aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/ada/g-altive.ads
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/ada/g-altive.ads')
-rw-r--r--gcc-4.9/gcc/ada/g-altive.ads427
1 files changed, 427 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/ada/g-altive.ads b/gcc-4.9/gcc/ada/g-altive.ads
new file mode 100644
index 000000000..27b991503
--- /dev/null
+++ b/gcc-4.9/gcc/ada/g-altive.ads
@@ -0,0 +1,427 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- G N A T . A L T I V E C --
+-- --
+-- S p e c --
+-- --
+-- Copyright (C) 2004-2011, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. --
+-- --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception, --
+-- version 3.1, as published by the Free Software Foundation. --
+-- --
+-- You should have received a copy of the GNU General Public License and --
+-- a copy of the GCC Runtime Library Exception along with this program; --
+-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
+-- <http://www.gnu.org/licenses/>. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+-------------------------
+-- General description --
+-------------------------
+
+-- This is the root of a package hierarchy offering an Ada binding to the
+-- PowerPC AltiVec extensions, a set of 128bit vector types together with a
+-- set of subprograms operating on them. Relevant documents are:
+
+-- o AltiVec Technology, Programming Interface Manual (1999-06)
+-- to which we will refer as [PIM], describes the data types, the
+-- functional interface and the ABI conventions.
+
+-- o AltiVec Technology, Programming Environments Manual (2002-02)
+-- to which we will refer as [PEM], describes the hardware architecture
+-- and instruction set.
+
+-- These documents, as well as a number of others of general interest on the
+-- AltiVec technology, are available from the Motorola/AltiVec Web site at:
+
+-- http://www.freescale.com/altivec
+
+-- The binding interface is structured to allow alternate implementations:
+-- for real AltiVec capable targets, and for other targets. In the latter
+-- case, everything is emulated in software. The two versions are referred
+-- to as:
+
+-- o The Hard binding for AltiVec capable targets (with the appropriate
+-- hardware support and corresponding instruction set)
+
+-- o The Soft binding for other targets (with the low level primitives
+-- emulated in software).
+
+-- In addition, interfaces that are not strictly part of the base AltiVec API
+-- are provided, such as vector conversions to and from array representations,
+-- which are of interest for client applications (e.g. for vector
+-- initialization purposes).
+
+-- Only the soft binding is available today
+
+-----------------------------------------
+-- General package architecture survey --
+-----------------------------------------
+
+-- The various vector representations are all "containers" of elementary
+-- values, the possible types of which are declared in this root package to
+-- be generally accessible.
+
+-- From the user standpoint, the binding materializes as a consistent
+-- hierarchy of units:
+
+-- GNAT.Altivec
+-- (component types)
+-- |
+-- o----------------o----------------o-------------o
+-- | | | |
+-- Vector_Types Vector_Operations Vector_Views Conversions
+
+-- The user can manipulate vectors through two families of types: Vector
+-- types and View types.
+
+-- Vector types are defined in the GNAT.Altivec.Vector_Types package
+
+-- On these types, users can apply the Altivec operations defined in
+-- GNAT.Altivec.Vector_Operations. Their layout is opaque and may vary across
+-- configurations, for it is typically target-endianness dependant.
+
+-- Vector_Types and Vector_Operations implement the core binding to the
+-- AltiVec API, as described in [PIM-2.1 data types] and [PIM-4 AltiVec
+-- operations and predicates].
+
+-- View types are defined in the GNAT.Altivec.Vector_Views package
+
+-- These types do not represent Altivec vectors per se, in the sense that the
+-- Altivec_Operations are not available for them. They are intended to allow
+-- Vector initializations as well as access to the Vector component values.
+
+-- The GNAT.Altivec.Conversions package is provided to convert a View to the
+-- corresponding Vector and vice-versa.
+
+---------------------------
+-- Underlying principles --
+---------------------------
+
+-- Internally, the binding relies on an abstraction of the Altivec API, a
+-- rich set of functions around a core of low level primitives mapping to
+-- AltiVec instructions. See for instance "vec_add" in [PIM-4.4 Generic and
+-- Specific AltiVec operations], with no less than six result/arguments
+-- combinations of byte vector types that map to "vaddubm".
+
+-- The "soft" version is a software emulation of the low level primitives.
+
+-- The "hard" version would map to real AltiVec instructions via GCC builtins
+-- and inlining.
+
+-------------------
+-- Example usage --
+-------------------
+
+-- Here is a sample program declaring and initializing two vectors, 'add'ing
+-- them and displaying the result components:
+
+-- with GNAT.Altivec.Vector_Types; use GNAT.Altivec.Vector_Types;
+-- with GNAT.Altivec.Vector_Operations; use GNAT.Altivec.Vector_Operations;
+-- with GNAT.Altivec.Vector_Views; use GNAT.Altivec.Vector_Views;
+-- with GNAT.Altivec.Conversions; use GNAT.Altivec.Conversions;
+
+-- use GNAT.Altivec;
+
+-- with Ada.Text_IO; use Ada.Text_IO;
+
+-- procedure Sample is
+-- Va : Vector_Unsigned_Int := To_Vector ((Values => (1, 2, 3, 4)));
+-- Vb : Vector_Unsigned_Int := To_Vector ((Values => (1, 2, 3, 4)));
+
+-- Vs : Vector_Unsigned_Int;
+-- Vs_View : VUI_View;
+-- begin
+-- Vs := Vec_Add (Va, Vb);
+-- Vs_View := To_View (Vs);
+
+-- for I in Vs_View.Values'Range loop
+-- Put_Line (Unsigned_Int'Image (Vs_View.Values (I)));
+-- end loop;
+-- end;
+
+-- $ gnatmake sample.adb
+-- [...]
+-- $ ./sample
+-- 2
+-- 4
+-- 6
+-- 8
+
+------------------------------------------------------------------------------
+
+with System;
+
+package GNAT.Altivec is
+
+ -- Definitions of constants and vector/array component types common to all
+ -- the versions of the binding.
+
+ -- All the vector types are 128bits
+
+ VECTOR_BIT : constant := 128;
+
+ -------------------------------------------
+ -- [PIM-2.3.1 Alignment of vector types] --
+ -------------------------------------------
+
+ -- "A defined data item of any vector data type in memory is always
+ -- aligned on a 16-byte boundary. A pointer to any vector data type always
+ -- points to a 16-byte boundary. The compiler is responsible for aligning
+ -- vector data types on 16-byte boundaries."
+
+ VECTOR_ALIGNMENT : constant := Natural'Min (16, Standard'Maximum_Alignment);
+ -- This value is used to set the alignment of vector datatypes in both the
+ -- hard and the soft binding implementations.
+ --
+ -- We want this value to never be greater than 16, because none of the
+ -- binding implementations requires larger alignments and such a value
+ -- would cause useless space to be allocated/wasted for vector objects.
+ -- Furthermore, the alignment of 16 matches the hard binding leading to
+ -- a more faithful emulation.
+ --
+ -- It needs to be exactly 16 for the hard binding, and the initializing
+ -- expression is just right for this purpose since Maximum_Alignment is
+ -- expected to be 16 for the real Altivec ABI.
+ --
+ -- The soft binding doesn't rely on strict 16byte alignment, and we want
+ -- the value to be no greater than Standard'Maximum_Alignment in this case
+ -- to ensure it is supported on every possible target.
+
+ -------------------------------------------------------
+ -- [PIM-2.1] Data Types - Interpretation of contents --
+ -------------------------------------------------------
+
+ ---------------------
+ -- char components --
+ ---------------------
+
+ CHAR_BIT : constant := 8;
+ SCHAR_MIN : constant := -2 ** (CHAR_BIT - 1);
+ SCHAR_MAX : constant := 2 ** (CHAR_BIT - 1) - 1;
+ UCHAR_MAX : constant := 2 ** CHAR_BIT - 1;
+
+ type unsigned_char is mod UCHAR_MAX + 1;
+ for unsigned_char'Size use CHAR_BIT;
+
+ type signed_char is range SCHAR_MIN .. SCHAR_MAX;
+ for signed_char'Size use CHAR_BIT;
+
+ subtype bool_char is unsigned_char;
+ -- ??? There is a difference here between what the Altivec Technology
+ -- Programming Interface Manual says and what GCC says. In the manual,
+ -- vector_bool_char is a vector_unsigned_char, while in altivec.h it
+ -- is a vector_signed_char.
+
+ bool_char_True : constant bool_char := bool_char'Last;
+ bool_char_False : constant bool_char := 0;
+
+ ----------------------
+ -- short components --
+ ----------------------
+
+ SHORT_BIT : constant := 16;
+ SSHORT_MIN : constant := -2 ** (SHORT_BIT - 1);
+ SSHORT_MAX : constant := 2 ** (SHORT_BIT - 1) - 1;
+ USHORT_MAX : constant := 2 ** SHORT_BIT - 1;
+
+ type unsigned_short is mod USHORT_MAX + 1;
+ for unsigned_short'Size use SHORT_BIT;
+
+ subtype unsigned_short_int is unsigned_short;
+
+ type signed_short is range SSHORT_MIN .. SSHORT_MAX;
+ for signed_short'Size use SHORT_BIT;
+
+ subtype signed_short_int is signed_short;
+
+ subtype bool_short is unsigned_short;
+ -- ??? See bool_char
+
+ bool_short_True : constant bool_short := bool_short'Last;
+ bool_short_False : constant bool_short := 0;
+
+ subtype bool_short_int is bool_short;
+
+ --------------------
+ -- int components --
+ --------------------
+
+ INT_BIT : constant := 32;
+ SINT_MIN : constant := -2 ** (INT_BIT - 1);
+ SINT_MAX : constant := 2 ** (INT_BIT - 1) - 1;
+ UINT_MAX : constant := 2 ** INT_BIT - 1;
+
+ type unsigned_int is mod UINT_MAX + 1;
+ for unsigned_int'Size use INT_BIT;
+
+ type signed_int is range SINT_MIN .. SINT_MAX;
+ for signed_int'Size use INT_BIT;
+
+ subtype bool_int is unsigned_int;
+ -- ??? See bool_char
+
+ bool_int_True : constant bool_int := bool_int'Last;
+ bool_int_False : constant bool_int := 0;
+
+ ----------------------
+ -- float components --
+ ----------------------
+
+ FLOAT_BIT : constant := 32;
+ FLOAT_DIGIT : constant := 6;
+ FLOAT_MIN : constant := -16#0.FFFF_FF#E+32;
+ FLOAT_MAX : constant := 16#0.FFFF_FF#E+32;
+
+ type C_float is digits FLOAT_DIGIT range FLOAT_MIN .. FLOAT_MAX;
+ for C_float'Size use FLOAT_BIT;
+ -- Altivec operations always use the standard native floating-point
+ -- support of the target. Note that this means that there may be
+ -- minor differences in results between targets when the floating-
+ -- point implementations are slightly different, as would happen
+ -- with normal non-Altivec floating-point operations. In particular
+ -- the Altivec simulations may yield slightly different results
+ -- from those obtained on a true hardware Altivec target if the
+ -- floating-point implementation is not 100% compatible.
+
+ ----------------------
+ -- pixel components --
+ ----------------------
+
+ subtype pixel is unsigned_short;
+
+ -----------------------------------------------------------
+ -- Subtypes for variants found in the GCC implementation --
+ -----------------------------------------------------------
+
+ subtype c_int is signed_int;
+ subtype c_short is c_int;
+
+ LONG_BIT : constant := 32;
+ -- Some of the GCC builtins are built with "long" arguments and
+ -- expect SImode to come in.
+
+ SLONG_MIN : constant := -2 ** (LONG_BIT - 1);
+ SLONG_MAX : constant := 2 ** (LONG_BIT - 1) - 1;
+ ULONG_MAX : constant := 2 ** LONG_BIT - 1;
+
+ type signed_long is range SLONG_MIN .. SLONG_MAX;
+ type unsigned_long is mod ULONG_MAX + 1;
+
+ subtype c_long is signed_long;
+
+ subtype c_ptr is System.Address;
+
+ ---------------------------------------------------------
+ -- Access types, for the sake of some argument passing --
+ ---------------------------------------------------------
+
+ type signed_char_ptr is access all signed_char;
+ type unsigned_char_ptr is access all unsigned_char;
+
+ type short_ptr is access all c_short;
+ type signed_short_ptr is access all signed_short;
+ type unsigned_short_ptr is access all unsigned_short;
+
+ type int_ptr is access all c_int;
+ type signed_int_ptr is access all signed_int;
+ type unsigned_int_ptr is access all unsigned_int;
+
+ type long_ptr is access all c_long;
+ type signed_long_ptr is access all signed_long;
+ type unsigned_long_ptr is access all unsigned_long;
+
+ type float_ptr is access all Float;
+
+ --
+
+ type const_signed_char_ptr is access constant signed_char;
+ type const_unsigned_char_ptr is access constant unsigned_char;
+
+ type const_short_ptr is access constant c_short;
+ type const_signed_short_ptr is access constant signed_short;
+ type const_unsigned_short_ptr is access constant unsigned_short;
+
+ type const_int_ptr is access constant c_int;
+ type const_signed_int_ptr is access constant signed_int;
+ type const_unsigned_int_ptr is access constant unsigned_int;
+
+ type const_long_ptr is access constant c_long;
+ type const_signed_long_ptr is access constant signed_long;
+ type const_unsigned_long_ptr is access constant unsigned_long;
+
+ type const_float_ptr is access constant Float;
+
+ -- Access to const volatile arguments need specialized types
+
+ type volatile_float is new Float;
+ pragma Volatile (volatile_float);
+
+ type volatile_signed_char is new signed_char;
+ pragma Volatile (volatile_signed_char);
+
+ type volatile_unsigned_char is new unsigned_char;
+ pragma Volatile (volatile_unsigned_char);
+
+ type volatile_signed_short is new signed_short;
+ pragma Volatile (volatile_signed_short);
+
+ type volatile_unsigned_short is new unsigned_short;
+ pragma Volatile (volatile_unsigned_short);
+
+ type volatile_signed_int is new signed_int;
+ pragma Volatile (volatile_signed_int);
+
+ type volatile_unsigned_int is new unsigned_int;
+ pragma Volatile (volatile_unsigned_int);
+
+ type volatile_signed_long is new signed_long;
+ pragma Volatile (volatile_signed_long);
+
+ type volatile_unsigned_long is new unsigned_long;
+ pragma Volatile (volatile_unsigned_long);
+
+ type constv_char_ptr is access constant volatile_signed_char;
+ type constv_signed_char_ptr is access constant volatile_signed_char;
+ type constv_unsigned_char_ptr is access constant volatile_unsigned_char;
+
+ type constv_short_ptr is access constant volatile_signed_short;
+ type constv_signed_short_ptr is access constant volatile_signed_short;
+ type constv_unsigned_short_ptr is access constant volatile_unsigned_short;
+
+ type constv_int_ptr is access constant volatile_signed_int;
+ type constv_signed_int_ptr is access constant volatile_signed_int;
+ type constv_unsigned_int_ptr is access constant volatile_unsigned_int;
+
+ type constv_long_ptr is access constant volatile_signed_long;
+ type constv_signed_long_ptr is access constant volatile_signed_long;
+ type constv_unsigned_long_ptr is access constant volatile_unsigned_long;
+
+ type constv_float_ptr is access constant volatile_float;
+
+private
+
+ -----------------------
+ -- Various constants --
+ -----------------------
+
+ CR6_EQ : constant := 0;
+ CR6_EQ_REV : constant := 1;
+ CR6_LT : constant := 2;
+ CR6_LT_REV : constant := 3;
+
+end GNAT.Altivec;