aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/ada/freeze.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/ada/freeze.adb')
-rw-r--r--gcc-4.9/gcc/ada/freeze.adb7238
1 files changed, 7238 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/ada/freeze.adb b/gcc-4.9/gcc/ada/freeze.adb
new file mode 100644
index 000000000..737172390
--- /dev/null
+++ b/gcc-4.9/gcc/ada/freeze.adb
@@ -0,0 +1,7238 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- F R E E Z E --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Debug; use Debug;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Errout; use Errout;
+with Exp_Ch3; use Exp_Ch3;
+with Exp_Ch7; use Exp_Ch7;
+with Exp_Disp; use Exp_Disp;
+with Exp_Pakd; use Exp_Pakd;
+with Exp_Util; use Exp_Util;
+with Exp_Tss; use Exp_Tss;
+with Layout; use Layout;
+with Lib; use Lib;
+with Namet; use Namet;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Restrict; use Restrict;
+with Rident; use Rident;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Aux; use Sem_Aux;
+with Sem_Cat; use Sem_Cat;
+with Sem_Ch6; use Sem_Ch6;
+with Sem_Ch7; use Sem_Ch7;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Ch9; use Sem_Ch9;
+with Sem_Ch13; use Sem_Ch13;
+with Sem_Eval; use Sem_Eval;
+with Sem_Mech; use Sem_Mech;
+with Sem_Prag; use Sem_Prag;
+with Sem_Res; use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Sinfo; use Sinfo;
+with Snames; use Snames;
+with Stand; use Stand;
+with Targparm; use Targparm;
+with Tbuild; use Tbuild;
+with Ttypes; use Ttypes;
+with Uintp; use Uintp;
+with Urealp; use Urealp;
+
+package body Freeze is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
+ -- Typ is a type that is being frozen. If no size clause is given,
+ -- but a default Esize has been computed, then this default Esize is
+ -- adjusted up if necessary to be consistent with a given alignment,
+ -- but never to a value greater than Long_Long_Integer'Size. This
+ -- is used for all discrete types and for fixed-point types.
+
+ procedure Build_And_Analyze_Renamed_Body
+ (Decl : Node_Id;
+ New_S : Entity_Id;
+ After : in out Node_Id);
+ -- Build body for a renaming declaration, insert in tree and analyze
+
+ procedure Check_Address_Clause (E : Entity_Id);
+ -- Apply legality checks to address clauses for object declarations,
+ -- at the point the object is frozen. Also ensure any initialization is
+ -- performed only after the object has been frozen.
+
+ procedure Check_Component_Storage_Order
+ (Encl_Type : Entity_Id;
+ Comp : Entity_Id;
+ ADC : Node_Id);
+ -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
+ -- clause, verify that the component type has an explicit and compatible
+ -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
+ -- entity of the component under consideration. For an Encl_Type that
+ -- does not have a Scalar_Storage_Order attribute definition clause,
+ -- verify that the component also does not have such a clause.
+ -- ADC is the attribute definition clause if present (or Empty).
+
+ procedure Check_Strict_Alignment (E : Entity_Id);
+ -- E is a base type. If E is tagged or has a component that is aliased
+ -- or tagged or contains something this is aliased or tagged, set
+ -- Strict_Alignment.
+
+ procedure Check_Unsigned_Type (E : Entity_Id);
+ pragma Inline (Check_Unsigned_Type);
+ -- If E is a fixed-point or discrete type, then all the necessary work
+ -- to freeze it is completed except for possible setting of the flag
+ -- Is_Unsigned_Type, which is done by this procedure. The call has no
+ -- effect if the entity E is not a discrete or fixed-point type.
+
+ procedure Freeze_And_Append
+ (Ent : Entity_Id;
+ N : Node_Id;
+ Result : in out List_Id);
+ -- Freezes Ent using Freeze_Entity, and appends the resulting list of
+ -- nodes to Result, modifying Result from No_List if necessary. N has
+ -- the same usage as in Freeze_Entity.
+
+ procedure Freeze_Enumeration_Type (Typ : Entity_Id);
+ -- Freeze enumeration type. The Esize field is set as processing
+ -- proceeds (i.e. set by default when the type is declared and then
+ -- adjusted by rep clauses. What this procedure does is to make sure
+ -- that if a foreign convention is specified, and no specific size
+ -- is given, then the size must be at least Integer'Size.
+
+ procedure Freeze_Static_Object (E : Entity_Id);
+ -- If an object is frozen which has Is_Statically_Allocated set, then
+ -- all referenced types must also be marked with this flag. This routine
+ -- is in charge of meeting this requirement for the object entity E.
+
+ procedure Freeze_Subprogram (E : Entity_Id);
+ -- Perform freezing actions for a subprogram (create extra formals,
+ -- and set proper default mechanism values). Note that this routine
+ -- is not called for internal subprograms, for which neither of these
+ -- actions is needed (or desirable, we do not want for example to have
+ -- these extra formals present in initialization procedures, where they
+ -- would serve no purpose). In this call E is either a subprogram or
+ -- a subprogram type (i.e. an access to a subprogram).
+
+ function Is_Fully_Defined (T : Entity_Id) return Boolean;
+ -- True if T is not private and has no private components, or has a full
+ -- view. Used to determine whether the designated type of an access type
+ -- should be frozen when the access type is frozen. This is done when an
+ -- allocator is frozen, or an expression that may involve attributes of
+ -- the designated type. Otherwise freezing the access type does not freeze
+ -- the designated type.
+
+ procedure Process_Default_Expressions
+ (E : Entity_Id;
+ After : in out Node_Id);
+ -- This procedure is called for each subprogram to complete processing of
+ -- default expressions at the point where all types are known to be frozen.
+ -- The expressions must be analyzed in full, to make sure that all error
+ -- processing is done (they have only been pre-analyzed). If the expression
+ -- is not an entity or literal, its analysis may generate code which must
+ -- not be executed. In that case we build a function body to hold that
+ -- code. This wrapper function serves no other purpose (it used to be
+ -- called to evaluate the default, but now the default is inlined at each
+ -- point of call).
+
+ procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
+ -- Typ is a record or array type that is being frozen. This routine sets
+ -- the default component alignment from the scope stack values if the
+ -- alignment is otherwise not specified.
+
+ procedure Check_Debug_Info_Needed (T : Entity_Id);
+ -- As each entity is frozen, this routine is called to deal with the
+ -- setting of Debug_Info_Needed for the entity. This flag is set if
+ -- the entity comes from source, or if we are in Debug_Generated_Code
+ -- mode or if the -gnatdV debug flag is set. However, it never sets
+ -- the flag if Debug_Info_Off is set. This procedure also ensures that
+ -- subsidiary entities have the flag set as required.
+
+ procedure Undelay_Type (T : Entity_Id);
+ -- T is a type of a component that we know to be an Itype. We don't want
+ -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
+ -- Full_View or Corresponding_Record_Type.
+
+ procedure Warn_Overlay
+ (Expr : Node_Id;
+ Typ : Entity_Id;
+ Nam : Node_Id);
+ -- Expr is the expression for an address clause for entity Nam whose type
+ -- is Typ. If Typ has a default initialization, and there is no explicit
+ -- initialization in the source declaration, check whether the address
+ -- clause might cause overlaying of an entity, and emit a warning on the
+ -- side effect that the initialization will cause.
+
+ -------------------------------
+ -- Adjust_Esize_For_Alignment --
+ -------------------------------
+
+ procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
+ Align : Uint;
+
+ begin
+ if Known_Esize (Typ) and then Known_Alignment (Typ) then
+ Align := Alignment_In_Bits (Typ);
+
+ if Align > Esize (Typ)
+ and then Align <= Standard_Long_Long_Integer_Size
+ then
+ Set_Esize (Typ, Align);
+ end if;
+ end if;
+ end Adjust_Esize_For_Alignment;
+
+ ------------------------------------
+ -- Build_And_Analyze_Renamed_Body --
+ ------------------------------------
+
+ procedure Build_And_Analyze_Renamed_Body
+ (Decl : Node_Id;
+ New_S : Entity_Id;
+ After : in out Node_Id)
+ is
+ Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
+ Ent : constant Entity_Id := Defining_Entity (Decl);
+ Body_Node : Node_Id;
+ Renamed_Subp : Entity_Id;
+
+ begin
+ -- If the renamed subprogram is intrinsic, there is no need for a
+ -- wrapper body: we set the alias that will be called and expanded which
+ -- completes the declaration. This transformation is only legal if the
+ -- renamed entity has already been elaborated.
+
+ -- Note that it is legal for a renaming_as_body to rename an intrinsic
+ -- subprogram, as long as the renaming occurs before the new entity
+ -- is frozen (RM 8.5.4 (5)).
+
+ if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
+ and then Is_Entity_Name (Name (Body_Decl))
+ then
+ Renamed_Subp := Entity (Name (Body_Decl));
+ else
+ Renamed_Subp := Empty;
+ end if;
+
+ if Present (Renamed_Subp)
+ and then Is_Intrinsic_Subprogram (Renamed_Subp)
+ and then
+ (not In_Same_Source_Unit (Renamed_Subp, Ent)
+ or else Sloc (Renamed_Subp) < Sloc (Ent))
+
+ -- We can make the renaming entity intrinsic if the renamed function
+ -- has an interface name, or if it is one of the shift/rotate
+ -- operations known to the compiler.
+
+ and then
+ (Present (Interface_Name (Renamed_Subp))
+ or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
+ Name_Rotate_Right,
+ Name_Shift_Left,
+ Name_Shift_Right,
+ Name_Shift_Right_Arithmetic))
+ then
+ Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
+
+ if Present (Alias (Renamed_Subp)) then
+ Set_Alias (Ent, Alias (Renamed_Subp));
+ else
+ Set_Alias (Ent, Renamed_Subp);
+ end if;
+
+ Set_Is_Intrinsic_Subprogram (Ent);
+ Set_Has_Completion (Ent);
+
+ else
+ Body_Node := Build_Renamed_Body (Decl, New_S);
+ Insert_After (After, Body_Node);
+ Mark_Rewrite_Insertion (Body_Node);
+ Analyze (Body_Node);
+ After := Body_Node;
+ end if;
+ end Build_And_Analyze_Renamed_Body;
+
+ ------------------------
+ -- Build_Renamed_Body --
+ ------------------------
+
+ function Build_Renamed_Body
+ (Decl : Node_Id;
+ New_S : Entity_Id) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (New_S);
+ -- We use for the source location of the renamed body, the location of
+ -- the spec entity. It might seem more natural to use the location of
+ -- the renaming declaration itself, but that would be wrong, since then
+ -- the body we create would look as though it was created far too late,
+ -- and this could cause problems with elaboration order analysis,
+ -- particularly in connection with instantiations.
+
+ N : constant Node_Id := Unit_Declaration_Node (New_S);
+ Nam : constant Node_Id := Name (N);
+ Old_S : Entity_Id;
+ Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
+ Actuals : List_Id := No_List;
+ Call_Node : Node_Id;
+ Call_Name : Node_Id;
+ Body_Node : Node_Id;
+ Formal : Entity_Id;
+ O_Formal : Entity_Id;
+ Param_Spec : Node_Id;
+
+ Pref : Node_Id := Empty;
+ -- If the renamed entity is a primitive operation given in prefix form,
+ -- the prefix is the target object and it has to be added as the first
+ -- actual in the generated call.
+
+ begin
+ -- Determine the entity being renamed, which is the target of the call
+ -- statement. If the name is an explicit dereference, this is a renaming
+ -- of a subprogram type rather than a subprogram. The name itself is
+ -- fully analyzed.
+
+ if Nkind (Nam) = N_Selected_Component then
+ Old_S := Entity (Selector_Name (Nam));
+
+ elsif Nkind (Nam) = N_Explicit_Dereference then
+ Old_S := Etype (Nam);
+
+ elsif Nkind (Nam) = N_Indexed_Component then
+ if Is_Entity_Name (Prefix (Nam)) then
+ Old_S := Entity (Prefix (Nam));
+ else
+ Old_S := Entity (Selector_Name (Prefix (Nam)));
+ end if;
+
+ elsif Nkind (Nam) = N_Character_Literal then
+ Old_S := Etype (New_S);
+
+ else
+ Old_S := Entity (Nam);
+ end if;
+
+ if Is_Entity_Name (Nam) then
+
+ -- If the renamed entity is a predefined operator, retain full name
+ -- to ensure its visibility.
+
+ if Ekind (Old_S) = E_Operator
+ and then Nkind (Nam) = N_Expanded_Name
+ then
+ Call_Name := New_Copy (Name (N));
+ else
+ Call_Name := New_Occurrence_Of (Old_S, Loc);
+ end if;
+
+ else
+ if Nkind (Nam) = N_Selected_Component
+ and then Present (First_Formal (Old_S))
+ and then
+ (Is_Controlling_Formal (First_Formal (Old_S))
+ or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
+ then
+
+ -- Retrieve the target object, to be added as a first actual
+ -- in the call.
+
+ Call_Name := New_Occurrence_Of (Old_S, Loc);
+ Pref := Prefix (Nam);
+
+ else
+ Call_Name := New_Copy (Name (N));
+ end if;
+
+ -- Original name may have been overloaded, but is fully resolved now
+
+ Set_Is_Overloaded (Call_Name, False);
+ end if;
+
+ -- For simple renamings, subsequent calls can be expanded directly as
+ -- calls to the renamed entity. The body must be generated in any case
+ -- for calls that may appear elsewhere. This is not done in the case
+ -- where the subprogram is an instantiation because the actual proper
+ -- body has not been built yet.
+
+ if Ekind_In (Old_S, E_Function, E_Procedure)
+ and then Nkind (Decl) = N_Subprogram_Declaration
+ and then not Is_Generic_Instance (Old_S)
+ then
+ Set_Body_To_Inline (Decl, Old_S);
+ end if;
+
+ -- The body generated for this renaming is an internal artifact, and
+ -- does not constitute a freeze point for the called entity.
+
+ Set_Must_Not_Freeze (Call_Name);
+
+ Formal := First_Formal (Defining_Entity (Decl));
+
+ if Present (Pref) then
+ declare
+ Pref_Type : constant Entity_Id := Etype (Pref);
+ Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
+
+ begin
+ -- The controlling formal may be an access parameter, or the
+ -- actual may be an access value, so adjust accordingly.
+
+ if Is_Access_Type (Pref_Type)
+ and then not Is_Access_Type (Form_Type)
+ then
+ Actuals := New_List
+ (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
+
+ elsif Is_Access_Type (Form_Type)
+ and then not Is_Access_Type (Pref)
+ then
+ Actuals := New_List
+ (Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Access,
+ Prefix => Relocate_Node (Pref)));
+ else
+ Actuals := New_List (Pref);
+ end if;
+ end;
+
+ elsif Present (Formal) then
+ Actuals := New_List;
+
+ else
+ Actuals := No_List;
+ end if;
+
+ if Present (Formal) then
+ while Present (Formal) loop
+ Append (New_Occurrence_Of (Formal, Loc), Actuals);
+ Next_Formal (Formal);
+ end loop;
+ end if;
+
+ -- If the renamed entity is an entry, inherit its profile. For other
+ -- renamings as bodies, both profiles must be subtype conformant, so it
+ -- is not necessary to replace the profile given in the declaration.
+ -- However, default values that are aggregates are rewritten when
+ -- partially analyzed, so we recover the original aggregate to insure
+ -- that subsequent conformity checking works. Similarly, if the default
+ -- expression was constant-folded, recover the original expression.
+
+ Formal := First_Formal (Defining_Entity (Decl));
+
+ if Present (Formal) then
+ O_Formal := First_Formal (Old_S);
+ Param_Spec := First (Parameter_Specifications (Spec));
+ while Present (Formal) loop
+ if Is_Entry (Old_S) then
+ if Nkind (Parameter_Type (Param_Spec)) /=
+ N_Access_Definition
+ then
+ Set_Etype (Formal, Etype (O_Formal));
+ Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
+ end if;
+
+ elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
+ or else Nkind (Original_Node (Default_Value (O_Formal))) /=
+ Nkind (Default_Value (O_Formal))
+ then
+ Set_Expression (Param_Spec,
+ New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
+ end if;
+
+ Next_Formal (Formal);
+ Next_Formal (O_Formal);
+ Next (Param_Spec);
+ end loop;
+ end if;
+
+ -- If the renamed entity is a function, the generated body contains a
+ -- return statement. Otherwise, build a procedure call. If the entity is
+ -- an entry, subsequent analysis of the call will transform it into the
+ -- proper entry or protected operation call. If the renamed entity is
+ -- a character literal, return it directly.
+
+ if Ekind (Old_S) = E_Function
+ or else Ekind (Old_S) = E_Operator
+ or else (Ekind (Old_S) = E_Subprogram_Type
+ and then Etype (Old_S) /= Standard_Void_Type)
+ then
+ Call_Node :=
+ Make_Simple_Return_Statement (Loc,
+ Expression =>
+ Make_Function_Call (Loc,
+ Name => Call_Name,
+ Parameter_Associations => Actuals));
+
+ elsif Ekind (Old_S) = E_Enumeration_Literal then
+ Call_Node :=
+ Make_Simple_Return_Statement (Loc,
+ Expression => New_Occurrence_Of (Old_S, Loc));
+
+ elsif Nkind (Nam) = N_Character_Literal then
+ Call_Node :=
+ Make_Simple_Return_Statement (Loc,
+ Expression => Call_Name);
+
+ else
+ Call_Node :=
+ Make_Procedure_Call_Statement (Loc,
+ Name => Call_Name,
+ Parameter_Associations => Actuals);
+ end if;
+
+ -- Create entities for subprogram body and formals
+
+ Set_Defining_Unit_Name (Spec,
+ Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
+
+ Param_Spec := First (Parameter_Specifications (Spec));
+ while Present (Param_Spec) loop
+ Set_Defining_Identifier (Param_Spec,
+ Make_Defining_Identifier (Loc,
+ Chars => Chars (Defining_Identifier (Param_Spec))));
+ Next (Param_Spec);
+ end loop;
+
+ Body_Node :=
+ Make_Subprogram_Body (Loc,
+ Specification => Spec,
+ Declarations => New_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (Call_Node)));
+
+ if Nkind (Decl) /= N_Subprogram_Declaration then
+ Rewrite (N,
+ Make_Subprogram_Declaration (Loc,
+ Specification => Specification (N)));
+ end if;
+
+ -- Link the body to the entity whose declaration it completes. If
+ -- the body is analyzed when the renamed entity is frozen, it may
+ -- be necessary to restore the proper scope (see package Exp_Ch13).
+
+ if Nkind (N) = N_Subprogram_Renaming_Declaration
+ and then Present (Corresponding_Spec (N))
+ then
+ Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
+ else
+ Set_Corresponding_Spec (Body_Node, New_S);
+ end if;
+
+ return Body_Node;
+ end Build_Renamed_Body;
+
+ --------------------------
+ -- Check_Address_Clause --
+ --------------------------
+
+ procedure Check_Address_Clause (E : Entity_Id) is
+ Addr : constant Node_Id := Address_Clause (E);
+ Expr : Node_Id;
+ Decl : constant Node_Id := Declaration_Node (E);
+ Loc : constant Source_Ptr := Sloc (Decl);
+ Typ : constant Entity_Id := Etype (E);
+
+ begin
+ if Present (Addr) then
+ Expr := Expression (Addr);
+
+ if Needs_Constant_Address (Decl, Typ) then
+ Check_Constant_Address_Clause (Expr, E);
+
+ -- Has_Delayed_Freeze was set on E when the address clause was
+ -- analyzed, and must remain set because we want the address
+ -- clause to be elaborated only after any entity it references
+ -- has been elaborated.
+ end if;
+
+ -- If Rep_Clauses are to be ignored, remove address clause from
+ -- list attached to entity, because it may be illegal for gigi,
+ -- for example by breaking order of elaboration..
+
+ if Ignore_Rep_Clauses then
+ declare
+ Rep : Node_Id;
+
+ begin
+ Rep := First_Rep_Item (E);
+
+ if Rep = Addr then
+ Set_First_Rep_Item (E, Next_Rep_Item (Addr));
+
+ else
+ while Present (Rep)
+ and then Next_Rep_Item (Rep) /= Addr
+ loop
+ Rep := Next_Rep_Item (Rep);
+ end loop;
+ end if;
+
+ if Present (Rep) then
+ Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
+ end if;
+ end;
+
+ Rewrite (Addr, Make_Null_Statement (Sloc (E)));
+
+ elsif not Error_Posted (Expr)
+ and then not Needs_Finalization (Typ)
+ then
+ Warn_Overlay (Expr, Typ, Name (Addr));
+ end if;
+
+ if Present (Expression (Decl)) then
+
+ -- Capture initialization value at point of declaration
+
+ Remove_Side_Effects (Expression (Decl));
+
+ -- Move initialization to freeze actions (once the object has
+ -- been frozen, and the address clause alignment check has been
+ -- performed.
+
+ Append_Freeze_Action (E,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (E, Loc),
+ Expression => Expression (Decl)));
+
+ Set_No_Initialization (Decl);
+ end if;
+ end if;
+ end Check_Address_Clause;
+
+ -----------------------------
+ -- Check_Compile_Time_Size --
+ -----------------------------
+
+ procedure Check_Compile_Time_Size (T : Entity_Id) is
+
+ procedure Set_Small_Size (T : Entity_Id; S : Uint);
+ -- Sets the compile time known size (32 bits or less) in the Esize
+ -- field, of T checking for a size clause that was given which attempts
+ -- to give a smaller size, and also checking for an alignment clause.
+
+ function Size_Known (T : Entity_Id) return Boolean;
+ -- Recursive function that does all the work
+
+ function Static_Discriminated_Components (T : Entity_Id) return Boolean;
+ -- If T is a constrained subtype, its size is not known if any of its
+ -- discriminant constraints is not static and it is not a null record.
+ -- The test is conservative and doesn't check that the components are
+ -- in fact constrained by non-static discriminant values. Could be made
+ -- more precise ???
+
+ --------------------
+ -- Set_Small_Size --
+ --------------------
+
+ procedure Set_Small_Size (T : Entity_Id; S : Uint) is
+ begin
+ if S > 32 then
+ return;
+
+ -- Check for bad size clause given
+
+ elsif Has_Size_Clause (T) then
+ if RM_Size (T) < S then
+ Error_Msg_Uint_1 := S;
+ Error_Msg_NE
+ ("size for& too small, minimum allowed is ^",
+ Size_Clause (T), T);
+ end if;
+
+ -- Set size if not set already
+
+ elsif Unknown_RM_Size (T) then
+ Set_RM_Size (T, S);
+ end if;
+ end Set_Small_Size;
+
+ ----------------
+ -- Size_Known --
+ ----------------
+
+ function Size_Known (T : Entity_Id) return Boolean is
+ Index : Entity_Id;
+ Comp : Entity_Id;
+ Ctyp : Entity_Id;
+ Low : Node_Id;
+ High : Node_Id;
+
+ begin
+ if Size_Known_At_Compile_Time (T) then
+ return True;
+
+ -- Always True for scalar types. This is true even for generic formal
+ -- scalar types. We used to return False in the latter case, but the
+ -- size is known at compile time, even in the template, we just do
+ -- not know the exact size but that's not the point of this routine.
+
+ elsif Is_Scalar_Type (T)
+ or else Is_Task_Type (T)
+ then
+ return True;
+
+ -- Array types
+
+ elsif Is_Array_Type (T) then
+
+ -- String literals always have known size, and we can set it
+
+ if Ekind (T) = E_String_Literal_Subtype then
+ Set_Small_Size (T, Component_Size (T)
+ * String_Literal_Length (T));
+ return True;
+
+ -- Unconstrained types never have known at compile time size
+
+ elsif not Is_Constrained (T) then
+ return False;
+
+ -- Don't do any recursion on type with error posted, since we may
+ -- have a malformed type that leads us into a loop.
+
+ elsif Error_Posted (T) then
+ return False;
+
+ -- Otherwise if component size unknown, then array size unknown
+
+ elsif not Size_Known (Component_Type (T)) then
+ return False;
+ end if;
+
+ -- Check for all indexes static, and also compute possible size
+ -- (in case it is less than 32 and may be packable).
+
+ declare
+ Esiz : Uint := Component_Size (T);
+ Dim : Uint;
+
+ begin
+ Index := First_Index (T);
+ while Present (Index) loop
+ if Nkind (Index) = N_Range then
+ Get_Index_Bounds (Index, Low, High);
+
+ elsif Error_Posted (Scalar_Range (Etype (Index))) then
+ return False;
+
+ else
+ Low := Type_Low_Bound (Etype (Index));
+ High := Type_High_Bound (Etype (Index));
+ end if;
+
+ if not Compile_Time_Known_Value (Low)
+ or else not Compile_Time_Known_Value (High)
+ or else Etype (Index) = Any_Type
+ then
+ return False;
+
+ else
+ Dim := Expr_Value (High) - Expr_Value (Low) + 1;
+
+ if Dim >= 0 then
+ Esiz := Esiz * Dim;
+ else
+ Esiz := Uint_0;
+ end if;
+ end if;
+
+ Next_Index (Index);
+ end loop;
+
+ Set_Small_Size (T, Esiz);
+ return True;
+ end;
+
+ -- Access types always have known at compile time sizes
+
+ elsif Is_Access_Type (T) then
+ return True;
+
+ -- For non-generic private types, go to underlying type if present
+
+ elsif Is_Private_Type (T)
+ and then not Is_Generic_Type (T)
+ and then Present (Underlying_Type (T))
+ then
+ -- Don't do any recursion on type with error posted, since we may
+ -- have a malformed type that leads us into a loop.
+
+ if Error_Posted (T) then
+ return False;
+ else
+ return Size_Known (Underlying_Type (T));
+ end if;
+
+ -- Record types
+
+ elsif Is_Record_Type (T) then
+
+ -- A class-wide type is never considered to have a known size
+
+ if Is_Class_Wide_Type (T) then
+ return False;
+
+ -- A subtype of a variant record must not have non-static
+ -- discriminated components.
+
+ elsif T /= Base_Type (T)
+ and then not Static_Discriminated_Components (T)
+ then
+ return False;
+
+ -- Don't do any recursion on type with error posted, since we may
+ -- have a malformed type that leads us into a loop.
+
+ elsif Error_Posted (T) then
+ return False;
+ end if;
+
+ -- Now look at the components of the record
+
+ declare
+ -- The following two variables are used to keep track of the
+ -- size of packed records if we can tell the size of the packed
+ -- record in the front end. Packed_Size_Known is True if so far
+ -- we can figure out the size. It is initialized to True for a
+ -- packed record, unless the record has discriminants or atomic
+ -- components or independent components.
+
+ -- The reason we eliminate the discriminated case is that
+ -- we don't know the way the back end lays out discriminated
+ -- packed records. If Packed_Size_Known is True, then
+ -- Packed_Size is the size in bits so far.
+
+ Packed_Size_Known : Boolean :=
+ Is_Packed (T)
+ and then not Has_Discriminants (T)
+ and then not Has_Atomic_Components (T)
+ and then not Has_Independent_Components (T);
+
+ Packed_Size : Uint := Uint_0;
+ -- Size in bits so far
+
+ begin
+ -- Test for variant part present
+
+ if Has_Discriminants (T)
+ and then Present (Parent (T))
+ and then Nkind (Parent (T)) = N_Full_Type_Declaration
+ and then Nkind (Type_Definition (Parent (T))) =
+ N_Record_Definition
+ and then not Null_Present (Type_Definition (Parent (T)))
+ and then
+ Present (Variant_Part
+ (Component_List (Type_Definition (Parent (T)))))
+ then
+ -- If variant part is present, and type is unconstrained,
+ -- then we must have defaulted discriminants, or a size
+ -- clause must be present for the type, or else the size
+ -- is definitely not known at compile time.
+
+ if not Is_Constrained (T)
+ and then
+ No (Discriminant_Default_Value (First_Discriminant (T)))
+ and then Unknown_RM_Size (T)
+ then
+ return False;
+ end if;
+ end if;
+
+ -- Loop through components
+
+ Comp := First_Component_Or_Discriminant (T);
+ while Present (Comp) loop
+ Ctyp := Etype (Comp);
+
+ -- We do not know the packed size if there is a component
+ -- clause present (we possibly could, but this would only
+ -- help in the case of a record with partial rep clauses.
+ -- That's because in the case of full rep clauses, the
+ -- size gets figured out anyway by a different circuit).
+
+ if Present (Component_Clause (Comp)) then
+ Packed_Size_Known := False;
+ end if;
+
+ -- We do not know the packed size if we have a by reference
+ -- type, or an atomic type or an atomic component, or an
+ -- aliased component (because packing does not touch these).
+
+ if Is_Atomic (Ctyp)
+ or else Is_Atomic (Comp)
+ or else Is_By_Reference_Type (Ctyp)
+ or else Is_Aliased (Comp)
+ then
+ Packed_Size_Known := False;
+ end if;
+
+ -- We need to identify a component that is an array where
+ -- the index type is an enumeration type with non-standard
+ -- representation, and some bound of the type depends on a
+ -- discriminant.
+
+ -- This is because gigi computes the size by doing a
+ -- substitution of the appropriate discriminant value in
+ -- the size expression for the base type, and gigi is not
+ -- clever enough to evaluate the resulting expression (which
+ -- involves a call to rep_to_pos) at compile time.
+
+ -- It would be nice if gigi would either recognize that
+ -- this expression can be computed at compile time, or
+ -- alternatively figured out the size from the subtype
+ -- directly, where all the information is at hand ???
+
+ if Is_Array_Type (Etype (Comp))
+ and then Present (Packed_Array_Type (Etype (Comp)))
+ then
+ declare
+ Ocomp : constant Entity_Id :=
+ Original_Record_Component (Comp);
+ OCtyp : constant Entity_Id := Etype (Ocomp);
+ Ind : Node_Id;
+ Indtyp : Entity_Id;
+ Lo, Hi : Node_Id;
+
+ begin
+ Ind := First_Index (OCtyp);
+ while Present (Ind) loop
+ Indtyp := Etype (Ind);
+
+ if Is_Enumeration_Type (Indtyp)
+ and then Has_Non_Standard_Rep (Indtyp)
+ then
+ Lo := Type_Low_Bound (Indtyp);
+ Hi := Type_High_Bound (Indtyp);
+
+ if Is_Entity_Name (Lo)
+ and then Ekind (Entity (Lo)) = E_Discriminant
+ then
+ return False;
+
+ elsif Is_Entity_Name (Hi)
+ and then Ekind (Entity (Hi)) = E_Discriminant
+ then
+ return False;
+ end if;
+ end if;
+
+ Next_Index (Ind);
+ end loop;
+ end;
+ end if;
+
+ -- Clearly size of record is not known if the size of one of
+ -- the components is not known.
+
+ if not Size_Known (Ctyp) then
+ return False;
+ end if;
+
+ -- Accumulate packed size if possible
+
+ if Packed_Size_Known then
+
+ -- We can only deal with elementary types, since for
+ -- non-elementary components, alignment enters into the
+ -- picture, and we don't know enough to handle proper
+ -- alignment in this context. Packed arrays count as
+ -- elementary if the representation is a modular type.
+
+ if Is_Elementary_Type (Ctyp)
+ or else (Is_Array_Type (Ctyp)
+ and then Present (Packed_Array_Type (Ctyp))
+ and then Is_Modular_Integer_Type
+ (Packed_Array_Type (Ctyp)))
+ then
+ -- Packed size unknown if we have an atomic type
+ -- or a by reference type, since the back end
+ -- knows how these are layed out.
+
+ if Is_Atomic (Ctyp)
+ or else Is_By_Reference_Type (Ctyp)
+ then
+ Packed_Size_Known := False;
+
+ -- If RM_Size is known and static, then we can keep
+ -- accumulating the packed size
+
+ elsif Known_Static_RM_Size (Ctyp) then
+
+ -- A little glitch, to be removed sometime ???
+ -- gigi does not understand zero sizes yet.
+
+ if RM_Size (Ctyp) = Uint_0 then
+ Packed_Size_Known := False;
+
+ -- Normal case where we can keep accumulating the
+ -- packed array size.
+
+ else
+ Packed_Size := Packed_Size + RM_Size (Ctyp);
+ end if;
+
+ -- If we have a field whose RM_Size is not known then
+ -- we can't figure out the packed size here.
+
+ else
+ Packed_Size_Known := False;
+ end if;
+
+ -- If we have a non-elementary type we can't figure out
+ -- the packed array size (alignment issues).
+
+ else
+ Packed_Size_Known := False;
+ end if;
+ end if;
+
+ Next_Component_Or_Discriminant (Comp);
+ end loop;
+
+ if Packed_Size_Known then
+ Set_Small_Size (T, Packed_Size);
+ end if;
+
+ return True;
+ end;
+
+ -- All other cases, size not known at compile time
+
+ else
+ return False;
+ end if;
+ end Size_Known;
+
+ -------------------------------------
+ -- Static_Discriminated_Components --
+ -------------------------------------
+
+ function Static_Discriminated_Components
+ (T : Entity_Id) return Boolean
+ is
+ Constraint : Elmt_Id;
+
+ begin
+ if Has_Discriminants (T)
+ and then Present (Discriminant_Constraint (T))
+ and then Present (First_Component (T))
+ then
+ Constraint := First_Elmt (Discriminant_Constraint (T));
+ while Present (Constraint) loop
+ if not Compile_Time_Known_Value (Node (Constraint)) then
+ return False;
+ end if;
+
+ Next_Elmt (Constraint);
+ end loop;
+ end if;
+
+ return True;
+ end Static_Discriminated_Components;
+
+ -- Start of processing for Check_Compile_Time_Size
+
+ begin
+ Set_Size_Known_At_Compile_Time (T, Size_Known (T));
+ end Check_Compile_Time_Size;
+
+ -----------------------------------
+ -- Check_Component_Storage_Order --
+ -----------------------------------
+
+ procedure Check_Component_Storage_Order
+ (Encl_Type : Entity_Id;
+ Comp : Entity_Id;
+ ADC : Node_Id)
+ is
+ Comp_Type : Entity_Id;
+ Comp_ADC : Node_Id;
+ Err_Node : Node_Id;
+
+ Comp_Byte_Aligned : Boolean;
+ -- Set True for the record case, when Comp starts on a byte boundary
+ -- (in which case it is allowed to have different storage order).
+
+ Comp_SSO_Differs : Boolean;
+ -- Set True when the component is a nested composite, and it does not
+ -- have the same scalar storage order as Encl_Type.
+
+ Component_Aliased : Boolean;
+
+ begin
+ -- Record case
+
+ if Present (Comp) then
+ Err_Node := Comp;
+ Comp_Type := Etype (Comp);
+
+ if Is_Tag (Comp) then
+ Comp_Byte_Aligned := True;
+ Component_Aliased := False;
+
+ else
+ Comp_Byte_Aligned :=
+ Present (Component_Clause (Comp))
+ and then
+ Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
+ Component_Aliased := Is_Aliased (Comp);
+ end if;
+
+ -- Array case
+
+ else
+ Err_Node := Encl_Type;
+ Comp_Type := Component_Type (Encl_Type);
+
+ Comp_Byte_Aligned := False;
+ Component_Aliased := Has_Aliased_Components (Encl_Type);
+ end if;
+
+ -- Note: the Reverse_Storage_Order flag is set on the base type, but
+ -- the attribute definition clause is attached to the first subtype.
+
+ Comp_Type := Base_Type (Comp_Type);
+ Comp_ADC := Get_Attribute_Definition_Clause
+ (First_Subtype (Comp_Type),
+ Attribute_Scalar_Storage_Order);
+
+ -- Case of enclosing type not having explicit SSO: component cannot
+ -- have it either.
+
+ if No (ADC) then
+ if Present (Comp_ADC) then
+ Error_Msg_N
+ ("composite type must have explicit scalar storage order",
+ Err_Node);
+ end if;
+
+ -- Case of enclosing type having explicit SSO: check compatible
+ -- attribute on Comp_Type if composite.
+
+ elsif Is_Record_Type (Comp_Type) or else Is_Array_Type (Comp_Type) then
+ Comp_SSO_Differs :=
+ Reverse_Storage_Order (Encl_Type)
+ /=
+ Reverse_Storage_Order (Comp_Type);
+
+ if Present (Comp) and then Chars (Comp) = Name_uParent then
+ if Comp_SSO_Differs then
+ Error_Msg_N
+ ("record extension must have same scalar storage order as "
+ & "parent", Err_Node);
+ end if;
+
+ elsif No (Comp_ADC) then
+ Error_Msg_N ("nested composite must have explicit scalar "
+ & "storage order", Err_Node);
+
+ elsif Comp_SSO_Differs then
+
+ -- Component SSO differs from enclosing composite:
+
+ -- Reject if component is a packed array, as it may be represented
+ -- as a scalar internally.
+
+ if Is_Packed (Comp_Type) then
+ Error_Msg_N
+ ("type of packed component must have same scalar "
+ & "storage order as enclosing composite", Err_Node);
+
+ -- Reject if not byte aligned
+
+ elsif not Comp_Byte_Aligned then
+ Error_Msg_N
+ ("type of non-byte-aligned component must have same scalar "
+ & "storage order as enclosing composite", Err_Node);
+ end if;
+ end if;
+
+ -- Enclosing type has explicit SSO, non-composite component must not
+ -- be aliased.
+
+ elsif Component_Aliased then
+ Error_Msg_N
+ ("aliased component not permitted for type with "
+ & "explicit Scalar_Storage_Order", Err_Node);
+ end if;
+ end Check_Component_Storage_Order;
+
+ -----------------------------
+ -- Check_Debug_Info_Needed --
+ -----------------------------
+
+ procedure Check_Debug_Info_Needed (T : Entity_Id) is
+ begin
+ if Debug_Info_Off (T) then
+ return;
+
+ elsif Comes_From_Source (T)
+ or else Debug_Generated_Code
+ or else Debug_Flag_VV
+ or else Needs_Debug_Info (T)
+ then
+ Set_Debug_Info_Needed (T);
+ end if;
+ end Check_Debug_Info_Needed;
+
+ ----------------------------
+ -- Check_Strict_Alignment --
+ ----------------------------
+
+ procedure Check_Strict_Alignment (E : Entity_Id) is
+ Comp : Entity_Id;
+
+ begin
+ if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
+ Set_Strict_Alignment (E);
+
+ elsif Is_Array_Type (E) then
+ Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
+
+ elsif Is_Record_Type (E) then
+ if Is_Limited_Record (E) then
+ Set_Strict_Alignment (E);
+ return;
+ end if;
+
+ Comp := First_Component (E);
+ while Present (Comp) loop
+ if not Is_Type (Comp)
+ and then (Strict_Alignment (Etype (Comp))
+ or else Is_Aliased (Comp))
+ then
+ Set_Strict_Alignment (E);
+ return;
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+ end if;
+ end Check_Strict_Alignment;
+
+ -------------------------
+ -- Check_Unsigned_Type --
+ -------------------------
+
+ procedure Check_Unsigned_Type (E : Entity_Id) is
+ Ancestor : Entity_Id;
+ Lo_Bound : Node_Id;
+ Btyp : Entity_Id;
+
+ begin
+ if not Is_Discrete_Or_Fixed_Point_Type (E) then
+ return;
+ end if;
+
+ -- Do not attempt to analyze case where range was in error
+
+ if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
+ return;
+ end if;
+
+ -- The situation that is non trivial is something like
+
+ -- subtype x1 is integer range -10 .. +10;
+ -- subtype x2 is x1 range 0 .. V1;
+ -- subtype x3 is x2 range V2 .. V3;
+ -- subtype x4 is x3 range V4 .. V5;
+
+ -- where Vn are variables. Here the base type is signed, but we still
+ -- know that x4 is unsigned because of the lower bound of x2.
+
+ -- The only way to deal with this is to look up the ancestor chain
+
+ Ancestor := E;
+ loop
+ if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
+ return;
+ end if;
+
+ Lo_Bound := Type_Low_Bound (Ancestor);
+
+ if Compile_Time_Known_Value (Lo_Bound) then
+ if Expr_Rep_Value (Lo_Bound) >= 0 then
+ Set_Is_Unsigned_Type (E, True);
+ end if;
+
+ return;
+
+ else
+ Ancestor := Ancestor_Subtype (Ancestor);
+
+ -- If no ancestor had a static lower bound, go to base type
+
+ if No (Ancestor) then
+
+ -- Note: the reason we still check for a compile time known
+ -- value for the base type is that at least in the case of
+ -- generic formals, we can have bounds that fail this test,
+ -- and there may be other cases in error situations.
+
+ Btyp := Base_Type (E);
+
+ if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
+ return;
+ end if;
+
+ Lo_Bound := Type_Low_Bound (Base_Type (E));
+
+ if Compile_Time_Known_Value (Lo_Bound)
+ and then Expr_Rep_Value (Lo_Bound) >= 0
+ then
+ Set_Is_Unsigned_Type (E, True);
+ end if;
+
+ return;
+ end if;
+ end if;
+ end loop;
+ end Check_Unsigned_Type;
+
+ -------------------------
+ -- Is_Atomic_Aggregate --
+ -------------------------
+
+ function Is_Atomic_Aggregate
+ (E : Entity_Id;
+ Typ : Entity_Id) return Boolean
+ is
+ Loc : constant Source_Ptr := Sloc (E);
+ New_N : Node_Id;
+ Par : Node_Id;
+ Temp : Entity_Id;
+
+ begin
+ Par := Parent (E);
+
+ -- Array may be qualified, so find outer context
+
+ if Nkind (Par) = N_Qualified_Expression then
+ Par := Parent (Par);
+ end if;
+
+ if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
+ and then Comes_From_Source (Par)
+ then
+ Temp := Make_Temporary (Loc, 'T', E);
+ New_N :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition => New_Occurrence_Of (Typ, Loc),
+ Expression => Relocate_Node (E));
+ Insert_Before (Par, New_N);
+ Analyze (New_N);
+
+ Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
+ return True;
+
+ else
+ return False;
+ end if;
+ end Is_Atomic_Aggregate;
+
+ ----------------
+ -- Freeze_All --
+ ----------------
+
+ -- Note: the easy coding for this procedure would be to just build a
+ -- single list of freeze nodes and then insert them and analyze them
+ -- all at once. This won't work, because the analysis of earlier freeze
+ -- nodes may recursively freeze types which would otherwise appear later
+ -- on in the freeze list. So we must analyze and expand the freeze nodes
+ -- as they are generated.
+
+ procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
+ E : Entity_Id;
+ Decl : Node_Id;
+
+ procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
+ -- This is the internal recursive routine that does freezing of entities
+ -- (but NOT the analysis of default expressions, which should not be
+ -- recursive, we don't want to analyze those till we are sure that ALL
+ -- the types are frozen).
+
+ --------------------
+ -- Freeze_All_Ent --
+ --------------------
+
+ procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
+ E : Entity_Id;
+ Flist : List_Id;
+ Lastn : Node_Id;
+
+ procedure Process_Flist;
+ -- If freeze nodes are present, insert and analyze, and reset cursor
+ -- for next insertion.
+
+ -------------------
+ -- Process_Flist --
+ -------------------
+
+ procedure Process_Flist is
+ begin
+ if Is_Non_Empty_List (Flist) then
+ Lastn := Next (After);
+ Insert_List_After_And_Analyze (After, Flist);
+
+ if Present (Lastn) then
+ After := Prev (Lastn);
+ else
+ After := Last (List_Containing (After));
+ end if;
+ end if;
+ end Process_Flist;
+
+ -- Start or processing for Freeze_All_Ent
+
+ begin
+ E := From;
+ while Present (E) loop
+
+ -- If the entity is an inner package which is not a package
+ -- renaming, then its entities must be frozen at this point. Note
+ -- that such entities do NOT get frozen at the end of the nested
+ -- package itself (only library packages freeze).
+
+ -- Same is true for task declarations, where anonymous records
+ -- created for entry parameters must be frozen.
+
+ if Ekind (E) = E_Package
+ and then No (Renamed_Object (E))
+ and then not Is_Child_Unit (E)
+ and then not Is_Frozen (E)
+ then
+ Push_Scope (E);
+ Install_Visible_Declarations (E);
+ Install_Private_Declarations (E);
+
+ Freeze_All (First_Entity (E), After);
+
+ End_Package_Scope (E);
+
+ if Is_Generic_Instance (E)
+ and then Has_Delayed_Freeze (E)
+ then
+ Set_Has_Delayed_Freeze (E, False);
+ Expand_N_Package_Declaration (Unit_Declaration_Node (E));
+ end if;
+
+ elsif Ekind (E) in Task_Kind
+ and then Nkind_In (Parent (E), N_Task_Type_Declaration,
+ N_Single_Task_Declaration)
+ then
+ Push_Scope (E);
+ Freeze_All (First_Entity (E), After);
+ End_Scope;
+
+ -- For a derived tagged type, we must ensure that all the
+ -- primitive operations of the parent have been frozen, so that
+ -- their addresses will be in the parent's dispatch table at the
+ -- point it is inherited.
+
+ elsif Ekind (E) = E_Record_Type
+ and then Is_Tagged_Type (E)
+ and then Is_Tagged_Type (Etype (E))
+ and then Is_Derived_Type (E)
+ then
+ declare
+ Prim_List : constant Elist_Id :=
+ Primitive_Operations (Etype (E));
+
+ Prim : Elmt_Id;
+ Subp : Entity_Id;
+
+ begin
+ Prim := First_Elmt (Prim_List);
+ while Present (Prim) loop
+ Subp := Node (Prim);
+
+ if Comes_From_Source (Subp)
+ and then not Is_Frozen (Subp)
+ then
+ Flist := Freeze_Entity (Subp, After);
+ Process_Flist;
+ end if;
+
+ Next_Elmt (Prim);
+ end loop;
+ end;
+ end if;
+
+ if not Is_Frozen (E) then
+ Flist := Freeze_Entity (E, After);
+ Process_Flist;
+
+ -- If already frozen, and there are delayed aspects, this is where
+ -- we do the visibility check for these aspects (see Sem_Ch13 spec
+ -- for a description of how we handle aspect visibility).
+
+ elsif Has_Delayed_Aspects (E) then
+
+ -- Retrieve the visibility to the discriminants in order to
+ -- analyze properly the aspects.
+
+ Push_Scope_And_Install_Discriminants (E);
+
+ declare
+ Ritem : Node_Id;
+
+ begin
+ Ritem := First_Rep_Item (E);
+ while Present (Ritem) loop
+ if Nkind (Ritem) = N_Aspect_Specification
+ and then Entity (Ritem) = E
+ and then Is_Delayed_Aspect (Ritem)
+ then
+ Check_Aspect_At_End_Of_Declarations (Ritem);
+ end if;
+
+ Ritem := Next_Rep_Item (Ritem);
+ end loop;
+ end;
+
+ Uninstall_Discriminants_And_Pop_Scope (E);
+ end if;
+
+ -- If an incomplete type is still not frozen, this may be a
+ -- premature freezing because of a body declaration that follows.
+ -- Indicate where the freezing took place. Freezing will happen
+ -- if the body comes from source, but not if it is internally
+ -- generated, for example as the body of a type invariant.
+
+ -- If the freezing is caused by the end of the current declarative
+ -- part, it is a Taft Amendment type, and there is no error.
+
+ if not Is_Frozen (E)
+ and then Ekind (E) = E_Incomplete_Type
+ then
+ declare
+ Bod : constant Node_Id := Next (After);
+
+ begin
+ -- The presence of a body freezes all entities previously
+ -- declared in the current list of declarations, but this
+ -- does not apply if the body does not come from source.
+ -- A type invariant is transformed into a subprogram body
+ -- which is placed at the end of the private part of the
+ -- current package, but this body does not freeze incomplete
+ -- types that may be declared in this private part.
+
+ if (Nkind_In (Bod, N_Subprogram_Body,
+ N_Entry_Body,
+ N_Package_Body,
+ N_Protected_Body,
+ N_Task_Body)
+ or else Nkind (Bod) in N_Body_Stub)
+ and then
+ List_Containing (After) = List_Containing (Parent (E))
+ and then Comes_From_Source (Bod)
+ then
+ Error_Msg_Sloc := Sloc (Next (After));
+ Error_Msg_NE
+ ("type& is frozen# before its full declaration",
+ Parent (E), E);
+ end if;
+ end;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end Freeze_All_Ent;
+
+ -- Start of processing for Freeze_All
+
+ begin
+ Freeze_All_Ent (From, After);
+
+ -- Now that all types are frozen, we can deal with default expressions
+ -- that require us to build a default expression functions. This is the
+ -- point at which such functions are constructed (after all types that
+ -- might be used in such expressions have been frozen).
+
+ -- For subprograms that are renaming_as_body, we create the wrapper
+ -- bodies as needed.
+
+ -- We also add finalization chains to access types whose designated
+ -- types are controlled. This is normally done when freezing the type,
+ -- but this misses recursive type definitions where the later members
+ -- of the recursion introduce controlled components.
+
+ -- Loop through entities
+
+ E := From;
+ while Present (E) loop
+ if Is_Subprogram (E) then
+
+ if not Default_Expressions_Processed (E) then
+ Process_Default_Expressions (E, After);
+ end if;
+
+ if not Has_Completion (E) then
+ Decl := Unit_Declaration_Node (E);
+
+ if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
+ if Error_Posted (Decl) then
+ Set_Has_Completion (E);
+ else
+ Build_And_Analyze_Renamed_Body (Decl, E, After);
+ end if;
+
+ elsif Nkind (Decl) = N_Subprogram_Declaration
+ and then Present (Corresponding_Body (Decl))
+ and then
+ Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
+ = N_Subprogram_Renaming_Declaration
+ then
+ Build_And_Analyze_Renamed_Body
+ (Decl, Corresponding_Body (Decl), After);
+ end if;
+ end if;
+
+ elsif Ekind (E) in Task_Kind
+ and then Nkind_In (Parent (E), N_Task_Type_Declaration,
+ N_Single_Task_Declaration)
+ then
+ declare
+ Ent : Entity_Id;
+
+ begin
+ Ent := First_Entity (E);
+ while Present (Ent) loop
+ if Is_Entry (Ent)
+ and then not Default_Expressions_Processed (Ent)
+ then
+ Process_Default_Expressions (Ent, After);
+ end if;
+
+ Next_Entity (Ent);
+ end loop;
+ end;
+
+ -- We add finalization masters to access types whose designated types
+ -- require finalization. This is normally done when freezing the
+ -- type, but this misses recursive type definitions where the later
+ -- members of the recursion introduce controlled components (such as
+ -- can happen when incomplete types are involved), as well cases
+ -- where a component type is private and the controlled full type
+ -- occurs after the access type is frozen. Cases that don't need a
+ -- finalization master are generic formal types (the actual type will
+ -- have it) and types derived from them, and types with Java and CIL
+ -- conventions, since those are used for API bindings.
+ -- (Are there any other cases that should be excluded here???)
+
+ elsif Is_Access_Type (E)
+ and then Comes_From_Source (E)
+ and then not Is_Generic_Type (Root_Type (E))
+ and then Needs_Finalization (Designated_Type (E))
+ then
+ Build_Finalization_Master (E);
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end Freeze_All;
+
+ -----------------------
+ -- Freeze_And_Append --
+ -----------------------
+
+ procedure Freeze_And_Append
+ (Ent : Entity_Id;
+ N : Node_Id;
+ Result : in out List_Id)
+ is
+ L : constant List_Id := Freeze_Entity (Ent, N);
+ begin
+ if Is_Non_Empty_List (L) then
+ if Result = No_List then
+ Result := L;
+ else
+ Append_List (L, Result);
+ end if;
+ end if;
+ end Freeze_And_Append;
+
+ -------------------
+ -- Freeze_Before --
+ -------------------
+
+ procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
+ Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
+ begin
+ if Is_Non_Empty_List (Freeze_Nodes) then
+ Insert_Actions (N, Freeze_Nodes);
+ end if;
+ end Freeze_Before;
+
+ -------------------
+ -- Freeze_Entity --
+ -------------------
+
+ function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
+ Loc : constant Source_Ptr := Sloc (N);
+ Test_E : Entity_Id := E;
+ Comp : Entity_Id;
+ F_Node : Node_Id;
+ Indx : Node_Id;
+ Formal : Entity_Id;
+ Atype : Entity_Id;
+
+ Result : List_Id := No_List;
+ -- List of freezing actions, left at No_List if none
+
+ Has_Default_Initialization : Boolean := False;
+ -- This flag gets set to true for a variable with default initialization
+
+ procedure Add_To_Result (N : Node_Id);
+ -- N is a freezing action to be appended to the Result
+
+ function After_Last_Declaration return Boolean;
+ -- If Loc is a freeze_entity that appears after the last declaration
+ -- in the scope, inhibit error messages on late completion.
+
+ procedure Check_Current_Instance (Comp_Decl : Node_Id);
+ -- Check that an Access or Unchecked_Access attribute with a prefix
+ -- which is the current instance type can only be applied when the type
+ -- is limited.
+
+ procedure Check_Suspicious_Modulus (Utype : Entity_Id);
+ -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
+ -- integer literal without an explicit corresponding size clause. The
+ -- caller has checked that Utype is a modular integer type.
+
+ procedure Freeze_Array_Type (Arr : Entity_Id);
+ -- Freeze array type, including freezing index and component types
+
+ function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
+ -- Create Freeze_Generic_Entity nodes for types declared in a generic
+ -- package. Recurse on inner generic packages.
+
+ procedure Freeze_Record_Type (Rec : Entity_Id);
+ -- Freeze record type, including freezing component types, and freezing
+ -- primitive operations if this is a tagged type.
+
+ procedure Wrap_Imported_Subprogram (E : Entity_Id);
+ -- If E is an entity for an imported subprogram with pre/post-conditions
+ -- then this procedure will create a wrapper to ensure that proper run-
+ -- time checking of the pre/postconditions. See body for details.
+
+ -------------------
+ -- Add_To_Result --
+ -------------------
+
+ procedure Add_To_Result (N : Node_Id) is
+ begin
+ if No (Result) then
+ Result := New_List (N);
+ else
+ Append (N, Result);
+ end if;
+ end Add_To_Result;
+
+ ----------------------------
+ -- After_Last_Declaration --
+ ----------------------------
+
+ function After_Last_Declaration return Boolean is
+ Spec : constant Node_Id := Parent (Current_Scope);
+ begin
+ if Nkind (Spec) = N_Package_Specification then
+ if Present (Private_Declarations (Spec)) then
+ return Loc >= Sloc (Last (Private_Declarations (Spec)));
+ elsif Present (Visible_Declarations (Spec)) then
+ return Loc >= Sloc (Last (Visible_Declarations (Spec)));
+ else
+ return False;
+ end if;
+ else
+ return False;
+ end if;
+ end After_Last_Declaration;
+
+ ----------------------------
+ -- Check_Current_Instance --
+ ----------------------------
+
+ procedure Check_Current_Instance (Comp_Decl : Node_Id) is
+
+ function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
+ -- Determine whether Typ is compatible with the rules for aliased
+ -- views of types as defined in RM 3.10 in the various dialects.
+
+ function Process (N : Node_Id) return Traverse_Result;
+ -- Process routine to apply check to given node
+
+ -----------------------------
+ -- Is_Aliased_View_Of_Type --
+ -----------------------------
+
+ function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
+ Typ_Decl : constant Node_Id := Parent (Typ);
+
+ begin
+ -- Common case
+
+ if Nkind (Typ_Decl) = N_Full_Type_Declaration
+ and then Limited_Present (Type_Definition (Typ_Decl))
+ then
+ return True;
+
+ -- The following paragraphs describe what a legal aliased view of
+ -- a type is in the various dialects of Ada.
+
+ -- Ada 95
+
+ -- The current instance of a limited type, and a formal parameter
+ -- or generic formal object of a tagged type.
+
+ -- Ada 95 limited type
+ -- * Type with reserved word "limited"
+ -- * A protected or task type
+ -- * A composite type with limited component
+
+ elsif Ada_Version <= Ada_95 then
+ return Is_Limited_Type (Typ);
+
+ -- Ada 2005
+
+ -- The current instance of a limited tagged type, a protected
+ -- type, a task type, or a type that has the reserved word
+ -- "limited" in its full definition ... a formal parameter or
+ -- generic formal object of a tagged type.
+
+ -- Ada 2005 limited type
+ -- * Type with reserved word "limited", "synchronized", "task"
+ -- or "protected"
+ -- * A composite type with limited component
+ -- * A derived type whose parent is a non-interface limited type
+
+ elsif Ada_Version = Ada_2005 then
+ return
+ (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
+ or else
+ (Is_Derived_Type (Typ)
+ and then not Is_Interface (Etype (Typ))
+ and then Is_Limited_Type (Etype (Typ)));
+
+ -- Ada 2012 and beyond
+
+ -- The current instance of an immutably limited type ... a formal
+ -- parameter or generic formal object of a tagged type.
+
+ -- Ada 2012 limited type
+ -- * Type with reserved word "limited", "synchronized", "task"
+ -- or "protected"
+ -- * A composite type with limited component
+ -- * A derived type whose parent is a non-interface limited type
+ -- * An incomplete view
+
+ -- Ada 2012 immutably limited type
+ -- * Explicitly limited record type
+ -- * Record extension with "limited" present
+ -- * Non-formal limited private type that is either tagged
+ -- or has at least one access discriminant with a default
+ -- expression
+ -- * Task type, protected type or synchronized interface
+ -- * Type derived from immutably limited type
+
+ else
+ return
+ Is_Immutably_Limited_Type (Typ)
+ or else Is_Incomplete_Type (Typ);
+ end if;
+ end Is_Aliased_View_Of_Type;
+
+ -------------
+ -- Process --
+ -------------
+
+ function Process (N : Node_Id) return Traverse_Result is
+ begin
+ case Nkind (N) is
+ when N_Attribute_Reference =>
+ if Nam_In (Attribute_Name (N), Name_Access,
+ Name_Unchecked_Access)
+ and then Is_Entity_Name (Prefix (N))
+ and then Is_Type (Entity (Prefix (N)))
+ and then Entity (Prefix (N)) = E
+ then
+ if Ada_Version < Ada_2012 then
+ Error_Msg_N
+ ("current instance must be a limited type",
+ Prefix (N));
+ else
+ Error_Msg_N
+ ("current instance must be an immutably limited "
+ & "type (RM-2012, 7.5 (8.1/3))",
+ Prefix (N));
+ end if;
+
+ return Abandon;
+
+ else
+ return OK;
+ end if;
+
+ when others => return OK;
+ end case;
+ end Process;
+
+ procedure Traverse is new Traverse_Proc (Process);
+
+ -- Local variables
+
+ Rec_Type : constant Entity_Id :=
+ Scope (Defining_Identifier (Comp_Decl));
+
+ -- Start of processing for Check_Current_Instance
+
+ begin
+ if not Is_Aliased_View_Of_Type (Rec_Type) then
+ Traverse (Comp_Decl);
+ end if;
+ end Check_Current_Instance;
+
+ ------------------------------
+ -- Check_Suspicious_Modulus --
+ ------------------------------
+
+ procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
+ Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
+
+ begin
+ if not Warn_On_Suspicious_Modulus_Value then
+ return;
+ end if;
+
+ if Nkind (Decl) = N_Full_Type_Declaration then
+ declare
+ Tdef : constant Node_Id := Type_Definition (Decl);
+
+ begin
+ if Nkind (Tdef) = N_Modular_Type_Definition then
+ declare
+ Modulus : constant Node_Id :=
+ Original_Node (Expression (Tdef));
+
+ begin
+ if Nkind (Modulus) = N_Integer_Literal then
+ declare
+ Modv : constant Uint := Intval (Modulus);
+ Sizv : constant Uint := RM_Size (Utype);
+
+ begin
+ -- First case, modulus and size are the same. This
+ -- happens if you have something like mod 32, with
+ -- an explicit size of 32, this is for sure a case
+ -- where the warning is given, since it is seems
+ -- very unlikely that someone would want e.g. a
+ -- five bit type stored in 32 bits. It is much
+ -- more likely they wanted a 32-bit type.
+
+ if Modv = Sizv then
+ null;
+
+ -- Second case, the modulus is 32 or 64 and no
+ -- size clause is present. This is a less clear
+ -- case for giving the warning, but in the case
+ -- of 32/64 (5-bit or 6-bit types) these seem rare
+ -- enough that it is a likely error (and in any
+ -- case using 2**5 or 2**6 in these cases seems
+ -- clearer. We don't include 8 or 16 here, simply
+ -- because in practice 3-bit and 4-bit types are
+ -- more common and too many false positives if
+ -- we warn in these cases.
+
+ elsif not Has_Size_Clause (Utype)
+ and then (Modv = Uint_32 or else Modv = Uint_64)
+ then
+ null;
+
+ -- No warning needed
+
+ else
+ return;
+ end if;
+
+ -- If we fall through, give warning
+
+ Error_Msg_Uint_1 := Modv;
+ Error_Msg_N
+ ("?M?2 '*'*^' may have been intended here",
+ Modulus);
+ end;
+ end if;
+ end;
+ end if;
+ end;
+ end if;
+ end Check_Suspicious_Modulus;
+
+ -----------------------
+ -- Freeze_Array_Type --
+ -----------------------
+
+ procedure Freeze_Array_Type (Arr : Entity_Id) is
+ FS : constant Entity_Id := First_Subtype (Arr);
+ Ctyp : constant Entity_Id := Component_Type (Arr);
+ Clause : Entity_Id;
+
+ Non_Standard_Enum : Boolean := False;
+ -- Set true if any of the index types is an enumeration type with a
+ -- non-standard representation.
+
+ begin
+ Freeze_And_Append (Ctyp, N, Result);
+
+ Indx := First_Index (Arr);
+ while Present (Indx) loop
+ Freeze_And_Append (Etype (Indx), N, Result);
+
+ if Is_Enumeration_Type (Etype (Indx))
+ and then Has_Non_Standard_Rep (Etype (Indx))
+ then
+ Non_Standard_Enum := True;
+ end if;
+
+ Next_Index (Indx);
+ end loop;
+
+ -- Processing that is done only for base types
+
+ if Ekind (Arr) = E_Array_Type then
+
+ -- Propagate flags for component type
+
+ if Is_Controlled (Component_Type (Arr))
+ or else Has_Controlled_Component (Ctyp)
+ then
+ Set_Has_Controlled_Component (Arr);
+ end if;
+
+ if Has_Unchecked_Union (Component_Type (Arr)) then
+ Set_Has_Unchecked_Union (Arr);
+ end if;
+
+ -- Warn for pragma Pack overriding foreign convention
+
+ if Has_Foreign_Convention (Ctyp)
+ and then Has_Pragma_Pack (Arr)
+ then
+ declare
+ CN : constant Name_Id :=
+ Get_Convention_Name (Convention (Ctyp));
+ PP : constant Node_Id :=
+ Get_Pragma (First_Subtype (Arr), Pragma_Pack);
+ begin
+ if Present (PP) then
+ Error_Msg_Name_1 := CN;
+ Error_Msg_Sloc := Sloc (Arr);
+ Error_Msg_N
+ ("pragma Pack affects convention % components #??",
+ PP);
+ Error_Msg_Name_1 := CN;
+ Error_Msg_N
+ ("\array components may not have % compatible "
+ & "representation??", PP);
+ end if;
+ end;
+ end if;
+
+ -- If packing was requested or if the component size was
+ -- set explicitly, then see if bit packing is required. This
+ -- processing is only done for base types, since all of the
+ -- representation aspects involved are type-related.
+
+ -- This is not just an optimization, if we start processing the
+ -- subtypes, they interfere with the settings on the base type
+ -- (this is because Is_Packed has a slightly different meaning
+ -- before and after freezing).
+
+ declare
+ Csiz : Uint;
+ Esiz : Uint;
+
+ begin
+ if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
+ and then Known_Static_RM_Size (Ctyp)
+ and then not Has_Component_Size_Clause (Arr)
+ then
+ Csiz := UI_Max (RM_Size (Ctyp), 1);
+
+ elsif Known_Component_Size (Arr) then
+ Csiz := Component_Size (Arr);
+
+ elsif not Known_Static_Esize (Ctyp) then
+ Csiz := Uint_0;
+
+ else
+ Esiz := Esize (Ctyp);
+
+ -- We can set the component size if it is less than 16,
+ -- rounding it up to the next storage unit size.
+
+ if Esiz <= 8 then
+ Csiz := Uint_8;
+ elsif Esiz <= 16 then
+ Csiz := Uint_16;
+ else
+ Csiz := Uint_0;
+ end if;
+
+ -- Set component size up to match alignment if it would
+ -- otherwise be less than the alignment. This deals with
+ -- cases of types whose alignment exceeds their size (the
+ -- padded type cases).
+
+ if Csiz /= 0 then
+ declare
+ A : constant Uint := Alignment_In_Bits (Ctyp);
+ begin
+ if Csiz < A then
+ Csiz := A;
+ end if;
+ end;
+ end if;
+ end if;
+
+ -- Case of component size that may result in packing
+
+ if 1 <= Csiz and then Csiz <= 64 then
+ declare
+ Ent : constant Entity_Id :=
+ First_Subtype (Arr);
+ Pack_Pragma : constant Node_Id :=
+ Get_Rep_Pragma (Ent, Name_Pack);
+ Comp_Size_C : constant Node_Id :=
+ Get_Attribute_Definition_Clause
+ (Ent, Attribute_Component_Size);
+ begin
+ -- Warn if we have pack and component size so that the
+ -- pack is ignored.
+
+ -- Note: here we must check for the presence of a
+ -- component size before checking for a Pack pragma to
+ -- deal with the case where the array type is a derived
+ -- type whose parent is currently private.
+
+ if Present (Comp_Size_C)
+ and then Has_Pragma_Pack (Ent)
+ and then Warn_On_Redundant_Constructs
+ then
+ Error_Msg_Sloc := Sloc (Comp_Size_C);
+ Error_Msg_NE
+ ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
+ Error_Msg_N
+ ("\?r?explicit component size given#!", Pack_Pragma);
+ Set_Is_Packed (Base_Type (Ent), False);
+ Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
+ end if;
+
+ -- Set component size if not already set by a component
+ -- size clause.
+
+ if not Present (Comp_Size_C) then
+ Set_Component_Size (Arr, Csiz);
+ end if;
+
+ -- Check for base type of 8, 16, 32 bits, where an
+ -- unsigned subtype has a length one less than the
+ -- base type (e.g. Natural subtype of Integer).
+
+ -- In such cases, if a component size was not set
+ -- explicitly, then generate a warning.
+
+ if Has_Pragma_Pack (Arr)
+ and then not Present (Comp_Size_C)
+ and then
+ (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
+ and then Esize (Base_Type (Ctyp)) = Csiz + 1
+ then
+ Error_Msg_Uint_1 := Csiz;
+
+ if Present (Pack_Pragma) then
+ Error_Msg_N
+ ("??pragma Pack causes component size "
+ & "to be ^!", Pack_Pragma);
+ Error_Msg_N
+ ("\??use Component_Size to set "
+ & "desired value!", Pack_Pragma);
+ end if;
+ end if;
+
+ -- Actual packing is not needed for 8, 16, 32, 64. Also
+ -- not needed for 24 if alignment is 1.
+
+ if Csiz = 8
+ or else Csiz = 16
+ or else Csiz = 32
+ or else Csiz = 64
+ or else (Csiz = 24 and then Alignment (Ctyp) = 1)
+ then
+ -- Here the array was requested to be packed, but
+ -- the packing request had no effect, so Is_Packed
+ -- is reset.
+
+ -- Note: semantically this means that we lose track
+ -- of the fact that a derived type inherited a pragma
+ -- Pack that was non- effective, but that seems fine.
+
+ -- We regard a Pack pragma as a request to set a
+ -- representation characteristic, and this request
+ -- may be ignored.
+
+ Set_Is_Packed (Base_Type (Arr), False);
+ Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
+
+ if Known_Static_Esize (Component_Type (Arr))
+ and then Esize (Component_Type (Arr)) = Csiz
+ then
+ Set_Has_Non_Standard_Rep
+ (Base_Type (Arr), False);
+ end if;
+
+ -- In all other cases, packing is indeed needed
+
+ else
+ Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
+ Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
+ Set_Is_Packed (Base_Type (Arr), True);
+ end if;
+ end;
+ end if;
+ end;
+
+ -- Check for Atomic_Components or Aliased with unsuitable packing
+ -- or explicit component size clause given.
+
+ if (Has_Atomic_Components (Arr)
+ or else
+ Has_Aliased_Components (Arr))
+ and then
+ (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
+ then
+ Alias_Atomic_Check : declare
+
+ procedure Complain_CS (T : String);
+ -- Outputs error messages for incorrect CS clause or pragma
+ -- Pack for aliased or atomic components (T is "aliased" or
+ -- "atomic");
+
+ -----------------
+ -- Complain_CS --
+ -----------------
+
+ procedure Complain_CS (T : String) is
+ begin
+ if Has_Component_Size_Clause (Arr) then
+ Clause :=
+ Get_Attribute_Definition_Clause
+ (FS, Attribute_Component_Size);
+
+ if Known_Static_Esize (Ctyp) then
+ Error_Msg_N
+ ("incorrect component size for "
+ & T & " components", Clause);
+ Error_Msg_Uint_1 := Esize (Ctyp);
+ Error_Msg_N
+ ("\only allowed value is^", Clause);
+
+ else
+ Error_Msg_N
+ ("component size cannot be given for "
+ & T & " components", Clause);
+ end if;
+
+ else
+ Error_Msg_N
+ ("cannot pack " & T & " components",
+ Get_Rep_Pragma (FS, Name_Pack));
+ end if;
+
+ return;
+ end Complain_CS;
+
+ -- Start of processing for Alias_Atomic_Check
+
+ begin
+ -- If object size of component type isn't known, we cannot
+ -- be sure so we defer to the back end.
+
+ if not Known_Static_Esize (Ctyp) then
+ null;
+
+ -- Case where component size has no effect. First check for
+ -- object size of component type multiple of the storage
+ -- unit size.
+
+ elsif Esize (Ctyp) mod System_Storage_Unit = 0
+
+ -- OK in both packing case and component size case if RM
+ -- size is known and static and same as the object size.
+
+ and then
+ ((Known_Static_RM_Size (Ctyp)
+ and then Esize (Ctyp) = RM_Size (Ctyp))
+
+ -- Or if we have an explicit component size clause and
+ -- the component size and object size are equal.
+
+ or else
+ (Has_Component_Size_Clause (Arr)
+ and then Component_Size (Arr) = Esize (Ctyp)))
+ then
+ null;
+
+ elsif Has_Aliased_Components (Arr)
+ or else Is_Aliased (Ctyp)
+ then
+ Complain_CS ("aliased");
+
+ elsif Has_Atomic_Components (Arr)
+ or else Is_Atomic (Ctyp)
+ then
+ Complain_CS ("atomic");
+ end if;
+ end Alias_Atomic_Check;
+ end if;
+
+ -- Warn for case of atomic type
+
+ Clause := Get_Rep_Pragma (FS, Name_Atomic);
+
+ if Present (Clause)
+ and then not Addressable (Component_Size (FS))
+ then
+ Error_Msg_NE
+ ("non-atomic components of type& may not be "
+ & "accessible by separate tasks??", Clause, Arr);
+
+ if Has_Component_Size_Clause (Arr) then
+ Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
+ (FS, Attribute_Component_Size));
+ Error_Msg_N ("\because of component size clause#??", Clause);
+
+ elsif Has_Pragma_Pack (Arr) then
+ Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
+ Error_Msg_N ("\because of pragma Pack#??", Clause);
+ end if;
+ end if;
+
+ -- Check for scalar storage order
+
+ Check_Component_Storage_Order
+ (Encl_Type => Arr,
+ Comp => Empty,
+ ADC => Get_Attribute_Definition_Clause
+ (First_Subtype (Arr),
+ Attribute_Scalar_Storage_Order));
+
+ -- Processing that is done only for subtypes
+
+ else
+ -- Acquire alignment from base type
+
+ if Unknown_Alignment (Arr) then
+ Set_Alignment (Arr, Alignment (Base_Type (Arr)));
+ Adjust_Esize_Alignment (Arr);
+ end if;
+ end if;
+
+ -- Specific checks for bit-packed arrays
+
+ if Is_Bit_Packed_Array (Arr) then
+
+ -- Check number of elements for bit packed arrays that come from
+ -- source and have compile time known ranges. The bit-packed
+ -- arrays circuitry does not support arrays with more than
+ -- Integer'Last + 1 elements, and when this restriction is
+ -- violated, causes incorrect data access.
+
+ -- For the case where this is not compile time known, a run-time
+ -- check should be generated???
+
+ if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
+ declare
+ Elmts : Uint;
+ Index : Node_Id;
+ Ilen : Node_Id;
+ Ityp : Entity_Id;
+
+ begin
+ Elmts := Uint_1;
+ Index := First_Index (Arr);
+ while Present (Index) loop
+ Ityp := Etype (Index);
+
+ -- Never generate an error if any index is of a generic
+ -- type. We will check this in instances.
+
+ if Is_Generic_Type (Ityp) then
+ Elmts := Uint_0;
+ exit;
+ end if;
+
+ Ilen :=
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Occurrence_Of (Ityp, Loc),
+ Attribute_Name => Name_Range_Length);
+ Analyze_And_Resolve (Ilen);
+
+ -- No attempt is made to check number of elements
+ -- if not compile time known.
+
+ if Nkind (Ilen) /= N_Integer_Literal then
+ Elmts := Uint_0;
+ exit;
+ end if;
+
+ Elmts := Elmts * Intval (Ilen);
+ Next_Index (Index);
+ end loop;
+
+ if Elmts > Intval (High_Bound
+ (Scalar_Range (Standard_Integer))) + 1
+ then
+ Error_Msg_N
+ ("bit packed array type may not have "
+ & "more than Integer''Last+1 elements", Arr);
+ end if;
+ end;
+ end if;
+
+ -- Check size
+
+ if Known_RM_Size (Arr) then
+ declare
+ SizC : constant Node_Id := Size_Clause (Arr);
+
+ Discard : Boolean;
+ pragma Warnings (Off, Discard);
+
+ begin
+ -- It is not clear if it is possible to have no size clause
+ -- at this stage, but it is not worth worrying about. Post
+ -- error on the entity name in the size clause if present,
+ -- else on the type entity itself.
+
+ if Present (SizC) then
+ Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
+ else
+ Check_Size (Arr, Arr, RM_Size (Arr), Discard);
+ end if;
+ end;
+ end if;
+ end if;
+
+ -- If any of the index types was an enumeration type with a
+ -- non-standard rep clause, then we indicate that the array type
+ -- is always packed (even if it is not bit packed).
+
+ if Non_Standard_Enum then
+ Set_Has_Non_Standard_Rep (Base_Type (Arr));
+ Set_Is_Packed (Base_Type (Arr));
+ end if;
+
+ Set_Component_Alignment_If_Not_Set (Arr);
+
+ -- If the array is packed, we must create the packed array type to be
+ -- used to actually implement the type. This is only needed for real
+ -- array types (not for string literal types, since they are present
+ -- only for the front end).
+
+ if Is_Packed (Arr)
+ and then Ekind (Arr) /= E_String_Literal_Subtype
+ then
+ Create_Packed_Array_Type (Arr);
+ Freeze_And_Append (Packed_Array_Type (Arr), N, Result);
+
+ -- Size information of packed array type is copied to the array
+ -- type, since this is really the representation. But do not
+ -- override explicit existing size values. If the ancestor subtype
+ -- is constrained the packed_array_type will be inherited from it,
+ -- but the size may have been provided already, and must not be
+ -- overridden either.
+
+ if not Has_Size_Clause (Arr)
+ and then
+ (No (Ancestor_Subtype (Arr))
+ or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
+ then
+ Set_Esize (Arr, Esize (Packed_Array_Type (Arr)));
+ Set_RM_Size (Arr, RM_Size (Packed_Array_Type (Arr)));
+ end if;
+
+ if not Has_Alignment_Clause (Arr) then
+ Set_Alignment (Arr, Alignment (Packed_Array_Type (Arr)));
+ end if;
+ end if;
+
+ -- For non-packed arrays set the alignment of the array to the
+ -- alignment of the component type if it is unknown. Skip this
+ -- in atomic case (atomic arrays may need larger alignments).
+
+ if not Is_Packed (Arr)
+ and then Unknown_Alignment (Arr)
+ and then Known_Alignment (Ctyp)
+ and then Known_Static_Component_Size (Arr)
+ and then Known_Static_Esize (Ctyp)
+ and then Esize (Ctyp) = Component_Size (Arr)
+ and then not Is_Atomic (Arr)
+ then
+ Set_Alignment (Arr, Alignment (Component_Type (Arr)));
+ end if;
+ end Freeze_Array_Type;
+
+ -----------------------------
+ -- Freeze_Generic_Entities --
+ -----------------------------
+
+ function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
+ E : Entity_Id;
+ F : Node_Id;
+ Flist : List_Id;
+
+ begin
+ Flist := New_List;
+ E := First_Entity (Pack);
+ while Present (E) loop
+ if Is_Type (E) and then not Is_Generic_Type (E) then
+ F := Make_Freeze_Generic_Entity (Sloc (Pack));
+ Set_Entity (F, E);
+ Append_To (Flist, F);
+
+ elsif Ekind (E) = E_Generic_Package then
+ Append_List_To (Flist, Freeze_Generic_Entities (E));
+ end if;
+
+ Next_Entity (E);
+ end loop;
+
+ return Flist;
+ end Freeze_Generic_Entities;
+
+ ------------------------
+ -- Freeze_Record_Type --
+ ------------------------
+
+ procedure Freeze_Record_Type (Rec : Entity_Id) is
+ Comp : Entity_Id;
+ IR : Node_Id;
+ ADC : Node_Id;
+ Prev : Entity_Id;
+
+ Junk : Boolean;
+ pragma Warnings (Off, Junk);
+
+ Rec_Pushed : Boolean := False;
+ -- Set True if the record type scope Rec has been pushed on the scope
+ -- stack. Needed for the analysis of delayed aspects specified to the
+ -- components of Rec.
+
+ Unplaced_Component : Boolean := False;
+ -- Set True if we find at least one component with no component
+ -- clause (used to warn about useless Pack pragmas).
+
+ Placed_Component : Boolean := False;
+ -- Set True if we find at least one component with a component
+ -- clause (used to warn about useless Bit_Order pragmas, and also
+ -- to detect cases where Implicit_Packing may have an effect).
+
+ Aliased_Component : Boolean := False;
+ -- Set True if we find at least one component which is aliased. This
+ -- is used to prevent Implicit_Packing of the record, since packing
+ -- cannot modify the size of alignment of an aliased component.
+
+ All_Scalar_Components : Boolean := True;
+ -- Set False if we encounter a component of a non-scalar type
+
+ Scalar_Component_Total_RM_Size : Uint := Uint_0;
+ Scalar_Component_Total_Esize : Uint := Uint_0;
+ -- Accumulates total RM_Size values and total Esize values of all
+ -- scalar components. Used for processing of Implicit_Packing.
+
+ function Check_Allocator (N : Node_Id) return Node_Id;
+ -- If N is an allocator, possibly wrapped in one or more level of
+ -- qualified expression(s), return the inner allocator node, else
+ -- return Empty.
+
+ procedure Check_Itype (Typ : Entity_Id);
+ -- If the component subtype is an access to a constrained subtype of
+ -- an already frozen type, make the subtype frozen as well. It might
+ -- otherwise be frozen in the wrong scope, and a freeze node on
+ -- subtype has no effect. Similarly, if the component subtype is a
+ -- regular (not protected) access to subprogram, set the anonymous
+ -- subprogram type to frozen as well, to prevent an out-of-scope
+ -- freeze node at some eventual point of call. Protected operations
+ -- are handled elsewhere.
+
+ procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
+ -- Make sure that all types mentioned in Discrete_Choices of the
+ -- variants referenceed by the Variant_Part VP are frozen. This is
+ -- a recursive routine to deal with nested variants.
+
+ ---------------------
+ -- Check_Allocator --
+ ---------------------
+
+ function Check_Allocator (N : Node_Id) return Node_Id is
+ Inner : Node_Id;
+ begin
+ Inner := N;
+ loop
+ if Nkind (Inner) = N_Allocator then
+ return Inner;
+ elsif Nkind (Inner) = N_Qualified_Expression then
+ Inner := Expression (Inner);
+ else
+ return Empty;
+ end if;
+ end loop;
+ end Check_Allocator;
+
+ -----------------
+ -- Check_Itype --
+ -----------------
+
+ procedure Check_Itype (Typ : Entity_Id) is
+ Desig : constant Entity_Id := Designated_Type (Typ);
+
+ begin
+ if not Is_Frozen (Desig)
+ and then Is_Frozen (Base_Type (Desig))
+ then
+ Set_Is_Frozen (Desig);
+
+ -- In addition, add an Itype_Reference to ensure that the
+ -- access subtype is elaborated early enough. This cannot be
+ -- done if the subtype may depend on discriminants.
+
+ if Ekind (Comp) = E_Component
+ and then Is_Itype (Etype (Comp))
+ and then not Has_Discriminants (Rec)
+ then
+ IR := Make_Itype_Reference (Sloc (Comp));
+ Set_Itype (IR, Desig);
+ Add_To_Result (IR);
+ end if;
+
+ elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
+ and then Convention (Desig) /= Convention_Protected
+ then
+ Set_Is_Frozen (Desig);
+ end if;
+ end Check_Itype;
+
+ ------------------------------------
+ -- Freeze_Choices_In_Variant_Part --
+ ------------------------------------
+
+ procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
+ pragma Assert (Nkind (VP) = N_Variant_Part);
+
+ Variant : Node_Id;
+ Choice : Node_Id;
+ CL : Node_Id;
+
+ begin
+ -- Loop through variants
+
+ Variant := First_Non_Pragma (Variants (VP));
+ while Present (Variant) loop
+
+ -- Loop through choices, checking that all types are frozen
+
+ Choice := First_Non_Pragma (Discrete_Choices (Variant));
+ while Present (Choice) loop
+ if Nkind (Choice) in N_Has_Etype
+ and then Present (Etype (Choice))
+ then
+ Freeze_And_Append (Etype (Choice), N, Result);
+ end if;
+
+ Next_Non_Pragma (Choice);
+ end loop;
+
+ -- Check for nested variant part to process
+
+ CL := Component_List (Variant);
+
+ if not Null_Present (CL) then
+ if Present (Variant_Part (CL)) then
+ Freeze_Choices_In_Variant_Part (Variant_Part (CL));
+ end if;
+ end if;
+
+ Next_Non_Pragma (Variant);
+ end loop;
+ end Freeze_Choices_In_Variant_Part;
+
+ -- Start of processing for Freeze_Record_Type
+
+ begin
+ -- Deal with delayed aspect specifications for components. The
+ -- analysis of the aspect is required to be delayed to the freeze
+ -- point, thus we analyze the pragma or attribute definition
+ -- clause in the tree at this point. We also analyze the aspect
+ -- specification node at the freeze point when the aspect doesn't
+ -- correspond to pragma/attribute definition clause.
+
+ Comp := First_Entity (Rec);
+ while Present (Comp) loop
+ if Ekind (Comp) = E_Component
+ and then Has_Delayed_Aspects (Comp)
+ then
+ if not Rec_Pushed then
+ Push_Scope (Rec);
+ Rec_Pushed := True;
+
+ -- The visibility to the discriminants must be restored in
+ -- order to properly analyze the aspects.
+
+ if Has_Discriminants (Rec) then
+ Install_Discriminants (Rec);
+ end if;
+ end if;
+
+ Analyze_Aspects_At_Freeze_Point (Comp);
+ end if;
+
+ Next_Entity (Comp);
+ end loop;
+
+ -- Pop the scope if Rec scope has been pushed on the scope stack
+ -- during the delayed aspect analysis process.
+
+ if Rec_Pushed then
+ if Has_Discriminants (Rec) then
+ Uninstall_Discriminants (Rec);
+ end if;
+
+ Pop_Scope;
+ end if;
+
+ -- Freeze components and embedded subtypes
+
+ Comp := First_Entity (Rec);
+ Prev := Empty;
+ while Present (Comp) loop
+ if Is_Aliased (Comp) then
+ Aliased_Component := True;
+ end if;
+
+ -- Handle the component and discriminant case
+
+ if Ekind_In (Comp, E_Component, E_Discriminant) then
+ declare
+ CC : constant Node_Id := Component_Clause (Comp);
+
+ begin
+ -- Freezing a record type freezes the type of each of its
+ -- components. However, if the type of the component is
+ -- part of this record, we do not want or need a separate
+ -- Freeze_Node. Note that Is_Itype is wrong because that's
+ -- also set in private type cases. We also can't check for
+ -- the Scope being exactly Rec because of private types and
+ -- record extensions.
+
+ if Is_Itype (Etype (Comp))
+ and then Is_Record_Type (Underlying_Type
+ (Scope (Etype (Comp))))
+ then
+ Undelay_Type (Etype (Comp));
+ end if;
+
+ Freeze_And_Append (Etype (Comp), N, Result);
+
+ -- Warn for pragma Pack overriding foreign convention
+
+ if Has_Foreign_Convention (Etype (Comp))
+ and then Has_Pragma_Pack (Rec)
+
+ -- Don't warn for aliased components, since override
+ -- cannot happen in that case.
+
+ and then not Is_Aliased (Comp)
+ then
+ declare
+ CN : constant Name_Id :=
+ Get_Convention_Name (Convention (Etype (Comp)));
+ PP : constant Node_Id :=
+ Get_Pragma (Rec, Pragma_Pack);
+ begin
+ if Present (PP) then
+ Error_Msg_Name_1 := CN;
+ Error_Msg_Sloc := Sloc (Comp);
+ Error_Msg_N
+ ("pragma Pack affects convention % component#??",
+ PP);
+ Error_Msg_Name_1 := CN;
+ Error_Msg_NE
+ ("\component & may not have % compatible "
+ & "representation??", PP, Comp);
+ end if;
+ end;
+ end if;
+
+ -- Check for error of component clause given for variable
+ -- sized type. We have to delay this test till this point,
+ -- since the component type has to be frozen for us to know
+ -- if it is variable length.
+
+ if Present (CC) then
+ Placed_Component := True;
+
+ -- We omit this test in a generic context, it will be
+ -- applied at instantiation time.
+
+ if Inside_A_Generic then
+ null;
+
+ -- Also omit this test in CodePeer mode, since we do not
+ -- have sufficient info on size and rep clauses.
+
+ elsif CodePeer_Mode then
+ null;
+
+ -- Do the check
+
+ elsif not
+ Size_Known_At_Compile_Time
+ (Underlying_Type (Etype (Comp)))
+ then
+ Error_Msg_N
+ ("component clause not allowed for variable " &
+ "length component", CC);
+ end if;
+
+ else
+ Unplaced_Component := True;
+ end if;
+
+ -- Case of component requires byte alignment
+
+ if Must_Be_On_Byte_Boundary (Etype (Comp)) then
+
+ -- Set the enclosing record to also require byte align
+
+ Set_Must_Be_On_Byte_Boundary (Rec);
+
+ -- Check for component clause that is inconsistent with
+ -- the required byte boundary alignment.
+
+ if Present (CC)
+ and then Normalized_First_Bit (Comp) mod
+ System_Storage_Unit /= 0
+ then
+ Error_Msg_N
+ ("component & must be byte aligned",
+ Component_Name (Component_Clause (Comp)));
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- Gather data for possible Implicit_Packing later. Note that at
+ -- this stage we might be dealing with a real component, or with
+ -- an implicit subtype declaration.
+
+ if not Is_Scalar_Type (Etype (Comp)) then
+ All_Scalar_Components := False;
+ else
+ Scalar_Component_Total_RM_Size :=
+ Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
+ Scalar_Component_Total_Esize :=
+ Scalar_Component_Total_Esize + Esize (Etype (Comp));
+ end if;
+
+ -- If the component is an Itype with Delayed_Freeze and is either
+ -- a record or array subtype and its base type has not yet been
+ -- frozen, we must remove this from the entity list of this record
+ -- and put it on the entity list of the scope of its base type.
+ -- Note that we know that this is not the type of a component
+ -- since we cleared Has_Delayed_Freeze for it in the previous
+ -- loop. Thus this must be the Designated_Type of an access type,
+ -- which is the type of a component.
+
+ if Is_Itype (Comp)
+ and then Is_Type (Scope (Comp))
+ and then Is_Composite_Type (Comp)
+ and then Base_Type (Comp) /= Comp
+ and then Has_Delayed_Freeze (Comp)
+ and then not Is_Frozen (Base_Type (Comp))
+ then
+ declare
+ Will_Be_Frozen : Boolean := False;
+ S : Entity_Id;
+
+ begin
+ -- We have a pretty bad kludge here. Suppose Rec is subtype
+ -- being defined in a subprogram that's created as part of
+ -- the freezing of Rec'Base. In that case, we know that
+ -- Comp'Base must have already been frozen by the time we
+ -- get to elaborate this because Gigi doesn't elaborate any
+ -- bodies until it has elaborated all of the declarative
+ -- part. But Is_Frozen will not be set at this point because
+ -- we are processing code in lexical order.
+
+ -- We detect this case by going up the Scope chain of Rec
+ -- and seeing if we have a subprogram scope before reaching
+ -- the top of the scope chain or that of Comp'Base. If we
+ -- do, then mark that Comp'Base will actually be frozen. If
+ -- so, we merely undelay it.
+
+ S := Scope (Rec);
+ while Present (S) loop
+ if Is_Subprogram (S) then
+ Will_Be_Frozen := True;
+ exit;
+ elsif S = Scope (Base_Type (Comp)) then
+ exit;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ if Will_Be_Frozen then
+ Undelay_Type (Comp);
+ else
+ if Present (Prev) then
+ Set_Next_Entity (Prev, Next_Entity (Comp));
+ else
+ Set_First_Entity (Rec, Next_Entity (Comp));
+ end if;
+
+ -- Insert in entity list of scope of base type (which
+ -- must be an enclosing scope, because still unfrozen).
+
+ Append_Entity (Comp, Scope (Base_Type (Comp)));
+ end if;
+ end;
+
+ -- If the component is an access type with an allocator as default
+ -- value, the designated type will be frozen by the corresponding
+ -- expression in init_proc. In order to place the freeze node for
+ -- the designated type before that for the current record type,
+ -- freeze it now.
+
+ -- Same process if the component is an array of access types,
+ -- initialized with an aggregate. If the designated type is
+ -- private, it cannot contain allocators, and it is premature
+ -- to freeze the type, so we check for this as well.
+
+ elsif Is_Access_Type (Etype (Comp))
+ and then Present (Parent (Comp))
+ and then Present (Expression (Parent (Comp)))
+ then
+ declare
+ Alloc : constant Node_Id :=
+ Check_Allocator (Expression (Parent (Comp)));
+
+ begin
+ if Present (Alloc) then
+
+ -- If component is pointer to a class-wide type, freeze
+ -- the specific type in the expression being allocated.
+ -- The expression may be a subtype indication, in which
+ -- case freeze the subtype mark.
+
+ if Is_Class_Wide_Type
+ (Designated_Type (Etype (Comp)))
+ then
+ if Is_Entity_Name (Expression (Alloc)) then
+ Freeze_And_Append
+ (Entity (Expression (Alloc)), N, Result);
+ elsif
+ Nkind (Expression (Alloc)) = N_Subtype_Indication
+ then
+ Freeze_And_Append
+ (Entity (Subtype_Mark (Expression (Alloc))),
+ N, Result);
+ end if;
+
+ elsif Is_Itype (Designated_Type (Etype (Comp))) then
+ Check_Itype (Etype (Comp));
+
+ else
+ Freeze_And_Append
+ (Designated_Type (Etype (Comp)), N, Result);
+ end if;
+ end if;
+ end;
+
+ elsif Is_Access_Type (Etype (Comp))
+ and then Is_Itype (Designated_Type (Etype (Comp)))
+ then
+ Check_Itype (Etype (Comp));
+
+ elsif Is_Array_Type (Etype (Comp))
+ and then Is_Access_Type (Component_Type (Etype (Comp)))
+ and then Present (Parent (Comp))
+ and then Nkind (Parent (Comp)) = N_Component_Declaration
+ and then Present (Expression (Parent (Comp)))
+ and then Nkind (Expression (Parent (Comp))) = N_Aggregate
+ and then Is_Fully_Defined
+ (Designated_Type (Component_Type (Etype (Comp))))
+ then
+ Freeze_And_Append
+ (Designated_Type
+ (Component_Type (Etype (Comp))), N, Result);
+ end if;
+
+ Prev := Comp;
+ Next_Entity (Comp);
+ end loop;
+
+ ADC := Get_Attribute_Definition_Clause
+ (Rec, Attribute_Scalar_Storage_Order);
+
+ if Present (ADC) then
+
+ -- Check compatibility of Scalar_Storage_Order with Bit_Order, if
+ -- the former is specified.
+
+ if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
+
+ -- Note: report error on Rec, not on ADC, as ADC may apply to
+ -- an ancestor type.
+
+ Error_Msg_Sloc := Sloc (ADC);
+ Error_Msg_N
+ ("scalar storage order for& specified# inconsistent with "
+ & "bit order", Rec);
+ end if;
+
+ -- Warn if there is a Scalar_Storage_Order but no component clause
+ -- (or pragma Pack).
+
+ if not (Placed_Component or else Is_Packed (Rec)) then
+ Error_Msg_N
+ ("??scalar storage order specified but no component clause",
+ ADC);
+ end if;
+ end if;
+
+ -- Check consistent attribute setting on component types
+
+ Comp := First_Component (Rec);
+ while Present (Comp) loop
+ Check_Component_Storage_Order
+ (Encl_Type => Rec, Comp => Comp, ADC => ADC);
+ Next_Component (Comp);
+ end loop;
+
+ -- Deal with Bit_Order aspect specifying a non-default bit order
+
+ ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
+
+ if Present (ADC) and then Base_Type (Rec) = Rec then
+ if not (Placed_Component or else Is_Packed (Rec)) then
+ Error_Msg_N
+ ("??bit order specification has no effect", ADC);
+ Error_Msg_N
+ ("\??since no component clauses were specified", ADC);
+
+ -- Here is where we do the processing for reversed bit order
+
+ elsif Reverse_Bit_Order (Rec)
+ and then not Reverse_Storage_Order (Rec)
+ then
+ Adjust_Record_For_Reverse_Bit_Order (Rec);
+
+ -- Case where we have both an explicit Bit_Order and the same
+ -- Scalar_Storage_Order: leave record untouched, the back-end
+ -- will take care of required layout conversions.
+
+ else
+ null;
+
+ end if;
+ end if;
+
+ -- Complete error checking on record representation clause (e.g.
+ -- overlap of components). This is called after adjusting the
+ -- record for reverse bit order.
+
+ declare
+ RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
+ begin
+ if Present (RRC) then
+ Check_Record_Representation_Clause (RRC);
+ end if;
+ end;
+
+ -- Set OK_To_Reorder_Components depending on debug flags
+
+ if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
+ if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
+ or else
+ (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
+ then
+ Set_OK_To_Reorder_Components (Rec);
+ end if;
+ end if;
+
+ -- Check for useless pragma Pack when all components placed. We only
+ -- do this check for record types, not subtypes, since a subtype may
+ -- have all its components placed, and it still makes perfectly good
+ -- sense to pack other subtypes or the parent type. We do not give
+ -- this warning if Optimize_Alignment is set to Space, since the
+ -- pragma Pack does have an effect in this case (it always resets
+ -- the alignment to one).
+
+ if Ekind (Rec) = E_Record_Type
+ and then Is_Packed (Rec)
+ and then not Unplaced_Component
+ and then Optimize_Alignment /= 'S'
+ then
+ -- Reset packed status. Probably not necessary, but we do it so
+ -- that there is no chance of the back end doing something strange
+ -- with this redundant indication of packing.
+
+ Set_Is_Packed (Rec, False);
+
+ -- Give warning if redundant constructs warnings on
+
+ if Warn_On_Redundant_Constructs then
+ Error_Msg_N -- CODEFIX
+ ("??pragma Pack has no effect, no unplaced components",
+ Get_Rep_Pragma (Rec, Name_Pack));
+ end if;
+ end if;
+
+ -- If this is the record corresponding to a remote type, freeze the
+ -- remote type here since that is what we are semantically freezing.
+ -- This prevents the freeze node for that type in an inner scope.
+
+ if Ekind (Rec) = E_Record_Type then
+ if Present (Corresponding_Remote_Type (Rec)) then
+ Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
+ end if;
+
+ -- Check for controlled components and unchecked unions.
+
+ Comp := First_Component (Rec);
+ while Present (Comp) loop
+
+ -- Do not set Has_Controlled_Component on a class-wide
+ -- equivalent type. See Make_CW_Equivalent_Type.
+
+ if not Is_Class_Wide_Equivalent_Type (Rec)
+ and then
+ (Has_Controlled_Component (Etype (Comp))
+ or else
+ (Chars (Comp) /= Name_uParent
+ and then Is_Controlled (Etype (Comp)))
+ or else
+ (Is_Protected_Type (Etype (Comp))
+ and then
+ Present (Corresponding_Record_Type (Etype (Comp)))
+ and then
+ Has_Controlled_Component
+ (Corresponding_Record_Type (Etype (Comp)))))
+ then
+ Set_Has_Controlled_Component (Rec);
+ end if;
+
+ if Has_Unchecked_Union (Etype (Comp)) then
+ Set_Has_Unchecked_Union (Rec);
+ end if;
+
+ -- Scan component declaration for likely misuses of current
+ -- instance, either in a constraint or a default expression.
+
+ if Has_Per_Object_Constraint (Comp) then
+ Check_Current_Instance (Parent (Comp));
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+ end if;
+
+ -- Enforce the restriction that access attributes with a current
+ -- instance prefix can only apply to limited types. This comment
+ -- is floating here, but does not seem to belong here???
+
+ -- Set component alignment if not otherwise already set
+
+ Set_Component_Alignment_If_Not_Set (Rec);
+
+ -- For first subtypes, check if there are any fixed-point fields with
+ -- component clauses, where we must check the size. This is not done
+ -- till the freeze point since for fixed-point types, we do not know
+ -- the size until the type is frozen. Similar processing applies to
+ -- bit packed arrays.
+
+ if Is_First_Subtype (Rec) then
+ Comp := First_Component (Rec);
+ while Present (Comp) loop
+ if Present (Component_Clause (Comp))
+ and then (Is_Fixed_Point_Type (Etype (Comp))
+ or else
+ Is_Bit_Packed_Array (Etype (Comp)))
+ then
+ Check_Size
+ (Component_Name (Component_Clause (Comp)),
+ Etype (Comp),
+ Esize (Comp),
+ Junk);
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+ end if;
+
+ -- Generate warning for applying C or C++ convention to a record
+ -- with discriminants. This is suppressed for the unchecked union
+ -- case, since the whole point in this case is interface C. We also
+ -- do not generate this within instantiations, since we will have
+ -- generated a message on the template.
+
+ if Has_Discriminants (E)
+ and then not Is_Unchecked_Union (E)
+ and then (Convention (E) = Convention_C
+ or else
+ Convention (E) = Convention_CPP)
+ and then Comes_From_Source (E)
+ and then not In_Instance
+ and then not Has_Warnings_Off (E)
+ and then not Has_Warnings_Off (Base_Type (E))
+ then
+ declare
+ Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
+ A2 : Node_Id;
+
+ begin
+ if Present (Cprag) then
+ A2 := Next (First (Pragma_Argument_Associations (Cprag)));
+
+ if Convention (E) = Convention_C then
+ Error_Msg_N
+ ("?x?variant record has no direct equivalent in C",
+ A2);
+ else
+ Error_Msg_N
+ ("?x?variant record has no direct equivalent in C++",
+ A2);
+ end if;
+
+ Error_Msg_NE
+ ("\?x?use of convention for type& is dubious", A2, E);
+ end if;
+ end;
+ end if;
+
+ -- See if Size is too small as is (and implicit packing might help)
+
+ if not Is_Packed (Rec)
+
+ -- No implicit packing if even one component is explicitly placed
+
+ and then not Placed_Component
+
+ -- Or even one component is aliased
+
+ and then not Aliased_Component
+
+ -- Must have size clause and all scalar components
+
+ and then Has_Size_Clause (Rec)
+ and then All_Scalar_Components
+
+ -- Do not try implicit packing on records with discriminants, too
+ -- complicated, especially in the variant record case.
+
+ and then not Has_Discriminants (Rec)
+
+ -- We can implicitly pack if the specified size of the record is
+ -- less than the sum of the object sizes (no point in packing if
+ -- this is not the case).
+
+ and then RM_Size (Rec) < Scalar_Component_Total_Esize
+
+ -- And the total RM size cannot be greater than the specified size
+ -- since otherwise packing will not get us where we have to be.
+
+ and then RM_Size (Rec) >= Scalar_Component_Total_RM_Size
+
+ -- Never do implicit packing in CodePeer or SPARK modes since
+ -- we don't do any packing in these modes, since this generates
+ -- over-complex code that confuses static analysis, and in
+ -- general, neither CodePeer not GNATprove care about the
+ -- internal representation of objects.
+
+ and then not (CodePeer_Mode or GNATprove_Mode)
+ then
+ -- If implicit packing enabled, do it
+
+ if Implicit_Packing then
+ Set_Is_Packed (Rec);
+
+ -- Otherwise flag the size clause
+
+ else
+ declare
+ Sz : constant Node_Id := Size_Clause (Rec);
+ begin
+ Error_Msg_NE -- CODEFIX
+ ("size given for& too small", Sz, Rec);
+ Error_Msg_N -- CODEFIX
+ ("\use explicit pragma Pack "
+ & "or use pragma Implicit_Packing", Sz);
+ end;
+ end if;
+ end if;
+
+ -- All done if not a full record definition
+
+ if Ekind (Rec) /= E_Record_Type then
+ return;
+ end if;
+
+ -- Finally we need to check the variant part to make sure that
+ -- all types within choices are properly frozen as part of the
+ -- freezing of the record type.
+
+ Check_Variant_Part : declare
+ D : constant Node_Id := Declaration_Node (Rec);
+ T : Node_Id;
+ C : Node_Id;
+
+ begin
+ -- Find component list
+
+ C := Empty;
+
+ if Nkind (D) = N_Full_Type_Declaration then
+ T := Type_Definition (D);
+
+ if Nkind (T) = N_Record_Definition then
+ C := Component_List (T);
+
+ elsif Nkind (T) = N_Derived_Type_Definition
+ and then Present (Record_Extension_Part (T))
+ then
+ C := Component_List (Record_Extension_Part (T));
+ end if;
+ end if;
+
+ -- Case of variant part present
+
+ if Present (C) and then Present (Variant_Part (C)) then
+ Freeze_Choices_In_Variant_Part (Variant_Part (C));
+ end if;
+
+ -- Note: we used to call Check_Choices here, but it is too early,
+ -- since predicated subtypes are frozen here, but their freezing
+ -- actions are in Analyze_Freeze_Entity, which has not been called
+ -- yet for entities frozen within this procedure, so we moved that
+ -- call to the Analyze_Freeze_Entity for the record type.
+
+ end Check_Variant_Part;
+ end Freeze_Record_Type;
+
+ ------------------------------
+ -- Wrap_Imported_Subprogram --
+ ------------------------------
+
+ -- The issue here is that our normal approach of checking preconditions
+ -- and postconditions does not work for imported procedures, since we
+ -- are not generating code for the body. To get around this we create
+ -- a wrapper, as shown by the following example:
+
+ -- procedure K (A : Integer);
+ -- pragma Import (C, K);
+
+ -- The spec is rewritten by removing the effects of pragma Import, but
+ -- leaving the convention unchanged, as though the source had said:
+
+ -- procedure K (A : Integer);
+ -- pragma Convention (C, K);
+
+ -- and we create a body, added to the entity K freeze actions, which
+ -- looks like:
+
+ -- procedure K (A : Integer) is
+ -- procedure K (A : Integer);
+ -- pragma Import (C, K);
+ -- begin
+ -- K (A);
+ -- end K;
+
+ -- Now the contract applies in the normal way to the outer procedure,
+ -- and the inner procedure has no contracts, so there is no problem
+ -- in just calling it to get the original effect.
+
+ -- In the case of a function, we create an appropriate return statement
+ -- for the subprogram body that calls the inner procedure.
+
+ procedure Wrap_Imported_Subprogram (E : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (E);
+ CE : constant Name_Id := Chars (E);
+ Spec : Node_Id;
+ Parms : List_Id;
+ Stmt : Node_Id;
+ Iprag : Node_Id;
+ Bod : Node_Id;
+ Forml : Entity_Id;
+
+ begin
+ -- Nothing to do if not imported
+
+ if not Is_Imported (E) then
+ return;
+
+ -- Test enabling conditions for wrapping
+
+ elsif Is_Subprogram (E)
+ and then Present (Contract (E))
+ and then Present (Pre_Post_Conditions (Contract (E)))
+ and then not GNATprove_Mode
+ then
+ -- Here we do the wrap
+
+ -- Note on calls to Copy_Separate_Tree. The trees we are copying
+ -- here are fully analyzed, but we definitely want fully syntactic
+ -- unanalyzed trees in the body we construct, so that the analysis
+ -- generates the right visibility, and that is exactly what the
+ -- calls to Copy_Separate_Tree give us.
+
+ -- Acquire copy of Inline pragma
+
+ Iprag :=
+ Copy_Separate_Tree (Import_Pragma (E));
+
+ -- Fix up spec to be not imported any more
+
+ Set_Is_Imported (E, False);
+ Set_Interface_Name (E, Empty);
+ Set_Has_Completion (E, False);
+ Set_Import_Pragma (E, Empty);
+
+ -- Grab the subprogram declaration and specification
+
+ Spec := Declaration_Node (E);
+
+ -- Build parameter list that we need
+
+ Parms := New_List;
+ Forml := First_Formal (E);
+ while Present (Forml) loop
+ Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
+ Next_Formal (Forml);
+ end loop;
+
+ -- Build the call
+
+ if Ekind_In (E, E_Function, E_Generic_Function) then
+ Stmt :=
+ Make_Simple_Return_Statement (Loc,
+ Expression =>
+ Make_Function_Call (Loc,
+ Name => Make_Identifier (Loc, CE),
+ Parameter_Associations => Parms));
+
+ else
+ Stmt :=
+ Make_Procedure_Call_Statement (Loc,
+ Name => Make_Identifier (Loc, CE),
+ Parameter_Associations => Parms);
+ end if;
+
+ -- Now build the body
+
+ Bod :=
+ Make_Subprogram_Body (Loc,
+ Specification =>
+ Copy_Separate_Tree (Spec),
+ Declarations => New_List (
+ Make_Subprogram_Declaration (Loc,
+ Specification =>
+ Copy_Separate_Tree (Spec)),
+ Iprag),
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (Stmt),
+ End_Label => Make_Identifier (Loc, CE)));
+
+ -- Append the body to freeze result
+
+ Add_To_Result (Bod);
+ return;
+
+ -- Case of imported subprogram that does not get wrapped
+
+ else
+ -- Set Is_Public. All imported entities need an external symbol
+ -- created for them since they are always referenced from another
+ -- object file. Note this used to be set when we set Is_Imported
+ -- back in Sem_Prag, but now we delay it to this point, since we
+ -- don't want to set this flag if we wrap an imported subprogram.
+
+ Set_Is_Public (E);
+ end if;
+ end Wrap_Imported_Subprogram;
+
+ -- Start of processing for Freeze_Entity
+
+ begin
+ -- We are going to test for various reasons why this entity need not be
+ -- frozen here, but in the case of an Itype that's defined within a
+ -- record, that test actually applies to the record.
+
+ if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
+ Test_E := Scope (E);
+ elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
+ and then Is_Record_Type (Underlying_Type (Scope (E)))
+ then
+ Test_E := Underlying_Type (Scope (E));
+ end if;
+
+ -- Do not freeze if already frozen since we only need one freeze node
+
+ if Is_Frozen (E) then
+ return No_List;
+
+ -- It is improper to freeze an external entity within a generic because
+ -- its freeze node will appear in a non-valid context. The entity will
+ -- be frozen in the proper scope after the current generic is analyzed.
+ -- However, aspects must be analyzed because they may be queried later
+ -- within the generic itself, and the corresponding pragma or attribute
+ -- definition has not been analyzed yet.
+
+ elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
+ if Has_Delayed_Aspects (E) then
+ Analyze_Aspects_At_Freeze_Point (E);
+ end if;
+
+ return No_List;
+
+ -- AI05-0213: A formal incomplete type does not freeze the actual. In
+ -- the instance, the same applies to the subtype renaming the actual.
+
+ elsif Is_Private_Type (E)
+ and then Is_Generic_Actual_Type (E)
+ and then No (Full_View (Base_Type (E)))
+ and then Ada_Version >= Ada_2012
+ then
+ return No_List;
+
+ -- Generic types need no freeze node and have no delayed semantic
+ -- checks.
+
+ elsif Is_Generic_Type (E) then
+ return No_List;
+
+ -- Do not freeze a global entity within an inner scope created during
+ -- expansion. A call to subprogram E within some internal procedure
+ -- (a stream attribute for example) might require freezing E, but the
+ -- freeze node must appear in the same declarative part as E itself.
+ -- The two-pass elaboration mechanism in gigi guarantees that E will
+ -- be frozen before the inner call is elaborated. We exclude constants
+ -- from this test, because deferred constants may be frozen early, and
+ -- must be diagnosed (e.g. in the case of a deferred constant being used
+ -- in a default expression). If the enclosing subprogram comes from
+ -- source, or is a generic instance, then the freeze point is the one
+ -- mandated by the language, and we freeze the entity. A subprogram that
+ -- is a child unit body that acts as a spec does not have a spec that
+ -- comes from source, but can only come from source.
+
+ elsif In_Open_Scopes (Scope (Test_E))
+ and then Scope (Test_E) /= Current_Scope
+ and then Ekind (Test_E) /= E_Constant
+ then
+ declare
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S) loop
+ if Is_Overloadable (S) then
+ if Comes_From_Source (S)
+ or else Is_Generic_Instance (S)
+ or else Is_Child_Unit (S)
+ then
+ exit;
+ else
+ return No_List;
+ end if;
+ end if;
+
+ S := Scope (S);
+ end loop;
+ end;
+
+ -- Similarly, an inlined instance body may make reference to global
+ -- entities, but these references cannot be the proper freezing point
+ -- for them, and in the absence of inlining freezing will take place in
+ -- their own scope. Normally instance bodies are analyzed after the
+ -- enclosing compilation, and everything has been frozen at the proper
+ -- place, but with front-end inlining an instance body is compiled
+ -- before the end of the enclosing scope, and as a result out-of-order
+ -- freezing must be prevented.
+
+ elsif Front_End_Inlining
+ and then In_Instance_Body
+ and then Present (Scope (Test_E))
+ then
+ declare
+ S : Entity_Id;
+
+ begin
+ S := Scope (Test_E);
+ while Present (S) loop
+ if Is_Generic_Instance (S) then
+ exit;
+ else
+ S := Scope (S);
+ end if;
+ end loop;
+
+ if No (S) then
+ return No_List;
+ end if;
+ end;
+
+ elsif Ekind (E) = E_Generic_Package then
+ return Freeze_Generic_Entities (E);
+ end if;
+
+ -- Add checks to detect proper initialization of scalars that may appear
+ -- as subprogram parameters.
+
+ if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
+ Apply_Parameter_Validity_Checks (E);
+ end if;
+
+ -- Deal with delayed aspect specifications. The analysis of the aspect
+ -- is required to be delayed to the freeze point, thus we analyze the
+ -- pragma or attribute definition clause in the tree at this point. We
+ -- also analyze the aspect specification node at the freeze point when
+ -- the aspect doesn't correspond to pragma/attribute definition clause.
+
+ if Has_Delayed_Aspects (E) then
+ Analyze_Aspects_At_Freeze_Point (E);
+ end if;
+
+ -- Here to freeze the entity
+
+ Set_Is_Frozen (E);
+
+ -- Case of entity being frozen is other than a type
+
+ if not Is_Type (E) then
+
+ -- If entity is exported or imported and does not have an external
+ -- name, now is the time to provide the appropriate default name.
+ -- Skip this if the entity is stubbed, since we don't need a name
+ -- for any stubbed routine. For the case on intrinsics, if no
+ -- external name is specified, then calls will be handled in
+ -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
+ -- external name is provided, then Expand_Intrinsic_Call leaves
+ -- calls in place for expansion by GIGI.
+
+ if (Is_Imported (E) or else Is_Exported (E))
+ and then No (Interface_Name (E))
+ and then Convention (E) /= Convention_Stubbed
+ and then Convention (E) /= Convention_Intrinsic
+ then
+ Set_Encoded_Interface_Name
+ (E, Get_Default_External_Name (E));
+
+ -- If entity is an atomic object appearing in a declaration and
+ -- the expression is an aggregate, assign it to a temporary to
+ -- ensure that the actual assignment is done atomically rather
+ -- than component-wise (the assignment to the temp may be done
+ -- component-wise, but that is harmless).
+
+ elsif Is_Atomic (E)
+ and then Nkind (Parent (E)) = N_Object_Declaration
+ and then Present (Expression (Parent (E)))
+ and then Nkind (Expression (Parent (E))) = N_Aggregate
+ and then Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
+ then
+ null;
+ end if;
+
+ -- Subprogram case
+
+ if Is_Subprogram (E) then
+
+ -- Check for needing to wrap imported subprogram
+
+ Wrap_Imported_Subprogram (E);
+
+ -- Freeze all parameter types and the return type (RM 13.14(14)).
+ -- However skip this for internal subprograms. This is also where
+ -- any extra formal parameters are created since we now know
+ -- whether the subprogram will use a foreign convention.
+
+ if not Is_Internal (E) then
+ declare
+ F_Type : Entity_Id;
+ R_Type : Entity_Id;
+ Warn_Node : Node_Id;
+
+ begin
+ -- Loop through formals
+
+ Formal := First_Formal (E);
+ while Present (Formal) loop
+ F_Type := Etype (Formal);
+
+ -- AI05-0151 : incomplete types can appear in a profile.
+ -- By the time the entity is frozen, the full view must
+ -- be available, unless it is a limited view.
+
+ if Is_Incomplete_Type (F_Type)
+ and then Present (Full_View (F_Type))
+ and then not From_Limited_With (F_Type)
+ then
+ F_Type := Full_View (F_Type);
+ Set_Etype (Formal, F_Type);
+ end if;
+
+ Freeze_And_Append (F_Type, N, Result);
+
+ if Is_Private_Type (F_Type)
+ and then Is_Private_Type (Base_Type (F_Type))
+ and then No (Full_View (Base_Type (F_Type)))
+ and then not Is_Generic_Type (F_Type)
+ and then not Is_Derived_Type (F_Type)
+ then
+ -- If the type of a formal is incomplete, subprogram
+ -- is being frozen prematurely. Within an instance
+ -- (but not within a wrapper package) this is an
+ -- artifact of our need to regard the end of an
+ -- instantiation as a freeze point. Otherwise it is
+ -- a definite error.
+
+ if In_Instance then
+ Set_Is_Frozen (E, False);
+ return No_List;
+
+ elsif not After_Last_Declaration
+ and then not Freezing_Library_Level_Tagged_Type
+ then
+ Error_Msg_Node_1 := F_Type;
+ Error_Msg
+ ("type& must be fully defined before this point",
+ Loc);
+ end if;
+ end if;
+
+ -- Check suspicious parameter for C function. These tests
+ -- apply only to exported/imported subprograms.
+
+ if Warn_On_Export_Import
+ and then Comes_From_Source (E)
+ and then (Convention (E) = Convention_C
+ or else
+ Convention (E) = Convention_CPP)
+ and then (Is_Imported (E) or else Is_Exported (E))
+ and then Convention (E) /= Convention (Formal)
+ and then not Has_Warnings_Off (E)
+ and then not Has_Warnings_Off (F_Type)
+ and then not Has_Warnings_Off (Formal)
+ then
+ -- Qualify mention of formals with subprogram name
+
+ Error_Msg_Qual_Level := 1;
+
+ -- Check suspicious use of fat C pointer
+
+ if Is_Access_Type (F_Type)
+ and then Esize (F_Type) > Ttypes.System_Address_Size
+ then
+ Error_Msg_N
+ ("?x?type of & does not correspond to C pointer!",
+ Formal);
+
+ -- Check suspicious return of boolean
+
+ elsif Root_Type (F_Type) = Standard_Boolean
+ and then Convention (F_Type) = Convention_Ada
+ and then not Has_Warnings_Off (F_Type)
+ and then not Has_Size_Clause (F_Type)
+ and then VM_Target = No_VM
+ then
+ Error_Msg_N
+ ("& is an 8-bit Ada Boolean?x?", Formal);
+ Error_Msg_N
+ ("\use appropriate corresponding type in C "
+ & "(e.g. char)?x?", Formal);
+
+ -- Check suspicious tagged type
+
+ elsif (Is_Tagged_Type (F_Type)
+ or else (Is_Access_Type (F_Type)
+ and then
+ Is_Tagged_Type
+ (Designated_Type (F_Type))))
+ and then Convention (E) = Convention_C
+ then
+ Error_Msg_N
+ ("?x?& involves a tagged type which does not "
+ & "correspond to any C type!", Formal);
+
+ -- Check wrong convention subprogram pointer
+
+ elsif Ekind (F_Type) = E_Access_Subprogram_Type
+ and then not Has_Foreign_Convention (F_Type)
+ then
+ Error_Msg_N
+ ("?x?subprogram pointer & should "
+ & "have foreign convention!", Formal);
+ Error_Msg_Sloc := Sloc (F_Type);
+ Error_Msg_NE
+ ("\?x?add Convention pragma to declaration of &#",
+ Formal, F_Type);
+ end if;
+
+ -- Turn off name qualification after message output
+
+ Error_Msg_Qual_Level := 0;
+ end if;
+
+ -- Check for unconstrained array in exported foreign
+ -- convention case.
+
+ if Has_Foreign_Convention (E)
+ and then not Is_Imported (E)
+ and then Is_Array_Type (F_Type)
+ and then not Is_Constrained (F_Type)
+ and then Warn_On_Export_Import
+
+ -- Exclude VM case, since both .NET and JVM can handle
+ -- unconstrained arrays without a problem.
+
+ and then VM_Target = No_VM
+ then
+ Error_Msg_Qual_Level := 1;
+
+ -- If this is an inherited operation, place the
+ -- warning on the derived type declaration, rather
+ -- than on the original subprogram.
+
+ if Nkind (Original_Node (Parent (E))) =
+ N_Full_Type_Declaration
+ then
+ Warn_Node := Parent (E);
+
+ if Formal = First_Formal (E) then
+ Error_Msg_NE
+ ("??in inherited operation&", Warn_Node, E);
+ end if;
+ else
+ Warn_Node := Formal;
+ end if;
+
+ Error_Msg_NE
+ ("?x?type of argument& is unconstrained array",
+ Warn_Node, Formal);
+ Error_Msg_NE
+ ("?x?foreign caller must pass bounds explicitly",
+ Warn_Node, Formal);
+ Error_Msg_Qual_Level := 0;
+ end if;
+
+ if not From_Limited_With (F_Type) then
+ if Is_Access_Type (F_Type) then
+ F_Type := Designated_Type (F_Type);
+ end if;
+
+ -- If the formal is an anonymous_access_to_subprogram
+ -- freeze the subprogram type as well, to prevent
+ -- scope anomalies in gigi, because there is no other
+ -- clear point at which it could be frozen.
+
+ if Is_Itype (Etype (Formal))
+ and then Ekind (F_Type) = E_Subprogram_Type
+ then
+ Freeze_And_Append (F_Type, N, Result);
+ end if;
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+
+ -- Case of function: similar checks on return type
+
+ if Ekind (E) = E_Function then
+
+ -- Freeze return type
+
+ R_Type := Etype (E);
+
+ -- AI05-0151: the return type may have been incomplete
+ -- at the point of declaration. Replace it with the full
+ -- view, unless the current type is a limited view. In
+ -- that case the full view is in a different unit, and
+ -- gigi finds the non-limited view after the other unit
+ -- is elaborated.
+
+ if Ekind (R_Type) = E_Incomplete_Type
+ and then Present (Full_View (R_Type))
+ and then not From_Limited_With (R_Type)
+ then
+ R_Type := Full_View (R_Type);
+ Set_Etype (E, R_Type);
+
+ -- If the return type is a limited view and the non-
+ -- limited view is still incomplete, the function has
+ -- to be frozen at a later time.
+
+ elsif Ekind (R_Type) = E_Incomplete_Type
+ and then From_Limited_With (R_Type)
+ and then
+ Ekind (Non_Limited_View (R_Type)) = E_Incomplete_Type
+ then
+ Set_Is_Frozen (E, False);
+ return Result;
+ end if;
+
+ Freeze_And_Append (R_Type, N, Result);
+
+ -- Check suspicious return type for C function
+
+ if Warn_On_Export_Import
+ and then (Convention (E) = Convention_C
+ or else
+ Convention (E) = Convention_CPP)
+ and then (Is_Imported (E) or else Is_Exported (E))
+ then
+ -- Check suspicious return of fat C pointer
+
+ if Is_Access_Type (R_Type)
+ and then Esize (R_Type) > Ttypes.System_Address_Size
+ and then not Has_Warnings_Off (E)
+ and then not Has_Warnings_Off (R_Type)
+ then
+ Error_Msg_N
+ ("?x?return type of& does not "
+ & "correspond to C pointer!", E);
+
+ -- Check suspicious return of boolean
+
+ elsif Root_Type (R_Type) = Standard_Boolean
+ and then Convention (R_Type) = Convention_Ada
+ and then VM_Target = No_VM
+ and then not Has_Warnings_Off (E)
+ and then not Has_Warnings_Off (R_Type)
+ and then not Has_Size_Clause (R_Type)
+ then
+ declare
+ N : constant Node_Id :=
+ Result_Definition (Declaration_Node (E));
+ begin
+ Error_Msg_NE
+ ("return type of & is an 8-bit Ada Boolean?x?",
+ N, E);
+ Error_Msg_NE
+ ("\use appropriate corresponding type in C "
+ & "(e.g. char)?x?", N, E);
+ end;
+
+ -- Check suspicious return tagged type
+
+ elsif (Is_Tagged_Type (R_Type)
+ or else (Is_Access_Type (R_Type)
+ and then
+ Is_Tagged_Type
+ (Designated_Type (R_Type))))
+ and then Convention (E) = Convention_C
+ and then not Has_Warnings_Off (E)
+ and then not Has_Warnings_Off (R_Type)
+ then
+ Error_Msg_N
+ ("?x?return type of & does not "
+ & "correspond to C type!", E);
+
+ -- Check return of wrong convention subprogram pointer
+
+ elsif Ekind (R_Type) = E_Access_Subprogram_Type
+ and then not Has_Foreign_Convention (R_Type)
+ and then not Has_Warnings_Off (E)
+ and then not Has_Warnings_Off (R_Type)
+ then
+ Error_Msg_N
+ ("?x?& should return a foreign "
+ & "convention subprogram pointer", E);
+ Error_Msg_Sloc := Sloc (R_Type);
+ Error_Msg_NE
+ ("\?x?add Convention pragma to declaration of& #",
+ E, R_Type);
+ end if;
+ end if;
+
+ -- Give warning for suspicious return of a result of an
+ -- unconstrained array type in a foreign convention
+ -- function.
+
+ if Has_Foreign_Convention (E)
+
+ -- We are looking for a return of unconstrained array
+
+ and then Is_Array_Type (R_Type)
+ and then not Is_Constrained (R_Type)
+
+ -- Exclude imported routines, the warning does not
+ -- belong on the import, but rather on the routine
+ -- definition.
+
+ and then not Is_Imported (E)
+
+ -- Exclude VM case, since both .NET and JVM can handle
+ -- return of unconstrained arrays without a problem.
+
+ and then VM_Target = No_VM
+
+ -- Check that general warning is enabled, and that it
+ -- is not suppressed for this particular case.
+
+ and then Warn_On_Export_Import
+ and then not Has_Warnings_Off (E)
+ and then not Has_Warnings_Off (R_Type)
+ then
+ Error_Msg_N
+ ("?x?foreign convention function& should not " &
+ "return unconstrained array!", E);
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- Must freeze its parent first if it is a derived subprogram
+
+ if Present (Alias (E)) then
+ Freeze_And_Append (Alias (E), N, Result);
+ end if;
+
+ -- We don't freeze internal subprograms, because we don't normally
+ -- want addition of extra formals or mechanism setting to happen
+ -- for those. However we do pass through predefined dispatching
+ -- cases, since extra formals may be needed in some cases, such as
+ -- for the stream 'Input function (build-in-place formals).
+
+ if not Is_Internal (E)
+ or else Is_Predefined_Dispatching_Operation (E)
+ then
+ Freeze_Subprogram (E);
+ end if;
+
+ -- Here for other than a subprogram or type
+
+ else
+ -- If entity has a type, and it is not a generic unit, then
+ -- freeze it first (RM 13.14(10)).
+
+ if Present (Etype (E))
+ and then Ekind (E) /= E_Generic_Function
+ then
+ Freeze_And_Append (Etype (E), N, Result);
+ end if;
+
+ -- Special processing for objects created by object declaration
+
+ if Nkind (Declaration_Node (E)) = N_Object_Declaration then
+
+ -- Abstract type allowed only for C++ imported variables or
+ -- constants.
+
+ -- Note: we inhibit this check for objects that do not come
+ -- from source because there is at least one case (the
+ -- expansion of x'Class'Input where x is abstract) where we
+ -- legitimately generate an abstract object.
+
+ if Is_Abstract_Type (Etype (E))
+ and then Comes_From_Source (Parent (E))
+ and then not (Is_Imported (E)
+ and then Is_CPP_Class (Etype (E)))
+ then
+ Error_Msg_N ("type of object cannot be abstract",
+ Object_Definition (Parent (E)));
+
+ if Is_CPP_Class (Etype (E)) then
+ Error_Msg_NE
+ ("\} may need a cpp_constructor",
+ Object_Definition (Parent (E)), Etype (E));
+ end if;
+ end if;
+
+ -- For object created by object declaration, perform required
+ -- categorization (preelaborate and pure) checks. Defer these
+ -- checks to freeze time since pragma Import inhibits default
+ -- initialization and thus pragma Import affects these checks.
+
+ Validate_Object_Declaration (Declaration_Node (E));
+
+ -- If there is an address clause, check that it is valid
+
+ Check_Address_Clause (E);
+
+ -- Reset Is_True_Constant for aliased object. We consider that
+ -- the fact that something is aliased may indicate that some
+ -- funny business is going on, e.g. an aliased object is passed
+ -- by reference to a procedure which captures the address of
+ -- the object, which is later used to assign a new value. Such
+ -- code is highly dubious, but we choose to make it "work" for
+ -- aliased objects.
+
+ -- However, we don't do that for internal entities. We figure
+ -- that if we deliberately set Is_True_Constant for an internal
+ -- entity, e.g. a dispatch table entry, then we mean it.
+
+ if (Is_Aliased (E) or else Is_Aliased (Etype (E)))
+ and then not Is_Internal_Name (Chars (E))
+ then
+ Set_Is_True_Constant (E, False);
+ end if;
+
+ -- If the object needs any kind of default initialization, an
+ -- error must be issued if No_Default_Initialization applies.
+ -- The check doesn't apply to imported objects, which are not
+ -- ever default initialized, and is why the check is deferred
+ -- until freezing, at which point we know if Import applies.
+ -- Deferred constants are also exempted from this test because
+ -- their completion is explicit, or through an import pragma.
+
+ if Ekind (E) = E_Constant
+ and then Present (Full_View (E))
+ then
+ null;
+
+ elsif Comes_From_Source (E)
+ and then not Is_Imported (E)
+ and then not Has_Init_Expression (Declaration_Node (E))
+ and then
+ ((Has_Non_Null_Base_Init_Proc (Etype (E))
+ and then not No_Initialization (Declaration_Node (E))
+ and then not Is_Value_Type (Etype (E))
+ and then not Initialization_Suppressed (Etype (E)))
+ or else
+ (Needs_Simple_Initialization (Etype (E))
+ and then not Is_Internal (E)))
+ then
+ Has_Default_Initialization := True;
+ Check_Restriction
+ (No_Default_Initialization, Declaration_Node (E));
+ end if;
+
+ -- Check that a Thread_Local_Storage variable does not have
+ -- default initialization, and any explicit initialization must
+ -- either be the null constant or a static constant.
+
+ if Has_Pragma_Thread_Local_Storage (E) then
+ declare
+ Decl : constant Node_Id := Declaration_Node (E);
+ begin
+ if Has_Default_Initialization
+ or else
+ (Has_Init_Expression (Decl)
+ and then
+ (No (Expression (Decl))
+ or else not
+ (Is_Static_Expression (Expression (Decl))
+ or else
+ Nkind (Expression (Decl)) = N_Null)))
+ then
+ Error_Msg_NE
+ ("Thread_Local_Storage variable& is "
+ & "improperly initialized", Decl, E);
+ Error_Msg_NE
+ ("\only allowed initialization is explicit "
+ & "NULL or static expression", Decl, E);
+ end if;
+ end;
+ end if;
+
+ -- For imported objects, set Is_Public unless there is also an
+ -- address clause, which means that there is no external symbol
+ -- needed for the Import (Is_Public may still be set for other
+ -- unrelated reasons). Note that we delayed this processing
+ -- till freeze time so that we can be sure not to set the flag
+ -- if there is an address clause. If there is such a clause,
+ -- then the only purpose of the Import pragma is to suppress
+ -- implicit initialization.
+
+ if Is_Imported (E) and then No (Address_Clause (E)) then
+ Set_Is_Public (E);
+ end if;
+
+ -- For source objects that are not Imported and are library
+ -- level, if no linker section pragma was given inherit the
+ -- appropriate linker section from the corresponding type.
+
+ if Comes_From_Source (E)
+ and then not Is_Imported (E)
+ and then Is_Library_Level_Entity (E)
+ and then No (Linker_Section_Pragma (E))
+ then
+ Set_Linker_Section_Pragma
+ (E, Linker_Section_Pragma (Etype (E)));
+ end if;
+
+ -- For convention C objects of an enumeration type, warn if
+ -- the size is not integer size and no explicit size given.
+ -- Skip warning for Boolean, and Character, assume programmer
+ -- expects 8-bit sizes for these cases.
+
+ if (Convention (E) = Convention_C
+ or else
+ Convention (E) = Convention_CPP)
+ and then Is_Enumeration_Type (Etype (E))
+ and then not Is_Character_Type (Etype (E))
+ and then not Is_Boolean_Type (Etype (E))
+ and then Esize (Etype (E)) < Standard_Integer_Size
+ and then not Has_Size_Clause (E)
+ then
+ Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
+ Error_Msg_N
+ ("??convention C enumeration object has size less than ^",
+ E);
+ Error_Msg_N ("\?use explicit size clause to set size", E);
+ end if;
+ end if;
+
+ -- Check that a constant which has a pragma Volatile[_Components]
+ -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
+
+ -- Note: Atomic[_Components] also sets Volatile[_Components]
+
+ if Ekind (E) = E_Constant
+ and then (Has_Volatile_Components (E) or else Is_Volatile (E))
+ and then not Is_Imported (E)
+ then
+ -- Make sure we actually have a pragma, and have not merely
+ -- inherited the indication from elsewhere (e.g. an address
+ -- clause, which is not good enough in RM terms).
+
+ if Has_Rep_Pragma (E, Name_Atomic)
+ or else
+ Has_Rep_Pragma (E, Name_Atomic_Components)
+ then
+ Error_Msg_N
+ ("stand alone atomic constant must be " &
+ "imported (RM C.6(13))", E);
+
+ elsif Has_Rep_Pragma (E, Name_Volatile)
+ or else
+ Has_Rep_Pragma (E, Name_Volatile_Components)
+ then
+ Error_Msg_N
+ ("stand alone volatile constant must be " &
+ "imported (RM C.6(13))", E);
+ end if;
+ end if;
+
+ -- Static objects require special handling
+
+ if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
+ and then Is_Statically_Allocated (E)
+ then
+ Freeze_Static_Object (E);
+ end if;
+
+ -- Remaining step is to layout objects
+
+ if Ekind_In (E, E_Variable, E_Constant, E_Loop_Parameter)
+ or else Is_Formal (E)
+ then
+ Layout_Object (E);
+ end if;
+
+ -- If initialization statements were captured in an expression
+ -- with actions with null expression, and the object does not
+ -- have delayed freezing, move them back now directly within the
+ -- enclosing statement sequence.
+
+ if Ekind_In (E, E_Constant, E_Variable)
+ and then not Has_Delayed_Freeze (E)
+ then
+ declare
+ Init_Stmts : constant Node_Id :=
+ Initialization_Statements (E);
+ begin
+ if Present (Init_Stmts)
+ and then Nkind (Init_Stmts) = N_Expression_With_Actions
+ and then Nkind (Expression (Init_Stmts)) = N_Null_Statement
+ then
+ Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
+
+ -- Note that we rewrite Init_Stmts into a NULL statement,
+ -- rather than just removing it, because Freeze_All may
+ -- depend on this particular Node_Id still being present
+ -- in the enclosing list to signal where to stop
+ -- freezing.
+
+ Rewrite (Init_Stmts,
+ Make_Null_Statement (Sloc (Init_Stmts)));
+
+ Set_Initialization_Statements (E, Empty);
+ end if;
+ end;
+ end if;
+ end if;
+
+ -- Case of a type or subtype being frozen
+
+ else
+ -- We used to check here that a full type must have preelaborable
+ -- initialization if it completes a private type specified with
+ -- pragma Preelaborable_Initialization, but that missed cases where
+ -- the types occur within a generic package, since the freezing
+ -- that occurs within a containing scope generally skips traversal
+ -- of a generic unit's declarations (those will be frozen within
+ -- instances). This check was moved to Analyze_Package_Specification.
+
+ -- The type may be defined in a generic unit. This can occur when
+ -- freezing a generic function that returns the type (which is
+ -- defined in a parent unit). It is clearly meaningless to freeze
+ -- this type. However, if it is a subtype, its size may be determi-
+ -- nable and used in subsequent checks, so might as well try to
+ -- compute it.
+
+ -- In Ada 2012, Freeze_Entities is also used in the front end to
+ -- trigger the analysis of aspect expressions, so in this case we
+ -- want to continue the freezing process.
+
+ if Present (Scope (E))
+ and then Is_Generic_Unit (Scope (E))
+ and then
+ (not Has_Predicates (E)
+ and then not Has_Delayed_Freeze (E))
+ then
+ Check_Compile_Time_Size (E);
+ return No_List;
+ end if;
+
+ -- Deal with special cases of freezing for subtype
+
+ if E /= Base_Type (E) then
+
+ -- Before we do anything else, a specialized test for the case of
+ -- a size given for an array where the array needs to be packed,
+ -- but was not so the size cannot be honored. This is the case
+ -- where implicit packing may apply. The reason we do this so
+ -- early is that if we have implicit packing, the layout of the
+ -- base type is affected, so we must do this before we freeze
+ -- the base type.
+
+ -- We could do this processing only if implicit packing is enabled
+ -- since in all other cases, the error would be caught by the back
+ -- end. However, we choose to do the check even if we do not have
+ -- implicit packing enabled, since this allows us to give a more
+ -- useful error message (advising use of pragmas Implicit_Packing
+ -- or Pack).
+
+ if Is_Array_Type (E) then
+ declare
+ Ctyp : constant Entity_Id := Component_Type (E);
+ Rsiz : constant Uint := RM_Size (Ctyp);
+ SZ : constant Node_Id := Size_Clause (E);
+ Btyp : constant Entity_Id := Base_Type (E);
+
+ Lo : Node_Id;
+ Hi : Node_Id;
+ Indx : Node_Id;
+
+ Num_Elmts : Uint;
+ -- Number of elements in array
+
+ begin
+ -- Check enabling conditions. These are straightforward
+ -- except for the test for a limited composite type. This
+ -- eliminates the rare case of a array of limited components
+ -- where there are issues of whether or not we can go ahead
+ -- and pack the array (since we can't freely pack and unpack
+ -- arrays if they are limited).
+
+ -- Note that we check the root type explicitly because the
+ -- whole point is we are doing this test before we have had
+ -- a chance to freeze the base type (and it is that freeze
+ -- action that causes stuff to be inherited).
+
+ if Has_Size_Clause (E)
+ and then Known_Static_RM_Size (E)
+ and then not Is_Packed (E)
+ and then not Has_Pragma_Pack (E)
+ and then not Has_Component_Size_Clause (E)
+ and then Known_Static_RM_Size (Ctyp)
+ and then RM_Size (Ctyp) < 64
+ and then not Is_Limited_Composite (E)
+ and then not Is_Packed (Root_Type (E))
+ and then not Has_Component_Size_Clause (Root_Type (E))
+ and then not (CodePeer_Mode or GNATprove_Mode)
+ then
+ -- Compute number of elements in array
+
+ Num_Elmts := Uint_1;
+ Indx := First_Index (E);
+ while Present (Indx) loop
+ Get_Index_Bounds (Indx, Lo, Hi);
+
+ if not (Compile_Time_Known_Value (Lo)
+ and then
+ Compile_Time_Known_Value (Hi))
+ then
+ goto No_Implicit_Packing;
+ end if;
+
+ Num_Elmts :=
+ Num_Elmts *
+ UI_Max (Uint_0,
+ Expr_Value (Hi) - Expr_Value (Lo) + 1);
+ Next_Index (Indx);
+ end loop;
+
+ -- What we are looking for here is the situation where
+ -- the RM_Size given would be exactly right if there was
+ -- a pragma Pack (resulting in the component size being
+ -- the same as the RM_Size). Furthermore, the component
+ -- type size must be an odd size (not a multiple of
+ -- storage unit). If the component RM size is an exact
+ -- number of storage units that is a power of two, the
+ -- array is not packed and has a standard representation.
+
+ if RM_Size (E) = Num_Elmts * Rsiz
+ and then Rsiz mod System_Storage_Unit /= 0
+ then
+ -- For implicit packing mode, just set the component
+ -- size silently.
+
+ if Implicit_Packing then
+ Set_Component_Size (Btyp, Rsiz);
+ Set_Is_Bit_Packed_Array (Btyp);
+ Set_Is_Packed (Btyp);
+ Set_Has_Non_Standard_Rep (Btyp);
+
+ -- Otherwise give an error message
+
+ else
+ Error_Msg_NE
+ ("size given for& too small", SZ, E);
+ Error_Msg_N -- CODEFIX
+ ("\use explicit pragma Pack "
+ & "or use pragma Implicit_Packing", SZ);
+ end if;
+
+ elsif RM_Size (E) = Num_Elmts * Rsiz
+ and then Implicit_Packing
+ and then
+ (Rsiz / System_Storage_Unit = 1
+ or else
+ Rsiz / System_Storage_Unit = 2
+ or else
+ Rsiz / System_Storage_Unit = 4)
+ then
+ -- Not a packed array, but indicate the desired
+ -- component size, for the back-end.
+
+ Set_Component_Size (Btyp, Rsiz);
+ end if;
+ end if;
+ end;
+ end if;
+
+ <<No_Implicit_Packing>>
+
+ -- If ancestor subtype present, freeze that first. Note that this
+ -- will also get the base type frozen. Need RM reference ???
+
+ Atype := Ancestor_Subtype (E);
+
+ if Present (Atype) then
+ Freeze_And_Append (Atype, N, Result);
+
+ -- No ancestor subtype present
+
+ else
+ -- See if we have a nearest ancestor that has a predicate.
+ -- That catches the case of derived type with a predicate.
+ -- Need RM reference here ???
+
+ Atype := Nearest_Ancestor (E);
+
+ if Present (Atype) and then Has_Predicates (Atype) then
+ Freeze_And_Append (Atype, N, Result);
+ end if;
+
+ -- Freeze base type before freezing the entity (RM 13.14(15))
+
+ if E /= Base_Type (E) then
+ Freeze_And_Append (Base_Type (E), N, Result);
+ end if;
+ end if;
+
+ -- A subtype inherits all the type-related representation aspects
+ -- from its parents (RM 13.1(8)).
+
+ Inherit_Aspects_At_Freeze_Point (E);
+
+ -- For a derived type, freeze its parent type first (RM 13.14(15))
+
+ elsif Is_Derived_Type (E) then
+ Freeze_And_Append (Etype (E), N, Result);
+ Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
+
+ -- A derived type inherits each type-related representation aspect
+ -- of its parent type that was directly specified before the
+ -- declaration of the derived type (RM 13.1(15)).
+
+ Inherit_Aspects_At_Freeze_Point (E);
+ end if;
+
+ -- Array type
+
+ if Is_Array_Type (E) then
+ Freeze_Array_Type (E);
+
+ -- For a class-wide type, the corresponding specific type is
+ -- frozen as well (RM 13.14(15))
+
+ elsif Is_Class_Wide_Type (E) then
+ Freeze_And_Append (Root_Type (E), N, Result);
+
+ -- If the base type of the class-wide type is still incomplete,
+ -- the class-wide remains unfrozen as well. This is legal when
+ -- E is the formal of a primitive operation of some other type
+ -- which is being frozen.
+
+ if not Is_Frozen (Root_Type (E)) then
+ Set_Is_Frozen (E, False);
+ return Result;
+ end if;
+
+ -- The equivalent type associated with a class-wide subtype needs
+ -- to be frozen to ensure that its layout is done.
+
+ if Ekind (E) = E_Class_Wide_Subtype
+ and then Present (Equivalent_Type (E))
+ then
+ Freeze_And_Append (Equivalent_Type (E), N, Result);
+ end if;
+
+ -- Generate an itype reference for a library-level class-wide type
+ -- at the freeze point. Otherwise the first explicit reference to
+ -- the type may appear in an inner scope which will be rejected by
+ -- the back-end.
+
+ if Is_Itype (E)
+ and then Is_Compilation_Unit (Scope (E))
+ then
+ declare
+ Ref : constant Node_Id := Make_Itype_Reference (Loc);
+
+ begin
+ Set_Itype (Ref, E);
+
+ -- From a gigi point of view, a class-wide subtype derives
+ -- from its record equivalent type. As a result, the itype
+ -- reference must appear after the freeze node of the
+ -- equivalent type or gigi will reject the reference.
+
+ if Ekind (E) = E_Class_Wide_Subtype
+ and then Present (Equivalent_Type (E))
+ then
+ Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
+ else
+ Add_To_Result (Ref);
+ end if;
+ end;
+ end if;
+
+ -- For a record type or record subtype, freeze all component types
+ -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
+ -- using Is_Record_Type, because we don't want to attempt the freeze
+ -- for the case of a private type with record extension (we will do
+ -- that later when the full type is frozen).
+
+ elsif Ekind_In (E, E_Record_Type, E_Record_Subtype)
+ and then not Is_Generic_Unit (Scope (E))
+ then
+ Freeze_Record_Type (E);
+
+ -- For a concurrent type, freeze corresponding record type. This
+ -- does not correspond to any specific rule in the RM, but the
+ -- record type is essentially part of the concurrent type.
+ -- Freeze as well all local entities. This includes record types
+ -- created for entry parameter blocks, and whatever local entities
+ -- may appear in the private part.
+
+ elsif Is_Concurrent_Type (E) then
+ if Present (Corresponding_Record_Type (E)) then
+ Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
+ end if;
+
+ Comp := First_Entity (E);
+ while Present (Comp) loop
+ if Is_Type (Comp) then
+ Freeze_And_Append (Comp, N, Result);
+
+ elsif (Ekind (Comp)) /= E_Function then
+ if Is_Itype (Etype (Comp))
+ and then Underlying_Type (Scope (Etype (Comp))) = E
+ then
+ Undelay_Type (Etype (Comp));
+ end if;
+
+ Freeze_And_Append (Etype (Comp), N, Result);
+ end if;
+
+ Next_Entity (Comp);
+ end loop;
+
+ -- Private types are required to point to the same freeze node as
+ -- their corresponding full views. The freeze node itself has to
+ -- point to the partial view of the entity (because from the partial
+ -- view, we can retrieve the full view, but not the reverse).
+ -- However, in order to freeze correctly, we need to freeze the full
+ -- view. If we are freezing at the end of a scope (or within the
+ -- scope of the private type), the partial and full views will have
+ -- been swapped, the full view appears first in the entity chain and
+ -- the swapping mechanism ensures that the pointers are properly set
+ -- (on scope exit).
+
+ -- If we encounter the partial view before the full view (e.g. when
+ -- freezing from another scope), we freeze the full view, and then
+ -- set the pointers appropriately since we cannot rely on swapping to
+ -- fix things up (subtypes in an outer scope might not get swapped).
+
+ elsif Is_Incomplete_Or_Private_Type (E)
+ and then not Is_Generic_Type (E)
+ then
+ -- The construction of the dispatch table associated with library
+ -- level tagged types forces freezing of all the primitives of the
+ -- type, which may cause premature freezing of the partial view.
+ -- For example:
+
+ -- package Pkg is
+ -- type T is tagged private;
+ -- type DT is new T with private;
+ -- procedure Prim (X : in out T; Y : in out DT'Class);
+ -- private
+ -- type T is tagged null record;
+ -- Obj : T;
+ -- type DT is new T with null record;
+ -- end;
+
+ -- In this case the type will be frozen later by the usual
+ -- mechanism: an object declaration, an instantiation, or the
+ -- end of a declarative part.
+
+ if Is_Library_Level_Tagged_Type (E)
+ and then not Present (Full_View (E))
+ then
+ Set_Is_Frozen (E, False);
+ return Result;
+
+ -- Case of full view present
+
+ elsif Present (Full_View (E)) then
+
+ -- If full view has already been frozen, then no further
+ -- processing is required
+
+ if Is_Frozen (Full_View (E)) then
+ Set_Has_Delayed_Freeze (E, False);
+ Set_Freeze_Node (E, Empty);
+ Check_Debug_Info_Needed (E);
+
+ -- Otherwise freeze full view and patch the pointers so that
+ -- the freeze node will elaborate both views in the back-end.
+
+ else
+ declare
+ Full : constant Entity_Id := Full_View (E);
+
+ begin
+ if Is_Private_Type (Full)
+ and then Present (Underlying_Full_View (Full))
+ then
+ Freeze_And_Append
+ (Underlying_Full_View (Full), N, Result);
+ end if;
+
+ Freeze_And_Append (Full, N, Result);
+
+ if Has_Delayed_Freeze (E) then
+ F_Node := Freeze_Node (Full);
+
+ if Present (F_Node) then
+ Set_Freeze_Node (E, F_Node);
+ Set_Entity (F_Node, E);
+
+ else
+ -- {Incomplete,Private}_Subtypes with Full_Views
+ -- constrained by discriminants.
+
+ Set_Has_Delayed_Freeze (E, False);
+ Set_Freeze_Node (E, Empty);
+ end if;
+ end if;
+ end;
+
+ Check_Debug_Info_Needed (E);
+ end if;
+
+ -- AI-117 requires that the convention of a partial view be the
+ -- same as the convention of the full view. Note that this is a
+ -- recognized breach of privacy, but it's essential for logical
+ -- consistency of representation, and the lack of a rule in
+ -- RM95 was an oversight.
+
+ Set_Convention (E, Convention (Full_View (E)));
+
+ Set_Size_Known_At_Compile_Time (E,
+ Size_Known_At_Compile_Time (Full_View (E)));
+
+ -- Size information is copied from the full view to the
+ -- incomplete or private view for consistency.
+
+ -- We skip this is the full view is not a type. This is very
+ -- strange of course, and can only happen as a result of
+ -- certain illegalities, such as a premature attempt to derive
+ -- from an incomplete type.
+
+ if Is_Type (Full_View (E)) then
+ Set_Size_Info (E, Full_View (E));
+ Set_RM_Size (E, RM_Size (Full_View (E)));
+ end if;
+
+ return Result;
+
+ -- Case of no full view present. If entity is derived or subtype,
+ -- it is safe to freeze, correctness depends on the frozen status
+ -- of parent. Otherwise it is either premature usage, or a Taft
+ -- amendment type, so diagnosis is at the point of use and the
+ -- type might be frozen later.
+
+ elsif E /= Base_Type (E) or else Is_Derived_Type (E) then
+ null;
+
+ else
+ Set_Is_Frozen (E, False);
+ return No_List;
+ end if;
+
+ -- For access subprogram, freeze types of all formals, the return
+ -- type was already frozen, since it is the Etype of the function.
+ -- Formal types can be tagged Taft amendment types, but otherwise
+ -- they cannot be incomplete.
+
+ elsif Ekind (E) = E_Subprogram_Type then
+ Formal := First_Formal (E);
+ while Present (Formal) loop
+ if Ekind (Etype (Formal)) = E_Incomplete_Type
+ and then No (Full_View (Etype (Formal)))
+ and then not Is_Value_Type (Etype (Formal))
+ then
+ if Is_Tagged_Type (Etype (Formal)) then
+ null;
+
+ -- AI05-151: Incomplete types are allowed in access to
+ -- subprogram specifications.
+
+ elsif Ada_Version < Ada_2012 then
+ Error_Msg_NE
+ ("invalid use of incomplete type&", E, Etype (Formal));
+ end if;
+ end if;
+
+ Freeze_And_Append (Etype (Formal), N, Result);
+ Next_Formal (Formal);
+ end loop;
+
+ Freeze_Subprogram (E);
+
+ -- For access to a protected subprogram, freeze the equivalent type
+ -- (however this is not set if we are not generating code or if this
+ -- is an anonymous type used just for resolution).
+
+ elsif Is_Access_Protected_Subprogram_Type (E) then
+ if Present (Equivalent_Type (E)) then
+ Freeze_And_Append (Equivalent_Type (E), N, Result);
+ end if;
+ end if;
+
+ -- Generic types are never seen by the back-end, and are also not
+ -- processed by the expander (since the expander is turned off for
+ -- generic processing), so we never need freeze nodes for them.
+
+ if Is_Generic_Type (E) then
+ return Result;
+ end if;
+
+ -- Some special processing for non-generic types to complete
+ -- representation details not known till the freeze point.
+
+ if Is_Fixed_Point_Type (E) then
+ Freeze_Fixed_Point_Type (E);
+
+ -- Some error checks required for ordinary fixed-point type. Defer
+ -- these till the freeze-point since we need the small and range
+ -- values. We only do these checks for base types
+
+ if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
+ if Small_Value (E) < Ureal_2_M_80 then
+ Error_Msg_Name_1 := Name_Small;
+ Error_Msg_N
+ ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
+
+ elsif Small_Value (E) > Ureal_2_80 then
+ Error_Msg_Name_1 := Name_Small;
+ Error_Msg_N
+ ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
+ end if;
+
+ if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
+ Error_Msg_Name_1 := Name_First;
+ Error_Msg_N
+ ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
+ end if;
+
+ if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
+ Error_Msg_Name_1 := Name_Last;
+ Error_Msg_N
+ ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
+ end if;
+ end if;
+
+ elsif Is_Enumeration_Type (E) then
+ Freeze_Enumeration_Type (E);
+
+ elsif Is_Integer_Type (E) then
+ Adjust_Esize_For_Alignment (E);
+
+ if Is_Modular_Integer_Type (E)
+ and then Warn_On_Suspicious_Modulus_Value
+ then
+ Check_Suspicious_Modulus (E);
+ end if;
+
+ elsif Is_Access_Type (E)
+ and then not Is_Access_Subprogram_Type (E)
+ then
+ -- If a pragma Default_Storage_Pool applies, and this type has no
+ -- Storage_Pool or Storage_Size clause (which must have occurred
+ -- before the freezing point), then use the default. This applies
+ -- only to base types.
+
+ -- None of this applies to access to subprograms, for which there
+ -- are clearly no pools.
+
+ if Present (Default_Pool)
+ and then Is_Base_Type (E)
+ and then not Has_Storage_Size_Clause (E)
+ and then No (Associated_Storage_Pool (E))
+ then
+ -- Case of pragma Default_Storage_Pool (null)
+
+ if Nkind (Default_Pool) = N_Null then
+ Set_No_Pool_Assigned (E);
+
+ -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
+
+ else
+ Set_Associated_Storage_Pool (E, Entity (Default_Pool));
+ end if;
+ end if;
+
+ -- Check restriction for standard storage pool
+
+ if No (Associated_Storage_Pool (E)) then
+ Check_Restriction (No_Standard_Storage_Pools, E);
+ end if;
+
+ -- Deal with error message for pure access type. This is not an
+ -- error in Ada 2005 if there is no pool (see AI-366).
+
+ if Is_Pure_Unit_Access_Type (E)
+ and then (Ada_Version < Ada_2005
+ or else not No_Pool_Assigned (E))
+ and then not Is_Generic_Unit (Scope (E))
+ then
+ Error_Msg_N ("named access type not allowed in pure unit", E);
+
+ if Ada_Version >= Ada_2005 then
+ Error_Msg_N
+ ("\would be legal if Storage_Size of 0 given??", E);
+
+ elsif No_Pool_Assigned (E) then
+ Error_Msg_N
+ ("\would be legal in Ada 2005??", E);
+
+ else
+ Error_Msg_N
+ ("\would be legal in Ada 2005 if "
+ & "Storage_Size of 0 given??", E);
+ end if;
+ end if;
+ end if;
+
+ -- Case of composite types
+
+ if Is_Composite_Type (E) then
+
+ -- AI-117 requires that all new primitives of a tagged type must
+ -- inherit the convention of the full view of the type. Inherited
+ -- and overriding operations are defined to inherit the convention
+ -- of their parent or overridden subprogram (also specified in
+ -- AI-117), which will have occurred earlier (in Derive_Subprogram
+ -- and New_Overloaded_Entity). Here we set the convention of
+ -- primitives that are still convention Ada, which will ensure
+ -- that any new primitives inherit the type's convention. Class-
+ -- wide types can have a foreign convention inherited from their
+ -- specific type, but are excluded from this since they don't have
+ -- any associated primitives.
+
+ if Is_Tagged_Type (E)
+ and then not Is_Class_Wide_Type (E)
+ and then Convention (E) /= Convention_Ada
+ then
+ declare
+ Prim_List : constant Elist_Id := Primitive_Operations (E);
+ Prim : Elmt_Id;
+
+ begin
+ Prim := First_Elmt (Prim_List);
+ while Present (Prim) loop
+ if Convention (Node (Prim)) = Convention_Ada then
+ Set_Convention (Node (Prim), Convention (E));
+ end if;
+
+ Next_Elmt (Prim);
+ end loop;
+ end;
+ end if;
+
+ -- If the type is a simple storage pool type, then this is where
+ -- we attempt to locate and validate its Allocate, Deallocate, and
+ -- Storage_Size operations (the first is required, and the latter
+ -- two are optional). We also verify that the full type for a
+ -- private type is allowed to be a simple storage pool type.
+
+ if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
+ and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
+ then
+ -- If the type is marked Has_Private_Declaration, then this is
+ -- a full type for a private type that was specified with the
+ -- pragma Simple_Storage_Pool_Type, and here we ensure that the
+ -- pragma is allowed for the full type (for example, it can't
+ -- be an array type, or a nonlimited record type).
+
+ if Has_Private_Declaration (E) then
+ if (not Is_Record_Type (E) or else not Is_Limited_View (E))
+ and then not Is_Private_Type (E)
+ then
+ Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
+ Error_Msg_N
+ ("pragma% can only apply to full type that is an " &
+ "explicitly limited type", E);
+ end if;
+ end if;
+
+ Validate_Simple_Pool_Ops : declare
+ Pool_Type : Entity_Id renames E;
+ Address_Type : constant Entity_Id := RTE (RE_Address);
+ Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
+
+ procedure Validate_Simple_Pool_Op_Formal
+ (Pool_Op : Entity_Id;
+ Pool_Op_Formal : in out Entity_Id;
+ Expected_Mode : Formal_Kind;
+ Expected_Type : Entity_Id;
+ Formal_Name : String;
+ OK_Formal : in out Boolean);
+ -- Validate one formal Pool_Op_Formal of the candidate pool
+ -- operation Pool_Op. The formal must be of Expected_Type
+ -- and have mode Expected_Mode. OK_Formal will be set to
+ -- False if the formal doesn't match. If OK_Formal is False
+ -- on entry, then the formal will effectively be ignored
+ -- (because validation of the pool op has already failed).
+ -- Upon return, Pool_Op_Formal will be updated to the next
+ -- formal, if any.
+
+ procedure Validate_Simple_Pool_Operation
+ (Op_Name : Name_Id);
+ -- Search for and validate a simple pool operation with the
+ -- name Op_Name. If the name is Allocate, then there must be
+ -- exactly one such primitive operation for the simple pool
+ -- type. If the name is Deallocate or Storage_Size, then
+ -- there can be at most one such primitive operation. The
+ -- profile of the located primitive must conform to what
+ -- is expected for each operation.
+
+ ------------------------------------
+ -- Validate_Simple_Pool_Op_Formal --
+ ------------------------------------
+
+ procedure Validate_Simple_Pool_Op_Formal
+ (Pool_Op : Entity_Id;
+ Pool_Op_Formal : in out Entity_Id;
+ Expected_Mode : Formal_Kind;
+ Expected_Type : Entity_Id;
+ Formal_Name : String;
+ OK_Formal : in out Boolean)
+ is
+ begin
+ -- If OK_Formal is False on entry, then simply ignore
+ -- the formal, because an earlier formal has already
+ -- been flagged.
+
+ if not OK_Formal then
+ return;
+
+ -- If no formal is passed in, then issue an error for a
+ -- missing formal.
+
+ elsif not Present (Pool_Op_Formal) then
+ Error_Msg_NE
+ ("simple storage pool op missing formal " &
+ Formal_Name & " of type&", Pool_Op, Expected_Type);
+ OK_Formal := False;
+
+ return;
+ end if;
+
+ if Etype (Pool_Op_Formal) /= Expected_Type then
+
+ -- If the pool type was expected for this formal, then
+ -- this will not be considered a candidate operation
+ -- for the simple pool, so we unset OK_Formal so that
+ -- the op and any later formals will be ignored.
+
+ if Expected_Type = Pool_Type then
+ OK_Formal := False;
+
+ return;
+
+ else
+ Error_Msg_NE
+ ("wrong type for formal " & Formal_Name &
+ " of simple storage pool op; expected type&",
+ Pool_Op_Formal, Expected_Type);
+ end if;
+ end if;
+
+ -- Issue error if formal's mode is not the expected one
+
+ if Ekind (Pool_Op_Formal) /= Expected_Mode then
+ Error_Msg_N
+ ("wrong mode for formal of simple storage pool op",
+ Pool_Op_Formal);
+ end if;
+
+ -- Advance to the next formal
+
+ Next_Formal (Pool_Op_Formal);
+ end Validate_Simple_Pool_Op_Formal;
+
+ ------------------------------------
+ -- Validate_Simple_Pool_Operation --
+ ------------------------------------
+
+ procedure Validate_Simple_Pool_Operation
+ (Op_Name : Name_Id)
+ is
+ Op : Entity_Id;
+ Found_Op : Entity_Id := Empty;
+ Formal : Entity_Id;
+ Is_OK : Boolean;
+
+ begin
+ pragma Assert
+ (Nam_In (Op_Name, Name_Allocate,
+ Name_Deallocate,
+ Name_Storage_Size));
+
+ Error_Msg_Name_1 := Op_Name;
+
+ -- For each homonym declared immediately in the scope
+ -- of the simple storage pool type, determine whether
+ -- the homonym is an operation of the pool type, and,
+ -- if so, check that its profile is as expected for
+ -- a simple pool operation of that name.
+
+ Op := Get_Name_Entity_Id (Op_Name);
+ while Present (Op) loop
+ if Ekind_In (Op, E_Function, E_Procedure)
+ and then Scope (Op) = Current_Scope
+ then
+ Formal := First_Entity (Op);
+
+ Is_OK := True;
+
+ -- The first parameter must be of the pool type
+ -- in order for the operation to qualify.
+
+ if Op_Name = Name_Storage_Size then
+ Validate_Simple_Pool_Op_Formal
+ (Op, Formal, E_In_Parameter, Pool_Type,
+ "Pool", Is_OK);
+ else
+ Validate_Simple_Pool_Op_Formal
+ (Op, Formal, E_In_Out_Parameter, Pool_Type,
+ "Pool", Is_OK);
+ end if;
+
+ -- If another operation with this name has already
+ -- been located for the type, then flag an error,
+ -- since we only allow the type to have a single
+ -- such primitive.
+
+ if Present (Found_Op) and then Is_OK then
+ Error_Msg_NE
+ ("only one % operation allowed for " &
+ "simple storage pool type&", Op, Pool_Type);
+ end if;
+
+ -- In the case of Allocate and Deallocate, a formal
+ -- of type System.Address is required.
+
+ if Op_Name = Name_Allocate then
+ Validate_Simple_Pool_Op_Formal
+ (Op, Formal, E_Out_Parameter,
+ Address_Type, "Storage_Address", Is_OK);
+
+ elsif Op_Name = Name_Deallocate then
+ Validate_Simple_Pool_Op_Formal
+ (Op, Formal, E_In_Parameter,
+ Address_Type, "Storage_Address", Is_OK);
+ end if;
+
+ -- In the case of Allocate and Deallocate, formals
+ -- of type Storage_Count are required as the third
+ -- and fourth parameters.
+
+ if Op_Name /= Name_Storage_Size then
+ Validate_Simple_Pool_Op_Formal
+ (Op, Formal, E_In_Parameter,
+ Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
+ Validate_Simple_Pool_Op_Formal
+ (Op, Formal, E_In_Parameter,
+ Stg_Cnt_Type, "Alignment", Is_OK);
+ end if;
+
+ -- If no mismatched formals have been found (Is_OK)
+ -- and no excess formals are present, then this
+ -- operation has been validated, so record it.
+
+ if not Present (Formal) and then Is_OK then
+ Found_Op := Op;
+ end if;
+ end if;
+
+ Op := Homonym (Op);
+ end loop;
+
+ -- There must be a valid Allocate operation for the type,
+ -- so issue an error if none was found.
+
+ if Op_Name = Name_Allocate
+ and then not Present (Found_Op)
+ then
+ Error_Msg_N ("missing % operation for simple " &
+ "storage pool type", Pool_Type);
+
+ elsif Present (Found_Op) then
+
+ -- Simple pool operations can't be abstract
+
+ if Is_Abstract_Subprogram (Found_Op) then
+ Error_Msg_N
+ ("simple storage pool operation must not be " &
+ "abstract", Found_Op);
+ end if;
+
+ -- The Storage_Size operation must be a function with
+ -- Storage_Count as its result type.
+
+ if Op_Name = Name_Storage_Size then
+ if Ekind (Found_Op) = E_Procedure then
+ Error_Msg_N
+ ("% operation must be a function", Found_Op);
+
+ elsif Etype (Found_Op) /= Stg_Cnt_Type then
+ Error_Msg_NE
+ ("wrong result type for%, expected type&",
+ Found_Op, Stg_Cnt_Type);
+ end if;
+
+ -- Allocate and Deallocate must be procedures
+
+ elsif Ekind (Found_Op) = E_Function then
+ Error_Msg_N
+ ("% operation must be a procedure", Found_Op);
+ end if;
+ end if;
+ end Validate_Simple_Pool_Operation;
+
+ -- Start of processing for Validate_Simple_Pool_Ops
+
+ begin
+ Validate_Simple_Pool_Operation (Name_Allocate);
+ Validate_Simple_Pool_Operation (Name_Deallocate);
+ Validate_Simple_Pool_Operation (Name_Storage_Size);
+ end Validate_Simple_Pool_Ops;
+ end if;
+ end if;
+
+ -- Now that all types from which E may depend are frozen, see if the
+ -- size is known at compile time, if it must be unsigned, or if
+ -- strict alignment is required
+
+ Check_Compile_Time_Size (E);
+ Check_Unsigned_Type (E);
+
+ if Base_Type (E) = E then
+ Check_Strict_Alignment (E);
+ end if;
+
+ -- Do not allow a size clause for a type which does not have a size
+ -- that is known at compile time
+
+ if Has_Size_Clause (E)
+ and then not Size_Known_At_Compile_Time (E)
+ then
+ -- Suppress this message if errors posted on E, even if we are
+ -- in all errors mode, since this is often a junk message
+
+ if not Error_Posted (E) then
+ Error_Msg_N
+ ("size clause not allowed for variable length type",
+ Size_Clause (E));
+ end if;
+ end if;
+
+ -- Now we set/verify the representation information, in particular
+ -- the size and alignment values. This processing is not required for
+ -- generic types, since generic types do not play any part in code
+ -- generation, and so the size and alignment values for such types
+ -- are irrelevant. Ditto for types declared within a generic unit,
+ -- which may have components that depend on generic parameters, and
+ -- that will be recreated in an instance.
+
+ if Inside_A_Generic then
+ null;
+
+ -- Otherwise we call the layout procedure
+
+ else
+ Layout_Type (E);
+ end if;
+
+ -- If this is an access to subprogram whose designated type is itself
+ -- a subprogram type, the return type of this anonymous subprogram
+ -- type must be decorated as well.
+
+ if Ekind (E) = E_Anonymous_Access_Subprogram_Type
+ and then Ekind (Designated_Type (E)) = E_Subprogram_Type
+ then
+ Layout_Type (Etype (Designated_Type (E)));
+ end if;
+
+ -- If the type has a Defaut_Value/Default_Component_Value aspect,
+ -- this is where we analye the expression (after the type is frozen,
+ -- since in the case of Default_Value, we are analyzing with the
+ -- type itself, and we treat Default_Component_Value similarly for
+ -- the sake of uniformity).
+
+ if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
+ declare
+ Nam : Name_Id;
+ Exp : Node_Id;
+ Typ : Entity_Id;
+
+ begin
+ if Is_Scalar_Type (E) then
+ Nam := Name_Default_Value;
+ Typ := E;
+ Exp := Default_Aspect_Value (Typ);
+ else
+ Nam := Name_Default_Component_Value;
+ Typ := Component_Type (E);
+ Exp := Default_Aspect_Component_Value (E);
+ end if;
+
+ Analyze_And_Resolve (Exp, Typ);
+
+ if Etype (Exp) /= Any_Type then
+ if not Is_Static_Expression (Exp) then
+ Error_Msg_Name_1 := Nam;
+ Flag_Non_Static_Expr
+ ("aspect% requires static expression", Exp);
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- End of freeze processing for type entities
+ end if;
+
+ -- Here is where we logically freeze the current entity. If it has a
+ -- freeze node, then this is the point at which the freeze node is
+ -- linked into the result list.
+
+ if Has_Delayed_Freeze (E) then
+
+ -- If a freeze node is already allocated, use it, otherwise allocate
+ -- a new one. The preallocation happens in the case of anonymous base
+ -- types, where we preallocate so that we can set First_Subtype_Link.
+ -- Note that we reset the Sloc to the current freeze location.
+
+ if Present (Freeze_Node (E)) then
+ F_Node := Freeze_Node (E);
+ Set_Sloc (F_Node, Loc);
+
+ else
+ F_Node := New_Node (N_Freeze_Entity, Loc);
+ Set_Freeze_Node (E, F_Node);
+ Set_Access_Types_To_Process (F_Node, No_Elist);
+ Set_TSS_Elist (F_Node, No_Elist);
+ Set_Actions (F_Node, No_List);
+ end if;
+
+ Set_Entity (F_Node, E);
+ Add_To_Result (F_Node);
+
+ -- A final pass over record types with discriminants. If the type
+ -- has an incomplete declaration, there may be constrained access
+ -- subtypes declared elsewhere, which do not depend on the discrimi-
+ -- nants of the type, and which are used as component types (i.e.
+ -- the full view is a recursive type). The designated types of these
+ -- subtypes can only be elaborated after the type itself, and they
+ -- need an itype reference.
+
+ if Ekind (E) = E_Record_Type
+ and then Has_Discriminants (E)
+ then
+ declare
+ Comp : Entity_Id;
+ IR : Node_Id;
+ Typ : Entity_Id;
+
+ begin
+ Comp := First_Component (E);
+ while Present (Comp) loop
+ Typ := Etype (Comp);
+
+ if Ekind (Comp) = E_Component
+ and then Is_Access_Type (Typ)
+ and then Scope (Typ) /= E
+ and then Base_Type (Designated_Type (Typ)) = E
+ and then Is_Itype (Designated_Type (Typ))
+ then
+ IR := Make_Itype_Reference (Sloc (Comp));
+ Set_Itype (IR, Designated_Type (Typ));
+ Append (IR, Result);
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+ end;
+ end if;
+ end if;
+
+ -- When a type is frozen, the first subtype of the type is frozen as
+ -- well (RM 13.14(15)). This has to be done after freezing the type,
+ -- since obviously the first subtype depends on its own base type.
+
+ if Is_Type (E) then
+ Freeze_And_Append (First_Subtype (E), N, Result);
+
+ -- If we just froze a tagged non-class wide record, then freeze the
+ -- corresponding class-wide type. This must be done after the tagged
+ -- type itself is frozen, because the class-wide type refers to the
+ -- tagged type which generates the class.
+
+ if Is_Tagged_Type (E)
+ and then not Is_Class_Wide_Type (E)
+ and then Present (Class_Wide_Type (E))
+ then
+ Freeze_And_Append (Class_Wide_Type (E), N, Result);
+ end if;
+ end if;
+
+ Check_Debug_Info_Needed (E);
+
+ -- Special handling for subprograms
+
+ if Is_Subprogram (E) then
+
+ -- If subprogram has address clause then reset Is_Public flag, since
+ -- we do not want the backend to generate external references.
+
+ if Present (Address_Clause (E))
+ and then not Is_Library_Level_Entity (E)
+ then
+ Set_Is_Public (E, False);
+ end if;
+ end if;
+
+ return Result;
+ end Freeze_Entity;
+
+ -----------------------------
+ -- Freeze_Enumeration_Type --
+ -----------------------------
+
+ procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
+ begin
+ -- By default, if no size clause is present, an enumeration type with
+ -- Convention C is assumed to interface to a C enum, and has integer
+ -- size. This applies to types. For subtypes, verify that its base
+ -- type has no size clause either. Treat other foreign conventions
+ -- in the same way, and also make sure alignment is set right.
+
+ if Has_Foreign_Convention (Typ)
+ and then not Has_Size_Clause (Typ)
+ and then not Has_Size_Clause (Base_Type (Typ))
+ and then Esize (Typ) < Standard_Integer_Size
+
+ -- Don't do this if Short_Enums on target
+
+ and then not Target_Short_Enums
+ then
+ Init_Esize (Typ, Standard_Integer_Size);
+ Set_Alignment (Typ, Alignment (Standard_Integer));
+
+ -- Normal Ada case or size clause present or not Long_C_Enums on target
+
+ else
+ -- If the enumeration type interfaces to C, and it has a size clause
+ -- that specifies less than int size, it warrants a warning. The
+ -- user may intend the C type to be an enum or a char, so this is
+ -- not by itself an error that the Ada compiler can detect, but it
+ -- it is a worth a heads-up. For Boolean and Character types we
+ -- assume that the programmer has the proper C type in mind.
+
+ if Convention (Typ) = Convention_C
+ and then Has_Size_Clause (Typ)
+ and then Esize (Typ) /= Esize (Standard_Integer)
+ and then not Is_Boolean_Type (Typ)
+ and then not Is_Character_Type (Typ)
+
+ -- Don't do this if Short_Enums on target
+
+ and then not Target_Short_Enums
+ then
+ Error_Msg_N
+ ("C enum types have the size of a C int??", Size_Clause (Typ));
+ end if;
+
+ Adjust_Esize_For_Alignment (Typ);
+ end if;
+ end Freeze_Enumeration_Type;
+
+ -----------------------
+ -- Freeze_Expression --
+ -----------------------
+
+ procedure Freeze_Expression (N : Node_Id) is
+ In_Spec_Exp : constant Boolean := In_Spec_Expression;
+ Typ : Entity_Id;
+ Nam : Entity_Id;
+ Desig_Typ : Entity_Id;
+ P : Node_Id;
+ Parent_P : Node_Id;
+
+ Freeze_Outside : Boolean := False;
+ -- This flag is set true if the entity must be frozen outside the
+ -- current subprogram. This happens in the case of expander generated
+ -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
+ -- not freeze all entities like other bodies, but which nevertheless
+ -- may reference entities that have to be frozen before the body and
+ -- obviously cannot be frozen inside the body.
+
+ function In_Exp_Body (N : Node_Id) return Boolean;
+ -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
+ -- it is the handled statement sequence of an expander-generated
+ -- subprogram (init proc, stream subprogram, or renaming as body).
+ -- If so, this is not a freezing context.
+
+ -----------------
+ -- In_Exp_Body --
+ -----------------
+
+ function In_Exp_Body (N : Node_Id) return Boolean is
+ P : Node_Id;
+ Id : Entity_Id;
+
+ begin
+ if Nkind (N) = N_Subprogram_Body then
+ P := N;
+ else
+ P := Parent (N);
+ end if;
+
+ if Nkind (P) /= N_Subprogram_Body then
+ return False;
+
+ else
+ Id := Defining_Unit_Name (Specification (P));
+
+ -- Following complex conditional could use comments ???
+
+ if Nkind (Id) = N_Defining_Identifier
+ and then (Is_Init_Proc (Id)
+ or else Is_TSS (Id, TSS_Stream_Input)
+ or else Is_TSS (Id, TSS_Stream_Output)
+ or else Is_TSS (Id, TSS_Stream_Read)
+ or else Is_TSS (Id, TSS_Stream_Write)
+ or else Nkind_In (Original_Node (P),
+ N_Subprogram_Renaming_Declaration,
+ N_Expression_Function))
+ then
+ return True;
+ else
+ return False;
+ end if;
+ end if;
+ end In_Exp_Body;
+
+ -- Start of processing for Freeze_Expression
+
+ begin
+ -- Immediate return if freezing is inhibited. This flag is set by the
+ -- analyzer to stop freezing on generated expressions that would cause
+ -- freezing if they were in the source program, but which are not
+ -- supposed to freeze, since they are created.
+
+ if Must_Not_Freeze (N) then
+ return;
+ end if;
+
+ -- If expression is non-static, then it does not freeze in a default
+ -- expression, see section "Handling of Default Expressions" in the
+ -- spec of package Sem for further details. Note that we have to make
+ -- sure that we actually have a real expression (if we have a subtype
+ -- indication, we can't test Is_Static_Expression). However, we exclude
+ -- the case of the prefix of an attribute of a static scalar subtype
+ -- from this early return, because static subtype attributes should
+ -- always cause freezing, even in default expressions, but the attribute
+ -- may not have been marked as static yet (because in Resolve_Attribute,
+ -- the call to Eval_Attribute follows the call of Freeze_Expression on
+ -- the prefix).
+
+ if In_Spec_Exp
+ and then Nkind (N) in N_Subexpr
+ and then not Is_Static_Expression (N)
+ and then (Nkind (Parent (N)) /= N_Attribute_Reference
+ or else not (Is_Entity_Name (N)
+ and then Is_Type (Entity (N))
+ and then Is_Static_Subtype (Entity (N))))
+ then
+ return;
+ end if;
+
+ -- Freeze type of expression if not frozen already
+
+ Typ := Empty;
+
+ if Nkind (N) in N_Has_Etype then
+ if not Is_Frozen (Etype (N)) then
+ Typ := Etype (N);
+
+ -- Base type may be an derived numeric type that is frozen at
+ -- the point of declaration, but first_subtype is still unfrozen.
+
+ elsif not Is_Frozen (First_Subtype (Etype (N))) then
+ Typ := First_Subtype (Etype (N));
+ end if;
+ end if;
+
+ -- For entity name, freeze entity if not frozen already. A special
+ -- exception occurs for an identifier that did not come from source.
+ -- We don't let such identifiers freeze a non-internal entity, i.e.
+ -- an entity that did come from source, since such an identifier was
+ -- generated by the expander, and cannot have any semantic effect on
+ -- the freezing semantics. For example, this stops the parameter of
+ -- an initialization procedure from freezing the variable.
+
+ if Is_Entity_Name (N)
+ and then not Is_Frozen (Entity (N))
+ and then (Nkind (N) /= N_Identifier
+ or else Comes_From_Source (N)
+ or else not Comes_From_Source (Entity (N)))
+ then
+ Nam := Entity (N);
+ else
+ Nam := Empty;
+ end if;
+
+ -- For an allocator freeze designated type if not frozen already
+
+ -- For an aggregate whose component type is an access type, freeze the
+ -- designated type now, so that its freeze does not appear within the
+ -- loop that might be created in the expansion of the aggregate. If the
+ -- designated type is a private type without full view, the expression
+ -- cannot contain an allocator, so the type is not frozen.
+
+ -- For a function, we freeze the entity when the subprogram declaration
+ -- is frozen, but a function call may appear in an initialization proc.
+ -- before the declaration is frozen. We need to generate the extra
+ -- formals, if any, to ensure that the expansion of the call includes
+ -- the proper actuals. This only applies to Ada subprograms, not to
+ -- imported ones.
+
+ Desig_Typ := Empty;
+
+ case Nkind (N) is
+ when N_Allocator =>
+ Desig_Typ := Designated_Type (Etype (N));
+
+ when N_Aggregate =>
+ if Is_Array_Type (Etype (N))
+ and then Is_Access_Type (Component_Type (Etype (N)))
+ then
+ Desig_Typ := Designated_Type (Component_Type (Etype (N)));
+ end if;
+
+ when N_Selected_Component |
+ N_Indexed_Component |
+ N_Slice =>
+
+ if Is_Access_Type (Etype (Prefix (N))) then
+ Desig_Typ := Designated_Type (Etype (Prefix (N)));
+ end if;
+
+ when N_Identifier =>
+ if Present (Nam)
+ and then Ekind (Nam) = E_Function
+ and then Nkind (Parent (N)) = N_Function_Call
+ and then Convention (Nam) = Convention_Ada
+ then
+ Create_Extra_Formals (Nam);
+ end if;
+
+ when others =>
+ null;
+ end case;
+
+ if Desig_Typ /= Empty
+ and then (Is_Frozen (Desig_Typ)
+ or else (not Is_Fully_Defined (Desig_Typ)))
+ then
+ Desig_Typ := Empty;
+ end if;
+
+ -- All done if nothing needs freezing
+
+ if No (Typ)
+ and then No (Nam)
+ and then No (Desig_Typ)
+ then
+ return;
+ end if;
+
+ -- Loop for looking at the right place to insert the freeze nodes,
+ -- exiting from the loop when it is appropriate to insert the freeze
+ -- node before the current node P.
+
+ -- Also checks some special exceptions to the freezing rules. These
+ -- cases result in a direct return, bypassing the freeze action.
+
+ P := N;
+ loop
+ Parent_P := Parent (P);
+
+ -- If we don't have a parent, then we are not in a well-formed tree.
+ -- This is an unusual case, but there are some legitimate situations
+ -- in which this occurs, notably when the expressions in the range of
+ -- a type declaration are resolved. We simply ignore the freeze
+ -- request in this case. Is this right ???
+
+ if No (Parent_P) then
+ return;
+ end if;
+
+ -- See if we have got to an appropriate point in the tree
+
+ case Nkind (Parent_P) is
+
+ -- A special test for the exception of (RM 13.14(8)) for the case
+ -- of per-object expressions (RM 3.8(18)) occurring in component
+ -- definition or a discrete subtype definition. Note that we test
+ -- for a component declaration which includes both cases we are
+ -- interested in, and furthermore the tree does not have explicit
+ -- nodes for either of these two constructs.
+
+ when N_Component_Declaration =>
+
+ -- The case we want to test for here is an identifier that is
+ -- a per-object expression, this is either a discriminant that
+ -- appears in a context other than the component declaration
+ -- or it is a reference to the type of the enclosing construct.
+
+ -- For either of these cases, we skip the freezing
+
+ if not In_Spec_Expression
+ and then Nkind (N) = N_Identifier
+ and then (Present (Entity (N)))
+ then
+ -- We recognize the discriminant case by just looking for
+ -- a reference to a discriminant. It can only be one for
+ -- the enclosing construct. Skip freezing in this case.
+
+ if Ekind (Entity (N)) = E_Discriminant then
+ return;
+
+ -- For the case of a reference to the enclosing record,
+ -- (or task or protected type), we look for a type that
+ -- matches the current scope.
+
+ elsif Entity (N) = Current_Scope then
+ return;
+ end if;
+ end if;
+
+ -- If we have an enumeration literal that appears as the choice in
+ -- the aggregate of an enumeration representation clause, then
+ -- freezing does not occur (RM 13.14(10)).
+
+ when N_Enumeration_Representation_Clause =>
+
+ -- The case we are looking for is an enumeration literal
+
+ if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
+ and then Is_Enumeration_Type (Etype (N))
+ then
+ -- If enumeration literal appears directly as the choice,
+ -- do not freeze (this is the normal non-overloaded case)
+
+ if Nkind (Parent (N)) = N_Component_Association
+ and then First (Choices (Parent (N))) = N
+ then
+ return;
+
+ -- If enumeration literal appears as the name of function
+ -- which is the choice, then also do not freeze. This
+ -- happens in the overloaded literal case, where the
+ -- enumeration literal is temporarily changed to a function
+ -- call for overloading analysis purposes.
+
+ elsif Nkind (Parent (N)) = N_Function_Call
+ and then
+ Nkind (Parent (Parent (N))) = N_Component_Association
+ and then
+ First (Choices (Parent (Parent (N)))) = Parent (N)
+ then
+ return;
+ end if;
+ end if;
+
+ -- Normally if the parent is a handled sequence of statements,
+ -- then the current node must be a statement, and that is an
+ -- appropriate place to insert a freeze node.
+
+ when N_Handled_Sequence_Of_Statements =>
+
+ -- An exception occurs when the sequence of statements is for
+ -- an expander generated body that did not do the usual freeze
+ -- all operation. In this case we usually want to freeze
+ -- outside this body, not inside it, and we skip past the
+ -- subprogram body that we are inside.
+
+ if In_Exp_Body (Parent_P) then
+ declare
+ Subp : constant Node_Id := Parent (Parent_P);
+ Spec : Entity_Id;
+
+ begin
+ -- Freeze the entity only when it is declared inside the
+ -- body of the expander generated procedure. This case
+ -- is recognized by the scope of the entity or its type,
+ -- which is either the spec for some enclosing body, or
+ -- (in the case of init_procs, for which there are no
+ -- separate specs) the current scope.
+
+ if Nkind (Subp) = N_Subprogram_Body then
+ Spec := Corresponding_Spec (Subp);
+
+ if (Present (Typ) and then Scope (Typ) = Spec)
+ or else
+ (Present (Nam) and then Scope (Nam) = Spec)
+ then
+ exit;
+
+ elsif Present (Typ)
+ and then Scope (Typ) = Current_Scope
+ and then Defining_Entity (Subp) = Current_Scope
+ then
+ exit;
+ end if;
+ end if;
+
+ -- An expression function may act as a completion of
+ -- a function declaration. As such, it can reference
+ -- entities declared between the two views:
+
+ -- Hidden []; -- 1
+ -- function F return ...;
+ -- private
+ -- function Hidden return ...;
+ -- function F return ... is (Hidden); -- 2
+
+ -- Refering to the example above, freezing the expression
+ -- of F (2) would place Hidden's freeze node (1) in the
+ -- wrong place. Avoid explicit freezing and let the usual
+ -- scenarios do the job - for example, reaching the end
+ -- of the private declarations.
+
+ if Nkind (Original_Node (Subp)) =
+ N_Expression_Function
+ then
+ null;
+
+ -- Freeze outside the body
+
+ else
+ Parent_P := Parent (Parent_P);
+ Freeze_Outside := True;
+ end if;
+ end;
+
+ -- Here if normal case where we are in handled statement
+ -- sequence and want to do the insertion right there.
+
+ else
+ exit;
+ end if;
+
+ -- If parent is a body or a spec or a block, then the current node
+ -- is a statement or declaration and we can insert the freeze node
+ -- before it.
+
+ when N_Block_Statement |
+ N_Entry_Body |
+ N_Package_Body |
+ N_Package_Specification |
+ N_Protected_Body |
+ N_Subprogram_Body |
+ N_Task_Body => exit;
+
+ -- The expander is allowed to define types in any statements list,
+ -- so any of the following parent nodes also mark a freezing point
+ -- if the actual node is in a list of statements or declarations.
+
+ when N_Abortable_Part |
+ N_Accept_Alternative |
+ N_And_Then |
+ N_Case_Statement_Alternative |
+ N_Compilation_Unit_Aux |
+ N_Conditional_Entry_Call |
+ N_Delay_Alternative |
+ N_Elsif_Part |
+ N_Entry_Call_Alternative |
+ N_Exception_Handler |
+ N_Extended_Return_Statement |
+ N_Freeze_Entity |
+ N_If_Statement |
+ N_Or_Else |
+ N_Selective_Accept |
+ N_Triggering_Alternative =>
+
+ exit when Is_List_Member (P);
+
+ -- Note: The N_Loop_Statement is a special case. A type that
+ -- appears in the source can never be frozen in a loop (this
+ -- occurs only because of a loop expanded by the expander), so we
+ -- keep on going. Otherwise we terminate the search. Same is true
+ -- of any entity which comes from source. (if they have predefined
+ -- type, that type does not appear to come from source, but the
+ -- entity should not be frozen here).
+
+ when N_Loop_Statement =>
+ exit when not Comes_From_Source (Etype (N))
+ and then (No (Nam) or else not Comes_From_Source (Nam));
+
+ -- For all other cases, keep looking at parents
+
+ when others =>
+ null;
+ end case;
+
+ -- We fall through the case if we did not yet find the proper
+ -- place in the free for inserting the freeze node, so climb.
+
+ P := Parent_P;
+ end loop;
+
+ -- If the expression appears in a record or an initialization procedure,
+ -- the freeze nodes are collected and attached to the current scope, to
+ -- be inserted and analyzed on exit from the scope, to insure that
+ -- generated entities appear in the correct scope. If the expression is
+ -- a default for a discriminant specification, the scope is still void.
+ -- The expression can also appear in the discriminant part of a private
+ -- or concurrent type.
+
+ -- If the expression appears in a constrained subcomponent of an
+ -- enclosing record declaration, the freeze nodes must be attached to
+ -- the outer record type so they can eventually be placed in the
+ -- enclosing declaration list.
+
+ -- The other case requiring this special handling is if we are in a
+ -- default expression, since in that case we are about to freeze a
+ -- static type, and the freeze scope needs to be the outer scope, not
+ -- the scope of the subprogram with the default parameter.
+
+ -- For default expressions and other spec expressions in generic units,
+ -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
+ -- placing them at the proper place, after the generic unit.
+
+ if (In_Spec_Exp and not Inside_A_Generic)
+ or else Freeze_Outside
+ or else (Is_Type (Current_Scope)
+ and then (not Is_Concurrent_Type (Current_Scope)
+ or else not Has_Completion (Current_Scope)))
+ or else Ekind (Current_Scope) = E_Void
+ then
+ declare
+ N : constant Node_Id := Current_Scope;
+ Freeze_Nodes : List_Id := No_List;
+ Pos : Int := Scope_Stack.Last;
+
+ begin
+ if Present (Desig_Typ) then
+ Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
+ end if;
+
+ if Present (Typ) then
+ Freeze_And_Append (Typ, N, Freeze_Nodes);
+ end if;
+
+ if Present (Nam) then
+ Freeze_And_Append (Nam, N, Freeze_Nodes);
+ end if;
+
+ -- The current scope may be that of a constrained component of
+ -- an enclosing record declaration, or of a loop of an enclosing
+ -- quantified expression, which is above the current scope in the
+ -- scope stack. Indeed in the context of a quantified expression,
+ -- a scope is created and pushed above the current scope in order
+ -- to emulate the loop-like behavior of the quantified expression.
+ -- If the expression is within a top-level pragma, as for a pre-
+ -- condition on a library-level subprogram, nothing to do.
+
+ if not Is_Compilation_Unit (Current_Scope)
+ and then (Is_Record_Type (Scope (Current_Scope))
+ or else Nkind (Parent (Current_Scope)) =
+ N_Quantified_Expression)
+ then
+ Pos := Pos - 1;
+ end if;
+
+ if Is_Non_Empty_List (Freeze_Nodes) then
+ if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
+ Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
+ Freeze_Nodes;
+ else
+ Append_List (Freeze_Nodes,
+ Scope_Stack.Table (Pos).Pending_Freeze_Actions);
+ end if;
+ end if;
+ end;
+
+ return;
+ end if;
+
+ -- Now we have the right place to do the freezing. First, a special
+ -- adjustment, if we are in spec-expression analysis mode, these freeze
+ -- actions must not be thrown away (normally all inserted actions are
+ -- thrown away in this mode. However, the freeze actions are from static
+ -- expressions and one of the important reasons we are doing this
+ -- special analysis is to get these freeze actions. Therefore we turn
+ -- off the In_Spec_Expression mode to propagate these freeze actions.
+ -- This also means they get properly analyzed and expanded.
+
+ In_Spec_Expression := False;
+
+ -- Freeze the designated type of an allocator (RM 13.14(13))
+
+ if Present (Desig_Typ) then
+ Freeze_Before (P, Desig_Typ);
+ end if;
+
+ -- Freeze type of expression (RM 13.14(10)). Note that we took care of
+ -- the enumeration representation clause exception in the loop above.
+
+ if Present (Typ) then
+ Freeze_Before (P, Typ);
+ end if;
+
+ -- Freeze name if one is present (RM 13.14(11))
+
+ if Present (Nam) then
+ Freeze_Before (P, Nam);
+ end if;
+
+ -- Restore In_Spec_Expression flag
+
+ In_Spec_Expression := In_Spec_Exp;
+ end Freeze_Expression;
+
+ -----------------------------
+ -- Freeze_Fixed_Point_Type --
+ -----------------------------
+
+ -- Certain fixed-point types and subtypes, including implicit base types
+ -- and declared first subtypes, have not yet set up a range. This is
+ -- because the range cannot be set until the Small and Size values are
+ -- known, and these are not known till the type is frozen.
+
+ -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
+ -- whose bounds are unanalyzed real literals. This routine will recognize
+ -- this case, and transform this range node into a properly typed range
+ -- with properly analyzed and resolved values.
+
+ procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
+ Rng : constant Node_Id := Scalar_Range (Typ);
+ Lo : constant Node_Id := Low_Bound (Rng);
+ Hi : constant Node_Id := High_Bound (Rng);
+ Btyp : constant Entity_Id := Base_Type (Typ);
+ Brng : constant Node_Id := Scalar_Range (Btyp);
+ BLo : constant Node_Id := Low_Bound (Brng);
+ BHi : constant Node_Id := High_Bound (Brng);
+ Small : constant Ureal := Small_Value (Typ);
+ Loval : Ureal;
+ Hival : Ureal;
+ Atype : Entity_Id;
+
+ Actual_Size : Nat;
+
+ function Fsize (Lov, Hiv : Ureal) return Nat;
+ -- Returns size of type with given bounds. Also leaves these
+ -- bounds set as the current bounds of the Typ.
+
+ -----------
+ -- Fsize --
+ -----------
+
+ function Fsize (Lov, Hiv : Ureal) return Nat is
+ begin
+ Set_Realval (Lo, Lov);
+ Set_Realval (Hi, Hiv);
+ return Minimum_Size (Typ);
+ end Fsize;
+
+ -- Start of processing for Freeze_Fixed_Point_Type
+
+ begin
+ -- If Esize of a subtype has not previously been set, set it now
+
+ if Unknown_Esize (Typ) then
+ Atype := Ancestor_Subtype (Typ);
+
+ if Present (Atype) then
+ Set_Esize (Typ, Esize (Atype));
+ else
+ Set_Esize (Typ, Esize (Base_Type (Typ)));
+ end if;
+ end if;
+
+ -- Immediate return if the range is already analyzed. This means that
+ -- the range is already set, and does not need to be computed by this
+ -- routine.
+
+ if Analyzed (Rng) then
+ return;
+ end if;
+
+ -- Immediate return if either of the bounds raises Constraint_Error
+
+ if Raises_Constraint_Error (Lo)
+ or else Raises_Constraint_Error (Hi)
+ then
+ return;
+ end if;
+
+ Loval := Realval (Lo);
+ Hival := Realval (Hi);
+
+ -- Ordinary fixed-point case
+
+ if Is_Ordinary_Fixed_Point_Type (Typ) then
+
+ -- For the ordinary fixed-point case, we are allowed to fudge the
+ -- end-points up or down by small. Generally we prefer to fudge up,
+ -- i.e. widen the bounds for non-model numbers so that the end points
+ -- are included. However there are cases in which this cannot be
+ -- done, and indeed cases in which we may need to narrow the bounds.
+ -- The following circuit makes the decision.
+
+ -- Note: our terminology here is that Incl_EP means that the bounds
+ -- are widened by Small if necessary to include the end points, and
+ -- Excl_EP means that the bounds are narrowed by Small to exclude the
+ -- end-points if this reduces the size.
+
+ -- Note that in the Incl case, all we care about is including the
+ -- end-points. In the Excl case, we want to narrow the bounds as
+ -- much as permitted by the RM, to give the smallest possible size.
+
+ Fudge : declare
+ Loval_Incl_EP : Ureal;
+ Hival_Incl_EP : Ureal;
+
+ Loval_Excl_EP : Ureal;
+ Hival_Excl_EP : Ureal;
+
+ Size_Incl_EP : Nat;
+ Size_Excl_EP : Nat;
+
+ Model_Num : Ureal;
+ First_Subt : Entity_Id;
+ Actual_Lo : Ureal;
+ Actual_Hi : Ureal;
+
+ begin
+ -- First step. Base types are required to be symmetrical. Right
+ -- now, the base type range is a copy of the first subtype range.
+ -- This will be corrected before we are done, but right away we
+ -- need to deal with the case where both bounds are non-negative.
+ -- In this case, we set the low bound to the negative of the high
+ -- bound, to make sure that the size is computed to include the
+ -- required sign. Note that we do not need to worry about the
+ -- case of both bounds negative, because the sign will be dealt
+ -- with anyway. Furthermore we can't just go making such a bound
+ -- symmetrical, since in a twos-complement system, there is an
+ -- extra negative value which could not be accommodated on the
+ -- positive side.
+
+ if Typ = Btyp
+ and then not UR_Is_Negative (Loval)
+ and then Hival > Loval
+ then
+ Loval := -Hival;
+ Set_Realval (Lo, Loval);
+ end if;
+
+ -- Compute the fudged bounds. If the number is a model number,
+ -- then we do nothing to include it, but we are allowed to backoff
+ -- to the next adjacent model number when we exclude it. If it is
+ -- not a model number then we straddle the two values with the
+ -- model numbers on either side.
+
+ Model_Num := UR_Trunc (Loval / Small) * Small;
+
+ if Loval = Model_Num then
+ Loval_Incl_EP := Model_Num;
+ else
+ Loval_Incl_EP := Model_Num - Small;
+ end if;
+
+ -- The low value excluding the end point is Small greater, but
+ -- we do not do this exclusion if the low value is positive,
+ -- since it can't help the size and could actually hurt by
+ -- crossing the high bound.
+
+ if UR_Is_Negative (Loval_Incl_EP) then
+ Loval_Excl_EP := Loval_Incl_EP + Small;
+
+ -- If the value went from negative to zero, then we have the
+ -- case where Loval_Incl_EP is the model number just below
+ -- zero, so we want to stick to the negative value for the
+ -- base type to maintain the condition that the size will
+ -- include signed values.
+
+ if Typ = Btyp
+ and then UR_Is_Zero (Loval_Excl_EP)
+ then
+ Loval_Excl_EP := Loval_Incl_EP;
+ end if;
+
+ else
+ Loval_Excl_EP := Loval_Incl_EP;
+ end if;
+
+ -- Similar processing for upper bound and high value
+
+ Model_Num := UR_Trunc (Hival / Small) * Small;
+
+ if Hival = Model_Num then
+ Hival_Incl_EP := Model_Num;
+ else
+ Hival_Incl_EP := Model_Num + Small;
+ end if;
+
+ if UR_Is_Positive (Hival_Incl_EP) then
+ Hival_Excl_EP := Hival_Incl_EP - Small;
+ else
+ Hival_Excl_EP := Hival_Incl_EP;
+ end if;
+
+ -- One further adjustment is needed. In the case of subtypes, we
+ -- cannot go outside the range of the base type, or we get
+ -- peculiarities, and the base type range is already set. This
+ -- only applies to the Incl values, since clearly the Excl values
+ -- are already as restricted as they are allowed to be.
+
+ if Typ /= Btyp then
+ Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
+ Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
+ end if;
+
+ -- Get size including and excluding end points
+
+ Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
+ Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
+
+ -- No need to exclude end-points if it does not reduce size
+
+ if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
+ Loval_Excl_EP := Loval_Incl_EP;
+ end if;
+
+ if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
+ Hival_Excl_EP := Hival_Incl_EP;
+ end if;
+
+ -- Now we set the actual size to be used. We want to use the
+ -- bounds fudged up to include the end-points but only if this
+ -- can be done without violating a specifically given size
+ -- size clause or causing an unacceptable increase in size.
+
+ -- Case of size clause given
+
+ if Has_Size_Clause (Typ) then
+
+ -- Use the inclusive size only if it is consistent with
+ -- the explicitly specified size.
+
+ if Size_Incl_EP <= RM_Size (Typ) then
+ Actual_Lo := Loval_Incl_EP;
+ Actual_Hi := Hival_Incl_EP;
+ Actual_Size := Size_Incl_EP;
+
+ -- If the inclusive size is too large, we try excluding
+ -- the end-points (will be caught later if does not work).
+
+ else
+ Actual_Lo := Loval_Excl_EP;
+ Actual_Hi := Hival_Excl_EP;
+ Actual_Size := Size_Excl_EP;
+ end if;
+
+ -- Case of size clause not given
+
+ else
+ -- If we have a base type whose corresponding first subtype
+ -- has an explicit size that is large enough to include our
+ -- end-points, then do so. There is no point in working hard
+ -- to get a base type whose size is smaller than the specified
+ -- size of the first subtype.
+
+ First_Subt := First_Subtype (Typ);
+
+ if Has_Size_Clause (First_Subt)
+ and then Size_Incl_EP <= Esize (First_Subt)
+ then
+ Actual_Size := Size_Incl_EP;
+ Actual_Lo := Loval_Incl_EP;
+ Actual_Hi := Hival_Incl_EP;
+
+ -- If excluding the end-points makes the size smaller and
+ -- results in a size of 8,16,32,64, then we take the smaller
+ -- size. For the 64 case, this is compulsory. For the other
+ -- cases, it seems reasonable. We like to include end points
+ -- if we can, but not at the expense of moving to the next
+ -- natural boundary of size.
+
+ elsif Size_Incl_EP /= Size_Excl_EP
+ and then Addressable (Size_Excl_EP)
+ then
+ Actual_Size := Size_Excl_EP;
+ Actual_Lo := Loval_Excl_EP;
+ Actual_Hi := Hival_Excl_EP;
+
+ -- Otherwise we can definitely include the end points
+
+ else
+ Actual_Size := Size_Incl_EP;
+ Actual_Lo := Loval_Incl_EP;
+ Actual_Hi := Hival_Incl_EP;
+ end if;
+
+ -- One pathological case: normally we never fudge a low bound
+ -- down, since it would seem to increase the size (if it has
+ -- any effect), but for ranges containing single value, or no
+ -- values, the high bound can be small too large. Consider:
+
+ -- type t is delta 2.0**(-14)
+ -- range 131072.0 .. 0;
+
+ -- That lower bound is *just* outside the range of 32 bits, and
+ -- does need fudging down in this case. Note that the bounds
+ -- will always have crossed here, since the high bound will be
+ -- fudged down if necessary, as in the case of:
+
+ -- type t is delta 2.0**(-14)
+ -- range 131072.0 .. 131072.0;
+
+ -- So we detect the situation by looking for crossed bounds,
+ -- and if the bounds are crossed, and the low bound is greater
+ -- than zero, we will always back it off by small, since this
+ -- is completely harmless.
+
+ if Actual_Lo > Actual_Hi then
+ if UR_Is_Positive (Actual_Lo) then
+ Actual_Lo := Loval_Incl_EP - Small;
+ Actual_Size := Fsize (Actual_Lo, Actual_Hi);
+
+ -- And of course, we need to do exactly the same parallel
+ -- fudge for flat ranges in the negative region.
+
+ elsif UR_Is_Negative (Actual_Hi) then
+ Actual_Hi := Hival_Incl_EP + Small;
+ Actual_Size := Fsize (Actual_Lo, Actual_Hi);
+ end if;
+ end if;
+ end if;
+
+ Set_Realval (Lo, Actual_Lo);
+ Set_Realval (Hi, Actual_Hi);
+ end Fudge;
+
+ -- For the decimal case, none of this fudging is required, since there
+ -- are no end-point problems in the decimal case (the end-points are
+ -- always included).
+
+ else
+ Actual_Size := Fsize (Loval, Hival);
+ end if;
+
+ -- At this stage, the actual size has been calculated and the proper
+ -- required bounds are stored in the low and high bounds.
+
+ if Actual_Size > 64 then
+ Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
+ Error_Msg_N
+ ("size required (^) for type& too large, maximum allowed is 64",
+ Typ);
+ Actual_Size := 64;
+ end if;
+
+ -- Check size against explicit given size
+
+ if Has_Size_Clause (Typ) then
+ if Actual_Size > RM_Size (Typ) then
+ Error_Msg_Uint_1 := RM_Size (Typ);
+ Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
+ Error_Msg_NE
+ ("size given (^) for type& too small, minimum allowed is ^",
+ Size_Clause (Typ), Typ);
+
+ else
+ Actual_Size := UI_To_Int (Esize (Typ));
+ end if;
+
+ -- Increase size to next natural boundary if no size clause given
+
+ else
+ if Actual_Size <= 8 then
+ Actual_Size := 8;
+ elsif Actual_Size <= 16 then
+ Actual_Size := 16;
+ elsif Actual_Size <= 32 then
+ Actual_Size := 32;
+ else
+ Actual_Size := 64;
+ end if;
+
+ Init_Esize (Typ, Actual_Size);
+ Adjust_Esize_For_Alignment (Typ);
+ end if;
+
+ -- If we have a base type, then expand the bounds so that they extend to
+ -- the full width of the allocated size in bits, to avoid junk range
+ -- checks on intermediate computations.
+
+ if Base_Type (Typ) = Typ then
+ Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
+ Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
+ end if;
+
+ -- Final step is to reanalyze the bounds using the proper type
+ -- and set the Corresponding_Integer_Value fields of the literals.
+
+ Set_Etype (Lo, Empty);
+ Set_Analyzed (Lo, False);
+ Analyze (Lo);
+
+ -- Resolve with universal fixed if the base type, and the base type if
+ -- it is a subtype. Note we can't resolve the base type with itself,
+ -- that would be a reference before definition.
+
+ if Typ = Btyp then
+ Resolve (Lo, Universal_Fixed);
+ else
+ Resolve (Lo, Btyp);
+ end if;
+
+ -- Set corresponding integer value for bound
+
+ Set_Corresponding_Integer_Value
+ (Lo, UR_To_Uint (Realval (Lo) / Small));
+
+ -- Similar processing for high bound
+
+ Set_Etype (Hi, Empty);
+ Set_Analyzed (Hi, False);
+ Analyze (Hi);
+
+ if Typ = Btyp then
+ Resolve (Hi, Universal_Fixed);
+ else
+ Resolve (Hi, Btyp);
+ end if;
+
+ Set_Corresponding_Integer_Value
+ (Hi, UR_To_Uint (Realval (Hi) / Small));
+
+ -- Set type of range to correspond to bounds
+
+ Set_Etype (Rng, Etype (Lo));
+
+ -- Set Esize to calculated size if not set already
+
+ if Unknown_Esize (Typ) then
+ Init_Esize (Typ, Actual_Size);
+ end if;
+
+ -- Set RM_Size if not already set. If already set, check value
+
+ declare
+ Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
+
+ begin
+ if RM_Size (Typ) /= Uint_0 then
+ if RM_Size (Typ) < Minsiz then
+ Error_Msg_Uint_1 := RM_Size (Typ);
+ Error_Msg_Uint_2 := Minsiz;
+ Error_Msg_NE
+ ("size given (^) for type& too small, minimum allowed is ^",
+ Size_Clause (Typ), Typ);
+ end if;
+
+ else
+ Set_RM_Size (Typ, Minsiz);
+ end if;
+ end;
+ end Freeze_Fixed_Point_Type;
+
+ ------------------
+ -- Freeze_Itype --
+ ------------------
+
+ procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
+ L : List_Id;
+
+ begin
+ Set_Has_Delayed_Freeze (T);
+ L := Freeze_Entity (T, N);
+
+ if Is_Non_Empty_List (L) then
+ Insert_Actions (N, L);
+ end if;
+ end Freeze_Itype;
+
+ --------------------------
+ -- Freeze_Static_Object --
+ --------------------------
+
+ procedure Freeze_Static_Object (E : Entity_Id) is
+
+ Cannot_Be_Static : exception;
+ -- Exception raised if the type of a static object cannot be made
+ -- static. This happens if the type depends on non-global objects.
+
+ procedure Ensure_Expression_Is_SA (N : Node_Id);
+ -- Called to ensure that an expression used as part of a type definition
+ -- is statically allocatable, which means that the expression type is
+ -- statically allocatable, and the expression is either static, or a
+ -- reference to a library level constant.
+
+ procedure Ensure_Type_Is_SA (Typ : Entity_Id);
+ -- Called to mark a type as static, checking that it is possible
+ -- to set the type as static. If it is not possible, then the
+ -- exception Cannot_Be_Static is raised.
+
+ -----------------------------
+ -- Ensure_Expression_Is_SA --
+ -----------------------------
+
+ procedure Ensure_Expression_Is_SA (N : Node_Id) is
+ Ent : Entity_Id;
+
+ begin
+ Ensure_Type_Is_SA (Etype (N));
+
+ if Is_Static_Expression (N) then
+ return;
+
+ elsif Nkind (N) = N_Identifier then
+ Ent := Entity (N);
+
+ if Present (Ent)
+ and then Ekind (Ent) = E_Constant
+ and then Is_Library_Level_Entity (Ent)
+ then
+ return;
+ end if;
+ end if;
+
+ raise Cannot_Be_Static;
+ end Ensure_Expression_Is_SA;
+
+ -----------------------
+ -- Ensure_Type_Is_SA --
+ -----------------------
+
+ procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
+ N : Node_Id;
+ C : Entity_Id;
+
+ begin
+ -- If type is library level, we are all set
+
+ if Is_Library_Level_Entity (Typ) then
+ return;
+ end if;
+
+ -- We are also OK if the type already marked as statically allocated,
+ -- which means we processed it before.
+
+ if Is_Statically_Allocated (Typ) then
+ return;
+ end if;
+
+ -- Mark type as statically allocated
+
+ Set_Is_Statically_Allocated (Typ);
+
+ -- Check that it is safe to statically allocate this type
+
+ if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
+ Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
+ Ensure_Expression_Is_SA (Type_High_Bound (Typ));
+
+ elsif Is_Array_Type (Typ) then
+ N := First_Index (Typ);
+ while Present (N) loop
+ Ensure_Type_Is_SA (Etype (N));
+ Next_Index (N);
+ end loop;
+
+ Ensure_Type_Is_SA (Component_Type (Typ));
+
+ elsif Is_Access_Type (Typ) then
+ if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
+
+ declare
+ F : Entity_Id;
+ T : constant Entity_Id := Etype (Designated_Type (Typ));
+
+ begin
+ if T /= Standard_Void_Type then
+ Ensure_Type_Is_SA (T);
+ end if;
+
+ F := First_Formal (Designated_Type (Typ));
+ while Present (F) loop
+ Ensure_Type_Is_SA (Etype (F));
+ Next_Formal (F);
+ end loop;
+ end;
+
+ else
+ Ensure_Type_Is_SA (Designated_Type (Typ));
+ end if;
+
+ elsif Is_Record_Type (Typ) then
+ C := First_Entity (Typ);
+ while Present (C) loop
+ if Ekind (C) = E_Discriminant
+ or else Ekind (C) = E_Component
+ then
+ Ensure_Type_Is_SA (Etype (C));
+
+ elsif Is_Type (C) then
+ Ensure_Type_Is_SA (C);
+ end if;
+
+ Next_Entity (C);
+ end loop;
+
+ elsif Ekind (Typ) = E_Subprogram_Type then
+ Ensure_Type_Is_SA (Etype (Typ));
+
+ C := First_Formal (Typ);
+ while Present (C) loop
+ Ensure_Type_Is_SA (Etype (C));
+ Next_Formal (C);
+ end loop;
+
+ else
+ raise Cannot_Be_Static;
+ end if;
+ end Ensure_Type_Is_SA;
+
+ -- Start of processing for Freeze_Static_Object
+
+ begin
+ Ensure_Type_Is_SA (Etype (E));
+
+ exception
+ when Cannot_Be_Static =>
+
+ -- If the object that cannot be static is imported or exported, then
+ -- issue an error message saying that this object cannot be imported
+ -- or exported. If it has an address clause it is an overlay in the
+ -- current partition and the static requirement is not relevant.
+ -- Do not issue any error message when ignoring rep clauses.
+
+ if Ignore_Rep_Clauses then
+ null;
+
+ elsif Is_Imported (E) then
+ if No (Address_Clause (E)) then
+ Error_Msg_N
+ ("& cannot be imported (local type is not constant)", E);
+ end if;
+
+ -- Otherwise must be exported, something is wrong if compiler
+ -- is marking something as statically allocated which cannot be).
+
+ else pragma Assert (Is_Exported (E));
+ Error_Msg_N
+ ("& cannot be exported (local type is not constant)", E);
+ end if;
+ end Freeze_Static_Object;
+
+ -----------------------
+ -- Freeze_Subprogram --
+ -----------------------
+
+ procedure Freeze_Subprogram (E : Entity_Id) is
+ Retype : Entity_Id;
+ F : Entity_Id;
+
+ begin
+ -- Subprogram may not have an address clause unless it is imported
+
+ if Present (Address_Clause (E)) then
+ if not Is_Imported (E) then
+ Error_Msg_N
+ ("address clause can only be given " &
+ "for imported subprogram",
+ Name (Address_Clause (E)));
+ end if;
+ end if;
+
+ -- Reset the Pure indication on an imported subprogram unless an
+ -- explicit Pure_Function pragma was present or the subprogram is an
+ -- intrinsic. We do this because otherwise it is an insidious error
+ -- to call a non-pure function from pure unit and have calls
+ -- mysteriously optimized away. What happens here is that the Import
+ -- can bypass the normal check to ensure that pure units call only pure
+ -- subprograms.
+
+ -- The reason for the intrinsic exception is that in general, intrinsic
+ -- functions (such as shifts) are pure anyway. The only exceptions are
+ -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
+ -- in any case, so no problem arises.
+
+ if Is_Imported (E)
+ and then Is_Pure (E)
+ and then not Has_Pragma_Pure_Function (E)
+ and then not Is_Intrinsic_Subprogram (E)
+ then
+ Set_Is_Pure (E, False);
+ end if;
+
+ -- For non-foreign convention subprograms, this is where we create
+ -- the extra formals (for accessibility level and constrained bit
+ -- information). We delay this till the freeze point precisely so
+ -- that we know the convention.
+
+ if not Has_Foreign_Convention (E) then
+ Create_Extra_Formals (E);
+ Set_Mechanisms (E);
+
+ -- If this is convention Ada and a Valued_Procedure, that's odd
+
+ if Ekind (E) = E_Procedure
+ and then Is_Valued_Procedure (E)
+ and then Convention (E) = Convention_Ada
+ and then Warn_On_Export_Import
+ then
+ Error_Msg_N
+ ("??Valued_Procedure has no effect for convention Ada", E);
+ Set_Is_Valued_Procedure (E, False);
+ end if;
+
+ -- Case of foreign convention
+
+ else
+ Set_Mechanisms (E);
+
+ -- For foreign conventions, warn about return of an
+ -- unconstrained array.
+
+ -- Note: we *do* allow a return by descriptor for the VMS case,
+ -- though here there is probably more to be done ???
+
+ if Ekind (E) = E_Function then
+ Retype := Underlying_Type (Etype (E));
+
+ -- If no return type, probably some other error, e.g. a
+ -- missing full declaration, so ignore.
+
+ if No (Retype) then
+ null;
+
+ -- If the return type is generic, we have emitted a warning
+ -- earlier on, and there is nothing else to check here. Specific
+ -- instantiations may lead to erroneous behavior.
+
+ elsif Is_Generic_Type (Etype (E)) then
+ null;
+
+ -- Display warning if returning unconstrained array
+
+ elsif Is_Array_Type (Retype)
+ and then not Is_Constrained (Retype)
+
+ -- Exclude cases where descriptor mechanism is set, since the
+ -- VMS descriptor mechanisms allow such unconstrained returns.
+
+ and then Mechanism (E) not in Descriptor_Codes
+
+ -- Check appropriate warning is enabled (should we check for
+ -- Warnings (Off) on specific entities here, probably so???)
+
+ and then Warn_On_Export_Import
+
+ -- Exclude the VM case, since return of unconstrained arrays
+ -- is properly handled in both the JVM and .NET cases.
+
+ and then VM_Target = No_VM
+ then
+ Error_Msg_N
+ ("?x?foreign convention function& should not return " &
+ "unconstrained array", E);
+ return;
+ end if;
+ end if;
+
+ -- If any of the formals for an exported foreign convention
+ -- subprogram have defaults, then emit an appropriate warning since
+ -- this is odd (default cannot be used from non-Ada code)
+
+ if Is_Exported (E) then
+ F := First_Formal (E);
+ while Present (F) loop
+ if Warn_On_Export_Import
+ and then Present (Default_Value (F))
+ then
+ Error_Msg_N
+ ("?x?parameter cannot be defaulted in non-Ada call",
+ Default_Value (F));
+ end if;
+
+ Next_Formal (F);
+ end loop;
+ end if;
+ end if;
+
+ -- For VMS, descriptor mechanisms for parameters are allowed only for
+ -- imported/exported subprograms. Moreover, the NCA descriptor is not
+ -- allowed for parameters of exported subprograms.
+
+ if OpenVMS_On_Target then
+ if Is_Exported (E) then
+ F := First_Formal (E);
+ while Present (F) loop
+ if Mechanism (F) = By_Descriptor_NCA then
+ Error_Msg_N
+ ("'N'C'A' descriptor for parameter not permitted", F);
+ Error_Msg_N
+ ("\can only be used for imported subprogram", F);
+ end if;
+
+ Next_Formal (F);
+ end loop;
+
+ elsif not Is_Imported (E) then
+ F := First_Formal (E);
+ while Present (F) loop
+ if Mechanism (F) in Descriptor_Codes then
+ Error_Msg_N
+ ("descriptor mechanism for parameter not permitted", F);
+ Error_Msg_N
+ ("\can only be used for imported/exported subprogram", F);
+ end if;
+
+ Next_Formal (F);
+ end loop;
+ end if;
+ end if;
+
+ -- Pragma Inline_Always is disallowed for dispatching subprograms
+ -- because the address of such subprograms is saved in the dispatch
+ -- table to support dispatching calls, and dispatching calls cannot
+ -- be inlined. This is consistent with the restriction against using
+ -- 'Access or 'Address on an Inline_Always subprogram.
+
+ if Is_Dispatching_Operation (E)
+ and then Has_Pragma_Inline_Always (E)
+ then
+ Error_Msg_N
+ ("pragma Inline_Always not allowed for dispatching subprograms", E);
+ end if;
+
+ -- Because of the implicit representation of inherited predefined
+ -- operators in the front-end, the overriding status of the operation
+ -- may be affected when a full view of a type is analyzed, and this is
+ -- not captured by the analysis of the corresponding type declaration.
+ -- Therefore the correctness of a not-overriding indicator must be
+ -- rechecked when the subprogram is frozen.
+
+ if Nkind (E) = N_Defining_Operator_Symbol
+ and then not Error_Posted (Parent (E))
+ then
+ Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
+ end if;
+ end Freeze_Subprogram;
+
+ ----------------------
+ -- Is_Fully_Defined --
+ ----------------------
+
+ function Is_Fully_Defined (T : Entity_Id) return Boolean is
+ begin
+ if Ekind (T) = E_Class_Wide_Type then
+ return Is_Fully_Defined (Etype (T));
+
+ elsif Is_Array_Type (T) then
+ return Is_Fully_Defined (Component_Type (T));
+
+ elsif Is_Record_Type (T)
+ and not Is_Private_Type (T)
+ then
+ -- Verify that the record type has no components with private types
+ -- without completion.
+
+ declare
+ Comp : Entity_Id;
+
+ begin
+ Comp := First_Component (T);
+ while Present (Comp) loop
+ if not Is_Fully_Defined (Etype (Comp)) then
+ return False;
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+ return True;
+ end;
+
+ -- For the designated type of an access to subprogram, all types in
+ -- the profile must be fully defined.
+
+ elsif Ekind (T) = E_Subprogram_Type then
+ declare
+ F : Entity_Id;
+
+ begin
+ F := First_Formal (T);
+ while Present (F) loop
+ if not Is_Fully_Defined (Etype (F)) then
+ return False;
+ end if;
+
+ Next_Formal (F);
+ end loop;
+
+ return Is_Fully_Defined (Etype (T));
+ end;
+
+ else
+ return not Is_Private_Type (T)
+ or else Present (Full_View (Base_Type (T)));
+ end if;
+ end Is_Fully_Defined;
+
+ ---------------------------------
+ -- Process_Default_Expressions --
+ ---------------------------------
+
+ procedure Process_Default_Expressions
+ (E : Entity_Id;
+ After : in out Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (E);
+ Dbody : Node_Id;
+ Formal : Node_Id;
+ Dcopy : Node_Id;
+ Dnam : Entity_Id;
+
+ begin
+ Set_Default_Expressions_Processed (E);
+
+ -- A subprogram instance and its associated anonymous subprogram share
+ -- their signature. The default expression functions are defined in the
+ -- wrapper packages for the anonymous subprogram, and should not be
+ -- generated again for the instance.
+
+ if Is_Generic_Instance (E)
+ and then Present (Alias (E))
+ and then Default_Expressions_Processed (Alias (E))
+ then
+ return;
+ end if;
+
+ Formal := First_Formal (E);
+ while Present (Formal) loop
+ if Present (Default_Value (Formal)) then
+
+ -- We work with a copy of the default expression because we
+ -- do not want to disturb the original, since this would mess
+ -- up the conformance checking.
+
+ Dcopy := New_Copy_Tree (Default_Value (Formal));
+
+ -- The analysis of the expression may generate insert actions,
+ -- which of course must not be executed. We wrap those actions
+ -- in a procedure that is not called, and later on eliminated.
+ -- The following cases have no side-effects, and are analyzed
+ -- directly.
+
+ if Nkind (Dcopy) = N_Identifier
+ or else Nkind_In (Dcopy, N_Expanded_Name,
+ N_Integer_Literal,
+ N_Character_Literal,
+ N_String_Literal)
+ or else (Nkind (Dcopy) = N_Real_Literal
+ and then not Vax_Float (Etype (Dcopy)))
+ or else (Nkind (Dcopy) = N_Attribute_Reference
+ and then Attribute_Name (Dcopy) = Name_Null_Parameter)
+ or else Known_Null (Dcopy)
+ then
+ -- If there is no default function, we must still do a full
+ -- analyze call on the default value, to ensure that all error
+ -- checks are performed, e.g. those associated with static
+ -- evaluation. Note: this branch will always be taken if the
+ -- analyzer is turned off (but we still need the error checks).
+
+ -- Note: the setting of parent here is to meet the requirement
+ -- that we can only analyze the expression while attached to
+ -- the tree. Really the requirement is that the parent chain
+ -- be set, we don't actually need to be in the tree.
+
+ Set_Parent (Dcopy, Declaration_Node (Formal));
+ Analyze (Dcopy);
+
+ -- Default expressions are resolved with their own type if the
+ -- context is generic, to avoid anomalies with private types.
+
+ if Ekind (Scope (E)) = E_Generic_Package then
+ Resolve (Dcopy);
+ else
+ Resolve (Dcopy, Etype (Formal));
+ end if;
+
+ -- If that resolved expression will raise constraint error,
+ -- then flag the default value as raising constraint error.
+ -- This allows a proper error message on the calls.
+
+ if Raises_Constraint_Error (Dcopy) then
+ Set_Raises_Constraint_Error (Default_Value (Formal));
+ end if;
+
+ -- If the default is a parameterless call, we use the name of
+ -- the called function directly, and there is no body to build.
+
+ elsif Nkind (Dcopy) = N_Function_Call
+ and then No (Parameter_Associations (Dcopy))
+ then
+ null;
+
+ -- Else construct and analyze the body of a wrapper procedure
+ -- that contains an object declaration to hold the expression.
+ -- Given that this is done only to complete the analysis, it
+ -- simpler to build a procedure than a function which might
+ -- involve secondary stack expansion.
+
+ else
+ Dnam := Make_Temporary (Loc, 'D');
+
+ Dbody :=
+ Make_Subprogram_Body (Loc,
+ Specification =>
+ Make_Procedure_Specification (Loc,
+ Defining_Unit_Name => Dnam),
+
+ Declarations => New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Make_Temporary (Loc, 'T'),
+ Object_Definition =>
+ New_Occurrence_Of (Etype (Formal), Loc),
+ Expression => New_Copy_Tree (Dcopy))),
+
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => Empty_List));
+
+ Set_Scope (Dnam, Scope (E));
+ Set_Assignment_OK (First (Declarations (Dbody)));
+ Set_Is_Eliminated (Dnam);
+ Insert_After (After, Dbody);
+ Analyze (Dbody);
+ After := Dbody;
+ end if;
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+ end Process_Default_Expressions;
+
+ ----------------------------------------
+ -- Set_Component_Alignment_If_Not_Set --
+ ----------------------------------------
+
+ procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
+ begin
+ -- Ignore if not base type, subtypes don't need anything
+
+ if Typ /= Base_Type (Typ) then
+ return;
+ end if;
+
+ -- Do not override existing representation
+
+ if Is_Packed (Typ) then
+ return;
+
+ elsif Has_Specified_Layout (Typ) then
+ return;
+
+ elsif Component_Alignment (Typ) /= Calign_Default then
+ return;
+
+ else
+ Set_Component_Alignment
+ (Typ, Scope_Stack.Table
+ (Scope_Stack.Last).Component_Alignment_Default);
+ end if;
+ end Set_Component_Alignment_If_Not_Set;
+
+ ------------------
+ -- Undelay_Type --
+ ------------------
+
+ procedure Undelay_Type (T : Entity_Id) is
+ begin
+ Set_Has_Delayed_Freeze (T, False);
+ Set_Freeze_Node (T, Empty);
+
+ -- Since we don't want T to have a Freeze_Node, we don't want its
+ -- Full_View or Corresponding_Record_Type to have one either.
+
+ -- ??? Fundamentally, this whole handling is a kludge. What we really
+ -- want is to be sure that for an Itype that's part of record R and is a
+ -- subtype of type T, that it's frozen after the later of the freeze
+ -- points of R and T. We have no way of doing that directly, so what we
+ -- do is force most such Itypes to be frozen as part of freezing R via
+ -- this procedure and only delay the ones that need to be delayed
+ -- (mostly the designated types of access types that are defined as part
+ -- of the record).
+
+ if Is_Private_Type (T)
+ and then Present (Full_View (T))
+ and then Is_Itype (Full_View (T))
+ and then Is_Record_Type (Scope (Full_View (T)))
+ then
+ Undelay_Type (Full_View (T));
+ end if;
+
+ if Is_Concurrent_Type (T)
+ and then Present (Corresponding_Record_Type (T))
+ and then Is_Itype (Corresponding_Record_Type (T))
+ and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
+ then
+ Undelay_Type (Corresponding_Record_Type (T));
+ end if;
+ end Undelay_Type;
+
+ ------------------
+ -- Warn_Overlay --
+ ------------------
+
+ procedure Warn_Overlay
+ (Expr : Node_Id;
+ Typ : Entity_Id;
+ Nam : Entity_Id)
+ is
+ Ent : constant Entity_Id := Entity (Nam);
+ -- The object to which the address clause applies
+
+ Init : Node_Id;
+ Old : Entity_Id := Empty;
+ Decl : Node_Id;
+
+ begin
+ -- No warning if address clause overlay warnings are off
+
+ if not Address_Clause_Overlay_Warnings then
+ return;
+ end if;
+
+ -- No warning if there is an explicit initialization
+
+ Init := Original_Node (Expression (Declaration_Node (Ent)));
+
+ if Present (Init) and then Comes_From_Source (Init) then
+ return;
+ end if;
+
+ -- We only give the warning for non-imported entities of a type for
+ -- which a non-null base init proc is defined, or for objects of access
+ -- types with implicit null initialization, or when Normalize_Scalars
+ -- applies and the type is scalar or a string type (the latter being
+ -- tested for because predefined String types are initialized by inline
+ -- code rather than by an init_proc). Note that we do not give the
+ -- warning for Initialize_Scalars, since we suppressed initialization
+ -- in this case. Also, do not warn if Suppress_Initialization is set.
+
+ if Present (Expr)
+ and then not Is_Imported (Ent)
+ and then not Initialization_Suppressed (Typ)
+ and then (Has_Non_Null_Base_Init_Proc (Typ)
+ or else Is_Access_Type (Typ)
+ or else (Normalize_Scalars
+ and then (Is_Scalar_Type (Typ)
+ or else Is_String_Type (Typ))))
+ then
+ if Nkind (Expr) = N_Attribute_Reference
+ and then Is_Entity_Name (Prefix (Expr))
+ then
+ Old := Entity (Prefix (Expr));
+
+ elsif Is_Entity_Name (Expr)
+ and then Ekind (Entity (Expr)) = E_Constant
+ then
+ Decl := Declaration_Node (Entity (Expr));
+
+ if Nkind (Decl) = N_Object_Declaration
+ and then Present (Expression (Decl))
+ and then Nkind (Expression (Decl)) = N_Attribute_Reference
+ and then Is_Entity_Name (Prefix (Expression (Decl)))
+ then
+ Old := Entity (Prefix (Expression (Decl)));
+
+ elsif Nkind (Expr) = N_Function_Call then
+ return;
+ end if;
+
+ -- A function call (most likely to To_Address) is probably not an
+ -- overlay, so skip warning. Ditto if the function call was inlined
+ -- and transformed into an entity.
+
+ elsif Nkind (Original_Node (Expr)) = N_Function_Call then
+ return;
+ end if;
+
+ Decl := Next (Parent (Expr));
+
+ -- If a pragma Import follows, we assume that it is for the current
+ -- target of the address clause, and skip the warning.
+
+ if Present (Decl)
+ and then Nkind (Decl) = N_Pragma
+ and then Pragma_Name (Decl) = Name_Import
+ then
+ return;
+ end if;
+
+ if Present (Old) then
+ Error_Msg_Node_2 := Old;
+ Error_Msg_N
+ ("default initialization of & may modify &??",
+ Nam);
+ else
+ Error_Msg_N
+ ("default initialization of & may modify overlaid storage??",
+ Nam);
+ end if;
+
+ -- Add friendly warning if initialization comes from a packed array
+ -- component.
+
+ if Is_Record_Type (Typ) then
+ declare
+ Comp : Entity_Id;
+
+ begin
+ Comp := First_Component (Typ);
+ while Present (Comp) loop
+ if Nkind (Parent (Comp)) = N_Component_Declaration
+ and then Present (Expression (Parent (Comp)))
+ then
+ exit;
+ elsif Is_Array_Type (Etype (Comp))
+ and then Present (Packed_Array_Type (Etype (Comp)))
+ then
+ Error_Msg_NE
+ ("\packed array component& " &
+ "will be initialized to zero??",
+ Nam, Comp);
+ exit;
+ else
+ Next_Component (Comp);
+ end if;
+ end loop;
+ end;
+ end if;
+
+ Error_Msg_N
+ ("\use pragma Import for & to " &
+ "suppress initialization (RM B.1(24))??",
+ Nam);
+ end if;
+ end Warn_Overlay;
+
+end Freeze;