec (Subp, Nam) then
+ Error_Msg_N ("no visible entity matches specification", Def);
+ end if;
+
+ -- More than one interpretation, so disambiguate as for a renaming
+
+ else
+ declare
+ I : Interp_Index;
+ I1 : Interp_Index := 0;
+ It : Interp;
+ It1 : Interp;
+
+ begin
+ Subp := Any_Id;
+ Get_First_Interp (Def, I, It);
+ while Present (It.Nam) loop
+ if Entity_Matches_Spec (It.Nam, Nam) then
+ if Subp /= Any_Id then
+ It1 := Disambiguate (Def, I1, I, Etype (Subp));
+
+ if It1 = No_Interp then
+ Error_Msg_N ("ambiguous default subprogram", Def);
+ else
+ Subp := It1.Nam;
+ end if;
+
+ exit;
+
+ else
+ I1 := I;
+ Subp := It.Nam;
+ end if;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+
+ if Subp /= Any_Id then
+
+ -- Subprogram found, generate reference to it
+
+ Set_Entity (Def, Subp);
+ Generate_Reference (Subp, Def);
+
+ if Subp = Nam then
+ Error_Msg_N ("premature usage of formal subprogram", Def);
+
+ elsif Ekind (Subp) /= E_Operator then
+ Check_Mode_Conformant (Subp, Nam);
+ end if;
+
+ else
+ Error_Msg_N ("no visible subprogram matches specification", N);
+ end if;
+ end if;
+ end if;
+
+ <<Leave>>
+ if Has_Aspects (N) then
+ Analyze_Aspect_Specifications (N, Nam);
+ end if;
+
+ end Analyze_Formal_Subprogram_Declaration;
+
+ -------------------------------------
+ -- Analyze_Formal_Type_Declaration --
+ -------------------------------------
+
+ procedure Analyze_Formal_Type_Declaration (N : Node_Id) is
+ Def : constant Node_Id := Formal_Type_Definition (N);
+ T : Entity_Id;
+
+ begin
+ T := Defining_Identifier (N);
+
+ if Present (Discriminant_Specifications (N))
+ and then Nkind (Def) /= N_Formal_Private_Type_Definition
+ then
+ Error_Msg_N
+ ("discriminants not allowed for this formal type", T);
+ end if;
+
+ -- Enter the new name, and branch to specific routine
+
+ case Nkind (Def) is
+ when N_Formal_Private_Type_Definition =>
+ Analyze_Formal_Private_Type (N, T, Def);
+
+ when N_Formal_Derived_Type_Definition =>
+ Analyze_Formal_Derived_Type (N, T, Def);
+
+ when N_Formal_Incomplete_Type_Definition =>
+ Analyze_Formal_Incomplete_Type (T, Def);
+
+ when N_Formal_Discrete_Type_Definition =>
+ Analyze_Formal_Discrete_Type (T, Def);
+
+ when N_Formal_Signed_Integer_Type_Definition =>
+ Analyze_Formal_Signed_Integer_Type (T, Def);
+
+ when N_Formal_Modular_Type_Definition =>
+ Analyze_Formal_Modular_Type (T, Def);
+
+ when N_Formal_Floating_Point_Definition =>
+ Analyze_Formal_Floating_Type (T, Def);
+
+ when N_Formal_Ordinary_Fixed_Point_Definition =>
+ Analyze_Formal_Ordinary_Fixed_Point_Type (T, Def);
+
+ when N_Formal_Decimal_Fixed_Point_Definition =>
+ Analyze_Formal_Decimal_Fixed_Point_Type (T, Def);
+
+ when N_Array_Type_Definition =>
+ Analyze_Formal_Array_Type (T, Def);
+
+ when N_Access_To_Object_Definition |
+ N_Access_Function_Definition |
+ N_Access_Procedure_Definition =>
+ Analyze_Generic_Access_Type (T, Def);
+
+ -- Ada 2005: a interface declaration is encoded as an abstract
+ -- record declaration or a abstract type derivation.
+
+ when N_Record_Definition =>
+ Analyze_Formal_Interface_Type (N, T, Def);
+
+ when N_Derived_Type_Definition =>
+ Analyze_Formal_Derived_Interface_Type (N, T, Def);
+
+ when N_Error =>
+ null;
+
+ when others =>
+ raise Program_Error;
+
+ end case;
+
+ Set_Is_Generic_Type (T);
+
+ if Has_Aspects (N) then
+ Analyze_Aspect_Specifications (N, T);
+ end if;
+ end Analyze_Formal_Type_Declaration;
+
+ ------------------------------------
+ -- Analyze_Function_Instantiation --
+ ------------------------------------
+
+ procedure Analyze_Function_Instantiation (N : Node_Id) is
+ begin
+ Analyze_Subprogram_Instantiation (N, E_Function);
+ end Analyze_Function_Instantiation;
+
+ ---------------------------------
+ -- Analyze_Generic_Access_Type --
+ ---------------------------------
+
+ procedure Analyze_Generic_Access_Type (T : Entity_Id; Def : Node_Id) is
+ begin
+ Enter_Name (T);
+
+ if Nkind (Def) = N_Access_To_Object_Definition then
+ Access_Type_Declaration (T, Def);
+
+ if Is_Incomplete_Or_Private_Type (Designated_Type (T))
+ and then No (Full_View (Designated_Type (T)))
+ and then not Is_Generic_Type (Designated_Type (T))
+ then
+ Error_Msg_N ("premature usage of incomplete type", Def);
+
+ elsif not Is_Entity_Name (Subtype_Indication (Def)) then
+ Error_Msg_N
+ ("only a subtype mark is allowed in a formal", Def);
+ end if;
+
+ else
+ Access_Subprogram_Declaration (T, Def);
+ end if;
+ end Analyze_Generic_Access_Type;
+
+ ---------------------------------
+ -- Analyze_Generic_Formal_Part --
+ ---------------------------------
+
+ procedure Analyze_Generic_Formal_Part (N : Node_Id) is
+ Gen_Parm_Decl : Node_Id;
+
+ begin
+ -- The generic formals are processed in the scope of the generic unit,
+ -- where they are immediately visible. The scope is installed by the
+ -- caller.
+
+ Gen_Parm_Decl := First (Generic_Formal_Declarations (N));
+
+ while Present (Gen_Parm_Decl) loop
+ Analyze (Gen_Parm_Decl);
+ Next (Gen_Parm_Decl);
+ end loop;
+
+ Generate_Reference_To_Generic_Formals (Current_Scope);
+ end Analyze_Generic_Formal_Part;
+
+ ------------------------------------------
+ -- Analyze_Generic_Package_Declaration --
+ ------------------------------------------
+
+ procedure Analyze_Generic_Package_Declaration (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Id : Entity_Id;
+ New_N : Node_Id;
+ Save_Parent : Node_Id;
+ Renaming : Node_Id;
+ Decls : constant List_Id :=
+ Visible_Declarations (Specification (N));
+ Decl : Node_Id;
+
+ begin
+ Check_SPARK_Restriction ("generic is not allowed", N);
+
+ -- We introduce a renaming of the enclosing package, to have a usable
+ -- entity as the prefix of an expanded name for a local entity of the
+ -- form Par.P.Q, where P is the generic package. This is because a local
+ -- entity named P may hide it, so that the usual visibility rules in
+ -- the instance will not resolve properly.
+
+ Renaming :=
+ Make_Package_Renaming_Declaration (Loc,
+ Defining_Unit_Name =>
+ Make_Defining_Identifier (Loc,
+ Chars => New_External_Name (Chars (Defining_Entity (N)), "GH")),
+ Name => Make_Identifier (Loc, Chars (Defining_Entity (N))));
+
+ if Present (Decls) then
+ Decl := First (Decls);
+ while Present (Decl)
+ and then Nkind (Decl) = N_Pragma
+ loop
+ Next (Decl);
+ end loop;
+
+ if Present (Decl) then
+ Insert_Before (Decl, Renaming);
+ else
+ Append (Renaming, Visible_Declarations (Specification (N)));
+ end if;
+
+ else
+ Set_Visible_Declarations (Specification (N), New_List (Renaming));
+ end if;
+
+ -- Create copy of generic unit, and save for instantiation. If the unit
+ -- is a child unit, do not copy the specifications for the parent, which
+ -- are not part of the generic tree.
+
+ Save_Parent := Parent_Spec (N);
+ Set_Parent_Spec (N, Empty);
+
+ New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
+ Set_Parent_Spec (New_N, Save_Parent);
+ Rewrite (N, New_N);
+
+ -- Once the contents of the generic copy and the template are swapped,
+ -- do the same for their respective aspect specifications.
+
+ Exchange_Aspects (N, New_N);
+ Id := Defining_Entity (N);
+ Generate_Definition (Id);
+
+ -- Expansion is not applied to generic units
+
+ Start_Generic;
+
+ Enter_Name (Id);
+ Set_Ekind (Id, E_Generic_Package);
+ Set_Etype (Id, Standard_Void_Type);
+ Set_Contract (Id, Make_Contract (Sloc (Id)));
+
+ -- Analyze aspects now, so that generated pragmas appear in the
+ -- declarations before building and analyzing the generic copy.
+
+ if Has_Aspects (N) then
+ Analyze_Aspect_Specifications (N, Id);
+ end if;
+
+ Push_Scope (Id);
+ Enter_Generic_Scope (Id);
+ Set_Inner_Instances (Id, New_Elmt_List);
+
+ Set_Categorization_From_Pragmas (N);
+ Set_Is_Pure (Id, Is_Pure (Current_Scope));
+
+ -- Link the declaration of the generic homonym in the generic copy to
+ -- the package it renames, so that it is always resolved properly.
+
+ Set_Generic_Homonym (Id, Defining_Unit_Name (Renaming));
+ Set_Entity (Associated_Node (Name (Renaming)), Id);
+
+ -- For a library unit, we have reconstructed the entity for the unit,
+ -- and must reset it in the library tables.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ Set_Cunit_Entity (Current_Sem_Unit, Id);
+ end if;
+
+ Analyze_Generic_Formal_Part (N);
+
+ -- After processing the generic formals, analysis proceeds as for a
+ -- non-generic package.
+
+ Analyze (Specification (N));
+
+ Validate_Categorization_Dependency (N, Id);
+
+ End_Generic;
+
+ End_Package_Scope (Id);
+ Exit_Generic_Scope (Id);
+
+ if Nkind (Parent (N)) /= N_Compilation_Unit then
+ Move_Freeze_Nodes (Id, N, Visible_Declarations (Specification (N)));
+ Move_Freeze_Nodes (Id, N, Private_Declarations (Specification (N)));
+ Move_Freeze_Nodes (Id, N, Generic_Formal_Declarations (N));
+
+ else
+ Set_Body_Required (Parent (N), Unit_Requires_Body (Id));
+ Validate_RT_RAT_Component (N);
+
+ -- If this is a spec without a body, check that generic parameters
+ -- are referenced.
+
+ if not Body_Required (Parent (N)) then
+ Check_References (Id);
+ end if;
+ end if;
+ end Analyze_Generic_Package_Declaration;
+
+ --------------------------------------------
+ -- Analyze_Generic_Subprogram_Declaration --
+ --------------------------------------------
+
+ procedure Analyze_Generic_Subprogram_Declaration (N : Node_Id) is
+ Spec : Node_Id;
+ Id : Entity_Id;
+ Formals : List_Id;
+ New_N : Node_Id;
+ Result_Type : Entity_Id;
+ Save_Parent : Node_Id;
+ Typ : Entity_Id;
+
+ begin
+ Check_SPARK_Restriction ("generic is not allowed", N);
+
+ -- Create copy of generic unit, and save for instantiation. If the unit
+ -- is a child unit, do not copy the specifications for the parent, which
+ -- are not part of the generic tree.
+
+ Save_Parent := Parent_Spec (N);
+ Set_Parent_Spec (N, Empty);
+
+ New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
+ Set_Parent_Spec (New_N, Save_Parent);
+ Rewrite (N, New_N);
+
+ Check_SPARK_Mode_In_Generic (N);
+
+ -- The aspect specifications are not attached to the tree, and must
+ -- be copied and attached to the generic copy explicitly.
+
+ if Present (Aspect_Specifications (New_N)) then
+ declare
+ Aspects : constant List_Id := Aspect_Specifications (N);
+ begin
+ Set_Has_Aspects (N, False);
+ Move_Aspects (New_N, To => N);
+ Set_Has_Aspects (Original_Node (N), False);
+ Set_Aspect_Specifications (Original_Node (N), Aspects);
+ end;
+ end if;
+
+ Spec := Specification (N);
+ Id := Defining_Entity (Spec);
+ Generate_Definition (Id);
+ Set_Contract (Id, Make_Contract (Sloc (Id)));
+
+ if Nkind (Id) = N_Defining_Operator_Symbol then
+ Error_Msg_N
+ ("operator symbol not allowed for generic subprogram", Id);
+ end if;
+
+ Start_Generic;
+
+ Enter_Name (Id);
+
+ Set_Scope_Depth_Value (Id, Scope_Depth (Current_Scope) + 1);
+ Push_Scope (Id);
+ Enter_Generic_Scope (Id);
+ Set_Inner_Instances (Id, New_Elmt_List);
+ Set_Is_Pure (Id, Is_Pure (Current_Scope));
+
+ Analyze_Generic_Formal_Part (N);
+
+ Formals := Parameter_Specifications (Spec);
+
+ if Present (Formals) then
+ Process_Formals (Formals, Spec);
+ end if;
+
+ if Nkind (Spec) = N_Function_Specification then
+ Set_Ekind (Id, E_Generic_Function);
+
+ if Nkind (Result_Definition (Spec)) = N_Access_Definition then
+ Result_Type := Access_Definition (Spec, Result_Definition (Spec));
+ Set_Etype (Id, Result_Type);
+
+ -- Check restriction imposed by AI05-073: a generic function
+ -- cannot return an abstract type or an access to such.
+
+ -- This is a binding interpretation should it apply to earlier
+ -- versions of Ada as well as Ada 2012???
+
+ if Is_Abstract_Type (Designated_Type (Result_Type))
+ and then Ada_Version >= Ada_2012
+ then
+ Error_Msg_N ("generic function cannot have an access result"
+ & " that designates an abstract type", Spec);
+ end if;
+
+ else
+ Find_Type (Result_Definition (Spec));
+ Typ := Entity (Result_Definition (Spec));
+
+ if Is_Abstract_Type (Typ)
+ and then Ada_Version >= Ada_2012
+ then
+ Error_Msg_N
+ ("generic function cannot have abstract result type", Spec);
+ end if;
+
+ -- If a null exclusion is imposed on the result type, then create
+ -- a null-excluding itype (an access subtype) and use it as the
+ -- function's Etype.
+
+ if Is_Access_Type (Typ)
+ and then Null_Exclusion_Present (Spec)
+ then
+ Set_Etype (Id,
+ Create_Null_Excluding_Itype
+ (T => Typ,
+ Related_Nod => Spec,
+ Scope_Id => Defining_Unit_Name (Spec)));
+ else
+ Set_Etype (Id, Typ);
+ end if;
+ end if;
+
+ else
+ Set_Ekind (Id, E_Generic_Procedure);
+ Set_Etype (Id, Standard_Void_Type);
+ end if;
+
+ -- For a library unit, we have reconstructed the entity for the unit,
+ -- and must reset it in the library tables. We also make sure that
+ -- Body_Required is set properly in the original compilation unit node.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ Set_Cunit_Entity (Current_Sem_Unit, Id);
+ Set_Body_Required (Parent (N), Unit_Requires_Body (Id));
+ end if;
+
+ Set_Categorization_From_Pragmas (N);
+ Validate_Categorization_Dependency (N, Id);
+
+ Save_Global_References (Original_Node (N));
+
+ -- For ASIS purposes, convert any postcondition, precondition pragmas
+ -- into aspects, if N is not a compilation unit by itself, in order to
+ -- enable the analysis of expressions inside the corresponding PPC
+ -- pragmas.
+
+ if ASIS_Mode and then Is_List_Member (N) then
+ Make_Aspect_For_PPC_In_Gen_Sub_Decl (N);
+ end if;
+
+ -- To capture global references, analyze the expressions of aspects,
+ -- and propagate information to original tree. Note that in this case
+ -- analysis of attributes is not delayed until the freeze point.
+
+ -- It seems very hard to recreate the proper visibility of the generic
+ -- subprogram at a later point because the analysis of an aspect may
+ -- create pragmas after the generic copies have been made ???
+
+ if Has_Aspects (N) then
+ declare
+ Aspect : Node_Id;
+
+ begin
+ Aspect := First (Aspect_Specifications (N));
+ while Present (Aspect) loop
+ if Get_Aspect_Id (Aspect) /= Aspect_Warnings
+ and then Present (Expression (Aspect))
+ then
+ Analyze (Expression (Aspect));
+ end if;
+
+ Next (Aspect);
+ end loop;
+
+ Aspect := First (Aspect_Specifications (Original_Node (N)));
+ while Present (Aspect) loop
+ if Present (Expression (Aspect)) then
+ Save_Global_References (Expression (Aspect));
+ end if;
+
+ Next (Aspect);
+ end loop;
+ end;
+ end if;
+
+ End_Generic;
+ End_Scope;
+ Exit_Generic_Scope (Id);
+ Generate_Reference_To_Formals (Id);
+
+ List_Inherited_Pre_Post_Aspects (Id);
+ end Analyze_Generic_Subprogram_Declaration;
+
+ -----------------------------------
+ -- Analyze_Package_Instantiation --
+ -----------------------------------
+
+ procedure Analyze_Package_Instantiation (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Gen_Id : constant Node_Id := Name (N);
+
+ Act_Decl : Node_Id;
+ Act_Decl_Name : Node_Id;
+ Act_Decl_Id : Entity_Id;
+ Act_Spec : Node_Id;
+ Act_Tree : Node_Id;
+
+ Gen_Decl : Node_Id;
+ Gen_Unit : Entity_Id;
+
+ Is_Actual_Pack : constant Boolean :=
+ Is_Internal (Defining_Entity (N));
+
+ Env_Installed : Boolean := False;
+ Parent_Installed : Boolean := False;
+ Renaming_List : List_Id;
+ Unit_Renaming : Node_Id;
+ Needs_Body : Boolean;
+ Inline_Now : Boolean := False;
+
+ Save_Style_Check : constant Boolean := Style_Check;
+ -- Save style check mode for restore on exit
+
+ procedure Delay_Descriptors (E : Entity_Id);
+ -- Delay generation of subprogram descriptors for given entity
+
+ function Might_Inline_Subp return Boolean;
+ -- If inlining is active and the generic contains inlined subprograms,
+ -- we instantiate the body. This may cause superfluous instantiations,
+ -- but it is simpler than detecting the need for the body at the point
+ -- of inlining, when the context of the instance is not available.
+
+ function Must_Inline_Subp return Boolean;
+ -- If inlining is active and the generic contains inlined subprograms,
+ -- return True if some of the inlined subprograms must be inlined by
+ -- the frontend.
+
+ -----------------------
+ -- Delay_Descriptors --
+ -----------------------
+
+ procedure Delay_Descriptors (E : Entity_Id) is
+ begin
+ if not Delay_Subprogram_Descriptors (E) then
+ Set_Delay_Subprogram_Descriptors (E);
+ Pending_Descriptor.Append (E);
+ end if;
+ end Delay_Descriptors;
+
+ -----------------------
+ -- Might_Inline_Subp --
+ -----------------------
+
+ function Might_Inline_Subp return Boolean is
+ E : Entity_Id;
+
+ begin
+ if not Inline_Processing_Required then
+ return False;
+
+ else
+ E := First_Entity (Gen_Unit);
+ while Present (E) loop
+ if Is_Subprogram (E)
+ and then Is_Inlined (E)
+ then
+ return True;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end if;
+
+ return False;
+ end Might_Inline_Subp;
+
+ ----------------------
+ -- Must_Inline_Subp --
+ ----------------------
+
+ function Must_Inline_Subp return Boolean is
+ E : Entity_Id;
+
+ begin
+ if not Inline_Processing_Required then
+ return False;
+
+ else
+ E := First_Entity (Gen_Unit);
+ while Present (E) loop
+ if Is_Subprogram (E)
+ and then Is_Inlined (E)
+ and then Must_Inline (E)
+ then
+ return True;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end if;
+
+ return False;
+ end Must_Inline_Subp;
+
+ -- Local declarations
+
+ Vis_Prims_List : Elist_Id := No_Elist;
+ -- List of primitives made temporarily visible in the instantiation
+ -- to match the visibility of the formal type
+
+ -- Start of processing for Analyze_Package_Instantiation
+
+ begin
+ Check_SPARK_Restriction ("generic is not allowed", N);
+
+ -- Very first thing: apply the special kludge for Text_IO processing
+ -- in case we are instantiating one of the children of [Wide_]Text_IO.
+
+ Text_IO_Kludge (Name (N));
+
+ -- Make node global for error reporting
+
+ Instantiation_Node := N;
+
+ -- Turn off style checking in instances. If the check is enabled on the
+ -- generic unit, a warning in an instance would just be noise. If not
+ -- enabled on the generic, then a warning in an instance is just wrong.
+
+ Style_Check := False;
+
+ -- Case of instantiation of a generic package
+
+ if Nkind (N) = N_Package_Instantiation then
+ Act_Decl_Id := New_Copy (Defining_Entity (N));
+ Set_Comes_From_Source (Act_Decl_Id, True);
+
+ if Nkind (Defining_Unit_Name (N)) = N_Defining_Program_Unit_Name then
+ Act_Decl_Name :=
+ Make_Defining_Program_Unit_Name (Loc,
+ Name => New_Copy_Tree (Name (Defining_Unit_Name (N))),
+ Defining_Identifier => Act_Decl_Id);
+ else
+ Act_Decl_Name := Act_Decl_Id;
+ end if;
+
+ -- Case of instantiation of a formal package
+
+ else
+ Act_Decl_Id := Defining_Identifier (N);
+ Act_Decl_Name := Act_Decl_Id;
+ end if;
+
+ Generate_Definition (Act_Decl_Id);
+ Preanalyze_Actuals (N);
+
+ Init_Env;
+ Env_Installed := True;
+
+ -- Reset renaming map for formal types. The mapping is established
+ -- when analyzing the generic associations, but some mappings are
+ -- inherited from formal packages of parent units, and these are
+ -- constructed when the parents are installed.
+
+ Generic_Renamings.Set_Last (0);
+ Generic_Renamings_HTable.Reset;
+
+ Check_Generic_Child_Unit (Gen_Id, Parent_Installed);
+ Gen_Unit := Entity (Gen_Id);
+
+ -- Verify that it is the name of a generic package
+
+ -- A visibility glitch: if the instance is a child unit and the generic
+ -- is the generic unit of a parent instance (i.e. both the parent and
+ -- the child units are instances of the same package) the name now
+ -- denotes the renaming within the parent, not the intended generic
+ -- unit. See if there is a homonym that is the desired generic. The
+ -- renaming declaration must be visible inside the instance of the
+ -- child, but not when analyzing the name in the instantiation itself.
+
+ if Ekind (Gen_Unit) = E_Package
+ and then Present (Renamed_Entity (Gen_Unit))
+ and then In_Open_Scopes (Renamed_Entity (Gen_Unit))
+ and then Is_Generic_Instance (Renamed_Entity (Gen_Unit))
+ and then Present (Homonym (Gen_Unit))
+ then
+ Gen_Unit := Homonym (Gen_Unit);
+ end if;
+
+ if Etype (Gen_Unit) = Any_Type then
+ Restore_Env;
+ goto Leave;
+
+ elsif Ekind (Gen_Unit) /= E_Generic_Package then
+
+ -- Ada 2005 (AI-50217): Cannot use instance in limited with_clause
+
+ if From_Limited_With (Gen_Unit) then
+ Error_Msg_N
+ ("cannot instantiate a limited withed package", Gen_Id);
+ else
+ Error_Msg_NE
+ ("& is not the name of a generic package", Gen_Id, Gen_Unit);
+ end if;
+
+ Restore_Env;
+ goto Leave;
+ end if;
+
+ if In_Extended_Main_Source_Unit (N) then
+ Set_Is_Instantiated (Gen_Unit);
+ Generate_Reference (Gen_Unit, N);
+
+ if Present (Renamed_Object (Gen_Unit)) then
+ Set_Is_Instantiated (Renamed_Object (Gen_Unit));
+ Generate_Reference (Renamed_Object (Gen_Unit), N);
+ end if;
+ end if;
+
+ if Nkind (Gen_Id) = N_Identifier
+ and then Chars (Gen_Unit) = Chars (Defining_Entity (N))
+ then
+ Error_Msg_NE
+ ("& is hidden within declaration of instance", Gen_Id, Gen_Unit);
+
+ elsif Nkind (Gen_Id) = N_Expanded_Name
+ and then Is_Child_Unit (Gen_Unit)
+ and then Nkind (Prefix (Gen_Id)) = N_Identifier
+ and then Chars (Act_Decl_Id) = Chars (Prefix (Gen_Id))
+ then
+ Error_Msg_N
+ ("& is hidden within declaration of instance ", Prefix (Gen_Id));
+ end if;
+
+ Set_Entity (Gen_Id, Gen_Unit);
+
+ -- If generic is a renaming, get original generic unit
+
+ if Present (Renamed_Object (Gen_Unit))
+ and then Ekind (Renamed_Object (Gen_Unit)) = E_Generic_Package
+ then
+ Gen_Unit := Renamed_Object (Gen_Unit);
+ end if;
+
+ -- Verify that there are no circular instantiations
+
+ if In_Open_Scopes (Gen_Unit) then
+ Error_Msg_NE ("instantiation of & within itself", N, Gen_Unit);
+ Restore_Env;
+ goto Leave;
+
+ elsif Contains_Instance_Of (Gen_Unit, Current_Scope, Gen_Id) then
+ Error_Msg_Node_2 := Current_Scope;
+ Error_Msg_NE
+ ("circular Instantiation: & instantiated in &!", N, Gen_Unit);
+ Circularity_Detected := True;
+ Restore_Env;
+ goto Leave;
+
+ else
+ Gen_Decl := Unit_Declaration_Node (Gen_Unit);
+
+ -- Initialize renamings map, for error checking, and the list that
+ -- holds private entities whose views have changed between generic
+ -- definition and instantiation. If this is the instance created to
+ -- validate an actual package, the instantiation environment is that
+ -- of the enclosing instance.
+
+ Create_Instantiation_Source (N, Gen_Unit, False, S_Adjustment);
+
+ -- Copy original generic tree, to produce text for instantiation
+
+ Act_Tree :=
+ Copy_Generic_Node
+ (Original_Node (Gen_Decl), Empty, Instantiating => True);
+
+ Act_Spec := Specification (Act_Tree);
+
+ -- If this is the instance created to validate an actual package,
+ -- only the formals matter, do not examine the package spec itself.
+
+ if Is_Actual_Pack then
+ Set_Visible_Declarations (Act_Spec, New_List);
+ Set_Private_Declarations (Act_Spec, New_List);
+ end if;
+
+ Renaming_List :=
+ Analyze_Associations
+ (I_Node => N,
+ Formals => Generic_Formal_Declarations (Act_Tree),
+ F_Copy => Generic_Formal_Declarations (Gen_Decl));
+
+ Vis_Prims_List := Check_Hidden_Primitives (Renaming_List);
+
+ Set_Instance_Env (Gen_Unit, Act_Decl_Id);
+ Set_Defining_Unit_Name (Act_Spec, Act_Decl_Name);
+ Set_Is_Generic_Instance (Act_Decl_Id);
+
+ Set_Generic_Parent (Act_Spec, Gen_Unit);
+
+ -- References to the generic in its own declaration or its body are
+ -- references to the instance. Add a renaming declaration for the
+ -- generic unit itself. This declaration, as well as the renaming
+ -- declarations for the generic formals, must remain private to the
+ -- unit: the formals, because this is the language semantics, and
+ -- the unit because its use is an artifact of the implementation.
+
+ Unit_Renaming :=
+ Make_Package_Renaming_Declaration (Loc,
+ Defining_Unit_Name =>
+ Make_Defining_Identifier (Loc, Chars (Gen_Unit)),
+ Name => New_Occurrence_Of (Act_Decl_Id, Loc));
+
+ Append (Unit_Renaming, Renaming_List);
+
+ -- The renaming declarations are the first local declarations of the
+ -- new unit.
+
+ if Is_Non_Empty_List (Visible_Declarations (Act_Spec)) then
+ Insert_List_Before
+ (First (Visible_Declarations (Act_Spec)), Renaming_List);
+ else
+ Set_Visible_Declarations (Act_Spec, Renaming_List);
+ end if;
+
+ Act_Decl :=
+ Make_Package_Declaration (Loc,
+ Specification => Act_Spec);
+
+ -- Propagate the aspect specifications from the package declaration
+ -- template to the instantiated version of the package declaration.
+
+ if Has_Aspects (Act_Tree) then
+ Set_Aspect_Specifications (Act_Decl,
+ New_Copy_List_Tree (Aspect_Specifications (Act_Tree)));
+ end if;
+
+ -- Save the instantiation node, for subsequent instantiation of the
+ -- body, if there is one and we are generating code for the current
+ -- unit. Mark unit as having a body (avoids premature error message).
+
+ -- We instantiate the body if we are generating code, if we are
+ -- generating cross-reference information, or if we are building
+ -- trees for ASIS use or GNATprove use.
+
+ declare
+ Enclosing_Body_Present : Boolean := False;
+ -- If the generic unit is not a compilation unit, then a body may
+ -- be present in its parent even if none is required. We create a
+ -- tentative pending instantiation for the body, which will be
+ -- discarded if none is actually present.
+
+ Scop : Entity_Id;
+
+ begin
+ if Scope (Gen_Unit) /= Standard_Standard
+ and then not Is_Child_Unit (Gen_Unit)
+ then
+ Scop := Scope (Gen_Unit);
+
+ while Present (Scop)
+ and then Scop /= Standard_Standard
+ loop
+ if Unit_Requires_Body (Scop) then
+ Enclosing_Body_Present := True;
+ exit;
+
+ elsif In_Open_Scopes (Scop)
+ and then In_Package_Body (Scop)
+ then
+ Enclosing_Body_Present := True;
+ exit;
+ end if;
+
+ exit when Is_Compilation_Unit (Scop);
+ Scop := Scope (Scop);
+ end loop;
+ end if;
+
+ -- If front-end inlining is enabled, and this is a unit for which
+ -- code will be generated, we instantiate the body at once.
+
+ -- This is done if the instance is not the main unit, and if the
+ -- generic is not a child unit of another generic, to avoid scope
+ -- problems and the reinstallation of parent instances.
+
+ if Expander_Active
+ and then (not Is_Child_Unit (Gen_Unit)
+ or else not Is_Generic_Unit (Scope (Gen_Unit)))
+ and then Might_Inline_Subp
+ and then not Is_Actual_Pack
+ then
+ if not Debug_Flag_Dot_K
+ and then Front_End_Inlining
+ and then (Is_In_Main_Unit (N)
+ or else In_Main_Context (Current_Scope))
+ and then Nkind (Parent (N)) /= N_Compilation_Unit
+ then
+ Inline_Now := True;
+
+ elsif Debug_Flag_Dot_K
+ and then Must_Inline_Subp
+ and then (Is_In_Main_Unit (N)
+ or else In_Main_Context (Current_Scope))
+ and then Nkind (Parent (N)) /= N_Compilation_Unit
+ then
+ Inline_Now := True;
+
+ -- In configurable_run_time mode we force the inlining of
+ -- predefined subprograms marked Inline_Always, to minimize
+ -- the use of the run-time library.
+
+ elsif Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Gen_Decl)))
+ and then Configurable_Run_Time_Mode
+ and then Nkind (Parent (N)) /= N_Compilation_Unit
+ then
+ Inline_Now := True;
+ end if;
+
+ -- If the current scope is itself an instance within a child
+ -- unit, there will be duplications in the scope stack, and the
+ -- unstacking mechanism in Inline_Instance_Body will fail.
+ -- This loses some rare cases of optimization, and might be
+ -- improved some day, if we can find a proper abstraction for
+ -- "the complete compilation context" that can be saved and
+ -- restored. ???
+
+ if Is_Generic_Instance (Current_Scope) then
+ declare
+ Curr_Unit : constant Entity_Id :=
+ Cunit_Entity (Current_Sem_Unit);
+ begin
+ if Curr_Unit /= Current_Scope
+ and then Is_Child_Unit (Curr_Unit)
+ then
+ Inline_Now := False;
+ end if;
+ end;
+ end if;
+ end if;
+
+ Needs_Body :=
+ (Unit_Requires_Body (Gen_Unit)
+ or else Enclosing_Body_Present
+ or else Present (Corresponding_Body (Gen_Decl)))
+ and then (Is_In_Main_Unit (N) or else Might_Inline_Subp)
+ and then not Is_Actual_Pack
+ and then not Inline_Now
+ and then (Operating_Mode = Generate_Code
+
+ -- Need comment for this check ???
+
+ or else (Operating_Mode = Check_Semantics
+ and then (ASIS_Mode or GNATprove_Mode)));
+
+ -- If front_end_inlining is enabled, do not instantiate body if
+ -- within a generic context.
+
+ if (Front_End_Inlining and then not Expander_Active)
+ or else Is_Generic_Unit (Cunit_Entity (Main_Unit))
+ then
+ Needs_Body := False;
+ end if;
+
+ -- If the current context is generic, and the package being
+ -- instantiated is declared within a formal package, there is no
+ -- body to instantiate until the enclosing generic is instantiated
+ -- and there is an actual for the formal package. If the formal
+ -- package has parameters, we build a regular package instance for
+ -- it, that precedes the original formal package declaration.
+
+ if In_Open_Scopes (Scope (Scope (Gen_Unit))) then
+ declare
+ Decl : constant Node_Id :=
+ Original_Node
+ (Unit_Declaration_Node (Scope (Gen_Unit)));
+ begin
+ if Nkind (Decl) = N_Formal_Package_Declaration
+ or else (Nkind (Decl) = N_Package_Declaration
+ and then Is_List_Member (Decl)
+ and then Present (Next (Decl))
+ and then
+ Nkind (Next (Decl)) =
+ N_Formal_Package_Declaration)
+ then
+ Needs_Body := False;
+ end if;
+ end;
+ end if;
+ end;
+
+ -- For RCI unit calling stubs, we omit the instance body if the
+ -- instance is the RCI library unit itself.
+
+ -- However there is a special case for nested instances: in this case
+ -- we do generate the instance body, as it might be required, e.g.
+ -- because it provides stream attributes for some type used in the
+ -- profile of a remote subprogram. This is consistent with 12.3(12),
+ -- which indicates that the instance body occurs at the place of the
+ -- instantiation, and thus is part of the RCI declaration, which is
+ -- present on all client partitions (this is E.2.3(18)).
+
+ -- Note that AI12-0002 may make it illegal at some point to have
+ -- stream attributes defined in an RCI unit, in which case this
+ -- special case will become unnecessary. In the meantime, there
+ -- is known application code in production that depends on this
+ -- being possible, so we definitely cannot eliminate the body in
+ -- the case of nested instances for the time being.
+
+ -- When we generate a nested instance body, calling stubs for any
+ -- relevant subprogram will be be inserted immediately after the
+ -- subprogram declarations, and will take precedence over the
+ -- subsequent (original) body. (The stub and original body will be
+ -- complete homographs, but this is permitted in an instance).
+ -- (Could we do better and remove the original body???)
+
+ if Distribution_Stub_Mode = Generate_Caller_Stub_Body
+ and then Comes_From_Source (N)
+ and then Nkind (Parent (N)) = N_Compilation_Unit
+ then
+ Needs_Body := False;
+ end if;
+
+ if Needs_Body then
+
+ -- Here is a defence against a ludicrous number of instantiations
+ -- caused by a circular set of instantiation attempts.
+
+ if Pending_Instantiations.Last > Maximum_Instantiations then
+ Error_Msg_Uint_1 := UI_From_Int (Maximum_Instantiations);
+ Error_Msg_N ("too many instantiations, exceeds max of^", N);
+ Error_Msg_N ("\limit can be changed using -gnateinn switch", N);
+ raise Unrecoverable_Error;
+ end if;
+
+ -- Indicate that the enclosing scopes contain an instantiation,
+ -- and that cleanup actions should be delayed until after the
+ -- instance body is expanded.
+
+ Check_Forward_Instantiation (Gen_Decl);
+ if Nkind (N) = N_Package_Instantiation then
+ declare
+ Enclosing_Master : Entity_Id;
+
+ begin
+ -- Loop to search enclosing masters
+
+ Enclosing_Master := Current_Scope;
+ Scope_Loop : while Enclosing_Master /= Standard_Standard loop
+ if Ekind (Enclosing_Master) = E_Package then
+ if Is_Compilation_Unit (Enclosing_Master) then
+ if In_Package_Body (Enclosing_Master) then
+ Delay_Descriptors
+ (Body_Entity (Enclosing_Master));
+ else
+ Delay_Descriptors
+ (Enclosing_Master);
+ end if;
+
+ exit Scope_Loop;
+
+ else
+ Enclosing_Master := Scope (Enclosing_Master);
+ end if;
+
+ elsif Is_Generic_Unit (Enclosing_Master)
+ or else Ekind (Enclosing_Master) = E_Void
+ then
+ -- Cleanup actions will eventually be performed on the
+ -- enclosing subprogram or package instance, if any.
+ -- Enclosing scope is void in the formal part of a
+ -- generic subprogram.
+
+ exit Scope_Loop;
+
+ else
+ if Ekind (Enclosing_Master) = E_Entry
+ and then
+ Ekind (Scope (Enclosing_Master)) = E_Protected_Type
+ then
+ if not Expander_Active then
+ exit Scope_Loop;
+ else
+ Enclosing_Master :=
+ Protected_Body_Subprogram (Enclosing_Master);
+ end if;
+ end if;
+
+ Set_Delay_Cleanups (Enclosing_Master);
+
+ while Ekind (Enclosing_Master) = E_Block loop
+ Enclosing_Master := Scope (Enclosing_Master);
+ end loop;
+
+ if Is_Subprogram (Enclosing_Master) then
+ Delay_Descriptors (Enclosing_Master);
+
+ elsif Is_Task_Type (Enclosing_Master) then
+ declare
+ TBP : constant Node_Id :=
+ Get_Task_Body_Procedure
+ (Enclosing_Master);
+ begin
+ if Present (TBP) then
+ Delay_Descriptors (TBP);
+ Set_Delay_Cleanups (TBP);
+ end if;
+ end;
+ end if;
+
+ exit Scope_Loop;
+ end if;
+ end loop Scope_Loop;
+ end;
+
+ -- Make entry in table
+
+ Pending_Instantiations.Append
+ ((Inst_Node => N,
+ Act_Decl => Act_Decl,
+ Expander_Status => Expander_Active,
+ Current_Sem_Unit => Current_Sem_Unit,
+ Scope_Suppress => Scope_Suppress,
+ Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
+ Version => Ada_Version,
+ Version_Pragma => Ada_Version_Pragma,
+ Warnings => Save_Warnings,
+ SPARK_Mode => SPARK_Mode,
+ SPARK_Mode_Pragma => SPARK_Mode_Pragma));
+ end if;
+ end if;
+
+ Set_Categorization_From_Pragmas (Act_Decl);
+
+ if Parent_Installed then
+ Hide_Current_Scope;
+ end if;
+
+ Set_Instance_Spec (N, Act_Decl);
+
+ -- If not a compilation unit, insert the package declaration before
+ -- the original instantiation node.
+
+ if Nkind (Parent (N)) /= N_Compilation_Unit then
+ Mark_Rewrite_Insertion (Act_Decl);
+ Insert_Before (N, Act_Decl);
+ Analyze (Act_Decl);
+
+ -- For an instantiation that is a compilation unit, place
+ -- declaration on current node so context is complete for analysis
+ -- (including nested instantiations). If this is the main unit,
+ -- the declaration eventually replaces the instantiation node.
+ -- If the instance body is created later, it replaces the
+ -- instance node, and the declaration is attached to it
+ -- (see Build_Instance_Compilation_Unit_Nodes).
+
+ else
+ if Cunit_Entity (Current_Sem_Unit) = Defining_Entity (N) then
+
+ -- The entity for the current unit is the newly created one,
+ -- and all semantic information is attached to it.
+
+ Set_Cunit_Entity (Current_Sem_Unit, Act_Decl_Id);
+
+ -- If this is the main unit, replace the main entity as well
+
+ if Current_Sem_Unit = Main_Unit then
+ Main_Unit_Entity := Act_Decl_Id;
+ end if;
+ end if;
+
+ Set_Unit (Parent (N), Act_Decl);
+ Set_Parent_Spec (Act_Decl, Parent_Spec (N));
+ Set_Package_Instantiation (Act_Decl_Id, N);
+
+ -- Process aspect specifications of the instance node, if any, to
+ -- take into account categorization pragmas before analyzing the
+ -- instance.
+
+ if Has_Aspects (N) then
+ Analyze_Aspect_Specifications (N, Act_Decl_Id);
+ end if;
+
+ Analyze (Act_Decl);
+ Set_Unit (Parent (N), N);
+ Set_Body_Required (Parent (N), False);
+
+ -- We never need elaboration checks on instantiations, since by
+ -- definition, the body instantiation is elaborated at the same
+ -- time as the spec instantiation.
+
+ Set_Suppress_Elaboration_Warnings (Act_Decl_Id);
+ Set_Kill_Elaboration_Checks (Act_Decl_Id);
+ end if;
+
+ Check_Elab_Instantiation (N);
+
+ if ABE_Is_Certain (N) and then Needs_Body then
+ Pending_Instantiations.Decrement_Last;
+ end if;
+
+ Check_Hidden_Child_Unit (N, Gen_Unit, Act_Decl_Id);
+
+ Set_First_Private_Entity (Defining_Unit_Name (Unit_Renaming),
+ First_Private_Entity (Act_Decl_Id));
+
+ -- If the instantiation will receive a body, the unit will be
+ -- transformed into a package body, and receive its own elaboration
+ -- entity. Otherwise, the nature of the unit is now a package
+ -- declaration.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit
+ and then not Needs_Body
+ then
+ Rewrite (N, Act_Decl);
+ end if;
+
+ if Present (Corresponding_Body (Gen_Decl))
+ or else Unit_Requires_Body (Gen_Unit)
+ then
+ Set_Has_Completion (Act_Decl_Id);
+ end if;
+
+ Check_Formal_Packages (Act_Decl_Id);
+
+ Restore_Hidden_Primitives (Vis_Prims_List);
+ Restore_Private_Views (Act_Decl_Id);
+
+ Inherit_Context (Gen_Decl, N);
+
+ if Parent_Installed then
+ Remove_Parent;
+ end if;
+
+ Restore_Env;
+ Env_Installed := False;
+ end if;
+
+ Validate_Categorization_Dependency (N, Act_Decl_Id);
+
+ -- There used to be a check here to prevent instantiations in local
+ -- contexts if the No_Local_Allocators restriction was active. This
+ -- check was removed by a binding interpretation in AI-95-00130/07,
+ -- but we retain the code for documentation purposes.
+
+ -- if Ekind (Act_Decl_Id) /= E_Void
+ -- and then not Is_Library_Level_Entity (Act_Decl_Id)
+ -- then
+ -- Check_Restriction (No_Local_Allocators, N);
+ -- end if;
+
+ if Inline_Now then
+ Inline_Instance_Body (N, Gen_Unit, Act_Decl);
+ end if;
+
+ -- The following is a tree patch for ASIS: ASIS needs separate nodes to
+ -- be used as defining identifiers for a formal package and for the
+ -- corresponding expanded package.
+
+ if Nkind (N) = N_Formal_Package_Declaration then
+ Act_Decl_Id := New_Copy (Defining_Entity (N));
+ Set_Comes_From_Source (Act_Decl_Id, True);
+ Set_Is_Generic_Instance (Act_Decl_Id, False);
+ Set_Defining_Identifier (N, Act_Decl_Id);
+ end if;
+
+ Style_Check := Save_Style_Check;
+
+ -- Check that if N is an instantiation of System.Dim_Float_IO or
+ -- System.Dim_Integer_IO, the formal type has a dimension system.
+
+ if Nkind (N) = N_Package_Instantiation
+ and then Is_Dim_IO_Package_Instantiation (N)
+ then
+ declare
+ Assoc : constant Node_Id := First (Generic_Associations (N));
+ begin
+ if not Has_Dimension_System
+ (Etype (Explicit_Generic_Actual_Parameter (Assoc)))
+ then
+ Error_Msg_N ("type with a dimension system expected", Assoc);
+ end if;
+ end;
+ end if;
+
+ <<Leave>>
+ if Has_Aspects (N) and then Nkind (Parent (N)) /= N_Compilation_Unit then
+ Analyze_Aspect_Specifications (N, Act_Decl_Id);
+ end if;
+
+ exception
+ when Instantiation_Error =>
+ if Parent_Installed then
+ Remove_Parent;
+ end if;
+
+ if Env_Installed then
+ Restore_Env;
+ end if;
+
+ Style_Check := Save_Style_Check;
+ end Analyze_Package_Instantiation;
+
+ --------------------------
+ -- Inline_Instance_Body --
+ --------------------------
+
+ procedure Inline_Instance_Body
+ (N : Node_Id;
+ Gen_Unit : Entity_Id;
+ Act_Decl : Node_Id)
+ is
+ Vis : Boolean;
+ Gen_Comp : constant Entity_Id :=
+ Cunit_Entity (Get_Source_Unit (Gen_Unit));
+ Curr_Comp : constant Node_Id := Cunit (Current_Sem_Unit);
+ Curr_Scope : Entity_Id := Empty;
+ Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
+ Removed : Boolean := False;
+ Num_Scopes : Int := 0;
+
+ Scope_Stack_Depth : constant Int :=
+ Scope_Stack.Last - Scope_Stack.First + 1;
+
+ Use_Clauses : array (1 .. Scope_Stack_Depth) of Node_Id;
+ Instances : array (1 .. Scope_Stack_Depth) of Entity_Id;
+ Inner_Scopes : array (1 .. Scope_Stack_Depth) of Entity_Id;
+ List : Elist_Id;
+ Num_Inner : Int := 0;
+ N_Instances : Int := 0;
+ S : Entity_Id;
+
+ begin
+ -- Case of generic unit defined in another unit. We must remove the
+ -- complete context of the current unit to install that of the generic.
+
+ if Gen_Comp /= Cunit_Entity (Current_Sem_Unit) then
+
+ -- Add some comments for the following two loops ???
+
+ S := Current_Scope;
+ while Present (S) and then S /= Standard_Standard loop
+ loop
+ Num_Scopes := Num_Scopes + 1;
+
+ Use_Clauses (Num_Scopes) :=
+ (Scope_Stack.Table
+ (Scope_Stack.Last - Num_Scopes + 1).
+ First_Use_Clause);
+ End_Use_Clauses (Use_Clauses (Num_Scopes));
+
+ exit when Scope_Stack.Last - Num_Scopes + 1 = Scope_Stack.First
+ or else Scope_Stack.Table
+ (Scope_Stack.Last - Num_Scopes).Entity
+ = Scope (S);
+ end loop;
+
+ exit when Is_Generic_Instance (S)
+ and then (In_Package_Body (S)
+ or else Ekind (S) = E_Procedure
+ or else Ekind (S) = E_Function);
+ S := Scope (S);
+ end loop;
+
+ Vis := Is_Immediately_Visible (Gen_Comp);
+
+ -- Find and save all enclosing instances
+
+ S := Current_Scope;
+
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if Is_Generic_Instance (S) then
+ N_Instances := N_Instances + 1;
+ Instances (N_Instances) := S;
+
+ exit when In_Package_Body (S);
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ -- Remove context of current compilation unit, unless we are within a
+ -- nested package instantiation, in which case the context has been
+ -- removed previously.
+
+ -- If current scope is the body of a child unit, remove context of
+ -- spec as well. If an enclosing scope is an instance body, the
+ -- context has already been removed, but the entities in the body
+ -- must be made invisible as well.
+
+ S := Current_Scope;
+
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if Is_Generic_Instance (S)
+ and then (In_Package_Body (S)
+ or else Ekind (S) = E_Procedure
+ or else Ekind (S) = E_Function)
+ then
+ -- We still have to remove the entities of the enclosing
+ -- instance from direct visibility.
+
+ declare
+ E : Entity_Id;
+ begin
+ E := First_Entity (S);
+ while Present (E) loop
+ Set_Is_Immediately_Visible (E, False);
+ Next_Entity (E);
+ end loop;
+ end;
+
+ exit;
+ end if;
+
+ if S = Curr_Unit
+ or else (Ekind (Curr_Unit) = E_Package_Body
+ and then S = Spec_Entity (Curr_Unit))
+ or else (Ekind (Curr_Unit) = E_Subprogram_Body
+ and then S =
+ Corresponding_Spec
+ (Unit_Declaration_Node (Curr_Unit)))
+ then
+ Removed := True;
+
+ -- Remove entities in current scopes from visibility, so that
+ -- instance body is compiled in a clean environment.
+
+ List := Save_Scope_Stack (Handle_Use => False);
+
+ if Is_Child_Unit (S) then
+
+ -- Remove child unit from stack, as well as inner scopes.
+ -- Removing the context of a child unit removes parent units
+ -- as well.
+
+ while Current_Scope /= S loop
+ Num_Inner := Num_Inner + 1;
+ Inner_Scopes (Num_Inner) := Current_Scope;
+ Pop_Scope;
+ end loop;
+
+ Pop_Scope;
+ Remove_Context (Curr_Comp);
+ Curr_Scope := S;
+
+ else
+ Remove_Context (Curr_Comp);
+ end if;
+
+ if Ekind (Curr_Unit) = E_Package_Body then
+ Remove_Context (Library_Unit (Curr_Comp));
+ end if;
+ end if;
+
+ S := Scope (S);
+ end loop;
+ pragma Assert (Num_Inner < Num_Scopes);
+
+ Push_Scope (Standard_Standard);
+ Scope_Stack.Table (Scope_Stack.Last).Is_Active_Stack_Base := True;
+ Instantiate_Package_Body
+ (Body_Info =>
+ ((Inst_Node => N,
+ Act_Decl => Act_Decl,
+ Expander_Status => Expander_Active,
+ Current_Sem_Unit => Current_Sem_Unit,
+ Scope_Suppress => Scope_Suppress,
+ Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
+ Version => Ada_Version,
+ Version_Pragma => Ada_Version_Pragma,
+ Warnings => Save_Warnings,
+ SPARK_Mode => SPARK_Mode,
+ SPARK_Mode_Pragma => SPARK_Mode_Pragma)),
+ Inlined_Body => True);
+
+ Pop_Scope;
+
+ -- Restore context
+
+ Set_Is_Immediately_Visible (Gen_Comp, Vis);
+
+ -- Reset Generic_Instance flag so that use clauses can be installed
+ -- in the proper order. (See Use_One_Package for effect of enclosing
+ -- instances on processing of use clauses).
+
+ for J in 1 .. N_Instances loop
+ Set_Is_Generic_Instance (Instances (J), False);
+ end loop;
+
+ if Removed then
+ Install_Context (Curr_Comp);
+
+ if Present (Curr_Scope)
+ and then Is_Child_Unit (Curr_Scope)
+ then
+ Push_Scope (Curr_Scope);
+ Set_Is_Immediately_Visible (Curr_Scope);
+
+ -- Finally, restore inner scopes as well
+
+ for J in reverse 1 .. Num_Inner loop
+ Push_Scope (Inner_Scopes (J));
+ end loop;
+ end if;
+
+ Restore_Scope_Stack (List, Handle_Use => False);
+
+ if Present (Curr_Scope)
+ and then
+ (In_Private_Part (Curr_Scope)
+ or else In_Package_Body (Curr_Scope))
+ then
+ -- Install private declaration of ancestor units, which are
+ -- currently available. Restore_Scope_Stack and Install_Context
+ -- only install the visible part of parents.
+
+ declare
+ Par : Entity_Id;
+ begin
+ Par := Scope (Curr_Scope);
+ while (Present (Par))
+ and then Par /= Standard_Standard
+ loop
+ Install_Private_Declarations (Par);
+ Par := Scope (Par);
+ end loop;
+ end;
+ end if;
+ end if;
+
+ -- Restore use clauses. For a child unit, use clauses in the parents
+ -- are restored when installing the context, so only those in inner
+ -- scopes (and those local to the child unit itself) need to be
+ -- installed explicitly.
+
+ if Is_Child_Unit (Curr_Unit)
+ and then Removed
+ then
+ for J in reverse 1 .. Num_Inner + 1 loop
+ Scope_Stack.Table (Scope_Stack.Last - J + 1).First_Use_Clause :=
+ Use_Clauses (J);
+ Install_Use_Clauses (Use_Clauses (J));
+ end loop;
+
+ else
+ for J in reverse 1 .. Num_Scopes loop
+ Scope_Stack.Table (Scope_Stack.Last - J + 1).First_Use_Clause :=
+ Use_Clauses (J);
+ Install_Use_Clauses (Use_Clauses (J));
+ end loop;
+ end if;
+
+ -- Restore status of instances. If one of them is a body, make its
+ -- local entities visible again.
+
+ declare
+ E : Entity_Id;
+ Inst : Entity_Id;
+
+ begin
+ for J in 1 .. N_Instances loop
+ Inst := Instances (J);
+ Set_Is_Generic_Instance (Inst, True);
+
+ if In_Package_Body (Inst)
+ or else Ekind (S) = E_Procedure
+ or else Ekind (S) = E_Function
+ then
+ E := First_Entity (Instances (J));
+ while Present (E) loop
+ Set_Is_Immediately_Visible (E);
+ Next_Entity (E);
+ end loop;
+ end if;
+ end loop;
+ end;
+
+ -- If generic unit is in current unit, current context is correct
+
+ else
+ Instantiate_Package_Body
+ (Body_Info =>
+ ((Inst_Node => N,
+ Act_Decl => Act_Decl,
+ Expander_Status => Expander_Active,
+ Current_Sem_Unit => Current_Sem_Unit,
+ Scope_Suppress => Scope_Suppress,
+ Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
+ Version => Ada_Version,
+ Version_Pragma => Ada_Version_Pragma,
+ Warnings => Save_Warnings,
+ SPARK_Mode => SPARK_Mode,
+ SPARK_Mode_Pragma => SPARK_Mode_Pragma)),
+ Inlined_Body => True);
+ end if;
+ end Inline_Instance_Body;
+
+ -------------------------------------
+ -- Analyze_Procedure_Instantiation --
+ -------------------------------------
+
+ procedure Analyze_Procedure_Instantiation (N : Node_Id) is
+ begin
+ Analyze_Subprogram_Instantiation (N, E_Procedure);
+ end Analyze_Procedure_Instantiation;
+
+ -----------------------------------
+ -- Need_Subprogram_Instance_Body --
+ -----------------------------------
+
+ function Need_Subprogram_Instance_Body
+ (N : Node_Id;
+ Subp : Entity_Id) return Boolean
+ is
+ begin
+ -- Must be inlined (or inlined renaming)
+
+ if (Is_In_Main_Unit (N)
+ or else Is_Inlined (Subp)
+ or else Is_Inlined (Alias (Subp)))
+
+ -- Must be generating code or analyzing code in ASIS/GNATprove mode
+
+ and then (Operating_Mode = Generate_Code
+ or else (Operating_Mode = Check_Semantics
+ and then (ASIS_Mode or GNATprove_Mode)))
+
+ -- The body is needed when generating code (full expansion), in ASIS
+ -- mode for other tools, and in GNATprove mode (special expansion) for
+ -- formal verification of the body itself.
+
+ and then (Expander_Active or ASIS_Mode or GNATprove_Mode)
+
+ -- No point in inlining if ABE is inevitable
+
+ and then not ABE_Is_Certain (N)
+
+ -- Or if subprogram is eliminated
+
+ and then not Is_Eliminated (Subp)
+ then
+ Pending_Instantiations.Append
+ ((Inst_Node => N,
+ Act_Decl => Unit_Declaration_Node (Subp),
+ Expander_Status => Expander_Active,
+ Current_Sem_Unit => Current_Sem_Unit,
+ Scope_Suppress => Scope_Suppress,
+ Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
+ Version => Ada_Version,
+ Version_Pragma => Ada_Version_Pragma,
+ Warnings => Save_Warnings,
+ SPARK_Mode => SPARK_Mode,
+ SPARK_Mode_Pragma => SPARK_Mode_Pragma));
+ return True;
+
+ -- Here if not inlined, or we ignore the inlining
+
+ else
+ return False;
+ end if;
+ end Need_Subprogram_Instance_Body;
+
+ --------------------------------------
+ -- Analyze_Subprogram_Instantiation --
+ --------------------------------------
+
+ procedure Analyze_Subprogram_Instantiation
+ (N : Node_Id;
+ K : Entity_Kind)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Gen_Id : constant Node_Id := Name (N);
+
+ Anon_Id : constant Entity_Id :=
+ Make_Defining_Identifier (Sloc (Defining_Entity (N)),
+ Chars => New_External_Name
+ (Chars (Defining_Entity (N)), 'R'));
+
+ Act_Decl_Id : Entity_Id;
+ Act_Decl : Node_Id;
+ Act_Spec : Node_Id;
+ Act_Tree : Node_Id;
+
+ Env_Installed : Boolean := False;
+ Gen_Unit : Entity_Id;
+ Gen_Decl : Node_Id;
+ Pack_Id : Entity_Id;
+ Parent_Installed : Boolean := False;
+ Renaming_List : List_Id;
+
+ procedure Analyze_Instance_And_Renamings;
+ -- The instance must be analyzed in a context that includes the mappings
+ -- of generic parameters into actuals. We create a package declaration
+ -- for this purpose, and a subprogram with an internal name within the
+ -- package. The subprogram instance is simply an alias for the internal
+ -- subprogram, declared in the current scope.
+
+ ------------------------------------
+ -- Analyze_Instance_And_Renamings --
+ ------------------------------------
+
+ procedure Analyze_Instance_And_Renamings is
+ Def_Ent : constant Entity_Id := Defining_Entity (N);
+ Pack_Decl : Node_Id;
+
+ begin
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+
+ -- For the case of a compilation unit, the container package has
+ -- the same name as the instantiation, to insure that the binder
+ -- calls the elaboration procedure with the right name. Copy the
+ -- entity of the instance, which may have compilation level flags
+ -- (e.g. Is_Child_Unit) set.
+
+ Pack_Id := New_Copy (Def_Ent);
+
+ else
+ -- Otherwise we use the name of the instantiation concatenated
+ -- with its source position to ensure uniqueness if there are
+ -- several instantiations with the same name.
+
+ Pack_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_External_Name
+ (Related_Id => Chars (Def_Ent),
+ Suffix => "GP",
+ Suffix_Index => Source_Offset (Sloc (Def_Ent))));
+ end if;
+
+ Pack_Decl := Make_Package_Declaration (Loc,
+ Specification => Make_Package_Specification (Loc,
+ Defining_Unit_Name => Pack_Id,
+ Visible_Declarations => Renaming_List,
+ End_Label => Empty));
+
+ Set_Instance_Spec (N, Pack_Decl);
+ Set_Is_Generic_Instance (Pack_Id);
+ Set_Debug_Info_Needed (Pack_Id);
+
+ -- Case of not a compilation unit
+
+ if Nkind (Parent (N)) /= N_Compilation_Unit then
+ Mark_Rewrite_Insertion (Pack_Decl);
+ Insert_Before (N, Pack_Decl);
+ Set_Has_Completion (Pack_Id);
+
+ -- Case of an instantiation that is a compilation unit
+
+ -- Place declaration on current node so context is complete for
+ -- analysis (including nested instantiations), and for use in a
+ -- context_clause (see Analyze_With_Clause).
+
+ else
+ Set_Unit (Parent (N), Pack_Decl);
+ Set_Parent_Spec (Pack_Decl, Parent_Spec (N));
+ end if;
+
+ Analyze (Pack_Decl);
+ Check_Formal_Packages (Pack_Id);
+ Set_Is_Generic_Instance (Pack_Id, False);
+
+ -- Why do we clear Is_Generic_Instance??? We set it 20 lines
+ -- above???
+
+ -- Body of the enclosing package is supplied when instantiating the
+ -- subprogram body, after semantic analysis is completed.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+
+ -- Remove package itself from visibility, so it does not
+ -- conflict with subprogram.
+
+ Set_Name_Entity_Id (Chars (Pack_Id), Homonym (Pack_Id));
+
+ -- Set name and scope of internal subprogram so that the proper
+ -- external name will be generated. The proper scope is the scope
+ -- of the wrapper package. We need to generate debugging info for
+ -- the internal subprogram, so set flag accordingly.
+
+ Set_Chars (Anon_Id, Chars (Defining_Entity (N)));
+ Set_Scope (Anon_Id, Scope (Pack_Id));
+
+ -- Mark wrapper package as referenced, to avoid spurious warnings
+ -- if the instantiation appears in various with_ clauses of
+ -- subunits of the main unit.
+
+ Set_Referenced (Pack_Id);
+ end if;
+
+ Set_Is_Generic_Instance (Anon_Id);
+ Set_Debug_Info_Needed (Anon_Id);
+ Act_Decl_Id := New_Copy (Anon_Id);
+
+ Set_Parent (Act_Decl_Id, Parent (Anon_Id));
+ Set_Chars (Act_Decl_Id, Chars (Defining_Entity (N)));
+ Set_Sloc (Act_Decl_Id, Sloc (Defining_Entity (N)));
+ Set_Comes_From_Source (Act_Decl_Id, True);
+
+ -- The signature may involve types that are not frozen yet, but the
+ -- subprogram will be frozen at the point the wrapper package is
+ -- frozen, so it does not need its own freeze node. In fact, if one
+ -- is created, it might conflict with the freezing actions from the
+ -- wrapper package.
+
+ Set_Has_Delayed_Freeze (Anon_Id, False);
+
+ -- If the instance is a child unit, mark the Id accordingly. Mark
+ -- the anonymous entity as well, which is the real subprogram and
+ -- which is used when the instance appears in a context clause.
+ -- Similarly, propagate the Is_Eliminated flag to handle properly
+ -- nested eliminated subprograms.
+
+ Set_Is_Child_Unit (Act_Decl_Id, Is_Child_Unit (Defining_Entity (N)));
+ Set_Is_Child_Unit (Anon_Id, Is_Child_Unit (Defining_Entity (N)));
+ New_Overloaded_Entity (Act_Decl_Id);
+ Check_Eliminated (Act_Decl_Id);
+ Set_Is_Eliminated (Anon_Id, Is_Eliminated (Act_Decl_Id));
+
+ -- In compilation unit case, kill elaboration checks on the
+ -- instantiation, since they are never needed -- the body is
+ -- instantiated at the same point as the spec.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ Set_Suppress_Elaboration_Warnings (Act_Decl_Id);
+ Set_Kill_Elaboration_Checks (Act_Decl_Id);
+ Set_Is_Compilation_Unit (Anon_Id);
+
+ Set_Cunit_Entity (Current_Sem_Unit, Pack_Id);
+ end if;
+
+ -- The instance is not a freezing point for the new subprogram
+
+ Set_Is_Frozen (Act_Decl_Id, False);
+
+ if Nkind (Defining_Entity (N)) = N_Defining_Operator_Symbol then
+ Valid_Operator_Definition (Act_Decl_Id);
+ end if;
+
+ Set_Alias (Act_Decl_Id, Anon_Id);
+ Set_Parent (Act_Decl_Id, Parent (Anon_Id));
+ Set_Has_Completion (Act_Decl_Id);
+ Set_Related_Instance (Pack_Id, Act_Decl_Id);
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ Set_Body_Required (Parent (N), False);
+ end if;
+ end Analyze_Instance_And_Renamings;
+
+ -- Local variables
+
+ Vis_Prims_List : Elist_Id := No_Elist;
+ -- List of primitives made temporarily visible in the instantiation
+ -- to match the visibility of the formal type
+
+ -- Start of processing for Analyze_Subprogram_Instantiation
+
+ begin
+ Check_SPARK_Restriction ("generic is not allowed", N);
+
+ -- Very first thing: apply the special kludge for Text_IO processing
+ -- in case we are instantiating one of the children of [Wide_]Text_IO.
+ -- Of course such an instantiation is bogus (these are packages, not
+ -- subprograms), but we get a better error message if we do this.
+
+ Text_IO_Kludge (Gen_Id);
+
+ -- Make node global for error reporting
+
+ Instantiation_Node := N;
+
+ -- For package instantiations we turn off style checks, because they
+ -- will have been emitted in the generic. For subprogram instantiations
+ -- we want to apply at least the check on overriding indicators so we
+ -- do not modify the style check status.
+
+ -- The renaming declarations for the actuals do not come from source and
+ -- will not generate spurious warnings.
+
+ Preanalyze_Actuals (N);
+
+ Init_Env;
+ Env_Installed := True;
+ Check_Generic_Child_Unit (Gen_Id, Parent_Installed);
+ Gen_Unit := Entity (Gen_Id);
+
+ Generate_Reference (Gen_Unit, Gen_Id);
+
+ if Nkind (Gen_Id) = N_Identifier
+ and then Chars (Gen_Unit) = Chars (Defining_Entity (N))
+ then
+ Error_Msg_NE
+ ("& is hidden within declaration of instance", Gen_Id, Gen_Unit);
+ end if;
+
+ if Etype (Gen_Unit) = Any_Type then
+ Restore_Env;
+ return;
+ end if;
+
+ -- Verify that it is a generic subprogram of the right kind, and that
+ -- it does not lead to a circular instantiation.
+
+ if K = E_Procedure and then Ekind (Gen_Unit) /= E_Generic_Procedure then
+ Error_Msg_NE
+ ("& is not the name of a generic procedure", Gen_Id, Gen_Unit);
+
+ elsif K = E_Function and then Ekind (Gen_Unit) /= E_Generic_Function then
+ Error_Msg_NE
+ ("& is not the name of a generic function", Gen_Id, Gen_Unit);
+
+ elsif In_Open_Scopes (Gen_Unit) then
+ Error_Msg_NE ("instantiation of & within itself", N, Gen_Unit);
+
+ else
+ Set_Entity (Gen_Id, Gen_Unit);
+ Set_Is_Instantiated (Gen_Unit);
+
+ if In_Extended_Main_Source_Unit (N) then
+ Generate_Reference (Gen_Unit, N);
+ end if;
+
+ -- If renaming, get original unit
+
+ if Present (Renamed_Object (Gen_Unit))
+ and then (Ekind (Renamed_Object (Gen_Unit)) = E_Generic_Procedure
+ or else
+ Ekind (Renamed_Object (Gen_Unit)) = E_Generic_Function)
+ then
+ Gen_Unit := Renamed_Object (Gen_Unit);
+ Set_Is_Instantiated (Gen_Unit);
+ Generate_Reference (Gen_Unit, N);
+ end if;
+
+ if Contains_Instance_Of (Gen_Unit, Current_Scope, Gen_Id) then
+ Error_Msg_Node_2 := Current_Scope;
+ Error_Msg_NE
+ ("circular Instantiation: & instantiated in &!", N, Gen_Unit);
+ Circularity_Detected := True;
+ Restore_Hidden_Primitives (Vis_Prims_List);
+ goto Leave;
+ end if;
+
+ Gen_Decl := Unit_Declaration_Node (Gen_Unit);
+
+ -- Initialize renamings map, for error checking
+
+ Generic_Renamings.Set_Last (0);
+ Generic_Renamings_HTable.Reset;
+
+ Create_Instantiation_Source (N, Gen_Unit, False, S_Adjustment);
+
+ -- Copy original generic tree, to produce text for instantiation
+
+ Act_Tree :=
+ Copy_Generic_Node
+ (Original_Node (Gen_Decl), Empty, Instantiating => True);
+
+ -- Inherit overriding indicator from instance node
+
+ Act_Spec := Specification (Act_Tree);
+ Set_Must_Override (Act_Spec, Must_Override (N));
+ Set_Must_Not_Override (Act_Spec, Must_Not_Override (N));
+
+ Renaming_List :=
+ Analyze_Associations
+ (I_Node => N,
+ Formals => Generic_Formal_Declarations (Act_Tree),
+ F_Copy => Generic_Formal_Declarations (Gen_Decl));
+
+ Vis_Prims_List := Check_Hidden_Primitives (Renaming_List);
+
+ -- The subprogram itself cannot contain a nested instance, so the
+ -- current parent is left empty.
+
+ Set_Instance_Env (Gen_Unit, Empty);
+
+ -- Build the subprogram declaration, which does not appear in the
+ -- generic template, and give it a sloc consistent with that of the
+ -- template.
+
+ Set_Defining_Unit_Name (Act_Spec, Anon_Id);
+ Set_Generic_Parent (Act_Spec, Gen_Unit);
+ Act_Decl :=
+ Make_Subprogram_Declaration (Sloc (Act_Spec),
+ Specification => Act_Spec);
+
+ -- The aspects have been copied previously, but they have to be
+ -- linked explicitly to the new subprogram declaration. Explicit
+ -- pre/postconditions on the instance are analyzed below, in a
+ -- separate step.
+
+ Move_Aspects (Act_Tree, To => Act_Decl);
+ Set_Categorization_From_Pragmas (Act_Decl);
+
+ if Parent_Installed then
+ Hide_Current_Scope;
+ end if;
+
+ Append (Act_Decl, Renaming_List);
+ Analyze_Instance_And_Renamings;
+
+ -- If the generic is marked Import (Intrinsic), then so is the
+ -- instance. This indicates that there is no body to instantiate. If
+ -- generic is marked inline, so it the instance, and the anonymous
+ -- subprogram it renames. If inlined, or else if inlining is enabled
+ -- for the compilation, we generate the instance body even if it is
+ -- not within the main unit.
+
+ if Is_Intrinsic_Subprogram (Gen_Unit) then
+ Set_Is_Intrinsic_Subprogram (Anon_Id);
+ Set_Is_Intrinsic_Subprogram (Act_Decl_Id);
+
+ if Chars (Gen_Unit) = Name_Unchecked_Conversion then
+ Validate_Unchecked_Conversion (N, Act_Decl_Id);
+ end if;
+ end if;
+
+ -- Inherit convention from generic unit. Intrinsic convention, as for
+ -- an instance of unchecked conversion, is not inherited because an
+ -- explicit Ada instance has been created.
+
+ if Has_Convention_Pragma (Gen_Unit)
+ and then Convention (Gen_Unit) /= Convention_Intrinsic
+ then
+ Set_Convention (Act_Decl_Id, Convention (Gen_Unit));
+ Set_Is_Exported (Act_Decl_Id, Is_Exported (Gen_Unit));
+ end if;
+
+ Generate_Definition (Act_Decl_Id);
+ -- Set_Contract (Anon_Id, Make_Contract (Sloc (Anon_Id)));
+ -- ??? needed?
+ Set_Contract (Act_Decl_Id, Make_Contract (Sloc (Act_Decl_Id)));
+
+ -- Inherit all inlining-related flags which apply to the generic in
+ -- the subprogram and its declaration.
+
+ Set_Is_Inlined (Act_Decl_Id, Is_Inlined (Gen_Unit));
+ Set_Is_Inlined (Anon_Id, Is_Inlined (Gen_Unit));
+
+ Set_Has_Pragma_Inline (Act_Decl_Id, Has_Pragma_Inline (Gen_Unit));
+ Set_Has_Pragma_Inline (Anon_Id, Has_Pragma_Inline (Gen_Unit));
+
+ Set_Has_Pragma_Inline_Always
+ (Act_Decl_Id, Has_Pragma_Inline_Always (Gen_Unit));
+ Set_Has_Pragma_Inline_Always
+ (Anon_Id, Has_Pragma_Inline_Always (Gen_Unit));
+
+ if not Is_Intrinsic_Subprogram (Gen_Unit) then
+ Check_Elab_Instantiation (N);
+ end if;
+
+ if Is_Dispatching_Operation (Act_Decl_Id)
+ and then Ada_Version >= Ada_2005
+ then
+ declare
+ Formal : Entity_Id;
+
+ begin
+ Formal := First_Formal (Act_Decl_Id);
+ while Present (Formal) loop
+ if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
+ and then Is_Controlling_Formal (Formal)
+ and then not Can_Never_Be_Null (Formal)
+ then
+ Error_Msg_NE ("access parameter& is controlling,",
+ N, Formal);
+ Error_Msg_NE
+ ("\corresponding parameter of & must be"
+ & " explicitly null-excluding", N, Gen_Id);
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+ end;
+ end if;
+
+ Check_Hidden_Child_Unit (N, Gen_Unit, Act_Decl_Id);
+
+ Validate_Categorization_Dependency (N, Act_Decl_Id);
+
+ if not Is_Intrinsic_Subprogram (Act_Decl_Id) then
+ Inherit_Context (Gen_Decl, N);
+
+ Restore_Private_Views (Pack_Id, False);
+
+ -- If the context requires a full instantiation, mark node for
+ -- subsequent construction of the body.
+
+ if Need_Subprogram_Instance_Body (N, Act_Decl_Id) then
+ Check_Forward_Instantiation (Gen_Decl);
+
+ -- The wrapper package is always delayed, because it does not
+ -- constitute a freeze point, but to insure that the freeze
+ -- node is placed properly, it is created directly when
+ -- instantiating the body (otherwise the freeze node might
+ -- appear to early for nested instantiations).
+
+ elsif Nkind (Parent (N)) = N_Compilation_Unit then
+
+ -- For ASIS purposes, indicate that the wrapper package has
+ -- replaced the instantiation node.
+
+ Rewrite (N, Unit (Parent (N)));
+ Set_Unit (Parent (N), N);
+ end if;
+
+ elsif Nkind (Parent (N)) = N_Compilation_Unit then
+
+ -- Replace instance node for library-level instantiations of
+ -- intrinsic subprograms, for ASIS use.
+
+ Rewrite (N, Unit (Parent (N)));
+ Set_Unit (Parent (N), N);
+ end if;
+
+ if Parent_Installed then
+ Remove_Parent;
+ end if;
+
+ Restore_Hidden_Primitives (Vis_Prims_List);
+ Restore_Env;
+ Env_Installed := False;
+ Generic_Renamings.Set_Last (0);
+ Generic_Renamings_HTable.Reset;
+ end if;
+
+ <<Leave>>
+ if Has_Aspects (N) then
+ Analyze_Aspect_Specifications (N, Act_Decl_Id);
+ end if;
+
+ exception
+ when Instantiation_Error =>
+ if Parent_Installed then
+ Remove_Parent;
+ end if;
+
+ if Env_Installed then
+ Restore_Env;
+ end if;
+ end Analyze_Subprogram_Instantiation;
+
+ -------------------------
+ -- Get_Associated_Node --
+ -------------------------
+
+ function Get_Associated_Node (N : Node_Id) return Node_Id is
+ Assoc : Node_Id;
+
+ begin
+ Assoc := Associated_Node (N);
+
+ if Nkind (Assoc) /= Nkind (N) then
+ return Assoc;
+
+ elsif Nkind_In (Assoc, N_Aggregate, N_Extension_Aggregate) then
+ return Assoc;
+
+ else
+ -- If the node is part of an inner generic, it may itself have been
+ -- remapped into a further generic copy. Associated_Node is otherwise
+ -- used for the entity of the node, and will be of a different node
+ -- kind, or else N has been rewritten as a literal or function call.
+
+ while Present (Associated_Node (Assoc))
+ and then Nkind (Associated_Node (Assoc)) = Nkind (Assoc)
+ loop
+ Assoc := Associated_Node (Assoc);
+ end loop;
+
+ -- Follow and additional link in case the final node was rewritten.
+ -- This can only happen with nested generic units.
+
+ if (Nkind (Assoc) = N_Identifier or else Nkind (Assoc) in N_Op)
+ and then Present (Associated_Node (Assoc))
+ and then (Nkind_In (Associated_Node (Assoc), N_Function_Call,
+ N_Explicit_Dereference,
+ N_Integer_Literal,
+ N_Real_Literal,
+ N_String_Literal))
+ then
+ Assoc := Associated_Node (Assoc);
+ end if;
+
+ -- An additional special case: an unconstrained type in an object
+ -- declaration may have been rewritten as a local subtype constrained
+ -- by the expression in the declaration. We need to recover the
+ -- original entity which may be global.
+
+ if Present (Original_Node (Assoc))
+ and then Nkind (Parent (N)) = N_Object_Declaration
+ then
+ Assoc := Original_Node (Assoc);
+ end if;
+
+ return Assoc;
+ end if;
+ end Get_Associated_Node;
+
+ -------------------------------------------
+ -- Build_Instance_Compilation_Unit_Nodes --
+ -------------------------------------------
+
+ procedure Build_Instance_Compilation_Unit_Nodes
+ (N : Node_Id;
+ Act_Body : Node_Id;
+ Act_Decl : Node_Id)
+ is
+ Decl_Cunit : Node_Id;
+ Body_Cunit : Node_Id;
+ Citem : Node_Id;
+ New_Main : constant Entity_Id := Defining_Entity (Act_Decl);
+ Old_Main : constant Entity_Id := Cunit_Entity (Main_Unit);
+
+ begin
+ -- A new compilation unit node is built for the instance declaration
+
+ Decl_Cunit :=
+ Make_Compilation_Unit (Sloc (N),
+ Context_Items => Empty_List,
+ Unit => Act_Decl,
+ Aux_Decls_Node => Make_Compilation_Unit_Aux (Sloc (N)));
+
+ Set_Parent_Spec (Act_Decl, Parent_Spec (N));
+
+ -- The new compilation unit is linked to its body, but both share the
+ -- same file, so we do not set Body_Required on the new unit so as not
+ -- to create a spurious dependency on a non-existent body in the ali.
+ -- This simplifies CodePeer unit traversal.
+
+ -- We use the original instantiation compilation unit as the resulting
+ -- compilation unit of the instance, since this is the main unit.
+
+ Rewrite (N, Act_Body);
+
+ -- Propagate the aspect specifications from the package body template to
+ -- the instantiated version of the package body.
+
+ if Has_Aspects (Act_Body) then
+ Set_Aspect_Specifications
+ (N, New_Copy_List_Tree (Aspect_Specifications (Act_Body)));
+ end if;
+
+ Body_Cunit := Parent (N);
+
+ -- The two compilation unit nodes are linked by the Library_Unit field
+
+ Set_Library_Unit (Decl_Cunit, Body_Cunit);
+ Set_Library_Unit (Body_Cunit, Decl_Cunit);
+
+ -- Preserve the private nature of the package if needed
+
+ Set_Private_Present (Decl_Cunit, Private_Present (Body_Cunit));
+
+ -- If the instance is not the main unit, its context, categorization
+ -- and elaboration entity are not relevant to the compilation.
+
+ if Body_Cunit /= Cunit (Main_Unit) then
+ Make_Instance_Unit (Body_Cunit, In_Main => False);
+ return;
+ end if;
+
+ -- The context clause items on the instantiation, which are now attached
+ -- to the body compilation unit (since the body overwrote the original
+ -- instantiation node), semantically belong on the spec, so copy them
+ -- there. It's harmless to leave them on the body as well. In fact one
+ -- could argue that they belong in both places.
+
+ Citem := First (Context_Items (Body_Cunit));
+ while Present (Citem) loop
+ Append (New_Copy (Citem), Context_Items (Decl_Cunit));
+ Next (Citem);
+ end loop;
+
+ -- Propagate categorization flags on packages, so that they appear in
+ -- the ali file for the spec of the unit.
+
+ if Ekind (New_Main) = E_Package then
+ Set_Is_Pure (Old_Main, Is_Pure (New_Main));
+ Set_Is_Preelaborated (Old_Main, Is_Preelaborated (New_Main));
+ Set_Is_Remote_Types (Old_Main, Is_Remote_Types (New_Main));
+ Set_Is_Shared_Passive (Old_Main, Is_Shared_Passive (New_Main));
+ Set_Is_Remote_Call_Interface
+ (Old_Main, Is_Remote_Call_Interface (New_Main));
+ end if;
+
+ -- Make entry in Units table, so that binder can generate call to
+ -- elaboration procedure for body, if any.
+
+ Make_Instance_Unit (Body_Cunit, In_Main => True);
+ Main_Unit_Entity := New_Main;
+ Set_Cunit_Entity (Main_Unit, Main_Unit_Entity);
+
+ -- Build elaboration entity, since the instance may certainly generate
+ -- elaboration code requiring a flag for protection.
+
+ Build_Elaboration_Entity (Decl_Cunit, New_Main);
+ end Build_Instance_Compilation_Unit_Nodes;
+
+ -----------------------------
+ -- Check_Access_Definition --
+ -----------------------------
+
+ procedure Check_Access_Definition (N : Node_Id) is
+ begin
+ pragma Assert
+ (Ada_Version >= Ada_2005 and then Present (Access_Definition (N)));
+ null;
+ end Check_Access_Definition;
+
+ -----------------------------------
+ -- Check_Formal_Package_Instance --
+ -----------------------------------
+
+ -- If the formal has specific parameters, they must match those of the
+ -- actual. Both of them are instances, and the renaming declarations for
+ -- their formal parameters appear in the same order in both. The analyzed
+ -- formal has been analyzed in the context of the current instance.
+
+ procedure Check_Formal_Package_Instance
+ (Formal_Pack : Entity_Id;
+ Actual_Pack : Entity_Id)
+ is
+ E1 : Entity_Id := First_Entity (Actual_Pack);
+ E2 : Entity_Id := First_Entity (Formal_Pack);
+
+ Expr1 : Node_Id;
+ Expr2 : Node_Id;
+
+ procedure Check_Mismatch (B : Boolean);
+ -- Common error routine for mismatch between the parameters of the
+ -- actual instance and those of the formal package.
+
+ function Same_Instantiated_Constant (E1, E2 : Entity_Id) return Boolean;
+ -- The formal may come from a nested formal package, and the actual may
+ -- have been constant-folded. To determine whether the two denote the
+ -- same entity we may have to traverse several definitions to recover
+ -- the ultimate entity that they refer to.
+
+ function Same_Instantiated_Variable (E1, E2 : Entity_Id) return Boolean;
+ -- Similarly, if the formal comes from a nested formal package, the
+ -- actual may designate the formal through multiple renamings, which
+ -- have to be followed to determine the original variable in question.
+
+ --------------------
+ -- Check_Mismatch --
+ --------------------
+
+ procedure Check_Mismatch (B : Boolean) is
+ Kind : constant Node_Kind := Nkind (Parent (E2));
+
+ begin
+ if Kind = N_Formal_Type_Declaration then
+ return;
+
+ elsif Nkind_In (Kind, N_Formal_Object_Declaration,
+ N_Formal_Package_Declaration)
+ or else Kind in N_Formal_Subprogram_Declaration
+ then
+ null;
+
+ elsif B then
+ Error_Msg_NE
+ ("actual for & in actual instance does not match formal",
+ Parent (Actual_Pack), E1);
+ end if;
+ end Check_Mismatch;
+
+ --------------------------------
+ -- Same_Instantiated_Constant --
+ --------------------------------
+
+ function Same_Instantiated_Constant
+ (E1, E2 : Entity_Id) return Boolean
+ is
+ Ent : Entity_Id;
+
+ begin
+ Ent := E2;
+ while Present (Ent) loop
+ if E1 = Ent then
+ return True;
+
+ elsif Ekind (Ent) /= E_Constant then
+ return False;
+
+ elsif Is_Entity_Name (Constant_Value (Ent)) then
+ if Entity (Constant_Value (Ent)) = E1 then
+ return True;
+ else
+ Ent := Entity (Constant_Value (Ent));
+ end if;
+
+ -- The actual may be a constant that has been folded. Recover
+ -- original name.
+
+ elsif Is_Entity_Name (Original_Node (Constant_Value (Ent))) then
+ Ent := Entity (Original_Node (Constant_Value (Ent)));
+ else
+ return False;
+ end if;
+ end loop;
+
+ return False;
+ end Same_Instantiated_Constant;
+
+ --------------------------------
+ -- Same_Instantiated_Variable --
+ --------------------------------
+
+ function Same_Instantiated_Variable
+ (E1, E2 : Entity_Id) return Boolean
+ is
+ function Original_Entity (E : Entity_Id) return Entity_Id;
+ -- Follow chain of renamings to the ultimate ancestor
+
+ ---------------------
+ -- Original_Entity --
+ ---------------------
+
+ function Original_Entity (E : Entity_Id) return Entity_Id is
+ Orig : Entity_Id;
+
+ begin
+ Orig := E;
+ while Nkind (Parent (Orig)) = N_Object_Renaming_Declaration
+ and then Present (Renamed_Object (Orig))
+ and then Is_Entity_Name (Renamed_Object (Orig))
+ loop
+ Orig := Entity (Renamed_Object (Orig));
+ end loop;
+
+ return Orig;
+ end Original_Entity;
+
+ -- Start of processing for Same_Instantiated_Variable
+
+ begin
+ return Ekind (E1) = Ekind (E2)
+ and then Original_Entity (E1) = Original_Entity (E2);
+ end Same_Instantiated_Variable;
+
+ -- Start of processing for Check_Formal_Package_Instance
+
+ begin
+ while Present (E1)
+ and then Present (E2)
+ loop
+ exit when Ekind (E1) = E_Package
+ and then Renamed_Entity (E1) = Renamed_Entity (Actual_Pack);
+
+ -- If the formal is the renaming of the formal package, this
+ -- is the end of its formal part, which may occur before the
+ -- end of the formal part in the actual in the presence of
+ -- defaulted parameters in the formal package.
+
+ exit when Nkind (Parent (E2)) = N_Package_Renaming_Declaration
+ and then Renamed_Entity (E2) = Scope (E2);
+
+ -- The analysis of the actual may generate additional internal
+ -- entities. If the formal is defaulted, there is no corresponding
+ -- analysis and the internal entities must be skipped, until we
+ -- find corresponding entities again.
+
+ if Comes_From_Source (E2)
+ and then not Comes_From_Source (E1)
+ and then Chars (E1) /= Chars (E2)
+ then
+ while Present (E1)
+ and then Chars (E1) /= Chars (E2)
+ loop
+ Next_Entity (E1);
+ end loop;
+ end if;
+
+ if No (E1) then
+ return;
+
+ -- If the formal entity comes from a formal declaration, it was
+ -- defaulted in the formal package, and no check is needed on it.
+
+ elsif Nkind (Parent (E2)) = N_Formal_Object_Declaration then
+ goto Next_E;
+
+ -- Ditto for defaulted formal subprograms.
+
+ elsif Is_Overloadable (E1)
+ and then Nkind (Unit_Declaration_Node (E2)) in
+ N_Formal_Subprogram_Declaration
+ then
+ goto Next_E;
+
+ elsif Is_Type (E1) then
+
+ -- Subtypes must statically match. E1, E2 are the local entities
+ -- that are subtypes of the actuals. Itypes generated for other
+ -- parameters need not be checked, the check will be performed
+ -- on the parameters themselves.
+
+ -- If E2 is a formal type declaration, it is a defaulted parameter
+ -- and needs no checking.
+
+ if not Is_Itype (E1)
+ and then not Is_Itype (E2)
+ then
+ Check_Mismatch
+ (not Is_Type (E2)
+ or else Etype (E1) /= Etype (E2)
+ or else not Subtypes_Statically_Match (E1, E2));
+ end if;
+
+ elsif Ekind (E1) = E_Constant then
+
+ -- IN parameters must denote the same static value, or the same
+ -- constant, or the literal null.
+
+ Expr1 := Expression (Parent (E1));
+
+ if Ekind (E2) /= E_Constant then
+ Check_Mismatch (True);
+ goto Next_E;
+ else
+ Expr2 := Expression (Parent (E2));
+ end if;
+
+ if Is_Static_Expression (Expr1) then
+
+ if not Is_Static_Expression (Expr2) then
+ Check_Mismatch (True);
+
+ elsif Is_Discrete_Type (Etype (E1)) then
+ declare
+ V1 : constant Uint := Expr_Value (Expr1);
+ V2 : constant Uint := Expr_Value (Expr2);
+ begin
+ Check_Mismatch (V1 /= V2);
+ end;
+
+ elsif Is_Real_Type (Etype (E1)) then
+ declare
+ V1 : constant Ureal := Expr_Value_R (Expr1);
+ V2 : constant Ureal := Expr_Value_R (Expr2);
+ begin
+ Check_Mismatch (V1 /= V2);
+ end;
+
+ elsif Is_String_Type (Etype (E1))
+ and then Nkind (Expr1) = N_String_Literal
+ then
+ if Nkind (Expr2) /= N_String_Literal then
+ Check_Mismatch (True);
+ else
+ Check_Mismatch
+ (not String_Equal (Strval (Expr1), Strval (Expr2)));
+ end if;
+ end if;
+
+ elsif Is_Entity_Name (Expr1) then
+ if Is_Entity_Name (Expr2) then
+ if Entity (Expr1) = Entity (Expr2) then
+ null;
+ else
+ Check_Mismatch
+ (not Same_Instantiated_Constant
+ (Entity (Expr1), Entity (Expr2)));
+ end if;
+ else
+ Check_Mismatch (True);
+ end if;
+
+ elsif Is_Entity_Name (Original_Node (Expr1))
+ and then Is_Entity_Name (Expr2)
+ and then
+ Same_Instantiated_Constant
+ (Entity (Original_Node (Expr1)), Entity (Expr2))
+ then
+ null;
+
+ elsif Nkind (Expr1) = N_Null then
+ Check_Mismatch (Nkind (Expr1) /= N_Null);
+
+ else
+ Check_Mismatch (True);
+ end if;
+
+ elsif Ekind (E1) = E_Variable then
+ Check_Mismatch (not Same_Instantiated_Variable (E1, E2));
+
+ elsif Ekind (E1) = E_Package then
+ Check_Mismatch
+ (Ekind (E1) /= Ekind (E2)
+ or else Renamed_Object (E1) /= Renamed_Object (E2));
+
+ elsif Is_Overloadable (E1) then
+
+ -- Verify that the actual subprograms match. Note that actuals
+ -- that are attributes are rewritten as subprograms. If the
+ -- subprogram in the formal package is defaulted, no check is
+ -- needed. Note that this can only happen in Ada 2005 when the
+ -- formal package can be partially parameterized.
+
+ if Nkind (Unit_Declaration_Node (E1)) =
+ N_Subprogram_Renaming_Declaration
+ and then From_Default (Unit_Declaration_Node (E1))
+ then
+ null;
+
+ -- If the formal package has an "others" box association that
+ -- covers this formal, there is no need for a check either.
+
+ elsif Nkind (Unit_Declaration_Node (E2)) in
+ N_Formal_Subprogram_Declaration
+ and then Box_Present (Unit_Declaration_Node (E2))
+ then
+ null;
+
+ -- No check needed if subprogram is a defaulted null procedure
+
+ elsif No (Alias (E2))
+ and then Ekind (E2) = E_Procedure
+ and then
+ Null_Present (Specification (Unit_Declaration_Node (E2)))
+ then
+ null;
+
+ -- Otherwise the actual in the formal and the actual in the
+ -- instantiation of the formal must match, up to renamings.
+
+ else
+ Check_Mismatch
+ (Ekind (E2) /= Ekind (E1) or else (Alias (E1)) /= Alias (E2));
+ end if;
+
+ else
+ raise Program_Error;
+ end if;
+
+ <<Next_E>>
+ Next_Entity (E1);
+ Next_Entity (E2);
+ end loop;
+ end Check_Formal_Package_Instance;
+
+ ---------------------------
+ -- Check_Formal_Packages --
+ ---------------------------
+
+ procedure Check_Formal_Packages (P_Id : Entity_Id) is
+ E : Entity_Id;
+ Formal_P : Entity_Id;
+
+ begin
+ -- Iterate through the declarations in the instance, looking for package
+ -- renaming declarations that denote instances of formal packages. Stop
+ -- when we find the renaming of the current package itself. The
+ -- declaration for a formal package without a box is followed by an
+ -- internal entity that repeats the instantiation.
+
+ E := First_Entity (P_Id);
+ while Present (E) loop
+ if Ekind (E) = E_Package then
+ if Renamed_Object (E) = P_Id then
+ exit;
+
+ elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then
+ null;
+
+ elsif not Box_Present (Parent (Associated_Formal_Package (E))) then
+ Formal_P := Next_Entity (E);
+ Check_Formal_Package_Instance (Formal_P, E);
+
+ -- After checking, remove the internal validating package. It
+ -- is only needed for semantic checks, and as it may contain
+ -- generic formal declarations it should not reach gigi.
+
+ Remove (Unit_Declaration_Node (Formal_P));
+ end if;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end Check_Formal_Packages;
+
+ ---------------------------------
+ -- Check_Forward_Instantiation --
+ ---------------------------------
+
+ procedure Check_Forward_Instantiation (Decl : Node_Id) is
+ S : Entity_Id;
+ Gen_Comp : Entity_Id := Cunit_Entity (Get_Source_Unit (Decl));
+
+ begin
+ -- The instantiation appears before the generic body if we are in the
+ -- scope of the unit containing the generic, either in its spec or in
+ -- the package body, and before the generic body.
+
+ if Ekind (Gen_Comp) = E_Package_Body then
+ Gen_Comp := Spec_Entity (Gen_Comp);
+ end if;
+
+ if In_Open_Scopes (Gen_Comp)
+ and then No (Corresponding_Body (Decl))
+ then
+ S := Current_Scope;
+
+ while Present (S)
+ and then not Is_Compilation_Unit (S)
+ and then not Is_Child_Unit (S)
+ loop
+ if Ekind (S) = E_Package then
+ Set_Has_Forward_Instantiation (S);
+ end if;
+
+ S := Scope (S);
+ end loop;
+ end if;
+ end Check_Forward_Instantiation;
+
+ ---------------------------
+ -- Check_Generic_Actuals --
+ ---------------------------
+
+ -- The visibility of the actuals may be different between the point of
+ -- generic instantiation and the instantiation of the body.
+
+ procedure Check_Generic_Actuals
+ (Instance : Entity_Id;
+ Is_Formal_Box : Boolean)
+ is
+ E : Entity_Id;
+ Astype : Entity_Id;
+
+ function Denotes_Previous_Actual (Typ : Entity_Id) return Boolean;
+ -- For a formal that is an array type, the component type is often a
+ -- previous formal in the same unit. The privacy status of the component
+ -- type will have been examined earlier in the traversal of the
+ -- corresponding actuals, and this status should not be modified for
+ -- the array (sub)type itself. However, if the base type of the array
+ -- (sub)type is private, its full view must be restored in the body to
+ -- be consistent with subsequent index subtypes, etc.
+ --
+ -- To detect this case we have to rescan the list of formals, which is
+ -- usually short enough to ignore the resulting inefficiency.
+
+ -----------------------------
+ -- Denotes_Previous_Actual --
+ -----------------------------
+
+ function Denotes_Previous_Actual (Typ : Entity_Id) return Boolean is
+ Prev : Entity_Id;
+
+ begin
+ Prev := First_Entity (Instance);
+ while Present (Prev) loop
+ if Is_Type (Prev)
+ and then Nkind (Parent (Prev)) = N_Subtype_Declaration
+ and then Is_Entity_Name (Subtype_Indication (Parent (Prev)))
+ and then Entity (Subtype_Indication (Parent (Prev))) = Typ
+ then
+ return True;
+
+ elsif Prev = E then
+ return False;
+
+ else
+ Next_Entity (Prev);
+ end if;
+ end loop;
+
+ return False;
+ end Denotes_Previous_Actual;
+
+ -- Start of processing for Check_Generic_Actuals
+
+ begin
+ E := First_Entity (Instance);
+ while Present (E) loop
+ if Is_Type (E)
+ and then Nkind (Parent (E)) = N_Subtype_Declaration
+ and then Scope (Etype (E)) /= Instance
+ and then Is_Entity_Name (Subtype_Indication (Parent (E)))
+ then
+ if Is_Array_Type (E)
+ and then not Is_Private_Type (Etype (E))
+ and then Denotes_Previous_Actual (Component_Type (E))
+ then
+ null;
+ else
+ Check_Private_View (Subtype_Indication (Parent (E)));
+ end if;
+
+ Set_Is_Generic_Actual_Type (E, True);
+ Set_Is_Hidden (E, False);
+ Set_Is_Potentially_Use_Visible (E,
+ In_Use (Instance));
+
+ -- We constructed the generic actual type as a subtype of the
+ -- supplied type. This means that it normally would not inherit
+ -- subtype specific attributes of the actual, which is wrong for
+ -- the generic case.
+
+ Astype := Ancestor_Subtype (E);
+
+ if No (Astype) then
+
+ -- This can happen when E is an itype that is the full view of
+ -- a private type completed, e.g. with a constrained array. In
+ -- that case, use the first subtype, which will carry size
+ -- information. The base type itself is unconstrained and will
+ -- not carry it.
+
+ Astype := First_Subtype (E);
+ end if;
+
+ Set_Size_Info (E, (Astype));
+ Set_RM_Size (E, RM_Size (Astype));
+ Set_First_Rep_Item (E, First_Rep_Item (Astype));
+
+ if Is_Discrete_Or_Fixed_Point_Type (E) then
+ Set_RM_Size (E, RM_Size (Astype));
+
+ -- In nested instances, the base type of an access actual may
+ -- itself be private, and need to be exchanged.
+
+ elsif Is_Access_Type (E)
+ and then Is_Private_Type (Etype (E))
+ then
+ Check_Private_View
+ (New_Occurrence_Of (Etype (E), Sloc (Instance)));
+ end if;
+
+ elsif Ekind (E) = E_Package then
+
+ -- If this is the renaming for the current instance, we're done.
+ -- Otherwise it is a formal package. If the corresponding formal
+ -- was declared with a box, the (instantiations of the) generic
+ -- formal part are also visible. Otherwise, ignore the entity
+ -- created to validate the actuals.
+
+ if Renamed_Object (E) = Instance then
+ exit;
+
+ elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then
+ null;
+
+ -- The visibility of a formal of an enclosing generic is already
+ -- correct.
+
+ elsif Denotes_Formal_Package (E) then
+ null;
+
+ elsif Present (Associated_Formal_Package (E))
+ and then not Is_Generic_Formal (E)
+ then
+ if Box_Present (Parent (Associated_Formal_Package (E))) then
+ Check_Generic_Actuals (Renamed_Object (E), True);
+
+ else
+ Check_Generic_Actuals (Renamed_Object (E), False);
+ end if;
+
+ Set_Is_Hidden (E, False);
+ end if;
+
+ -- If this is a subprogram instance (in a wrapper package) the
+ -- actual is fully visible.
+
+ elsif Is_Wrapper_Package (Instance) then
+ Set_Is_Hidden (E, False);
+
+ -- If the formal package is declared with a box, or if the formal
+ -- parameter is defaulted, it is visible in the body.
+
+ elsif Is_Formal_Box
+ or else Is_Visible_Formal (E)
+ then
+ Set_Is_Hidden (E, False);
+ end if;
+
+ if Ekind (E) = E_Constant then
+
+ -- If the type of the actual is a private type declared in the
+ -- enclosing scope of the generic unit, the body of the generic
+ -- sees the full view of the type (because it has to appear in
+ -- the corresponding package body). If the type is private now,
+ -- exchange views to restore the proper visiblity in the instance.
+
+ declare
+ Typ : constant Entity_Id := Base_Type (Etype (E));
+ -- The type of the actual
+
+ Gen_Id : Entity_Id;
+ -- The generic unit
+
+ Parent_Scope : Entity_Id;
+ -- The enclosing scope of the generic unit
+
+ begin
+ if Is_Wrapper_Package (Instance) then
+ Gen_Id :=
+ Generic_Parent
+ (Specification
+ (Unit_Declaration_Node
+ (Related_Instance (Instance))));
+ else
+ Gen_Id :=
+ Generic_Parent (Package_Specification (Instance));
+ end if;
+
+ Parent_Scope := Scope (Gen_Id);
+
+ -- The exchange is only needed if the generic is defined
+ -- within a package which is not a common ancestor of the
+ -- scope of the instance, and is not already in scope.
+
+ if Is_Private_Type (Typ)
+ and then Scope (Typ) = Parent_Scope
+ and then Scope (Instance) /= Parent_Scope
+ and then Ekind (Parent_Scope) = E_Package
+ and then not Is_Child_Unit (Gen_Id)
+ then
+ Switch_View (Typ);
+
+ -- If the type of the entity is a subtype, it may also have
+ -- to be made visible, together with the base type of its
+ -- full view, after exchange.
+
+ if Is_Private_Type (Etype (E)) then
+ Switch_View (Etype (E));
+ Switch_View (Base_Type (Etype (E)));
+ end if;
+ end if;
+ end;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end Check_Generic_Actuals;
+
+ ------------------------------
+ -- Check_Generic_Child_Unit --
+ ------------------------------
+
+ procedure Check_Generic_Child_Unit
+ (Gen_Id : Node_Id;
+ Parent_Installed : in out Boolean)
+ is
+ Loc : constant Source_Ptr := Sloc (Gen_Id);
+ Gen_Par : Entity_Id := Empty;
+ E : Entity_Id;
+ Inst_Par : Entity_Id;
+ S : Node_Id;
+
+ function Find_Generic_Child
+ (Scop : Entity_Id;
+ Id : Node_Id) return Entity_Id;
+ -- Search generic parent for possible child unit with the given name
+
+ function In_Enclosing_Instance return Boolean;
+ -- Within an instance of the parent, the child unit may be denoted by
+ -- a simple name, or an abbreviated expanded name. Examine enclosing
+ -- scopes to locate a possible parent instantiation.
+
+ ------------------------
+ -- Find_Generic_Child --
+ ------------------------
+
+ function Find_Generic_Child
+ (Scop : Entity_Id;
+ Id : Node_Id) return Entity_Id
+ is
+ E : Entity_Id;
+
+ begin
+ -- If entity of name is already set, instance has already been
+ -- resolved, e.g. in an enclosing instantiation.
+
+ if Present (Entity (Id)) then
+ if Scope (Entity (Id)) = Scop then
+ return Entity (Id);
+ else
+ return Empty;
+ end if;
+
+ else
+ E := First_Entity (Scop);
+ while Present (E) loop
+ if Chars (E) = Chars (Id)
+ and then Is_Child_Unit (E)
+ then
+ if Is_Child_Unit (E)
+ and then not Is_Visible_Lib_Unit (E)
+ then
+ Error_Msg_NE
+ ("generic child unit& is not visible", Gen_Id, E);
+ end if;
+
+ Set_Entity (Id, E);
+ return E;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+
+ return Empty;
+ end if;
+ end Find_Generic_Child;
+
+ ---------------------------
+ -- In_Enclosing_Instance --
+ ---------------------------
+
+ function In_Enclosing_Instance return Boolean is
+ Enclosing_Instance : Node_Id;
+ Instance_Decl : Node_Id;
+
+ begin
+ -- We do not inline any call that contains instantiations, except
+ -- for instantiations of Unchecked_Conversion, so if we are within
+ -- an inlined body the current instance does not require parents.
+
+ if In_Inlined_Body then
+ pragma Assert (Chars (Gen_Id) = Name_Unchecked_Conversion);
+ return False;
+ end if;
+
+ -- Loop to check enclosing scopes
+
+ Enclosing_Instance := Current_Scope;
+ while Present (Enclosing_Instance) loop
+ Instance_Decl := Unit_Declaration_Node (Enclosing_Instance);
+
+ if Ekind (Enclosing_Instance) = E_Package
+ and then Is_Generic_Instance (Enclosing_Instance)
+ and then Present
+ (Generic_Parent (Specification (Instance_Decl)))
+ then
+ -- Check whether the generic we are looking for is a child of
+ -- this instance.
+
+ E := Find_Generic_Child
+ (Generic_Parent (Specification (Instance_Decl)), Gen_Id);
+ exit when Present (E);
+
+ else
+ E := Empty;
+ end if;
+
+ Enclosing_Instance := Scope (Enclosing_Instance);
+ end loop;
+
+ if No (E) then
+
+ -- Not a child unit
+
+ Analyze (Gen_Id);
+ return False;
+
+ else
+ Rewrite (Gen_Id,
+ Make_Expanded_Name (Loc,
+ Chars => Chars (E),
+ Prefix => New_Occurrence_Of (Enclosing_Instance, Loc),
+ Selector_Name => New_Occurrence_Of (E, Loc)));
+
+ Set_Entity (Gen_Id, E);
+ Set_Etype (Gen_Id, Etype (E));
+ Parent_Installed := False; -- Already in scope.
+ return True;
+ end if;
+ end In_Enclosing_Instance;
+
+ -- Start of processing for Check_Generic_Child_Unit
+
+ begin
+ -- If the name of the generic is given by a selected component, it may
+ -- be the name of a generic child unit, and the prefix is the name of an
+ -- instance of the parent, in which case the child unit must be visible.
+ -- If this instance is not in scope, it must be placed there and removed
+ -- after instantiation, because what is being instantiated is not the
+ -- original child, but the corresponding child present in the instance
+ -- of the parent.
+
+ -- If the child is instantiated within the parent, it can be given by
+ -- a simple name. In this case the instance is already in scope, but
+ -- the child generic must be recovered from the generic parent as well.
+
+ if Nkind (Gen_Id) = N_Selected_Component then
+ S := Selector_Name (Gen_Id);
+ Analyze (Prefix (Gen_Id));
+ Inst_Par := Entity (Prefix (Gen_Id));
+
+ if Ekind (Inst_Par) = E_Package
+ and then Present (Renamed_Object (Inst_Par))
+ then
+ Inst_Par := Renamed_Object (Inst_Par);
+ end if;
+
+ if Ekind (Inst_Par) = E_Package then
+ if Nkind (Parent (Inst_Par)) = N_Package_Specification then
+ Gen_Par := Generic_Parent (Parent (Inst_Par));
+
+ elsif Nkind (Parent (Inst_Par)) = N_Defining_Program_Unit_Name
+ and then
+ Nkind (Parent (Parent (Inst_Par))) = N_Package_Specification
+ then
+ Gen_Par := Generic_Parent (Parent (Parent (Inst_Par)));
+ end if;
+
+ elsif Ekind (Inst_Par) = E_Generic_Package
+ and then Nkind (Parent (Gen_Id)) = N_Formal_Package_Declaration
+ then
+ -- A formal package may be a real child package, and not the
+ -- implicit instance within a parent. In this case the child is
+ -- not visible and has to be retrieved explicitly as well.
+
+ Gen_Par := Inst_Par;
+ end if;
+
+ if Present (Gen_Par) then
+
+ -- The prefix denotes an instantiation. The entity itself may be a
+ -- nested generic, or a child unit.
+
+ E := Find_Generic_Child (Gen_Par, S);
+
+ if Present (E) then
+ Change_Selected_Component_To_Expanded_Name (Gen_Id);
+ Set_Entity (Gen_Id, E);
+ Set_Etype (Gen_Id, Etype (E));
+ Set_Entity (S, E);
+ Set_Etype (S, Etype (E));
+
+ -- Indicate that this is a reference to the parent
+
+ if In_Extended_Main_Source_Unit (Gen_Id) then
+ Set_Is_Instantiated (Inst_Par);
+ end if;
+
+ -- A common mistake is to replicate the naming scheme of a
+ -- hierarchy by instantiating a generic child directly, rather
+ -- than the implicit child in a parent instance:
+
+ -- generic .. package Gpar is ..
+ -- generic .. package Gpar.Child is ..
+ -- package Par is new Gpar ();
+
+ -- with Gpar.Child;
+ -- package Par.Child is new Gpar.Child ();
+ -- rather than Par.Child
+
+ -- In this case the instantiation is within Par, which is an
+ -- instance, but Gpar does not denote Par because we are not IN
+ -- the instance of Gpar, so this is illegal. The test below
+ -- recognizes this particular case.
+
+ if Is_Child_Unit (E)
+ and then not Comes_From_Source (Entity (Prefix (Gen_Id)))
+ and then (not In_Instance
+ or else Nkind (Parent (Parent (Gen_Id))) =
+ N_Compilation_Unit)
+ then
+ Error_Msg_N
+ ("prefix of generic child unit must be instance of parent",
+ Gen_Id);
+ end if;
+
+ if not In_Open_Scopes (Inst_Par)
+ and then Nkind (Parent (Gen_Id)) not in
+ N_Generic_Renaming_Declaration
+ then
+ Install_Parent (Inst_Par);
+ Parent_Installed := True;
+
+ elsif In_Open_Scopes (Inst_Par) then
+
+ -- If the parent is already installed, install the actuals
+ -- for its formal packages. This is necessary when the child
+ -- instance is a child of the parent instance: in this case,
+ -- the parent is placed on the scope stack but the formal
+ -- packages are not made visible.
+
+ Install_Formal_Packages (Inst_Par);
+ end if;
+
+ else
+ -- If the generic parent does not contain an entity that
+ -- corresponds to the selector, the instance doesn't either.
+ -- Analyzing the node will yield the appropriate error message.
+ -- If the entity is not a child unit, then it is an inner
+ -- generic in the parent.
+
+ Analyze (Gen_Id);
+ end if;
+
+ else
+ Analyze (Gen_Id);
+
+ if Is_Child_Unit (Entity (Gen_Id))
+ and then
+ Nkind (Parent (Gen_Id)) not in N_Generic_Renaming_Declaration
+ and then not In_Open_Scopes (Inst_Par)
+ then
+ Install_Parent (Inst_Par);
+ Parent_Installed := True;
+
+ -- The generic unit may be the renaming of the implicit child
+ -- present in an instance. In that case the parent instance is
+ -- obtained from the name of the renamed entity.
+
+ elsif Ekind (Entity (Gen_Id)) = E_Generic_Package
+ and then Present (Renamed_Entity (Entity (Gen_Id)))
+ and then Is_Child_Unit (Renamed_Entity (Entity (Gen_Id)))
+ then
+ declare
+ Renamed_Package : constant Node_Id :=
+ Name (Parent (Entity (Gen_Id)));
+ begin
+ if Nkind (Renamed_Package) = N_Expanded_Name then
+ Inst_Par := Entity (Prefix (Renamed_Package));
+ Install_Parent (Inst_Par);
+ Parent_Installed := True;
+ end if;
+ end;
+ end if;
+ end if;
+
+ elsif Nkind (Gen_Id) = N_Expanded_Name then
+
+ -- Entity already present, analyze prefix, whose meaning may be
+ -- an instance in the current context. If it is an instance of
+ -- a relative within another, the proper parent may still have
+ -- to be installed, if they are not of the same generation.
+
+ Analyze (Prefix (Gen_Id));
+
+ -- In the unlikely case that a local declaration hides the name
+ -- of the parent package, locate it on the homonym chain. If the
+ -- context is an instance of the parent, the renaming entity is
+ -- flagged as such.
+
+ Inst_Par := Entity (Prefix (Gen_Id));
+ while Present (Inst_Par)
+ and then not Is_Package_Or_Generic_Package (Inst_Par)
+ loop
+ Inst_Par := Homonym (Inst_Par);
+ end loop;
+
+ pragma Assert (Present (Inst_Par));
+ Set_Entity (Prefix (Gen_Id), Inst_Par);
+
+ if In_Enclosing_Instance then
+ null;
+
+ elsif Present (Entity (Gen_Id))
+ and then Is_Child_Unit (Entity (Gen_Id))
+ and then not In_Open_Scopes (Inst_Par)
+ then
+ Install_Parent (Inst_Par);
+ Parent_Installed := True;
+ end if;
+
+ elsif In_Enclosing_Instance then
+
+ -- The child unit is found in some enclosing scope
+
+ null;
+
+ else
+ Analyze (Gen_Id);
+
+ -- If this is the renaming of the implicit child in a parent
+ -- instance, recover the parent name and install it.
+
+ if Is_Entity_Name (Gen_Id) then
+ E := Entity (Gen_Id);
+
+ if Is_Generic_Unit (E)
+ and then Nkind (Parent (E)) in N_Generic_Renaming_Declaration
+ and then Is_Child_Unit (Renamed_Object (E))
+ and then Is_Generic_Unit (Scope (Renamed_Object (E)))
+ and then Nkind (Name (Parent (E))) = N_Expanded_Name
+ then
+ Rewrite (Gen_Id,
+ New_Copy_Tree (Name (Parent (E))));
+ Inst_Par := Entity (Prefix (Gen_Id));
+
+ if not In_Open_Scopes (Inst_Par) then
+ Install_Parent (Inst_Par);
+ Parent_Installed := True;
+ end if;
+
+ -- If it is a child unit of a non-generic parent, it may be
+ -- use-visible and given by a direct name. Install parent as
+ -- for other cases.
+
+ elsif Is_Generic_Unit (E)
+ and then Is_Child_Unit (E)
+ and then
+ Nkind (Parent (Gen_Id)) not in N_Generic_Renaming_Declaration
+ and then not Is_Generic_Unit (Scope (E))
+ then
+ if not In_Open_Scopes (Scope (E)) then
+ Install_Parent (Scope (E));
+ Parent_Installed := True;
+ end if;
+ end if;
+ end if;
+ end if;
+ end Check_Generic_Child_Unit;
+
+ -----------------------------
+ -- Check_Hidden_Child_Unit --
+ -----------------------------
+
+ procedure Check_Hidden_Child_Unit
+ (N : Node_Id;
+ Gen_Unit : Entity_Id;
+ Act_Decl_Id : Entity_Id)
+ is
+ Gen_Id : constant Node_Id := Name (N);
+
+ begin
+ if Is_Child_Unit (Gen_Unit)
+ and then Is_Child_Unit (Act_Decl_Id)
+ and then Nkind (Gen_Id) = N_Expanded_Name
+ and then Entity (Prefix (Gen_Id)) = Scope (Act_Decl_Id)
+ and then Chars (Gen_Unit) = Chars (Act_Decl_Id)
+ then
+ Error_Msg_Node_2 := Scope (Act_Decl_Id);
+ Error_Msg_NE
+ ("generic unit & is implicitly declared in &",
+ Defining_Unit_Name (N), Gen_Unit);
+ Error_Msg_N ("\instance must have different name",
+ Defining_Unit_Name (N));
+ end if;
+ end Check_Hidden_Child_Unit;
+
+ ------------------------
+ -- Check_Private_View --
+ ------------------------
+
+ procedure Check_Private_View (N : Node_Id) is
+ T : constant Entity_Id := Etype (N);
+ BT : Entity_Id;
+
+ begin
+ -- Exchange views if the type was not private in the generic but is
+ -- private at the point of instantiation. Do not exchange views if
+ -- the scope of the type is in scope. This can happen if both generic
+ -- and instance are sibling units, or if type is defined in a parent.
+ -- In this case the visibility of the type will be correct for all
+ -- semantic checks.
+
+ if Present (T) then
+ BT := Base_Type (T);
+
+ if Is_Private_Type (T)
+ and then not Has_Private_View (N)
+ and then Present (Full_View (T))
+ and then not In_Open_Scopes (Scope (T))
+ then
+ -- In the generic, the full type was visible. Save the private
+ -- entity, for subsequent exchange.
+
+ Switch_View (T);
+
+ elsif Has_Private_View (N)
+ and then not Is_Private_Type (T)
+ and then not Has_Been_Exchanged (T)
+ and then Etype (Get_Associated_Node (N)) /= T
+ then
+ -- Only the private declaration was visible in the generic. If
+ -- the type appears in a subtype declaration, the subtype in the
+ -- instance must have a view compatible with that of its parent,
+ -- which must be exchanged (see corresponding code in Restore_
+ -- Private_Views). Otherwise, if the type is defined in a parent
+ -- unit, leave full visibility within instance, which is safe.
+
+ if In_Open_Scopes (Scope (Base_Type (T)))
+ and then not Is_Private_Type (Base_Type (T))
+ and then Comes_From_Source (Base_Type (T))
+ then
+ null;
+
+ elsif Nkind (Parent (N)) = N_Subtype_Declaration
+ or else not In_Private_Part (Scope (Base_Type (T)))
+ then
+ Prepend_Elmt (T, Exchanged_Views);
+ Exchange_Declarations (Etype (Get_Associated_Node (N)));
+ end if;
+
+ -- For composite types with inconsistent representation exchange
+ -- component types accordingly.
+
+ elsif Is_Access_Type (T)
+ and then Is_Private_Type (Designated_Type (T))
+ and then not Has_Private_View (N)
+ and then Present (Full_View (Designated_Type (T)))
+ then
+ Switch_View (Designated_Type (T));
+
+ elsif Is_Array_Type (T) then
+ if Is_Private_Type (Component_Type (T))
+ and then not Has_Private_View (N)
+ and then Present (Full_View (Component_Type (T)))
+ then
+ Switch_View (Component_Type (T));
+ end if;
+
+ -- The normal exchange mechanism relies on the setting of a
+ -- flag on the reference in the generic. However, an additional
+ -- mechanism is needed for types that are not explicitly
+ -- mentioned in the generic, but may be needed in expanded code
+ -- in the instance. This includes component types of arrays and
+ -- designated types of access types. This processing must also
+ -- include the index types of arrays which we take care of here.
+
+ declare
+ Indx : Node_Id;
+ Typ : Entity_Id;
+
+ begin
+ Indx := First_Index (T);
+ while Present (Indx) loop
+ Typ := Base_Type (Etype (Indx));
+
+ if Is_Private_Type (Typ)
+ and then Present (Full_View (Typ))
+ then
+ Switch_View (Typ);
+ end if;
+
+ Next_Index (Indx);
+ end loop;
+ end;
+
+ elsif Is_Private_Type (T)
+ and then Present (Full_View (T))
+ and then Is_Array_Type (Full_View (T))
+ and then Is_Private_Type (Component_Type (Full_View (T)))
+ then
+ Switch_View (T);
+
+ -- Finally, a non-private subtype may have a private base type, which
+ -- must be exchanged for consistency. This can happen when a package
+ -- body is instantiated, when the scope stack is empty but in fact
+ -- the subtype and the base type are declared in an enclosing scope.
+
+ -- Note that in this case we introduce an inconsistency in the view
+ -- set, because we switch the base type BT, but there could be some
+ -- private dependent subtypes of BT which remain unswitched. Such
+ -- subtypes might need to be switched at a later point (see specific
+ -- provision for that case in Switch_View).
+
+ elsif not Is_Private_Type (T)
+ and then not Has_Private_View (N)
+ and then Is_Private_Type (BT)
+ and then Present (Full_View (BT))
+ and then not Is_Generic_Type (BT)
+ and then not In_Open_Scopes (BT)
+ then
+ Prepend_Elmt (Full_View (BT), Exchanged_Views);
+ Exchange_Declarations (BT);
+ end if;
+ end if;
+ end Check_Private_View;
+
+ -----------------------------
+ -- Check_Hidden_Primitives --
+ -----------------------------
+
+ function Check_Hidden_Primitives (Assoc_List : List_Id) return Elist_Id is
+ Actual : Node_Id;
+ Gen_T : Entity_Id;
+ Result : Elist_Id := No_Elist;
+
+ begin
+ if No (Assoc_List) then
+ return No_Elist;
+ end if;
+
+ -- Traverse the list of associations between formals and actuals
+ -- searching for renamings of tagged types
+
+ Actual := First (Assoc_List);
+ while Present (Actual) loop
+ if Nkind (Actual) = N_Subtype_Declaration then
+ Gen_T := Generic_Parent_Type (Actual);
+
+ if Present (Gen_T)
+ and then Is_Tagged_Type (Gen_T)
+ then
+ -- Traverse the list of primitives of the actual types
+ -- searching for hidden primitives that are visible in the
+ -- corresponding generic formal; leave them visible and
+ -- append them to Result to restore their decoration later.
+
+ Install_Hidden_Primitives
+ (Prims_List => Result,
+ Gen_T => Gen_T,
+ Act_T => Entity (Subtype_Indication (Actual)));
+ end if;
+ end if;
+
+ Next (Actual);
+ end loop;
+
+ return Result;
+ end Check_Hidden_Primitives;
+
+ --------------------------
+ -- Contains_Instance_Of --
+ --------------------------
+
+ function Contains_Instance_Of
+ (Inner : Entity_Id;
+ Outer : Entity_Id;
+ N : Node_Id) return Boolean
+ is
+ Elmt : Elmt_Id;
+ Scop : Entity_Id;
+
+ begin
+ Scop := Outer;
+
+ -- Verify that there are no circular instantiations. We check whether
+ -- the unit contains an instance of the current scope or some enclosing
+ -- scope (in case one of the instances appears in a subunit). Longer
+ -- circularities involving subunits might seem too pathological to
+ -- consider, but they were not too pathological for the authors of
+ -- DEC bc30vsq, so we loop over all enclosing scopes, and mark all
+ -- enclosing generic scopes as containing an instance.
+
+ loop
+ -- Within a generic subprogram body, the scope is not generic, to
+ -- allow for recursive subprograms. Use the declaration to determine
+ -- whether this is a generic unit.
+
+ if Ekind (Scop) = E_Generic_Package
+ or else (Is_Subprogram (Scop)
+ and then Nkind (Unit_Declaration_Node (Scop)) =
+ N_Generic_Subprogram_Declaration)
+ then
+ Elmt := First_Elmt (Inner_Instances (Inner));
+
+ while Present (Elmt) loop
+ if Node (Elmt) = Scop then
+ Error_Msg_Node_2 := Inner;
+ Error_Msg_NE
+ ("circular Instantiation: & instantiated within &!",
+ N, Scop);
+ return True;
+
+ elsif Node (Elmt) = Inner then
+ return True;
+
+ elsif Contains_Instance_Of (Node (Elmt), Scop, N) then
+ Error_Msg_Node_2 := Inner;
+ Error_Msg_NE
+ ("circular Instantiation: & instantiated within &!",
+ N, Node (Elmt));
+ return True;
+ end if;
+
+ Next_Elmt (Elmt);
+ end loop;
+
+ -- Indicate that Inner is being instantiated within Scop
+
+ Append_Elmt (Inner, Inner_Instances (Scop));
+ end if;
+
+ if Scop = Standard_Standard then
+ exit;
+ else
+ Scop := Scope (Scop);
+ end if;
+ end loop;
+
+ return False;
+ end Contains_Instance_Of;
+
+ -----------------------
+ -- Copy_Generic_Node --
+ -----------------------
+
+ function Copy_Generic_Node
+ (N : Node_Id;
+ Parent_Id : Node_Id;
+ Instantiating : Boolean) return Node_Id
+ is
+ Ent : Entity_Id;
+ New_N : Node_Id;
+
+ function Copy_Generic_Descendant (D : Union_Id) return Union_Id;
+ -- Check the given value of one of the Fields referenced by the current
+ -- node to determine whether to copy it recursively. The field may hold
+ -- a Node_Id, a List_Id, or an Elist_Id, or a plain value (Sloc, Uint,
+ -- Char) in which case it need not be copied.
+
+ procedure Copy_Descendants;
+ -- Common utility for various nodes
+
+ function Copy_Generic_Elist (E : Elist_Id) return Elist_Id;
+ -- Make copy of element list
+
+ function Copy_Generic_List
+ (L : List_Id;
+ Parent_Id : Node_Id) return List_Id;
+ -- Apply Copy_Node recursively to the members of a node list
+
+ function In_Defining_Unit_Name (Nam : Node_Id) return Boolean;
+ -- True if an identifier is part of the defining program unit name of
+ -- a child unit. The entity of such an identifier must be kept (for
+ -- ASIS use) even though as the name of an enclosing generic it would
+ -- otherwise not be preserved in the generic tree.
+
+ ----------------------
+ -- Copy_Descendants --
+ ----------------------
+
+ procedure Copy_Descendants is
+
+ use Atree.Unchecked_Access;
+ -- This code section is part of the implementation of an untyped
+ -- tree traversal, so it needs direct access to node fields.
+
+ begin
+ Set_Field1 (New_N, Copy_Generic_Descendant (Field1 (N)));
+ Set_Field2 (New_N, Copy_Generic_Descendant (Field2 (N)));
+ Set_Field3 (New_N, Copy_Generic_Descendant (Field3 (N)));
+ Set_Field4 (New_N, Copy_Generic_Descendant (Field4 (N)));
+ Set_Field5 (New_N, Copy_Generic_Descendant (Field5 (N)));
+ end Copy_Descendants;
+
+ -----------------------------
+ -- Copy_Generic_Descendant --
+ -----------------------------
+
+ function Copy_Generic_Descendant (D : Union_Id) return Union_Id is
+ begin
+ if D = Union_Id (Empty) then
+ return D;
+
+ elsif D in Node_Range then
+ return Union_Id
+ (Copy_Generic_Node (Node_Id (D), New_N, Instantiating));
+
+ elsif D in List_Range then
+ return Union_Id (Copy_Generic_List (List_Id (D), New_N));
+
+ elsif D in Elist_Range then
+ return Union_Id (Copy_Generic_Elist (Elist_Id (D)));
+
+ -- Nothing else is copyable (e.g. Uint values), return as is
+
+ else
+ return D;
+ end if;
+ end Copy_Generic_Descendant;
+
+ ------------------------
+ -- Copy_Generic_Elist --
+ ------------------------
+
+ function Copy_Generic_Elist (E : Elist_Id) return Elist_Id is
+ M : Elmt_Id;
+ L : Elist_Id;
+
+ begin
+ if Present (E) then
+ L := New_Elmt_List;
+ M := First_Elmt (E);
+ while Present (M) loop
+ Append_Elmt
+ (Copy_Generic_Node (Node (M), Empty, Instantiating), L);
+ Next_Elmt (M);
+ end loop;
+
+ return L;
+
+ else
+ return No_Elist;
+ end if;
+ end Copy_Generic_Elist;
+
+ -----------------------
+ -- Copy_Generic_List --
+ -----------------------
+
+ function Copy_Generic_List
+ (L : List_Id;
+ Parent_Id : Node_Id) return List_Id
+ is
+ N : Node_Id;
+ New_L : List_Id;
+
+ begin
+ if Present (L) then
+ New_L := New_List;
+ Set_Parent (New_L, Parent_Id);
+
+ N := First (L);
+ while Present (N) loop
+ Append (Copy_Generic_Node (N, Empty, Instantiating), New_L);
+ Next (N);
+ end loop;
+
+ return New_L;
+
+ else
+ return No_List;
+ end if;
+ end Copy_Generic_List;
+
+ ---------------------------
+ -- In_Defining_Unit_Name --
+ ---------------------------
+
+ function In_Defining_Unit_Name (Nam : Node_Id) return Boolean is
+ begin
+ return Present (Parent (Nam))
+ and then (Nkind (Parent (Nam)) = N_Defining_Program_Unit_Name
+ or else
+ (Nkind (Parent (Nam)) = N_Expanded_Name
+ and then In_Defining_Unit_Name (Parent (Nam))));
+ end In_Defining_Unit_Name;
+
+ -- Start of processing for Copy_Generic_Node
+
+ begin
+ if N = Empty then
+ return N;
+ end if;
+
+ New_N := New_Copy (N);
+
+ -- Copy aspects if present
+
+ if Has_Aspects (N) then
+ Set_Has_Aspects (New_N, False);
+ Set_Aspect_Specifications
+ (New_N, Copy_Generic_List (Aspect_Specifications (N), Parent_Id));
+ end if;
+
+ if Instantiating then
+ Adjust_Instantiation_Sloc (New_N, S_Adjustment);
+ end if;
+
+ if not Is_List_Member (N) then
+ Set_Parent (New_N, Parent_Id);
+ end if;
+
+ -- If defining identifier, then all fields have been copied already
+
+ if Nkind (New_N) in N_Entity then
+ null;
+
+ -- Special casing for identifiers and other entity names and operators
+
+ elsif Nkind_In (New_N, N_Identifier,
+ N_Character_Literal,
+ N_Expanded_Name,
+ N_Operator_Symbol)
+ or else Nkind (New_N) in N_Op
+ then
+ if not Instantiating then
+
+ -- Link both nodes in order to assign subsequently the entity of
+ -- the copy to the original node, in case this is a global
+ -- reference.
+
+ Set_Associated_Node (N, New_N);
+
+ -- If we are within an instantiation, this is a nested generic
+ -- that has already been analyzed at the point of definition.
+ -- We must preserve references that were global to the enclosing
+ -- parent at that point. Other occurrences, whether global or
+ -- local to the current generic, must be resolved anew, so we
+ -- reset the entity in the generic copy. A global reference has a
+ -- smaller depth than the parent, or else the same depth in case
+ -- both are distinct compilation units.
+
+ -- A child unit is implicitly declared within the enclosing parent
+ -- but is in fact global to it, and must be preserved.
+
+ -- It is also possible for Current_Instantiated_Parent to be
+ -- defined, and for this not to be a nested generic, namely if
+ -- the unit is loaded through Rtsfind. In that case, the entity of
+ -- New_N is only a link to the associated node, and not a defining
+ -- occurrence.
+
+ -- The entities for parent units in the defining_program_unit of a
+ -- generic child unit are established when the context of the unit
+ -- is first analyzed, before the generic copy is made. They are
+ -- preserved in the copy for use in ASIS queries.
+
+ Ent := Entity (New_N);
+
+ if No (Current_Instantiated_Parent.Gen_Id) then
+ if No (Ent)
+ or else Nkind (Ent) /= N_Defining_Identifier
+ or else not In_Defining_Unit_Name (N)
+ then
+ Set_Associated_Node (New_N, Empty);
+ end if;
+
+ elsif No (Ent)
+ or else
+ not Nkind_In (Ent, N_Defining_Identifier,
+ N_Defining_Character_Literal,
+ N_Defining_Operator_Symbol)
+ or else No (Scope (Ent))
+ or else
+ (Scope (Ent) = Current_Instantiated_Parent.Gen_Id
+ and then not Is_Child_Unit (Ent))
+ or else
+ (Scope_Depth (Scope (Ent)) >
+ Scope_Depth (Current_Instantiated_Parent.Gen_Id)
+ and then
+ Get_Source_Unit (Ent) =
+ Get_Source_Unit (Current_Instantiated_Parent.Gen_Id))
+ then
+ Set_Associated_Node (New_N, Empty);
+ end if;
+
+ -- Case of instantiating identifier or some other name or operator
+
+ else
+ -- If the associated node is still defined, the entity in it
+ -- is global, and must be copied to the instance. If this copy
+ -- is being made for a body to inline, it is applied to an
+ -- instantiated tree, and the entity is already present and
+ -- must be also preserved.
+
+ declare
+ Assoc : constant Node_Id := Get_Associated_Node (N);
+
+ begin
+ if Present (Assoc) then
+ if Nkind (Assoc) = Nkind (N) then
+ Set_Entity (New_N, Entity (Assoc));
+ Check_Private_View (N);
+
+ -- The name in the call may be a selected component if the
+ -- call has not been analyzed yet, as may be the case for
+ -- pre/post conditions in a generic unit.
+
+ elsif Nkind (Assoc) = N_Function_Call
+ and then Is_Entity_Name (Name (Assoc))
+ then
+ Set_Entity (New_N, Entity (Name (Assoc)));
+
+ elsif Nkind_In (Assoc, N_Defining_Identifier,
+ N_Defining_Character_Literal,
+ N_Defining_Operator_Symbol)
+ and then Expander_Active
+ then
+ -- Inlining case: we are copying a tree that contains
+ -- global entities, which are preserved in the copy to be
+ -- used for subsequent inlining.
+
+ null;
+
+ else
+ Set_Entity (New_N, Empty);
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- For expanded name, we must copy the Prefix and Selector_Name
+
+ if Nkind (N) = N_Expanded_Name then
+ Set_Prefix
+ (New_N, Copy_Generic_Node (Prefix (N), New_N, Instantiating));
+
+ Set_Selector_Name (New_N,
+ Copy_Generic_Node (Selector_Name (N), New_N, Instantiating));
+
+ -- For operators, we must copy the right operand
+
+ elsif Nkind (N) in N_Op then
+ Set_Right_Opnd (New_N,
+ Copy_Generic_Node (Right_Opnd (N), New_N, Instantiating));
+
+ -- And for binary operators, the left operand as well
+
+ if Nkind (N) in N_Binary_Op then
+ Set_Left_Opnd (New_N,
+ Copy_Generic_Node (Left_Opnd (N), New_N, Instantiating));
+ end if;
+ end if;
+
+ -- Special casing for stubs
+
+ elsif Nkind (N) in N_Body_Stub then
+
+ -- In any case, we must copy the specification or defining
+ -- identifier as appropriate.
+
+ if Nkind (N) = N_Subprogram_Body_Stub then
+ Set_Specification (New_N,
+ Copy_Generic_Node (Specification (N), New_N, Instantiating));
+
+ else
+ Set_Defining_Identifier (New_N,
+ Copy_Generic_Node
+ (Defining_Identifier (N), New_N, Instantiating));
+ end if;
+
+ -- If we are not instantiating, then this is where we load and
+ -- analyze subunits, i.e. at the point where the stub occurs. A
+ -- more permissive system might defer this analysis to the point
+ -- of instantiation, but this seems too complicated for now.
+
+ if not Instantiating then
+ declare
+ Subunit_Name : constant Unit_Name_Type := Get_Unit_Name (N);
+ Subunit : Node_Id;
+ Unum : Unit_Number_Type;
+ New_Body : Node_Id;
+
+ begin
+ -- Make sure that, if it is a subunit of the main unit that is
+ -- preprocessed and if -gnateG is specified, the preprocessed
+ -- file will be written.
+
+ Lib.Analysing_Subunit_Of_Main :=
+ Lib.In_Extended_Main_Source_Unit (N);
+ Unum :=
+ Load_Unit
+ (Load_Name => Subunit_Name,
+ Required => False,
+ Subunit => True,
+ Error_Node => N);
+ Lib.Analysing_Subunit_Of_Main := False;
+
+ -- If the proper body is not found, a warning message will be
+ -- emitted when analyzing the stub, or later at the point of
+ -- instantiation. Here we just leave the stub as is.
+
+ if Unum = No_Unit then
+ Subunits_Missing := True;
+ goto Subunit_Not_Found;
+ end if;
+
+ Subunit := Cunit (Unum);
+
+ if Nkind (Unit (Subunit)) /= N_Subunit then
+ Error_Msg_N
+ ("found child unit instead of expected SEPARATE subunit",
+ Subunit);
+ Error_Msg_Sloc := Sloc (N);
+ Error_Msg_N ("\to complete stub #", Subunit);
+ goto Subunit_Not_Found;
+ end if;
+
+ -- We must create a generic copy of the subunit, in order to
+ -- perform semantic analysis on it, and we must replace the
+ -- stub in the original generic unit with the subunit, in order
+ -- to preserve non-local references within.
+
+ -- Only the proper body needs to be copied. Library_Unit and
+ -- context clause are simply inherited by the generic copy.
+ -- Note that the copy (which may be recursive if there are
+ -- nested subunits) must be done first, before attaching it to
+ -- the enclosing generic.
+
+ New_Body :=
+ Copy_Generic_Node
+ (Proper_Body (Unit (Subunit)),
+ Empty, Instantiating => False);
+
+ -- Now place the original proper body in the original generic
+ -- unit. This is a body, not a compilation unit.
+
+ Rewrite (N, Proper_Body (Unit (Subunit)));
+ Set_Is_Compilation_Unit (Defining_Entity (N), False);
+ Set_Was_Originally_Stub (N);
+
+ -- Finally replace the body of the subunit with its copy, and
+ -- make this new subunit into the library unit of the generic
+ -- copy, which does not have stubs any longer.
+
+ Set_Proper_Body (Unit (Subunit), New_Body);
+ Set_Library_Unit (New_N, Subunit);
+ Inherit_Context (Unit (Subunit), N);
+ end;
+
+ -- If we are instantiating, this must be an error case, since
+ -- otherwise we would have replaced the stub node by the proper body
+ -- that corresponds. So just ignore it in the copy (i.e. we have
+ -- copied it, and that is good enough).
+
+ else
+ null;
+ end if;
+
+ <<Subunit_Not_Found>> null;
+
+ -- If the node is a compilation unit, it is the subunit of a stub, which
+ -- has been loaded already (see code below). In this case, the library
+ -- unit field of N points to the parent unit (which is a compilation
+ -- unit) and need not (and cannot) be copied.
+
+ -- When the proper body of the stub is analyzed, the library_unit link
+ -- is used to establish the proper context (see sem_ch10).
+
+ -- The other fields of a compilation unit are copied as usual
+
+ elsif Nkind (N) = N_Compilation_Unit then
+
+ -- This code can only be executed when not instantiating, because in
+ -- the copy made for an instantiation, the compilation unit node has
+ -- disappeared at the point that a stub is replaced by its proper
+ -- body.
+
+ pragma Assert (not Instantiating);
+
+ Set_Context_Items (New_N,
+ Copy_Generic_List (Context_Items (N), New_N));
+
+ Set_Unit (New_N,
+ Copy_Generic_Node (Unit (N), New_N, False));
+
+ Set_First_Inlined_Subprogram (New_N,
+ Copy_Generic_Node
+ (First_Inlined_Subprogram (N), New_N, False));
+
+ Set_Aux_Decls_Node (New_N,
+ Copy_Generic_Node (Aux_Decls_Node (N), New_N, False));
+
+ -- For an assignment node, the assignment is known to be semantically
+ -- legal if we are instantiating the template. This avoids incorrect
+ -- diagnostics in generated code.
+
+ elsif Nkind (N) = N_Assignment_Statement then
+
+ -- Copy name and expression fields in usual manner
+
+ Set_Name (New_N,
+ Copy_Generic_Node (Name (N), New_N, Instantiating));
+
+ Set_Expression (New_N,
+ Copy_Generic_Node (Expression (N), New_N, Instantiating));
+
+ if Instantiating then
+ Set_Assignment_OK (Name (New_N), True);
+ end if;
+
+ elsif Nkind_In (N, N_Aggregate, N_Extension_Aggregate) then
+ if not Instantiating then
+ Set_Associated_Node (N, New_N);
+
+ else
+ if Present (Get_Associated_Node (N))
+ and then Nkind (Get_Associated_Node (N)) = Nkind (N)
+ then
+ -- In the generic the aggregate has some composite type. If at
+ -- the point of instantiation the type has a private view,
+ -- install the full view (and that of its ancestors, if any).
+
+ declare
+ T : Entity_Id := (Etype (Get_Associated_Node (New_N)));
+ Rt : Entity_Id;
+
+ begin
+ if Present (T)
+ and then Is_Private_Type (T)
+ then
+ Switch_View (T);
+ end if;
+
+ if Present (T)
+ and then Is_Tagged_Type (T)
+ and then Is_Derived_Type (T)
+ then
+ Rt := Root_Type (T);
+
+ loop
+ T := Etype (T);
+
+ if Is_Private_Type (T) then
+ Switch_View (T);
+ end if;
+
+ exit when T = Rt;
+ end loop;
+ end if;
+ end;
+ end if;
+ end if;
+
+ -- Do not copy the associated node, which points to the generic copy
+ -- of the aggregate.
+
+ declare
+ use Atree.Unchecked_Access;
+ -- This code section is part of the implementation of an untyped
+ -- tree traversal, so it needs direct access to node fields.
+
+ begin
+ Set_Field1 (New_N, Copy_Generic_Descendant (Field1 (N)));
+ Set_Field2 (New_N, Copy_Generic_Descendant (Field2 (N)));
+ Set_Field3 (New_N, Copy_Generic_Descendant (Field3 (N)));
+ Set_Field5 (New_N, Copy_Generic_Descendant (Field5 (N)));
+ end;
+
+ -- Allocators do not have an identifier denoting the access type, so we
+ -- must locate it through the expression to check whether the views are
+ -- consistent.
+
+ elsif Nkind (N) = N_Allocator
+ and then Nkind (Expression (N)) = N_Qualified_Expression
+ and then Is_Entity_Name (Subtype_Mark (Expression (N)))
+ and then Instantiating
+ then
+ declare
+ T : constant Node_Id :=
+ Get_Associated_Node (Subtype_Mark (Expression (N)));
+ Acc_T : Entity_Id;
+
+ begin
+ if Present (T) then
+
+ -- Retrieve the allocator node in the generic copy
+
+ Acc_T := Etype (Parent (Parent (T)));
+ if Present (Acc_T)
+ and then Is_Private_Type (Acc_T)
+ then
+ Switch_View (Acc_T);
+ end if;
+ end if;
+
+ Copy_Descendants;
+ end;
+
+ -- For a proper body, we must catch the case of a proper body that
+ -- replaces a stub. This represents the point at which a separate
+ -- compilation unit, and hence template file, may be referenced, so we
+ -- must make a new source instantiation entry for the template of the
+ -- subunit, and ensure that all nodes in the subunit are adjusted using
+ -- this new source instantiation entry.
+
+ elsif Nkind (N) in N_Proper_Body then
+ declare
+ Save_Adjustment : constant Sloc_Adjustment := S_Adjustment;
+
+ begin
+ if Instantiating and then Was_Originally_Stub (N) then
+ Create_Instantiation_Source
+ (Instantiation_Node,
+ Defining_Entity (N),
+ False,
+ S_Adjustment);
+ end if;
+
+ -- Now copy the fields of the proper body, using the new
+ -- adjustment factor if one was needed as per test above.
+
+ Copy_Descendants;
+
+ -- Restore the original adjustment factor in case changed
+
+ S_Adjustment := Save_Adjustment;
+ end;
+
+ -- Don't copy Ident or Comment pragmas, since the comment belongs to the
+ -- generic unit, not to the instantiating unit.
+
+ elsif Nkind (N) = N_Pragma and then Instantiating then
+ declare
+ Prag_Id : constant Pragma_Id := Get_Pragma_Id (N);
+ begin
+ if Prag_Id = Pragma_Ident or else Prag_Id = Pragma_Comment then
+ New_N := Make_Null_Statement (Sloc (N));
+ else
+ Copy_Descendants;
+ end if;
+ end;
+
+ elsif Nkind_In (N, N_Integer_Literal, N_Real_Literal) then
+
+ -- No descendant fields need traversing
+
+ null;
+
+ elsif Nkind (N) = N_String_Literal
+ and then Present (Etype (N))
+ and then Instantiating
+ then
+ -- If the string is declared in an outer scope, the string_literal
+ -- subtype created for it may have the wrong scope. We force the
+ -- reanalysis of the constant to generate a new itype in the proper
+ -- context.
+
+ Set_Etype (New_N, Empty);
+ Set_Analyzed (New_N, False);
+
+ -- For the remaining nodes, copy their descendants recursively
+
+ else
+ Copy_Descendants;
+
+ if Instantiating and then Nkind (N) = N_Subprogram_Body then
+ Set_Generic_Parent (Specification (New_N), N);
+
+ -- Should preserve Corresponding_Spec??? (12.3(14))
+ end if;
+ end if;
+
+ return New_N;
+ end Copy_Generic_Node;
+
+ ----------------------------
+ -- Denotes_Formal_Package --
+ ----------------------------
+
+ function Denotes_Formal_Package
+ (Pack : Entity_Id;
+ On_Exit : Boolean := False;
+ Instance : Entity_Id := Empty) return Boolean
+ is
+ Par : Entity_Id;
+ Scop : constant Entity_Id := Scope (Pack);
+ E : Entity_Id;
+
+ function Is_Actual_Of_Previous_Formal (P : Entity_Id) return Boolean;
+ -- The package in question may be an actual for a previous formal
+ -- package P of the current instance, so examine its actuals as well.
+ -- This must be recursive over other formal packages.
+
+ ----------------------------------
+ -- Is_Actual_Of_Previous_Formal --
+ ----------------------------------
+
+ function Is_Actual_Of_Previous_Formal (P : Entity_Id) return Boolean is
+ E1 : Entity_Id;
+
+ begin
+ E1 := First_Entity (P);
+ while Present (E1) and then E1 /= Instance loop
+ if Ekind (E1) = E_Package
+ and then Nkind (Parent (E1)) = N_Package_Renaming_Declaration
+ then
+ if Renamed_Object (E1) = Pack then
+ return True;
+
+ elsif E1 = P or else Renamed_Object (E1) = P then
+ return False;
+
+ elsif Is_Actual_Of_Previous_Formal (E1) then
+ return True;
+ end if;
+ end if;
+
+ Next_Entity (E1);
+ end loop;
+
+ return False;
+ end Is_Actual_Of_Previous_Formal;
+
+ -- Start of processing for Denotes_Formal_Package
+
+ begin
+ if On_Exit then
+ Par :=
+ Instance_Envs.Table
+ (Instance_Envs.Last).Instantiated_Parent.Act_Id;
+ else
+ Par := Current_Instantiated_Parent.Act_Id;
+ end if;
+
+ if Ekind (Scop) = E_Generic_Package
+ or else Nkind (Unit_Declaration_Node (Scop)) =
+ N_Generic_Subprogram_Declaration
+ then
+ return True;
+
+ elsif Nkind (Original_Node (Unit_Declaration_Node (Pack))) =
+ N_Formal_Package_Declaration
+ then
+ return True;
+
+ elsif No (Par) then
+ return False;
+
+ else
+ -- Check whether this package is associated with a formal package of
+ -- the enclosing instantiation. Iterate over the list of renamings.
+
+ E := First_Entity (Par);
+ while Present (E) loop
+ if Ekind (E) /= E_Package
+ or else Nkind (Parent (E)) /= N_Package_Renaming_Declaration
+ then
+ null;
+
+ elsif Renamed_Object (E) = Par then
+ return False;
+
+ elsif Renamed_Object (E) = Pack then
+ return True;
+
+ elsif Is_Actual_Of_Previous_Formal (E) then
+ return True;
+
+ end if;
+
+ Next_Entity (E);
+ end loop;
+
+ return False;
+ end if;
+ end Denotes_Formal_Package;
+
+ -----------------
+ -- End_Generic --
+ -----------------
+
+ procedure End_Generic is
+ begin
+ -- ??? More things could be factored out in this routine. Should
+ -- probably be done at a later stage.
+
+ Inside_A_Generic := Generic_Flags.Table (Generic_Flags.Last);
+ Generic_Flags.Decrement_Last;
+
+ Expander_Mode_Restore;
+ end End_Generic;
+
+ -------------
+ -- Earlier --
+ -------------
+
+ function Earlier (N1, N2 : Node_Id) return Boolean is
+ procedure Find_Depth (P : in out Node_Id; D : in out Integer);
+ -- Find distance from given node to enclosing compilation unit
+
+ ----------------
+ -- Find_Depth --
+ ----------------
+
+ procedure Find_Depth (P : in out Node_Id; D : in out Integer) is
+ begin
+ while Present (P)
+ and then Nkind (P) /= N_Compilation_Unit
+ loop
+ P := True_Parent (P);
+ D := D + 1;
+ end loop;
+ end Find_Depth;
+
+ -- Local declarations
+
+ D1 : Integer := 0;
+ D2 : Integer := 0;
+ P1 : Node_Id := N1;
+ P2 : Node_Id := N2;
+ T1 : Source_Ptr;
+ T2 : Source_Ptr;
+
+ -- Start of processing for Earlier
+
+ begin
+ Find_Depth (P1, D1);
+ Find_Depth (P2, D2);
+
+ if P1 /= P2 then
+ return False;
+ else
+ P1 := N1;
+ P2 := N2;
+ end if;
+
+ while D1 > D2 loop
+ P1 := True_Parent (P1);
+ D1 := D1 - 1;
+ end loop;
+
+ while D2 > D1 loop
+ P2 := True_Parent (P2);
+ D2 := D2 - 1;
+ end loop;
+
+ -- At this point P1 and P2 are at the same distance from the root.
+ -- We examine their parents until we find a common declarative list.
+ -- If we reach the root, N1 and N2 do not descend from the same
+ -- declarative list (e.g. one is nested in the declarative part and
+ -- the other is in a block in the statement part) and the earlier
+ -- one is already frozen.
+
+ while not Is_List_Member (P1)
+ or else not Is_List_Member (P2)
+ or else List_Containing (P1) /= List_Containing (P2)
+ loop
+ P1 := True_Parent (P1);
+ P2 := True_Parent (P2);
+
+ if Nkind (Parent (P1)) = N_Subunit then
+ P1 := Corresponding_Stub (Parent (P1));
+ end if;
+
+ if Nkind (Parent (P2)) = N_Subunit then
+ P2 := Corresponding_Stub (Parent (P2));
+ end if;
+
+ if P1 = P2 then
+ return False;
+ end if;
+ end loop;
+
+ -- Expanded code usually shares the source location of the original
+ -- construct it was generated for. This however may not necessarely
+ -- reflect the true location of the code within the tree.
+
+ -- Before comparing the slocs of the two nodes, make sure that we are
+ -- working with correct source locations. Assume that P1 is to the left
+ -- of P2. If either one does not come from source, traverse the common
+ -- list heading towards the other node and locate the first source
+ -- statement.
+
+ -- P1 P2
+ -- ----+===+===+--------------+===+===+----
+ -- expanded code expanded code
+
+ if not Comes_From_Source (P1) then
+ while Present (P1) loop
+
+ -- Neither P2 nor a source statement were located during the
+ -- search. If we reach the end of the list, then P1 does not
+ -- occur earlier than P2.
+
+ -- ---->
+ -- start --- P2 ----- P1 --- end
+
+ if No (Next (P1)) then
+ return False;
+
+ -- We encounter P2 while going to the right of the list. This
+ -- means that P1 does indeed appear earlier.
+
+ -- ---->
+ -- start --- P1 ===== P2 --- end
+ -- expanded code in between
+
+ elsif P1 = P2 then
+ return True;
+
+ -- No need to look any further since we have located a source
+ -- statement.
+
+ elsif Comes_From_Source (P1) then
+ exit;
+ end if;
+
+ -- Keep going right
+
+ Next (P1);
+ end loop;
+ end if;
+
+ if not Comes_From_Source (P2) then
+ while Present (P2) loop
+
+ -- Neither P1 nor a source statement were located during the
+ -- search. If we reach the start of the list, then P1 does not
+ -- occur earlier than P2.
+
+ -- <----
+ -- start --- P2 --- P1 --- end
+
+ if No (Prev (P2)) then
+ return False;
+
+ -- We encounter P1 while going to the left of the list. This
+ -- means that P1 does indeed appear earlier.
+
+ -- <----
+ -- start --- P1 ===== P2 --- end
+ -- expanded code in between
+
+ elsif P2 = P1 then
+ return True;
+
+ -- No need to look any further since we have located a source
+ -- statement.
+
+ elsif Comes_From_Source (P2) then
+ exit;
+ end if;
+
+ -- Keep going left
+
+ Prev (P2);
+ end loop;
+ end if;
+
+ -- At this point either both nodes came from source or we approximated
+ -- their source locations through neighbouring source statements.
+
+ T1 := Top_Level_Location (Sloc (P1));
+ T2 := Top_Level_Location (Sloc (P2));
+
+ -- When two nodes come from the same instance, they have identical top
+ -- level locations. To determine proper relation within the tree, check
+ -- their locations within the template.
+
+ if T1 = T2 then
+ return Sloc (P1) < Sloc (P2);
+
+ -- The two nodes either come from unrelated instances or do not come
+ -- from instantiated code at all.
+
+ else
+ return T1 < T2;
+ end if;
+ end Earlier;
+
+ ----------------------
+ -- Find_Actual_Type --
+ ----------------------
+
+ function Find_Actual_Type
+ (Typ : Entity_Id;
+ Gen_Type : Entity_Id) return Entity_Id
+ is
+ Gen_Scope : constant Entity_Id := Scope (Gen_Type);
+ T : Entity_Id;
+
+ begin
+ -- Special processing only applies to child units
+
+ if not Is_Child_Unit (Gen_Scope) then
+ return Get_Instance_Of (Typ);
+
+ -- If designated or component type is itself a formal of the child unit,
+ -- its instance is available.
+
+ elsif Scope (Typ) = Gen_Scope then
+ return Get_Instance_Of (Typ);
+
+ -- If the array or access type is not declared in the parent unit,
+ -- no special processing needed.
+
+ elsif not Is_Generic_Type (Typ)
+ and then Scope (Gen_Scope) /= Scope (Typ)
+ then
+ return Get_Instance_Of (Typ);
+
+ -- Otherwise, retrieve designated or component type by visibility
+
+ else
+ T := Current_Entity (Typ);
+ while Present (T) loop
+ if In_Open_Scopes (Scope (T)) then
+ return T;
+
+ elsif Is_Generic_Actual_Type (T) then
+ return T;
+ end if;
+
+ T := Homonym (T);
+ end loop;
+
+ return Typ;
+ end if;
+ end Find_Actual_Type;
+
+ ----------------------------
+ -- Freeze_Subprogram_Body --
+ ----------------------------
+
+ procedure Freeze_Subprogram_Body
+ (Inst_Node : Node_Id;
+ Gen_Body : Node_Id;
+ Pack_Id : Entity_Id)
+ is
+ Gen_Unit : constant Entity_Id := Get_Generic_Entity (Inst_Node);
+ Par : constant Entity_Id := Scope (Gen_Unit);
+ E_G_Id : Entity_Id;
+ Enc_G : Entity_Id;
+ Enc_I : Node_Id;
+ F_Node : Node_Id;
+
+ function Enclosing_Package_Body (N : Node_Id) return Node_Id;
+ -- Find innermost package body that encloses the given node, and which
+ -- is not a compilation unit. Freeze nodes for the instance, or for its
+ -- enclosing body, may be inserted after the enclosing_body of the
+ -- generic unit. Used to determine proper placement of freeze node for
+ -- both package and subprogram instances.
+
+ function Package_Freeze_Node (B : Node_Id) return Node_Id;
+ -- Find entity for given package body, and locate or create a freeze
+ -- node for it.
+
+ ----------------------------
+ -- Enclosing_Package_Body --
+ ----------------------------
+
+ function Enclosing_Package_Body (N : Node_Id) return Node_Id is
+ P : Node_Id;
+
+ begin
+ P := Parent (N);
+ while Present (P)
+ and then Nkind (Parent (P)) /= N_Compilation_Unit
+ loop
+ if Nkind (P) = N_Package_Body then
+ if Nkind (Parent (P)) = N_Subunit then
+ return Corresponding_Stub (Parent (P));
+ else
+ return P;
+ end if;
+ end if;
+
+ P := True_Parent (P);
+ end loop;
+
+ return Empty;
+ end Enclosing_Package_Body;
+
+ -------------------------
+ -- Package_Freeze_Node --
+ -------------------------
+
+ function Package_Freeze_Node (B : Node_Id) return Node_Id is
+ Id : Entity_Id;
+
+ begin
+ if Nkind (B) = N_Package_Body then
+ Id := Corresponding_Spec (B);
+ else pragma Assert (Nkind (B) = N_Package_Body_Stub);
+ Id := Corresponding_Spec (Proper_Body (Unit (Library_Unit (B))));
+ end if;
+
+ Ensure_Freeze_Node (Id);
+ return Freeze_Node (Id);
+ end Package_Freeze_Node;
+
+ -- Start of processing of Freeze_Subprogram_Body
+
+ begin
+ -- If the instance and the generic body appear within the same unit, and
+ -- the instance precedes the generic, the freeze node for the instance
+ -- must appear after that of the generic. If the generic is nested
+ -- within another instance I2, then current instance must be frozen
+ -- after I2. In both cases, the freeze nodes are those of enclosing
+ -- packages. Otherwise, the freeze node is placed at the end of the
+ -- current declarative part.
+
+ Enc_G := Enclosing_Package_Body (Gen_Body);
+ Enc_I := Enclosing_Package_Body (Inst_Node);
+ Ensure_Freeze_Node (Pack_Id);
+ F_Node := Freeze_Node (Pack_Id);
+
+ if Is_Generic_Instance (Par)
+ and then Present (Freeze_Node (Par))
+ and then In_Same_Declarative_Part (Freeze_Node (Par), Inst_Node)
+ then
+ -- The parent was a premature instantiation. Insert freeze node at
+ -- the end the current declarative part.
+
+ if ABE_Is_Certain (Get_Package_Instantiation_Node (Par)) then
+ Insert_Freeze_Node_For_Instance (Inst_Node, F_Node);
+
+ -- Handle the following case:
+ --
+ -- package Parent_Inst is new ...
+ -- Parent_Inst []
+ --
+ -- procedure P ... -- this body freezes Parent_Inst
+ --
+ -- package Inst is new ...
+ --
+ -- In this particular scenario, the freeze node for Inst must be
+ -- inserted in the same manner as that of Parent_Inst - before the
+ -- next source body or at the end of the declarative list (body not
+ -- available). If body P did not exist and Parent_Inst was frozen
+ -- after Inst, either by a body following Inst or at the end of the
+ -- declarative region, the freeze node for Inst must be inserted
+ -- after that of Parent_Inst. This relation is established by
+ -- comparing the Slocs of Parent_Inst freeze node and Inst.
+
+ elsif List_Containing (Get_Package_Instantiation_Node (Par)) =
+ List_Containing (Inst_Node)
+ and then Sloc (Freeze_Node (Par)) < Sloc (Inst_Node)
+ then
+ Insert_Freeze_Node_For_Instance (Inst_Node, F_Node);
+
+ else
+ Insert_After (Freeze_Node (Par), F_Node);
+ end if;
+
+ -- The body enclosing the instance should be frozen after the body that
+ -- includes the generic, because the body of the instance may make
+ -- references to entities therein. If the two are not in the same
+ -- declarative part, or if the one enclosing the instance is frozen
+ -- already, freeze the instance at the end of the current declarative
+ -- part.
+
+ elsif Is_Generic_Instance (Par)
+ and then Present (Freeze_Node (Par))
+ and then Present (Enc_I)
+ then
+ if In_Same_Declarative_Part (Freeze_Node (Par), Enc_I)
+ or else
+ (Nkind (Enc_I) = N_Package_Body
+ and then
+ In_Same_Declarative_Part (Freeze_Node (Par), Parent (Enc_I)))
+ then
+ -- The enclosing package may contain several instances. Rather
+ -- than computing the earliest point at which to insert its freeze
+ -- node, we place it at the end of the declarative part of the
+ -- parent of the generic.
+
+ Insert_Freeze_Node_For_Instance
+ (Freeze_Node (Par), Package_Freeze_Node (Enc_I));
+ end if;
+
+ Insert_Freeze_Node_For_Instance (Inst_Node, F_Node);
+
+ elsif Present (Enc_G)
+ and then Present (Enc_I)
+ and then Enc_G /= Enc_I
+ and then Earlier (Inst_Node, Gen_Body)
+ then
+ if Nkind (Enc_G) = N_Package_Body then
+ E_G_Id := Corresponding_Spec (Enc_G);
+ else pragma Assert (Nkind (Enc_G) = N_Package_Body_Stub);
+ E_G_Id :=
+ Corresponding_Spec (Proper_Body (Unit (Library_Unit (Enc_G))));
+ end if;
+
+ -- Freeze package that encloses instance, and place node after the
+ -- package that encloses generic. If enclosing package is already
+ -- frozen we have to assume it is at the proper place. This may be a
+ -- potential ABE that requires dynamic checking. Do not add a freeze
+ -- node if the package that encloses the generic is inside the body
+ -- that encloses the instance, because the freeze node would be in
+ -- the wrong scope. Additional contortions needed if the bodies are
+ -- within a subunit.
+
+ declare
+ Enclosing_Body : Node_Id;
+
+ begin
+ if Nkind (Enc_I) = N_Package_Body_Stub then
+ Enclosing_Body := Proper_Body (Unit (Library_Unit (Enc_I)));
+ else
+ Enclosing_Body := Enc_I;
+ end if;
+
+ if Parent (List_Containing (Enc_G)) /= Enclosing_Body then
+ Insert_Freeze_Node_For_Instance
+ (Enc_G, Package_Freeze_Node (Enc_I));
+ end if;
+ end;
+
+ -- Freeze enclosing subunit before instance
+
+ Ensure_Freeze_Node (E_G_Id);
+
+ if not Is_List_Member (Freeze_Node (E_G_Id)) then
+ Insert_After (Enc_G, Freeze_Node (E_G_Id));
+ end if;
+
+ Insert_Freeze_Node_For_Instance (Inst_Node, F_Node);
+
+ else
+ -- If none of the above, insert freeze node at the end of the current
+ -- declarative part.
+
+ Insert_Freeze_Node_For_Instance (Inst_Node, F_Node);
+ end if;
+ end Freeze_Subprogram_Body;
+
+ ----------------
+ -- Get_Gen_Id --
+ ----------------
+
+ function Get_Gen_Id (E : Assoc_Ptr) return Entity_Id is
+ begin
+ return Generic_Renamings.Table (E).Gen_Id;
+ end Get_Gen_Id;
+
+ ---------------------
+ -- Get_Instance_Of --
+ ---------------------
+
+ function Get_Instance_Of (A : Entity_Id) return Entity_Id is
+ Res : constant Assoc_Ptr := Generic_Renamings_HTable.Get (A);
+
+ begin
+ if Res /= Assoc_Null then
+ return Generic_Renamings.Table (Res).Act_Id;
+ else
+ -- On exit, entity is not instantiated: not a generic parameter, or
+ -- else parameter of an inner generic unit.
+
+ return A;
+ end if;
+ end Get_Instance_Of;
+
+ ------------------------------------
+ -- Get_Package_Instantiation_Node --
+ ------------------------------------
+
+ function Get_Package_Instantiation_Node (A : Entity_Id) return Node_Id is
+ Decl : Node_Id := Unit_Declaration_Node (A);
+ Inst : Node_Id;
+
+ begin
+ -- If the Package_Instantiation attribute has been set on the package
+ -- entity, then use it directly when it (or its Original_Node) refers
+ -- to an N_Package_Instantiation node. In principle it should be
+ -- possible to have this field set in all cases, which should be
+ -- investigated, and would allow this function to be significantly
+ -- simplified. ???
+
+ Inst := Package_Instantiation (A);
+
+ if Present (Inst) then
+ if Nkind (Inst) = N_Package_Instantiation then
+ return Inst;
+
+ elsif Nkind (Original_Node (Inst)) = N_Package_Instantiation then
+ return Original_Node (Inst);
+ end if;
+ end if;
+
+ -- If the instantiation is a compilation unit that does not need body
+ -- then the instantiation node has been rewritten as a package
+ -- declaration for the instance, and we return the original node.
+
+ -- If it is a compilation unit and the instance node has not been
+ -- rewritten, then it is still the unit of the compilation. Finally, if
+ -- a body is present, this is a parent of the main unit whose body has
+ -- been compiled for inlining purposes, and the instantiation node has
+ -- been rewritten with the instance body.
+
+ -- Otherwise the instantiation node appears after the declaration. If
+ -- the entity is a formal package, the declaration may have been
+ -- rewritten as a generic declaration (in the case of a formal with box)
+ -- or left as a formal package declaration if it has actuals, and is
+ -- found with a forward search.
+
+ if Nkind (Parent (Decl)) = N_Compilation_Unit then
+ if Nkind (Decl) = N_Package_Declaration
+ and then Present (Corresponding_Body (Decl))
+ then
+ Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
+ end if;
+
+ if Nkind (Original_Node (Decl)) = N_Package_Instantiation then
+ return Original_Node (Decl);
+ else
+ return Unit (Parent (Decl));
+ end if;
+
+ elsif Nkind (Decl) = N_Package_Declaration
+ and then Nkind (Original_Node (Decl)) = N_Formal_Package_Declaration
+ then
+ return Original_Node (Decl);
+
+ else
+ Inst := Next (Decl);
+ while not Nkind_In (Inst, N_Package_Instantiation,
+ N_Formal_Package_Declaration)
+ loop
+ Next (Inst);
+ end loop;
+
+ return Inst;
+ end if;
+ end Get_Package_Instantiation_Node;
+
+ ------------------------
+ -- Has_Been_Exchanged --
+ ------------------------
+
+ function Has_Been_Exchanged (E : Entity_Id) return Boolean is
+ Next : Elmt_Id;
+
+ begin
+ Next := First_Elmt (Exchanged_Views);
+ while Present (Next) loop
+ if Full_View (Node (Next)) = E then
+ return True;
+ end if;
+
+ Next_Elmt (Next);
+ end loop;
+
+ return False;
+ end Has_Been_Exchanged;
+
+ ----------
+ -- Hash --
+ ----------
+
+ function Hash (F : Entity_Id) return HTable_Range is
+ begin
+ return HTable_Range (F mod HTable_Size);
+ end Hash;
+
+ ------------------------
+ -- Hide_Current_Scope --
+ ------------------------
+
+ procedure Hide_Current_Scope is
+ C : constant Entity_Id := Current_Scope;
+ E : Entity_Id;
+
+ begin
+ Set_Is_Hidden_Open_Scope (C);
+
+ E := First_Entity (C);
+ while Present (E) loop
+ if Is_Immediately_Visible (E) then
+ Set_Is_Immediately_Visible (E, False);
+ Append_Elmt (E, Hidden_Entities);
+ end if;
+
+ Next_Entity (E);
+ end loop;
+
+ -- Make the scope name invisible as well. This is necessary, but might
+ -- conflict with calls to Rtsfind later on, in case the scope is a
+ -- predefined one. There is no clean solution to this problem, so for
+ -- now we depend on the user not redefining Standard itself in one of
+ -- the parent units.
+
+ if Is_Immediately_Visible (C) and then C /= Standard_Standard then
+ Set_Is_Immediately_Visible (C, False);
+ Append_Elmt (C, Hidden_Entities);
+ end if;
+
+ end Hide_Current_Scope;
+
+ --------------
+ -- Init_Env --
+ --------------
+
+ procedure Init_Env is
+ Saved : Instance_Env;
+
+ begin
+ Saved.Instantiated_Parent := Current_Instantiated_Parent;
+ Saved.Exchanged_Views := Exchanged_Views;
+ Saved.Hidden_Entities := Hidden_Entities;
+ Saved.Current_Sem_Unit := Current_Sem_Unit;
+ Saved.Parent_Unit_Visible := Parent_Unit_Visible;
+ Saved.Instance_Parent_Unit := Instance_Parent_Unit;
+
+ -- Save configuration switches. These may be reset if the unit is a
+ -- predefined unit, and the current mode is not Ada 2005.
+
+ Save_Opt_Config_Switches (Saved.Switches);
+
+ Instance_Envs.Append (Saved);
+
+ Exchanged_Views := New_Elmt_List;
+ Hidden_Entities := New_Elmt_List;
+
+ -- Make dummy entry for Instantiated parent. If generic unit is legal,
+ -- this is set properly in Set_Instance_Env.
+
+ Current_Instantiated_Parent :=
+ (Current_Scope, Current_Scope, Assoc_Null);
+ end Init_Env;
+
+ ------------------------------
+ -- In_Same_Declarative_Part --
+ ------------------------------
+
+ function In_Same_Declarative_Part
+ (F_Node : Node_Id;
+ Inst : Node_Id) return Boolean
+ is
+ Decls : constant Node_Id := Parent (F_Node);
+ Nod : Node_Id := Parent (Inst);
+
+ begin
+ while Present (Nod) loop
+ if Nod = Decls then
+ return True;
+
+ elsif Nkind_In (Nod, N_Subprogram_Body,
+ N_Package_Body,
+ N_Package_Declaration,
+ N_Task_Body,
+ N_Protected_Body,
+ N_Block_Statement)
+ then
+ return False;
+
+ elsif Nkind (Nod) = N_Subunit then
+ Nod := Corresponding_Stub (Nod);
+
+ elsif Nkind (Nod) = N_Compilation_Unit then
+ return False;
+
+ else
+ Nod := Parent (Nod);
+ end if;
+ end loop;
+
+ return False;
+ end In_Same_Declarative_Part;
+
+ ---------------------
+ -- In_Main_Context --
+ ---------------------
+
+ function In_Main_Context (E : Entity_Id) return Boolean is
+ Context : List_Id;
+ Clause : Node_Id;
+ Nam : Node_Id;
+
+ begin
+ if not Is_Compilation_Unit (E)
+ or else Ekind (E) /= E_Package
+ or else In_Private_Part (E)
+ then
+ return False;
+ end if;
+
+ Context := Context_Items (Cunit (Main_Unit));
+
+ Clause := First (Context);
+ while Present (Clause) loop
+ if Nkind (Clause) = N_With_Clause then
+ Nam := Name (Clause);
+
+ -- If the current scope is part of the context of the main unit,
+ -- analysis of the corresponding with_clause is not complete, and
+ -- the entity is not set. We use the Chars field directly, which
+ -- might produce false positives in rare cases, but guarantees
+ -- that we produce all the instance bodies we will need.
+
+ if (Is_Entity_Name (Nam) and then Chars (Nam) = Chars (E))
+ or else (Nkind (Nam) = N_Selected_Component
+ and then Chars (Selector_Name (Nam)) = Chars (E))
+ then
+ return True;
+ end if;
+ end if;
+
+ Next (Clause);
+ end loop;
+
+ return False;
+ end In_Main_Context;
+
+ ---------------------
+ -- Inherit_Context --
+ ---------------------
+
+ procedure Inherit_Context (Gen_Decl : Node_Id; Inst : Node_Id) is
+ Current_Context : List_Id;
+ Current_Unit : Node_Id;
+ Item : Node_Id;
+ New_I : Node_Id;
+
+ Clause : Node_Id;
+ OK : Boolean;
+ Lib_Unit : Node_Id;
+
+ begin
+ if Nkind (Parent (Gen_Decl)) = N_Compilation_Unit then
+
+ -- The inherited context is attached to the enclosing compilation
+ -- unit. This is either the main unit, or the declaration for the
+ -- main unit (in case the instantiation appears within the package
+ -- declaration and the main unit is its body).
+
+ Current_Unit := Parent (Inst);
+ while Present (Current_Unit)
+ and then Nkind (Current_Unit) /= N_Compilation_Unit
+ loop
+ Current_Unit := Parent (Current_Unit);
+ end loop;
+
+ Current_Context := Context_Items (Current_Unit);
+
+ Item := First (Context_Items (Parent (Gen_Decl)));
+ while Present (Item) loop
+ if Nkind (Item) = N_With_Clause then
+ Lib_Unit := Library_Unit (Item);
+
+ -- Take care to prevent direct cyclic with's
+
+ if Lib_Unit /= Current_Unit then
+
+ -- Do not add a unit if it is already in the context
+
+ Clause := First (Current_Context);
+ OK := True;
+ while Present (Clause) loop
+ if Nkind (Clause) = N_With_Clause and then
+ Library_Unit (Clause) = Lib_Unit
+ then
+ OK := False;
+ exit;
+ end if;
+
+ Next (Clause);
+ end loop;
+
+ if OK then
+ New_I := New_Copy (Item);
+ Set_Implicit_With (New_I, True);
+ Set_Implicit_With_From_Instantiation (New_I, True);
+ Append (New_I, Current_Context);
+ end if;
+ end if;
+ end if;
+
+ Next (Item);
+ end loop;
+ end if;
+ end Inherit_Context;
+
+ ----------------
+ -- Initialize --
+ ----------------
+
+ procedure Initialize is
+ begin
+ Generic_Renamings.Init;
+ Instance_Envs.Init;
+ Generic_Flags.Init;
+ Generic_Renamings_HTable.Reset;
+ Circularity_Detected := False;
+ Exchanged_Views := No_Elist;
+ Hidden_Entities := No_Elist;
+ end Initialize;
+
+ -------------------------------------
+ -- Insert_Freeze_Node_For_Instance --
+ -------------------------------------
+
+ procedure Insert_Freeze_Node_For_Instance
+ (N : Node_Id;
+ F_Node : Node_Id)
+ is
+ Decl : Node_Id;
+ Decls : List_Id;
+ Inst : Entity_Id;
+ Par_N : Node_Id;
+
+ function Enclosing_Body (N : Node_Id) return Node_Id;
+ -- Find enclosing package or subprogram body, if any. Freeze node may
+ -- be placed at end of current declarative list if previous instance
+ -- and current one have different enclosing bodies.
+
+ function Previous_Instance (Gen : Entity_Id) return Entity_Id;
+ -- Find the local instance, if any, that declares the generic that is
+ -- being instantiated. If present, the freeze node for this instance
+ -- must follow the freeze node for the previous instance.
+
+ --------------------
+ -- Enclosing_Body --
+ --------------------
+
+ function Enclosing_Body (N : Node_Id) return Node_Id is
+ P : Node_Id;
+
+ begin
+ P := Parent (N);
+ while Present (P)
+ and then Nkind (Parent (P)) /= N_Compilation_Unit
+ loop
+ if Nkind_In (P, N_Package_Body, N_Subprogram_Body) then
+ if Nkind (Parent (P)) = N_Subunit then
+ return Corresponding_Stub (Parent (P));
+ else
+ return P;
+ end if;
+ end if;
+
+ P := True_Parent (P);
+ end loop;
+
+ return Empty;
+ end Enclosing_Body;
+
+ -----------------------
+ -- Previous_Instance --
+ -----------------------
+
+ function Previous_Instance (Gen : Entity_Id) return Entity_Id is
+ S : Entity_Id;
+
+ begin
+ S := Scope (Gen);
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if Is_Generic_Instance (S)
+ and then In_Same_Source_Unit (S, N)
+ then
+ return S;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return Empty;
+ end Previous_Instance;
+
+ -- Start of processing for Insert_Freeze_Node_For_Instance
+
+ begin
+ if not Is_List_Member (F_Node) then
+ Decl := N;
+ Decls := List_Containing (N);
+ Inst := Entity (F_Node);
+ Par_N := Parent (Decls);
+
+ -- When processing a subprogram instantiation, utilize the actual
+ -- subprogram instantiation rather than its package wrapper as it
+ -- carries all the context information.
+
+ if Is_Wrapper_Package (Inst) then
+ Inst := Related_Instance (Inst);
+ end if;
+
+ -- If this is a package instance, check whether the generic is
+ -- declared in a previous instance and the current instance is
+ -- not within the previous one.
+
+ if Present (Generic_Parent (Parent (Inst)))
+ and then Is_In_Main_Unit (N)
+ then
+ declare
+ Enclosing_N : constant Node_Id := Enclosing_Body (N);
+ Par_I : constant Entity_Id :=
+ Previous_Instance
+ (Generic_Parent (Parent (Inst)));
+ Scop : Entity_Id;
+
+ begin
+ if Present (Par_I)
+ and then Earlier (N, Freeze_Node (Par_I))
+ then
+ Scop := Scope (Inst);
+
+ -- If the current instance is within the one that contains
+ -- the generic, the freeze node for the current one must
+ -- appear in the current declarative part. Ditto, if the
+ -- current instance is within another package instance or
+ -- within a body that does not enclose the current instance.
+ -- In these three cases the freeze node of the previous
+ -- instance is not relevant.
+
+ while Present (Scop)
+ and then Scop /= Standard_Standard
+ loop
+ exit when Scop = Par_I
+ or else
+ (Is_Generic_Instance (Scop)
+ and then Scope_Depth (Scop) > Scope_Depth (Par_I));
+ Scop := Scope (Scop);
+ end loop;
+
+ -- Previous instance encloses current instance
+
+ if Scop = Par_I then
+ null;
+
+ -- If the next node is a source body we must freeze in
+ -- the current scope as well.
+
+ elsif Present (Next (N))
+ and then Nkind_In (Next (N),
+ N_Subprogram_Body, N_Package_Body)
+ and then Comes_From_Source (Next (N))
+ then
+ null;
+
+ -- Current instance is within an unrelated instance
+
+ elsif Is_Generic_Instance (Scop) then
+ null;
+
+ -- Current instance is within an unrelated body
+
+ elsif Present (Enclosing_N)
+ and then Enclosing_N /= Enclosing_Body (Par_I)
+ then
+ null;
+
+ else
+ Insert_After (Freeze_Node (Par_I), F_Node);
+ return;
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- When the instantiation occurs in a package declaration, append the
+ -- freeze node to the private declarations (if any).
+
+ if Nkind (Par_N) = N_Package_Specification
+ and then Decls = Visible_Declarations (Par_N)
+ and then Present (Private_Declarations (Par_N))
+ and then not Is_Empty_List (Private_Declarations (Par_N))
+ then
+ Decls := Private_Declarations (Par_N);
+ Decl := First (Decls);
+ end if;
+
+ -- Determine the proper freeze point of a package instantiation. We
+ -- adhere to the general rule of a package or subprogram body causing
+ -- freezing of anything before it in the same declarative region. In
+ -- this case, the proper freeze point of a package instantiation is
+ -- before the first source body which follows, or before a stub. This
+ -- ensures that entities coming from the instance are already frozen
+ -- and usable in source bodies.
+
+ if Nkind (Par_N) /= N_Package_Declaration
+ and then Ekind (Inst) = E_Package
+ and then Is_Generic_Instance (Inst)
+ and then
+ not In_Same_Source_Unit (Generic_Parent (Parent (Inst)), Inst)
+ then
+ while Present (Decl) loop
+ if (Nkind (Decl) in N_Unit_Body
+ or else
+ Nkind (Decl) in N_Body_Stub)
+ and then Comes_From_Source (Decl)
+ then
+ Insert_Before (Decl, F_Node);
+ return;
+ end if;
+
+ Next (Decl);
+ end loop;
+ end if;
+
+ -- In a package declaration, or if no previous body, insert at end
+ -- of list.
+
+ Set_Sloc (F_Node, Sloc (Last (Decls)));
+ Insert_After (Last (Decls), F_Node);
+ end if;
+ end Insert_Freeze_Node_For_Instance;
+
+ ------------------
+ -- Install_Body --
+ ------------------
+
+ procedure Install_Body
+ (Act_Body : Node_Id;
+ N : Node_Id;
+ Gen_Body : Node_Id;
+ Gen_Decl : Node_Id)
+ is
+ Act_Id : constant Entity_Id := Corresponding_Spec (Act_Body);
+ Act_Unit : constant Node_Id := Unit (Cunit (Get_Source_Unit (N)));
+ Gen_Id : constant Entity_Id := Corresponding_Spec (Gen_Body);
+ Par : constant Entity_Id := Scope (Gen_Id);
+ Gen_Unit : constant Node_Id :=
+ Unit (Cunit (Get_Source_Unit (Gen_Decl)));
+ Orig_Body : Node_Id := Gen_Body;
+ F_Node : Node_Id;
+ Body_Unit : Node_Id;
+
+ Must_Delay : Boolean;
+
+ function Enclosing_Subp (Id : Entity_Id) return Entity_Id;
+ -- Find subprogram (if any) that encloses instance and/or generic body
+
+ function True_Sloc (N : Node_Id) return Source_Ptr;
+ -- If the instance is nested inside a generic unit, the Sloc of the
+ -- instance indicates the place of the original definition, not the
+ -- point of the current enclosing instance. Pending a better usage of
+ -- Slocs to indicate instantiation places, we determine the place of
+ -- origin of a node by finding the maximum sloc of any ancestor node.
+ -- Why is this not equivalent to Top_Level_Location ???
+
+ --------------------
+ -- Enclosing_Subp --
+ --------------------
+
+ function Enclosing_Subp (Id : Entity_Id) return Entity_Id is
+ Scop : Entity_Id;
+
+ begin
+ Scop := Scope (Id);
+ while Scop /= Standard_Standard
+ and then not Is_Overloadable (Scop)
+ loop
+ Scop := Scope (Scop);
+ end loop;
+
+ return Scop;
+ end Enclosing_Subp;
+
+ ---------------
+ -- True_Sloc --
+ ---------------
+
+ function True_Sloc (N : Node_Id) return Source_Ptr is
+ Res : Source_Ptr;
+ N1 : Node_Id;
+
+ begin
+ Res := Sloc (N);
+ N1 := N;
+ while Present (N1) and then N1 /= Act_Unit loop
+ if Sloc (N1) > Res then
+ Res := Sloc (N1);
+ end if;
+
+ N1 := Parent (N1);
+ end loop;
+
+ return Res;
+ end True_Sloc;
+
+ -- Start of processing for Install_Body
+
+ begin
+ -- If the body is a subunit, the freeze point is the corresponding stub
+ -- in the current compilation, not the subunit itself.
+
+ if Nkind (Parent (Gen_Body)) = N_Subunit then
+ Orig_Body := Corresponding_Stub (Parent (Gen_Body));
+ else
+ Orig_Body := Gen_Body;
+ end if;
+
+ Body_Unit := Unit (Cunit (Get_Source_Unit (Orig_Body)));
+
+ -- If the instantiation and the generic definition appear in the same
+ -- package declaration, this is an early instantiation. If they appear
+ -- in the same declarative part, it is an early instantiation only if
+ -- the generic body appears textually later, and the generic body is
+ -- also in the main unit.
+
+ -- If instance is nested within a subprogram, and the generic body is
+ -- not, the instance is delayed because the enclosing body is. If
+ -- instance and body are within the same scope, or the same sub-
+ -- program body, indicate explicitly that the instance is delayed.
+
+ Must_Delay :=
+ (Gen_Unit = Act_Unit
+ and then (Nkind_In (Gen_Unit, N_Package_Declaration,
+ N_Generic_Package_Declaration)
+ or else (Gen_Unit = Body_Unit
+ and then True_Sloc (N) < Sloc (Orig_Body)))
+ and then Is_In_Main_Unit (Gen_Unit)
+ and then (Scope (Act_Id) = Scope (Gen_Id)
+ or else
+ Enclosing_Subp (Act_Id) = Enclosing_Subp (Gen_Id)));
+
+ -- If this is an early instantiation, the freeze node is placed after
+ -- the generic body. Otherwise, if the generic appears in an instance,
+ -- we cannot freeze the current instance until the outer one is frozen.
+ -- This is only relevant if the current instance is nested within some
+ -- inner scope not itself within the outer instance. If this scope is
+ -- a package body in the same declarative part as the outer instance,
+ -- then that body needs to be frozen after the outer instance. Finally,
+ -- if no delay is needed, we place the freeze node at the end of the
+ -- current declarative part.
+
+ if Expander_Active then
+ Ensure_Freeze_Node (Act_Id);
+ F_Node := Freeze_Node (Act_Id);
+
+ if Must_Delay then
+ Insert_After (Orig_Body, F_Node);
+
+ elsif Is_Generic_Instance (Par)
+ and then Present (Freeze_Node (Par))
+ and then Scope (Act_Id) /= Par
+ then
+ -- Freeze instance of inner generic after instance of enclosing
+ -- generic.
+
+ if In_Same_Declarative_Part (Freeze_Node (Par), N) then
+
+ -- Handle the following case:
+
+ -- package Parent_Inst is new ...
+ -- Parent_Inst []
+
+ -- procedure P ... -- this body freezes Parent_Inst
+
+ -- package Inst is new ...
+
+ -- In this particular scenario, the freeze node for Inst must
+ -- be inserted in the same manner as that of Parent_Inst -
+ -- before the next source body or at the end of the declarative
+ -- list (body not available). If body P did not exist and
+ -- Parent_Inst was frozen after Inst, either by a body
+ -- following Inst or at the end of the declarative region, the
+ -- freeze node for Inst must be inserted after that of
+ -- Parent_Inst. This relation is established by comparing the
+ -- Slocs of Parent_Inst freeze node and Inst.
+
+ if List_Containing (Get_Package_Instantiation_Node (Par)) =
+ List_Containing (N)
+ and then Sloc (Freeze_Node (Par)) < Sloc (N)
+ then
+ Insert_Freeze_Node_For_Instance (N, F_Node);
+ else
+ Insert_After (Freeze_Node (Par), F_Node);
+ end if;
+
+ -- Freeze package enclosing instance of inner generic after
+ -- instance of enclosing generic.
+
+ elsif Nkind_In (Parent (N), N_Package_Body, N_Subprogram_Body)
+ and then In_Same_Declarative_Part (Freeze_Node (Par), Parent (N))
+ then
+ declare
+ Enclosing : Entity_Id;
+
+ begin
+ Enclosing := Corresponding_Spec (Parent (N));
+
+ if No (Enclosing) then
+ Enclosing := Defining_Entity (Parent (N));
+ end if;
+
+ Insert_Freeze_Node_For_Instance (N, F_Node);
+ Ensure_Freeze_Node (Enclosing);
+
+ if not Is_List_Member (Freeze_Node (Enclosing)) then
+
+ -- The enclosing context is a subunit, insert the freeze
+ -- node after the stub.
+
+ if Nkind (Parent (Parent (N))) = N_Subunit then
+ Insert_Freeze_Node_For_Instance
+ (Corresponding_Stub (Parent (Parent (N))),
+ Freeze_Node (Enclosing));
+
+ -- The enclosing context is a package with a stub body
+ -- which has already been replaced by the real body.
+ -- Insert the freeze node after the actual body.
+
+ elsif Ekind (Enclosing) = E_Package
+ and then Present (Body_Entity (Enclosing))
+ and then Was_Originally_Stub
+ (Parent (Body_Entity (Enclosing)))
+ then
+ Insert_Freeze_Node_For_Instance
+ (Parent (Body_Entity (Enclosing)),
+ Freeze_Node (Enclosing));
+
+ -- The parent instance has been frozen before the body of
+ -- the enclosing package, insert the freeze node after
+ -- the body.
+
+ elsif List_Containing (Freeze_Node (Par)) =
+ List_Containing (Parent (N))
+ and then Sloc (Freeze_Node (Par)) < Sloc (Parent (N))
+ then
+ Insert_Freeze_Node_For_Instance
+ (Parent (N), Freeze_Node (Enclosing));
+
+ else
+ Insert_After
+ (Freeze_Node (Par), Freeze_Node (Enclosing));
+ end if;
+ end if;
+ end;
+
+ else
+ Insert_Freeze_Node_For_Instance (N, F_Node);
+ end if;
+
+ else
+ Insert_Freeze_Node_For_Instance (N, F_Node);
+ end if;
+ end if;
+
+ Set_Is_Frozen (Act_Id);
+ Insert_Before (N, Act_Body);
+ Mark_Rewrite_Insertion (Act_Body);
+ end Install_Body;
+
+ -----------------------------
+ -- Install_Formal_Packages --
+ -----------------------------
+
+ procedure Install_Formal_Packages (Par : Entity_Id) is
+ E : Entity_Id;
+ Gen : Entity_Id;
+ Gen_E : Entity_Id := Empty;
+
+ begin
+ E := First_Entity (Par);
+
+ -- If we are installing an instance parent, locate the formal packages
+ -- of its generic parent.
+
+ if Is_Generic_Instance (Par) then
+ Gen := Generic_Parent (Package_Specification (Par));
+ Gen_E := First_Entity (Gen);
+ end if;
+
+ while Present (E) loop
+ if Ekind (E) = E_Package
+ and then Nkind (Parent (E)) = N_Package_Renaming_Declaration
+ then
+ -- If this is the renaming for the parent instance, done
+
+ if Renamed_Object (E) = Par then
+ exit;
+
+ -- The visibility of a formal of an enclosing generic is already
+ -- correct.
+
+ elsif Denotes_Formal_Package (E) then
+ null;
+
+ elsif Present (Associated_Formal_Package (E)) then
+ Check_Generic_Actuals (Renamed_Object (E), True);
+ Set_Is_Hidden (E, False);
+
+ -- Find formal package in generic unit that corresponds to
+ -- (instance of) formal package in instance.
+
+ while Present (Gen_E) and then Chars (Gen_E) /= Chars (E) loop
+ Next_Entity (Gen_E);
+ end loop;
+
+ if Present (Gen_E) then
+ Map_Formal_Package_Entities (Gen_E, E);
+ end if;
+ end if;
+ end if;
+
+ Next_Entity (E);
+ if Present (Gen_E) then
+ Next_Entity (Gen_E);
+ end if;
+ end loop;
+ end Install_Formal_Packages;
+
+ --------------------
+ -- Install_Parent --
+ --------------------
+
+ procedure Install_Parent (P : Entity_Id; In_Body : Boolean := False) is
+ Ancestors : constant Elist_Id := New_Elmt_List;
+ S : constant Entity_Id := Current_Scope;
+ Inst_Par : Entity_Id;
+ First_Par : Entity_Id;
+ Inst_Node : Node_Id;
+ Gen_Par : Entity_Id;
+ First_Gen : Entity_Id;
+ Elmt : Elmt_Id;
+
+ procedure Install_Noninstance_Specs (Par : Entity_Id);
+ -- Install the scopes of noninstance parent units ending with Par
+
+ procedure Install_Spec (Par : Entity_Id);
+ -- The child unit is within the declarative part of the parent, so the
+ -- declarations within the parent are immediately visible.
+
+ -------------------------------
+ -- Install_Noninstance_Specs --
+ -------------------------------
+
+ procedure Install_Noninstance_Specs (Par : Entity_Id) is
+ begin
+ if Present (Par)
+ and then Par /= Standard_Standard
+ and then not In_Open_Scopes (Par)
+ then
+ Install_Noninstance_Specs (Scope (Par));
+ Install_Spec (Par);
+ end if;
+ end Install_Noninstance_Specs;
+
+ ------------------
+ -- Install_Spec --
+ ------------------
+
+ procedure Install_Spec (Par : Entity_Id) is
+ Spec : constant Node_Id := Package_Specification (Par);
+
+ begin
+ -- If this parent of the child instance is a top-level unit,
+ -- then record the unit and its visibility for later resetting in
+ -- Remove_Parent. We exclude units that are generic instances, as we
+ -- only want to record this information for the ultimate top-level
+ -- noninstance parent (is that always correct???).
+
+ if Scope (Par) = Standard_Standard
+ and then not Is_Generic_Instance (Par)
+ then
+ Parent_Unit_Visible := Is_Immediately_Visible (Par);
+ Instance_Parent_Unit := Par;
+ end if;
+
+ -- Open the parent scope and make it and its declarations visible.
+ -- If this point is not within a body, then only the visible
+ -- declarations should be made visible, and installation of the
+ -- private declarations is deferred until the appropriate point
+ -- within analysis of the spec being instantiated (see the handling
+ -- of parent visibility in Analyze_Package_Specification). This is
+ -- relaxed in the case where the parent unit is Ada.Tags, to avoid
+ -- private view problems that occur when compiling instantiations of
+ -- a generic child of that package (Generic_Dispatching_Constructor).
+ -- If the instance freezes a tagged type, inlinings of operations
+ -- from Ada.Tags may need the full view of type Tag. If inlining took
+ -- proper account of establishing visibility of inlined subprograms'
+ -- parents then it should be possible to remove this
+ -- special check. ???
+
+ Push_Scope (Par);
+ Set_Is_Immediately_Visible (Par);
+ Install_Visible_Declarations (Par);
+ Set_Use (Visible_Declarations (Spec));
+
+ if In_Body or else Is_RTU (Par, Ada_Tags) then
+ Install_Private_Declarations (Par);
+ Set_Use (Private_Declarations (Spec));
+ end if;
+ end Install_Spec;
+
+ -- Start of processing for Install_Parent
+
+ begin
+ -- We need to install the parent instance to compile the instantiation
+ -- of the child, but the child instance must appear in the current
+ -- scope. Given that we cannot place the parent above the current scope
+ -- in the scope stack, we duplicate the current scope and unstack both
+ -- after the instantiation is complete.
+
+ -- If the parent is itself the instantiation of a child unit, we must
+ -- also stack the instantiation of its parent, and so on. Each such
+ -- ancestor is the prefix of the name in a prior instantiation.
+
+ -- If this is a nested instance, the parent unit itself resolves to
+ -- a renaming of the parent instance, whose declaration we need.
+
+ -- Finally, the parent may be a generic (not an instance) when the
+ -- child unit appears as a formal package.
+
+ Inst_Par := P;
+
+ if Present (Renamed_Entity (Inst_Par)) then
+ Inst_Par := Renamed_Entity (Inst_Par);
+ end if;
+
+ First_Par := Inst_Par;
+
+ Gen_Par := Generic_Parent (Package_Specification (Inst_Par));
+
+ First_Gen := Gen_Par;
+
+ while Present (Gen_Par)
+ and then Is_Child_Unit (Gen_Par)
+ loop
+ -- Load grandparent instance as well
+
+ Inst_Node := Get_Package_Instantiation_Node (Inst_Par);
+
+ if Nkind (Name (Inst_Node)) = N_Expanded_Name then
+ Inst_Par := Entity (Prefix (Name (Inst_Node)));
+
+ if Present (Renamed_Entity (Inst_Par)) then
+ Inst_Par := Renamed_Entity (Inst_Par);
+ end if;
+
+ Gen_Par := Generic_Parent (Package_Specification (Inst_Par));
+
+ if Present (Gen_Par) then
+ Prepend_Elmt (Inst_Par, Ancestors);
+
+ else
+ -- Parent is not the name of an instantiation
+
+ Install_Noninstance_Specs (Inst_Par);
+ exit;
+ end if;
+
+ else
+ -- Previous error
+
+ exit;
+ end if;
+ end loop;
+
+ if Present (First_Gen) then
+ Append_Elmt (First_Par, Ancestors);
+ else
+ Install_Noninstance_Specs (First_Par);
+ end if;
+
+ if not Is_Empty_Elmt_List (Ancestors) then
+ Elmt := First_Elmt (Ancestors);
+ while Present (Elmt) loop
+ Install_Spec (Node (Elmt));
+ Install_Formal_Packages (Node (Elmt));
+ Next_Elmt (Elmt);
+ end loop;
+ end if;
+
+ if not In_Body then
+ Push_Scope (S);
+ end if;
+ end Install_Parent;
+
+ -------------------------------
+ -- Install_Hidden_Primitives --
+ -------------------------------
+
+ procedure Install_Hidden_Primitives
+ (Prims_List : in out Elist_Id;
+ Gen_T : Entity_Id;
+ Act_T : Entity_Id)
+ is
+ Elmt : Elmt_Id;
+ List : Elist_Id := No_Elist;
+ Prim_G_Elmt : Elmt_Id;
+ Prim_A_Elmt : Elmt_Id;
+ Prim_G : Node_Id;
+ Prim_A : Node_Id;
+
+ begin
+ -- No action needed in case of serious errors because we cannot trust
+ -- in the order of primitives
+
+ if Serious_Errors_Detected > 0 then
+ return;
+
+ -- No action possible if we don't have available the list of primitive
+ -- operations
+
+ elsif No (Gen_T)
+ or else not Is_Record_Type (Gen_T)
+ or else not Is_Tagged_Type (Gen_T)
+ or else not Is_Record_Type (Act_T)
+ or else not Is_Tagged_Type (Act_T)
+ then
+ return;
+
+ -- There is no need to handle interface types since their primitives
+ -- cannot be hidden
+
+ elsif Is_Interface (Gen_T) then
+ return;
+ end if;
+
+ Prim_G_Elmt := First_Elmt (Primitive_Operations (Gen_T));
+
+ if not Is_Class_Wide_Type (Act_T) then
+ Prim_A_Elmt := First_Elmt (Primitive_Operations (Act_T));
+ else
+ Prim_A_Elmt := First_Elmt (Primitive_Operations (Root_Type (Act_T)));
+ end if;
+
+ loop
+ -- Skip predefined primitives in the generic formal
+
+ while Present (Prim_G_Elmt)
+ and then Is_Predefined_Dispatching_Operation (Node (Prim_G_Elmt))
+ loop
+ Next_Elmt (Prim_G_Elmt);
+ end loop;
+
+ -- Skip predefined primitives in the generic actual
+
+ while Present (Prim_A_Elmt)
+ and then Is_Predefined_Dispatching_Operation (Node (Prim_A_Elmt))
+ loop
+ Next_Elmt (Prim_A_Elmt);
+ end loop;
+
+ exit when No (Prim_G_Elmt) or else No (Prim_A_Elmt);
+
+ Prim_G := Node (Prim_G_Elmt);
+ Prim_A := Node (Prim_A_Elmt);
+
+ -- There is no need to handle interface primitives because their
+ -- primitives are not hidden
+
+ exit when Present (Interface_Alias (Prim_G));
+
+ -- Here we install one hidden primitive
+
+ if Chars (Prim_G) /= Chars (Prim_A)
+ and then Has_Suffix (Prim_A, 'P')
+ and then Remove_Suffix (Prim_A, 'P') = Chars (Prim_G)
+ then
+ Set_Chars (Prim_A, Chars (Prim_G));
+
+ if List = No_Elist then
+ List := New_Elmt_List;
+ end if;
+
+ Append_Elmt (Prim_A, List);
+ end if;
+
+ Next_Elmt (Prim_A_Elmt);
+ Next_Elmt (Prim_G_Elmt);
+ end loop;
+
+ -- Append the elements to the list of temporarily visible primitives
+ -- avoiding duplicates.
+
+ if Present (List) then
+ if No (Prims_List) then
+ Prims_List := New_Elmt_List;
+ end if;
+
+ Elmt := First_Elmt (List);
+ while Present (Elmt) loop
+ Append_Unique_Elmt (Node (Elmt), Prims_List);
+ Next_Elmt (Elmt);
+ end loop;
+ end if;
+ end Install_Hidden_Primitives;
+
+ -------------------------------
+ -- Restore_Hidden_Primitives --
+ -------------------------------
+
+ procedure Restore_Hidden_Primitives (Prims_List : in out Elist_Id) is
+ Prim_Elmt : Elmt_Id;
+ Prim : Node_Id;
+
+ begin
+ if Prims_List /= No_Elist then
+ Prim_Elmt := First_Elmt (Prims_List);
+ while Present (Prim_Elmt) loop
+ Prim := Node (Prim_Elmt);
+ Set_Chars (Prim, Add_Suffix (Prim, 'P'));
+ Next_Elmt (Prim_Elmt);
+ end loop;
+
+ Prims_List := No_Elist;
+ end if;
+ end Restore_Hidden_Primitives;
+
+ --------------------------------
+ -- Instantiate_Formal_Package --
+ --------------------------------
+
+ function Instantiate_Formal_Package
+ (Formal : Node_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id) return List_Id
+ is
+ Loc : constant Source_Ptr := Sloc (Actual);
+ Actual_Pack : Entity_Id;
+ Formal_Pack : Entity_Id;
+ Gen_Parent : Entity_Id;
+ Decls : List_Id;
+ Nod : Node_Id;
+ Parent_Spec : Node_Id;
+
+ procedure Find_Matching_Actual
+ (F : Node_Id;
+ Act : in out Entity_Id);
+ -- We need to associate each formal entity in the formal package with
+ -- the corresponding entity in the actual package. The actual package
+ -- has been analyzed and possibly expanded, and as a result there is
+ -- no one-to-one correspondence between the two lists (for example,
+ -- the actual may include subtypes, itypes, and inherited primitive
+ -- operations, interspersed among the renaming declarations for the
+ -- actuals) . We retrieve the corresponding actual by name because each
+ -- actual has the same name as the formal, and they do appear in the
+ -- same order.
+
+ function Get_Formal_Entity (N : Node_Id) return Entity_Id;
+ -- Retrieve entity of defining entity of generic formal parameter.
+ -- Only the declarations of formals need to be considered when
+ -- linking them to actuals, but the declarative list may include
+ -- internal entities generated during analysis, and those are ignored.
+
+ procedure Match_Formal_Entity
+ (Formal_Node : Node_Id;
+ Formal_Ent : Entity_Id;
+ Actual_Ent : Entity_Id);
+ -- Associates the formal entity with the actual. In the case where
+ -- Formal_Ent is a formal package, this procedure iterates through all
+ -- of its formals and enters associations between the actuals occurring
+ -- in the formal package's corresponding actual package (given by
+ -- Actual_Ent) and the formal package's formal parameters. This
+ -- procedure recurses if any of the parameters is itself a package.
+
+ function Is_Instance_Of
+ (Act_Spec : Entity_Id;
+ Gen_Anc : Entity_Id) return Boolean;
+ -- The actual can be an instantiation of a generic within another
+ -- instance, in which case there is no direct link from it to the
+ -- original generic ancestor. In that case, we recognize that the
+ -- ultimate ancestor is the same by examining names and scopes.
+
+ procedure Process_Nested_Formal (Formal : Entity_Id);
+ -- If the current formal is declared with a box, its own formals are
+ -- visible in the instance, as they were in the generic, and their
+ -- Hidden flag must be reset. If some of these formals are themselves
+ -- packages declared with a box, the processing must be recursive.
+
+ --------------------------
+ -- Find_Matching_Actual --
+ --------------------------
+
+ procedure Find_Matching_Actual
+ (F : Node_Id;
+ Act : in out Entity_Id)
+ is
+ Formal_Ent : Entity_Id;
+
+ begin
+ case Nkind (Original_Node (F)) is
+ when N_Formal_Object_Declaration |
+ N_Formal_Type_Declaration =>
+ Formal_Ent := Defining_Identifier (F);
+
+ while Chars (Act) /= Chars (Formal_Ent) loop
+ Next_Entity (Act);
+ end loop;
+
+ when N_Formal_Subprogram_Declaration |
+ N_Formal_Package_Declaration |
+ N_Package_Declaration |
+ N_Generic_Package_Declaration =>
+ Formal_Ent := Defining_Entity (F);
+
+ while Chars (Act) /= Chars (Formal_Ent) loop
+ Next_Entity (Act);
+ end loop;
+
+ when others =>
+ raise Program_Error;
+ end case;
+ end Find_Matching_Actual;
+
+ -------------------------
+ -- Match_Formal_Entity --
+ -------------------------
+
+ procedure Match_Formal_Entity
+ (Formal_Node : Node_Id;
+ Formal_Ent : Entity_Id;
+ Actual_Ent : Entity_Id)
+ is
+ Act_Pkg : Entity_Id;
+
+ begin
+ Set_Instance_Of (Formal_Ent, Actual_Ent);
+
+ if Ekind (Actual_Ent) = E_Package then
+
+ -- Record associations for each parameter
+
+ Act_Pkg := Actual_Ent;
+
+ declare
+ A_Ent : Entity_Id := First_Entity (Act_Pkg);
+ F_Ent : Entity_Id;
+ F_Node : Node_Id;
+
+ Gen_Decl : Node_Id;
+ Formals : List_Id;
+ Actual : Entity_Id;
+
+ begin
+ -- Retrieve the actual given in the formal package declaration
+
+ Actual := Entity (Name (Original_Node (Formal_Node)));
+
+ -- The actual in the formal package declaration may be a
+ -- renamed generic package, in which case we want to retrieve
+ -- the original generic in order to traverse its formal part.
+
+ if Present (Renamed_Entity (Actual)) then
+ Gen_Decl := Unit_Declaration_Node (Renamed_Entity (Actual));
+ else
+ Gen_Decl := Unit_Declaration_Node (Actual);
+ end if;
+
+ Formals := Generic_Formal_Declarations (Gen_Decl);
+
+ if Present (Formals) then
+ F_Node := First_Non_Pragma (Formals);
+ else
+ F_Node := Empty;
+ end if;
+
+ while Present (A_Ent)
+ and then Present (F_Node)
+ and then A_Ent /= First_Private_Entity (Act_Pkg)
+ loop
+ F_Ent := Get_Formal_Entity (F_Node);
+
+ if Present (F_Ent) then
+
+ -- This is a formal of the original package. Record
+ -- association and recurse.
+
+ Find_Matching_Actual (F_Node, A_Ent);
+ Match_Formal_Entity (F_Node, F_Ent, A_Ent);
+ Next_Entity (A_Ent);
+ end if;
+
+ Next_Non_Pragma (F_Node);
+ end loop;
+ end;
+ end if;
+ end Match_Formal_Entity;
+
+ -----------------------
+ -- Get_Formal_Entity --
+ -----------------------
+
+ function Get_Formal_Entity (N : Node_Id) return Entity_Id is
+ Kind : constant Node_Kind := Nkind (Original_Node (N));
+ begin
+ case Kind is
+ when N_Formal_Object_Declaration =>
+ return Defining_Identifier (N);
+
+ when N_Formal_Type_Declaration =>
+ return Defining_Identifier (N);
+
+ when N_Formal_Subprogram_Declaration =>
+ return Defining_Unit_Name (Specification (N));
+
+ when N_Formal_Package_Declaration =>
+ return Defining_Identifier (Original_Node (N));
+
+ when N_Generic_Package_Declaration =>
+ return Defining_Identifier (Original_Node (N));
+
+ -- All other declarations are introduced by semantic analysis and
+ -- have no match in the actual.
+
+ when others =>
+ return Empty;
+ end case;
+ end Get_Formal_Entity;
+
+ --------------------
+ -- Is_Instance_Of --
+ --------------------
+
+ function Is_Instance_Of
+ (Act_Spec : Entity_Id;
+ Gen_Anc : Entity_Id) return Boolean
+ is
+ Gen_Par : constant Entity_Id := Generic_Parent (Act_Spec);
+
+ begin
+ if No (Gen_Par) then
+ return False;
+
+ -- Simplest case: the generic parent of the actual is the formal
+
+ elsif Gen_Par = Gen_Anc then
+ return True;
+
+ elsif Chars (Gen_Par) /= Chars (Gen_Anc) then
+ return False;
+
+ -- The actual may be obtained through several instantiations. Its
+ -- scope must itself be an instance of a generic declared in the
+ -- same scope as the formal. Any other case is detected above.
+
+ elsif not Is_Generic_Instance (Scope (Gen_Par)) then
+ return False;
+
+ else
+ return Generic_Parent (Parent (Scope (Gen_Par))) = Scope (Gen_Anc);
+ end if;
+ end Is_Instance_Of;
+
+ ---------------------------
+ -- Process_Nested_Formal --
+ ---------------------------
+
+ procedure Process_Nested_Formal (Formal : Entity_Id) is
+ Ent : Entity_Id;
+
+ begin
+ if Present (Associated_Formal_Package (Formal))
+ and then Box_Present (Parent (Associated_Formal_Package (Formal)))
+ then
+ Ent := First_Entity (Formal);
+ while Present (Ent) loop
+ Set_Is_Hidden (Ent, False);
+ Set_Is_Visible_Formal (Ent);
+ Set_Is_Potentially_Use_Visible
+ (Ent, Is_Potentially_Use_Visible (Formal));
+
+ if Ekind (Ent) = E_Package then
+ exit when Renamed_Entity (Ent) = Renamed_Entity (Formal);
+ Process_Nested_Formal (Ent);
+ end if;
+
+ Next_Entity (Ent);
+ end loop;
+ end if;
+ end Process_Nested_Formal;
+
+ -- Start of processing for Instantiate_Formal_Package
+
+ begin
+ Analyze (Actual);
+
+ if not Is_Entity_Name (Actual)
+ or else Ekind (Entity (Actual)) /= E_Package
+ then
+ Error_Msg_N
+ ("expect package instance to instantiate formal", Actual);
+ Abandon_Instantiation (Actual);
+ raise Program_Error;
+
+ else
+ Actual_Pack := Entity (Actual);
+ Set_Is_Instantiated (Actual_Pack);
+
+ -- The actual may be a renamed package, or an outer generic formal
+ -- package whose instantiation is converted into a renaming.
+
+ if Present (Renamed_Object (Actual_Pack)) then
+ Actual_Pack := Renamed_Object (Actual_Pack);
+ end if;
+
+ if Nkind (Analyzed_Formal) = N_Formal_Package_Declaration then
+ Gen_Parent := Get_Instance_Of (Entity (Name (Analyzed_Formal)));
+ Formal_Pack := Defining_Identifier (Analyzed_Formal);
+ else
+ Gen_Parent :=
+ Generic_Parent (Specification (Analyzed_Formal));
+ Formal_Pack :=
+ Defining_Unit_Name (Specification (Analyzed_Formal));
+ end if;
+
+ if Nkind (Parent (Actual_Pack)) = N_Defining_Program_Unit_Name then
+ Parent_Spec := Package_Specification (Actual_Pack);
+ else
+ Parent_Spec := Parent (Actual_Pack);
+ end if;
+
+ if Gen_Parent = Any_Id then
+ Error_Msg_N
+ ("previous error in declaration of formal package", Actual);
+ Abandon_Instantiation (Actual);
+
+ elsif
+ Is_Instance_Of (Parent_Spec, Get_Instance_Of (Gen_Parent))
+ then
+ null;
+
+ else
+ Error_Msg_NE
+ ("actual parameter must be instance of&", Actual, Gen_Parent);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ Set_Instance_Of (Defining_Identifier (Formal), Actual_Pack);
+ Map_Formal_Package_Entities (Formal_Pack, Actual_Pack);
+
+ Nod :=
+ Make_Package_Renaming_Declaration (Loc,
+ Defining_Unit_Name => New_Copy (Defining_Identifier (Formal)),
+ Name => New_Occurrence_Of (Actual_Pack, Loc));
+
+ Set_Associated_Formal_Package (Defining_Unit_Name (Nod),
+ Defining_Identifier (Formal));
+ Decls := New_List (Nod);
+
+ -- If the formal F has a box, then the generic declarations are
+ -- visible in the generic G. In an instance of G, the corresponding
+ -- entities in the actual for F (which are the actuals for the
+ -- instantiation of the generic that F denotes) must also be made
+ -- visible for analysis of the current instance. On exit from the
+ -- current instance, those entities are made private again. If the
+ -- actual is currently in use, these entities are also use-visible.
+
+ -- The loop through the actual entities also steps through the formal
+ -- entities and enters associations from formals to actuals into the
+ -- renaming map. This is necessary to properly handle checking of
+ -- actual parameter associations for later formals that depend on
+ -- actuals declared in the formal package.
+
+ -- In Ada 2005, partial parameterization requires that we make
+ -- visible the actuals corresponding to formals that were defaulted
+ -- in the formal package. There formals are identified because they
+ -- remain formal generics within the formal package, rather than
+ -- being renamings of the actuals supplied.
+
+ declare
+ Gen_Decl : constant Node_Id :=
+ Unit_Declaration_Node (Gen_Parent);
+ Formals : constant List_Id :=
+ Generic_Formal_Declarations (Gen_Decl);
+
+ Actual_Ent : Entity_Id;
+ Actual_Of_Formal : Node_Id;
+ Formal_Node : Node_Id;
+ Formal_Ent : Entity_Id;
+
+ begin
+ if Present (Formals) then
+ Formal_Node := First_Non_Pragma (Formals);
+ else
+ Formal_Node := Empty;
+ end if;
+
+ Actual_Ent := First_Entity (Actual_Pack);
+ Actual_Of_Formal :=
+ First (Visible_Declarations (Specification (Analyzed_Formal)));
+ while Present (Actual_Ent)
+ and then Actual_Ent /= First_Private_Entity (Actual_Pack)
+ loop
+ if Present (Formal_Node) then
+ Formal_Ent := Get_Formal_Entity (Formal_Node);
+
+ if Present (Formal_Ent) then
+ Find_Matching_Actual (Formal_Node, Actual_Ent);
+ Match_Formal_Entity
+ (Formal_Node, Formal_Ent, Actual_Ent);
+
+ -- We iterate at the same time over the actuals of the
+ -- local package created for the formal, to determine
+ -- which one of the formals of the original generic were
+ -- defaulted in the formal. The corresponding actual
+ -- entities are visible in the enclosing instance.
+
+ if Box_Present (Formal)
+ or else
+ (Present (Actual_Of_Formal)
+ and then
+ Is_Generic_Formal
+ (Get_Formal_Entity (Actual_Of_Formal)))
+ then
+ Set_Is_Hidden (Actual_Ent, False);
+ Set_Is_Visible_Formal (Actual_Ent);
+ Set_Is_Potentially_Use_Visible
+ (Actual_Ent, In_Use (Actual_Pack));
+
+ if Ekind (Actual_Ent) = E_Package then
+ Process_Nested_Formal (Actual_Ent);
+ end if;
+
+ else
+ Set_Is_Hidden (Actual_Ent);
+ Set_Is_Potentially_Use_Visible (Actual_Ent, False);
+ end if;
+ end if;
+
+ Next_Non_Pragma (Formal_Node);
+ Next (Actual_Of_Formal);
+
+ else
+ -- No further formals to match, but the generic part may
+ -- contain inherited operation that are not hidden in the
+ -- enclosing instance.
+
+ Next_Entity (Actual_Ent);
+ end if;
+ end loop;
+
+ -- Inherited subprograms generated by formal derived types are
+ -- also visible if the types are.
+
+ Actual_Ent := First_Entity (Actual_Pack);
+ while Present (Actual_Ent)
+ and then Actual_Ent /= First_Private_Entity (Actual_Pack)
+ loop
+ if Is_Overloadable (Actual_Ent)
+ and then
+ Nkind (Parent (Actual_Ent)) = N_Subtype_Declaration
+ and then
+ not Is_Hidden (Defining_Identifier (Parent (Actual_Ent)))
+ then
+ Set_Is_Hidden (Actual_Ent, False);
+ Set_Is_Potentially_Use_Visible
+ (Actual_Ent, In_Use (Actual_Pack));
+ end if;
+
+ Next_Entity (Actual_Ent);
+ end loop;
+ end;
+
+ -- If the formal is not declared with a box, reanalyze it as an
+ -- abbreviated instantiation, to verify the matching rules of 12.7.
+ -- The actual checks are performed after the generic associations
+ -- have been analyzed, to guarantee the same visibility for this
+ -- instantiation and for the actuals.
+
+ -- In Ada 2005, the generic associations for the formal can include
+ -- defaulted parameters. These are ignored during check. This
+ -- internal instantiation is removed from the tree after conformance
+ -- checking, because it contains formal declarations for those
+ -- defaulted parameters, and those should not reach the back-end.
+
+ if not Box_Present (Formal) then
+ declare
+ I_Pack : constant Entity_Id :=
+ Make_Temporary (Sloc (Actual), 'P');
+
+ begin
+ Set_Is_Internal (I_Pack);
+
+ Append_To (Decls,
+ Make_Package_Instantiation (Sloc (Actual),
+ Defining_Unit_Name => I_Pack,
+ Name =>
+ New_Occurrence_Of
+ (Get_Instance_Of (Gen_Parent), Sloc (Actual)),
+ Generic_Associations =>
+ Generic_Associations (Formal)));
+ end;
+ end if;
+
+ return Decls;
+ end if;
+ end Instantiate_Formal_Package;
+
+ -----------------------------------
+ -- Instantiate_Formal_Subprogram --
+ -----------------------------------
+
+ function Instantiate_Formal_Subprogram
+ (Formal : Node_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id) return Node_Id
+ is
+ Loc : Source_Ptr;
+ Formal_Sub : constant Entity_Id :=
+ Defining_Unit_Name (Specification (Formal));
+ Analyzed_S : constant Entity_Id :=
+ Defining_Unit_Name (Specification (Analyzed_Formal));
+ Decl_Node : Node_Id;
+ Nam : Node_Id;
+ New_Spec : Node_Id;
+
+ function From_Parent_Scope (Subp : Entity_Id) return Boolean;
+ -- If the generic is a child unit, the parent has been installed on the
+ -- scope stack, but a default subprogram cannot resolve to something
+ -- on the parent because that parent is not really part of the visible
+ -- context (it is there to resolve explicit local entities). If the
+ -- default has resolved in this way, we remove the entity from immediate
+ -- visibility and analyze the node again to emit an error message or
+ -- find another visible candidate.
+
+ procedure Valid_Actual_Subprogram (Act : Node_Id);
+ -- Perform legality check and raise exception on failure
+
+ -----------------------
+ -- From_Parent_Scope --
+ -----------------------
+
+ function From_Parent_Scope (Subp : Entity_Id) return Boolean is
+ Gen_Scope : Node_Id;
+
+ begin
+ Gen_Scope := Scope (Analyzed_S);
+ while Present (Gen_Scope) and then Is_Child_Unit (Gen_Scope) loop
+ if Scope (Subp) = Scope (Gen_Scope) then
+ return True;
+ end if;
+
+ Gen_Scope := Scope (Gen_Scope);
+ end loop;
+
+ return False;
+ end From_Parent_Scope;
+
+ -----------------------------
+ -- Valid_Actual_Subprogram --
+ -----------------------------
+
+ procedure Valid_Actual_Subprogram (Act : Node_Id) is
+ Act_E : Entity_Id;
+
+ begin
+ if Is_Entity_Name (Act) then
+ Act_E := Entity (Act);
+
+ elsif Nkind (Act) = N_Selected_Component
+ and then Is_Entity_Name (Selector_Name (Act))
+ then
+ Act_E := Entity (Selector_Name (Act));
+
+ else
+ Act_E := Empty;
+ end if;
+
+ if (Present (Act_E) and then Is_Overloadable (Act_E))
+ or else Nkind_In (Act, N_Attribute_Reference,
+ N_Indexed_Component,
+ N_Character_Literal,
+ N_Explicit_Dereference)
+ then
+ return;
+ end if;
+
+ Error_Msg_NE
+ ("expect subprogram or entry name in instantiation of&",
+ Instantiation_Node, Formal_Sub);
+ Abandon_Instantiation (Instantiation_Node);
+
+ end Valid_Actual_Subprogram;
+
+ -- Start of processing for Instantiate_Formal_Subprogram
+
+ begin
+ New_Spec := New_Copy_Tree (Specification (Formal));
+
+ -- The tree copy has created the proper instantiation sloc for the
+ -- new specification. Use this location for all other constructed
+ -- declarations.
+
+ Loc := Sloc (Defining_Unit_Name (New_Spec));
+
+ -- Create new entity for the actual (New_Copy_Tree does not)
+
+ Set_Defining_Unit_Name
+ (New_Spec, Make_Defining_Identifier (Loc, Chars (Formal_Sub)));
+
+ -- Create new entities for the each of the formals in the
+ -- specification of the renaming declaration built for the actual.
+
+ if Present (Parameter_Specifications (New_Spec)) then
+ declare
+ F : Node_Id;
+ begin
+ F := First (Parameter_Specifications (New_Spec));
+ while Present (F) loop
+ Set_Defining_Identifier (F,
+ Make_Defining_Identifier (Sloc (F),
+ Chars => Chars (Defining_Identifier (F))));
+ Next (F);
+ end loop;
+ end;
+ end if;
+
+ -- Find entity of actual. If the actual is an attribute reference, it
+ -- cannot be resolved here (its formal is missing) but is handled
+ -- instead in Attribute_Renaming. If the actual is overloaded, it is
+ -- fully resolved subsequently, when the renaming declaration for the
+ -- formal is analyzed. If it is an explicit dereference, resolve the
+ -- prefix but not the actual itself, to prevent interpretation as call.
+
+ if Present (Actual) then
+ Loc := Sloc (Actual);
+ Set_Sloc (New_Spec, Loc);
+
+ if Nkind (Actual) = N_Operator_Symbol then
+ Find_Direct_Name (Actual);
+
+ elsif Nkind (Actual) = N_Explicit_Dereference then
+ Analyze (Prefix (Actual));
+
+ elsif Nkind (Actual) /= N_Attribute_Reference then
+ Analyze (Actual);
+ end if;
+
+ Valid_Actual_Subprogram (Actual);
+ Nam := Actual;
+
+ elsif Present (Default_Name (Formal)) then
+ if not Nkind_In (Default_Name (Formal), N_Attribute_Reference,
+ N_Selected_Component,
+ N_Indexed_Component,
+ N_Character_Literal)
+ and then Present (Entity (Default_Name (Formal)))
+ then
+ Nam := New_Occurrence_Of (Entity (Default_Name (Formal)), Loc);
+ else
+ Nam := New_Copy (Default_Name (Formal));
+ Set_Sloc (Nam, Loc);
+ end if;
+
+ elsif Box_Present (Formal) then
+
+ -- Actual is resolved at the point of instantiation. Create an
+ -- identifier or operator with the same name as the formal.
+
+ if Nkind (Formal_Sub) = N_Defining_Operator_Symbol then
+ Nam := Make_Operator_Symbol (Loc,
+ Chars => Chars (Formal_Sub),
+ Strval => No_String);
+ else
+ Nam := Make_Identifier (Loc, Chars (Formal_Sub));
+ end if;
+
+ elsif Nkind (Specification (Formal)) = N_Procedure_Specification
+ and then Null_Present (Specification (Formal))
+ then
+ -- Generate null body for procedure, for use in the instance
+
+ Decl_Node :=
+ Make_Subprogram_Body (Loc,
+ Specification => New_Spec,
+ Declarations => New_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (Make_Null_Statement (Loc))));
+
+ Set_Is_Intrinsic_Subprogram (Defining_Unit_Name (New_Spec));
+ return Decl_Node;
+
+ else
+ Error_Msg_Sloc := Sloc (Scope (Analyzed_S));
+ Error_Msg_NE
+ ("missing actual&", Instantiation_Node, Formal_Sub);
+ Error_Msg_NE
+ ("\in instantiation of & declared#",
+ Instantiation_Node, Scope (Analyzed_S));
+ Abandon_Instantiation (Instantiation_Node);
+ end if;
+
+ Decl_Node :=
+ Make_Subprogram_Renaming_Declaration (Loc,
+ Specification => New_Spec,
+ Name => Nam);
+
+ -- If we do not have an actual and the formal specified <> then set to
+ -- get proper default.
+
+ if No (Actual) and then Box_Present (Formal) then
+ Set_From_Default (Decl_Node);
+ end if;
+
+ -- Gather possible interpretations for the actual before analyzing the
+ -- instance. If overloaded, it will be resolved when analyzing the
+ -- renaming declaration.
+
+ if Box_Present (Formal)
+ and then No (Actual)
+ then
+ Analyze (Nam);
+
+ if Is_Child_Unit (Scope (Analyzed_S))
+ and then Present (Entity (Nam))
+ then
+ if not Is_Overloaded (Nam) then
+ if From_Parent_Scope (Entity (Nam)) then
+ Set_Is_Immediately_Visible (Entity (Nam), False);
+ Set_Entity (Nam, Empty);
+ Set_Etype (Nam, Empty);
+
+ Analyze (Nam);
+ Set_Is_Immediately_Visible (Entity (Nam));
+ end if;
+
+ else
+ declare
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ Get_First_Interp (Nam, I, It);
+ while Present (It.Nam) loop
+ if From_Parent_Scope (It.Nam) then
+ Remove_Interp (I);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+ end if;
+ end if;
+ end if;
+
+ -- The generic instantiation freezes the actual. This can only be done
+ -- once the actual is resolved, in the analysis of the renaming
+ -- declaration. To make the formal subprogram entity available, we set
+ -- Corresponding_Formal_Spec to point to the formal subprogram entity.
+ -- This is also needed in Analyze_Subprogram_Renaming for the processing
+ -- of formal abstract subprograms.
+
+ Set_Corresponding_Formal_Spec (Decl_Node, Analyzed_S);
+
+ -- We cannot analyze the renaming declaration, and thus find the actual,
+ -- until all the actuals are assembled in the instance. For subsequent
+ -- checks of other actuals, indicate the node that will hold the
+ -- instance of this formal.
+
+ Set_Instance_Of (Analyzed_S, Nam);
+
+ if Nkind (Actual) = N_Selected_Component
+ and then Is_Task_Type (Etype (Prefix (Actual)))
+ and then not Is_Frozen (Etype (Prefix (Actual)))
+ then
+ -- The renaming declaration will create a body, which must appear
+ -- outside of the instantiation, We move the renaming declaration
+ -- out of the instance, and create an additional renaming inside,
+ -- to prevent freezing anomalies.
+
+ declare
+ Anon_Id : constant Entity_Id := Make_Temporary (Loc, 'E');
+
+ begin
+ Set_Defining_Unit_Name (New_Spec, Anon_Id);
+ Insert_Before (Instantiation_Node, Decl_Node);
+ Analyze (Decl_Node);
+
+ -- Now create renaming within the instance
+
+ Decl_Node :=
+ Make_Subprogram_Renaming_Declaration (Loc,
+ Specification => New_Copy_Tree (New_Spec),
+ Name => New_Occurrence_Of (Anon_Id, Loc));
+
+ Set_Defining_Unit_Name (Specification (Decl_Node),
+ Make_Defining_Identifier (Loc, Chars (Formal_Sub)));
+ end;
+ end if;
+
+ return Decl_Node;
+ end Instantiate_Formal_Subprogram;
+
+ ------------------------
+ -- Instantiate_Object --
+ ------------------------
+
+ function Instantiate_Object
+ (Formal : Node_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id) return List_Id
+ is
+ Gen_Obj : constant Entity_Id := Defining_Identifier (Formal);
+ A_Gen_Obj : constant Entity_Id :=
+ Defining_Identifier (Analyzed_Formal);
+ Acc_Def : Node_Id := Empty;
+ Act_Assoc : constant Node_Id := Parent (Actual);
+ Actual_Decl : Node_Id := Empty;
+ Decl_Node : Node_Id;
+ Def : Node_Id;
+ Ftyp : Entity_Id;
+ List : constant List_Id := New_List;
+ Loc : constant Source_Ptr := Sloc (Actual);
+ Orig_Ftyp : constant Entity_Id := Etype (A_Gen_Obj);
+ Subt_Decl : Node_Id := Empty;
+ Subt_Mark : Node_Id := Empty;
+
+ begin
+ if Present (Subtype_Mark (Formal)) then
+ Subt_Mark := Subtype_Mark (Formal);
+ else
+ Check_Access_Definition (Formal);
+ Acc_Def := Access_Definition (Formal);
+ end if;
+
+ -- Sloc for error message on missing actual
+
+ Error_Msg_Sloc := Sloc (Scope (A_Gen_Obj));
+
+ if Get_Instance_Of (Gen_Obj) /= Gen_Obj then
+ Error_Msg_N ("duplicate instantiation of generic parameter", Actual);
+ end if;
+
+ Set_Parent (List, Parent (Actual));
+
+ -- OUT present
+
+ if Out_Present (Formal) then
+
+ -- An IN OUT generic actual must be a name. The instantiation is a
+ -- renaming declaration. The actual is the name being renamed. We
+ -- use the actual directly, rather than a copy, because it is not
+ -- used further in the list of actuals, and because a copy or a use
+ -- of relocate_node is incorrect if the instance is nested within a
+ -- generic. In order to simplify ASIS searches, the Generic_Parent
+ -- field links the declaration to the generic association.
+
+ if No (Actual) then
+ Error_Msg_NE
+ ("missing actual&",
+ Instantiation_Node, Gen_Obj);
+ Error_Msg_NE
+ ("\in instantiation of & declared#",
+ Instantiation_Node, Scope (A_Gen_Obj));
+ Abandon_Instantiation (Instantiation_Node);
+ end if;
+
+ if Present (Subt_Mark) then
+ Decl_Node :=
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => New_Copy (Gen_Obj),
+ Subtype_Mark => New_Copy_Tree (Subt_Mark),
+ Name => Actual);
+
+ else pragma Assert (Present (Acc_Def));
+ Decl_Node :=
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => New_Copy (Gen_Obj),
+ Access_Definition => New_Copy_Tree (Acc_Def),
+ Name => Actual);
+ end if;
+
+ Set_Corresponding_Generic_Association (Decl_Node, Act_Assoc);
+
+ -- The analysis of the actual may produce Insert_Action nodes, so
+ -- the declaration must have a context in which to attach them.
+
+ Append (Decl_Node, List);
+ Analyze (Actual);
+
+ -- Return if the analysis of the actual reported some error
+
+ if Etype (Actual) = Any_Type then
+ return List;
+ end if;
+
+ -- This check is performed here because Analyze_Object_Renaming will
+ -- not check it when Comes_From_Source is False. Note though that the
+ -- check for the actual being the name of an object will be performed
+ -- in Analyze_Object_Renaming.
+
+ if Is_Object_Reference (Actual)
+ and then Is_Dependent_Component_Of_Mutable_Object (Actual)
+ then
+ Error_Msg_N
+ ("illegal discriminant-dependent component for in out parameter",
+ Actual);
+ end if;
+
+ -- The actual has to be resolved in order to check that it is a
+ -- variable (due to cases such as F (1), where F returns access to
+ -- an array, and for overloaded prefixes).
+
+ Ftyp := Get_Instance_Of (Etype (A_Gen_Obj));
+
+ -- If the type of the formal is not itself a formal, and the current
+ -- unit is a child unit, the formal type must be declared in a
+ -- parent, and must be retrieved by visibility.
+
+ if Ftyp = Orig_Ftyp
+ and then Is_Generic_Unit (Scope (Ftyp))
+ and then Is_Child_Unit (Scope (A_Gen_Obj))
+ then
+ declare
+ Temp : constant Node_Id :=
+ New_Copy_Tree (Subtype_Mark (Analyzed_Formal));
+ begin
+ Set_Entity (Temp, Empty);
+ Find_Type (Temp);
+ Ftyp := Entity (Temp);
+ end;
+ end if;
+
+ if Is_Private_Type (Ftyp)
+ and then not Is_Private_Type (Etype (Actual))
+ and then (Base_Type (Full_View (Ftyp)) = Base_Type (Etype (Actual))
+ or else Base_Type (Etype (Actual)) = Ftyp)
+ then
+ -- If the actual has the type of the full view of the formal, or
+ -- else a non-private subtype of the formal, then the visibility
+ -- of the formal type has changed. Add to the actuals a subtype
+ -- declaration that will force the exchange of views in the body
+ -- of the instance as well.
+
+ Subt_Decl :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Make_Temporary (Loc, 'P'),
+ Subtype_Indication => New_Occurrence_Of (Ftyp, Loc));
+
+ Prepend (Subt_Decl, List);
+
+ Prepend_Elmt (Full_View (Ftyp), Exchanged_Views);
+ Exchange_Declarations (Ftyp);
+ end if;
+
+ Resolve (Actual, Ftyp);
+
+ if not Denotes_Variable (Actual) then
+ Error_Msg_NE
+ ("actual for& must be a variable", Actual, Gen_Obj);
+
+ elsif Base_Type (Ftyp) /= Base_Type (Etype (Actual)) then
+
+ -- Ada 2005 (AI-423): For a generic formal object of mode in out,
+ -- the type of the actual shall resolve to a specific anonymous
+ -- access type.
+
+ if Ada_Version < Ada_2005
+ or else
+ Ekind (Base_Type (Ftyp)) /=
+ E_Anonymous_Access_Type
+ or else
+ Ekind (Base_Type (Etype (Actual))) /=
+ E_Anonymous_Access_Type
+ then
+ Error_Msg_NE ("type of actual does not match type of&",
+ Actual, Gen_Obj);
+ end if;
+ end if;
+
+ Note_Possible_Modification (Actual, Sure => True);
+
+ -- Check for instantiation of atomic/volatile actual for
+ -- non-atomic/volatile formal (RM C.6 (12)).
+
+ if Is_Atomic_Object (Actual)
+ and then not Is_Atomic (Orig_Ftyp)
+ then
+ Error_Msg_N
+ ("cannot instantiate non-atomic formal object " &
+ "with atomic actual", Actual);
+
+ elsif Is_Volatile_Object (Actual)
+ and then not Is_Volatile (Orig_Ftyp)
+ then
+ Error_Msg_N
+ ("cannot instantiate non-volatile formal object " &
+ "with volatile actual", Actual);
+ end if;
+
+ -- Formal in-parameter
+
+ else
+ -- The instantiation of a generic formal in-parameter is constant
+ -- declaration. The actual is the expression for that declaration.
+
+ if Present (Actual) then
+ if Present (Subt_Mark) then
+ Def := Subt_Mark;
+ else pragma Assert (Present (Acc_Def));
+ Def := Acc_Def;
+ end if;
+
+ Decl_Node :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => New_Copy (Gen_Obj),
+ Constant_Present => True,
+ Null_Exclusion_Present => Null_Exclusion_Present (Formal),
+ Object_Definition => New_Copy_Tree (Def),
+ Expression => Actual);
+
+ Set_Corresponding_Generic_Association (Decl_Node, Act_Assoc);
+
+ -- A generic formal object of a tagged type is defined to be
+ -- aliased so the new constant must also be treated as aliased.
+
+ if Is_Tagged_Type (Etype (A_Gen_Obj)) then
+ Set_Aliased_Present (Decl_Node);
+ end if;
+
+ Append (Decl_Node, List);
+
+ -- No need to repeat (pre-)analysis of some expression nodes
+ -- already handled in Preanalyze_Actuals.
+
+ if Nkind (Actual) /= N_Allocator then
+ Analyze (Actual);
+
+ -- Return if the analysis of the actual reported some error
+
+ if Etype (Actual) = Any_Type then
+ return List;
+ end if;
+ end if;
+
+ declare
+ Formal_Type : constant Entity_Id := Etype (A_Gen_Obj);
+ Typ : Entity_Id;
+
+ begin
+ Typ := Get_Instance_Of (Formal_Type);
+
+ Freeze_Before (Instantiation_Node, Typ);
+
+ -- If the actual is an aggregate, perform name resolution on
+ -- its components (the analysis of an aggregate does not do it)
+ -- to capture local names that may be hidden if the generic is
+ -- a child unit.
+
+ if Nkind (Actual) = N_Aggregate then
+ Preanalyze_And_Resolve (Actual, Typ);
+ end if;
+
+ if Is_Limited_Type (Typ)
+ and then not OK_For_Limited_Init (Typ, Actual)
+ then
+ Error_Msg_N
+ ("initialization not allowed for limited types", Actual);
+ Explain_Limited_Type (Typ, Actual);
+ end if;
+ end;
+
+ elsif Present (Default_Expression (Formal)) then
+
+ -- Use default to construct declaration
+
+ if Present (Subt_Mark) then
+ Def := Subt_Mark;
+ else pragma Assert (Present (Acc_Def));
+ Def := Acc_Def;
+ end if;
+
+ Decl_Node :=
+ Make_Object_Declaration (Sloc (Formal),
+ Defining_Identifier => New_Copy (Gen_Obj),
+ Constant_Present => True,
+ Null_Exclusion_Present => Null_Exclusion_Present (Formal),
+ Object_Definition => New_Copy (Def),
+ Expression => New_Copy_Tree
+ (Default_Expression (Formal)));
+
+ Append (Decl_Node, List);
+ Set_Analyzed (Expression (Decl_Node), False);
+
+ else
+ Error_Msg_NE
+ ("missing actual&",
+ Instantiation_Node, Gen_Obj);
+ Error_Msg_NE ("\in instantiation of & declared#",
+ Instantiation_Node, Scope (A_Gen_Obj));
+
+ if Is_Scalar_Type (Etype (A_Gen_Obj)) then
+
+ -- Create dummy constant declaration so that instance can be
+ -- analyzed, to minimize cascaded visibility errors.
+
+ if Present (Subt_Mark) then
+ Def := Subt_Mark;
+ else pragma Assert (Present (Acc_Def));
+ Def := Acc_Def;
+ end if;
+
+ Decl_Node :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => New_Copy (Gen_Obj),
+ Constant_Present => True,
+ Null_Exclusion_Present => Null_Exclusion_Present (Formal),
+ Object_Definition => New_Copy (Def),
+ Expression =>
+ Make_Attribute_Reference (Sloc (Gen_Obj),
+ Attribute_Name => Name_First,
+ Prefix => New_Copy (Def)));
+
+ Append (Decl_Node, List);
+
+ else
+ Abandon_Instantiation (Instantiation_Node);
+ end if;
+ end if;
+ end if;
+
+ if Nkind (Actual) in N_Has_Entity then
+ Actual_Decl := Parent (Entity (Actual));
+ end if;
+
+ -- Ada 2005 (AI-423): For a formal object declaration with a null
+ -- exclusion or an access definition that has a null exclusion: If the
+ -- actual matching the formal object declaration denotes a generic
+ -- formal object of another generic unit G, and the instantiation
+ -- containing the actual occurs within the body of G or within the body
+ -- of a generic unit declared within the declarative region of G, then
+ -- the declaration of the formal object of G must have a null exclusion.
+ -- Otherwise, the subtype of the actual matching the formal object
+ -- declaration shall exclude null.
+
+ if Ada_Version >= Ada_2005
+ and then Present (Actual_Decl)
+ and then
+ Nkind_In (Actual_Decl, N_Formal_Object_Declaration,
+ N_Object_Declaration)
+ and then Nkind (Analyzed_Formal) = N_Formal_Object_Declaration
+ and then not Has_Null_Exclusion (Actual_Decl)
+ and then Has_Null_Exclusion (Analyzed_Formal)
+ then
+ Error_Msg_Sloc := Sloc (Analyzed_Formal);
+ Error_Msg_N
+ ("actual must exclude null to match generic formal#", Actual);
+ end if;
+
+ -- A volatile object cannot be used as an actual in a generic instance.
+ -- The following check is only relevant when SPARK_Mode is on as it is
+ -- not a standard Ada legality rule.
+
+ if SPARK_Mode = On
+ and then Present (Actual)
+ and then Is_SPARK_Volatile_Object (Actual)
+ then
+ Error_Msg_N
+ ("volatile object cannot act as actual in generic instantiation "
+ & "(SPARK RM 7.1.3(8))", Actual);
+ end if;
+
+ return List;
+ end Instantiate_Object;
+
+ ------------------------------
+ -- Instantiate_Package_Body --
+ ------------------------------
+
+ procedure Instantiate_Package_Body
+ (Body_Info : Pending_Body_Info;
+ Inlined_Body : Boolean := False;
+ Body_Optional : Boolean := False)
+ is
+ Act_Decl : constant Node_Id := Body_Info.Act_Decl;
+ Inst_Node : constant Node_Id := Body_Info.Inst_Node;
+ Loc : constant Source_Ptr := Sloc (Inst_Node);
+
+ Gen_Id : constant Node_Id := Name (Inst_Node);
+ Gen_Unit : constant Entity_Id := Get_Generic_Entity (Inst_Node);
+ Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Unit);
+ Act_Spec : constant Node_Id := Specification (Act_Decl);
+ Act_Decl_Id : constant Entity_Id := Defining_Entity (Act_Spec);
+
+ Act_Body_Name : Node_Id;
+ Gen_Body : Node_Id;
+ Gen_Body_Id : Node_Id;
+ Act_Body : Node_Id;
+ Act_Body_Id : Entity_Id;
+
+ Parent_Installed : Boolean := False;
+ Save_Style_Check : constant Boolean := Style_Check;
+
+ Par_Ent : Entity_Id := Empty;
+ Par_Vis : Boolean := False;
+
+ Vis_Prims_List : Elist_Id := No_Elist;
+ -- List of primitives made temporarily visible in the instantiation
+ -- to match the visibility of the formal type
+
+ begin
+ Gen_Body_Id := Corresponding_Body (Gen_Decl);
+
+ -- The instance body may already have been processed, as the parent of
+ -- another instance that is inlined (Load_Parent_Of_Generic).
+
+ if Present (Corresponding_Body (Instance_Spec (Inst_Node))) then
+ return;
+ end if;
+
+ Expander_Mode_Save_And_Set (Body_Info.Expander_Status);
+
+ -- Re-establish the state of information on which checks are suppressed.
+ -- This information was set in Body_Info at the point of instantiation,
+ -- and now we restore it so that the instance is compiled using the
+ -- check status at the instantiation (RM 11.5 (7.2/2), AI95-00224-01).
+
+ Local_Suppress_Stack_Top := Body_Info.Local_Suppress_Stack_Top;
+ Scope_Suppress := Body_Info.Scope_Suppress;
+ Opt.Ada_Version := Body_Info.Version;
+ Opt.Ada_Version_Pragma := Body_Info.Version_Pragma;
+ Restore_Warnings (Body_Info.Warnings);
+ Opt.SPARK_Mode := Body_Info.SPARK_Mode;
+ Opt.SPARK_Mode_Pragma := Body_Info.SPARK_Mode_Pragma;
+
+ if No (Gen_Body_Id) then
+ Load_Parent_Of_Generic
+ (Inst_Node, Specification (Gen_Decl), Body_Optional);
+ Gen_Body_Id := Corresponding_Body (Gen_Decl);
+ end if;
+
+ -- Establish global variable for sloc adjustment and for error recovery
+
+ Instantiation_Node := Inst_Node;
+
+ if Present (Gen_Body_Id) then
+ Save_Env (Gen_Unit, Act_Decl_Id);
+ Style_Check := False;
+ Current_Sem_Unit := Body_Info.Current_Sem_Unit;
+
+ Gen_Body := Unit_Declaration_Node (Gen_Body_Id);
+
+ Create_Instantiation_Source
+ (Inst_Node, Gen_Body_Id, False, S_Adjustment);
+
+ Act_Body :=
+ Copy_Generic_Node
+ (Original_Node (Gen_Body), Empty, Instantiating => True);
+
+ -- Build new name (possibly qualified) for body declaration
+
+ Act_Body_Id := New_Copy (Act_Decl_Id);
+
+ -- Some attributes of spec entity are not inherited by body entity
+
+ Set_Handler_Records (Act_Body_Id, No_List);
+
+ if Nkind (Defining_Unit_Name (Act_Spec)) =
+ N_Defining_Program_Unit_Name
+ then
+ Act_Body_Name :=
+ Make_Defining_Program_Unit_Name (Loc,
+ Name => New_Copy_Tree (Name (Defining_Unit_Name (Act_Spec))),
+ Defining_Identifier => Act_Body_Id);
+ else
+ Act_Body_Name := Act_Body_Id;
+ end if;
+
+ Set_Defining_Unit_Name (Act_Body, Act_Body_Name);
+
+ Set_Corresponding_Spec (Act_Body, Act_Decl_Id);
+ Check_Generic_Actuals (Act_Decl_Id, False);
+
+ -- Install primitives hidden at the point of the instantiation but
+ -- visible when processing the generic formals
+
+ declare
+ E : Entity_Id;
+
+ begin
+ E := First_Entity (Act_Decl_Id);
+ while Present (E) loop
+ if Is_Type (E)
+ and then Is_Generic_Actual_Type (E)
+ and then Is_Tagged_Type (E)
+ then
+ Install_Hidden_Primitives
+ (Prims_List => Vis_Prims_List,
+ Gen_T => Generic_Parent_Type (Parent (E)),
+ Act_T => E);
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end;
+
+ -- If it is a child unit, make the parent instance (which is an
+ -- instance of the parent of the generic) visible. The parent
+ -- instance is the prefix of the name of the generic unit.
+
+ if Ekind (Scope (Gen_Unit)) = E_Generic_Package
+ and then Nkind (Gen_Id) = N_Expanded_Name
+ then
+ Par_Ent := Entity (Prefix (Gen_Id));
+ Par_Vis := Is_Immediately_Visible (Par_Ent);
+ Install_Parent (Par_Ent, In_Body => True);
+ Parent_Installed := True;
+
+ elsif Is_Child_Unit (Gen_Unit) then
+ Par_Ent := Scope (Gen_Unit);
+ Par_Vis := Is_Immediately_Visible (Par_Ent);
+ Install_Parent (Par_Ent, In_Body => True);
+ Parent_Installed := True;
+ end if;
+
+ -- If the instantiation is a library unit, and this is the main unit,
+ -- then build the resulting compilation unit nodes for the instance.
+ -- If this is a compilation unit but it is not the main unit, then it
+ -- is the body of a unit in the context, that is being compiled
+ -- because it is encloses some inlined unit or another generic unit
+ -- being instantiated. In that case, this body is not part of the
+ -- current compilation, and is not attached to the tree, but its
+ -- parent must be set for analysis.
+
+ if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then
+
+ -- Replace instance node with body of instance, and create new
+ -- node for corresponding instance declaration.
+
+ Build_Instance_Compilation_Unit_Nodes
+ (Inst_Node, Act_Body, Act_Decl);
+ Analyze (Inst_Node);
+
+ if Parent (Inst_Node) = Cunit (Main_Unit) then
+
+ -- If the instance is a child unit itself, then set the scope
+ -- of the expanded body to be the parent of the instantiation
+ -- (ensuring that the fully qualified name will be generated
+ -- for the elaboration subprogram).
+
+ if Nkind (Defining_Unit_Name (Act_Spec)) =
+ N_Defining_Program_Unit_Name
+ then
+ Set_Scope
+ (Defining_Entity (Inst_Node), Scope (Act_Decl_Id));
+ end if;
+ end if;
+
+ -- Case where instantiation is not a library unit
+
+ else
+ -- If this is an early instantiation, i.e. appears textually
+ -- before the corresponding body and must be elaborated first,
+ -- indicate that the body instance is to be delayed.
+
+ Install_Body (Act_Body, Inst_Node, Gen_Body, Gen_Decl);
+
+ -- Now analyze the body. We turn off all checks if this is an
+ -- internal unit, since there is no reason to have checks on for
+ -- any predefined run-time library code. All such code is designed
+ -- to be compiled with checks off.
+
+ -- Note that we do NOT apply this criterion to children of GNAT
+ -- (or on VMS, children of DEC). The latter units must suppress
+ -- checks explicitly if this is needed.
+
+ if Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Gen_Decl)))
+ then
+ Analyze (Act_Body, Suppress => All_Checks);
+ else
+ Analyze (Act_Body);
+ end if;
+ end if;
+
+ Inherit_Context (Gen_Body, Inst_Node);
+
+ -- Remove the parent instances if they have been placed on the scope
+ -- stack to compile the body.
+
+ if Parent_Installed then
+ Remove_Parent (In_Body => True);
+
+ -- Restore the previous visibility of the parent
+
+ Set_Is_Immediately_Visible (Par_Ent, Par_Vis);
+ end if;
+
+ Restore_Hidden_Primitives (Vis_Prims_List);
+ Restore_Private_Views (Act_Decl_Id);
+
+ -- Remove the current unit from visibility if this is an instance
+ -- that is not elaborated on the fly for inlining purposes.
+
+ if not Inlined_Body then
+ Set_Is_Immediately_Visible (Act_Decl_Id, False);
+ end if;
+
+ Restore_Env;
+ Style_Check := Save_Style_Check;
+
+ -- If we have no body, and the unit requires a body, then complain. This
+ -- complaint is suppressed if we have detected other errors (since a
+ -- common reason for missing the body is that it had errors).
+ -- In CodePeer mode, a warning has been emitted already, no need for
+ -- further messages.
+
+ elsif Unit_Requires_Body (Gen_Unit)
+ and then not Body_Optional
+ then
+ if CodePeer_Mode then
+ null;
+
+ elsif Serious_Errors_Detected = 0 then
+ Error_Msg_NE
+ ("cannot find body of generic package &", Inst_Node, Gen_Unit);
+
+ -- Don't attempt to perform any cleanup actions if some other error
+ -- was already detected, since this can cause blowups.
+
+ else
+ return;
+ end if;
+
+ -- Case of package that does not need a body
+
+ else
+ -- If the instantiation of the declaration is a library unit, rewrite
+ -- the original package instantiation as a package declaration in the
+ -- compilation unit node.
+
+ if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then
+ Set_Parent_Spec (Act_Decl, Parent_Spec (Inst_Node));
+ Rewrite (Inst_Node, Act_Decl);
+
+ -- Generate elaboration entity, in case spec has elaboration code.
+ -- This cannot be done when the instance is analyzed, because it
+ -- is not known yet whether the body exists.
+
+ Set_Elaboration_Entity_Required (Act_Decl_Id, False);
+ Build_Elaboration_Entity (Parent (Inst_Node), Act_Decl_Id);
+
+ -- If the instantiation is not a library unit, then append the
+ -- declaration to the list of implicitly generated entities, unless
+ -- it is already a list member which means that it was already
+ -- processed
+
+ elsif not Is_List_Member (Act_Decl) then
+ Mark_Rewrite_Insertion (Act_Decl);
+ Insert_Before (Inst_Node, Act_Decl);
+ end if;
+ end if;
+
+ Expander_Mode_Restore;
+ end Instantiate_Package_Body;
+
+ ---------------------------------
+ -- Instantiate_Subprogram_Body --
+ ---------------------------------
+
+ procedure Instantiate_Subprogram_Body
+ (Body_Info : Pending_Body_Info;
+ Body_Optional : Boolean := False)
+ is
+ Act_Decl : constant Node_Id := Body_Info.Act_Decl;
+ Inst_Node : constant Node_Id := Body_Info.Inst_Node;
+ Loc : constant Source_Ptr := Sloc (Inst_Node);
+ Gen_Id : constant Node_Id := Name (Inst_Node);
+ Gen_Unit : constant Entity_Id := Get_Generic_Entity (Inst_Node);
+ Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Unit);
+ Anon_Id : constant Entity_Id :=
+ Defining_Unit_Name (Specification (Act_Decl));
+ Pack_Id : constant Entity_Id :=
+ Defining_Unit_Name (Parent (Act_Decl));
+ Decls : List_Id;
+ Gen_Body : Node_Id;
+ Gen_Body_Id : Node_Id;
+ Act_Body : Node_Id;
+ Pack_Body : Node_Id;
+ Prev_Formal : Entity_Id;
+ Ret_Expr : Node_Id;
+ Unit_Renaming : Node_Id;
+
+ Parent_Installed : Boolean := False;
+
+ Saved_Style_Check : constant Boolean := Style_Check;
+ Saved_Warnings : constant Warning_Record := Save_Warnings;
+
+ Par_Ent : Entity_Id := Empty;
+ Par_Vis : Boolean := False;
+
+ begin
+ Gen_Body_Id := Corresponding_Body (Gen_Decl);
+
+ -- Subprogram body may have been created already because of an inline
+ -- pragma, or because of multiple elaborations of the enclosing package
+ -- when several instances of the subprogram appear in the main unit.
+
+ if Present (Corresponding_Body (Act_Decl)) then
+ return;
+ end if;
+
+ Expander_Mode_Save_And_Set (Body_Info.Expander_Status);
+
+ -- Re-establish the state of information on which checks are suppressed.
+ -- This information was set in Body_Info at the point of instantiation,
+ -- and now we restore it so that the instance is compiled using the
+ -- check status at the instantiation (RM 11.5 (7.2/2), AI95-00224-01).
+
+ Local_Suppress_Stack_Top := Body_Info.Local_Suppress_Stack_Top;
+ Scope_Suppress := Body_Info.Scope_Suppress;
+ Opt.Ada_Version := Body_Info.Version;
+ Opt.Ada_Version_Pragma := Body_Info.Version_Pragma;
+ Restore_Warnings (Body_Info.Warnings);
+ Opt.SPARK_Mode := Body_Info.SPARK_Mode;
+ Opt.SPARK_Mode_Pragma := Body_Info.SPARK_Mode_Pragma;
+
+ if No (Gen_Body_Id) then
+
+ -- For imported generic subprogram, no body to compile, complete
+ -- the spec entity appropriately.
+
+ if Is_Imported (Gen_Unit) then
+ Set_Is_Imported (Anon_Id);
+ Set_First_Rep_Item (Anon_Id, First_Rep_Item (Gen_Unit));
+ Set_Interface_Name (Anon_Id, Interface_Name (Gen_Unit));
+ Set_Convention (Anon_Id, Convention (Gen_Unit));
+ Set_Has_Completion (Anon_Id);
+ return;
+
+ -- For other cases, compile the body
+
+ else
+ Load_Parent_Of_Generic
+ (Inst_Node, Specification (Gen_Decl), Body_Optional);
+ Gen_Body_Id := Corresponding_Body (Gen_Decl);
+ end if;
+ end if;
+
+ Instantiation_Node := Inst_Node;
+
+ if Present (Gen_Body_Id) then
+ Gen_Body := Unit_Declaration_Node (Gen_Body_Id);
+
+ if Nkind (Gen_Body) = N_Subprogram_Body_Stub then
+
+ -- Either body is not present, or context is non-expanding, as
+ -- when compiling a subunit. Mark the instance as completed, and
+ -- diagnose a missing body when needed.
+
+ if Expander_Active
+ and then Operating_Mode = Generate_Code
+ then
+ Error_Msg_N
+ ("missing proper body for instantiation", Gen_Body);
+ end if;
+
+ Set_Has_Completion (Anon_Id);
+ return;
+ end if;
+
+ Save_Env (Gen_Unit, Anon_Id);
+ Style_Check := False;
+ Current_Sem_Unit := Body_Info.Current_Sem_Unit;
+ Create_Instantiation_Source
+ (Inst_Node,
+ Gen_Body_Id,
+ False,
+ S_Adjustment);
+
+ Act_Body :=
+ Copy_Generic_Node
+ (Original_Node (Gen_Body), Empty, Instantiating => True);
+
+ -- Create proper defining name for the body, to correspond to
+ -- the one in the spec.
+
+ Set_Defining_Unit_Name (Specification (Act_Body),
+ Make_Defining_Identifier
+ (Sloc (Defining_Entity (Inst_Node)), Chars (Anon_Id)));
+ Set_Corresponding_Spec (Act_Body, Anon_Id);
+ Set_Has_Completion (Anon_Id);
+ Check_Generic_Actuals (Pack_Id, False);
+
+ -- Generate a reference to link the visible subprogram instance to
+ -- the generic body, which for navigation purposes is the only
+ -- available source for the instance.
+
+ Generate_Reference
+ (Related_Instance (Pack_Id),
+ Gen_Body_Id, 'b', Set_Ref => False, Force => True);
+
+ -- If it is a child unit, make the parent instance (which is an
+ -- instance of the parent of the generic) visible. The parent
+ -- instance is the prefix of the name of the generic unit.
+
+ if Ekind (Scope (Gen_Unit)) = E_Generic_Package
+ and then Nkind (Gen_Id) = N_Expanded_Name
+ then
+ Par_Ent := Entity (Prefix (Gen_Id));
+ Par_Vis := Is_Immediately_Visible (Par_Ent);
+ Install_Parent (Par_Ent, In_Body => True);
+ Parent_Installed := True;
+
+ elsif Is_Child_Unit (Gen_Unit) then
+ Par_Ent := Scope (Gen_Unit);
+ Par_Vis := Is_Immediately_Visible (Par_Ent);
+ Install_Parent (Par_Ent, In_Body => True);
+ Parent_Installed := True;
+ end if;
+
+ -- Inside its body, a reference to the generic unit is a reference
+ -- to the instance. The corresponding renaming is the first
+ -- declaration in the body.
+
+ Unit_Renaming :=
+ Make_Subprogram_Renaming_Declaration (Loc,
+ Specification =>
+ Copy_Generic_Node (
+ Specification (Original_Node (Gen_Body)),
+ Empty,
+ Instantiating => True),
+ Name => New_Occurrence_Of (Anon_Id, Loc));
+
+ -- If there is a formal subprogram with the same name as the unit
+ -- itself, do not add this renaming declaration. This is a temporary
+ -- fix for one ACVC test. ???
+
+ Prev_Formal := First_Entity (Pack_Id);
+ while Present (Prev_Formal) loop
+ if Chars (Prev_Formal) = Chars (Gen_Unit)
+ and then Is_Overloadable (Prev_Formal)
+ then
+ exit;
+ end if;
+
+ Next_Entity (Prev_Formal);
+ end loop;
+
+ if Present (Prev_Formal) then
+ Decls := New_List (Act_Body);
+ else
+ Decls := New_List (Unit_Renaming, Act_Body);
+ end if;
+
+ -- The subprogram body is placed in the body of a dummy package body,
+ -- whose spec contains the subprogram declaration as well as the
+ -- renaming declarations for the generic parameters.
+
+ Pack_Body := Make_Package_Body (Loc,
+ Defining_Unit_Name => New_Copy (Pack_Id),
+ Declarations => Decls);
+
+ Set_Corresponding_Spec (Pack_Body, Pack_Id);
+
+ -- If the instantiation is a library unit, then build resulting
+ -- compilation unit nodes for the instance. The declaration of
+ -- the enclosing package is the grandparent of the subprogram
+ -- declaration. First replace the instantiation node as the unit
+ -- of the corresponding compilation.
+
+ if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then
+ if Parent (Inst_Node) = Cunit (Main_Unit) then
+ Set_Unit (Parent (Inst_Node), Inst_Node);
+ Build_Instance_Compilation_Unit_Nodes
+ (Inst_Node, Pack_Body, Parent (Parent (Act_Decl)));
+ Analyze (Inst_Node);
+ else
+ Set_Parent (Pack_Body, Parent (Inst_Node));
+ Analyze (Pack_Body);
+ end if;
+
+ else
+ Insert_Before (Inst_Node, Pack_Body);
+ Mark_Rewrite_Insertion (Pack_Body);
+ Analyze (Pack_Body);
+
+ if Expander_Active then
+ Freeze_Subprogram_Body (Inst_Node, Gen_Body, Pack_Id);
+ end if;
+ end if;
+
+ Inherit_Context (Gen_Body, Inst_Node);
+
+ Restore_Private_Views (Pack_Id, False);
+
+ if Parent_Installed then
+ Remove_Parent (In_Body => True);
+
+ -- Restore the previous visibility of the parent
+
+ Set_Is_Immediately_Visible (Par_Ent, Par_Vis);
+ end if;
+
+ Restore_Env;
+ Style_Check := Saved_Style_Check;
+ Restore_Warnings (Saved_Warnings);
+
+ -- Body not found. Error was emitted already. If there were no previous
+ -- errors, this may be an instance whose scope is a premature instance.
+ -- In that case we must insure that the (legal) program does raise
+ -- program error if executed. We generate a subprogram body for this
+ -- purpose. See DEC ac30vso.
+
+ -- Should not reference proprietary DEC tests in comments ???
+
+ elsif Serious_Errors_Detected = 0
+ and then Nkind (Parent (Inst_Node)) /= N_Compilation_Unit
+ then
+ if Body_Optional then
+ return;
+
+ elsif Ekind (Anon_Id) = E_Procedure then
+ Act_Body :=
+ Make_Subprogram_Body (Loc,
+ Specification =>
+ Make_Procedure_Specification (Loc,
+ Defining_Unit_Name =>
+ Make_Defining_Identifier (Loc, Chars (Anon_Id)),
+ Parameter_Specifications =>
+ New_Copy_List
+ (Parameter_Specifications (Parent (Anon_Id)))),
+
+ Declarations => Empty_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements =>
+ New_List (
+ Make_Raise_Program_Error (Loc,
+ Reason =>
+ PE_Access_Before_Elaboration))));
+
+ else
+ Ret_Expr :=
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Access_Before_Elaboration);
+
+ Set_Etype (Ret_Expr, (Etype (Anon_Id)));
+ Set_Analyzed (Ret_Expr);
+
+ Act_Body :=
+ Make_Subprogram_Body (Loc,
+ Specification =>
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name =>
+ Make_Defining_Identifier (Loc, Chars (Anon_Id)),
+ Parameter_Specifications =>
+ New_Copy_List
+ (Parameter_Specifications (Parent (Anon_Id))),
+ Result_Definition =>
+ New_Occurrence_Of (Etype (Anon_Id), Loc)),
+
+ Declarations => Empty_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements =>
+ New_List
+ (Make_Simple_Return_Statement (Loc, Ret_Expr))));
+ end if;
+
+ Pack_Body := Make_Package_Body (Loc,
+ Defining_Unit_Name => New_Copy (Pack_Id),
+ Declarations => New_List (Act_Body));
+
+ Insert_After (Inst_Node, Pack_Body);
+ Set_Corresponding_Spec (Pack_Body, Pack_Id);
+ Analyze (Pack_Body);
+ end if;
+
+ Expander_Mode_Restore;
+ end Instantiate_Subprogram_Body;
+
+ ----------------------
+ -- Instantiate_Type --
+ ----------------------
+
+ function Instantiate_Type
+ (Formal : Node_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id;
+ Actual_Decls : List_Id) return List_Id
+ is
+ Gen_T : constant Entity_Id := Defining_Identifier (Formal);
+ A_Gen_T : constant Entity_Id :=
+ Defining_Identifier (Analyzed_Formal);
+ Ancestor : Entity_Id := Empty;
+ Def : constant Node_Id := Formal_Type_Definition (Formal);
+ Act_T : Entity_Id;
+ Decl_Node : Node_Id;
+ Decl_Nodes : List_Id;
+ Loc : Source_Ptr;
+ Subt : Entity_Id;
+
+ procedure Validate_Array_Type_Instance;
+ procedure Validate_Access_Subprogram_Instance;
+ procedure Validate_Access_Type_Instance;
+ procedure Validate_Derived_Type_Instance;
+ procedure Validate_Derived_Interface_Type_Instance;
+ procedure Validate_Discriminated_Formal_Type;
+ procedure Validate_Interface_Type_Instance;
+ procedure Validate_Private_Type_Instance;
+ procedure Validate_Incomplete_Type_Instance;
+ -- These procedures perform validation tests for the named case.
+ -- Validate_Discriminated_Formal_Type is shared by formal private
+ -- types and Ada 2012 formal incomplete types.
+
+ function Subtypes_Match (Gen_T, Act_T : Entity_Id) return Boolean;
+ -- Check that base types are the same and that the subtypes match
+ -- statically. Used in several of the above.
+
+ --------------------
+ -- Subtypes_Match --
+ --------------------
+
+ function Subtypes_Match (Gen_T, Act_T : Entity_Id) return Boolean is
+ T : constant Entity_Id := Get_Instance_Of (Gen_T);
+
+ begin
+ -- Some detailed comments would be useful here ???
+
+ return ((Base_Type (T) = Act_T
+ or else Base_Type (T) = Base_Type (Act_T))
+ and then Subtypes_Statically_Match (T, Act_T))
+
+ or else (Is_Class_Wide_Type (Gen_T)
+ and then Is_Class_Wide_Type (Act_T)
+ and then Subtypes_Match
+ (Get_Instance_Of (Root_Type (Gen_T)),
+ Root_Type (Act_T)))
+
+ or else
+ (Ekind_In (Gen_T, E_Anonymous_Access_Subprogram_Type,
+ E_Anonymous_Access_Type)
+ and then Ekind (Act_T) = Ekind (Gen_T)
+ and then Subtypes_Statically_Match
+ (Designated_Type (Gen_T), Designated_Type (Act_T)));
+ end Subtypes_Match;
+
+ -----------------------------------------
+ -- Validate_Access_Subprogram_Instance --
+ -----------------------------------------
+
+ procedure Validate_Access_Subprogram_Instance is
+ begin
+ if not Is_Access_Type (Act_T)
+ or else Ekind (Designated_Type (Act_T)) /= E_Subprogram_Type
+ then
+ Error_Msg_NE
+ ("expect access type in instantiation of &", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ -- According to AI05-288, actuals for access_to_subprograms must be
+ -- subtype conformant with the generic formal. Previous to AI05-288
+ -- only mode conformance was required.
+
+ -- This is a binding interpretation that applies to previous versions
+ -- of the language, no need to maintain previous weaker checks.
+
+ Check_Subtype_Conformant
+ (Designated_Type (Act_T),
+ Designated_Type (A_Gen_T),
+ Actual,
+ Get_Inst => True);
+
+ if Ekind (Base_Type (Act_T)) = E_Access_Protected_Subprogram_Type then
+ if Ekind (A_Gen_T) = E_Access_Subprogram_Type then
+ Error_Msg_NE
+ ("protected access type not allowed for formal &",
+ Actual, Gen_T);
+ end if;
+
+ elsif Ekind (A_Gen_T) = E_Access_Protected_Subprogram_Type then
+ Error_Msg_NE
+ ("expect protected access type for formal &",
+ Actual, Gen_T);
+ end if;
+ end Validate_Access_Subprogram_Instance;
+
+ -----------------------------------
+ -- Validate_Access_Type_Instance --
+ -----------------------------------
+
+ procedure Validate_Access_Type_Instance is
+ Desig_Type : constant Entity_Id :=
+ Find_Actual_Type (Designated_Type (A_Gen_T), A_Gen_T);
+ Desig_Act : Entity_Id;
+
+ begin
+ if not Is_Access_Type (Act_T) then
+ Error_Msg_NE
+ ("expect access type in instantiation of &", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ if Is_Access_Constant (A_Gen_T) then
+ if not Is_Access_Constant (Act_T) then
+ Error_Msg_N
+ ("actual type must be access-to-constant type", Actual);
+ Abandon_Instantiation (Actual);
+ end if;
+ else
+ if Is_Access_Constant (Act_T) then
+ Error_Msg_N
+ ("actual type must be access-to-variable type", Actual);
+ Abandon_Instantiation (Actual);
+
+ elsif Ekind (A_Gen_T) = E_General_Access_Type
+ and then Ekind (Base_Type (Act_T)) /= E_General_Access_Type
+ then
+ Error_Msg_N -- CODEFIX
+ ("actual must be general access type!", Actual);
+ Error_Msg_NE -- CODEFIX
+ ("add ALL to }!", Actual, Act_T);
+ Abandon_Instantiation (Actual);
+ end if;
+ end if;
+
+ -- The designated subtypes, that is to say the subtypes introduced
+ -- by an access type declaration (and not by a subtype declaration)
+ -- must match.
+
+ Desig_Act := Designated_Type (Base_Type (Act_T));
+
+ -- The designated type may have been introduced through a limited_
+ -- with clause, in which case retrieve the non-limited view. This
+ -- applies to incomplete types as well as to class-wide types.
+
+ if From_Limited_With (Desig_Act) then
+ Desig_Act := Available_View (Desig_Act);
+ end if;
+
+ if not Subtypes_Match (Desig_Type, Desig_Act) then
+ Error_Msg_NE
+ ("designated type of actual does not match that of formal &",
+ Actual, Gen_T);
+
+ if not Predicates_Match (Desig_Type, Desig_Act) then
+ Error_Msg_N ("\predicates do not match", Actual);
+ end if;
+
+ Abandon_Instantiation (Actual);
+
+ elsif Is_Access_Type (Designated_Type (Act_T))
+ and then Is_Constrained (Designated_Type (Designated_Type (Act_T)))
+ /=
+ Is_Constrained (Designated_Type (Desig_Type))
+ then
+ Error_Msg_NE
+ ("designated type of actual does not match that of formal &",
+ Actual, Gen_T);
+
+ if not Predicates_Match (Desig_Type, Desig_Act) then
+ Error_Msg_N ("\predicates do not match", Actual);
+ end if;
+
+ Abandon_Instantiation (Actual);
+ end if;
+
+ -- Ada 2005: null-exclusion indicators of the two types must agree
+
+ if Can_Never_Be_Null (A_Gen_T) /= Can_Never_Be_Null (Act_T) then
+ Error_Msg_NE
+ ("non null exclusion of actual and formal & do not match",
+ Actual, Gen_T);
+ end if;
+ end Validate_Access_Type_Instance;
+
+ ----------------------------------
+ -- Validate_Array_Type_Instance --
+ ----------------------------------
+
+ procedure Validate_Array_Type_Instance is
+ I1 : Node_Id;
+ I2 : Node_Id;
+ T2 : Entity_Id;
+
+ function Formal_Dimensions return Int;
+ -- Count number of dimensions in array type formal
+
+ -----------------------
+ -- Formal_Dimensions --
+ -----------------------
+
+ function Formal_Dimensions return Int is
+ Num : Int := 0;
+ Index : Node_Id;
+
+ begin
+ if Nkind (Def) = N_Constrained_Array_Definition then
+ Index := First (Discrete_Subtype_Definitions (Def));
+ else
+ Index := First (Subtype_Marks (Def));
+ end if;
+
+ while Present (Index) loop
+ Num := Num + 1;
+ Next_Index (Index);
+ end loop;
+
+ return Num;
+ end Formal_Dimensions;
+
+ -- Start of processing for Validate_Array_Type_Instance
+
+ begin
+ if not Is_Array_Type (Act_T) then
+ Error_Msg_NE
+ ("expect array type in instantiation of &", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+
+ elsif Nkind (Def) = N_Constrained_Array_Definition then
+ if not (Is_Constrained (Act_T)) then
+ Error_Msg_NE
+ ("expect constrained array in instantiation of &",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ else
+ if Is_Constrained (Act_T) then
+ Error_Msg_NE
+ ("expect unconstrained array in instantiation of &",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+ end if;
+
+ if Formal_Dimensions /= Number_Dimensions (Act_T) then
+ Error_Msg_NE
+ ("dimensions of actual do not match formal &", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ I1 := First_Index (A_Gen_T);
+ I2 := First_Index (Act_T);
+ for J in 1 .. Formal_Dimensions loop
+
+ -- If the indexes of the actual were given by a subtype_mark,
+ -- the index was transformed into a range attribute. Retrieve
+ -- the original type mark for checking.
+
+ if Is_Entity_Name (Original_Node (I2)) then
+ T2 := Entity (Original_Node (I2));
+ else
+ T2 := Etype (I2);
+ end if;
+
+ if not Subtypes_Match
+ (Find_Actual_Type (Etype (I1), A_Gen_T), T2)
+ then
+ Error_Msg_NE
+ ("index types of actual do not match those of formal &",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ Next_Index (I1);
+ Next_Index (I2);
+ end loop;
+
+ -- Check matching subtypes. Note that there are complex visibility
+ -- issues when the generic is a child unit and some aspect of the
+ -- generic type is declared in a parent unit of the generic. We do
+ -- the test to handle this special case only after a direct check
+ -- for static matching has failed. The case where both the component
+ -- type and the array type are separate formals, and the component
+ -- type is a private view may also require special checking in
+ -- Subtypes_Match.
+
+ if Subtypes_Match
+ (Component_Type (A_Gen_T), Component_Type (Act_T))
+ or else Subtypes_Match
+ (Find_Actual_Type (Component_Type (A_Gen_T), A_Gen_T),
+ Component_Type (Act_T))
+ then
+ null;
+ else
+ Error_Msg_NE
+ ("component subtype of actual does not match that of formal &",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ if Has_Aliased_Components (A_Gen_T)
+ and then not Has_Aliased_Components (Act_T)
+ then
+ Error_Msg_NE
+ ("actual must have aliased components to match formal type &",
+ Actual, Gen_T);
+ end if;
+ end Validate_Array_Type_Instance;
+
+ -----------------------------------------------
+ -- Validate_Derived_Interface_Type_Instance --
+ -----------------------------------------------
+
+ procedure Validate_Derived_Interface_Type_Instance is
+ Par : constant Entity_Id := Entity (Subtype_Indication (Def));
+ Elmt : Elmt_Id;
+
+ begin
+ -- First apply interface instance checks
+
+ Validate_Interface_Type_Instance;
+
+ -- Verify that immediate parent interface is an ancestor of
+ -- the actual.
+
+ if Present (Par)
+ and then not Interface_Present_In_Ancestor (Act_T, Par)
+ then
+ Error_Msg_NE
+ ("interface actual must include progenitor&", Actual, Par);
+ end if;
+
+ -- Now verify that the actual includes all other ancestors of
+ -- the formal.
+
+ Elmt := First_Elmt (Interfaces (A_Gen_T));
+ while Present (Elmt) loop
+ if not Interface_Present_In_Ancestor
+ (Act_T, Get_Instance_Of (Node (Elmt)))
+ then
+ Error_Msg_NE
+ ("interface actual must include progenitor&",
+ Actual, Node (Elmt));
+ end if;
+
+ Next_Elmt (Elmt);
+ end loop;
+ end Validate_Derived_Interface_Type_Instance;
+
+ ------------------------------------
+ -- Validate_Derived_Type_Instance --
+ ------------------------------------
+
+ procedure Validate_Derived_Type_Instance is
+ Actual_Discr : Entity_Id;
+ Ancestor_Discr : Entity_Id;
+
+ begin
+ -- If the parent type in the generic declaration is itself a previous
+ -- formal type, then it is local to the generic and absent from the
+ -- analyzed generic definition. In that case the ancestor is the
+ -- instance of the formal (which must have been instantiated
+ -- previously), unless the ancestor is itself a formal derived type.
+ -- In this latter case (which is the subject of Corrigendum 8652/0038
+ -- (AI-202) the ancestor of the formals is the ancestor of its
+ -- parent. Otherwise, the analyzed generic carries the parent type.
+ -- If the parent type is defined in a previous formal package, then
+ -- the scope of that formal package is that of the generic type
+ -- itself, and it has already been mapped into the corresponding type
+ -- in the actual package.
+
+ -- Common case: parent type defined outside of the generic
+
+ if Is_Entity_Name (Subtype_Mark (Def))
+ and then Present (Entity (Subtype_Mark (Def)))
+ then
+ Ancestor := Get_Instance_Of (Entity (Subtype_Mark (Def)));
+
+ -- Check whether parent is defined in a previous formal package
+
+ elsif
+ Scope (Scope (Base_Type (Etype (A_Gen_T)))) = Scope (A_Gen_T)
+ then
+ Ancestor :=
+ Get_Instance_Of (Base_Type (Etype (A_Gen_T)));
+
+ -- The type may be a local derivation, or a type extension of a
+ -- previous formal, or of a formal of a parent package.
+
+ elsif Is_Derived_Type (Get_Instance_Of (A_Gen_T))
+ or else
+ Ekind (Get_Instance_Of (A_Gen_T)) = E_Record_Type_With_Private
+ then
+ -- Check whether the parent is another derived formal type in the
+ -- same generic unit.
+
+ if Etype (A_Gen_T) /= A_Gen_T
+ and then Is_Generic_Type (Etype (A_Gen_T))
+ and then Scope (Etype (A_Gen_T)) = Scope (A_Gen_T)
+ and then Etype (Etype (A_Gen_T)) /= Etype (A_Gen_T)
+ then
+ -- Locate ancestor of parent from the subtype declaration
+ -- created for the actual.
+
+ declare
+ Decl : Node_Id;
+
+ begin
+ Decl := First (Actual_Decls);
+ while Present (Decl) loop
+ if Nkind (Decl) = N_Subtype_Declaration
+ and then Chars (Defining_Identifier (Decl)) =
+ Chars (Etype (A_Gen_T))
+ then
+ Ancestor := Generic_Parent_Type (Decl);
+ exit;
+ else
+ Next (Decl);
+ end if;
+ end loop;
+ end;
+
+ pragma Assert (Present (Ancestor));
+
+ -- The ancestor itself may be a previous formal that has been
+ -- instantiated.
+
+ Ancestor := Get_Instance_Of (Ancestor);
+
+ else
+ Ancestor :=
+ Get_Instance_Of (Base_Type (Get_Instance_Of (A_Gen_T)));
+ end if;
+
+ -- An unusual case: the actual is a type declared in a parent unit,
+ -- but is not a formal type so there is no instance_of for it.
+ -- Retrieve it by analyzing the record extension.
+
+ elsif Is_Child_Unit (Scope (A_Gen_T))
+ and then In_Open_Scopes (Scope (Act_T))
+ and then Is_Generic_Instance (Scope (Act_T))
+ then
+ Analyze (Subtype_Mark (Def));
+ Ancestor := Entity (Subtype_Mark (Def));
+
+ else
+ Ancestor := Get_Instance_Of (Etype (Base_Type (A_Gen_T)));
+ end if;
+
+ -- If the formal derived type has pragma Preelaborable_Initialization
+ -- then the actual type must have preelaborable initialization.
+
+ if Known_To_Have_Preelab_Init (A_Gen_T)
+ and then not Has_Preelaborable_Initialization (Act_T)
+ then
+ Error_Msg_NE
+ ("actual for & must have preelaborable initialization",
+ Actual, Gen_T);
+ end if;
+
+ -- Ada 2005 (AI-251)
+
+ if Ada_Version >= Ada_2005 and then Is_Interface (Ancestor) then
+ if not Interface_Present_In_Ancestor (Act_T, Ancestor) then
+ Error_Msg_NE
+ ("(Ada 2005) expected type implementing & in instantiation",
+ Actual, Ancestor);
+ end if;
+
+ elsif not Is_Ancestor (Base_Type (Ancestor), Act_T) then
+ Error_Msg_NE
+ ("expect type derived from & in instantiation",
+ Actual, First_Subtype (Ancestor));
+ Abandon_Instantiation (Actual);
+ end if;
+
+ -- Ada 2005 (AI-443): Synchronized formal derived type checks. Note
+ -- that the formal type declaration has been rewritten as a private
+ -- extension.
+
+ if Ada_Version >= Ada_2005
+ and then Nkind (Parent (A_Gen_T)) = N_Private_Extension_Declaration
+ and then Synchronized_Present (Parent (A_Gen_T))
+ then
+ -- The actual must be a synchronized tagged type
+
+ if not Is_Tagged_Type (Act_T) then
+ Error_Msg_N
+ ("actual of synchronized type must be tagged", Actual);
+ Abandon_Instantiation (Actual);
+
+ elsif Nkind (Parent (Act_T)) = N_Full_Type_Declaration
+ and then Nkind (Type_Definition (Parent (Act_T))) =
+ N_Derived_Type_Definition
+ and then not Synchronized_Present (Type_Definition
+ (Parent (Act_T)))
+ then
+ Error_Msg_N
+ ("actual of synchronized type must be synchronized", Actual);
+ Abandon_Instantiation (Actual);
+ end if;
+ end if;
+
+ -- Perform atomic/volatile checks (RM C.6(12)). Note that AI05-0218-1
+ -- removes the second instance of the phrase "or allow pass by copy".
+
+ if Is_Atomic (Act_T) and then not Is_Atomic (Ancestor) then
+ Error_Msg_N
+ ("cannot have atomic actual type for non-atomic formal type",
+ Actual);
+
+ elsif Is_Volatile (Act_T) and then not Is_Volatile (Ancestor) then
+ Error_Msg_N
+ ("cannot have volatile actual type for non-volatile formal type",
+ Actual);
+ end if;
+
+ -- It should not be necessary to check for unknown discriminants on
+ -- Formal, but for some reason Has_Unknown_Discriminants is false for
+ -- A_Gen_T, so Is_Indefinite_Subtype incorrectly returns False. This
+ -- needs fixing. ???
+
+ if not Is_Indefinite_Subtype (A_Gen_T)
+ and then not Unknown_Discriminants_Present (Formal)
+ and then Is_Indefinite_Subtype (Act_T)
+ then
+ Error_Msg_N
+ ("actual subtype must be constrained", Actual);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ if not Unknown_Discriminants_Present (Formal) then
+ if Is_Constrained (Ancestor) then
+ if not Is_Constrained (Act_T) then
+ Error_Msg_N
+ ("actual subtype must be constrained", Actual);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ -- Ancestor is unconstrained, Check if generic formal and actual
+ -- agree on constrainedness. The check only applies to array types
+ -- and discriminated types.
+
+ elsif Is_Constrained (Act_T) then
+ if Ekind (Ancestor) = E_Access_Type
+ or else
+ (not Is_Constrained (A_Gen_T)
+ and then Is_Composite_Type (A_Gen_T))
+ then
+ Error_Msg_N
+ ("actual subtype must be unconstrained", Actual);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ -- A class-wide type is only allowed if the formal has unknown
+ -- discriminants.
+
+ elsif Is_Class_Wide_Type (Act_T)
+ and then not Has_Unknown_Discriminants (Ancestor)
+ then
+ Error_Msg_NE
+ ("actual for & cannot be a class-wide type", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+
+ -- Otherwise, the formal and actual shall have the same number
+ -- of discriminants and each discriminant of the actual must
+ -- correspond to a discriminant of the formal.
+
+ elsif Has_Discriminants (Act_T)
+ and then not Has_Unknown_Discriminants (Act_T)
+ and then Has_Discriminants (Ancestor)
+ then
+ Actual_Discr := First_Discriminant (Act_T);
+ Ancestor_Discr := First_Discriminant (Ancestor);
+ while Present (Actual_Discr)
+ and then Present (Ancestor_Discr)
+ loop
+ if Base_Type (Act_T) /= Base_Type (Ancestor) and then
+ No (Corresponding_Discriminant (Actual_Discr))
+ then
+ Error_Msg_NE
+ ("discriminant & does not correspond " &
+ "to ancestor discriminant", Actual, Actual_Discr);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ Next_Discriminant (Actual_Discr);
+ Next_Discriminant (Ancestor_Discr);
+ end loop;
+
+ if Present (Actual_Discr) or else Present (Ancestor_Discr) then
+ Error_Msg_NE
+ ("actual for & must have same number of discriminants",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ -- This case should be caught by the earlier check for
+ -- constrainedness, but the check here is added for completeness.
+
+ elsif Has_Discriminants (Act_T)
+ and then not Has_Unknown_Discriminants (Act_T)
+ then
+ Error_Msg_NE
+ ("actual for & must not have discriminants", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+
+ elsif Has_Discriminants (Ancestor) then
+ Error_Msg_NE
+ ("actual for & must have known discriminants", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ if not Subtypes_Statically_Compatible
+ (Act_T, Ancestor, Formal_Derived_Matching => True)
+ then
+ Error_Msg_N
+ ("constraint on actual is incompatible with formal", Actual);
+ Abandon_Instantiation (Actual);
+ end if;
+ end if;
+
+ -- If the formal and actual types are abstract, check that there
+ -- are no abstract primitives of the actual type that correspond to
+ -- nonabstract primitives of the formal type (second sentence of
+ -- RM95-3.9.3(9)).
+
+ if Is_Abstract_Type (A_Gen_T) and then Is_Abstract_Type (Act_T) then
+ Check_Abstract_Primitives : declare
+ Gen_Prims : constant Elist_Id :=
+ Primitive_Operations (A_Gen_T);
+ Gen_Elmt : Elmt_Id;
+ Gen_Subp : Entity_Id;
+ Anc_Subp : Entity_Id;
+ Anc_Formal : Entity_Id;
+ Anc_F_Type : Entity_Id;
+
+ Act_Prims : constant Elist_Id := Primitive_Operations (Act_T);
+ Act_Elmt : Elmt_Id;
+ Act_Subp : Entity_Id;
+ Act_Formal : Entity_Id;
+ Act_F_Type : Entity_Id;
+
+ Subprograms_Correspond : Boolean;
+
+ function Is_Tagged_Ancestor (T1, T2 : Entity_Id) return Boolean;
+ -- Returns true if T2 is derived directly or indirectly from
+ -- T1, including derivations from interfaces. T1 and T2 are
+ -- required to be specific tagged base types.
+
+ ------------------------
+ -- Is_Tagged_Ancestor --
+ ------------------------
+
+ function Is_Tagged_Ancestor (T1, T2 : Entity_Id) return Boolean
+ is
+ Intfc_Elmt : Elmt_Id;
+
+ begin
+ -- The predicate is satisfied if the types are the same
+
+ if T1 = T2 then
+ return True;
+
+ -- If we've reached the top of the derivation chain then
+ -- we know that T1 is not an ancestor of T2.
+
+ elsif Etype (T2) = T2 then
+ return False;
+
+ -- Proceed to check T2's immediate parent
+
+ elsif Is_Ancestor (T1, Base_Type (Etype (T2))) then
+ return True;
+
+ -- Finally, check to see if T1 is an ancestor of any of T2's
+ -- progenitors.
+
+ else
+ Intfc_Elmt := First_Elmt (Interfaces (T2));
+ while Present (Intfc_Elmt) loop
+ if Is_Ancestor (T1, Node (Intfc_Elmt)) then
+ return True;
+ end if;
+
+ Next_Elmt (Intfc_Elmt);
+ end loop;
+ end if;
+
+ return False;
+ end Is_Tagged_Ancestor;
+
+ -- Start of processing for Check_Abstract_Primitives
+
+ begin
+ -- Loop over all of the formal derived type's primitives
+
+ Gen_Elmt := First_Elmt (Gen_Prims);
+ while Present (Gen_Elmt) loop
+ Gen_Subp := Node (Gen_Elmt);
+
+ -- If the primitive of the formal is not abstract, then
+ -- determine whether there is a corresponding primitive of
+ -- the actual type that's abstract.
+
+ if not Is_Abstract_Subprogram (Gen_Subp) then
+ Act_Elmt := First_Elmt (Act_Prims);
+ while Present (Act_Elmt) loop
+ Act_Subp := Node (Act_Elmt);
+
+ -- If we find an abstract primitive of the actual,
+ -- then we need to test whether it corresponds to the
+ -- subprogram from which the generic formal primitive
+ -- is inherited.
+
+ if Is_Abstract_Subprogram (Act_Subp) then
+ Anc_Subp := Alias (Gen_Subp);
+
+ -- Test whether we have a corresponding primitive
+ -- by comparing names, kinds, formal types, and
+ -- result types.
+
+ if Chars (Anc_Subp) = Chars (Act_Subp)
+ and then Ekind (Anc_Subp) = Ekind (Act_Subp)
+ then
+ Anc_Formal := First_Formal (Anc_Subp);
+ Act_Formal := First_Formal (Act_Subp);
+ while Present (Anc_Formal)
+ and then Present (Act_Formal)
+ loop
+ Anc_F_Type := Etype (Anc_Formal);
+ Act_F_Type := Etype (Act_Formal);
+
+ if Ekind (Anc_F_Type)
+ = E_Anonymous_Access_Type
+ then
+ Anc_F_Type := Designated_Type (Anc_F_Type);
+
+ if Ekind (Act_F_Type)
+ = E_Anonymous_Access_Type
+ then
+ Act_F_Type :=
+ Designated_Type (Act_F_Type);
+ else
+ exit;
+ end if;
+
+ elsif
+ Ekind (Act_F_Type) = E_Anonymous_Access_Type
+ then
+ exit;
+ end if;
+
+ Anc_F_Type := Base_Type (Anc_F_Type);
+ Act_F_Type := Base_Type (Act_F_Type);
+
+ -- If the formal is controlling, then the
+ -- the type of the actual primitive's formal
+ -- must be derived directly or indirectly
+ -- from the type of the ancestor primitive's
+ -- formal.
+
+ if Is_Controlling_Formal (Anc_Formal) then
+ if not Is_Tagged_Ancestor
+ (Anc_F_Type, Act_F_Type)
+ then
+ exit;
+ end if;
+
+ -- Otherwise the types of the formals must
+ -- be the same.
+
+ elsif Anc_F_Type /= Act_F_Type then
+ exit;
+ end if;
+
+ Next_Entity (Anc_Formal);
+ Next_Entity (Act_Formal);
+ end loop;
+
+ -- If we traversed through all of the formals
+ -- then so far the subprograms correspond, so
+ -- now check that any result types correspond.
+
+ if No (Anc_Formal) and then No (Act_Formal) then
+ Subprograms_Correspond := True;
+
+ if Ekind (Act_Subp) = E_Function then
+ Anc_F_Type := Etype (Anc_Subp);
+ Act_F_Type := Etype (Act_Subp);
+
+ if Ekind (Anc_F_Type)
+ = E_Anonymous_Access_Type
+ then
+ Anc_F_Type :=
+ Designated_Type (Anc_F_Type);
+
+ if Ekind (Act_F_Type)
+ = E_Anonymous_Access_Type
+ then
+ Act_F_Type :=
+ Designated_Type (Act_F_Type);
+ else
+ Subprograms_Correspond := False;
+ end if;
+
+ elsif
+ Ekind (Act_F_Type)
+ = E_Anonymous_Access_Type
+ then
+ Subprograms_Correspond := False;
+ end if;
+
+ Anc_F_Type := Base_Type (Anc_F_Type);
+ Act_F_Type := Base_Type (Act_F_Type);
+
+ -- Now either the result types must be
+ -- the same or, if the result type is
+ -- controlling, the result type of the
+ -- actual primitive must descend from the
+ -- result type of the ancestor primitive.
+
+ if Subprograms_Correspond
+ and then Anc_F_Type /= Act_F_Type
+ and then
+ Has_Controlling_Result (Anc_Subp)
+ and then
+ not Is_Tagged_Ancestor
+ (Anc_F_Type, Act_F_Type)
+ then
+ Subprograms_Correspond := False;
+ end if;
+ end if;
+
+ -- Found a matching subprogram belonging to
+ -- formal ancestor type, so actual subprogram
+ -- corresponds and this violates 3.9.3(9).
+
+ if Subprograms_Correspond then
+ Error_Msg_NE
+ ("abstract subprogram & overrides " &
+ "nonabstract subprogram of ancestor",
+ Actual,
+ Act_Subp);
+ end if;
+ end if;
+ end if;
+ end if;
+
+ Next_Elmt (Act_Elmt);
+ end loop;
+ end if;
+
+ Next_Elmt (Gen_Elmt);
+ end loop;
+ end Check_Abstract_Primitives;
+ end if;
+
+ -- Verify that limitedness matches. If parent is a limited
+ -- interface then the generic formal is not unless declared
+ -- explicitly so. If not declared limited, the actual cannot be
+ -- limited (see AI05-0087).
+
+ -- Even though this AI is a binding interpretation, we enable the
+ -- check only in Ada 2012 mode, because this improper construct
+ -- shows up in user code and in existing B-tests.
+
+ if Is_Limited_Type (Act_T)
+ and then not Is_Limited_Type (A_Gen_T)
+ and then Ada_Version >= Ada_2012
+ then
+ if In_Instance then
+ null;
+ else
+ Error_Msg_NE
+ ("actual for non-limited & cannot be a limited type", Actual,
+ Gen_T);
+ Explain_Limited_Type (Act_T, Actual);
+ Abandon_Instantiation (Actual);
+ end if;
+ end if;
+ end Validate_Derived_Type_Instance;
+
+ ----------------------------------------
+ -- Validate_Discriminated_Formal_Type --
+ ----------------------------------------
+
+ procedure Validate_Discriminated_Formal_Type is
+ Formal_Discr : Entity_Id;
+ Actual_Discr : Entity_Id;
+ Formal_Subt : Entity_Id;
+
+ begin
+ if Has_Discriminants (A_Gen_T) then
+ if not Has_Discriminants (Act_T) then
+ Error_Msg_NE
+ ("actual for & must have discriminants", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+
+ elsif Is_Constrained (Act_T) then
+ Error_Msg_NE
+ ("actual for & must be unconstrained", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+
+ else
+ Formal_Discr := First_Discriminant (A_Gen_T);
+ Actual_Discr := First_Discriminant (Act_T);
+ while Formal_Discr /= Empty loop
+ if Actual_Discr = Empty then
+ Error_Msg_NE
+ ("discriminants on actual do not match formal",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ Formal_Subt := Get_Instance_Of (Etype (Formal_Discr));
+
+ -- Access discriminants match if designated types do
+
+ if Ekind (Base_Type (Formal_Subt)) = E_Anonymous_Access_Type
+ and then (Ekind (Base_Type (Etype (Actual_Discr)))) =
+ E_Anonymous_Access_Type
+ and then
+ Get_Instance_Of
+ (Designated_Type (Base_Type (Formal_Subt))) =
+ Designated_Type (Base_Type (Etype (Actual_Discr)))
+ then
+ null;
+
+ elsif Base_Type (Formal_Subt) /=
+ Base_Type (Etype (Actual_Discr))
+ then
+ Error_Msg_NE
+ ("types of actual discriminants must match formal",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+
+ elsif not Subtypes_Statically_Match
+ (Formal_Subt, Etype (Actual_Discr))
+ and then Ada_Version >= Ada_95
+ then
+ Error_Msg_NE
+ ("subtypes of actual discriminants must match formal",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ Next_Discriminant (Formal_Discr);
+ Next_Discriminant (Actual_Discr);
+ end loop;
+
+ if Actual_Discr /= Empty then
+ Error_Msg_NE
+ ("discriminants on actual do not match formal",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+ end if;
+ end if;
+ end Validate_Discriminated_Formal_Type;
+
+ ---------------------------------------
+ -- Validate_Incomplete_Type_Instance --
+ ---------------------------------------
+
+ procedure Validate_Incomplete_Type_Instance is
+ begin
+ if not Is_Tagged_Type (Act_T)
+ and then Is_Tagged_Type (A_Gen_T)
+ then
+ Error_Msg_NE
+ ("actual for & must be a tagged type", Actual, Gen_T);
+ end if;
+
+ Validate_Discriminated_Formal_Type;
+ end Validate_Incomplete_Type_Instance;
+
+ --------------------------------------
+ -- Validate_Interface_Type_Instance --
+ --------------------------------------
+
+ procedure Validate_Interface_Type_Instance is
+ begin
+ if not Is_Interface (Act_T) then
+ Error_Msg_NE
+ ("actual for formal interface type must be an interface",
+ Actual, Gen_T);
+
+ elsif Is_Limited_Type (Act_T) /= Is_Limited_Type (A_Gen_T)
+ or else
+ Is_Task_Interface (A_Gen_T) /= Is_Task_Interface (Act_T)
+ or else
+ Is_Protected_Interface (A_Gen_T) /=
+ Is_Protected_Interface (Act_T)
+ or else
+ Is_Synchronized_Interface (A_Gen_T) /=
+ Is_Synchronized_Interface (Act_T)
+ then
+ Error_Msg_NE
+ ("actual for interface& does not match (RM 12.5.5(4))",
+ Actual, Gen_T);
+ end if;
+ end Validate_Interface_Type_Instance;
+
+ ------------------------------------
+ -- Validate_Private_Type_Instance --
+ ------------------------------------
+
+ procedure Validate_Private_Type_Instance is
+ begin
+ if Is_Limited_Type (Act_T)
+ and then not Is_Limited_Type (A_Gen_T)
+ then
+ if In_Instance then
+ null;
+ else
+ Error_Msg_NE
+ ("actual for non-limited & cannot be a limited type", Actual,
+ Gen_T);
+ Explain_Limited_Type (Act_T, Actual);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ elsif Known_To_Have_Preelab_Init (A_Gen_T)
+ and then not Has_Preelaborable_Initialization (Act_T)
+ then
+ Error_Msg_NE
+ ("actual for & must have preelaborable initialization", Actual,
+ Gen_T);
+
+ elsif Is_Indefinite_Subtype (Act_T)
+ and then not Is_Indefinite_Subtype (A_Gen_T)
+ and then Ada_Version >= Ada_95
+ then
+ Error_Msg_NE
+ ("actual for & must be a definite subtype", Actual, Gen_T);
+
+ elsif not Is_Tagged_Type (Act_T)
+ and then Is_Tagged_Type (A_Gen_T)
+ then
+ Error_Msg_NE
+ ("actual for & must be a tagged type", Actual, Gen_T);
+ end if;
+
+ Validate_Discriminated_Formal_Type;
+ Ancestor := Gen_T;
+ end Validate_Private_Type_Instance;
+
+ -- Start of processing for Instantiate_Type
+
+ begin
+ if Get_Instance_Of (A_Gen_T) /= A_Gen_T then
+ Error_Msg_N ("duplicate instantiation of generic type", Actual);
+ return New_List (Error);
+
+ elsif not Is_Entity_Name (Actual)
+ or else not Is_Type (Entity (Actual))
+ then
+ Error_Msg_NE
+ ("expect valid subtype mark to instantiate &", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+
+ else
+ Act_T := Entity (Actual);
+
+ -- Ada 2005 (AI-216): An Unchecked_Union subtype shall only be passed
+ -- as a generic actual parameter if the corresponding formal type
+ -- does not have a known_discriminant_part, or is a formal derived
+ -- type that is an Unchecked_Union type.
+
+ if Is_Unchecked_Union (Base_Type (Act_T)) then
+ if not Has_Discriminants (A_Gen_T)
+ or else
+ (Is_Derived_Type (A_Gen_T)
+ and then
+ Is_Unchecked_Union (A_Gen_T))
+ then
+ null;
+ else
+ Error_Msg_N ("unchecked union cannot be the actual for a" &
+ " discriminated formal type", Act_T);
+
+ end if;
+ end if;
+
+ -- Deal with fixed/floating restrictions
+
+ if Is_Floating_Point_Type (Act_T) then
+ Check_Restriction (No_Floating_Point, Actual);
+ elsif Is_Fixed_Point_Type (Act_T) then
+ Check_Restriction (No_Fixed_Point, Actual);
+ end if;
+
+ -- Deal with error of using incomplete type as generic actual.
+ -- This includes limited views of a type, even if the non-limited
+ -- view may be available.
+
+ if Ekind (Act_T) = E_Incomplete_Type
+ or else (Is_Class_Wide_Type (Act_T)
+ and then
+ Ekind (Root_Type (Act_T)) = E_Incomplete_Type)
+ then
+ -- If the formal is an incomplete type, the actual can be
+ -- incomplete as well.
+
+ if Ekind (A_Gen_T) = E_Incomplete_Type then
+ null;
+
+ elsif Is_Class_Wide_Type (Act_T)
+ or else No (Full_View (Act_T))
+ then
+ Error_Msg_N ("premature use of incomplete type", Actual);
+ Abandon_Instantiation (Actual);
+ else
+ Act_T := Full_View (Act_T);
+ Set_Entity (Actual, Act_T);
+
+ if Has_Private_Component (Act_T) then
+ Error_Msg_N
+ ("premature use of type with private component", Actual);
+ end if;
+ end if;
+
+ -- Deal with error of premature use of private type as generic actual
+
+ elsif Is_Private_Type (Act_T)
+ and then Is_Private_Type (Base_Type (Act_T))
+ and then not Is_Generic_Type (Act_T)
+ and then not Is_Derived_Type (Act_T)
+ and then No (Full_View (Root_Type (Act_T)))
+ then
+ -- If the formal is an incomplete type, the actual can be
+ -- private or incomplete as well.
+
+ if Ekind (A_Gen_T) = E_Incomplete_Type then
+ null;
+ else
+ Error_Msg_N ("premature use of private type", Actual);
+ end if;
+
+ elsif Has_Private_Component (Act_T) then
+ Error_Msg_N
+ ("premature use of type with private component", Actual);
+ end if;
+
+ Set_Instance_Of (A_Gen_T, Act_T);
+
+ -- If the type is generic, the class-wide type may also be used
+
+ if Is_Tagged_Type (A_Gen_T)
+ and then Is_Tagged_Type (Act_T)
+ and then not Is_Class_Wide_Type (A_Gen_T)
+ then
+ Set_Instance_Of (Class_Wide_Type (A_Gen_T),
+ Class_Wide_Type (Act_T));
+ end if;
+
+ if not Is_Abstract_Type (A_Gen_T)
+ and then Is_Abstract_Type (Act_T)
+ then
+ Error_Msg_N
+ ("actual of non-abstract formal cannot be abstract", Actual);
+ end if;
+
+ -- A generic scalar type is a first subtype for which we generate
+ -- an anonymous base type. Indicate that the instance of this base
+ -- is the base type of the actual.
+
+ if Is_Scalar_Type (A_Gen_T) then
+ Set_Instance_Of (Etype (A_Gen_T), Etype (Act_T));
+ end if;
+ end if;
+
+ if Error_Posted (Act_T) then
+ null;
+ else
+ case Nkind (Def) is
+ when N_Formal_Private_Type_Definition =>
+ Validate_Private_Type_Instance;
+
+ when N_Formal_Incomplete_Type_Definition =>
+ Validate_Incomplete_Type_Instance;
+
+ when N_Formal_Derived_Type_Definition =>
+ Validate_Derived_Type_Instance;
+
+ when N_Formal_Discrete_Type_Definition =>
+ if not Is_Discrete_Type (Act_T) then
+ Error_Msg_NE
+ ("expect discrete type in instantiation of&",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ when N_Formal_Signed_Integer_Type_Definition =>
+ if not Is_Signed_Integer_Type (Act_T) then
+ Error_Msg_NE
+ ("expect signed integer type in instantiation of&",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ when N_Formal_Modular_Type_Definition =>
+ if not Is_Modular_Integer_Type (Act_T) then
+ Error_Msg_NE
+ ("expect modular type in instantiation of &",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ when N_Formal_Floating_Point_Definition =>
+ if not Is_Floating_Point_Type (Act_T) then
+ Error_Msg_NE
+ ("expect float type in instantiation of &", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ when N_Formal_Ordinary_Fixed_Point_Definition =>
+ if not Is_Ordinary_Fixed_Point_Type (Act_T) then
+ Error_Msg_NE
+ ("expect ordinary fixed point type in instantiation of &",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ when N_Formal_Decimal_Fixed_Point_Definition =>
+ if not Is_Decimal_Fixed_Point_Type (Act_T) then
+ Error_Msg_NE
+ ("expect decimal type in instantiation of &",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ when N_Array_Type_Definition =>
+ Validate_Array_Type_Instance;
+
+ when N_Access_To_Object_Definition =>
+ Validate_Access_Type_Instance;
+
+ when N_Access_Function_Definition |
+ N_Access_Procedure_Definition =>
+ Validate_Access_Subprogram_Instance;
+
+ when N_Record_Definition =>
+ Validate_Interface_Type_Instance;
+
+ when N_Derived_Type_Definition =>
+ Validate_Derived_Interface_Type_Instance;
+
+ when others =>
+ raise Program_Error;
+
+ end case;
+ end if;
+
+ Subt := New_Copy (Gen_T);
+
+ -- Use adjusted sloc of subtype name as the location for other nodes in
+ -- the subtype declaration.
+
+ Loc := Sloc (Subt);
+
+ Decl_Node :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Subt,
+ Subtype_Indication => New_Occurrence_Of (Act_T, Loc));
+
+ if Is_Private_Type (Act_T) then
+ Set_Has_Private_View (Subtype_Indication (Decl_Node));
+
+ elsif Is_Access_Type (Act_T)
+ and then Is_Private_Type (Designated_Type (Act_T))
+ then
+ Set_Has_Private_View (Subtype_Indication (Decl_Node));
+ end if;
+
+ Decl_Nodes := New_List (Decl_Node);
+
+ -- Flag actual derived types so their elaboration produces the
+ -- appropriate renamings for the primitive operations of the ancestor.
+ -- Flag actual for formal private types as well, to determine whether
+ -- operations in the private part may override inherited operations.
+ -- If the formal has an interface list, the ancestor is not the
+ -- parent, but the analyzed formal that includes the interface
+ -- operations of all its progenitors.
+
+ -- Same treatment for formal private types, so we can check whether the
+ -- type is tagged limited when validating derivations in the private
+ -- part. (See AI05-096).
+
+ if Nkind (Def) = N_Formal_Derived_Type_Definition then
+ if Present (Interface_List (Def)) then
+ Set_Generic_Parent_Type (Decl_Node, A_Gen_T);
+ else
+ Set_Generic_Parent_Type (Decl_Node, Ancestor);
+ end if;
+
+ elsif Nkind_In (Def,
+ N_Formal_Private_Type_Definition,
+ N_Formal_Incomplete_Type_Definition)
+ then
+ Set_Generic_Parent_Type (Decl_Node, A_Gen_T);
+ end if;
+
+ -- If the actual is a synchronized type that implements an interface,
+ -- the primitive operations are attached to the corresponding record,
+ -- and we have to treat it as an additional generic actual, so that its
+ -- primitive operations become visible in the instance. The task or
+ -- protected type itself does not carry primitive operations.
+
+ if Is_Concurrent_Type (Act_T)
+ and then Is_Tagged_Type (Act_T)
+ and then Present (Corresponding_Record_Type (Act_T))
+ and then Present (Ancestor)
+ and then Is_Interface (Ancestor)
+ then
+ declare
+ Corr_Rec : constant Entity_Id :=
+ Corresponding_Record_Type (Act_T);
+ New_Corr : Entity_Id;
+ Corr_Decl : Node_Id;
+
+ begin
+ New_Corr := Make_Temporary (Loc, 'S');
+ Corr_Decl :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => New_Corr,
+ Subtype_Indication =>
+ New_Occurrence_Of (Corr_Rec, Loc));
+ Append_To (Decl_Nodes, Corr_Decl);
+
+ if Ekind (Act_T) = E_Task_Type then
+ Set_Ekind (Subt, E_Task_Subtype);
+ else
+ Set_Ekind (Subt, E_Protected_Subtype);
+ end if;
+
+ Set_Corresponding_Record_Type (Subt, Corr_Rec);
+ Set_Generic_Parent_Type (Corr_Decl, Ancestor);
+ Set_Generic_Parent_Type (Decl_Node, Empty);
+ end;
+ end if;
+
+ return Decl_Nodes;
+ end Instantiate_Type;
+
+ ---------------------
+ -- Is_In_Main_Unit --
+ ---------------------
+
+ function Is_In_Main_Unit (N : Node_Id) return Boolean is
+ Unum : constant Unit_Number_Type := Get_Source_Unit (N);
+ Current_Unit : Node_Id;
+
+ begin
+ if Unum = Main_Unit then
+ return True;
+
+ -- If the current unit is a subunit then it is either the main unit or
+ -- is being compiled as part of the main unit.
+
+ elsif Nkind (N) = N_Compilation_Unit then
+ return Nkind (Unit (N)) = N_Subunit;
+ end if;
+
+ Current_Unit := Parent (N);
+ while Present (Current_Unit)
+ and then Nkind (Current_Unit) /= N_Compilation_Unit
+ loop
+ Current_Unit := Parent (Current_Unit);
+ end loop;
+
+ -- The instantiation node is in the main unit, or else the current node
+ -- (perhaps as the result of nested instantiations) is in the main unit,
+ -- or in the declaration of the main unit, which in this last case must
+ -- be a body.
+
+ return Unum = Main_Unit
+ or else Current_Unit = Cunit (Main_Unit)
+ or else Current_Unit = Library_Unit (Cunit (Main_Unit))
+ or else (Present (Library_Unit (Current_Unit))
+ and then Is_In_Main_Unit (Library_Unit (Current_Unit)));
+ end Is_In_Main_Unit;
+
+ ----------------------------
+ -- Load_Parent_Of_Generic --
+ ----------------------------
+
+ procedure Load_Parent_Of_Generic
+ (N : Node_Id;
+ Spec : Node_Id;
+ Body_Optional : Boolean := False)
+ is
+ Comp_Unit : constant Node_Id := Cunit (Get_Source_Unit (Spec));
+ Saved_Style_Check : constant Boolean := Style_Check;
+ Saved_Warnings : constant Warning_Record := Save_Warnings;
+ True_Parent : Node_Id;
+ Inst_Node : Node_Id;
+ OK : Boolean;
+ Previous_Instances : constant Elist_Id := New_Elmt_List;
+
+ procedure Collect_Previous_Instances (Decls : List_Id);
+ -- Collect all instantiations in the given list of declarations, that
+ -- precede the generic that we need to load. If the bodies of these
+ -- instantiations are available, we must analyze them, to ensure that
+ -- the public symbols generated are the same when the unit is compiled
+ -- to generate code, and when it is compiled in the context of a unit
+ -- that needs a particular nested instance. This process is applied to
+ -- both package and subprogram instances.
+
+ --------------------------------
+ -- Collect_Previous_Instances --
+ --------------------------------
+
+ procedure Collect_Previous_Instances (Decls : List_Id) is
+ Decl : Node_Id;
+
+ begin
+ Decl := First (Decls);
+ while Present (Decl) loop
+ if Sloc (Decl) >= Sloc (Inst_Node) then
+ return;
+
+ -- If Decl is an instantiation, then record it as requiring
+ -- instantiation of the corresponding body, except if it is an
+ -- abbreviated instantiation generated internally for conformance
+ -- checking purposes only for the case of a formal package
+ -- declared without a box (see Instantiate_Formal_Package). Such
+ -- an instantiation does not generate any code (the actual code
+ -- comes from actual) and thus does not need to be analyzed here.
+ -- If the instantiation appears with a generic package body it is
+ -- not analyzed here either.
+
+ elsif Nkind (Decl) = N_Package_Instantiation
+ and then not Is_Internal (Defining_Entity (Decl))
+ then
+ Append_Elmt (Decl, Previous_Instances);
+
+ -- For a subprogram instantiation, omit instantiations intrinsic
+ -- operations (Unchecked_Conversions, etc.) that have no bodies.
+
+ elsif Nkind_In (Decl, N_Function_Instantiation,
+ N_Procedure_Instantiation)
+ and then not Is_Intrinsic_Subprogram (Entity (Name (Decl)))
+ then
+ Append_Elmt (Decl, Previous_Instances);
+
+ elsif Nkind (Decl) = N_Package_Declaration then
+ Collect_Previous_Instances
+ (Visible_Declarations (Specification (Decl)));
+ Collect_Previous_Instances
+ (Private_Declarations (Specification (Decl)));
+
+ -- Previous non-generic bodies may contain instances as well
+
+ elsif Nkind (Decl) = N_Package_Body
+ and then Ekind (Corresponding_Spec (Decl)) /= E_Generic_Package
+ then
+ Collect_Previous_Instances (Declarations (Decl));
+
+ elsif Nkind (Decl) = N_Subprogram_Body
+ and then not Acts_As_Spec (Decl)
+ and then not Is_Generic_Subprogram (Corresponding_Spec (Decl))
+ then
+ Collect_Previous_Instances (Declarations (Decl));
+ end if;
+
+ Next (Decl);
+ end loop;
+ end Collect_Previous_Instances;
+
+ -- Start of processing for Load_Parent_Of_Generic
+
+ begin
+ if not In_Same_Source_Unit (N, Spec)
+ or else Nkind (Unit (Comp_Unit)) = N_Package_Declaration
+ or else (Nkind (Unit (Comp_Unit)) = N_Package_Body
+ and then not Is_In_Main_Unit (Spec))
+ then
+ -- Find body of parent of spec, and analyze it. A special case arises
+ -- when the parent is an instantiation, that is to say when we are
+ -- currently instantiating a nested generic. In that case, there is
+ -- no separate file for the body of the enclosing instance. Instead,
+ -- the enclosing body must be instantiated as if it were a pending
+ -- instantiation, in order to produce the body for the nested generic
+ -- we require now. Note that in that case the generic may be defined
+ -- in a package body, the instance defined in the same package body,
+ -- and the original enclosing body may not be in the main unit.
+
+ Inst_Node := Empty;
+
+ True_Parent := Parent (Spec);
+ while Present (True_Parent)
+ and then Nkind (True_Parent) /= N_Compilation_Unit
+ loop
+ if Nkind (True_Parent) = N_Package_Declaration
+ and then
+ Nkind (Original_Node (True_Parent)) = N_Package_Instantiation
+ then
+ -- Parent is a compilation unit that is an instantiation.
+ -- Instantiation node has been replaced with package decl.
+
+ Inst_Node := Original_Node (True_Parent);
+ exit;
+
+ elsif Nkind (True_Parent) = N_Package_Declaration
+ and then Present (Generic_Parent (Specification (True_Parent)))
+ and then Nkind (Parent (True_Parent)) /= N_Compilation_Unit
+ then
+ -- Parent is an instantiation within another specification.
+ -- Declaration for instance has been inserted before original
+ -- instantiation node. A direct link would be preferable?
+
+ Inst_Node := Next (True_Parent);
+ while Present (Inst_Node)
+ and then Nkind (Inst_Node) /= N_Package_Instantiation
+ loop
+ Next (Inst_Node);
+ end loop;
+
+ -- If the instance appears within a generic, and the generic
+ -- unit is defined within a formal package of the enclosing
+ -- generic, there is no generic body available, and none
+ -- needed. A more precise test should be used ???
+
+ if No (Inst_Node) then
+ return;
+ end if;
+
+ exit;
+
+ else
+ True_Parent := Parent (True_Parent);
+ end if;
+ end loop;
+
+ -- Case where we are currently instantiating a nested generic
+
+ if Present (Inst_Node) then
+ if Nkind (Parent (True_Parent)) = N_Compilation_Unit then
+
+ -- Instantiation node and declaration of instantiated package
+ -- were exchanged when only the declaration was needed.
+ -- Restore instantiation node before proceeding with body.
+
+ Set_Unit (Parent (True_Parent), Inst_Node);
+ end if;
+
+ -- Now complete instantiation of enclosing body, if it appears in
+ -- some other unit. If it appears in the current unit, the body
+ -- will have been instantiated already.
+
+ if No (Corresponding_Body (Instance_Spec (Inst_Node))) then
+
+ -- We need to determine the expander mode to instantiate the
+ -- enclosing body. Because the generic body we need may use
+ -- global entities declared in the enclosing package (including
+ -- aggregates) it is in general necessary to compile this body
+ -- with expansion enabled, except if we are within a generic
+ -- package, in which case the usual generic rule applies.
+
+ declare
+ Exp_Status : Boolean := True;
+ Scop : Entity_Id;
+
+ begin
+ -- Loop through scopes looking for generic package
+
+ Scop := Scope (Defining_Entity (Instance_Spec (Inst_Node)));
+ while Present (Scop)
+ and then Scop /= Standard_Standard
+ loop
+ if Ekind (Scop) = E_Generic_Package then
+ Exp_Status := False;
+ exit;
+ end if;
+
+ Scop := Scope (Scop);
+ end loop;
+
+ -- Collect previous instantiations in the unit that contains
+ -- the desired generic.
+
+ if Nkind (Parent (True_Parent)) /= N_Compilation_Unit
+ and then not Body_Optional
+ then
+ declare
+ Decl : Elmt_Id;
+ Info : Pending_Body_Info;
+ Par : Node_Id;
+
+ begin
+ Par := Parent (Inst_Node);
+ while Present (Par) loop
+ exit when Nkind (Parent (Par)) = N_Compilation_Unit;
+ Par := Parent (Par);
+ end loop;
+
+ pragma Assert (Present (Par));
+
+ if Nkind (Par) = N_Package_Body then
+ Collect_Previous_Instances (Declarations (Par));
+
+ elsif Nkind (Par) = N_Package_Declaration then
+ Collect_Previous_Instances
+ (Visible_Declarations (Specification (Par)));
+ Collect_Previous_Instances
+ (Private_Declarations (Specification (Par)));
+
+ else
+ -- Enclosing unit is a subprogram body. In this
+ -- case all instance bodies are processed in order
+ -- and there is no need to collect them separately.
+
+ null;
+ end if;
+
+ Decl := First_Elmt (Previous_Instances);
+ while Present (Decl) loop
+ Info :=
+ (Inst_Node => Node (Decl),
+ Act_Decl =>
+ Instance_Spec (Node (Decl)),
+ Expander_Status => Exp_Status,
+ Current_Sem_Unit =>
+ Get_Code_Unit (Sloc (Node (Decl))),
+ Scope_Suppress => Scope_Suppress,
+ Local_Suppress_Stack_Top =>
+ Local_Suppress_Stack_Top,
+ Version => Ada_Version,
+ Version_Pragma => Ada_Version_Pragma,
+ Warnings => Save_Warnings,
+ SPARK_Mode => SPARK_Mode,
+ SPARK_Mode_Pragma => SPARK_Mode_Pragma);
+
+ -- Package instance
+
+ if
+ Nkind (Node (Decl)) = N_Package_Instantiation
+ then
+ Instantiate_Package_Body
+ (Info, Body_Optional => True);
+
+ -- Subprogram instance
+
+ else
+ -- The instance_spec is the wrapper package,
+ -- and the subprogram declaration is the last
+ -- declaration in the wrapper.
+
+ Info.Act_Decl :=
+ Last
+ (Visible_Declarations
+ (Specification (Info.Act_Decl)));
+
+ Instantiate_Subprogram_Body
+ (Info, Body_Optional => True);
+ end if;
+
+ Next_Elmt (Decl);
+ end loop;
+ end;
+ end if;
+
+ Instantiate_Package_Body
+ (Body_Info =>
+ ((Inst_Node => Inst_Node,
+ Act_Decl => True_Parent,
+ Expander_Status => Exp_Status,
+ Current_Sem_Unit => Get_Code_Unit
+ (Sloc (Inst_Node)),
+ Scope_Suppress => Scope_Suppress,
+ Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
+ Version => Ada_Version,
+ Version_Pragma => Ada_Version_Pragma,
+ Warnings => Save_Warnings,
+ SPARK_Mode => SPARK_Mode,
+ SPARK_Mode_Pragma => SPARK_Mode_Pragma)),
+ Body_Optional => Body_Optional);
+ end;
+ end if;
+
+ -- Case where we are not instantiating a nested generic
+
+ else
+ Opt.Style_Check := False;
+ Expander_Mode_Save_And_Set (True);
+ Load_Needed_Body (Comp_Unit, OK);
+ Opt.Style_Check := Saved_Style_Check;
+ Restore_Warnings (Saved_Warnings);
+ Expander_Mode_Restore;
+
+ if not OK
+ and then Unit_Requires_Body (Defining_Entity (Spec))
+ and then not Body_Optional
+ then
+ declare
+ Bname : constant Unit_Name_Type :=
+ Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
+
+ begin
+ -- In CodePeer mode, the missing body may make the analysis
+ -- incomplete, but we do not treat it as fatal.
+
+ if CodePeer_Mode then
+ return;
+
+ else
+ Error_Msg_Unit_1 := Bname;
+ Error_Msg_N ("this instantiation requires$!", N);
+ Error_Msg_File_1 :=
+ Get_File_Name (Bname, Subunit => False);
+ Error_Msg_N ("\but file{ was not found!", N);
+ raise Unrecoverable_Error;
+ end if;
+ end;
+ end if;
+ end if;
+ end if;
+
+ -- If loading parent of the generic caused an instantiation circularity,
+ -- we abandon compilation at this point, because otherwise in some cases
+ -- we get into trouble with infinite recursions after this point.
+
+ if Circularity_Detected then
+ raise Unrecoverable_Error;
+ end if;
+ end Load_Parent_Of_Generic;
+
+ ---------------------------------
+ -- Map_Formal_Package_Entities --
+ ---------------------------------
+
+ procedure Map_Formal_Package_Entities (Form : Entity_Id; Act : Entity_Id) is
+ E1 : Entity_Id;
+ E2 : Entity_Id;
+
+ begin
+ Set_Instance_Of (Form, Act);
+
+ -- Traverse formal and actual package to map the corresponding entities.
+ -- We skip over internal entities that may be generated during semantic
+ -- analysis, and find the matching entities by name, given that they
+ -- must appear in the same order.
+
+ E1 := First_Entity (Form);
+ E2 := First_Entity (Act);
+ while Present (E1) and then E1 /= First_Private_Entity (Form) loop
+ -- Could this test be a single condition??? Seems like it could, and
+ -- isn't FPE (Form) a constant anyway???
+
+ if not Is_Internal (E1)
+ and then Present (Parent (E1))
+ and then not Is_Class_Wide_Type (E1)
+ and then not Is_Internal_Name (Chars (E1))
+ then
+ while Present (E2) and then Chars (E2) /= Chars (E1) loop
+ Next_Entity (E2);
+ end loop;
+
+ if No (E2) then
+ exit;
+ else
+ Set_Instance_Of (E1, E2);
+
+ if Is_Type (E1) and then Is_Tagged_Type (E2) then
+ Set_Instance_Of (Class_Wide_Type (E1), Class_Wide_Type (E2));
+ end if;
+
+ if Is_Constrained (E1) then
+ Set_Instance_Of (Base_Type (E1), Base_Type (E2));
+ end if;
+
+ if Ekind (E1) = E_Package and then No (Renamed_Object (E1)) then
+ Map_Formal_Package_Entities (E1, E2);
+ end if;
+ end if;
+ end if;
+
+ Next_Entity (E1);
+ end loop;
+ end Map_Formal_Package_Entities;
+
+ -----------------------
+ -- Move_Freeze_Nodes --
+ -----------------------
+
+ procedure Move_Freeze_Nodes
+ (Out_Of : Entity_Id;
+ After : Node_Id;
+ L : List_Id)
+ is
+ Decl : Node_Id;
+ Next_Decl : Node_Id;
+ Next_Node : Node_Id := After;
+ Spec : Node_Id;
+
+ function Is_Outer_Type (T : Entity_Id) return Boolean;
+ -- Check whether entity is declared in a scope external to that of the
+ -- generic unit.
+
+ -------------------
+ -- Is_Outer_Type --
+ -------------------
+
+ function Is_Outer_Type (T : Entity_Id) return Boolean is
+ Scop : Entity_Id := Scope (T);
+
+ begin
+ if Scope_Depth (Scop) < Scope_Depth (Out_Of) then
+ return True;
+
+ else
+ while Scop /= Standard_Standard loop
+ if Scop = Out_Of then
+ return False;
+ else
+ Scop := Scope (Scop);
+ end if;
+ end loop;
+
+ return True;
+ end if;
+ end Is_Outer_Type;
+
+ -- Start of processing for Move_Freeze_Nodes
+
+ begin
+ if No (L) then
+ return;
+ end if;
+
+ -- First remove the freeze nodes that may appear before all other
+ -- declarations.
+
+ Decl := First (L);
+ while Present (Decl)
+ and then Nkind (Decl) = N_Freeze_Entity
+ and then Is_Outer_Type (Entity (Decl))
+ loop
+ Decl := Remove_Head (L);
+ Insert_After (Next_Node, Decl);
+ Set_Analyzed (Decl, False);
+ Next_Node := Decl;
+ Decl := First (L);
+ end loop;
+
+ -- Next scan the list of declarations and remove each freeze node that
+ -- appears ahead of the current node.
+
+ while Present (Decl) loop
+ while Present (Next (Decl))
+ and then Nkind (Next (Decl)) = N_Freeze_Entity
+ and then Is_Outer_Type (Entity (Next (Decl)))
+ loop
+ Next_Decl := Remove_Next (Decl);
+ Insert_After (Next_Node, Next_Decl);
+ Set_Analyzed (Next_Decl, False);
+ Next_Node := Next_Decl;
+ end loop;
+
+ -- If the declaration is a nested package or concurrent type, then
+ -- recurse. Nested generic packages will have been processed from the
+ -- inside out.
+
+ case Nkind (Decl) is
+ when N_Package_Declaration =>
+ Spec := Specification (Decl);
+
+ when N_Task_Type_Declaration =>
+ Spec := Task_Definition (Decl);
+
+ when N_Protected_Type_Declaration =>
+ Spec := Protected_Definition (Decl);
+
+ when others =>
+ Spec := Empty;
+ end case;
+
+ if Present (Spec) then
+ Move_Freeze_Nodes (Out_Of, Next_Node, Visible_Declarations (Spec));
+ Move_Freeze_Nodes (Out_Of, Next_Node, Private_Declarations (Spec));
+ end if;
+
+ Next (Decl);
+ end loop;
+ end Move_Freeze_Nodes;
+
+ ----------------
+ -- Next_Assoc --
+ ----------------
+
+ function Next_Assoc (E : Assoc_Ptr) return Assoc_Ptr is
+ begin
+ return Generic_Renamings.Table (E).Next_In_HTable;
+ end Next_Assoc;
+
+ ------------------------
+ -- Preanalyze_Actuals --
+ ------------------------
+
+ procedure Preanalyze_Actuals (N : Node_Id) is
+ Assoc : Node_Id;
+ Act : Node_Id;
+ Errs : constant Int := Serious_Errors_Detected;
+
+ Cur : Entity_Id := Empty;
+ -- Current homograph of the instance name
+
+ Vis : Boolean;
+ -- Saved visibility status of the current homograph
+
+ begin
+ Assoc := First (Generic_Associations (N));
+
+ -- If the instance is a child unit, its name may hide an outer homonym,
+ -- so make it invisible to perform name resolution on the actuals.
+
+ if Nkind (Defining_Unit_Name (N)) = N_Defining_Program_Unit_Name
+ and then Present
+ (Current_Entity (Defining_Identifier (Defining_Unit_Name (N))))
+ then
+ Cur := Current_Entity (Defining_Identifier (Defining_Unit_Name (N)));
+
+ if Is_Compilation_Unit (Cur) then
+ Vis := Is_Immediately_Visible (Cur);
+ Set_Is_Immediately_Visible (Cur, False);
+ else
+ Cur := Empty;
+ end if;
+ end if;
+
+ while Present (Assoc) loop
+ if Nkind (Assoc) /= N_Others_Choice then
+ Act := Explicit_Generic_Actual_Parameter (Assoc);
+
+ -- Within a nested instantiation, a defaulted actual is an empty
+ -- association, so nothing to analyze. If the subprogram actual
+ -- is an attribute, analyze prefix only, because actual is not a
+ -- complete attribute reference.
+
+ -- If actual is an allocator, analyze expression only. The full
+ -- analysis can generate code, and if instance is a compilation
+ -- unit we have to wait until the package instance is installed
+ -- to have a proper place to insert this code.
+
+ -- String literals may be operators, but at this point we do not
+ -- know whether the actual is a formal subprogram or a string.
+
+ if No (Act) then
+ null;
+
+ elsif Nkind (Act) = N_Attribute_Reference then
+ Analyze (Prefix (Act));
+
+ elsif Nkind (Act) = N_Explicit_Dereference then
+ Analyze (Prefix (Act));
+
+ elsif Nkind (Act) = N_Allocator then
+ declare
+ Expr : constant Node_Id := Expression (Act);
+
+ begin
+ if Nkind (Expr) = N_Subtype_Indication then
+ Analyze (Subtype_Mark (Expr));
+
+ -- Analyze separately each discriminant constraint, when
+ -- given with a named association.
+
+ declare
+ Constr : Node_Id;
+
+ begin
+ Constr := First (Constraints (Constraint (Expr)));
+ while Present (Constr) loop
+ if Nkind (Constr) = N_Discriminant_Association then
+ Analyze (Expression (Constr));
+ else
+ Analyze (Constr);
+ end if;
+
+ Next (Constr);
+ end loop;
+ end;
+
+ else
+ Analyze (Expr);
+ end if;
+ end;
+
+ elsif Nkind (Act) /= N_Operator_Symbol then
+ Analyze (Act);
+ end if;
+
+ -- Ensure that a ghost subprogram does not act as generic actual
+
+ if Is_Entity_Name (Act)
+ and then Is_Ghost_Subprogram (Entity (Act))
+ then
+ Error_Msg_N
+ ("ghost subprogram & cannot act as generic actual", Act);
+ Abandon_Instantiation (Act);
+
+ elsif Errs /= Serious_Errors_Detected then
+
+ -- Do a minimal analysis of the generic, to prevent spurious
+ -- warnings complaining about the generic being unreferenced,
+ -- before abandoning the instantiation.
+
+ Analyze (Name (N));
+
+ if Is_Entity_Name (Name (N))
+ and then Etype (Name (N)) /= Any_Type
+ then
+ Generate_Reference (Entity (Name (N)), Name (N));
+ Set_Is_Instantiated (Entity (Name (N)));
+ end if;
+
+ if Present (Cur) then
+
+ -- For the case of a child instance hiding an outer homonym,
+ -- provide additional warning which might explain the error.
+
+ Set_Is_Immediately_Visible (Cur, Vis);
+ Error_Msg_NE ("& hides outer unit with the same name??",
+ N, Defining_Unit_Name (N));
+ end if;
+
+ Abandon_Instantiation (Act);
+ end if;
+ end if;
+
+ Next (Assoc);
+ end loop;
+
+ if Present (Cur) then
+ Set_Is_Immediately_Visible (Cur, Vis);
+ end if;
+ end Preanalyze_Actuals;
+
+ -------------------
+ -- Remove_Parent --
+ -------------------
+
+ procedure Remove_Parent (In_Body : Boolean := False) is
+ S : Entity_Id := Current_Scope;
+ -- S is the scope containing the instantiation just completed. The scope
+ -- stack contains the parent instances of the instantiation, followed by
+ -- the original S.
+
+ Cur_P : Entity_Id;
+ E : Entity_Id;
+ P : Entity_Id;
+ Hidden : Elmt_Id;
+
+ begin
+ -- After child instantiation is complete, remove from scope stack the
+ -- extra copy of the current scope, and then remove parent instances.
+
+ if not In_Body then
+ Pop_Scope;
+
+ while Current_Scope /= S loop
+ P := Current_Scope;
+ End_Package_Scope (Current_Scope);
+
+ if In_Open_Scopes (P) then
+ E := First_Entity (P);
+ while Present (E) loop
+ Set_Is_Immediately_Visible (E, True);
+ Next_Entity (E);
+ end loop;
+
+ -- If instantiation is declared in a block, it is the enclosing
+ -- scope that might be a parent instance. Note that only one
+ -- block can be involved, because the parent instances have
+ -- been installed within it.
+
+ if Ekind (P) = E_Block then
+ Cur_P := Scope (P);
+ else
+ Cur_P := P;
+ end if;
+
+ if Is_Generic_Instance (Cur_P) and then P /= Current_Scope then
+ -- We are within an instance of some sibling. Retain
+ -- visibility of parent, for proper subsequent cleanup, and
+ -- reinstall private declarations as well.
+
+ Set_In_Private_Part (P);
+ Install_Private_Declarations (P);
+ end if;
+
+ -- If the ultimate parent is a top-level unit recorded in
+ -- Instance_Parent_Unit, then reset its visibility to what it was
+ -- before instantiation. (It's not clear what the purpose is of
+ -- testing whether Scope (P) is In_Open_Scopes, but that test was
+ -- present before the ultimate parent test was added.???)
+
+ elsif not In_Open_Scopes (Scope (P))
+ or else (P = Instance_Parent_Unit
+ and then not Parent_Unit_Visible)
+ then
+ Set_Is_Immediately_Visible (P, False);
+
+ -- If the current scope is itself an instantiation of a generic
+ -- nested within P, and we are in the private part of body of this
+ -- instantiation, restore the full views of P, that were removed
+ -- in End_Package_Scope above. This obscure case can occur when a
+ -- subunit of a generic contains an instance of a child unit of
+ -- its generic parent unit.
+
+ elsif S = Current_Scope and then Is_Generic_Instance (S) then
+ declare
+ Par : constant Entity_Id :=
+ Generic_Parent (Package_Specification (S));
+ begin
+ if Present (Par)
+ and then P = Scope (Par)
+ and then (In_Package_Body (S) or else In_Private_Part (S))
+ then
+ Set_In_Private_Part (P);
+ Install_Private_Declarations (P);
+ end if;
+ end;
+ end if;
+ end loop;
+
+ -- Reset visibility of entities in the enclosing scope
+
+ Set_Is_Hidden_Open_Scope (Current_Scope, False);
+
+ Hidden := First_Elmt (Hidden_Entities);
+ while Present (Hidden) loop
+ Set_Is_Immediately_Visible (Node (Hidden), True);
+ Next_Elmt (Hidden);
+ end loop;
+
+ else
+ -- Each body is analyzed separately, and there is no context that
+ -- needs preserving from one body instance to the next, so remove all
+ -- parent scopes that have been installed.
+
+ while Present (S) loop
+ End_Package_Scope (S);
+ Set_Is_Immediately_Visible (S, False);
+ S := Current_Scope;
+ exit when S = Standard_Standard;
+ end loop;
+ end if;
+ end Remove_Parent;
+
+ -----------------
+ -- Restore_Env --
+ -----------------
+
+ procedure Restore_Env is
+ Saved : Instance_Env renames Instance_Envs.Table (Instance_Envs.Last);
+
+ begin
+ if No (Current_Instantiated_Parent.Act_Id) then
+ -- Restore environment after subprogram inlining
+
+ Restore_Private_Views (Empty);
+ end if;
+
+ Current_Instantiated_Parent := Saved.Instantiated_Parent;
+ Exchanged_Views := Saved.Exchanged_Views;
+ Hidden_Entities := Saved.Hidden_Entities;
+ Current_Sem_Unit := Saved.Current_Sem_Unit;
+ Parent_Unit_Visible := Saved.Parent_Unit_Visible;
+ Instance_Parent_Unit := Saved.Instance_Parent_Unit;
+
+ Restore_Opt_Config_Switches (Saved.Switches);
+
+ Instance_Envs.Decrement_Last;
+ end Restore_Env;
+
+ ---------------------------
+ -- Restore_Private_Views --
+ ---------------------------
+
+ procedure Restore_Private_Views
+ (Pack_Id : Entity_Id;
+ Is_Package : Boolean := True)
+ is
+ M : Elmt_Id;
+ E : Entity_Id;
+ Typ : Entity_Id;
+ Dep_Elmt : Elmt_Id;
+ Dep_Typ : Node_Id;
+
+ procedure Restore_Nested_Formal (Formal : Entity_Id);
+ -- Hide the generic formals of formal packages declared with box which
+ -- were reachable in the current instantiation.
+
+ ---------------------------
+ -- Restore_Nested_Formal --
+ ---------------------------
+
+ procedure Restore_Nested_Formal (Formal : Entity_Id) is
+ Ent : Entity_Id;
+
+ begin
+ if Present (Renamed_Object (Formal))
+ and then Denotes_Formal_Package (Renamed_Object (Formal), True)
+ then
+ return;
+
+ elsif Present (Associated_Formal_Package (Formal)) then
+ Ent := First_Entity (Formal);
+ while Present (Ent) loop
+ exit when Ekind (Ent) = E_Package
+ and then Renamed_Entity (Ent) = Renamed_Entity (Formal);
+
+ Set_Is_Hidden (Ent);
+ Set_Is_Potentially_Use_Visible (Ent, False);
+
+ -- If package, then recurse
+
+ if Ekind (Ent) = E_Package then
+ Restore_Nested_Formal (Ent);
+ end if;
+
+ Next_Entity (Ent);
+ end loop;
+ end if;
+ end Restore_Nested_Formal;
+
+ -- Start of processing for Restore_Private_Views
+
+ begin
+ M := First_Elmt (Exchanged_Views);
+ while Present (M) loop
+ Typ := Node (M);
+
+ -- Subtypes of types whose views have been exchanged, and that are
+ -- defined within the instance, were not on the Private_Dependents
+ -- list on entry to the instance, so they have to be exchanged
+ -- explicitly now, in order to remain consistent with the view of the
+ -- parent type.
+
+ if Ekind_In (Typ, E_Private_Type,
+ E_Limited_Private_Type,
+ E_Record_Type_With_Private)
+ then
+ Dep_Elmt := First_Elmt (Private_Dependents (Typ));
+ while Present (Dep_Elmt) loop
+ Dep_Typ := Node (Dep_Elmt);
+
+ if Scope (Dep_Typ) = Pack_Id
+ and then Present (Full_View (Dep_Typ))
+ then
+ Replace_Elmt (Dep_Elmt, Full_View (Dep_Typ));
+ Exchange_Declarations (Dep_Typ);
+ end if;
+
+ Next_Elmt (Dep_Elmt);
+ end loop;
+ end if;
+
+ Exchange_Declarations (Node (M));
+ Next_Elmt (M);
+ end loop;
+
+ if No (Pack_Id) then
+ return;
+ end if;
+
+ -- Make the generic formal parameters private, and make the formal types
+ -- into subtypes of the actuals again.
+
+ E := First_Entity (Pack_Id);
+ while Present (E) loop
+ Set_Is_Hidden (E, True);
+
+ if Is_Type (E)
+ and then Nkind (Parent (E)) = N_Subtype_Declaration
+ then
+ -- If the actual for E is itself a generic actual type from
+ -- an enclosing instance, E is still a generic actual type
+ -- outside of the current instance. This matter when resolving
+ -- an overloaded call that may be ambiguous in the enclosing
+ -- instance, when two of its actuals coincide.
+
+ if Is_Entity_Name (Subtype_Indication (Parent (E)))
+ and then Is_Generic_Actual_Type
+ (Entity (Subtype_Indication (Parent (E))))
+ then
+ null;
+ else
+ Set_Is_Generic_Actual_Type (E, False);
+ end if;
+
+ -- An unusual case of aliasing: the actual may also be directly
+ -- visible in the generic, and be private there, while it is fully
+ -- visible in the context of the instance. The internal subtype
+ -- is private in the instance but has full visibility like its
+ -- parent in the enclosing scope. This enforces the invariant that
+ -- the privacy status of all private dependents of a type coincide
+ -- with that of the parent type. This can only happen when a
+ -- generic child unit is instantiated within a sibling.
+
+ if Is_Private_Type (E)
+ and then not Is_Private_Type (Etype (E))
+ then
+ Exchange_Declarations (E);
+ end if;
+
+ elsif Ekind (E) = E_Package then
+
+ -- The end of the renaming list is the renaming of the generic
+ -- package itself. If the instance is a subprogram, all entities
+ -- in the corresponding package are renamings. If this entity is
+ -- a formal package, make its own formals private as well. The
+ -- actual in this case is itself the renaming of an instantiation.
+ -- If the entity is not a package renaming, it is the entity
+ -- created to validate formal package actuals: ignore it.
+
+ -- If the actual is itself a formal package for the enclosing
+ -- generic, or the actual for such a formal package, it remains
+ -- visible on exit from the instance, and therefore nothing needs
+ -- to be done either, except to keep it accessible.
+
+ if Is_Package and then Renamed_Object (E) = Pack_Id then
+ exit;
+
+ elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then
+ null;
+
+ elsif
+ Denotes_Formal_Package (Renamed_Object (E), True, Pack_Id)
+ then
+ Set_Is_Hidden (E, False);
+
+ else
+ declare
+ Act_P : constant Entity_Id := Renamed_Object (E);
+ Id : Entity_Id;
+
+ begin
+ Id := First_Entity (Act_P);
+ while Present (Id)
+ and then Id /= First_Private_Entity (Act_P)
+ loop
+ exit when Ekind (Id) = E_Package
+ and then Renamed_Object (Id) = Act_P;
+
+ Set_Is_Hidden (Id, True);
+ Set_Is_Potentially_Use_Visible (Id, In_Use (Act_P));
+
+ if Ekind (Id) = E_Package then
+ Restore_Nested_Formal (Id);
+ end if;
+
+ Next_Entity (Id);
+ end loop;
+ end;
+ end if;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end Restore_Private_Views;
+
+ --------------
+ -- Save_Env --
+ --------------
+
+ procedure Save_Env
+ (Gen_Unit : Entity_Id;
+ Act_Unit : Entity_Id)
+ is
+ begin
+ Init_Env;
+ Set_Instance_Env (Gen_Unit, Act_Unit);
+ end Save_Env;
+
+ ----------------------------
+ -- Save_Global_References --
+ ----------------------------
+
+ procedure Save_Global_References (N : Node_Id) is
+ Gen_Scope : Entity_Id;
+ E : Entity_Id;
+ N2 : Node_Id;
+
+ function Is_Global (E : Entity_Id) return Boolean;
+ -- Check whether entity is defined outside of generic unit. Examine the
+ -- scope of an entity, and the scope of the scope, etc, until we find
+ -- either Standard, in which case the entity is global, or the generic
+ -- unit itself, which indicates that the entity is local. If the entity
+ -- is the generic unit itself, as in the case of a recursive call, or
+ -- the enclosing generic unit, if different from the current scope, then
+ -- it is local as well, because it will be replaced at the point of
+ -- instantiation. On the other hand, if it is a reference to a child
+ -- unit of a common ancestor, which appears in an instantiation, it is
+ -- global because it is used to denote a specific compilation unit at
+ -- the time the instantiations will be analyzed.
+
+ procedure Reset_Entity (N : Node_Id);
+ -- Save semantic information on global entity so that it is not resolved
+ -- again at instantiation time.
+
+ procedure Save_Entity_Descendants (N : Node_Id);
+ -- Apply Save_Global_References to the two syntactic descendants of
+ -- non-terminal nodes that carry an Associated_Node and are processed
+ -- through Reset_Entity. Once the global entity (if any) has been
+ -- captured together with its type, only two syntactic descendants need
+ -- to be traversed to complete the processing of the tree rooted at N.
+ -- This applies to Selected_Components, Expanded_Names, and to Operator
+ -- nodes. N can also be a character literal, identifier, or operator
+ -- symbol node, but the call has no effect in these cases.
+
+ procedure Save_Global_Defaults (N1, N2 : Node_Id);
+ -- Default actuals in nested instances must be handled specially
+ -- because there is no link to them from the original tree. When an
+ -- actual subprogram is given by a default, we add an explicit generic
+ -- association for it in the instantiation node. When we save the
+ -- global references on the name of the instance, we recover the list
+ -- of generic associations, and add an explicit one to the original
+ -- generic tree, through which a global actual can be preserved.
+ -- Similarly, if a child unit is instantiated within a sibling, in the
+ -- context of the parent, we must preserve the identifier of the parent
+ -- so that it can be properly resolved in a subsequent instantiation.
+
+ procedure Save_Global_Descendant (D : Union_Id);
+ -- Apply Save_Global_References recursively to the descendents of the
+ -- current node.
+
+ procedure Save_References (N : Node_Id);
+ -- This is the recursive procedure that does the work, once the
+ -- enclosing generic scope has been established.
+
+ ---------------
+ -- Is_Global --
+ ---------------
+
+ function Is_Global (E : Entity_Id) return Boolean is
+ Se : Entity_Id;
+
+ function Is_Instance_Node (Decl : Node_Id) return Boolean;
+ -- Determine whether the parent node of a reference to a child unit
+ -- denotes an instantiation or a formal package, in which case the
+ -- reference to the child unit is global, even if it appears within
+ -- the current scope (e.g. when the instance appears within the body
+ -- of an ancestor).
+
+ ----------------------
+ -- Is_Instance_Node --
+ ----------------------
+
+ function Is_Instance_Node (Decl : Node_Id) return Boolean is
+ begin
+ return Nkind (Decl) in N_Generic_Instantiation
+ or else
+ Nkind (Original_Node (Decl)) = N_Formal_Package_Declaration;
+ end Is_Instance_Node;
+
+ -- Start of processing for Is_Global
+
+ begin
+ if E = Gen_Scope then
+ return False;
+
+ elsif E = Standard_Standard then
+ return True;
+
+ elsif Is_Child_Unit (E)
+ and then (Is_Instance_Node (Parent (N2))
+ or else (Nkind (Parent (N2)) = N_Expanded_Name
+ and then N2 = Selector_Name (Parent (N2))
+ and then
+ Is_Instance_Node (Parent (Parent (N2)))))
+ then
+ return True;
+
+ else
+ Se := Scope (E);
+ while Se /= Gen_Scope loop
+ if Se = Standard_Standard then
+ return True;
+ else
+ Se := Scope (Se);
+ end if;
+ end loop;
+
+ return False;
+ end if;
+ end Is_Global;
+
+ ------------------
+ -- Reset_Entity --
+ ------------------
+
+ procedure Reset_Entity (N : Node_Id) is
+
+ procedure Set_Global_Type (N : Node_Id; N2 : Node_Id);
+ -- If the type of N2 is global to the generic unit, save the type in
+ -- the generic node. Just as we perform name capture for explicit
+ -- references within the generic, we must capture the global types
+ -- of local entities because they may participate in resolution in
+ -- the instance.
+
+ function Top_Ancestor (E : Entity_Id) return Entity_Id;
+ -- Find the ultimate ancestor of the current unit. If it is not a
+ -- generic unit, then the name of the current unit in the prefix of
+ -- an expanded name must be replaced with its generic homonym to
+ -- ensure that it will be properly resolved in an instance.
+
+ ---------------------
+ -- Set_Global_Type --
+ ---------------------
+
+ procedure Set_Global_Type (N : Node_Id; N2 : Node_Id) is
+ Typ : constant Entity_Id := Etype (N2);
+
+ begin
+ Set_Etype (N, Typ);
+
+ if Entity (N) /= N2
+ and then Has_Private_View (Entity (N))
+ then
+ -- If the entity of N is not the associated node, this is a
+ -- nested generic and it has an associated node as well, whose
+ -- type is already the full view (see below). Indicate that the
+ -- original node has a private view.
+
+ Set_Has_Private_View (N);
+ end if;
+
+ -- If not a private type, nothing else to do
+
+ if not Is_Private_Type (Typ) then
+ if Is_Array_Type (Typ)
+ and then Is_Private_Type (Component_Type (Typ))
+ then
+ Set_Has_Private_View (N);
+ end if;
+
+ -- If it is a derivation of a private type in a context where no
+ -- full view is needed, nothing to do either.
+
+ elsif No (Full_View (Typ)) and then Typ /= Etype (Typ) then
+ null;
+
+ -- Otherwise mark the type for flipping and use the full view when
+ -- available.
+
+ else
+ Set_Has_Private_View (N);
+
+ if Present (Full_View (Typ)) then
+ Set_Etype (N2, Full_View (Typ));
+ end if;
+ end if;
+ end Set_Global_Type;
+
+ ------------------
+ -- Top_Ancestor --
+ ------------------
+
+ function Top_Ancestor (E : Entity_Id) return Entity_Id is
+ Par : Entity_Id;
+
+ begin
+ Par := E;
+ while Is_Child_Unit (Par) loop
+ Par := Scope (Par);
+ end loop;
+
+ return Par;
+ end Top_Ancestor;
+
+ -- Start of processing for Reset_Entity
+
+ begin
+ N2 := Get_Associated_Node (N);
+ E := Entity (N2);
+
+ if Present (E) then
+
+ -- If the node is an entry call to an entry in an enclosing task,
+ -- it is rewritten as a selected component. No global entity to
+ -- preserve in this case, since the expansion will be redone in
+ -- the instance.
+
+ if not Nkind_In (E, N_Defining_Identifier,
+ N_Defining_Character_Literal,
+ N_Defining_Operator_Symbol)
+ then
+ Set_Associated_Node (N, Empty);
+ Set_Etype (N, Empty);
+ return;
+ end if;
+
+ -- If the entity is an itype created as a subtype of an access
+ -- type with a null exclusion restore source entity for proper
+ -- visibility. The itype will be created anew in the instance.
+
+ if Is_Itype (E)
+ and then Ekind (E) = E_Access_Subtype
+ and then Is_Entity_Name (N)
+ and then Chars (Etype (E)) = Chars (N)
+ then
+ E := Etype (E);
+ Set_Entity (N2, E);
+ Set_Etype (N2, E);
+ end if;
+
+ if Is_Global (E) then
+
+ -- If the entity is a package renaming that is the prefix of
+ -- an expanded name, it has been rewritten as the renamed
+ -- package, which is necessary semantically but complicates
+ -- ASIS tree traversal, so we recover the original entity to
+ -- expose the renaming. Take into account that the context may
+ -- be a nested generic, that the original node may itself have
+ -- an associated node that had better be an entity, and that
+ -- the current node is still a selected component.
+
+ if Ekind (E) = E_Package
+ and then Nkind (N) = N_Selected_Component
+ and then Nkind (Parent (N)) = N_Expanded_Name
+ and then Present (Original_Node (N2))
+ and then Is_Entity_Name (Original_Node (N2))
+ and then Present (Entity (Original_Node (N2)))
+ then
+ if Is_Global (Entity (Original_Node (N2))) then
+ N2 := Original_Node (N2);
+ Set_Associated_Node (N, N2);
+ Set_Global_Type (N, N2);
+
+ else
+ -- Renaming is local, and will be resolved in instance
+
+ Set_Associated_Node (N, Empty);
+ Set_Etype (N, Empty);
+ end if;
+
+ else
+ Set_Global_Type (N, N2);
+ end if;
+
+ elsif Nkind (N) = N_Op_Concat
+ and then Is_Generic_Type (Etype (N2))
+ and then (Base_Type (Etype (Right_Opnd (N2))) = Etype (N2)
+ or else
+ Base_Type (Etype (Left_Opnd (N2))) = Etype (N2))
+ and then Is_Intrinsic_Subprogram (E)
+ then
+ null;
+
+ else
+ -- Entity is local. Mark generic node as unresolved.
+ -- Note that now it does not have an entity.
+
+ Set_Associated_Node (N, Empty);
+ Set_Etype (N, Empty);
+ end if;
+
+ if Nkind (Parent (N)) in N_Generic_Instantiation
+ and then N = Name (Parent (N))
+ then
+ Save_Global_Defaults (Parent (N), Parent (N2));
+ end if;
+
+ elsif Nkind (Parent (N)) = N_Selected_Component
+ and then Nkind (Parent (N2)) = N_Expanded_Name
+ then
+ if Is_Global (Entity (Parent (N2))) then
+ Change_Selected_Component_To_Expanded_Name (Parent (N));
+ Set_Associated_Node (Parent (N), Parent (N2));
+ Set_Global_Type (Parent (N), Parent (N2));
+ Save_Entity_Descendants (N);
+
+ -- If this is a reference to the current generic entity, replace
+ -- by the name of the generic homonym of the current package. This
+ -- is because in an instantiation Par.P.Q will not resolve to the
+ -- name of the instance, whose enclosing scope is not necessarily
+ -- Par. We use the generic homonym rather that the name of the
+ -- generic itself because it may be hidden by a local declaration.
+
+ elsif In_Open_Scopes (Entity (Parent (N2)))
+ and then not
+ Is_Generic_Unit (Top_Ancestor (Entity (Prefix (Parent (N2)))))
+ then
+ if Ekind (Entity (Parent (N2))) = E_Generic_Package then
+ Rewrite (Parent (N),
+ Make_Identifier (Sloc (N),
+ Chars =>
+ Chars (Generic_Homonym (Entity (Parent (N2))))));
+ else
+ Rewrite (Parent (N),
+ Make_Identifier (Sloc (N),
+ Chars => Chars (Selector_Name (Parent (N2)))));
+ end if;
+ end if;
+
+ if Nkind (Parent (Parent (N))) in N_Generic_Instantiation
+ and then Parent (N) = Name (Parent (Parent (N)))
+ then
+ Save_Global_Defaults
+ (Parent (Parent (N)), Parent (Parent ((N2))));
+ end if;
+
+ -- A selected component may denote a static constant that has been
+ -- folded. If the static constant is global to the generic, capture
+ -- its value. Otherwise the folding will happen in any instantiation.
+
+ elsif Nkind (Parent (N)) = N_Selected_Component
+ and then Nkind_In (Parent (N2), N_Integer_Literal, N_Real_Literal)
+ then
+ if Present (Entity (Original_Node (Parent (N2))))
+ and then Is_Global (Entity (Original_Node (Parent (N2))))
+ then
+ Rewrite (Parent (N), New_Copy (Parent (N2)));
+ Set_Analyzed (Parent (N), False);
+
+ else
+ null;
+ end if;
+
+ -- A selected component may be transformed into a parameterless
+ -- function call. If the called entity is global, rewrite the node
+ -- appropriately, i.e. as an extended name for the global entity.
+
+ elsif Nkind (Parent (N)) = N_Selected_Component
+ and then Nkind (Parent (N2)) = N_Function_Call
+ and then N = Selector_Name (Parent (N))
+ then
+ if No (Parameter_Associations (Parent (N2))) then
+ if Is_Global (Entity (Name (Parent (N2)))) then
+ Change_Selected_Component_To_Expanded_Name (Parent (N));
+ Set_Associated_Node (Parent (N), Name (Parent (N2)));
+ Set_Global_Type (Parent (N), Name (Parent (N2)));
+ Save_Entity_Descendants (N);
+
+ else
+ Set_Is_Prefixed_Call (Parent (N));
+ Set_Associated_Node (N, Empty);
+ Set_Etype (N, Empty);
+ end if;
+
+ -- In Ada 2005, X.F may be a call to a primitive operation,
+ -- rewritten as F (X). This rewriting will be done again in an
+ -- instance, so keep the original node. Global entities will be
+ -- captured as for other constructs. Indicate that this must
+ -- resolve as a call, to prevent accidental overloading in the
+ -- instance, if both a component and a primitive operation appear
+ -- as candidates.
+
+ else
+ Set_Is_Prefixed_Call (Parent (N));
+ end if;
+
+ -- Entity is local. Reset in generic unit, so that node is resolved
+ -- anew at the point of instantiation.
+
+ else
+ Set_Associated_Node (N, Empty);
+ Set_Etype (N, Empty);
+ end if;
+ end Reset_Entity;
+
+ -----------------------------
+ -- Save_Entity_Descendants --
+ -----------------------------
+
+ procedure Save_Entity_Descendants (N : Node_Id) is
+ begin
+ case Nkind (N) is
+ when N_Binary_Op =>
+ Save_Global_Descendant (Union_Id (Left_Opnd (N)));
+ Save_Global_Descendant (Union_Id (Right_Opnd (N)));
+
+ when N_Unary_Op =>
+ Save_Global_Descendant (Union_Id (Right_Opnd (N)));
+
+ when N_Expanded_Name | N_Selected_Component =>
+ Save_Global_Descendant (Union_Id (Prefix (N)));
+ Save_Global_Descendant (Union_Id (Selector_Name (N)));
+
+ when N_Identifier | N_Character_Literal | N_Operator_Symbol =>
+ null;
+
+ when others =>
+ raise Program_Error;
+ end case;
+ end Save_Entity_Descendants;
+
+ --------------------------
+ -- Save_Global_Defaults --
+ --------------------------
+
+ procedure Save_Global_Defaults (N1, N2 : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N1);
+ Assoc2 : constant List_Id := Generic_Associations (N2);
+ Gen_Id : constant Entity_Id := Get_Generic_Entity (N2);
+ Assoc1 : List_Id;
+ Act1 : Node_Id;
+ Act2 : Node_Id;
+ Def : Node_Id;
+ Ndec : Node_Id;
+ Subp : Entity_Id;
+ Actual : Entity_Id;
+
+ begin
+ Assoc1 := Generic_Associations (N1);
+
+ if Present (Assoc1) then
+ Act1 := First (Assoc1);
+ else
+ Act1 := Empty;
+ Set_Generic_Associations (N1, New_List);
+ Assoc1 := Generic_Associations (N1);
+ end if;
+
+ if Present (Assoc2) then
+ Act2 := First (Assoc2);
+ else
+ return;
+ end if;
+
+ while Present (Act1) and then Present (Act2) loop
+ Next (Act1);
+ Next (Act2);
+ end loop;
+
+ -- Find the associations added for default subprograms
+
+ if Present (Act2) then
+ while Nkind (Act2) /= N_Generic_Association
+ or else No (Entity (Selector_Name (Act2)))
+ or else not Is_Overloadable (Entity (Selector_Name (Act2)))
+ loop
+ Next (Act2);
+ end loop;
+
+ -- Add a similar association if the default is global. The
+ -- renaming declaration for the actual has been analyzed, and
+ -- its alias is the program it renames. Link the actual in the
+ -- original generic tree with the node in the analyzed tree.
+
+ while Present (Act2) loop
+ Subp := Entity (Selector_Name (Act2));
+ Def := Explicit_Generic_Actual_Parameter (Act2);
+
+ -- Following test is defence against rubbish errors
+
+ if No (Alias (Subp)) then
+ return;
+ end if;
+
+ -- Retrieve the resolved actual from the renaming declaration
+ -- created for the instantiated formal.
+
+ Actual := Entity (Name (Parent (Parent (Subp))));
+ Set_Entity (Def, Actual);
+ Set_Etype (Def, Etype (Actual));
+
+ if Is_Global (Actual) then
+ Ndec :=
+ Make_Generic_Association (Loc,
+ Selector_Name => New_Occurrence_Of (Subp, Loc),
+ Explicit_Generic_Actual_Parameter =>
+ New_Occurrence_Of (Actual, Loc));
+
+ Set_Associated_Node
+ (Explicit_Generic_Actual_Parameter (Ndec), Def);
+
+ Append (Ndec, Assoc1);
+
+ -- If there are other defaults, add a dummy association in case
+ -- there are other defaulted formals with the same name.
+
+ elsif Present (Next (Act2)) then
+ Ndec :=
+ Make_Generic_Association (Loc,
+ Selector_Name => New_Occurrence_Of (Subp, Loc),
+ Explicit_Generic_Actual_Parameter => Empty);
+
+ Append (Ndec, Assoc1);
+ end if;
+
+ Next (Act2);
+ end loop;
+ end if;
+
+ if Nkind (Name (N1)) = N_Identifier
+ and then Is_Child_Unit (Gen_Id)
+ and then Is_Global (Gen_Id)
+ and then Is_Generic_Unit (Scope (Gen_Id))
+ and then In_Open_Scopes (Scope (Gen_Id))
+ then
+ -- This is an instantiation of a child unit within a sibling, so
+ -- that the generic parent is in scope. An eventual instance must
+ -- occur within the scope of an instance of the parent. Make name
+ -- in instance into an expanded name, to preserve the identifier
+ -- of the parent, so it can be resolved subsequently.
+
+ Rewrite (Name (N2),
+ Make_Expanded_Name (Loc,
+ Chars => Chars (Gen_Id),
+ Prefix => New_Occurrence_Of (Scope (Gen_Id), Loc),
+ Selector_Name => New_Occurrence_Of (Gen_Id, Loc)));
+ Set_Entity (Name (N2), Gen_Id);
+
+ Rewrite (Name (N1),
+ Make_Expanded_Name (Loc,
+ Chars => Chars (Gen_Id),
+ Prefix => New_Occurrence_Of (Scope (Gen_Id), Loc),
+ Selector_Name => New_Occurrence_Of (Gen_Id, Loc)));
+
+ Set_Associated_Node (Name (N1), Name (N2));
+ Set_Associated_Node (Prefix (Name (N1)), Empty);
+ Set_Associated_Node
+ (Selector_Name (Name (N1)), Selector_Name (Name (N2)));
+ Set_Etype (Name (N1), Etype (Gen_Id));
+ end if;
+
+ end Save_Global_Defaults;
+
+ ----------------------------
+ -- Save_Global_Descendant --
+ ----------------------------
+
+ procedure Save_Global_Descendant (D : Union_Id) is
+ N1 : Node_Id;
+
+ begin
+ if D in Node_Range then
+ if D = Union_Id (Empty) then
+ null;
+
+ elsif Nkind (Node_Id (D)) /= N_Compilation_Unit then
+ Save_References (Node_Id (D));
+ end if;
+
+ elsif D in List_Range then
+ if D = Union_Id (No_List)
+ or else Is_Empty_List (List_Id (D))
+ then
+ null;
+
+ else
+ N1 := First (List_Id (D));
+ while Present (N1) loop
+ Save_References (N1);
+ Next (N1);
+ end loop;
+ end if;
+
+ -- Element list or other non-node field, nothing to do
+
+ else
+ null;
+ end if;
+ end Save_Global_Descendant;
+
+ ---------------------
+ -- Save_References --
+ ---------------------
+
+ -- This is the recursive procedure that does the work once the enclosing
+ -- generic scope has been established. We have to treat specially a
+ -- number of node rewritings that are required by semantic processing
+ -- and which change the kind of nodes in the generic copy: typically
+ -- constant-folding, replacing an operator node by a string literal, or
+ -- a selected component by an expanded name. In each of those cases, the
+ -- transformation is propagated to the generic unit.
+
+ procedure Save_References (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ begin
+ if N = Empty then
+ null;
+
+ elsif Nkind_In (N, N_Character_Literal, N_Operator_Symbol) then
+ if Nkind (N) = Nkind (Get_Associated_Node (N)) then
+ Reset_Entity (N);
+
+ elsif Nkind (N) = N_Operator_Symbol
+ and then Nkind (Get_Associated_Node (N)) = N_String_Literal
+ then
+ Change_Operator_Symbol_To_String_Literal (N);
+ end if;
+
+ elsif Nkind (N) in N_Op then
+ if Nkind (N) = Nkind (Get_Associated_Node (N)) then
+ if Nkind (N) = N_Op_Concat then
+ Set_Is_Component_Left_Opnd (N,
+ Is_Component_Left_Opnd (Get_Associated_Node (N)));
+
+ Set_Is_Component_Right_Opnd (N,
+ Is_Component_Right_Opnd (Get_Associated_Node (N)));
+ end if;
+
+ Reset_Entity (N);
+
+ else
+ -- Node may be transformed into call to a user-defined operator
+
+ N2 := Get_Associated_Node (N);
+
+ if Nkind (N2) = N_Function_Call then
+ E := Entity (Name (N2));
+
+ if Present (E)
+ and then Is_Global (E)
+ then
+ Set_Etype (N, Etype (N2));
+ else
+ Set_Associated_Node (N, Empty);
+ Set_Etype (N, Empty);
+ end if;
+
+ elsif Nkind_In (N2, N_Integer_Literal,
+ N_Real_Literal,
+ N_String_Literal)
+ then
+ if Present (Original_Node (N2))
+ and then Nkind (Original_Node (N2)) = Nkind (N)
+ then
+
+ -- Operation was constant-folded. Whenever possible,
+ -- recover semantic information from unfolded node,
+ -- for ASIS use.
+
+ Set_Associated_Node (N, Original_Node (N2));
+
+ if Nkind (N) = N_Op_Concat then
+ Set_Is_Component_Left_Opnd (N,
+ Is_Component_Left_Opnd (Get_Associated_Node (N)));
+ Set_Is_Component_Right_Opnd (N,
+ Is_Component_Right_Opnd (Get_Associated_Node (N)));
+ end if;
+
+ Reset_Entity (N);
+
+ else
+ -- If original node is already modified, propagate
+ -- constant-folding to template.
+
+ Rewrite (N, New_Copy (N2));
+ Set_Analyzed (N, False);
+ end if;
+
+ elsif Nkind (N2) = N_Identifier
+ and then Ekind (Entity (N2)) = E_Enumeration_Literal
+ then
+ -- Same if call was folded into a literal, but in this case
+ -- retain the entity to avoid spurious ambiguities if it is
+ -- overloaded at the point of instantiation or inlining.
+
+ Rewrite (N, New_Copy (N2));
+ Set_Analyzed (N, False);
+ end if;
+ end if;
+
+ -- Complete operands check if node has not been constant-folded
+
+ if Nkind (N) in N_Op then
+ Save_Entity_Descendants (N);
+ end if;
+
+ elsif Nkind (N) = N_Identifier then
+ if Nkind (N) = Nkind (Get_Associated_Node (N)) then
+
+ -- If this is a discriminant reference, always save it. It is
+ -- used in the instance to find the corresponding discriminant
+ -- positionally rather than by name.
+
+ Set_Original_Discriminant
+ (N, Original_Discriminant (Get_Associated_Node (N)));
+ Reset_Entity (N);
+
+ else
+ N2 := Get_Associated_Node (N);
+
+ if Nkind (N2) = N_Function_Call then
+ E := Entity (Name (N2));
+
+ -- Name resolves to a call to parameterless function. If
+ -- original entity is global, mark node as resolved.
+
+ if Present (E)
+ and then Is_Global (E)
+ then
+ Set_Etype (N, Etype (N2));
+ else
+ Set_Associated_Node (N, Empty);
+ Set_Etype (N, Empty);
+ end if;
+
+ elsif Nkind_In (N2, N_Integer_Literal, N_Real_Literal)
+ and then Is_Entity_Name (Original_Node (N2))
+ then
+ -- Name resolves to named number that is constant-folded,
+ -- We must preserve the original name for ASIS use, and
+ -- undo the constant-folding, which will be repeated in
+ -- each instance.
+
+ Set_Associated_Node (N, Original_Node (N2));
+ Reset_Entity (N);
+
+ elsif Nkind (N2) = N_String_Literal then
+
+ -- Name resolves to string literal. Perform the same
+ -- replacement in generic.
+
+ Rewrite (N, New_Copy (N2));
+
+ elsif Nkind (N2) = N_Explicit_Dereference then
+
+ -- An identifier is rewritten as a dereference if it is the
+ -- prefix in an implicit dereference (call or attribute).
+ -- The analysis of an instantiation will expand the node
+ -- again, so we preserve the original tree but link it to
+ -- the resolved entity in case it is global.
+
+ if Is_Entity_Name (Prefix (N2))
+ and then Present (Entity (Prefix (N2)))
+ and then Is_Global (Entity (Prefix (N2)))
+ then
+ Set_Associated_Node (N, Prefix (N2));
+
+ elsif Nkind (Prefix (N2)) = N_Function_Call
+ and then Is_Global (Entity (Name (Prefix (N2))))
+ then
+ Rewrite (N,
+ Make_Explicit_Dereference (Loc,
+ Prefix => Make_Function_Call (Loc,
+ Name =>
+ New_Occurrence_Of (Entity (Name (Prefix (N2))),
+ Loc))));
+
+ else
+ Set_Associated_Node (N, Empty);
+ Set_Etype (N, Empty);
+ end if;
+
+ -- The subtype mark of a nominally unconstrained object is
+ -- rewritten as a subtype indication using the bounds of the
+ -- expression. Recover the original subtype mark.
+
+ elsif Nkind (N2) = N_Subtype_Indication
+ and then Is_Entity_Name (Original_Node (N2))
+ then
+ Set_Associated_Node (N, Original_Node (N2));
+ Reset_Entity (N);
+
+ else
+ null;
+ end if;
+ end if;
+
+ elsif Nkind (N) in N_Entity then
+ null;
+
+ else
+ declare
+ Qual : Node_Id := Empty;
+ Typ : Entity_Id := Empty;
+ Nam : Node_Id;
+
+ use Atree.Unchecked_Access;
+ -- This code section is part of implementing an untyped tree
+ -- traversal, so it needs direct access to node fields.
+
+ begin
+ if Nkind_In (N, N_Aggregate, N_Extension_Aggregate) then
+ N2 := Get_Associated_Node (N);
+
+ if No (N2) then
+ Typ := Empty;
+ else
+ Typ := Etype (N2);
+
+ -- In an instance within a generic, use the name of the
+ -- actual and not the original generic parameter. If the
+ -- actual is global in the current generic it must be
+ -- preserved for its instantiation.
+
+ if Nkind (Parent (Typ)) = N_Subtype_Declaration
+ and then
+ Present (Generic_Parent_Type (Parent (Typ)))
+ then
+ Typ := Base_Type (Typ);
+ Set_Etype (N2, Typ);
+ end if;
+ end if;
+
+ if No (N2)
+ or else No (Typ)
+ or else not Is_Global (Typ)
+ then
+ Set_Associated_Node (N, Empty);
+
+ -- If the aggregate is an actual in a call, it has been
+ -- resolved in the current context, to some local type.
+ -- The enclosing call may have been disambiguated by the
+ -- aggregate, and this disambiguation might fail at
+ -- instantiation time because the type to which the
+ -- aggregate did resolve is not preserved. In order to
+ -- preserve some of this information, we wrap the
+ -- aggregate in a qualified expression, using the id of
+ -- its type. For further disambiguation we qualify the
+ -- type name with its scope (if visible) because both
+ -- id's will have corresponding entities in an instance.
+ -- This resolves most of the problems with missing type
+ -- information on aggregates in instances.
+
+ if Nkind (N2) = Nkind (N)
+ and then Nkind (Parent (N2)) in N_Subprogram_Call
+ and then Comes_From_Source (Typ)
+ then
+ if Is_Immediately_Visible (Scope (Typ)) then
+ Nam := Make_Selected_Component (Loc,
+ Prefix =>
+ Make_Identifier (Loc, Chars (Scope (Typ))),
+ Selector_Name =>
+ Make_Identifier (Loc, Chars (Typ)));
+ else
+ Nam := Make_Identifier (Loc, Chars (Typ));
+ end if;
+
+ Qual :=
+ Make_Qualified_Expression (Loc,
+ Subtype_Mark => Nam,
+ Expression => Relocate_Node (N));
+ end if;
+ end if;
+
+ Save_Global_Descendant (Field1 (N));
+ Save_Global_Descendant (Field2 (N));
+ Save_Global_Descendant (Field3 (N));
+ Save_Global_Descendant (Field5 (N));
+
+ if Present (Qual) then
+ Rewrite (N, Qual);
+ end if;
+
+ -- All other cases than aggregates
+
+ else
+ Save_Global_Descendant (Field1 (N));
+ Save_Global_Descendant (Field2 (N));
+ Save_Global_Descendant (Field3 (N));
+ Save_Global_Descendant (Field4 (N));
+ Save_Global_Descendant (Field5 (N));
+ end if;
+ end;
+ end if;
+
+ -- If a node has aspects, references within their expressions must
+ -- be saved separately, given they are not directly in the tree.
+
+ if Has_Aspects (N) then
+ declare
+ Aspect : Node_Id;
+
+ begin
+ Aspect := First (Aspect_Specifications (N));
+ while Present (Aspect) loop
+ if Present (Expression (Aspect)) then
+ Save_Global_References (Expression (Aspect));
+ end if;
+
+ Next (Aspect);
+ end loop;
+ end;
+ end if;
+ end Save_References;
+
+ -- Start of processing for Save_Global_References
+
+ begin
+ Gen_Scope := Current_Scope;
+
+ -- If the generic unit is a child unit, references to entities in the
+ -- parent are treated as local, because they will be resolved anew in
+ -- the context of the instance of the parent.
+
+ while Is_Child_Unit (Gen_Scope)
+ and then Ekind (Scope (Gen_Scope)) = E_Generic_Package
+ loop
+ Gen_Scope := Scope (Gen_Scope);
+ end loop;
+
+ Save_References (N);
+ end Save_Global_References;
+
+ --------------------------------------
+ -- Set_Copied_Sloc_For_Inlined_Body --
+ --------------------------------------
+
+ procedure Set_Copied_Sloc_For_Inlined_Body (N : Node_Id; E : Entity_Id) is
+ begin
+ Create_Instantiation_Source (N, E, True, S_Adjustment);
+ end Set_Copied_Sloc_For_Inlined_Body;
+
+ ---------------------
+ -- Set_Instance_Of --
+ ---------------------
+
+ procedure Set_Instance_Of (A : Entity_Id; B : Entity_Id) is
+ begin
+ Generic_Renamings.Table (Generic_Renamings.Last) := (A, B, Assoc_Null);
+ Generic_Renamings_HTable.Set (Generic_Renamings.Last);
+ Generic_Renamings.Increment_Last;
+ end Set_Instance_Of;
+
+ --------------------
+ -- Set_Next_Assoc --
+ --------------------
+
+ procedure Set_Next_Assoc (E : Assoc_Ptr; Next : Assoc_Ptr) is
+ begin
+ Generic_Renamings.Table (E).Next_In_HTable := Next;
+ end Set_Next_Assoc;
+
+ -------------------
+ -- Start_Generic --
+ -------------------
+
+ procedure Start_Generic is
+ begin
+ -- ??? More things could be factored out in this routine.
+ -- Should probably be done at a later stage.
+
+ Generic_Flags.Append (Inside_A_Generic);
+ Inside_A_Generic := True;
+
+ Expander_Mode_Save_And_Set (False);
+ end Start_Generic;
+
+ ----------------------
+ -- Set_Instance_Env --
+ ----------------------
+
+ procedure Set_Instance_Env
+ (Gen_Unit : Entity_Id;
+ Act_Unit : Entity_Id)
+ is
+ Assertion_Status : constant Boolean := Assertions_Enabled;
+ Save_SPARK_Mode : constant SPARK_Mode_Type := SPARK_Mode;
+ Save_SPARK_Mode_Pragma : constant Node_Id := SPARK_Mode_Pragma;
+
+ begin
+ -- Regardless of the current mode, predefined units are analyzed in the
+ -- most current Ada mode, and earlier version Ada checks do not apply
+ -- to predefined units. Nothing needs to be done for non-internal units.
+ -- These are always analyzed in the current mode.
+
+ if Is_Internal_File_Name
+ (Fname => Unit_File_Name (Get_Source_Unit (Gen_Unit)),
+ Renamings_Included => True)
+ then
+ Set_Opt_Config_Switches (True, Current_Sem_Unit = Main_Unit);
+
+ -- In Ada2012 we may want to enable assertions in an instance of a
+ -- predefined unit, in which case we need to preserve the current
+ -- setting for the Assertions_Enabled flag. This will become more
+ -- critical when pre/postconditions are added to predefined units,
+ -- as is already the case for some numeric libraries.
+
+ if Ada_Version >= Ada_2012 then
+ Assertions_Enabled := Assertion_Status;
+ end if;
+
+ -- SPARK_Mode for an instance is the one applicable at the point of
+ -- instantiation.
+
+ SPARK_Mode := Save_SPARK_Mode;
+ SPARK_Mode_Pragma := Save_SPARK_Mode_Pragma;
+ end if;
+
+ Current_Instantiated_Parent :=
+ (Gen_Id => Gen_Unit,
+ Act_Id => Act_Unit,
+ Next_In_HTable => Assoc_Null);
+ end Set_Instance_Env;
+
+ -----------------
+ -- Switch_View --
+ -----------------
+
+ procedure Switch_View (T : Entity_Id) is
+ BT : constant Entity_Id := Base_Type (T);
+ Priv_Elmt : Elmt_Id := No_Elmt;
+ Priv_Sub : Entity_Id;
+
+ begin
+ -- T may be private but its base type may have been exchanged through
+ -- some other occurrence, in which case there is nothing to switch
+ -- besides T itself. Note that a private dependent subtype of a private
+ -- type might not have been switched even if the base type has been,
+ -- because of the last branch of Check_Private_View (see comment there).
+
+ if not Is_Private_Type (BT) then
+ Prepend_Elmt (Full_View (T), Exchanged_Views);
+ Exchange_Declarations (T);
+ return;
+ end if;
+
+ Priv_Elmt := First_Elmt (Private_Dependents (BT));
+
+ if Present (Full_View (BT)) then
+ Prepend_Elmt (Full_View (BT), Exchanged_Views);
+ Exchange_Declarations (BT);
+ end if;
+
+ while Present (Priv_Elmt) loop
+ Priv_Sub := (Node (Priv_Elmt));
+
+ -- We avoid flipping the subtype if the Etype of its full view is
+ -- private because this would result in a malformed subtype. This
+ -- occurs when the Etype of the subtype full view is the full view of
+ -- the base type (and since the base types were just switched, the
+ -- subtype is pointing to the wrong view). This is currently the case
+ -- for tagged record types, access types (maybe more?) and needs to
+ -- be resolved. ???
+
+ if Present (Full_View (Priv_Sub))
+ and then not Is_Private_Type (Etype (Full_View (Priv_Sub)))
+ then
+ Prepend_Elmt (Full_View (Priv_Sub), Exchanged_Views);
+ Exchange_Declarations (Priv_Sub);
+ end if;
+
+ Next_Elmt (Priv_Elmt);
+ end loop;
+ end Switch_View;
+
+ -----------------
+ -- True_Parent --
+ -----------------
+
+ function True_Parent (N : Node_Id) return Node_Id is
+ begin
+ if Nkind (Parent (N)) = N_Subunit then
+ return Parent (Corresponding_Stub (Parent (N)));
+ else
+ return Parent (N);
+ end if;
+ end True_Parent;
+
+ -----------------------------
+ -- Valid_Default_Attribute --
+ -----------------------------
+
+ procedure Valid_Default_Attribute (Nam : Entity_Id; Def : Node_Id) is
+ Attr_Id : constant Attribute_Id :=
+ Get_Attribute_Id (Attribute_Name (Def));
+ T : constant Entity_Id := Entity (Prefix (Def));
+ Is_Fun : constant Boolean := (Ekind (Nam) = E_Function);
+ F : Entity_Id;
+ Num_F : Int;
+ OK : Boolean;
+
+ begin
+ if No (T)
+ or else T = Any_Id
+ then
+ return;
+ end if;
+
+ Num_F := 0;
+ F := First_Formal (Nam);
+ while Present (F) loop
+ Num_F := Num_F + 1;
+ Next_Formal (F);
+ end loop;
+
+ case Attr_Id is
+ when Attribute_Adjacent | Attribute_Ceiling | Attribute_Copy_Sign |
+ Attribute_Floor | Attribute_Fraction | Attribute_Machine |
+ Attribute_Model | Attribute_Remainder | Attribute_Rounding |
+ Attribute_Unbiased_Rounding =>
+ OK := Is_Fun
+ and then Num_F = 1
+ and then Is_Floating_Point_Type (T);
+
+ when Attribute_Image | Attribute_Pred | Attribute_Succ |
+ Attribute_Value | Attribute_Wide_Image |
+ Attribute_Wide_Value =>
+ OK := (Is_Fun and then Num_F = 1 and then Is_Scalar_Type (T));
+
+ when Attribute_Max | Attribute_Min =>
+ OK := (Is_Fun and then Num_F = 2 and then Is_Scalar_Type (T));
+
+ when Attribute_Input =>
+ OK := (Is_Fun and then Num_F = 1);
+
+ when Attribute_Output | Attribute_Read | Attribute_Write =>
+ OK := (not Is_Fun and then Num_F = 2);
+
+ when others =>
+ OK := False;
+ end case;
+
+ if not OK then
+ Error_Msg_N ("attribute reference has wrong profile for subprogram",
+ Def);
+ end if;
+ end Valid_Default_Attribute;
+
+end Sem_Ch12;