aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/ada/exp_util.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/ada/exp_util.adb')
-rw-r--r--gcc-4.9/gcc/ada/exp_util.adb8450
1 files changed, 8450 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/ada/exp_util.adb b/gcc-4.9/gcc/ada/exp_util.adb
new file mode 100644
index 000000000..f409cb07a
--- /dev/null
+++ b/gcc-4.9/gcc/ada/exp_util.adb
@@ -0,0 +1,8450 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- E X P _ U T I L --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Aspects; use Aspects;
+with Atree; use Atree;
+with Casing; use Casing;
+with Checks; use Checks;
+with Debug; use Debug;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Errout; use Errout;
+with Exp_Aggr; use Exp_Aggr;
+with Exp_Ch6; use Exp_Ch6;
+with Exp_Ch7; use Exp_Ch7;
+with Inline; use Inline;
+with Itypes; use Itypes;
+with Lib; use Lib;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Restrict; use Restrict;
+with Rident; use Rident;
+with Sem; use Sem;
+with Sem_Aux; use Sem_Aux;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Type; use Sem_Type;
+with Sem_Util; use Sem_Util;
+with Snames; use Snames;
+with Stand; use Stand;
+with Stringt; use Stringt;
+with Targparm; use Targparm;
+with Tbuild; use Tbuild;
+with Ttypes; use Ttypes;
+with Urealp; use Urealp;
+with Validsw; use Validsw;
+
+package body Exp_Util is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ function Build_Task_Array_Image
+ (Loc : Source_Ptr;
+ Id_Ref : Node_Id;
+ A_Type : Entity_Id;
+ Dyn : Boolean := False) return Node_Id;
+ -- Build function to generate the image string for a task that is an array
+ -- component, concatenating the images of each index. To avoid storage
+ -- leaks, the string is built with successive slice assignments. The flag
+ -- Dyn indicates whether this is called for the initialization procedure of
+ -- an array of tasks, or for the name of a dynamically created task that is
+ -- assigned to an indexed component.
+
+ function Build_Task_Image_Function
+ (Loc : Source_Ptr;
+ Decls : List_Id;
+ Stats : List_Id;
+ Res : Entity_Id) return Node_Id;
+ -- Common processing for Task_Array_Image and Task_Record_Image. Build
+ -- function body that computes image.
+
+ procedure Build_Task_Image_Prefix
+ (Loc : Source_Ptr;
+ Len : out Entity_Id;
+ Res : out Entity_Id;
+ Pos : out Entity_Id;
+ Prefix : Entity_Id;
+ Sum : Node_Id;
+ Decls : List_Id;
+ Stats : List_Id);
+ -- Common processing for Task_Array_Image and Task_Record_Image. Create
+ -- local variables and assign prefix of name to result string.
+
+ function Build_Task_Record_Image
+ (Loc : Source_Ptr;
+ Id_Ref : Node_Id;
+ Dyn : Boolean := False) return Node_Id;
+ -- Build function to generate the image string for a task that is a record
+ -- component. Concatenate name of variable with that of selector. The flag
+ -- Dyn indicates whether this is called for the initialization procedure of
+ -- record with task components, or for a dynamically created task that is
+ -- assigned to a selected component.
+
+ procedure Evaluate_Slice_Bounds (Slice : Node_Id);
+ -- Force evaluation of bounds of a slice, which may be given by a range
+ -- or by a subtype indication with or without a constraint.
+
+ function Make_CW_Equivalent_Type
+ (T : Entity_Id;
+ E : Node_Id) return Entity_Id;
+ -- T is a class-wide type entity, E is the initial expression node that
+ -- constrains T in case such as: " X: T := E" or "new T'(E)". This function
+ -- returns the entity of the Equivalent type and inserts on the fly the
+ -- necessary declaration such as:
+ --
+ -- type anon is record
+ -- _parent : Root_Type (T); constrained with E discriminants (if any)
+ -- Extension : String (1 .. expr to match size of E);
+ -- end record;
+ --
+ -- This record is compatible with any object of the class of T thanks to
+ -- the first field and has the same size as E thanks to the second.
+
+ function Make_Literal_Range
+ (Loc : Source_Ptr;
+ Literal_Typ : Entity_Id) return Node_Id;
+ -- Produce a Range node whose bounds are:
+ -- Low_Bound (Literal_Type) ..
+ -- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
+ -- this is used for expanding declarations like X : String := "sdfgdfg";
+ --
+ -- If the index type of the target array is not integer, we generate:
+ -- Low_Bound (Literal_Type) ..
+ -- Literal_Type'Val
+ -- (Literal_Type'Pos (Low_Bound (Literal_Type))
+ -- + (Length (Literal_Typ) -1))
+
+ function Make_Non_Empty_Check
+ (Loc : Source_Ptr;
+ N : Node_Id) return Node_Id;
+ -- Produce a boolean expression checking that the unidimensional array
+ -- node N is not empty.
+
+ function New_Class_Wide_Subtype
+ (CW_Typ : Entity_Id;
+ N : Node_Id) return Entity_Id;
+ -- Create an implicit subtype of CW_Typ attached to node N
+
+ function Requires_Cleanup_Actions
+ (L : List_Id;
+ Lib_Level : Boolean;
+ Nested_Constructs : Boolean) return Boolean;
+ -- Given a list L, determine whether it contains one of the following:
+ --
+ -- 1) controlled objects
+ -- 2) library-level tagged types
+ --
+ -- Lib_Level is True when the list comes from a construct at the library
+ -- level, and False otherwise. Nested_Constructs is True when any nested
+ -- packages declared in L must be processed, and False otherwise.
+
+ -------------------------------------
+ -- Activate_Atomic_Synchronization --
+ -------------------------------------
+
+ procedure Activate_Atomic_Synchronization (N : Node_Id) is
+ Msg_Node : Node_Id;
+
+ begin
+ case Nkind (Parent (N)) is
+
+ -- Check for cases of appearing in the prefix of a construct where
+ -- we don't need atomic synchronization for this kind of usage.
+
+ when
+ -- Nothing to do if we are the prefix of an attribute, since we
+ -- do not want an atomic sync operation for things like 'Size.
+
+ N_Attribute_Reference |
+
+ -- The N_Reference node is like an attribute
+
+ N_Reference |
+
+ -- Nothing to do for a reference to a component (or components)
+ -- of a composite object. Only reads and updates of the object
+ -- as a whole require atomic synchronization (RM C.6 (15)).
+
+ N_Indexed_Component |
+ N_Selected_Component |
+ N_Slice =>
+
+ -- For all the above cases, nothing to do if we are the prefix
+
+ if Prefix (Parent (N)) = N then
+ return;
+ end if;
+
+ when others => null;
+ end case;
+
+ -- Go ahead and set the flag
+
+ Set_Atomic_Sync_Required (N);
+
+ -- Generate info message if requested
+
+ if Warn_On_Atomic_Synchronization then
+ case Nkind (N) is
+ when N_Identifier =>
+ Msg_Node := N;
+
+ when N_Selected_Component | N_Expanded_Name =>
+ Msg_Node := Selector_Name (N);
+
+ when N_Explicit_Dereference | N_Indexed_Component =>
+ Msg_Node := Empty;
+
+ when others =>
+ pragma Assert (False);
+ return;
+ end case;
+
+ if Present (Msg_Node) then
+ Error_Msg_N
+ ("?N?info: atomic synchronization set for &", Msg_Node);
+ else
+ Error_Msg_N
+ ("?N?info: atomic synchronization set", N);
+ end if;
+ end if;
+ end Activate_Atomic_Synchronization;
+
+ ----------------------
+ -- Adjust_Condition --
+ ----------------------
+
+ procedure Adjust_Condition (N : Node_Id) is
+ begin
+ if No (N) then
+ return;
+ end if;
+
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ T : constant Entity_Id := Etype (N);
+ Ti : Entity_Id;
+
+ begin
+ -- Defend against a call where the argument has no type, or has a
+ -- type that is not Boolean. This can occur because of prior errors.
+
+ if No (T) or else not Is_Boolean_Type (T) then
+ return;
+ end if;
+
+ -- Apply validity checking if needed
+
+ if Validity_Checks_On and Validity_Check_Tests then
+ Ensure_Valid (N);
+ end if;
+
+ -- Immediate return if standard boolean, the most common case,
+ -- where nothing needs to be done.
+
+ if Base_Type (T) = Standard_Boolean then
+ return;
+ end if;
+
+ -- Case of zero/non-zero semantics or non-standard enumeration
+ -- representation. In each case, we rewrite the node as:
+
+ -- ityp!(N) /= False'Enum_Rep
+
+ -- where ityp is an integer type with large enough size to hold any
+ -- value of type T.
+
+ if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
+ if Esize (T) <= Esize (Standard_Integer) then
+ Ti := Standard_Integer;
+ else
+ Ti := Standard_Long_Long_Integer;
+ end if;
+
+ Rewrite (N,
+ Make_Op_Ne (Loc,
+ Left_Opnd => Unchecked_Convert_To (Ti, N),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Enum_Rep,
+ Prefix =>
+ New_Occurrence_Of (First_Literal (T), Loc))));
+ Analyze_And_Resolve (N, Standard_Boolean);
+
+ else
+ Rewrite (N, Convert_To (Standard_Boolean, N));
+ Analyze_And_Resolve (N, Standard_Boolean);
+ end if;
+ end;
+ end Adjust_Condition;
+
+ ------------------------
+ -- Adjust_Result_Type --
+ ------------------------
+
+ procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
+ begin
+ -- Ignore call if current type is not Standard.Boolean
+
+ if Etype (N) /= Standard_Boolean then
+ return;
+ end if;
+
+ -- If result is already of correct type, nothing to do. Note that
+ -- this will get the most common case where everything has a type
+ -- of Standard.Boolean.
+
+ if Base_Type (T) = Standard_Boolean then
+ return;
+
+ else
+ declare
+ KP : constant Node_Kind := Nkind (Parent (N));
+
+ begin
+ -- If result is to be used as a Condition in the syntax, no need
+ -- to convert it back, since if it was changed to Standard.Boolean
+ -- using Adjust_Condition, that is just fine for this usage.
+
+ if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
+ return;
+
+ -- If result is an operand of another logical operation, no need
+ -- to reset its type, since Standard.Boolean is just fine, and
+ -- such operations always do Adjust_Condition on their operands.
+
+ elsif KP in N_Op_Boolean
+ or else KP in N_Short_Circuit
+ or else KP = N_Op_Not
+ then
+ return;
+
+ -- Otherwise we perform a conversion from the current type, which
+ -- must be Standard.Boolean, to the desired type.
+
+ else
+ Set_Analyzed (N);
+ Rewrite (N, Convert_To (T, N));
+ Analyze_And_Resolve (N, T);
+ end if;
+ end;
+ end if;
+ end Adjust_Result_Type;
+
+ --------------------------
+ -- Append_Freeze_Action --
+ --------------------------
+
+ procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
+ Fnode : Node_Id;
+
+ begin
+ Ensure_Freeze_Node (T);
+ Fnode := Freeze_Node (T);
+
+ if No (Actions (Fnode)) then
+ Set_Actions (Fnode, New_List (N));
+ else
+ Append (N, Actions (Fnode));
+ end if;
+
+ end Append_Freeze_Action;
+
+ ---------------------------
+ -- Append_Freeze_Actions --
+ ---------------------------
+
+ procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
+ Fnode : Node_Id;
+
+ begin
+ if No (L) then
+ return;
+ end if;
+
+ Ensure_Freeze_Node (T);
+ Fnode := Freeze_Node (T);
+
+ if No (Actions (Fnode)) then
+ Set_Actions (Fnode, L);
+ else
+ Append_List (L, Actions (Fnode));
+ end if;
+ end Append_Freeze_Actions;
+
+ ------------------------------------
+ -- Build_Allocate_Deallocate_Proc --
+ ------------------------------------
+
+ procedure Build_Allocate_Deallocate_Proc
+ (N : Node_Id;
+ Is_Allocate : Boolean)
+ is
+ Desig_Typ : Entity_Id;
+ Expr : Node_Id;
+ Pool_Id : Entity_Id;
+ Proc_To_Call : Node_Id := Empty;
+ Ptr_Typ : Entity_Id;
+
+ function Find_Finalize_Address (Typ : Entity_Id) return Entity_Id;
+ -- Locate TSS primitive Finalize_Address in type Typ
+
+ function Find_Object (E : Node_Id) return Node_Id;
+ -- Given an arbitrary expression of an allocator, try to find an object
+ -- reference in it, otherwise return the original expression.
+
+ function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean;
+ -- Determine whether subprogram Subp denotes a custom allocate or
+ -- deallocate.
+
+ ---------------------------
+ -- Find_Finalize_Address --
+ ---------------------------
+
+ function Find_Finalize_Address (Typ : Entity_Id) return Entity_Id is
+ Utyp : Entity_Id := Typ;
+
+ begin
+ -- Handle protected class-wide or task class-wide types
+
+ if Is_Class_Wide_Type (Utyp) then
+ if Is_Concurrent_Type (Root_Type (Utyp)) then
+ Utyp := Root_Type (Utyp);
+
+ elsif Is_Private_Type (Root_Type (Utyp))
+ and then Present (Full_View (Root_Type (Utyp)))
+ and then Is_Concurrent_Type (Full_View (Root_Type (Utyp)))
+ then
+ Utyp := Full_View (Root_Type (Utyp));
+ end if;
+ end if;
+
+ -- Handle private types
+
+ if Is_Private_Type (Utyp) and then Present (Full_View (Utyp)) then
+ Utyp := Full_View (Utyp);
+ end if;
+
+ -- Handle protected and task types
+
+ if Is_Concurrent_Type (Utyp)
+ and then Present (Corresponding_Record_Type (Utyp))
+ then
+ Utyp := Corresponding_Record_Type (Utyp);
+ end if;
+
+ Utyp := Underlying_Type (Base_Type (Utyp));
+
+ -- Deal with non-tagged derivation of private views. If the parent is
+ -- now known to be protected, the finalization routine is the one
+ -- defined on the corresponding record of the ancestor (corresponding
+ -- records do not automatically inherit operations, but maybe they
+ -- should???)
+
+ if Is_Untagged_Derivation (Typ) then
+ if Is_Protected_Type (Typ) then
+ Utyp := Corresponding_Record_Type (Root_Type (Base_Type (Typ)));
+ else
+ Utyp := Underlying_Type (Root_Type (Base_Type (Typ)));
+
+ if Is_Protected_Type (Utyp) then
+ Utyp := Corresponding_Record_Type (Utyp);
+ end if;
+ end if;
+ end if;
+
+ -- If the underlying_type is a subtype, we are dealing with the
+ -- completion of a private type. We need to access the base type and
+ -- generate a conversion to it.
+
+ if Utyp /= Base_Type (Utyp) then
+ pragma Assert (Is_Private_Type (Typ));
+
+ Utyp := Base_Type (Utyp);
+ end if;
+
+ -- When dealing with an internally built full view for a type with
+ -- unknown discriminants, use the original record type.
+
+ if Is_Underlying_Record_View (Utyp) then
+ Utyp := Etype (Utyp);
+ end if;
+
+ return TSS (Utyp, TSS_Finalize_Address);
+ end Find_Finalize_Address;
+
+ -----------------
+ -- Find_Object --
+ -----------------
+
+ function Find_Object (E : Node_Id) return Node_Id is
+ Expr : Node_Id;
+
+ begin
+ pragma Assert (Is_Allocate);
+
+ Expr := E;
+ loop
+ if Nkind (Expr) = N_Explicit_Dereference then
+ Expr := Prefix (Expr);
+
+ elsif Nkind (Expr) = N_Qualified_Expression then
+ Expr := Expression (Expr);
+
+ elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
+
+ -- When interface class-wide types are involved in allocation,
+ -- the expander introduces several levels of address arithmetic
+ -- to perform dispatch table displacement. In this scenario the
+ -- object appears as:
+
+ -- Tag_Ptr (Base_Address (<object>'Address))
+
+ -- Detect this case and utilize the whole expression as the
+ -- "object" since it now points to the proper dispatch table.
+
+ if Is_RTE (Etype (Expr), RE_Tag_Ptr) then
+ exit;
+
+ -- Continue to strip the object
+
+ else
+ Expr := Expression (Expr);
+ end if;
+
+ else
+ exit;
+ end if;
+ end loop;
+
+ return Expr;
+ end Find_Object;
+
+ ---------------------------------
+ -- Is_Allocate_Deallocate_Proc --
+ ---------------------------------
+
+ function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean is
+ begin
+ -- Look for a subprogram body with only one statement which is a
+ -- call to Allocate_Any_Controlled / Deallocate_Any_Controlled.
+
+ if Ekind (Subp) = E_Procedure
+ and then Nkind (Parent (Parent (Subp))) = N_Subprogram_Body
+ then
+ declare
+ HSS : constant Node_Id :=
+ Handled_Statement_Sequence (Parent (Parent (Subp)));
+ Proc : Entity_Id;
+
+ begin
+ if Present (Statements (HSS))
+ and then Nkind (First (Statements (HSS))) =
+ N_Procedure_Call_Statement
+ then
+ Proc := Entity (Name (First (Statements (HSS))));
+
+ return
+ Is_RTE (Proc, RE_Allocate_Any_Controlled)
+ or else Is_RTE (Proc, RE_Deallocate_Any_Controlled);
+ end if;
+ end;
+ end if;
+
+ return False;
+ end Is_Allocate_Deallocate_Proc;
+
+ -- Start of processing for Build_Allocate_Deallocate_Proc
+
+ begin
+ -- Obtain the attributes of the allocation / deallocation
+
+ if Nkind (N) = N_Free_Statement then
+ Expr := Expression (N);
+ Ptr_Typ := Base_Type (Etype (Expr));
+ Proc_To_Call := Procedure_To_Call (N);
+
+ else
+ if Nkind (N) = N_Object_Declaration then
+ Expr := Expression (N);
+ else
+ Expr := N;
+ end if;
+
+ -- In certain cases an allocator with a qualified expression may
+ -- be relocated and used as the initialization expression of a
+ -- temporary:
+
+ -- before:
+ -- Obj : Ptr_Typ := new Desig_Typ'(...);
+
+ -- after:
+ -- Tmp : Ptr_Typ := new Desig_Typ'(...);
+ -- Obj : Ptr_Typ := Tmp;
+
+ -- Since the allocator is always marked as analyzed to avoid infinite
+ -- expansion, it will never be processed by this routine given that
+ -- the designated type needs finalization actions. Detect this case
+ -- and complete the expansion of the allocator.
+
+ if Nkind (Expr) = N_Identifier
+ and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
+ and then Nkind (Expression (Parent (Entity (Expr)))) = N_Allocator
+ then
+ Build_Allocate_Deallocate_Proc (Parent (Entity (Expr)), True);
+ return;
+ end if;
+
+ -- The allocator may have been rewritten into something else in which
+ -- case the expansion performed by this routine does not apply.
+
+ if Nkind (Expr) /= N_Allocator then
+ return;
+ end if;
+
+ Ptr_Typ := Base_Type (Etype (Expr));
+ Proc_To_Call := Procedure_To_Call (Expr);
+ end if;
+
+ Pool_Id := Associated_Storage_Pool (Ptr_Typ);
+ Desig_Typ := Available_View (Designated_Type (Ptr_Typ));
+
+ -- Handle concurrent types
+
+ if Is_Concurrent_Type (Desig_Typ)
+ and then Present (Corresponding_Record_Type (Desig_Typ))
+ then
+ Desig_Typ := Corresponding_Record_Type (Desig_Typ);
+ end if;
+
+ -- Do not process allocations / deallocations without a pool
+
+ if No (Pool_Id) then
+ return;
+
+ -- Do not process allocations on / deallocations from the secondary
+ -- stack.
+
+ elsif Is_RTE (Pool_Id, RE_SS_Pool) then
+ return;
+
+ -- Do not replicate the machinery if the allocator / free has already
+ -- been expanded and has a custom Allocate / Deallocate.
+
+ elsif Present (Proc_To_Call)
+ and then Is_Allocate_Deallocate_Proc (Proc_To_Call)
+ then
+ return;
+ end if;
+
+ if Needs_Finalization (Desig_Typ) then
+
+ -- Certain run-time configurations and targets do not provide support
+ -- for controlled types.
+
+ if Restriction_Active (No_Finalization) then
+ return;
+
+ -- Do nothing if the access type may never allocate / deallocate
+ -- objects.
+
+ elsif No_Pool_Assigned (Ptr_Typ) then
+ return;
+
+ -- Access-to-controlled types are not supported on .NET/JVM since
+ -- these targets cannot support pools and address arithmetic.
+
+ elsif VM_Target /= No_VM then
+ return;
+ end if;
+
+ -- The allocation / deallocation of a controlled object must be
+ -- chained on / detached from a finalization master.
+
+ pragma Assert (Present (Finalization_Master (Ptr_Typ)));
+
+ -- The only other kind of allocation / deallocation supported by this
+ -- routine is on / from a subpool.
+
+ elsif Nkind (Expr) = N_Allocator
+ and then No (Subpool_Handle_Name (Expr))
+ then
+ return;
+ end if;
+
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ Addr_Id : constant Entity_Id := Make_Temporary (Loc, 'A');
+ Alig_Id : constant Entity_Id := Make_Temporary (Loc, 'L');
+ Proc_Id : constant Entity_Id := Make_Temporary (Loc, 'P');
+ Size_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
+
+ Actuals : List_Id;
+ Fin_Addr_Id : Entity_Id;
+ Fin_Mas_Act : Node_Id;
+ Fin_Mas_Id : Entity_Id;
+ Proc_To_Call : Entity_Id;
+ Subpool : Node_Id := Empty;
+
+ begin
+ -- Step 1: Construct all the actuals for the call to library routine
+ -- Allocate_Any_Controlled / Deallocate_Any_Controlled.
+
+ -- a) Storage pool
+
+ Actuals := New_List (New_Occurrence_Of (Pool_Id, Loc));
+
+ if Is_Allocate then
+
+ -- b) Subpool
+
+ if Nkind (Expr) = N_Allocator then
+ Subpool := Subpool_Handle_Name (Expr);
+ end if;
+
+ -- If a subpool is present it can be an arbitrary name, so make
+ -- the actual by copying the tree.
+
+ if Present (Subpool) then
+ Append_To (Actuals, New_Copy_Tree (Subpool, New_Sloc => Loc));
+ else
+ Append_To (Actuals, Make_Null (Loc));
+ end if;
+
+ -- c) Finalization master
+
+ if Needs_Finalization (Desig_Typ) then
+ Fin_Mas_Id := Finalization_Master (Ptr_Typ);
+ Fin_Mas_Act := New_Occurrence_Of (Fin_Mas_Id, Loc);
+
+ -- Handle the case where the master is actually a pointer to a
+ -- master. This case arises in build-in-place functions.
+
+ if Is_Access_Type (Etype (Fin_Mas_Id)) then
+ Append_To (Actuals, Fin_Mas_Act);
+ else
+ Append_To (Actuals,
+ Make_Attribute_Reference (Loc,
+ Prefix => Fin_Mas_Act,
+ Attribute_Name => Name_Unrestricted_Access));
+ end if;
+ else
+ Append_To (Actuals, Make_Null (Loc));
+ end if;
+
+ -- d) Finalize_Address
+
+ -- Primitive Finalize_Address is never generated in CodePeer mode
+ -- since it contains an Unchecked_Conversion.
+
+ if Needs_Finalization (Desig_Typ) and then not CodePeer_Mode then
+ Fin_Addr_Id := Find_Finalize_Address (Desig_Typ);
+ pragma Assert (Present (Fin_Addr_Id));
+
+ Append_To (Actuals,
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Fin_Addr_Id, Loc),
+ Attribute_Name => Name_Unrestricted_Access));
+ else
+ Append_To (Actuals, Make_Null (Loc));
+ end if;
+ end if;
+
+ -- e) Address
+ -- f) Storage_Size
+ -- g) Alignment
+
+ Append_To (Actuals, New_Occurrence_Of (Addr_Id, Loc));
+ Append_To (Actuals, New_Occurrence_Of (Size_Id, Loc));
+
+ if Is_Allocate or else not Is_Class_Wide_Type (Desig_Typ) then
+ Append_To (Actuals, New_Occurrence_Of (Alig_Id, Loc));
+
+ -- For deallocation of class wide types we obtain the value of
+ -- alignment from the Type Specific Record of the deallocated object.
+ -- This is needed because the frontend expansion of class-wide types
+ -- into equivalent types confuses the backend.
+
+ else
+ -- Generate:
+ -- Obj.all'Alignment
+
+ -- ... because 'Alignment applied to class-wide types is expanded
+ -- into the code that reads the value of alignment from the TSD
+ -- (see Expand_N_Attribute_Reference)
+
+ Append_To (Actuals,
+ Unchecked_Convert_To (RTE (RE_Storage_Offset),
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ Make_Explicit_Dereference (Loc, Relocate_Node (Expr)),
+ Attribute_Name => Name_Alignment)));
+ end if;
+
+ -- h) Is_Controlled
+
+ if Needs_Finalization (Desig_Typ) then
+ declare
+ Flag_Id : constant Entity_Id := Make_Temporary (Loc, 'F');
+ Flag_Expr : Node_Id;
+ Param : Node_Id;
+ Temp : Node_Id;
+
+ begin
+ if Is_Allocate then
+ Temp := Find_Object (Expression (Expr));
+ else
+ Temp := Expr;
+ end if;
+
+ -- Processing for allocations where the expression is a subtype
+ -- indication.
+
+ if Is_Allocate
+ and then Is_Entity_Name (Temp)
+ and then Is_Type (Entity (Temp))
+ then
+ Flag_Expr :=
+ New_Occurrence_Of
+ (Boolean_Literals
+ (Needs_Finalization (Entity (Temp))), Loc);
+
+ -- The allocation / deallocation of a class-wide object relies
+ -- on a runtime check to determine whether the object is truly
+ -- controlled or not. Depending on this check, the finalization
+ -- machinery will request or reclaim extra storage reserved for
+ -- a list header.
+
+ elsif Is_Class_Wide_Type (Desig_Typ) then
+
+ -- Detect a special case where interface class-wide types
+ -- are involved as the object appears as:
+
+ -- Tag_Ptr (Base_Address (<object>'Address))
+
+ -- The expression already yields the proper tag, generate:
+
+ -- Temp.all
+
+ if Is_RTE (Etype (Temp), RE_Tag_Ptr) then
+ Param :=
+ Make_Explicit_Dereference (Loc,
+ Prefix => Relocate_Node (Temp));
+
+ -- In the default case, obtain the tag of the object about
+ -- to be allocated / deallocated. Generate:
+
+ -- Temp'Tag
+
+ else
+ Param :=
+ Make_Attribute_Reference (Loc,
+ Prefix => Relocate_Node (Temp),
+ Attribute_Name => Name_Tag);
+ end if;
+
+ -- Generate:
+ -- Needs_Finalization (<Param>)
+
+ Flag_Expr :=
+ Make_Function_Call (Loc,
+ Name =>
+ New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
+ Parameter_Associations => New_List (Param));
+
+ -- Processing for generic actuals
+
+ elsif Is_Generic_Actual_Type (Desig_Typ) then
+ Flag_Expr :=
+ New_Occurrence_Of (Boolean_Literals
+ (Needs_Finalization (Base_Type (Desig_Typ))), Loc);
+
+ -- The object does not require any specialized checks, it is
+ -- known to be controlled.
+
+ else
+ Flag_Expr := New_Occurrence_Of (Standard_True, Loc);
+ end if;
+
+ -- Create the temporary which represents the finalization state
+ -- of the expression. Generate:
+ --
+ -- F : constant Boolean := <Flag_Expr>;
+
+ Insert_Action (N,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Flag_Id,
+ Constant_Present => True,
+ Object_Definition =>
+ New_Occurrence_Of (Standard_Boolean, Loc),
+ Expression => Flag_Expr));
+
+ Append_To (Actuals, New_Occurrence_Of (Flag_Id, Loc));
+ end;
+
+ -- The object is not controlled
+
+ else
+ Append_To (Actuals, New_Occurrence_Of (Standard_False, Loc));
+ end if;
+
+ -- i) On_Subpool
+
+ if Is_Allocate then
+ Append_To (Actuals,
+ New_Occurrence_Of (Boolean_Literals (Present (Subpool)), Loc));
+ end if;
+
+ -- Step 2: Build a wrapper Allocate / Deallocate which internally
+ -- calls Allocate_Any_Controlled / Deallocate_Any_Controlled.
+
+ -- Select the proper routine to call
+
+ if Is_Allocate then
+ Proc_To_Call := RTE (RE_Allocate_Any_Controlled);
+ else
+ Proc_To_Call := RTE (RE_Deallocate_Any_Controlled);
+ end if;
+
+ -- Create a custom Allocate / Deallocate routine which has identical
+ -- profile to that of System.Storage_Pools.
+
+ Insert_Action (N,
+ Make_Subprogram_Body (Loc,
+ Specification =>
+
+ -- procedure Pnn
+
+ Make_Procedure_Specification (Loc,
+ Defining_Unit_Name => Proc_Id,
+ Parameter_Specifications => New_List (
+
+ -- P : Root_Storage_Pool
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Temporary (Loc, 'P'),
+ Parameter_Type =>
+ New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc)),
+
+ -- A : [out] Address
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Addr_Id,
+ Out_Present => Is_Allocate,
+ Parameter_Type =>
+ New_Occurrence_Of (RTE (RE_Address), Loc)),
+
+ -- S : Storage_Count
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Size_Id,
+ Parameter_Type =>
+ New_Occurrence_Of (RTE (RE_Storage_Count), Loc)),
+
+ -- L : Storage_Count
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Alig_Id,
+ Parameter_Type =>
+ New_Occurrence_Of (RTE (RE_Storage_Count), Loc)))),
+
+ Declarations => No_List,
+
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Occurrence_Of (Proc_To_Call, Loc),
+ Parameter_Associations => Actuals)))));
+
+ -- The newly generated Allocate / Deallocate becomes the default
+ -- procedure to call when the back end processes the allocation /
+ -- deallocation.
+
+ if Is_Allocate then
+ Set_Procedure_To_Call (Expr, Proc_Id);
+ else
+ Set_Procedure_To_Call (N, Proc_Id);
+ end if;
+ end;
+ end Build_Allocate_Deallocate_Proc;
+
+ ------------------------
+ -- Build_Runtime_Call --
+ ------------------------
+
+ function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
+ begin
+ -- If entity is not available, we can skip making the call (this avoids
+ -- junk duplicated error messages in a number of cases).
+
+ if not RTE_Available (RE) then
+ return Make_Null_Statement (Loc);
+ else
+ return
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Occurrence_Of (RTE (RE), Loc));
+ end if;
+ end Build_Runtime_Call;
+
+ ----------------------------
+ -- Build_Task_Array_Image --
+ ----------------------------
+
+ -- This function generates the body for a function that constructs the
+ -- image string for a task that is an array component. The function is
+ -- local to the init proc for the array type, and is called for each one
+ -- of the components. The constructed image has the form of an indexed
+ -- component, whose prefix is the outer variable of the array type.
+ -- The n-dimensional array type has known indexes Index, Index2...
+
+ -- Id_Ref is an indexed component form created by the enclosing init proc.
+ -- Its successive indexes are Val1, Val2, ... which are the loop variables
+ -- in the loops that call the individual task init proc on each component.
+
+ -- The generated function has the following structure:
+
+ -- function F return String is
+ -- Pref : string renames Task_Name;
+ -- T1 : String := Index1'Image (Val1);
+ -- ...
+ -- Tn : String := indexn'image (Valn);
+ -- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
+ -- -- Len includes commas and the end parentheses.
+ -- Res : String (1..Len);
+ -- Pos : Integer := Pref'Length;
+ --
+ -- begin
+ -- Res (1 .. Pos) := Pref;
+ -- Pos := Pos + 1;
+ -- Res (Pos) := '(';
+ -- Pos := Pos + 1;
+ -- Res (Pos .. Pos + T1'Length - 1) := T1;
+ -- Pos := Pos + T1'Length;
+ -- Res (Pos) := '.';
+ -- Pos := Pos + 1;
+ -- ...
+ -- Res (Pos .. Pos + Tn'Length - 1) := Tn;
+ -- Res (Len) := ')';
+ --
+ -- return Res;
+ -- end F;
+ --
+ -- Needless to say, multidimensional arrays of tasks are rare enough that
+ -- the bulkiness of this code is not really a concern.
+
+ function Build_Task_Array_Image
+ (Loc : Source_Ptr;
+ Id_Ref : Node_Id;
+ A_Type : Entity_Id;
+ Dyn : Boolean := False) return Node_Id
+ is
+ Dims : constant Nat := Number_Dimensions (A_Type);
+ -- Number of dimensions for array of tasks
+
+ Temps : array (1 .. Dims) of Entity_Id;
+ -- Array of temporaries to hold string for each index
+
+ Indx : Node_Id;
+ -- Index expression
+
+ Len : Entity_Id;
+ -- Total length of generated name
+
+ Pos : Entity_Id;
+ -- Running index for substring assignments
+
+ Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
+ -- Name of enclosing variable, prefix of resulting name
+
+ Res : Entity_Id;
+ -- String to hold result
+
+ Val : Node_Id;
+ -- Value of successive indexes
+
+ Sum : Node_Id;
+ -- Expression to compute total size of string
+
+ T : Entity_Id;
+ -- Entity for name at one index position
+
+ Decls : constant List_Id := New_List;
+ Stats : constant List_Id := New_List;
+
+ begin
+ -- For a dynamic task, the name comes from the target variable. For a
+ -- static one it is a formal of the enclosing init proc.
+
+ if Dyn then
+ Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Pref,
+ Object_Definition => New_Occurrence_Of (Standard_String, Loc),
+ Expression =>
+ Make_String_Literal (Loc,
+ Strval => String_From_Name_Buffer)));
+
+ else
+ Append_To (Decls,
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Pref,
+ Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
+ Name => Make_Identifier (Loc, Name_uTask_Name)));
+ end if;
+
+ Indx := First_Index (A_Type);
+ Val := First (Expressions (Id_Ref));
+
+ for J in 1 .. Dims loop
+ T := Make_Temporary (Loc, 'T');
+ Temps (J) := T;
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => T,
+ Object_Definition => New_Occurrence_Of (Standard_String, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Image,
+ Prefix => New_Occurrence_Of (Etype (Indx), Loc),
+ Expressions => New_List (New_Copy_Tree (Val)))));
+
+ Next_Index (Indx);
+ Next (Val);
+ end loop;
+
+ Sum := Make_Integer_Literal (Loc, Dims + 1);
+
+ Sum :=
+ Make_Op_Add (Loc,
+ Left_Opnd => Sum,
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix => New_Occurrence_Of (Pref, Loc),
+ Expressions => New_List (Make_Integer_Literal (Loc, 1))));
+
+ for J in 1 .. Dims loop
+ Sum :=
+ Make_Op_Add (Loc,
+ Left_Opnd => Sum,
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix =>
+ New_Occurrence_Of (Temps (J), Loc),
+ Expressions => New_List (Make_Integer_Literal (Loc, 1))));
+ end loop;
+
+ Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
+
+ Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Indexed_Component (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
+ Expression =>
+ Make_Character_Literal (Loc,
+ Chars => Name_Find,
+ Char_Literal_Value => UI_From_Int (Character'Pos ('(')))));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd => Make_Integer_Literal (Loc, 1))));
+
+ for J in 1 .. Dims loop
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Slice (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Discrete_Range =>
+ Make_Range (Loc,
+ Low_Bound => New_Occurrence_Of (Pos, Loc),
+ High_Bound =>
+ Make_Op_Subtract (Loc,
+ Left_Opnd =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix =>
+ New_Occurrence_Of (Temps (J), Loc),
+ Expressions =>
+ New_List (Make_Integer_Literal (Loc, 1)))),
+ Right_Opnd => Make_Integer_Literal (Loc, 1)))),
+
+ Expression => New_Occurrence_Of (Temps (J), Loc)));
+
+ if J < Dims then
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix => New_Occurrence_Of (Temps (J), Loc),
+ Expressions =>
+ New_List (Make_Integer_Literal (Loc, 1))))));
+
+ Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Indexed_Component (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
+ Expression =>
+ Make_Character_Literal (Loc,
+ Chars => Name_Find,
+ Char_Literal_Value => UI_From_Int (Character'Pos (',')))));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd => Make_Integer_Literal (Loc, 1))));
+ end if;
+ end loop;
+
+ Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Indexed_Component (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Expressions => New_List (New_Occurrence_Of (Len, Loc))),
+ Expression =>
+ Make_Character_Literal (Loc,
+ Chars => Name_Find,
+ Char_Literal_Value => UI_From_Int (Character'Pos (')')))));
+ return Build_Task_Image_Function (Loc, Decls, Stats, Res);
+ end Build_Task_Array_Image;
+
+ ----------------------------
+ -- Build_Task_Image_Decls --
+ ----------------------------
+
+ function Build_Task_Image_Decls
+ (Loc : Source_Ptr;
+ Id_Ref : Node_Id;
+ A_Type : Entity_Id;
+ In_Init_Proc : Boolean := False) return List_Id
+ is
+ Decls : constant List_Id := New_List;
+ T_Id : Entity_Id := Empty;
+ Decl : Node_Id;
+ Expr : Node_Id := Empty;
+ Fun : Node_Id := Empty;
+ Is_Dyn : constant Boolean :=
+ Nkind (Parent (Id_Ref)) = N_Assignment_Statement
+ and then
+ Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
+
+ begin
+ -- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
+ -- generate a dummy declaration only.
+
+ if Restriction_Active (No_Implicit_Heap_Allocations)
+ or else Global_Discard_Names
+ then
+ T_Id := Make_Temporary (Loc, 'J');
+ Name_Len := 0;
+
+ return
+ New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => T_Id,
+ Object_Definition => New_Occurrence_Of (Standard_String, Loc),
+ Expression =>
+ Make_String_Literal (Loc,
+ Strval => String_From_Name_Buffer)));
+
+ else
+ if Nkind (Id_Ref) = N_Identifier
+ or else Nkind (Id_Ref) = N_Defining_Identifier
+ then
+ -- For a simple variable, the image of the task is built from
+ -- the name of the variable. To avoid possible conflict with the
+ -- anonymous type created for a single protected object, add a
+ -- numeric suffix.
+
+ T_Id :=
+ Make_Defining_Identifier (Loc,
+ New_External_Name (Chars (Id_Ref), 'T', 1));
+
+ Get_Name_String (Chars (Id_Ref));
+
+ Expr :=
+ Make_String_Literal (Loc,
+ Strval => String_From_Name_Buffer);
+
+ elsif Nkind (Id_Ref) = N_Selected_Component then
+ T_Id :=
+ Make_Defining_Identifier (Loc,
+ New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
+ Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
+
+ elsif Nkind (Id_Ref) = N_Indexed_Component then
+ T_Id :=
+ Make_Defining_Identifier (Loc,
+ New_External_Name (Chars (A_Type), 'N'));
+
+ Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
+ end if;
+ end if;
+
+ if Present (Fun) then
+ Append (Fun, Decls);
+ Expr := Make_Function_Call (Loc,
+ Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
+
+ if not In_Init_Proc and then VM_Target = No_VM then
+ Set_Uses_Sec_Stack (Defining_Entity (Fun));
+ end if;
+ end if;
+
+ Decl := Make_Object_Declaration (Loc,
+ Defining_Identifier => T_Id,
+ Object_Definition => New_Occurrence_Of (Standard_String, Loc),
+ Constant_Present => True,
+ Expression => Expr);
+
+ Append (Decl, Decls);
+ return Decls;
+ end Build_Task_Image_Decls;
+
+ -------------------------------
+ -- Build_Task_Image_Function --
+ -------------------------------
+
+ function Build_Task_Image_Function
+ (Loc : Source_Ptr;
+ Decls : List_Id;
+ Stats : List_Id;
+ Res : Entity_Id) return Node_Id
+ is
+ Spec : Node_Id;
+
+ begin
+ Append_To (Stats,
+ Make_Simple_Return_Statement (Loc,
+ Expression => New_Occurrence_Of (Res, Loc)));
+
+ Spec := Make_Function_Specification (Loc,
+ Defining_Unit_Name => Make_Temporary (Loc, 'F'),
+ Result_Definition => New_Occurrence_Of (Standard_String, Loc));
+
+ -- Calls to 'Image use the secondary stack, which must be cleaned up
+ -- after the task name is built.
+
+ return Make_Subprogram_Body (Loc,
+ Specification => Spec,
+ Declarations => Decls,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
+ end Build_Task_Image_Function;
+
+ -----------------------------
+ -- Build_Task_Image_Prefix --
+ -----------------------------
+
+ procedure Build_Task_Image_Prefix
+ (Loc : Source_Ptr;
+ Len : out Entity_Id;
+ Res : out Entity_Id;
+ Pos : out Entity_Id;
+ Prefix : Entity_Id;
+ Sum : Node_Id;
+ Decls : List_Id;
+ Stats : List_Id)
+ is
+ begin
+ Len := Make_Temporary (Loc, 'L', Sum);
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Len,
+ Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
+ Expression => Sum));
+
+ Res := Make_Temporary (Loc, 'R');
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Res,
+ Object_Definition =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints =>
+ New_List (
+ Make_Range (Loc,
+ Low_Bound => Make_Integer_Literal (Loc, 1),
+ High_Bound => New_Occurrence_Of (Len, Loc)))))));
+
+ -- Indicate that the result is an internal temporary, so it does not
+ -- receive a bogus initialization when declaration is expanded. This
+ -- is both efficient, and prevents anomalies in the handling of
+ -- dynamic objects on the secondary stack.
+
+ Set_Is_Internal (Res);
+ Pos := Make_Temporary (Loc, 'P');
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Pos,
+ Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
+
+ -- Pos := Prefix'Length;
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix => New_Occurrence_Of (Prefix, Loc),
+ Expressions => New_List (Make_Integer_Literal (Loc, 1)))));
+
+ -- Res (1 .. Pos) := Prefix;
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Slice (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Discrete_Range =>
+ Make_Range (Loc,
+ Low_Bound => Make_Integer_Literal (Loc, 1),
+ High_Bound => New_Occurrence_Of (Pos, Loc))),
+
+ Expression => New_Occurrence_Of (Prefix, Loc)));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd => Make_Integer_Literal (Loc, 1))));
+ end Build_Task_Image_Prefix;
+
+ -----------------------------
+ -- Build_Task_Record_Image --
+ -----------------------------
+
+ function Build_Task_Record_Image
+ (Loc : Source_Ptr;
+ Id_Ref : Node_Id;
+ Dyn : Boolean := False) return Node_Id
+ is
+ Len : Entity_Id;
+ -- Total length of generated name
+
+ Pos : Entity_Id;
+ -- Index into result
+
+ Res : Entity_Id;
+ -- String to hold result
+
+ Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
+ -- Name of enclosing variable, prefix of resulting name
+
+ Sum : Node_Id;
+ -- Expression to compute total size of string
+
+ Sel : Entity_Id;
+ -- Entity for selector name
+
+ Decls : constant List_Id := New_List;
+ Stats : constant List_Id := New_List;
+
+ begin
+ -- For a dynamic task, the name comes from the target variable. For a
+ -- static one it is a formal of the enclosing init proc.
+
+ if Dyn then
+ Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Pref,
+ Object_Definition => New_Occurrence_Of (Standard_String, Loc),
+ Expression =>
+ Make_String_Literal (Loc,
+ Strval => String_From_Name_Buffer)));
+
+ else
+ Append_To (Decls,
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Pref,
+ Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
+ Name => Make_Identifier (Loc, Name_uTask_Name)));
+ end if;
+
+ Sel := Make_Temporary (Loc, 'S');
+
+ Get_Name_String (Chars (Selector_Name (Id_Ref)));
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Sel,
+ Object_Definition => New_Occurrence_Of (Standard_String, Loc),
+ Expression =>
+ Make_String_Literal (Loc,
+ Strval => String_From_Name_Buffer)));
+
+ Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
+
+ Sum :=
+ Make_Op_Add (Loc,
+ Left_Opnd => Sum,
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix =>
+ New_Occurrence_Of (Pref, Loc),
+ Expressions => New_List (Make_Integer_Literal (Loc, 1))));
+
+ Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
+
+ Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
+
+ -- Res (Pos) := '.';
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Indexed_Component (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
+ Expression =>
+ Make_Character_Literal (Loc,
+ Chars => Name_Find,
+ Char_Literal_Value =>
+ UI_From_Int (Character'Pos ('.')))));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd => Make_Integer_Literal (Loc, 1))));
+
+ -- Res (Pos .. Len) := Selector;
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Slice (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Discrete_Range =>
+ Make_Range (Loc,
+ Low_Bound => New_Occurrence_Of (Pos, Loc),
+ High_Bound => New_Occurrence_Of (Len, Loc))),
+ Expression => New_Occurrence_Of (Sel, Loc)));
+
+ return Build_Task_Image_Function (Loc, Decls, Stats, Res);
+ end Build_Task_Record_Image;
+
+ ----------------------------------
+ -- Component_May_Be_Bit_Aligned --
+ ----------------------------------
+
+ function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
+ UT : Entity_Id;
+
+ begin
+ -- If no component clause, then everything is fine, since the back end
+ -- never bit-misaligns by default, even if there is a pragma Packed for
+ -- the record.
+
+ if No (Comp) or else No (Component_Clause (Comp)) then
+ return False;
+ end if;
+
+ UT := Underlying_Type (Etype (Comp));
+
+ -- It is only array and record types that cause trouble
+
+ if not Is_Record_Type (UT) and then not Is_Array_Type (UT) then
+ return False;
+
+ -- If we know that we have a small (64 bits or less) record or small
+ -- bit-packed array, then everything is fine, since the back end can
+ -- handle these cases correctly.
+
+ elsif Esize (Comp) <= 64
+ and then (Is_Record_Type (UT) or else Is_Bit_Packed_Array (UT))
+ then
+ return False;
+
+ -- Otherwise if the component is not byte aligned, we know we have the
+ -- nasty unaligned case.
+
+ elsif Normalized_First_Bit (Comp) /= Uint_0
+ or else Esize (Comp) mod System_Storage_Unit /= Uint_0
+ then
+ return True;
+
+ -- If we are large and byte aligned, then OK at this level
+
+ else
+ return False;
+ end if;
+ end Component_May_Be_Bit_Aligned;
+
+ -----------------------------------
+ -- Corresponding_Runtime_Package --
+ -----------------------------------
+
+ function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
+ Pkg_Id : RTU_Id := RTU_Null;
+
+ begin
+ pragma Assert (Is_Concurrent_Type (Typ));
+
+ if Ekind (Typ) in Protected_Kind then
+ if Has_Entries (Typ)
+
+ -- A protected type without entries that covers an interface and
+ -- overrides the abstract routines with protected procedures is
+ -- considered equivalent to a protected type with entries in the
+ -- context of dispatching select statements. It is sufficient to
+ -- check for the presence of an interface list in the declaration
+ -- node to recognize this case.
+
+ or else Present (Interface_List (Parent (Typ)))
+
+ -- Protected types with interrupt handlers (when not using a
+ -- restricted profile) are also considered equivalent to
+ -- protected types with entries. The types which are used
+ -- (Static_Interrupt_Protection and Dynamic_Interrupt_Protection)
+ -- are derived from Protection_Entries.
+
+ or else (Has_Attach_Handler (Typ) and then not Restricted_Profile)
+ or else Has_Interrupt_Handler (Typ)
+ then
+ if Abort_Allowed
+ or else Restriction_Active (No_Entry_Queue) = False
+ or else Restriction_Active (No_Select_Statements) = False
+ or else Number_Entries (Typ) > 1
+ or else (Has_Attach_Handler (Typ)
+ and then not Restricted_Profile)
+ then
+ Pkg_Id := System_Tasking_Protected_Objects_Entries;
+ else
+ Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
+ end if;
+
+ else
+ Pkg_Id := System_Tasking_Protected_Objects;
+ end if;
+ end if;
+
+ return Pkg_Id;
+ end Corresponding_Runtime_Package;
+
+ -------------------------------
+ -- Convert_To_Actual_Subtype --
+ -------------------------------
+
+ procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
+ Act_ST : Entity_Id;
+
+ begin
+ Act_ST := Get_Actual_Subtype (Exp);
+
+ if Act_ST = Etype (Exp) then
+ return;
+ else
+ Rewrite (Exp, Convert_To (Act_ST, Relocate_Node (Exp)));
+ Analyze_And_Resolve (Exp, Act_ST);
+ end if;
+ end Convert_To_Actual_Subtype;
+
+ -----------------------------------
+ -- Current_Sem_Unit_Declarations --
+ -----------------------------------
+
+ function Current_Sem_Unit_Declarations return List_Id is
+ U : Node_Id := Unit (Cunit (Current_Sem_Unit));
+ Decls : List_Id;
+
+ begin
+ -- If the current unit is a package body, locate the visible
+ -- declarations of the package spec.
+
+ if Nkind (U) = N_Package_Body then
+ U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
+ end if;
+
+ if Nkind (U) = N_Package_Declaration then
+ U := Specification (U);
+ Decls := Visible_Declarations (U);
+
+ if No (Decls) then
+ Decls := New_List;
+ Set_Visible_Declarations (U, Decls);
+ end if;
+
+ else
+ Decls := Declarations (U);
+
+ if No (Decls) then
+ Decls := New_List;
+ Set_Declarations (U, Decls);
+ end if;
+ end if;
+
+ return Decls;
+ end Current_Sem_Unit_Declarations;
+
+ -----------------------
+ -- Duplicate_Subexpr --
+ -----------------------
+
+ function Duplicate_Subexpr
+ (Exp : Node_Id;
+ Name_Req : Boolean := False) return Node_Id
+ is
+ begin
+ Remove_Side_Effects (Exp, Name_Req);
+ return New_Copy_Tree (Exp);
+ end Duplicate_Subexpr;
+
+ ---------------------------------
+ -- Duplicate_Subexpr_No_Checks --
+ ---------------------------------
+
+ function Duplicate_Subexpr_No_Checks
+ (Exp : Node_Id;
+ Name_Req : Boolean := False) return Node_Id
+ is
+ New_Exp : Node_Id;
+ begin
+ Remove_Side_Effects (Exp, Name_Req);
+ New_Exp := New_Copy_Tree (Exp);
+ Remove_Checks (New_Exp);
+ return New_Exp;
+ end Duplicate_Subexpr_No_Checks;
+
+ -----------------------------------
+ -- Duplicate_Subexpr_Move_Checks --
+ -----------------------------------
+
+ function Duplicate_Subexpr_Move_Checks
+ (Exp : Node_Id;
+ Name_Req : Boolean := False) return Node_Id
+ is
+ New_Exp : Node_Id;
+ begin
+ Remove_Side_Effects (Exp, Name_Req);
+ New_Exp := New_Copy_Tree (Exp);
+ Remove_Checks (Exp);
+ return New_Exp;
+ end Duplicate_Subexpr_Move_Checks;
+
+ --------------------
+ -- Ensure_Defined --
+ --------------------
+
+ procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
+ IR : Node_Id;
+
+ begin
+ -- An itype reference must only be created if this is a local itype, so
+ -- that gigi can elaborate it on the proper objstack.
+
+ if Is_Itype (Typ) and then Scope (Typ) = Current_Scope then
+ IR := Make_Itype_Reference (Sloc (N));
+ Set_Itype (IR, Typ);
+ Insert_Action (N, IR);
+ end if;
+ end Ensure_Defined;
+
+ --------------------
+ -- Entry_Names_OK --
+ --------------------
+
+ function Entry_Names_OK return Boolean is
+ begin
+ return
+ not Restricted_Profile
+ and then not Global_Discard_Names
+ and then not Restriction_Active (No_Implicit_Heap_Allocations)
+ and then not Restriction_Active (No_Local_Allocators);
+ end Entry_Names_OK;
+
+ -------------------
+ -- Evaluate_Name --
+ -------------------
+
+ procedure Evaluate_Name (Nam : Node_Id) is
+ K : constant Node_Kind := Nkind (Nam);
+
+ begin
+ -- For an explicit dereference, we simply force the evaluation of the
+ -- name expression. The dereference provides a value that is the address
+ -- for the renamed object, and it is precisely this value that we want
+ -- to preserve.
+
+ if K = N_Explicit_Dereference then
+ Force_Evaluation (Prefix (Nam));
+
+ -- For a selected component, we simply evaluate the prefix
+
+ elsif K = N_Selected_Component then
+ Evaluate_Name (Prefix (Nam));
+
+ -- For an indexed component, or an attribute reference, we evaluate the
+ -- prefix, which is itself a name, recursively, and then force the
+ -- evaluation of all the subscripts (or attribute expressions).
+
+ elsif Nkind_In (K, N_Indexed_Component, N_Attribute_Reference) then
+ Evaluate_Name (Prefix (Nam));
+
+ declare
+ E : Node_Id;
+
+ begin
+ E := First (Expressions (Nam));
+ while Present (E) loop
+ Force_Evaluation (E);
+
+ if Original_Node (E) /= E then
+ Set_Do_Range_Check (E, Do_Range_Check (Original_Node (E)));
+ end if;
+
+ Next (E);
+ end loop;
+ end;
+
+ -- For a slice, we evaluate the prefix, as for the indexed component
+ -- case and then, if there is a range present, either directly or as the
+ -- constraint of a discrete subtype indication, we evaluate the two
+ -- bounds of this range.
+
+ elsif K = N_Slice then
+ Evaluate_Name (Prefix (Nam));
+ Evaluate_Slice_Bounds (Nam);
+
+ -- For a type conversion, the expression of the conversion must be the
+ -- name of an object, and we simply need to evaluate this name.
+
+ elsif K = N_Type_Conversion then
+ Evaluate_Name (Expression (Nam));
+
+ -- For a function call, we evaluate the call
+
+ elsif K = N_Function_Call then
+ Force_Evaluation (Nam);
+
+ -- The remaining cases are direct name, operator symbol and character
+ -- literal. In all these cases, we do nothing, since we want to
+ -- reevaluate each time the renamed object is used.
+
+ else
+ return;
+ end if;
+ end Evaluate_Name;
+
+ ---------------------------
+ -- Evaluate_Slice_Bounds --
+ ---------------------------
+
+ procedure Evaluate_Slice_Bounds (Slice : Node_Id) is
+ DR : constant Node_Id := Discrete_Range (Slice);
+ Constr : Node_Id;
+ Rexpr : Node_Id;
+
+ begin
+ if Nkind (DR) = N_Range then
+ Force_Evaluation (Low_Bound (DR));
+ Force_Evaluation (High_Bound (DR));
+
+ elsif Nkind (DR) = N_Subtype_Indication then
+ Constr := Constraint (DR);
+
+ if Nkind (Constr) = N_Range_Constraint then
+ Rexpr := Range_Expression (Constr);
+
+ Force_Evaluation (Low_Bound (Rexpr));
+ Force_Evaluation (High_Bound (Rexpr));
+ end if;
+ end if;
+ end Evaluate_Slice_Bounds;
+
+ ---------------------
+ -- Evolve_And_Then --
+ ---------------------
+
+ procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
+ begin
+ if No (Cond) then
+ Cond := Cond1;
+ else
+ Cond :=
+ Make_And_Then (Sloc (Cond1),
+ Left_Opnd => Cond,
+ Right_Opnd => Cond1);
+ end if;
+ end Evolve_And_Then;
+
+ --------------------
+ -- Evolve_Or_Else --
+ --------------------
+
+ procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
+ begin
+ if No (Cond) then
+ Cond := Cond1;
+ else
+ Cond :=
+ Make_Or_Else (Sloc (Cond1),
+ Left_Opnd => Cond,
+ Right_Opnd => Cond1);
+ end if;
+ end Evolve_Or_Else;
+
+ -----------------------------------------
+ -- Expand_Static_Predicates_In_Choices --
+ -----------------------------------------
+
+ procedure Expand_Static_Predicates_In_Choices (N : Node_Id) is
+ pragma Assert (Nkind_In (N, N_Case_Statement_Alternative, N_Variant));
+
+ Choices : constant List_Id := Discrete_Choices (N);
+
+ Choice : Node_Id;
+ Next_C : Node_Id;
+ P : Node_Id;
+ C : Node_Id;
+
+ begin
+ Choice := First (Choices);
+ while Present (Choice) loop
+ Next_C := Next (Choice);
+
+ -- Check for name of subtype with static predicate
+
+ if Is_Entity_Name (Choice)
+ and then Is_Type (Entity (Choice))
+ and then Has_Predicates (Entity (Choice))
+ then
+ -- Loop through entries in predicate list, converting to choices
+ -- and inserting in the list before the current choice. Note that
+ -- if the list is empty, corresponding to a False predicate, then
+ -- no choices are inserted.
+
+ P := First (Static_Predicate (Entity (Choice)));
+ while Present (P) loop
+
+ -- If low bound and high bounds are equal, copy simple choice
+
+ if Expr_Value (Low_Bound (P)) = Expr_Value (High_Bound (P)) then
+ C := New_Copy (Low_Bound (P));
+
+ -- Otherwise copy a range
+
+ else
+ C := New_Copy (P);
+ end if;
+
+ -- Change Sloc to referencing choice (rather than the Sloc of
+ -- the predicate declaration element itself).
+
+ Set_Sloc (C, Sloc (Choice));
+ Insert_Before (Choice, C);
+ Next (P);
+ end loop;
+
+ -- Delete the predicated entry
+
+ Remove (Choice);
+ end if;
+
+ -- Move to next choice to check
+
+ Choice := Next_C;
+ end loop;
+ end Expand_Static_Predicates_In_Choices;
+
+ ------------------------------
+ -- Expand_Subtype_From_Expr --
+ ------------------------------
+
+ -- This function is applicable for both static and dynamic allocation of
+ -- objects which are constrained by an initial expression. Basically it
+ -- transforms an unconstrained subtype indication into a constrained one.
+
+ -- The expression may also be transformed in certain cases in order to
+ -- avoid multiple evaluation. In the static allocation case, the general
+ -- scheme is:
+
+ -- Val : T := Expr;
+
+ -- is transformed into
+
+ -- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
+ --
+ -- Here are the main cases :
+ --
+ -- <if Expr is a Slice>
+ -- Val : T ([Index_Subtype (Expr)]) := Expr;
+ --
+ -- <elsif Expr is a String Literal>
+ -- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
+ --
+ -- <elsif Expr is Constrained>
+ -- subtype T is Type_Of_Expr
+ -- Val : T := Expr;
+ --
+ -- <elsif Expr is an entity_name>
+ -- Val : T (constraints taken from Expr) := Expr;
+ --
+ -- <else>
+ -- type Axxx is access all T;
+ -- Rval : Axxx := Expr'ref;
+ -- Val : T (constraints taken from Rval) := Rval.all;
+
+ -- ??? note: when the Expression is allocated in the secondary stack
+ -- we could use it directly instead of copying it by declaring
+ -- Val : T (...) renames Rval.all
+
+ procedure Expand_Subtype_From_Expr
+ (N : Node_Id;
+ Unc_Type : Entity_Id;
+ Subtype_Indic : Node_Id;
+ Exp : Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Exp_Typ : constant Entity_Id := Etype (Exp);
+ T : Entity_Id;
+
+ begin
+ -- In general we cannot build the subtype if expansion is disabled,
+ -- because internal entities may not have been defined. However, to
+ -- avoid some cascaded errors, we try to continue when the expression is
+ -- an array (or string), because it is safe to compute the bounds. It is
+ -- in fact required to do so even in a generic context, because there
+ -- may be constants that depend on the bounds of a string literal, both
+ -- standard string types and more generally arrays of characters.
+
+ -- In GNATprove mode, these extra subtypes are not needed
+
+ if GNATprove_Mode then
+ return;
+ end if;
+
+ if not Expander_Active
+ and then (No (Etype (Exp)) or else not Is_String_Type (Etype (Exp)))
+ then
+ return;
+ end if;
+
+ if Nkind (Exp) = N_Slice then
+ declare
+ Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
+
+ begin
+ Rewrite (Subtype_Indic,
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => New_List
+ (New_Occurrence_Of (Slice_Type, Loc)))));
+
+ -- This subtype indication may be used later for constraint checks
+ -- we better make sure that if a variable was used as a bound of
+ -- of the original slice, its value is frozen.
+
+ Evaluate_Slice_Bounds (Exp);
+ end;
+
+ elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
+ Rewrite (Subtype_Indic,
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => New_List (
+ Make_Literal_Range (Loc,
+ Literal_Typ => Exp_Typ)))));
+
+ -- If the type of the expression is an internally generated type it
+ -- may not be necessary to create a new subtype. However there are two
+ -- exceptions: references to the current instances, and aliased array
+ -- object declarations for which the backend needs to create a template.
+
+ elsif Is_Constrained (Exp_Typ)
+ and then not Is_Class_Wide_Type (Unc_Type)
+ and then
+ (Nkind (N) /= N_Object_Declaration
+ or else not Is_Entity_Name (Expression (N))
+ or else not Comes_From_Source (Entity (Expression (N)))
+ or else not Is_Array_Type (Exp_Typ)
+ or else not Aliased_Present (N))
+ then
+ if Is_Itype (Exp_Typ) then
+
+ -- Within an initialization procedure, a selected component
+ -- denotes a component of the enclosing record, and it appears as
+ -- an actual in a call to its own initialization procedure. If
+ -- this component depends on the outer discriminant, we must
+ -- generate the proper actual subtype for it.
+
+ if Nkind (Exp) = N_Selected_Component
+ and then Within_Init_Proc
+ then
+ declare
+ Decl : constant Node_Id :=
+ Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
+ begin
+ if Present (Decl) then
+ Insert_Action (N, Decl);
+ T := Defining_Identifier (Decl);
+ else
+ T := Exp_Typ;
+ end if;
+ end;
+
+ -- No need to generate a new subtype
+
+ else
+ T := Exp_Typ;
+ end if;
+
+ else
+ T := Make_Temporary (Loc, 'T');
+
+ Insert_Action (N,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => T,
+ Subtype_Indication => New_Occurrence_Of (Exp_Typ, Loc)));
+
+ -- This type is marked as an itype even though it has an explicit
+ -- declaration since otherwise Is_Generic_Actual_Type can get
+ -- set, resulting in the generation of spurious errors. (See
+ -- sem_ch8.Analyze_Package_Renaming and sem_type.covers)
+
+ Set_Is_Itype (T);
+ Set_Associated_Node_For_Itype (T, Exp);
+ end if;
+
+ Rewrite (Subtype_Indic, New_Occurrence_Of (T, Loc));
+
+ -- Nothing needs to be done for private types with unknown discriminants
+ -- if the underlying type is not an unconstrained composite type or it
+ -- is an unchecked union.
+
+ elsif Is_Private_Type (Unc_Type)
+ and then Has_Unknown_Discriminants (Unc_Type)
+ and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
+ or else Is_Constrained (Underlying_Type (Unc_Type))
+ or else Is_Unchecked_Union (Underlying_Type (Unc_Type)))
+ then
+ null;
+
+ -- Case of derived type with unknown discriminants where the parent type
+ -- also has unknown discriminants.
+
+ elsif Is_Record_Type (Unc_Type)
+ and then not Is_Class_Wide_Type (Unc_Type)
+ and then Has_Unknown_Discriminants (Unc_Type)
+ and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
+ then
+ -- Nothing to be done if no underlying record view available
+
+ if No (Underlying_Record_View (Unc_Type)) then
+ null;
+
+ -- Otherwise use the Underlying_Record_View to create the proper
+ -- constrained subtype for an object of a derived type with unknown
+ -- discriminants.
+
+ else
+ Remove_Side_Effects (Exp);
+ Rewrite (Subtype_Indic,
+ Make_Subtype_From_Expr (Exp, Underlying_Record_View (Unc_Type)));
+ end if;
+
+ -- Renamings of class-wide interface types require no equivalent
+ -- constrained type declarations because we only need to reference
+ -- the tag component associated with the interface. The same is
+ -- presumably true for class-wide types in general, so this test
+ -- is broadened to include all class-wide renamings, which also
+ -- avoids cases of unbounded recursion in Remove_Side_Effects.
+ -- (Is this really correct, or are there some cases of class-wide
+ -- renamings that require action in this procedure???)
+
+ elsif Present (N)
+ and then Nkind (N) = N_Object_Renaming_Declaration
+ and then Is_Class_Wide_Type (Unc_Type)
+ then
+ null;
+
+ -- In Ada 95 nothing to be done if the type of the expression is limited
+ -- because in this case the expression cannot be copied, and its use can
+ -- only be by reference.
+
+ -- In Ada 2005 the context can be an object declaration whose expression
+ -- is a function that returns in place. If the nominal subtype has
+ -- unknown discriminants, the call still provides constraints on the
+ -- object, and we have to create an actual subtype from it.
+
+ -- If the type is class-wide, the expression is dynamically tagged and
+ -- we do not create an actual subtype either. Ditto for an interface.
+ -- For now this applies only if the type is immutably limited, and the
+ -- function being called is build-in-place. This will have to be revised
+ -- when build-in-place functions are generalized to other types.
+
+ elsif Is_Limited_View (Exp_Typ)
+ and then
+ (Is_Class_Wide_Type (Exp_Typ)
+ or else Is_Interface (Exp_Typ)
+ or else not Has_Unknown_Discriminants (Exp_Typ)
+ or else not Is_Composite_Type (Unc_Type))
+ then
+ null;
+
+ -- For limited objects initialized with build in place function calls,
+ -- nothing to be done; otherwise we prematurely introduce an N_Reference
+ -- node in the expression initializing the object, which breaks the
+ -- circuitry that detects and adds the additional arguments to the
+ -- called function.
+
+ elsif Is_Build_In_Place_Function_Call (Exp) then
+ null;
+
+ else
+ Remove_Side_Effects (Exp);
+ Rewrite (Subtype_Indic,
+ Make_Subtype_From_Expr (Exp, Unc_Type));
+ end if;
+ end Expand_Subtype_From_Expr;
+
+ ------------------------
+ -- Find_Interface_ADT --
+ ------------------------
+
+ function Find_Interface_ADT
+ (T : Entity_Id;
+ Iface : Entity_Id) return Elmt_Id
+ is
+ ADT : Elmt_Id;
+ Typ : Entity_Id := T;
+
+ begin
+ pragma Assert (Is_Interface (Iface));
+
+ -- Handle private types
+
+ if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
+ Typ := Full_View (Typ);
+ end if;
+
+ -- Handle access types
+
+ if Is_Access_Type (Typ) then
+ Typ := Designated_Type (Typ);
+ end if;
+
+ -- Handle task and protected types implementing interfaces
+
+ if Is_Concurrent_Type (Typ) then
+ Typ := Corresponding_Record_Type (Typ);
+ end if;
+
+ pragma Assert
+ (not Is_Class_Wide_Type (Typ)
+ and then Ekind (Typ) /= E_Incomplete_Type);
+
+ if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
+ return First_Elmt (Access_Disp_Table (Typ));
+
+ else
+ ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
+ while Present (ADT)
+ and then Present (Related_Type (Node (ADT)))
+ and then Related_Type (Node (ADT)) /= Iface
+ and then not Is_Ancestor (Iface, Related_Type (Node (ADT)),
+ Use_Full_View => True)
+ loop
+ Next_Elmt (ADT);
+ end loop;
+
+ pragma Assert (Present (Related_Type (Node (ADT))));
+ return ADT;
+ end if;
+ end Find_Interface_ADT;
+
+ ------------------------
+ -- Find_Interface_Tag --
+ ------------------------
+
+ function Find_Interface_Tag
+ (T : Entity_Id;
+ Iface : Entity_Id) return Entity_Id
+ is
+ AI_Tag : Entity_Id;
+ Found : Boolean := False;
+ Typ : Entity_Id := T;
+
+ procedure Find_Tag (Typ : Entity_Id);
+ -- Internal subprogram used to recursively climb to the ancestors
+
+ --------------
+ -- Find_Tag --
+ --------------
+
+ procedure Find_Tag (Typ : Entity_Id) is
+ AI_Elmt : Elmt_Id;
+ AI : Node_Id;
+
+ begin
+ -- This routine does not handle the case in which the interface is an
+ -- ancestor of Typ. That case is handled by the enclosing subprogram.
+
+ pragma Assert (Typ /= Iface);
+
+ -- Climb to the root type handling private types
+
+ if Present (Full_View (Etype (Typ))) then
+ if Full_View (Etype (Typ)) /= Typ then
+ Find_Tag (Full_View (Etype (Typ)));
+ end if;
+
+ elsif Etype (Typ) /= Typ then
+ Find_Tag (Etype (Typ));
+ end if;
+
+ -- Traverse the list of interfaces implemented by the type
+
+ if not Found
+ and then Present (Interfaces (Typ))
+ and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
+ then
+ -- Skip the tag associated with the primary table
+
+ pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
+ AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
+ pragma Assert (Present (AI_Tag));
+
+ AI_Elmt := First_Elmt (Interfaces (Typ));
+ while Present (AI_Elmt) loop
+ AI := Node (AI_Elmt);
+
+ if AI = Iface
+ or else Is_Ancestor (Iface, AI, Use_Full_View => True)
+ then
+ Found := True;
+ return;
+ end if;
+
+ AI_Tag := Next_Tag_Component (AI_Tag);
+ Next_Elmt (AI_Elmt);
+ end loop;
+ end if;
+ end Find_Tag;
+
+ -- Start of processing for Find_Interface_Tag
+
+ begin
+ pragma Assert (Is_Interface (Iface));
+
+ -- Handle access types
+
+ if Is_Access_Type (Typ) then
+ Typ := Designated_Type (Typ);
+ end if;
+
+ -- Handle class-wide types
+
+ if Is_Class_Wide_Type (Typ) then
+ Typ := Root_Type (Typ);
+ end if;
+
+ -- Handle private types
+
+ if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
+ Typ := Full_View (Typ);
+ end if;
+
+ -- Handle entities from the limited view
+
+ if Ekind (Typ) = E_Incomplete_Type then
+ pragma Assert (Present (Non_Limited_View (Typ)));
+ Typ := Non_Limited_View (Typ);
+ end if;
+
+ -- Handle task and protected types implementing interfaces
+
+ if Is_Concurrent_Type (Typ) then
+ Typ := Corresponding_Record_Type (Typ);
+ end if;
+
+ -- If the interface is an ancestor of the type, then it shared the
+ -- primary dispatch table.
+
+ if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
+ pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
+ return First_Tag_Component (Typ);
+
+ -- Otherwise we need to search for its associated tag component
+
+ else
+ Find_Tag (Typ);
+ pragma Assert (Found);
+ return AI_Tag;
+ end if;
+ end Find_Interface_Tag;
+
+ ------------------
+ -- Find_Prim_Op --
+ ------------------
+
+ function Find_Prim_Op (T : Entity_Id; Name : Name_Id) return Entity_Id is
+ Prim : Elmt_Id;
+ Typ : Entity_Id := T;
+ Op : Entity_Id;
+
+ begin
+ if Is_Class_Wide_Type (Typ) then
+ Typ := Root_Type (Typ);
+ end if;
+
+ Typ := Underlying_Type (Typ);
+
+ -- Loop through primitive operations
+
+ Prim := First_Elmt (Primitive_Operations (Typ));
+ while Present (Prim) loop
+ Op := Node (Prim);
+
+ -- We can retrieve primitive operations by name if it is an internal
+ -- name. For equality we must check that both of its operands have
+ -- the same type, to avoid confusion with user-defined equalities
+ -- than may have a non-symmetric signature.
+
+ exit when Chars (Op) = Name
+ and then
+ (Name /= Name_Op_Eq
+ or else Etype (First_Formal (Op)) = Etype (Last_Formal (Op)));
+
+ Next_Elmt (Prim);
+
+ -- Raise Program_Error if no primitive found
+
+ if No (Prim) then
+ raise Program_Error;
+ end if;
+ end loop;
+
+ return Node (Prim);
+ end Find_Prim_Op;
+
+ ------------------
+ -- Find_Prim_Op --
+ ------------------
+
+ function Find_Prim_Op
+ (T : Entity_Id;
+ Name : TSS_Name_Type) return Entity_Id
+ is
+ Inher_Op : Entity_Id := Empty;
+ Own_Op : Entity_Id := Empty;
+ Prim_Elmt : Elmt_Id;
+ Prim_Id : Entity_Id;
+ Typ : Entity_Id := T;
+
+ begin
+ if Is_Class_Wide_Type (Typ) then
+ Typ := Root_Type (Typ);
+ end if;
+
+ Typ := Underlying_Type (Typ);
+
+ -- This search is based on the assertion that the dispatching version
+ -- of the TSS routine always precedes the real primitive.
+
+ Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
+ while Present (Prim_Elmt) loop
+ Prim_Id := Node (Prim_Elmt);
+
+ if Is_TSS (Prim_Id, Name) then
+ if Present (Alias (Prim_Id)) then
+ Inher_Op := Prim_Id;
+ else
+ Own_Op := Prim_Id;
+ end if;
+ end if;
+
+ Next_Elmt (Prim_Elmt);
+ end loop;
+
+ if Present (Own_Op) then
+ return Own_Op;
+ elsif Present (Inher_Op) then
+ return Inher_Op;
+ else
+ raise Program_Error;
+ end if;
+ end Find_Prim_Op;
+
+ ----------------------------
+ -- Find_Protection_Object --
+ ----------------------------
+
+ function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
+ S : Entity_Id;
+
+ begin
+ S := Scop;
+ while Present (S) loop
+ if Ekind_In (S, E_Entry, E_Entry_Family, E_Function, E_Procedure)
+ and then Present (Protection_Object (S))
+ then
+ return Protection_Object (S);
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ -- If we do not find a Protection object in the scope chain, then
+ -- something has gone wrong, most likely the object was never created.
+
+ raise Program_Error;
+ end Find_Protection_Object;
+
+ --------------------------
+ -- Find_Protection_Type --
+ --------------------------
+
+ function Find_Protection_Type (Conc_Typ : Entity_Id) return Entity_Id is
+ Comp : Entity_Id;
+ Typ : Entity_Id := Conc_Typ;
+
+ begin
+ if Is_Concurrent_Type (Typ) then
+ Typ := Corresponding_Record_Type (Typ);
+ end if;
+
+ -- Since restriction violations are not considered serious errors, the
+ -- expander remains active, but may leave the corresponding record type
+ -- malformed. In such cases, component _object is not available so do
+ -- not look for it.
+
+ if not Analyzed (Typ) then
+ return Empty;
+ end if;
+
+ Comp := First_Component (Typ);
+ while Present (Comp) loop
+ if Chars (Comp) = Name_uObject then
+ return Base_Type (Etype (Comp));
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+
+ -- The corresponding record of a protected type should always have an
+ -- _object field.
+
+ raise Program_Error;
+ end Find_Protection_Type;
+
+ ----------------------
+ -- Force_Evaluation --
+ ----------------------
+
+ procedure Force_Evaluation (Exp : Node_Id; Name_Req : Boolean := False) is
+ begin
+ Remove_Side_Effects (Exp, Name_Req, Variable_Ref => True);
+ end Force_Evaluation;
+
+ ---------------------------------
+ -- Fully_Qualified_Name_String --
+ ---------------------------------
+
+ function Fully_Qualified_Name_String
+ (E : Entity_Id;
+ Append_NUL : Boolean := True) return String_Id
+ is
+ procedure Internal_Full_Qualified_Name (E : Entity_Id);
+ -- Compute recursively the qualified name without NUL at the end, adding
+ -- it to the currently started string being generated
+
+ ----------------------------------
+ -- Internal_Full_Qualified_Name --
+ ----------------------------------
+
+ procedure Internal_Full_Qualified_Name (E : Entity_Id) is
+ Ent : Entity_Id;
+
+ begin
+ -- Deal properly with child units
+
+ if Nkind (E) = N_Defining_Program_Unit_Name then
+ Ent := Defining_Identifier (E);
+ else
+ Ent := E;
+ end if;
+
+ -- Compute qualification recursively (only "Standard" has no scope)
+
+ if Present (Scope (Scope (Ent))) then
+ Internal_Full_Qualified_Name (Scope (Ent));
+ Store_String_Char (Get_Char_Code ('.'));
+ end if;
+
+ -- Every entity should have a name except some expanded blocks
+ -- don't bother about those.
+
+ if Chars (Ent) = No_Name then
+ return;
+ end if;
+
+ -- Generates the entity name in upper case
+
+ Get_Decoded_Name_String (Chars (Ent));
+ Set_All_Upper_Case;
+ Store_String_Chars (Name_Buffer (1 .. Name_Len));
+ return;
+ end Internal_Full_Qualified_Name;
+
+ -- Start of processing for Full_Qualified_Name
+
+ begin
+ Start_String;
+ Internal_Full_Qualified_Name (E);
+
+ if Append_NUL then
+ Store_String_Char (Get_Char_Code (ASCII.NUL));
+ end if;
+
+ return End_String;
+ end Fully_Qualified_Name_String;
+
+ ------------------------
+ -- Generate_Poll_Call --
+ ------------------------
+
+ procedure Generate_Poll_Call (N : Node_Id) is
+ begin
+ -- No poll call if polling not active
+
+ if not Polling_Required then
+ return;
+
+ -- Otherwise generate require poll call
+
+ else
+ Insert_Before_And_Analyze (N,
+ Make_Procedure_Call_Statement (Sloc (N),
+ Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
+ end if;
+ end Generate_Poll_Call;
+
+ ---------------------------------
+ -- Get_Current_Value_Condition --
+ ---------------------------------
+
+ -- Note: the implementation of this procedure is very closely tied to the
+ -- implementation of Set_Current_Value_Condition. In the Get procedure, we
+ -- interpret Current_Value fields set by the Set procedure, so the two
+ -- procedures need to be closely coordinated.
+
+ procedure Get_Current_Value_Condition
+ (Var : Node_Id;
+ Op : out Node_Kind;
+ Val : out Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Var);
+ Ent : constant Entity_Id := Entity (Var);
+
+ procedure Process_Current_Value_Condition
+ (N : Node_Id;
+ S : Boolean);
+ -- N is an expression which holds either True (S = True) or False (S =
+ -- False) in the condition. This procedure digs out the expression and
+ -- if it refers to Ent, sets Op and Val appropriately.
+
+ -------------------------------------
+ -- Process_Current_Value_Condition --
+ -------------------------------------
+
+ procedure Process_Current_Value_Condition
+ (N : Node_Id;
+ S : Boolean)
+ is
+ Cond : Node_Id;
+ Prev_Cond : Node_Id;
+ Sens : Boolean;
+
+ begin
+ Cond := N;
+ Sens := S;
+
+ loop
+ Prev_Cond := Cond;
+
+ -- Deal with NOT operators, inverting sense
+
+ while Nkind (Cond) = N_Op_Not loop
+ Cond := Right_Opnd (Cond);
+ Sens := not Sens;
+ end loop;
+
+ -- Deal with conversions, qualifications, and expressions with
+ -- actions.
+
+ while Nkind_In (Cond,
+ N_Type_Conversion,
+ N_Qualified_Expression,
+ N_Expression_With_Actions)
+ loop
+ Cond := Expression (Cond);
+ end loop;
+
+ exit when Cond = Prev_Cond;
+ end loop;
+
+ -- Deal with AND THEN and AND cases
+
+ if Nkind_In (Cond, N_And_Then, N_Op_And) then
+
+ -- Don't ever try to invert a condition that is of the form of an
+ -- AND or AND THEN (since we are not doing sufficiently general
+ -- processing to allow this).
+
+ if Sens = False then
+ Op := N_Empty;
+ Val := Empty;
+ return;
+ end if;
+
+ -- Recursively process AND and AND THEN branches
+
+ Process_Current_Value_Condition (Left_Opnd (Cond), True);
+
+ if Op /= N_Empty then
+ return;
+ end if;
+
+ Process_Current_Value_Condition (Right_Opnd (Cond), True);
+ return;
+
+ -- Case of relational operator
+
+ elsif Nkind (Cond) in N_Op_Compare then
+ Op := Nkind (Cond);
+
+ -- Invert sense of test if inverted test
+
+ if Sens = False then
+ case Op is
+ when N_Op_Eq => Op := N_Op_Ne;
+ when N_Op_Ne => Op := N_Op_Eq;
+ when N_Op_Lt => Op := N_Op_Ge;
+ when N_Op_Gt => Op := N_Op_Le;
+ when N_Op_Le => Op := N_Op_Gt;
+ when N_Op_Ge => Op := N_Op_Lt;
+ when others => raise Program_Error;
+ end case;
+ end if;
+
+ -- Case of entity op value
+
+ if Is_Entity_Name (Left_Opnd (Cond))
+ and then Ent = Entity (Left_Opnd (Cond))
+ and then Compile_Time_Known_Value (Right_Opnd (Cond))
+ then
+ Val := Right_Opnd (Cond);
+
+ -- Case of value op entity
+
+ elsif Is_Entity_Name (Right_Opnd (Cond))
+ and then Ent = Entity (Right_Opnd (Cond))
+ and then Compile_Time_Known_Value (Left_Opnd (Cond))
+ then
+ Val := Left_Opnd (Cond);
+
+ -- We are effectively swapping operands
+
+ case Op is
+ when N_Op_Eq => null;
+ when N_Op_Ne => null;
+ when N_Op_Lt => Op := N_Op_Gt;
+ when N_Op_Gt => Op := N_Op_Lt;
+ when N_Op_Le => Op := N_Op_Ge;
+ when N_Op_Ge => Op := N_Op_Le;
+ when others => raise Program_Error;
+ end case;
+
+ else
+ Op := N_Empty;
+ end if;
+
+ return;
+
+ elsif Nkind_In (Cond,
+ N_Type_Conversion,
+ N_Qualified_Expression,
+ N_Expression_With_Actions)
+ then
+ Cond := Expression (Cond);
+
+ -- Case of Boolean variable reference, return as though the
+ -- reference had said var = True.
+
+ else
+ if Is_Entity_Name (Cond) and then Ent = Entity (Cond) then
+ Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
+
+ if Sens = False then
+ Op := N_Op_Ne;
+ else
+ Op := N_Op_Eq;
+ end if;
+ end if;
+ end if;
+ end Process_Current_Value_Condition;
+
+ -- Start of processing for Get_Current_Value_Condition
+
+ begin
+ Op := N_Empty;
+ Val := Empty;
+
+ -- Immediate return, nothing doing, if this is not an object
+
+ if Ekind (Ent) not in Object_Kind then
+ return;
+ end if;
+
+ -- Otherwise examine current value
+
+ declare
+ CV : constant Node_Id := Current_Value (Ent);
+ Sens : Boolean;
+ Stm : Node_Id;
+
+ begin
+ -- If statement. Condition is known true in THEN section, known False
+ -- in any ELSIF or ELSE part, and unknown outside the IF statement.
+
+ if Nkind (CV) = N_If_Statement then
+
+ -- Before start of IF statement
+
+ if Loc < Sloc (CV) then
+ return;
+
+ -- After end of IF statement
+
+ elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
+ return;
+ end if;
+
+ -- At this stage we know that we are within the IF statement, but
+ -- unfortunately, the tree does not record the SLOC of the ELSE so
+ -- we cannot use a simple SLOC comparison to distinguish between
+ -- the then/else statements, so we have to climb the tree.
+
+ declare
+ N : Node_Id;
+
+ begin
+ N := Parent (Var);
+ while Parent (N) /= CV loop
+ N := Parent (N);
+
+ -- If we fall off the top of the tree, then that's odd, but
+ -- perhaps it could occur in some error situation, and the
+ -- safest response is simply to assume that the outcome of
+ -- the condition is unknown. No point in bombing during an
+ -- attempt to optimize things.
+
+ if No (N) then
+ return;
+ end if;
+ end loop;
+
+ -- Now we have N pointing to a node whose parent is the IF
+ -- statement in question, so now we can tell if we are within
+ -- the THEN statements.
+
+ if Is_List_Member (N)
+ and then List_Containing (N) = Then_Statements (CV)
+ then
+ Sens := True;
+
+ -- If the variable reference does not come from source, we
+ -- cannot reliably tell whether it appears in the else part.
+ -- In particular, if it appears in generated code for a node
+ -- that requires finalization, it may be attached to a list
+ -- that has not been yet inserted into the code. For now,
+ -- treat it as unknown.
+
+ elsif not Comes_From_Source (N) then
+ return;
+
+ -- Otherwise we must be in ELSIF or ELSE part
+
+ else
+ Sens := False;
+ end if;
+ end;
+
+ -- ELSIF part. Condition is known true within the referenced
+ -- ELSIF, known False in any subsequent ELSIF or ELSE part,
+ -- and unknown before the ELSE part or after the IF statement.
+
+ elsif Nkind (CV) = N_Elsif_Part then
+
+ -- if the Elsif_Part had condition_actions, the elsif has been
+ -- rewritten as a nested if, and the original elsif_part is
+ -- detached from the tree, so there is no way to obtain useful
+ -- information on the current value of the variable.
+ -- Can this be improved ???
+
+ if No (Parent (CV)) then
+ return;
+ end if;
+
+ Stm := Parent (CV);
+
+ -- Before start of ELSIF part
+
+ if Loc < Sloc (CV) then
+ return;
+
+ -- After end of IF statement
+
+ elsif Loc >= Sloc (Stm) +
+ Text_Ptr (UI_To_Int (End_Span (Stm)))
+ then
+ return;
+ end if;
+
+ -- Again we lack the SLOC of the ELSE, so we need to climb the
+ -- tree to see if we are within the ELSIF part in question.
+
+ declare
+ N : Node_Id;
+
+ begin
+ N := Parent (Var);
+ while Parent (N) /= Stm loop
+ N := Parent (N);
+
+ -- If we fall off the top of the tree, then that's odd, but
+ -- perhaps it could occur in some error situation, and the
+ -- safest response is simply to assume that the outcome of
+ -- the condition is unknown. No point in bombing during an
+ -- attempt to optimize things.
+
+ if No (N) then
+ return;
+ end if;
+ end loop;
+
+ -- Now we have N pointing to a node whose parent is the IF
+ -- statement in question, so see if is the ELSIF part we want.
+ -- the THEN statements.
+
+ if N = CV then
+ Sens := True;
+
+ -- Otherwise we must be in subsequent ELSIF or ELSE part
+
+ else
+ Sens := False;
+ end if;
+ end;
+
+ -- Iteration scheme of while loop. The condition is known to be
+ -- true within the body of the loop.
+
+ elsif Nkind (CV) = N_Iteration_Scheme then
+ declare
+ Loop_Stmt : constant Node_Id := Parent (CV);
+
+ begin
+ -- Before start of body of loop
+
+ if Loc < Sloc (Loop_Stmt) then
+ return;
+
+ -- After end of LOOP statement
+
+ elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
+ return;
+
+ -- We are within the body of the loop
+
+ else
+ Sens := True;
+ end if;
+ end;
+
+ -- All other cases of Current_Value settings
+
+ else
+ return;
+ end if;
+
+ -- If we fall through here, then we have a reportable condition, Sens
+ -- is True if the condition is true and False if it needs inverting.
+
+ Process_Current_Value_Condition (Condition (CV), Sens);
+ end;
+ end Get_Current_Value_Condition;
+
+ ---------------------
+ -- Get_Stream_Size --
+ ---------------------
+
+ function Get_Stream_Size (E : Entity_Id) return Uint is
+ begin
+ -- If we have a Stream_Size clause for this type use it
+
+ if Has_Stream_Size_Clause (E) then
+ return Static_Integer (Expression (Stream_Size_Clause (E)));
+
+ -- Otherwise the Stream_Size if the size of the type
+
+ else
+ return Esize (E);
+ end if;
+ end Get_Stream_Size;
+
+ ---------------------------
+ -- Has_Access_Constraint --
+ ---------------------------
+
+ function Has_Access_Constraint (E : Entity_Id) return Boolean is
+ Disc : Entity_Id;
+ T : constant Entity_Id := Etype (E);
+
+ begin
+ if Has_Per_Object_Constraint (E) and then Has_Discriminants (T) then
+ Disc := First_Discriminant (T);
+ while Present (Disc) loop
+ if Is_Access_Type (Etype (Disc)) then
+ return True;
+ end if;
+
+ Next_Discriminant (Disc);
+ end loop;
+
+ return False;
+ else
+ return False;
+ end if;
+ end Has_Access_Constraint;
+
+ ----------------------------------
+ -- Has_Following_Address_Clause --
+ ----------------------------------
+
+ -- Should this function check the private part in a package ???
+
+ function Has_Following_Address_Clause (D : Node_Id) return Boolean is
+ Id : constant Entity_Id := Defining_Identifier (D);
+ Decl : Node_Id;
+
+ begin
+ Decl := Next (D);
+ while Present (Decl) loop
+ if Nkind (Decl) = N_At_Clause
+ and then Chars (Identifier (Decl)) = Chars (Id)
+ then
+ return True;
+
+ elsif Nkind (Decl) = N_Attribute_Definition_Clause
+ and then Chars (Decl) = Name_Address
+ and then Chars (Name (Decl)) = Chars (Id)
+ then
+ return True;
+ end if;
+
+ Next (Decl);
+ end loop;
+
+ return False;
+ end Has_Following_Address_Clause;
+
+ --------------------
+ -- Homonym_Number --
+ --------------------
+
+ function Homonym_Number (Subp : Entity_Id) return Nat is
+ Count : Nat;
+ Hom : Entity_Id;
+
+ begin
+ Count := 1;
+ Hom := Homonym (Subp);
+ while Present (Hom) loop
+ if Scope (Hom) = Scope (Subp) then
+ Count := Count + 1;
+ end if;
+
+ Hom := Homonym (Hom);
+ end loop;
+
+ return Count;
+ end Homonym_Number;
+
+ -----------------------------------
+ -- In_Library_Level_Package_Body --
+ -----------------------------------
+
+ function In_Library_Level_Package_Body (Id : Entity_Id) return Boolean is
+ begin
+ -- First determine whether the entity appears at the library level, then
+ -- look at the containing unit.
+
+ if Is_Library_Level_Entity (Id) then
+ declare
+ Container : constant Node_Id := Cunit (Get_Source_Unit (Id));
+
+ begin
+ return Nkind (Unit (Container)) = N_Package_Body;
+ end;
+ end if;
+
+ return False;
+ end In_Library_Level_Package_Body;
+
+ ------------------------------
+ -- In_Unconditional_Context --
+ ------------------------------
+
+ function In_Unconditional_Context (Node : Node_Id) return Boolean is
+ P : Node_Id;
+
+ begin
+ P := Node;
+ while Present (P) loop
+ case Nkind (P) is
+ when N_Subprogram_Body =>
+ return True;
+
+ when N_If_Statement =>
+ return False;
+
+ when N_Loop_Statement =>
+ return False;
+
+ when N_Case_Statement =>
+ return False;
+
+ when others =>
+ P := Parent (P);
+ end case;
+ end loop;
+
+ return False;
+ end In_Unconditional_Context;
+
+ -------------------
+ -- Insert_Action --
+ -------------------
+
+ procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
+ begin
+ if Present (Ins_Action) then
+ Insert_Actions (Assoc_Node, New_List (Ins_Action));
+ end if;
+ end Insert_Action;
+
+ -- Version with check(s) suppressed
+
+ procedure Insert_Action
+ (Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
+ is
+ begin
+ Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
+ end Insert_Action;
+
+ -------------------------
+ -- Insert_Action_After --
+ -------------------------
+
+ procedure Insert_Action_After
+ (Assoc_Node : Node_Id;
+ Ins_Action : Node_Id)
+ is
+ begin
+ Insert_Actions_After (Assoc_Node, New_List (Ins_Action));
+ end Insert_Action_After;
+
+ --------------------
+ -- Insert_Actions --
+ --------------------
+
+ procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
+ N : Node_Id;
+ P : Node_Id;
+
+ Wrapped_Node : Node_Id := Empty;
+
+ begin
+ if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
+ return;
+ end if;
+
+ -- Ignore insert of actions from inside default expression (or other
+ -- similar "spec expression") in the special spec-expression analyze
+ -- mode. Any insertions at this point have no relevance, since we are
+ -- only doing the analyze to freeze the types of any static expressions.
+ -- See section "Handling of Default Expressions" in the spec of package
+ -- Sem for further details.
+
+ if In_Spec_Expression then
+ return;
+ end if;
+
+ -- If the action derives from stuff inside a record, then the actions
+ -- are attached to the current scope, to be inserted and analyzed on
+ -- exit from the scope. The reason for this is that we may also be
+ -- generating freeze actions at the same time, and they must eventually
+ -- be elaborated in the correct order.
+
+ if Is_Record_Type (Current_Scope)
+ and then not Is_Frozen (Current_Scope)
+ then
+ if No (Scope_Stack.Table
+ (Scope_Stack.Last).Pending_Freeze_Actions)
+ then
+ Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
+ Ins_Actions;
+ else
+ Append_List
+ (Ins_Actions,
+ Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
+ end if;
+
+ return;
+ end if;
+
+ -- We now intend to climb up the tree to find the right point to
+ -- insert the actions. We start at Assoc_Node, unless this node is a
+ -- subexpression in which case we start with its parent. We do this for
+ -- two reasons. First it speeds things up. Second, if Assoc_Node is
+ -- itself one of the special nodes like N_And_Then, then we assume that
+ -- an initial request to insert actions for such a node does not expect
+ -- the actions to get deposited in the node for later handling when the
+ -- node is expanded, since clearly the node is being dealt with by the
+ -- caller. Note that in the subexpression case, N is always the child we
+ -- came from.
+
+ -- N_Raise_xxx_Error is an annoying special case, it is a statement if
+ -- it has type Standard_Void_Type, and a subexpression otherwise.
+ -- otherwise. Procedure calls, and similarly procedure attribute
+ -- references, are also statements.
+
+ if Nkind (Assoc_Node) in N_Subexpr
+ and then (Nkind (Assoc_Node) not in N_Raise_xxx_Error
+ or else Etype (Assoc_Node) /= Standard_Void_Type)
+ and then Nkind (Assoc_Node) /= N_Procedure_Call_Statement
+ and then (Nkind (Assoc_Node) /= N_Attribute_Reference
+ or else
+ not Is_Procedure_Attribute_Name
+ (Attribute_Name (Assoc_Node)))
+ then
+ N := Assoc_Node;
+ P := Parent (Assoc_Node);
+
+ -- Non-subexpression case. Note that N is initially Empty in this case
+ -- (N is only guaranteed Non-Empty in the subexpr case).
+
+ else
+ N := Empty;
+ P := Assoc_Node;
+ end if;
+
+ -- Capture root of the transient scope
+
+ if Scope_Is_Transient then
+ Wrapped_Node := Node_To_Be_Wrapped;
+ end if;
+
+ loop
+ pragma Assert (Present (P));
+
+ -- Make sure that inserted actions stay in the transient scope
+
+ if Present (Wrapped_Node) and then N = Wrapped_Node then
+ Store_Before_Actions_In_Scope (Ins_Actions);
+ return;
+ end if;
+
+ case Nkind (P) is
+
+ -- Case of right operand of AND THEN or OR ELSE. Put the actions
+ -- in the Actions field of the right operand. They will be moved
+ -- out further when the AND THEN or OR ELSE operator is expanded.
+ -- Nothing special needs to be done for the left operand since
+ -- in that case the actions are executed unconditionally.
+
+ when N_Short_Circuit =>
+ if N = Right_Opnd (P) then
+
+ -- We are now going to either append the actions to the
+ -- actions field of the short-circuit operation. We will
+ -- also analyze the actions now.
+
+ -- This analysis is really too early, the proper thing would
+ -- be to just park them there now, and only analyze them if
+ -- we find we really need them, and to it at the proper
+ -- final insertion point. However attempting to this proved
+ -- tricky, so for now we just kill current values before and
+ -- after the analyze call to make sure we avoid peculiar
+ -- optimizations from this out of order insertion.
+
+ Kill_Current_Values;
+
+ -- If P has already been expanded, we can't park new actions
+ -- on it, so we need to expand them immediately, introducing
+ -- an Expression_With_Actions. N can't be an expression
+ -- with actions, or else then the actions would have been
+ -- inserted at an inner level.
+
+ if Analyzed (P) then
+ pragma Assert (Nkind (N) /= N_Expression_With_Actions);
+ Rewrite (N,
+ Make_Expression_With_Actions (Sloc (N),
+ Actions => Ins_Actions,
+ Expression => Relocate_Node (N)));
+ Analyze_And_Resolve (N);
+
+ elsif Present (Actions (P)) then
+ Insert_List_After_And_Analyze
+ (Last (Actions (P)), Ins_Actions);
+ else
+ Set_Actions (P, Ins_Actions);
+ Analyze_List (Actions (P));
+ end if;
+
+ Kill_Current_Values;
+
+ return;
+ end if;
+
+ -- Then or Else dependent expression of an if expression. Add
+ -- actions to Then_Actions or Else_Actions field as appropriate.
+ -- The actions will be moved further out when the if is expanded.
+
+ when N_If_Expression =>
+ declare
+ ThenX : constant Node_Id := Next (First (Expressions (P)));
+ ElseX : constant Node_Id := Next (ThenX);
+
+ begin
+ -- If the enclosing expression is already analyzed, as
+ -- is the case for nested elaboration checks, insert the
+ -- conditional further out.
+
+ if Analyzed (P) then
+ null;
+
+ -- Actions belong to the then expression, temporarily place
+ -- them as Then_Actions of the if expression. They will be
+ -- moved to the proper place later when the if expression
+ -- is expanded.
+
+ elsif N = ThenX then
+ if Present (Then_Actions (P)) then
+ Insert_List_After_And_Analyze
+ (Last (Then_Actions (P)), Ins_Actions);
+ else
+ Set_Then_Actions (P, Ins_Actions);
+ Analyze_List (Then_Actions (P));
+ end if;
+
+ return;
+
+ -- Actions belong to the else expression, temporarily place
+ -- them as Else_Actions of the if expression. They will be
+ -- moved to the proper place later when the if expression
+ -- is expanded.
+
+ elsif N = ElseX then
+ if Present (Else_Actions (P)) then
+ Insert_List_After_And_Analyze
+ (Last (Else_Actions (P)), Ins_Actions);
+ else
+ Set_Else_Actions (P, Ins_Actions);
+ Analyze_List (Else_Actions (P));
+ end if;
+
+ return;
+
+ -- Actions belong to the condition. In this case they are
+ -- unconditionally executed, and so we can continue the
+ -- search for the proper insert point.
+
+ else
+ null;
+ end if;
+ end;
+
+ -- Alternative of case expression, we place the action in the
+ -- Actions field of the case expression alternative, this will
+ -- be handled when the case expression is expanded.
+
+ when N_Case_Expression_Alternative =>
+ if Present (Actions (P)) then
+ Insert_List_After_And_Analyze
+ (Last (Actions (P)), Ins_Actions);
+ else
+ Set_Actions (P, Ins_Actions);
+ Analyze_List (Actions (P));
+ end if;
+
+ return;
+
+ -- Case of appearing within an Expressions_With_Actions node. When
+ -- the new actions come from the expression of the expression with
+ -- actions, they must be added to the existing actions. The other
+ -- alternative is when the new actions are related to one of the
+ -- existing actions of the expression with actions, and should
+ -- never reach here: if actions are inserted on a statement
+ -- within the Actions of an expression with actions, or on some
+ -- sub-expression of such a statement, then the outermost proper
+ -- insertion point is right before the statement, and we should
+ -- never climb up as far as the N_Expression_With_Actions itself.
+
+ when N_Expression_With_Actions =>
+ if N = Expression (P) then
+ if Is_Empty_List (Actions (P)) then
+ Append_List_To (Actions (P), Ins_Actions);
+ Analyze_List (Actions (P));
+ else
+ Insert_List_After_And_Analyze
+ (Last (Actions (P)), Ins_Actions);
+ end if;
+
+ return;
+
+ else
+ raise Program_Error;
+ end if;
+
+ -- Case of appearing in the condition of a while expression or
+ -- elsif. We insert the actions into the Condition_Actions field.
+ -- They will be moved further out when the while loop or elsif
+ -- is analyzed.
+
+ when N_Iteration_Scheme |
+ N_Elsif_Part
+ =>
+ if N = Condition (P) then
+ if Present (Condition_Actions (P)) then
+ Insert_List_After_And_Analyze
+ (Last (Condition_Actions (P)), Ins_Actions);
+ else
+ Set_Condition_Actions (P, Ins_Actions);
+
+ -- Set the parent of the insert actions explicitly. This
+ -- is not a syntactic field, but we need the parent field
+ -- set, in particular so that freeze can understand that
+ -- it is dealing with condition actions, and properly
+ -- insert the freezing actions.
+
+ Set_Parent (Ins_Actions, P);
+ Analyze_List (Condition_Actions (P));
+ end if;
+
+ return;
+ end if;
+
+ -- Statements, declarations, pragmas, representation clauses
+
+ when
+ -- Statements
+
+ N_Procedure_Call_Statement |
+ N_Statement_Other_Than_Procedure_Call |
+
+ -- Pragmas
+
+ N_Pragma |
+
+ -- Representation_Clause
+
+ N_At_Clause |
+ N_Attribute_Definition_Clause |
+ N_Enumeration_Representation_Clause |
+ N_Record_Representation_Clause |
+
+ -- Declarations
+
+ N_Abstract_Subprogram_Declaration |
+ N_Entry_Body |
+ N_Exception_Declaration |
+ N_Exception_Renaming_Declaration |
+ N_Expression_Function |
+ N_Formal_Abstract_Subprogram_Declaration |
+ N_Formal_Concrete_Subprogram_Declaration |
+ N_Formal_Object_Declaration |
+ N_Formal_Type_Declaration |
+ N_Full_Type_Declaration |
+ N_Function_Instantiation |
+ N_Generic_Function_Renaming_Declaration |
+ N_Generic_Package_Declaration |
+ N_Generic_Package_Renaming_Declaration |
+ N_Generic_Procedure_Renaming_Declaration |
+ N_Generic_Subprogram_Declaration |
+ N_Implicit_Label_Declaration |
+ N_Incomplete_Type_Declaration |
+ N_Number_Declaration |
+ N_Object_Declaration |
+ N_Object_Renaming_Declaration |
+ N_Package_Body |
+ N_Package_Body_Stub |
+ N_Package_Declaration |
+ N_Package_Instantiation |
+ N_Package_Renaming_Declaration |
+ N_Private_Extension_Declaration |
+ N_Private_Type_Declaration |
+ N_Procedure_Instantiation |
+ N_Protected_Body |
+ N_Protected_Body_Stub |
+ N_Protected_Type_Declaration |
+ N_Single_Task_Declaration |
+ N_Subprogram_Body |
+ N_Subprogram_Body_Stub |
+ N_Subprogram_Declaration |
+ N_Subprogram_Renaming_Declaration |
+ N_Subtype_Declaration |
+ N_Task_Body |
+ N_Task_Body_Stub |
+ N_Task_Type_Declaration |
+
+ -- Use clauses can appear in lists of declarations
+
+ N_Use_Package_Clause |
+ N_Use_Type_Clause |
+
+ -- Freeze entity behaves like a declaration or statement
+
+ N_Freeze_Entity |
+ N_Freeze_Generic_Entity
+ =>
+ -- Do not insert here if the item is not a list member (this
+ -- happens for example with a triggering statement, and the
+ -- proper approach is to insert before the entire select).
+
+ if not Is_List_Member (P) then
+ null;
+
+ -- Do not insert if parent of P is an N_Component_Association
+ -- node (i.e. we are in the context of an N_Aggregate or
+ -- N_Extension_Aggregate node. In this case we want to insert
+ -- before the entire aggregate.
+
+ elsif Nkind (Parent (P)) = N_Component_Association then
+ null;
+
+ -- Do not insert if the parent of P is either an N_Variant node
+ -- or an N_Record_Definition node, meaning in either case that
+ -- P is a member of a component list, and that therefore the
+ -- actions should be inserted outside the complete record
+ -- declaration.
+
+ elsif Nkind_In (Parent (P), N_Variant, N_Record_Definition) then
+ null;
+
+ -- Do not insert freeze nodes within the loop generated for
+ -- an aggregate, because they may be elaborated too late for
+ -- subsequent use in the back end: within a package spec the
+ -- loop is part of the elaboration procedure and is only
+ -- elaborated during the second pass.
+
+ -- If the loop comes from source, or the entity is local to the
+ -- loop itself it must remain within.
+
+ elsif Nkind (Parent (P)) = N_Loop_Statement
+ and then not Comes_From_Source (Parent (P))
+ and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
+ and then
+ Scope (Entity (First (Ins_Actions))) /= Current_Scope
+ then
+ null;
+
+ -- Otherwise we can go ahead and do the insertion
+
+ elsif P = Wrapped_Node then
+ Store_Before_Actions_In_Scope (Ins_Actions);
+ return;
+
+ else
+ Insert_List_Before_And_Analyze (P, Ins_Actions);
+ return;
+ end if;
+
+ -- A special case, N_Raise_xxx_Error can act either as a statement
+ -- or a subexpression. We tell the difference by looking at the
+ -- Etype. It is set to Standard_Void_Type in the statement case.
+
+ when
+ N_Raise_xxx_Error =>
+ if Etype (P) = Standard_Void_Type then
+ if P = Wrapped_Node then
+ Store_Before_Actions_In_Scope (Ins_Actions);
+ else
+ Insert_List_Before_And_Analyze (P, Ins_Actions);
+ end if;
+
+ return;
+
+ -- In the subexpression case, keep climbing
+
+ else
+ null;
+ end if;
+
+ -- If a component association appears within a loop created for
+ -- an array aggregate, attach the actions to the association so
+ -- they can be subsequently inserted within the loop. For other
+ -- component associations insert outside of the aggregate. For
+ -- an association that will generate a loop, its Loop_Actions
+ -- attribute is already initialized (see exp_aggr.adb).
+
+ -- The list of loop_actions can in turn generate additional ones,
+ -- that are inserted before the associated node. If the associated
+ -- node is outside the aggregate, the new actions are collected
+ -- at the end of the loop actions, to respect the order in which
+ -- they are to be elaborated.
+
+ when
+ N_Component_Association =>
+ if Nkind (Parent (P)) = N_Aggregate
+ and then Present (Loop_Actions (P))
+ then
+ if Is_Empty_List (Loop_Actions (P)) then
+ Set_Loop_Actions (P, Ins_Actions);
+ Analyze_List (Ins_Actions);
+
+ else
+ declare
+ Decl : Node_Id;
+
+ begin
+ -- Check whether these actions were generated by a
+ -- declaration that is part of the loop_ actions
+ -- for the component_association.
+
+ Decl := Assoc_Node;
+ while Present (Decl) loop
+ exit when Parent (Decl) = P
+ and then Is_List_Member (Decl)
+ and then
+ List_Containing (Decl) = Loop_Actions (P);
+ Decl := Parent (Decl);
+ end loop;
+
+ if Present (Decl) then
+ Insert_List_Before_And_Analyze
+ (Decl, Ins_Actions);
+ else
+ Insert_List_After_And_Analyze
+ (Last (Loop_Actions (P)), Ins_Actions);
+ end if;
+ end;
+ end if;
+
+ return;
+
+ else
+ null;
+ end if;
+
+ -- Another special case, an attribute denoting a procedure call
+
+ when
+ N_Attribute_Reference =>
+ if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
+ if P = Wrapped_Node then
+ Store_Before_Actions_In_Scope (Ins_Actions);
+ else
+ Insert_List_Before_And_Analyze (P, Ins_Actions);
+ end if;
+
+ return;
+
+ -- In the subexpression case, keep climbing
+
+ else
+ null;
+ end if;
+
+ -- A contract node should not belong to the tree
+
+ when N_Contract =>
+ raise Program_Error;
+
+ -- For all other node types, keep climbing tree
+
+ when
+ N_Abortable_Part |
+ N_Accept_Alternative |
+ N_Access_Definition |
+ N_Access_Function_Definition |
+ N_Access_Procedure_Definition |
+ N_Access_To_Object_Definition |
+ N_Aggregate |
+ N_Allocator |
+ N_Aspect_Specification |
+ N_Case_Expression |
+ N_Case_Statement_Alternative |
+ N_Character_Literal |
+ N_Compilation_Unit |
+ N_Compilation_Unit_Aux |
+ N_Component_Clause |
+ N_Component_Declaration |
+ N_Component_Definition |
+ N_Component_List |
+ N_Constrained_Array_Definition |
+ N_Decimal_Fixed_Point_Definition |
+ N_Defining_Character_Literal |
+ N_Defining_Identifier |
+ N_Defining_Operator_Symbol |
+ N_Defining_Program_Unit_Name |
+ N_Delay_Alternative |
+ N_Delta_Constraint |
+ N_Derived_Type_Definition |
+ N_Designator |
+ N_Digits_Constraint |
+ N_Discriminant_Association |
+ N_Discriminant_Specification |
+ N_Empty |
+ N_Entry_Body_Formal_Part |
+ N_Entry_Call_Alternative |
+ N_Entry_Declaration |
+ N_Entry_Index_Specification |
+ N_Enumeration_Type_Definition |
+ N_Error |
+ N_Exception_Handler |
+ N_Expanded_Name |
+ N_Explicit_Dereference |
+ N_Extension_Aggregate |
+ N_Floating_Point_Definition |
+ N_Formal_Decimal_Fixed_Point_Definition |
+ N_Formal_Derived_Type_Definition |
+ N_Formal_Discrete_Type_Definition |
+ N_Formal_Floating_Point_Definition |
+ N_Formal_Modular_Type_Definition |
+ N_Formal_Ordinary_Fixed_Point_Definition |
+ N_Formal_Package_Declaration |
+ N_Formal_Private_Type_Definition |
+ N_Formal_Incomplete_Type_Definition |
+ N_Formal_Signed_Integer_Type_Definition |
+ N_Function_Call |
+ N_Function_Specification |
+ N_Generic_Association |
+ N_Handled_Sequence_Of_Statements |
+ N_Identifier |
+ N_In |
+ N_Index_Or_Discriminant_Constraint |
+ N_Indexed_Component |
+ N_Integer_Literal |
+ N_Iterator_Specification |
+ N_Itype_Reference |
+ N_Label |
+ N_Loop_Parameter_Specification |
+ N_Mod_Clause |
+ N_Modular_Type_Definition |
+ N_Not_In |
+ N_Null |
+ N_Op_Abs |
+ N_Op_Add |
+ N_Op_And |
+ N_Op_Concat |
+ N_Op_Divide |
+ N_Op_Eq |
+ N_Op_Expon |
+ N_Op_Ge |
+ N_Op_Gt |
+ N_Op_Le |
+ N_Op_Lt |
+ N_Op_Minus |
+ N_Op_Mod |
+ N_Op_Multiply |
+ N_Op_Ne |
+ N_Op_Not |
+ N_Op_Or |
+ N_Op_Plus |
+ N_Op_Rem |
+ N_Op_Rotate_Left |
+ N_Op_Rotate_Right |
+ N_Op_Shift_Left |
+ N_Op_Shift_Right |
+ N_Op_Shift_Right_Arithmetic |
+ N_Op_Subtract |
+ N_Op_Xor |
+ N_Operator_Symbol |
+ N_Ordinary_Fixed_Point_Definition |
+ N_Others_Choice |
+ N_Package_Specification |
+ N_Parameter_Association |
+ N_Parameter_Specification |
+ N_Pop_Constraint_Error_Label |
+ N_Pop_Program_Error_Label |
+ N_Pop_Storage_Error_Label |
+ N_Pragma_Argument_Association |
+ N_Procedure_Specification |
+ N_Protected_Definition |
+ N_Push_Constraint_Error_Label |
+ N_Push_Program_Error_Label |
+ N_Push_Storage_Error_Label |
+ N_Qualified_Expression |
+ N_Quantified_Expression |
+ N_Raise_Expression |
+ N_Range |
+ N_Range_Constraint |
+ N_Real_Literal |
+ N_Real_Range_Specification |
+ N_Record_Definition |
+ N_Reference |
+ N_SCIL_Dispatch_Table_Tag_Init |
+ N_SCIL_Dispatching_Call |
+ N_SCIL_Membership_Test |
+ N_Selected_Component |
+ N_Signed_Integer_Type_Definition |
+ N_Single_Protected_Declaration |
+ N_Slice |
+ N_String_Literal |
+ N_Subtype_Indication |
+ N_Subunit |
+ N_Task_Definition |
+ N_Terminate_Alternative |
+ N_Triggering_Alternative |
+ N_Type_Conversion |
+ N_Unchecked_Expression |
+ N_Unchecked_Type_Conversion |
+ N_Unconstrained_Array_Definition |
+ N_Unused_At_End |
+ N_Unused_At_Start |
+ N_Variant |
+ N_Variant_Part |
+ N_Validate_Unchecked_Conversion |
+ N_With_Clause
+ =>
+ null;
+
+ end case;
+
+ -- If we fall through above tests, keep climbing tree
+
+ N := P;
+
+ if Nkind (Parent (N)) = N_Subunit then
+
+ -- This is the proper body corresponding to a stub. Insertion must
+ -- be done at the point of the stub, which is in the declarative
+ -- part of the parent unit.
+
+ P := Corresponding_Stub (Parent (N));
+
+ else
+ P := Parent (N);
+ end if;
+ end loop;
+ end Insert_Actions;
+
+ -- Version with check(s) suppressed
+
+ procedure Insert_Actions
+ (Assoc_Node : Node_Id;
+ Ins_Actions : List_Id;
+ Suppress : Check_Id)
+ is
+ begin
+ if Suppress = All_Checks then
+ declare
+ Sva : constant Suppress_Array := Scope_Suppress.Suppress;
+ begin
+ Scope_Suppress.Suppress := (others => True);
+ Insert_Actions (Assoc_Node, Ins_Actions);
+ Scope_Suppress.Suppress := Sva;
+ end;
+
+ else
+ declare
+ Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
+ begin
+ Scope_Suppress.Suppress (Suppress) := True;
+ Insert_Actions (Assoc_Node, Ins_Actions);
+ Scope_Suppress.Suppress (Suppress) := Svg;
+ end;
+ end if;
+ end Insert_Actions;
+
+ --------------------------
+ -- Insert_Actions_After --
+ --------------------------
+
+ procedure Insert_Actions_After
+ (Assoc_Node : Node_Id;
+ Ins_Actions : List_Id)
+ is
+ begin
+ if Scope_Is_Transient and then Assoc_Node = Node_To_Be_Wrapped then
+ Store_After_Actions_In_Scope (Ins_Actions);
+ else
+ Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
+ end if;
+ end Insert_Actions_After;
+
+ ------------------------
+ -- Insert_Declaration --
+ ------------------------
+
+ procedure Insert_Declaration (N : Node_Id; Decl : Node_Id) is
+ P : Node_Id;
+
+ begin
+ pragma Assert (Nkind (N) in N_Subexpr);
+
+ -- Climb until we find a procedure or a package
+
+ P := N;
+ loop
+ pragma Assert (Present (Parent (P)));
+ P := Parent (P);
+
+ if Is_List_Member (P) then
+ exit when Nkind_In (Parent (P), N_Package_Specification,
+ N_Subprogram_Body);
+
+ -- Special handling for handled sequence of statements, we must
+ -- insert in the statements not the exception handlers!
+
+ if Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements then
+ P := First (Statements (Parent (P)));
+ exit;
+ end if;
+ end if;
+ end loop;
+
+ -- Now do the insertion
+
+ Insert_Before (P, Decl);
+ Analyze (Decl);
+ end Insert_Declaration;
+
+ ---------------------------------
+ -- Insert_Library_Level_Action --
+ ---------------------------------
+
+ procedure Insert_Library_Level_Action (N : Node_Id) is
+ Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
+
+ begin
+ Push_Scope (Cunit_Entity (Main_Unit));
+ -- ??? should this be Current_Sem_Unit instead of Main_Unit?
+
+ if No (Actions (Aux)) then
+ Set_Actions (Aux, New_List (N));
+ else
+ Append (N, Actions (Aux));
+ end if;
+
+ Analyze (N);
+ Pop_Scope;
+ end Insert_Library_Level_Action;
+
+ ----------------------------------
+ -- Insert_Library_Level_Actions --
+ ----------------------------------
+
+ procedure Insert_Library_Level_Actions (L : List_Id) is
+ Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
+
+ begin
+ if Is_Non_Empty_List (L) then
+ Push_Scope (Cunit_Entity (Main_Unit));
+ -- ??? should this be Current_Sem_Unit instead of Main_Unit?
+
+ if No (Actions (Aux)) then
+ Set_Actions (Aux, L);
+ Analyze_List (L);
+ else
+ Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
+ end if;
+
+ Pop_Scope;
+ end if;
+ end Insert_Library_Level_Actions;
+
+ ----------------------
+ -- Inside_Init_Proc --
+ ----------------------
+
+ function Inside_Init_Proc return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S) and then S /= Standard_Standard loop
+ if Is_Init_Proc (S) then
+ return True;
+ else
+ S := Scope (S);
+ end if;
+ end loop;
+
+ return False;
+ end Inside_Init_Proc;
+
+ ----------------------------
+ -- Is_All_Null_Statements --
+ ----------------------------
+
+ function Is_All_Null_Statements (L : List_Id) return Boolean is
+ Stm : Node_Id;
+
+ begin
+ Stm := First (L);
+ while Present (Stm) loop
+ if Nkind (Stm) /= N_Null_Statement then
+ return False;
+ end if;
+
+ Next (Stm);
+ end loop;
+
+ return True;
+ end Is_All_Null_Statements;
+
+ --------------------------------------------------
+ -- Is_Displacement_Of_Object_Or_Function_Result --
+ --------------------------------------------------
+
+ function Is_Displacement_Of_Object_Or_Function_Result
+ (Obj_Id : Entity_Id) return Boolean
+ is
+ function Is_Controlled_Function_Call (N : Node_Id) return Boolean;
+ -- Determine if particular node denotes a controlled function call
+
+ function Is_Displace_Call (N : Node_Id) return Boolean;
+ -- Determine whether a particular node is a call to Ada.Tags.Displace.
+ -- The call might be nested within other actions such as conversions.
+
+ function Is_Source_Object (N : Node_Id) return Boolean;
+ -- Determine whether a particular node denotes a source object
+
+ ---------------------------------
+ -- Is_Controlled_Function_Call --
+ ---------------------------------
+
+ function Is_Controlled_Function_Call (N : Node_Id) return Boolean is
+ Expr : Node_Id := Original_Node (N);
+
+ begin
+ if Nkind (Expr) = N_Function_Call then
+ Expr := Name (Expr);
+ end if;
+
+ -- The function call may appear in object.operation format
+
+ if Nkind (Expr) = N_Selected_Component then
+ Expr := Selector_Name (Expr);
+ end if;
+
+ return
+ Nkind_In (Expr, N_Expanded_Name, N_Identifier)
+ and then Ekind (Entity (Expr)) = E_Function
+ and then Needs_Finalization (Etype (Entity (Expr)));
+ end Is_Controlled_Function_Call;
+
+ ----------------------
+ -- Is_Displace_Call --
+ ----------------------
+
+ function Is_Displace_Call (N : Node_Id) return Boolean is
+ Call : Node_Id := N;
+
+ begin
+ -- Strip various actions which may precede a call to Displace
+
+ loop
+ if Nkind (Call) = N_Explicit_Dereference then
+ Call := Prefix (Call);
+
+ elsif Nkind_In (Call, N_Type_Conversion,
+ N_Unchecked_Type_Conversion)
+ then
+ Call := Expression (Call);
+
+ else
+ exit;
+ end if;
+ end loop;
+
+ return
+ Present (Call)
+ and then Nkind (Call) = N_Function_Call
+ and then Is_RTE (Entity (Name (Call)), RE_Displace);
+ end Is_Displace_Call;
+
+ ----------------------
+ -- Is_Source_Object --
+ ----------------------
+
+ function Is_Source_Object (N : Node_Id) return Boolean is
+ begin
+ return
+ Present (N)
+ and then Nkind (N) in N_Has_Entity
+ and then Is_Object (Entity (N))
+ and then Comes_From_Source (N);
+ end Is_Source_Object;
+
+ -- Local variables
+
+ Decl : constant Node_Id := Parent (Obj_Id);
+ Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
+ Orig_Decl : constant Node_Id := Original_Node (Decl);
+
+ -- Start of processing for Is_Displacement_Of_Object_Or_Function_Result
+
+ begin
+ -- Case 1:
+
+ -- Obj : CW_Type := Function_Call (...);
+
+ -- rewritten into:
+
+ -- Tmp : ... := Function_Call (...)'reference;
+ -- Obj : CW_Type renames (... Ada.Tags.Displace (Tmp));
+
+ -- where the return type of the function and the class-wide type require
+ -- dispatch table pointer displacement.
+
+ -- Case 2:
+
+ -- Obj : CW_Type := Src_Obj;
+
+ -- rewritten into:
+
+ -- Obj : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
+
+ -- where the type of the source object and the class-wide type require
+ -- dispatch table pointer displacement.
+
+ return
+ Nkind (Decl) = N_Object_Renaming_Declaration
+ and then Nkind (Orig_Decl) = N_Object_Declaration
+ and then Comes_From_Source (Orig_Decl)
+ and then Is_Class_Wide_Type (Obj_Typ)
+ and then Is_Displace_Call (Renamed_Object (Obj_Id))
+ and then
+ (Is_Controlled_Function_Call (Expression (Orig_Decl))
+ or else Is_Source_Object (Expression (Orig_Decl)));
+ end Is_Displacement_Of_Object_Or_Function_Result;
+
+ ------------------------------
+ -- Is_Finalizable_Transient --
+ ------------------------------
+
+ function Is_Finalizable_Transient
+ (Decl : Node_Id;
+ Rel_Node : Node_Id) return Boolean
+ is
+ Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
+ Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
+ Desig : Entity_Id := Obj_Typ;
+
+ function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean;
+ -- Determine whether transient object Trans_Id is initialized either
+ -- by a function call which returns an access type or simply renames
+ -- another pointer.
+
+ function Initialized_By_Aliased_BIP_Func_Call
+ (Trans_Id : Entity_Id) return Boolean;
+ -- Determine whether transient object Trans_Id is initialized by a
+ -- build-in-place function call where the BIPalloc parameter is of
+ -- value 1 and BIPaccess is not null. This case creates an aliasing
+ -- between the returned value and the value denoted by BIPaccess.
+
+ function Is_Aliased
+ (Trans_Id : Entity_Id;
+ First_Stmt : Node_Id) return Boolean;
+ -- Determine whether transient object Trans_Id has been renamed or
+ -- aliased through 'reference in the statement list starting from
+ -- First_Stmt.
+
+ function Is_Allocated (Trans_Id : Entity_Id) return Boolean;
+ -- Determine whether transient object Trans_Id is allocated on the heap
+
+ function Is_Iterated_Container
+ (Trans_Id : Entity_Id;
+ First_Stmt : Node_Id) return Boolean;
+ -- Determine whether transient object Trans_Id denotes a container which
+ -- is in the process of being iterated in the statement list starting
+ -- from First_Stmt.
+
+ ---------------------------
+ -- Initialized_By_Access --
+ ---------------------------
+
+ function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean is
+ Expr : constant Node_Id := Expression (Parent (Trans_Id));
+
+ begin
+ return
+ Present (Expr)
+ and then Nkind (Expr) /= N_Reference
+ and then Is_Access_Type (Etype (Expr));
+ end Initialized_By_Access;
+
+ ------------------------------------------
+ -- Initialized_By_Aliased_BIP_Func_Call --
+ ------------------------------------------
+
+ function Initialized_By_Aliased_BIP_Func_Call
+ (Trans_Id : Entity_Id) return Boolean
+ is
+ Call : Node_Id := Expression (Parent (Trans_Id));
+
+ begin
+ -- Build-in-place calls usually appear in 'reference format
+
+ if Nkind (Call) = N_Reference then
+ Call := Prefix (Call);
+ end if;
+
+ if Is_Build_In_Place_Function_Call (Call) then
+ declare
+ Access_Nam : Name_Id := No_Name;
+ Access_OK : Boolean := False;
+ Actual : Node_Id;
+ Alloc_Nam : Name_Id := No_Name;
+ Alloc_OK : Boolean := False;
+ Formal : Node_Id;
+ Func_Id : Entity_Id;
+ Param : Node_Id;
+
+ begin
+ -- Examine all parameter associations of the function call
+
+ Param := First (Parameter_Associations (Call));
+ while Present (Param) loop
+ if Nkind (Param) = N_Parameter_Association
+ and then Nkind (Selector_Name (Param)) = N_Identifier
+ then
+ Actual := Explicit_Actual_Parameter (Param);
+ Formal := Selector_Name (Param);
+
+ -- Construct the names of formals BIPaccess and BIPalloc
+ -- using the function name retrieved from an arbitrary
+ -- formal.
+
+ if Access_Nam = No_Name
+ and then Alloc_Nam = No_Name
+ and then Present (Entity (Formal))
+ then
+ Func_Id := Scope (Entity (Formal));
+
+ Access_Nam :=
+ New_External_Name (Chars (Func_Id),
+ BIP_Formal_Suffix (BIP_Object_Access));
+
+ Alloc_Nam :=
+ New_External_Name (Chars (Func_Id),
+ BIP_Formal_Suffix (BIP_Alloc_Form));
+ end if;
+
+ -- A match for BIPaccess => Temp has been found
+
+ if Chars (Formal) = Access_Nam
+ and then Nkind (Actual) /= N_Null
+ then
+ Access_OK := True;
+ end if;
+
+ -- A match for BIPalloc => 1 has been found
+
+ if Chars (Formal) = Alloc_Nam
+ and then Nkind (Actual) = N_Integer_Literal
+ and then Intval (Actual) = Uint_1
+ then
+ Alloc_OK := True;
+ end if;
+ end if;
+
+ Next (Param);
+ end loop;
+
+ return Access_OK and Alloc_OK;
+ end;
+ end if;
+
+ return False;
+ end Initialized_By_Aliased_BIP_Func_Call;
+
+ ----------------
+ -- Is_Aliased --
+ ----------------
+
+ function Is_Aliased
+ (Trans_Id : Entity_Id;
+ First_Stmt : Node_Id) return Boolean
+ is
+ function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id;
+ -- Given an object renaming declaration, retrieve the entity of the
+ -- renamed name. Return Empty if the renamed name is anything other
+ -- than a variable or a constant.
+
+ -------------------------
+ -- Find_Renamed_Object --
+ -------------------------
+
+ function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id is
+ Ren_Obj : Node_Id := Empty;
+
+ function Find_Object (N : Node_Id) return Traverse_Result;
+ -- Try to detect an object which is either a constant or a
+ -- variable.
+
+ -----------------
+ -- Find_Object --
+ -----------------
+
+ function Find_Object (N : Node_Id) return Traverse_Result is
+ begin
+ -- Stop the search once a constant or a variable has been
+ -- detected.
+
+ if Nkind (N) = N_Identifier
+ and then Present (Entity (N))
+ and then Ekind_In (Entity (N), E_Constant, E_Variable)
+ then
+ Ren_Obj := Entity (N);
+ return Abandon;
+ end if;
+
+ return OK;
+ end Find_Object;
+
+ procedure Search is new Traverse_Proc (Find_Object);
+
+ -- Local variables
+
+ Typ : constant Entity_Id := Etype (Defining_Identifier (Ren_Decl));
+
+ -- Start of processing for Find_Renamed_Object
+
+ begin
+ -- Actions related to dispatching calls may appear as renamings of
+ -- tags. Do not process this type of renaming because it does not
+ -- use the actual value of the object.
+
+ if not Is_RTE (Typ, RE_Tag_Ptr) then
+ Search (Name (Ren_Decl));
+ end if;
+
+ return Ren_Obj;
+ end Find_Renamed_Object;
+
+ -- Local variables
+
+ Expr : Node_Id;
+ Ren_Obj : Entity_Id;
+ Stmt : Node_Id;
+
+ -- Start of processing for Is_Aliased
+
+ begin
+ Stmt := First_Stmt;
+ while Present (Stmt) loop
+ if Nkind (Stmt) = N_Object_Declaration then
+ Expr := Expression (Stmt);
+
+ if Present (Expr)
+ and then Nkind (Expr) = N_Reference
+ and then Nkind (Prefix (Expr)) = N_Identifier
+ and then Entity (Prefix (Expr)) = Trans_Id
+ then
+ return True;
+ end if;
+
+ elsif Nkind (Stmt) = N_Object_Renaming_Declaration then
+ Ren_Obj := Find_Renamed_Object (Stmt);
+
+ if Present (Ren_Obj) and then Ren_Obj = Trans_Id then
+ return True;
+ end if;
+ end if;
+
+ Next (Stmt);
+ end loop;
+
+ return False;
+ end Is_Aliased;
+
+ ------------------
+ -- Is_Allocated --
+ ------------------
+
+ function Is_Allocated (Trans_Id : Entity_Id) return Boolean is
+ Expr : constant Node_Id := Expression (Parent (Trans_Id));
+ begin
+ return
+ Is_Access_Type (Etype (Trans_Id))
+ and then Present (Expr)
+ and then Nkind (Expr) = N_Allocator;
+ end Is_Allocated;
+
+ ---------------------------
+ -- Is_Iterated_Container --
+ ---------------------------
+
+ function Is_Iterated_Container
+ (Trans_Id : Entity_Id;
+ First_Stmt : Node_Id) return Boolean
+ is
+ Aspect : Node_Id;
+ Call : Node_Id;
+ Iter : Entity_Id;
+ Param : Node_Id;
+ Stmt : Node_Id;
+ Typ : Entity_Id;
+
+ begin
+ -- It is not possible to iterate over containers in non-Ada 2012 code
+
+ if Ada_Version < Ada_2012 then
+ return False;
+ end if;
+
+ Typ := Etype (Trans_Id);
+
+ -- Handle access type created for secondary stack use
+
+ if Is_Access_Type (Typ) then
+ Typ := Designated_Type (Typ);
+ end if;
+
+ -- Look for aspect Default_Iterator. It may be part of a type
+ -- declaration for a container, or inherited from a base type
+ -- or parent type.
+
+ Aspect := Find_Value_Of_Aspect (Typ, Aspect_Default_Iterator);
+
+ if Present (Aspect) then
+ Iter := Entity (Aspect);
+
+ -- Examine the statements following the container object and
+ -- look for a call to the default iterate routine where the
+ -- first parameter is the transient. Such a call appears as:
+
+ -- It : Access_To_CW_Iterator :=
+ -- Iterate (Tran_Id.all, ...)'reference;
+
+ Stmt := First_Stmt;
+ while Present (Stmt) loop
+
+ -- Detect an object declaration which is initialized by a
+ -- secondary stack function call.
+
+ if Nkind (Stmt) = N_Object_Declaration
+ and then Present (Expression (Stmt))
+ and then Nkind (Expression (Stmt)) = N_Reference
+ and then Nkind (Prefix (Expression (Stmt))) =
+ N_Function_Call
+ then
+ Call := Prefix (Expression (Stmt));
+
+ -- The call must invoke the default iterate routine of
+ -- the container and the transient object must appear as
+ -- the first actual parameter. Skip any calls whose names
+ -- are not entities.
+
+ if Is_Entity_Name (Name (Call))
+ and then Entity (Name (Call)) = Iter
+ and then Present (Parameter_Associations (Call))
+ then
+ Param := First (Parameter_Associations (Call));
+
+ if Nkind (Param) = N_Explicit_Dereference
+ and then Entity (Prefix (Param)) = Trans_Id
+ then
+ return True;
+ end if;
+ end if;
+ end if;
+
+ Next (Stmt);
+ end loop;
+ end if;
+
+ return False;
+ end Is_Iterated_Container;
+
+ -- Start of processing for Is_Finalizable_Transient
+
+ begin
+ -- Handle access types
+
+ if Is_Access_Type (Desig) then
+ Desig := Available_View (Designated_Type (Desig));
+ end if;
+
+ return
+ Ekind_In (Obj_Id, E_Constant, E_Variable)
+ and then Needs_Finalization (Desig)
+ and then Requires_Transient_Scope (Desig)
+ and then Nkind (Rel_Node) /= N_Simple_Return_Statement
+
+ -- Do not consider renamed or 'reference-d transient objects because
+ -- the act of renaming extends the object's lifetime.
+
+ and then not Is_Aliased (Obj_Id, Decl)
+
+ -- Do not consider transient objects allocated on the heap since
+ -- they are attached to a finalization master.
+
+ and then not Is_Allocated (Obj_Id)
+
+ -- If the transient object is a pointer, check that it is not
+ -- initialized by a function which returns a pointer or acts as a
+ -- renaming of another pointer.
+
+ and then
+ (not Is_Access_Type (Obj_Typ)
+ or else not Initialized_By_Access (Obj_Id))
+
+ -- Do not consider transient objects which act as indirect aliases
+ -- of build-in-place function results.
+
+ and then not Initialized_By_Aliased_BIP_Func_Call (Obj_Id)
+
+ -- Do not consider conversions of tags to class-wide types
+
+ and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
+
+ -- Do not consider containers in the context of iterator loops. Such
+ -- transient objects must exist for as long as the loop is around,
+ -- otherwise any operation carried out by the iterator will fail.
+
+ and then not Is_Iterated_Container (Obj_Id, Decl);
+ end Is_Finalizable_Transient;
+
+ ---------------------------------
+ -- Is_Fully_Repped_Tagged_Type --
+ ---------------------------------
+
+ function Is_Fully_Repped_Tagged_Type (T : Entity_Id) return Boolean is
+ U : constant Entity_Id := Underlying_Type (T);
+ Comp : Entity_Id;
+
+ begin
+ if No (U) or else not Is_Tagged_Type (U) then
+ return False;
+ elsif Has_Discriminants (U) then
+ return False;
+ elsif not Has_Specified_Layout (U) then
+ return False;
+ end if;
+
+ -- Here we have a tagged type, see if it has any unlayed out fields
+ -- other than a possible tag and parent fields. If so, we return False.
+
+ Comp := First_Component (U);
+ while Present (Comp) loop
+ if not Is_Tag (Comp)
+ and then Chars (Comp) /= Name_uParent
+ and then No (Component_Clause (Comp))
+ then
+ return False;
+ else
+ Next_Component (Comp);
+ end if;
+ end loop;
+
+ -- All components are layed out
+
+ return True;
+ end Is_Fully_Repped_Tagged_Type;
+
+ ----------------------------------
+ -- Is_Library_Level_Tagged_Type --
+ ----------------------------------
+
+ function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
+ begin
+ return Is_Tagged_Type (Typ) and then Is_Library_Level_Entity (Typ);
+ end Is_Library_Level_Tagged_Type;
+
+ --------------------------
+ -- Is_Non_BIP_Func_Call --
+ --------------------------
+
+ function Is_Non_BIP_Func_Call (Expr : Node_Id) return Boolean is
+ begin
+ -- The expected call is of the format
+ --
+ -- Func_Call'reference
+
+ return
+ Nkind (Expr) = N_Reference
+ and then Nkind (Prefix (Expr)) = N_Function_Call
+ and then not Is_Build_In_Place_Function_Call (Prefix (Expr));
+ end Is_Non_BIP_Func_Call;
+
+ ----------------------------------
+ -- Is_Possibly_Unaligned_Object --
+ ----------------------------------
+
+ function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
+ T : constant Entity_Id := Etype (N);
+
+ begin
+ -- If renamed object, apply test to underlying object
+
+ if Is_Entity_Name (N)
+ and then Is_Object (Entity (N))
+ and then Present (Renamed_Object (Entity (N)))
+ then
+ return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
+ end if;
+
+ -- Tagged and controlled types and aliased types are always aligned, as
+ -- are concurrent types.
+
+ if Is_Aliased (T)
+ or else Has_Controlled_Component (T)
+ or else Is_Concurrent_Type (T)
+ or else Is_Tagged_Type (T)
+ or else Is_Controlled (T)
+ then
+ return False;
+ end if;
+
+ -- If this is an element of a packed array, may be unaligned
+
+ if Is_Ref_To_Bit_Packed_Array (N) then
+ return True;
+ end if;
+
+ -- Case of indexed component reference: test whether prefix is unaligned
+
+ if Nkind (N) = N_Indexed_Component then
+ return Is_Possibly_Unaligned_Object (Prefix (N));
+
+ -- Case of selected component reference
+
+ elsif Nkind (N) = N_Selected_Component then
+ declare
+ P : constant Node_Id := Prefix (N);
+ C : constant Entity_Id := Entity (Selector_Name (N));
+ M : Nat;
+ S : Nat;
+
+ begin
+ -- If component reference is for an array with non-static bounds,
+ -- then it is always aligned: we can only process unaligned arrays
+ -- with static bounds (more precisely compile time known bounds).
+
+ if Is_Array_Type (T)
+ and then not Compile_Time_Known_Bounds (T)
+ then
+ return False;
+ end if;
+
+ -- If component is aliased, it is definitely properly aligned
+
+ if Is_Aliased (C) then
+ return False;
+ end if;
+
+ -- If component is for a type implemented as a scalar, and the
+ -- record is packed, and the component is other than the first
+ -- component of the record, then the component may be unaligned.
+
+ if Is_Packed (Etype (P))
+ and then Represented_As_Scalar (Etype (C))
+ and then First_Entity (Scope (C)) /= C
+ then
+ return True;
+ end if;
+
+ -- Compute maximum possible alignment for T
+
+ -- If alignment is known, then that settles things
+
+ if Known_Alignment (T) then
+ M := UI_To_Int (Alignment (T));
+
+ -- If alignment is not known, tentatively set max alignment
+
+ else
+ M := Ttypes.Maximum_Alignment;
+
+ -- We can reduce this if the Esize is known since the default
+ -- alignment will never be more than the smallest power of 2
+ -- that does not exceed this Esize value.
+
+ if Known_Esize (T) then
+ S := UI_To_Int (Esize (T));
+
+ while (M / 2) >= S loop
+ M := M / 2;
+ end loop;
+ end if;
+ end if;
+
+ -- The following code is historical, it used to be present but it
+ -- is too cautious, because the front-end does not know the proper
+ -- default alignments for the target. Also, if the alignment is
+ -- not known, the front end can't know in any case. If a copy is
+ -- needed, the back-end will take care of it. This whole section
+ -- including this comment can be removed later ???
+
+ -- If the component reference is for a record that has a specified
+ -- alignment, and we either know it is too small, or cannot tell,
+ -- then the component may be unaligned.
+
+ -- What is the following commented out code ???
+
+ -- if Known_Alignment (Etype (P))
+ -- and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
+ -- and then M > Alignment (Etype (P))
+ -- then
+ -- return True;
+ -- end if;
+
+ -- Case of component clause present which may specify an
+ -- unaligned position.
+
+ if Present (Component_Clause (C)) then
+
+ -- Otherwise we can do a test to make sure that the actual
+ -- start position in the record, and the length, are both
+ -- consistent with the required alignment. If not, we know
+ -- that we are unaligned.
+
+ declare
+ Align_In_Bits : constant Nat := M * System_Storage_Unit;
+ begin
+ if Component_Bit_Offset (C) mod Align_In_Bits /= 0
+ or else Esize (C) mod Align_In_Bits /= 0
+ then
+ return True;
+ end if;
+ end;
+ end if;
+
+ -- Otherwise, for a component reference, test prefix
+
+ return Is_Possibly_Unaligned_Object (P);
+ end;
+
+ -- If not a component reference, must be aligned
+
+ else
+ return False;
+ end if;
+ end Is_Possibly_Unaligned_Object;
+
+ ---------------------------------
+ -- Is_Possibly_Unaligned_Slice --
+ ---------------------------------
+
+ function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
+ begin
+ -- Go to renamed object
+
+ if Is_Entity_Name (N)
+ and then Is_Object (Entity (N))
+ and then Present (Renamed_Object (Entity (N)))
+ then
+ return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
+ end if;
+
+ -- The reference must be a slice
+
+ if Nkind (N) /= N_Slice then
+ return False;
+ end if;
+
+ -- Always assume the worst for a nested record component with a
+ -- component clause, which gigi/gcc does not appear to handle well.
+ -- It is not clear why this special test is needed at all ???
+
+ if Nkind (Prefix (N)) = N_Selected_Component
+ and then Nkind (Prefix (Prefix (N))) = N_Selected_Component
+ and then
+ Present (Component_Clause (Entity (Selector_Name (Prefix (N)))))
+ then
+ return True;
+ end if;
+
+ -- We only need to worry if the target has strict alignment
+
+ if not Target_Strict_Alignment then
+ return False;
+ end if;
+
+ -- If it is a slice, then look at the array type being sliced
+
+ declare
+ Sarr : constant Node_Id := Prefix (N);
+ -- Prefix of the slice, i.e. the array being sliced
+
+ Styp : constant Entity_Id := Etype (Prefix (N));
+ -- Type of the array being sliced
+
+ Pref : Node_Id;
+ Ptyp : Entity_Id;
+
+ begin
+ -- The problems arise if the array object that is being sliced
+ -- is a component of a record or array, and we cannot guarantee
+ -- the alignment of the array within its containing object.
+
+ -- To investigate this, we look at successive prefixes to see
+ -- if we have a worrisome indexed or selected component.
+
+ Pref := Sarr;
+ loop
+ -- Case of array is part of an indexed component reference
+
+ if Nkind (Pref) = N_Indexed_Component then
+ Ptyp := Etype (Prefix (Pref));
+
+ -- The only problematic case is when the array is packed, in
+ -- which case we really know nothing about the alignment of
+ -- individual components.
+
+ if Is_Bit_Packed_Array (Ptyp) then
+ return True;
+ end if;
+
+ -- Case of array is part of a selected component reference
+
+ elsif Nkind (Pref) = N_Selected_Component then
+ Ptyp := Etype (Prefix (Pref));
+
+ -- We are definitely in trouble if the record in question
+ -- has an alignment, and either we know this alignment is
+ -- inconsistent with the alignment of the slice, or we don't
+ -- know what the alignment of the slice should be.
+
+ if Known_Alignment (Ptyp)
+ and then (Unknown_Alignment (Styp)
+ or else Alignment (Styp) > Alignment (Ptyp))
+ then
+ return True;
+ end if;
+
+ -- We are in potential trouble if the record type is packed.
+ -- We could special case when we know that the array is the
+ -- first component, but that's not such a simple case ???
+
+ if Is_Packed (Ptyp) then
+ return True;
+ end if;
+
+ -- We are in trouble if there is a component clause, and
+ -- either we do not know the alignment of the slice, or
+ -- the alignment of the slice is inconsistent with the
+ -- bit position specified by the component clause.
+
+ declare
+ Field : constant Entity_Id := Entity (Selector_Name (Pref));
+ begin
+ if Present (Component_Clause (Field))
+ and then
+ (Unknown_Alignment (Styp)
+ or else
+ (Component_Bit_Offset (Field) mod
+ (System_Storage_Unit * Alignment (Styp))) /= 0)
+ then
+ return True;
+ end if;
+ end;
+
+ -- For cases other than selected or indexed components we know we
+ -- are OK, since no issues arise over alignment.
+
+ else
+ return False;
+ end if;
+
+ -- We processed an indexed component or selected component
+ -- reference that looked safe, so keep checking prefixes.
+
+ Pref := Prefix (Pref);
+ end loop;
+ end;
+ end Is_Possibly_Unaligned_Slice;
+
+ -------------------------------
+ -- Is_Related_To_Func_Return --
+ -------------------------------
+
+ function Is_Related_To_Func_Return (Id : Entity_Id) return Boolean is
+ Expr : constant Node_Id := Related_Expression (Id);
+ begin
+ return
+ Present (Expr)
+ and then Nkind (Expr) = N_Explicit_Dereference
+ and then Nkind (Parent (Expr)) = N_Simple_Return_Statement;
+ end Is_Related_To_Func_Return;
+
+ --------------------------------
+ -- Is_Ref_To_Bit_Packed_Array --
+ --------------------------------
+
+ function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
+ Result : Boolean;
+ Expr : Node_Id;
+
+ begin
+ if Is_Entity_Name (N)
+ and then Is_Object (Entity (N))
+ and then Present (Renamed_Object (Entity (N)))
+ then
+ return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
+ end if;
+
+ if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
+ if Is_Bit_Packed_Array (Etype (Prefix (N))) then
+ Result := True;
+ else
+ Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
+ end if;
+
+ if Result and then Nkind (N) = N_Indexed_Component then
+ Expr := First (Expressions (N));
+ while Present (Expr) loop
+ Force_Evaluation (Expr);
+ Next (Expr);
+ end loop;
+ end if;
+
+ return Result;
+
+ else
+ return False;
+ end if;
+ end Is_Ref_To_Bit_Packed_Array;
+
+ --------------------------------
+ -- Is_Ref_To_Bit_Packed_Slice --
+ --------------------------------
+
+ function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
+ begin
+ if Nkind (N) = N_Type_Conversion then
+ return Is_Ref_To_Bit_Packed_Slice (Expression (N));
+
+ elsif Is_Entity_Name (N)
+ and then Is_Object (Entity (N))
+ and then Present (Renamed_Object (Entity (N)))
+ then
+ return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
+
+ elsif Nkind (N) = N_Slice
+ and then Is_Bit_Packed_Array (Etype (Prefix (N)))
+ then
+ return True;
+
+ elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
+ return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
+
+ else
+ return False;
+ end if;
+ end Is_Ref_To_Bit_Packed_Slice;
+
+ -----------------------
+ -- Is_Renamed_Object --
+ -----------------------
+
+ function Is_Renamed_Object (N : Node_Id) return Boolean is
+ Pnod : constant Node_Id := Parent (N);
+ Kind : constant Node_Kind := Nkind (Pnod);
+ begin
+ if Kind = N_Object_Renaming_Declaration then
+ return True;
+ elsif Nkind_In (Kind, N_Indexed_Component, N_Selected_Component) then
+ return Is_Renamed_Object (Pnod);
+ else
+ return False;
+ end if;
+ end Is_Renamed_Object;
+
+ --------------------------------------
+ -- Is_Secondary_Stack_BIP_Func_Call --
+ --------------------------------------
+
+ function Is_Secondary_Stack_BIP_Func_Call (Expr : Node_Id) return Boolean is
+ Call : Node_Id := Expr;
+
+ begin
+ -- Build-in-place calls usually appear in 'reference format. Note that
+ -- the accessibility check machinery may add an extra 'reference due to
+ -- side effect removal.
+
+ while Nkind (Call) = N_Reference loop
+ Call := Prefix (Call);
+ end loop;
+
+ if Nkind_In (Call, N_Qualified_Expression,
+ N_Unchecked_Type_Conversion)
+ then
+ Call := Expression (Call);
+ end if;
+
+ if Is_Build_In_Place_Function_Call (Call) then
+ declare
+ Access_Nam : Name_Id := No_Name;
+ Actual : Node_Id;
+ Param : Node_Id;
+ Formal : Node_Id;
+
+ begin
+ -- Examine all parameter associations of the function call
+
+ Param := First (Parameter_Associations (Call));
+ while Present (Param) loop
+ if Nkind (Param) = N_Parameter_Association
+ and then Nkind (Selector_Name (Param)) = N_Identifier
+ then
+ Formal := Selector_Name (Param);
+ Actual := Explicit_Actual_Parameter (Param);
+
+ -- Construct the name of formal BIPalloc. It is much easier
+ -- to extract the name of the function using an arbitrary
+ -- formal's scope rather than the Name field of Call.
+
+ if Access_Nam = No_Name
+ and then Present (Entity (Formal))
+ then
+ Access_Nam :=
+ New_External_Name
+ (Chars (Scope (Entity (Formal))),
+ BIP_Formal_Suffix (BIP_Alloc_Form));
+ end if;
+
+ -- A match for BIPalloc => 2 has been found
+
+ if Chars (Formal) = Access_Nam
+ and then Nkind (Actual) = N_Integer_Literal
+ and then Intval (Actual) = Uint_2
+ then
+ return True;
+ end if;
+ end if;
+
+ Next (Param);
+ end loop;
+ end;
+ end if;
+
+ return False;
+ end Is_Secondary_Stack_BIP_Func_Call;
+
+ -------------------------------------
+ -- Is_Tag_To_Class_Wide_Conversion --
+ -------------------------------------
+
+ function Is_Tag_To_Class_Wide_Conversion
+ (Obj_Id : Entity_Id) return Boolean
+ is
+ Expr : constant Node_Id := Expression (Parent (Obj_Id));
+
+ begin
+ return
+ Is_Class_Wide_Type (Etype (Obj_Id))
+ and then Present (Expr)
+ and then Nkind (Expr) = N_Unchecked_Type_Conversion
+ and then Etype (Expression (Expr)) = RTE (RE_Tag);
+ end Is_Tag_To_Class_Wide_Conversion;
+
+ ----------------------------
+ -- Is_Untagged_Derivation --
+ ----------------------------
+
+ function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
+ begin
+ return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
+ or else
+ (Is_Private_Type (T) and then Present (Full_View (T))
+ and then not Is_Tagged_Type (Full_View (T))
+ and then Is_Derived_Type (Full_View (T))
+ and then Etype (Full_View (T)) /= T);
+ end Is_Untagged_Derivation;
+
+ ---------------------------
+ -- Is_Volatile_Reference --
+ ---------------------------
+
+ function Is_Volatile_Reference (N : Node_Id) return Boolean is
+ begin
+ if Nkind (N) in N_Has_Etype
+ and then Present (Etype (N))
+ and then Treat_As_Volatile (Etype (N))
+ then
+ return True;
+
+ elsif Is_Entity_Name (N) then
+ return Treat_As_Volatile (Entity (N));
+
+ elsif Nkind (N) = N_Slice then
+ return Is_Volatile_Reference (Prefix (N));
+
+ elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
+ if (Is_Entity_Name (Prefix (N))
+ and then Has_Volatile_Components (Entity (Prefix (N))))
+ or else (Present (Etype (Prefix (N)))
+ and then Has_Volatile_Components (Etype (Prefix (N))))
+ then
+ return True;
+ else
+ return Is_Volatile_Reference (Prefix (N));
+ end if;
+
+ else
+ return False;
+ end if;
+ end Is_Volatile_Reference;
+
+ --------------------------
+ -- Is_VM_By_Copy_Actual --
+ --------------------------
+
+ function Is_VM_By_Copy_Actual (N : Node_Id) return Boolean is
+ begin
+ return VM_Target /= No_VM
+ and then (Nkind (N) = N_Slice
+ or else
+ (Nkind (N) = N_Identifier
+ and then Present (Renamed_Object (Entity (N)))
+ and then Nkind (Renamed_Object (Entity (N))) =
+ N_Slice));
+ end Is_VM_By_Copy_Actual;
+
+ --------------------
+ -- Kill_Dead_Code --
+ --------------------
+
+ procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
+ W : Boolean := Warn;
+ -- Set False if warnings suppressed
+
+ begin
+ if Present (N) then
+ Remove_Warning_Messages (N);
+
+ -- Generate warning if appropriate
+
+ if W then
+
+ -- We suppress the warning if this code is under control of an
+ -- if statement, whose condition is a simple identifier, and
+ -- either we are in an instance, or warnings off is set for this
+ -- identifier. The reason for killing it in the instance case is
+ -- that it is common and reasonable for code to be deleted in
+ -- instances for various reasons.
+
+ if Nkind (Parent (N)) = N_If_Statement then
+ declare
+ C : constant Node_Id := Condition (Parent (N));
+ begin
+ if Nkind (C) = N_Identifier
+ and then
+ (In_Instance
+ or else (Present (Entity (C))
+ and then Has_Warnings_Off (Entity (C))))
+ then
+ W := False;
+ end if;
+ end;
+ end if;
+
+ -- Generate warning if not suppressed
+
+ if W then
+ Error_Msg_F
+ ("?t?this code can never be executed and has been deleted!",
+ N);
+ end if;
+ end if;
+
+ -- Recurse into block statements and bodies to process declarations
+ -- and statements.
+
+ if Nkind (N) = N_Block_Statement
+ or else Nkind (N) = N_Subprogram_Body
+ or else Nkind (N) = N_Package_Body
+ then
+ Kill_Dead_Code (Declarations (N), False);
+ Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
+
+ if Nkind (N) = N_Subprogram_Body then
+ Set_Is_Eliminated (Defining_Entity (N));
+ end if;
+
+ elsif Nkind (N) = N_Package_Declaration then
+ Kill_Dead_Code (Visible_Declarations (Specification (N)));
+ Kill_Dead_Code (Private_Declarations (Specification (N)));
+
+ -- ??? After this point, Delete_Tree has been called on all
+ -- declarations in Specification (N), so references to entities
+ -- therein look suspicious.
+
+ declare
+ E : Entity_Id := First_Entity (Defining_Entity (N));
+ begin
+ while Present (E) loop
+ if Ekind (E) = E_Operator then
+ Set_Is_Eliminated (E);
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end;
+
+ -- Recurse into composite statement to kill individual statements in
+ -- particular instantiations.
+
+ elsif Nkind (N) = N_If_Statement then
+ Kill_Dead_Code (Then_Statements (N));
+ Kill_Dead_Code (Elsif_Parts (N));
+ Kill_Dead_Code (Else_Statements (N));
+
+ elsif Nkind (N) = N_Loop_Statement then
+ Kill_Dead_Code (Statements (N));
+
+ elsif Nkind (N) = N_Case_Statement then
+ declare
+ Alt : Node_Id;
+ begin
+ Alt := First (Alternatives (N));
+ while Present (Alt) loop
+ Kill_Dead_Code (Statements (Alt));
+ Next (Alt);
+ end loop;
+ end;
+
+ elsif Nkind (N) = N_Case_Statement_Alternative then
+ Kill_Dead_Code (Statements (N));
+
+ -- Deal with dead instances caused by deleting instantiations
+
+ elsif Nkind (N) in N_Generic_Instantiation then
+ Remove_Dead_Instance (N);
+ end if;
+ end if;
+ end Kill_Dead_Code;
+
+ -- Case where argument is a list of nodes to be killed
+
+ procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
+ N : Node_Id;
+ W : Boolean;
+ begin
+ W := Warn;
+ if Is_Non_Empty_List (L) then
+ N := First (L);
+ while Present (N) loop
+ Kill_Dead_Code (N, W);
+ W := False;
+ Next (N);
+ end loop;
+ end if;
+ end Kill_Dead_Code;
+
+ ------------------------
+ -- Known_Non_Negative --
+ ------------------------
+
+ function Known_Non_Negative (Opnd : Node_Id) return Boolean is
+ begin
+ if Is_OK_Static_Expression (Opnd) and then Expr_Value (Opnd) >= 0 then
+ return True;
+
+ else
+ declare
+ Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
+ begin
+ return
+ Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
+ end;
+ end if;
+ end Known_Non_Negative;
+
+ --------------------
+ -- Known_Non_Null --
+ --------------------
+
+ function Known_Non_Null (N : Node_Id) return Boolean is
+ begin
+ -- Checks for case where N is an entity reference
+
+ if Is_Entity_Name (N) and then Present (Entity (N)) then
+ declare
+ E : constant Entity_Id := Entity (N);
+ Op : Node_Kind;
+ Val : Node_Id;
+
+ begin
+ -- First check if we are in decisive conditional
+
+ Get_Current_Value_Condition (N, Op, Val);
+
+ if Known_Null (Val) then
+ if Op = N_Op_Eq then
+ return False;
+ elsif Op = N_Op_Ne then
+ return True;
+ end if;
+ end if;
+
+ -- If OK to do replacement, test Is_Known_Non_Null flag
+
+ if OK_To_Do_Constant_Replacement (E) then
+ return Is_Known_Non_Null (E);
+
+ -- Otherwise if not safe to do replacement, then say so
+
+ else
+ return False;
+ end if;
+ end;
+
+ -- True if access attribute
+
+ elsif Nkind (N) = N_Attribute_Reference
+ and then Nam_In (Attribute_Name (N), Name_Access,
+ Name_Unchecked_Access,
+ Name_Unrestricted_Access)
+ then
+ return True;
+
+ -- True if allocator
+
+ elsif Nkind (N) = N_Allocator then
+ return True;
+
+ -- For a conversion, true if expression is known non-null
+
+ elsif Nkind (N) = N_Type_Conversion then
+ return Known_Non_Null (Expression (N));
+
+ -- Above are all cases where the value could be determined to be
+ -- non-null. In all other cases, we don't know, so return False.
+
+ else
+ return False;
+ end if;
+ end Known_Non_Null;
+
+ ----------------
+ -- Known_Null --
+ ----------------
+
+ function Known_Null (N : Node_Id) return Boolean is
+ begin
+ -- Checks for case where N is an entity reference
+
+ if Is_Entity_Name (N) and then Present (Entity (N)) then
+ declare
+ E : constant Entity_Id := Entity (N);
+ Op : Node_Kind;
+ Val : Node_Id;
+
+ begin
+ -- Constant null value is for sure null
+
+ if Ekind (E) = E_Constant
+ and then Known_Null (Constant_Value (E))
+ then
+ return True;
+ end if;
+
+ -- First check if we are in decisive conditional
+
+ Get_Current_Value_Condition (N, Op, Val);
+
+ if Known_Null (Val) then
+ if Op = N_Op_Eq then
+ return True;
+ elsif Op = N_Op_Ne then
+ return False;
+ end if;
+ end if;
+
+ -- If OK to do replacement, test Is_Known_Null flag
+
+ if OK_To_Do_Constant_Replacement (E) then
+ return Is_Known_Null (E);
+
+ -- Otherwise if not safe to do replacement, then say so
+
+ else
+ return False;
+ end if;
+ end;
+
+ -- True if explicit reference to null
+
+ elsif Nkind (N) = N_Null then
+ return True;
+
+ -- For a conversion, true if expression is known null
+
+ elsif Nkind (N) = N_Type_Conversion then
+ return Known_Null (Expression (N));
+
+ -- Above are all cases where the value could be determined to be null.
+ -- In all other cases, we don't know, so return False.
+
+ else
+ return False;
+ end if;
+ end Known_Null;
+
+ -----------------------------
+ -- Make_CW_Equivalent_Type --
+ -----------------------------
+
+ -- Create a record type used as an equivalent of any member of the class
+ -- which takes its size from exp.
+
+ -- Generate the following code:
+
+ -- type Equiv_T is record
+ -- _parent : T (List of discriminant constraints taken from Exp);
+ -- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
+ -- end Equiv_T;
+ --
+ -- ??? Note that this type does not guarantee same alignment as all
+ -- derived types
+
+ function Make_CW_Equivalent_Type
+ (T : Entity_Id;
+ E : Node_Id) return Entity_Id
+ is
+ Loc : constant Source_Ptr := Sloc (E);
+ Root_Typ : constant Entity_Id := Root_Type (T);
+ List_Def : constant List_Id := Empty_List;
+ Comp_List : constant List_Id := New_List;
+ Equiv_Type : Entity_Id;
+ Range_Type : Entity_Id;
+ Str_Type : Entity_Id;
+ Constr_Root : Entity_Id;
+ Sizexpr : Node_Id;
+
+ begin
+ -- If the root type is already constrained, there are no discriminants
+ -- in the expression.
+
+ if not Has_Discriminants (Root_Typ)
+ or else Is_Constrained (Root_Typ)
+ then
+ Constr_Root := Root_Typ;
+ else
+ Constr_Root := Make_Temporary (Loc, 'R');
+
+ -- subtype cstr__n is T (List of discr constraints taken from Exp)
+
+ Append_To (List_Def,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Constr_Root,
+ Subtype_Indication => Make_Subtype_From_Expr (E, Root_Typ)));
+ end if;
+
+ -- Generate the range subtype declaration
+
+ Range_Type := Make_Temporary (Loc, 'G');
+
+ if not Is_Interface (Root_Typ) then
+
+ -- subtype rg__xx is
+ -- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
+
+ Sizexpr :=
+ Make_Op_Subtract (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
+ Attribute_Name => Name_Size),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Constr_Root, Loc),
+ Attribute_Name => Name_Object_Size));
+ else
+ -- subtype rg__xx is
+ -- Storage_Offset range 1 .. Expr'size / Storage_Unit
+
+ Sizexpr :=
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
+ Attribute_Name => Name_Size);
+ end if;
+
+ Set_Paren_Count (Sizexpr, 1);
+
+ Append_To (List_Def,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Range_Type,
+ Subtype_Indication =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Offset), Loc),
+ Constraint => Make_Range_Constraint (Loc,
+ Range_Expression =>
+ Make_Range (Loc,
+ Low_Bound => Make_Integer_Literal (Loc, 1),
+ High_Bound =>
+ Make_Op_Divide (Loc,
+ Left_Opnd => Sizexpr,
+ Right_Opnd => Make_Integer_Literal (Loc,
+ Intval => System_Storage_Unit)))))));
+
+ -- subtype str__nn is Storage_Array (rg__x);
+
+ Str_Type := Make_Temporary (Loc, 'S');
+ Append_To (List_Def,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Str_Type,
+ Subtype_Indication =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Array), Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints =>
+ New_List (New_Occurrence_Of (Range_Type, Loc))))));
+
+ -- type Equiv_T is record
+ -- [ _parent : Tnn; ]
+ -- E : Str_Type;
+ -- end Equiv_T;
+
+ Equiv_Type := Make_Temporary (Loc, 'T');
+ Set_Ekind (Equiv_Type, E_Record_Type);
+ Set_Parent_Subtype (Equiv_Type, Constr_Root);
+
+ -- Set Is_Class_Wide_Equivalent_Type very early to trigger the special
+ -- treatment for this type. In particular, even though _parent's type
+ -- is a controlled type or contains controlled components, we do not
+ -- want to set Has_Controlled_Component on it to avoid making it gain
+ -- an unwanted _controller component.
+
+ Set_Is_Class_Wide_Equivalent_Type (Equiv_Type);
+
+ if not Is_Interface (Root_Typ) then
+ Append_To (Comp_List,
+ Make_Component_Declaration (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_uParent),
+ Component_Definition =>
+ Make_Component_Definition (Loc,
+ Aliased_Present => False,
+ Subtype_Indication => New_Occurrence_Of (Constr_Root, Loc))));
+ end if;
+
+ Append_To (Comp_List,
+ Make_Component_Declaration (Loc,
+ Defining_Identifier => Make_Temporary (Loc, 'C'),
+ Component_Definition =>
+ Make_Component_Definition (Loc,
+ Aliased_Present => False,
+ Subtype_Indication => New_Occurrence_Of (Str_Type, Loc))));
+
+ Append_To (List_Def,
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => Equiv_Type,
+ Type_Definition =>
+ Make_Record_Definition (Loc,
+ Component_List =>
+ Make_Component_List (Loc,
+ Component_Items => Comp_List,
+ Variant_Part => Empty))));
+
+ -- Suppress all checks during the analysis of the expanded code to avoid
+ -- the generation of spurious warnings under ZFP run-time.
+
+ Insert_Actions (E, List_Def, Suppress => All_Checks);
+ return Equiv_Type;
+ end Make_CW_Equivalent_Type;
+
+ -------------------------
+ -- Make_Invariant_Call --
+ -------------------------
+
+ function Make_Invariant_Call (Expr : Node_Id) return Node_Id is
+ Loc : constant Source_Ptr := Sloc (Expr);
+ Typ : Entity_Id;
+
+ begin
+ Typ := Etype (Expr);
+
+ -- Subtypes may be subject to invariants coming from their respective
+ -- base types. The subtype may be fully or partially private.
+
+ if Ekind_In (Typ, E_Array_Subtype,
+ E_Private_Subtype,
+ E_Record_Subtype,
+ E_Record_Subtype_With_Private)
+ then
+ Typ := Base_Type (Typ);
+ end if;
+
+ pragma Assert
+ (Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)));
+
+ return
+ Make_Procedure_Call_Statement (Loc,
+ Name =>
+ New_Occurrence_Of (Invariant_Procedure (Typ), Loc),
+ Parameter_Associations => New_List (Relocate_Node (Expr)));
+ end Make_Invariant_Call;
+
+ ------------------------
+ -- Make_Literal_Range --
+ ------------------------
+
+ function Make_Literal_Range
+ (Loc : Source_Ptr;
+ Literal_Typ : Entity_Id) return Node_Id
+ is
+ Lo : constant Node_Id :=
+ New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
+ Index : constant Entity_Id := Etype (Lo);
+
+ Hi : Node_Id;
+ Length_Expr : constant Node_Id :=
+ Make_Op_Subtract (Loc,
+ Left_Opnd =>
+ Make_Integer_Literal (Loc,
+ Intval => String_Literal_Length (Literal_Typ)),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc, 1));
+
+ begin
+ Set_Analyzed (Lo, False);
+
+ if Is_Integer_Type (Index) then
+ Hi :=
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Copy_Tree (Lo),
+ Right_Opnd => Length_Expr);
+ else
+ Hi :=
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Val,
+ Prefix => New_Occurrence_Of (Index, Loc),
+ Expressions => New_List (
+ Make_Op_Add (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Pos,
+ Prefix => New_Occurrence_Of (Index, Loc),
+ Expressions => New_List (New_Copy_Tree (Lo))),
+ Right_Opnd => Length_Expr)));
+ end if;
+
+ return
+ Make_Range (Loc,
+ Low_Bound => Lo,
+ High_Bound => Hi);
+ end Make_Literal_Range;
+
+ --------------------------
+ -- Make_Non_Empty_Check --
+ --------------------------
+
+ function Make_Non_Empty_Check
+ (Loc : Source_Ptr;
+ N : Node_Id) return Node_Id
+ is
+ begin
+ return
+ Make_Op_Ne (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix => Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc, 0));
+ end Make_Non_Empty_Check;
+
+ -------------------------
+ -- Make_Predicate_Call --
+ -------------------------
+
+ function Make_Predicate_Call
+ (Typ : Entity_Id;
+ Expr : Node_Id;
+ Mem : Boolean := False) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (Expr);
+
+ begin
+ pragma Assert (Present (Predicate_Function (Typ)));
+
+ -- Call special membership version if requested and available
+
+ if Mem then
+ declare
+ PFM : constant Entity_Id := Predicate_Function_M (Typ);
+ begin
+ if Present (PFM) then
+ return
+ Make_Function_Call (Loc,
+ Name => New_Occurrence_Of (PFM, Loc),
+ Parameter_Associations => New_List (Relocate_Node (Expr)));
+ end if;
+ end;
+ end if;
+
+ -- Case of calling normal predicate function
+
+ return
+ Make_Function_Call (Loc,
+ Name =>
+ New_Occurrence_Of (Predicate_Function (Typ), Loc),
+ Parameter_Associations => New_List (Relocate_Node (Expr)));
+ end Make_Predicate_Call;
+
+ --------------------------
+ -- Make_Predicate_Check --
+ --------------------------
+
+ function Make_Predicate_Check
+ (Typ : Entity_Id;
+ Expr : Node_Id) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (Expr);
+ Nam : Name_Id;
+
+ begin
+ -- If predicate checks are suppressed, then return a null statement.
+ -- For this call, we check only the scope setting. If the caller wants
+ -- to check a specific entity's setting, they must do it manually.
+
+ if Predicate_Checks_Suppressed (Empty) then
+ return Make_Null_Statement (Loc);
+ end if;
+
+ -- Do not generate a check within an internal subprogram (stream
+ -- functions and the like, including including predicate functions).
+
+ if Within_Internal_Subprogram then
+ return Make_Null_Statement (Loc);
+ end if;
+
+ -- Compute proper name to use, we need to get this right so that the
+ -- right set of check policies apply to the Check pragma we are making.
+
+ if Has_Dynamic_Predicate_Aspect (Typ) then
+ Nam := Name_Dynamic_Predicate;
+ elsif Has_Static_Predicate_Aspect (Typ) then
+ Nam := Name_Static_Predicate;
+ else
+ Nam := Name_Predicate;
+ end if;
+
+ return
+ Make_Pragma (Loc,
+ Pragma_Identifier => Make_Identifier (Loc, Name_Check),
+ Pragma_Argument_Associations => New_List (
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Make_Identifier (Loc, Nam)),
+ Make_Pragma_Argument_Association (Loc,
+ Expression => Make_Predicate_Call (Typ, Expr))));
+ end Make_Predicate_Check;
+
+ ----------------------------
+ -- Make_Subtype_From_Expr --
+ ----------------------------
+
+ -- 1. If Expr is an unconstrained array expression, creates
+ -- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
+
+ -- 2. If Expr is a unconstrained discriminated type expression, creates
+ -- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
+
+ -- 3. If Expr is class-wide, creates an implicit class wide subtype
+
+ function Make_Subtype_From_Expr
+ (E : Node_Id;
+ Unc_Typ : Entity_Id) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (E);
+ List_Constr : constant List_Id := New_List;
+ D : Entity_Id;
+
+ Full_Subtyp : Entity_Id;
+ Priv_Subtyp : Entity_Id;
+ Utyp : Entity_Id;
+ Full_Exp : Node_Id;
+
+ begin
+ if Is_Private_Type (Unc_Typ)
+ and then Has_Unknown_Discriminants (Unc_Typ)
+ then
+ -- Prepare the subtype completion, Go to base type to
+ -- find underlying type, because the type may be a generic
+ -- actual or an explicit subtype.
+
+ Utyp := Underlying_Type (Base_Type (Unc_Typ));
+ Full_Subtyp := Make_Temporary (Loc, 'C');
+ Full_Exp :=
+ Unchecked_Convert_To (Utyp, Duplicate_Subexpr_No_Checks (E));
+ Set_Parent (Full_Exp, Parent (E));
+
+ Priv_Subtyp := Make_Temporary (Loc, 'P');
+
+ Insert_Action (E,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Full_Subtyp,
+ Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
+
+ -- Define the dummy private subtype
+
+ Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
+ Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
+ Set_Scope (Priv_Subtyp, Full_Subtyp);
+ Set_Is_Constrained (Priv_Subtyp);
+ Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
+ Set_Is_Itype (Priv_Subtyp);
+ Set_Associated_Node_For_Itype (Priv_Subtyp, E);
+
+ if Is_Tagged_Type (Priv_Subtyp) then
+ Set_Class_Wide_Type
+ (Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
+ Set_Direct_Primitive_Operations (Priv_Subtyp,
+ Direct_Primitive_Operations (Unc_Typ));
+ end if;
+
+ Set_Full_View (Priv_Subtyp, Full_Subtyp);
+
+ return New_Occurrence_Of (Priv_Subtyp, Loc);
+
+ elsif Is_Array_Type (Unc_Typ) then
+ for J in 1 .. Number_Dimensions (Unc_Typ) loop
+ Append_To (List_Constr,
+ Make_Range (Loc,
+ Low_Bound =>
+ Make_Attribute_Reference (Loc,
+ Prefix => Duplicate_Subexpr_No_Checks (E),
+ Attribute_Name => Name_First,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, J))),
+
+ High_Bound =>
+ Make_Attribute_Reference (Loc,
+ Prefix => Duplicate_Subexpr_No_Checks (E),
+ Attribute_Name => Name_Last,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, J)))));
+ end loop;
+
+ elsif Is_Class_Wide_Type (Unc_Typ) then
+ declare
+ CW_Subtype : Entity_Id;
+ EQ_Typ : Entity_Id := Empty;
+
+ begin
+ -- A class-wide equivalent type is not needed when VM_Target
+ -- because the VM back-ends handle the class-wide object
+ -- initialization itself (and doesn't need or want the
+ -- additional intermediate type to handle the assignment).
+
+ if Expander_Active and then Tagged_Type_Expansion then
+
+ -- If this is the class_wide type of a completion that is a
+ -- record subtype, set the type of the class_wide type to be
+ -- the full base type, for use in the expanded code for the
+ -- equivalent type. Should this be done earlier when the
+ -- completion is analyzed ???
+
+ if Is_Private_Type (Etype (Unc_Typ))
+ and then
+ Ekind (Full_View (Etype (Unc_Typ))) = E_Record_Subtype
+ then
+ Set_Etype (Unc_Typ, Base_Type (Full_View (Etype (Unc_Typ))));
+ end if;
+
+ EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
+ end if;
+
+ CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
+ Set_Equivalent_Type (CW_Subtype, EQ_Typ);
+ Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
+
+ return New_Occurrence_Of (CW_Subtype, Loc);
+ end;
+
+ -- Indefinite record type with discriminants
+
+ else
+ D := First_Discriminant (Unc_Typ);
+ while Present (D) loop
+ Append_To (List_Constr,
+ Make_Selected_Component (Loc,
+ Prefix => Duplicate_Subexpr_No_Checks (E),
+ Selector_Name => New_Occurrence_Of (D, Loc)));
+
+ Next_Discriminant (D);
+ end loop;
+ end if;
+
+ return
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Occurrence_Of (Unc_Typ, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => List_Constr));
+ end Make_Subtype_From_Expr;
+
+ ----------------------------
+ -- Matching_Standard_Type --
+ ----------------------------
+
+ function Matching_Standard_Type (Typ : Entity_Id) return Entity_Id is
+ pragma Assert (Is_Scalar_Type (Typ));
+ Siz : constant Uint := Esize (Typ);
+
+ begin
+ -- Floating-point cases
+
+ if Is_Floating_Point_Type (Typ) then
+ if Siz <= Esize (Standard_Short_Float) then
+ return Standard_Short_Float;
+ elsif Siz <= Esize (Standard_Float) then
+ return Standard_Float;
+ elsif Siz <= Esize (Standard_Long_Float) then
+ return Standard_Long_Float;
+ elsif Siz <= Esize (Standard_Long_Long_Float) then
+ return Standard_Long_Long_Float;
+ else
+ raise Program_Error;
+ end if;
+
+ -- Integer cases (includes fixed-point types)
+
+ -- Unsigned integer cases (includes normal enumeration types)
+
+ elsif Is_Unsigned_Type (Typ) then
+ if Siz <= Esize (Standard_Short_Short_Unsigned) then
+ return Standard_Short_Short_Unsigned;
+ elsif Siz <= Esize (Standard_Short_Unsigned) then
+ return Standard_Short_Unsigned;
+ elsif Siz <= Esize (Standard_Unsigned) then
+ return Standard_Unsigned;
+ elsif Siz <= Esize (Standard_Long_Unsigned) then
+ return Standard_Long_Unsigned;
+ elsif Siz <= Esize (Standard_Long_Long_Unsigned) then
+ return Standard_Long_Long_Unsigned;
+ else
+ raise Program_Error;
+ end if;
+
+ -- Signed integer cases
+
+ else
+ if Siz <= Esize (Standard_Short_Short_Integer) then
+ return Standard_Short_Short_Integer;
+ elsif Siz <= Esize (Standard_Short_Integer) then
+ return Standard_Short_Integer;
+ elsif Siz <= Esize (Standard_Integer) then
+ return Standard_Integer;
+ elsif Siz <= Esize (Standard_Long_Integer) then
+ return Standard_Long_Integer;
+ elsif Siz <= Esize (Standard_Long_Long_Integer) then
+ return Standard_Long_Long_Integer;
+ else
+ raise Program_Error;
+ end if;
+ end if;
+ end Matching_Standard_Type;
+
+ -----------------------------
+ -- May_Generate_Large_Temp --
+ -----------------------------
+
+ -- At the current time, the only types that we return False for (i.e. where
+ -- we decide we know they cannot generate large temps) are ones where we
+ -- know the size is 256 bits or less at compile time, and we are still not
+ -- doing a thorough job on arrays and records ???
+
+ function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
+ begin
+ if not Size_Known_At_Compile_Time (Typ) then
+ return False;
+
+ elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
+ return False;
+
+ elsif Is_Array_Type (Typ) and then Present (Packed_Array_Type (Typ)) then
+ return May_Generate_Large_Temp (Packed_Array_Type (Typ));
+
+ -- We could do more here to find other small types ???
+
+ else
+ return True;
+ end if;
+ end May_Generate_Large_Temp;
+
+ ------------------------
+ -- Needs_Finalization --
+ ------------------------
+
+ function Needs_Finalization (T : Entity_Id) return Boolean is
+ function Has_Some_Controlled_Component (Rec : Entity_Id) return Boolean;
+ -- If type is not frozen yet, check explicitly among its components,
+ -- because the Has_Controlled_Component flag is not necessarily set.
+
+ -----------------------------------
+ -- Has_Some_Controlled_Component --
+ -----------------------------------
+
+ function Has_Some_Controlled_Component
+ (Rec : Entity_Id) return Boolean
+ is
+ Comp : Entity_Id;
+
+ begin
+ if Has_Controlled_Component (Rec) then
+ return True;
+
+ elsif not Is_Frozen (Rec) then
+ if Is_Record_Type (Rec) then
+ Comp := First_Entity (Rec);
+
+ while Present (Comp) loop
+ if not Is_Type (Comp)
+ and then Needs_Finalization (Etype (Comp))
+ then
+ return True;
+ end if;
+
+ Next_Entity (Comp);
+ end loop;
+
+ return False;
+
+ elsif Is_Array_Type (Rec) then
+ return Needs_Finalization (Component_Type (Rec));
+
+ else
+ return Has_Controlled_Component (Rec);
+ end if;
+ else
+ return False;
+ end if;
+ end Has_Some_Controlled_Component;
+
+ -- Start of processing for Needs_Finalization
+
+ begin
+ -- Certain run-time configurations and targets do not provide support
+ -- for controlled types.
+
+ if Restriction_Active (No_Finalization) then
+ return False;
+
+ -- C, C++, CIL and Java types are not considered controlled. It is
+ -- assumed that the non-Ada side will handle their clean up.
+
+ elsif Convention (T) = Convention_C
+ or else Convention (T) = Convention_CIL
+ or else Convention (T) = Convention_CPP
+ or else Convention (T) = Convention_Java
+ then
+ return False;
+
+ else
+ -- Class-wide types are treated as controlled because derivations
+ -- from the root type can introduce controlled components.
+
+ return
+ Is_Class_Wide_Type (T)
+ or else Is_Controlled (T)
+ or else Has_Controlled_Component (T)
+ or else Has_Some_Controlled_Component (T)
+ or else
+ (Is_Concurrent_Type (T)
+ and then Present (Corresponding_Record_Type (T))
+ and then Needs_Finalization (Corresponding_Record_Type (T)));
+ end if;
+ end Needs_Finalization;
+
+ ----------------------------
+ -- Needs_Constant_Address --
+ ----------------------------
+
+ function Needs_Constant_Address
+ (Decl : Node_Id;
+ Typ : Entity_Id) return Boolean
+ is
+ begin
+
+ -- If we have no initialization of any kind, then we don't need to place
+ -- any restrictions on the address clause, because the object will be
+ -- elaborated after the address clause is evaluated. This happens if the
+ -- declaration has no initial expression, or the type has no implicit
+ -- initialization, or the object is imported.
+
+ -- The same holds for all initialized scalar types and all access types.
+ -- Packed bit arrays of size up to 64 are represented using a modular
+ -- type with an initialization (to zero) and can be processed like other
+ -- initialized scalar types.
+
+ -- If the type is controlled, code to attach the object to a
+ -- finalization chain is generated at the point of declaration, and
+ -- therefore the elaboration of the object cannot be delayed: the
+ -- address expression must be a constant.
+
+ if No (Expression (Decl))
+ and then not Needs_Finalization (Typ)
+ and then
+ (not Has_Non_Null_Base_Init_Proc (Typ)
+ or else Is_Imported (Defining_Identifier (Decl)))
+ then
+ return False;
+
+ elsif (Present (Expression (Decl)) and then Is_Scalar_Type (Typ))
+ or else Is_Access_Type (Typ)
+ or else
+ (Is_Bit_Packed_Array (Typ)
+ and then Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
+ then
+ return False;
+
+ else
+
+ -- Otherwise, we require the address clause to be constant because
+ -- the call to the initialization procedure (or the attach code) has
+ -- to happen at the point of the declaration.
+
+ -- Actually the IP call has been moved to the freeze actions anyway,
+ -- so maybe we can relax this restriction???
+
+ return True;
+ end if;
+ end Needs_Constant_Address;
+
+ ----------------------------
+ -- New_Class_Wide_Subtype --
+ ----------------------------
+
+ function New_Class_Wide_Subtype
+ (CW_Typ : Entity_Id;
+ N : Node_Id) return Entity_Id
+ is
+ Res : constant Entity_Id := Create_Itype (E_Void, N);
+ Res_Name : constant Name_Id := Chars (Res);
+ Res_Scope : constant Entity_Id := Scope (Res);
+
+ begin
+ Copy_Node (CW_Typ, Res);
+ Set_Comes_From_Source (Res, False);
+ Set_Sloc (Res, Sloc (N));
+ Set_Is_Itype (Res);
+ Set_Associated_Node_For_Itype (Res, N);
+ Set_Is_Public (Res, False); -- By default, may be changed below.
+ Set_Public_Status (Res);
+ Set_Chars (Res, Res_Name);
+ Set_Scope (Res, Res_Scope);
+ Set_Ekind (Res, E_Class_Wide_Subtype);
+ Set_Next_Entity (Res, Empty);
+ Set_Etype (Res, Base_Type (CW_Typ));
+ Set_Is_Frozen (Res, False);
+ Set_Freeze_Node (Res, Empty);
+ return (Res);
+ end New_Class_Wide_Subtype;
+
+ --------------------------------
+ -- Non_Limited_Designated_Type --
+ ---------------------------------
+
+ function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is
+ Desig : constant Entity_Id := Designated_Type (T);
+ begin
+ if Ekind (Desig) = E_Incomplete_Type
+ and then Present (Non_Limited_View (Desig))
+ then
+ return Non_Limited_View (Desig);
+ else
+ return Desig;
+ end if;
+ end Non_Limited_Designated_Type;
+
+ -----------------------------------
+ -- OK_To_Do_Constant_Replacement --
+ -----------------------------------
+
+ function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
+ ES : constant Entity_Id := Scope (E);
+ CS : Entity_Id;
+
+ begin
+ -- Do not replace statically allocated objects, because they may be
+ -- modified outside the current scope.
+
+ if Is_Statically_Allocated (E) then
+ return False;
+
+ -- Do not replace aliased or volatile objects, since we don't know what
+ -- else might change the value.
+
+ elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
+ return False;
+
+ -- Debug flag -gnatdM disconnects this optimization
+
+ elsif Debug_Flag_MM then
+ return False;
+
+ -- Otherwise check scopes
+
+ else
+ CS := Current_Scope;
+
+ loop
+ -- If we are in right scope, replacement is safe
+
+ if CS = ES then
+ return True;
+
+ -- Packages do not affect the determination of safety
+
+ elsif Ekind (CS) = E_Package then
+ exit when CS = Standard_Standard;
+ CS := Scope (CS);
+
+ -- Blocks do not affect the determination of safety
+
+ elsif Ekind (CS) = E_Block then
+ CS := Scope (CS);
+
+ -- Loops do not affect the determination of safety. Note that we
+ -- kill all current values on entry to a loop, so we are just
+ -- talking about processing within a loop here.
+
+ elsif Ekind (CS) = E_Loop then
+ CS := Scope (CS);
+
+ -- Otherwise, the reference is dubious, and we cannot be sure that
+ -- it is safe to do the replacement.
+
+ else
+ exit;
+ end if;
+ end loop;
+
+ return False;
+ end if;
+ end OK_To_Do_Constant_Replacement;
+
+ ------------------------------------
+ -- Possible_Bit_Aligned_Component --
+ ------------------------------------
+
+ function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
+ begin
+ case Nkind (N) is
+
+ -- Case of indexed component
+
+ when N_Indexed_Component =>
+ declare
+ P : constant Node_Id := Prefix (N);
+ Ptyp : constant Entity_Id := Etype (P);
+
+ begin
+ -- If we know the component size and it is less than 64, then
+ -- we are definitely OK. The back end always does assignment of
+ -- misaligned small objects correctly.
+
+ if Known_Static_Component_Size (Ptyp)
+ and then Component_Size (Ptyp) <= 64
+ then
+ return False;
+
+ -- Otherwise, we need to test the prefix, to see if we are
+ -- indexing from a possibly unaligned component.
+
+ else
+ return Possible_Bit_Aligned_Component (P);
+ end if;
+ end;
+
+ -- Case of selected component
+
+ when N_Selected_Component =>
+ declare
+ P : constant Node_Id := Prefix (N);
+ Comp : constant Entity_Id := Entity (Selector_Name (N));
+
+ begin
+ -- If there is no component clause, then we are in the clear
+ -- since the back end will never misalign a large component
+ -- unless it is forced to do so. In the clear means we need
+ -- only the recursive test on the prefix.
+
+ if Component_May_Be_Bit_Aligned (Comp) then
+ return True;
+ else
+ return Possible_Bit_Aligned_Component (P);
+ end if;
+ end;
+
+ -- For a slice, test the prefix, if that is possibly misaligned,
+ -- then for sure the slice is.
+
+ when N_Slice =>
+ return Possible_Bit_Aligned_Component (Prefix (N));
+
+ -- For an unchecked conversion, check whether the expression may
+ -- be bit-aligned.
+
+ when N_Unchecked_Type_Conversion =>
+ return Possible_Bit_Aligned_Component (Expression (N));
+
+ -- If we have none of the above, it means that we have fallen off the
+ -- top testing prefixes recursively, and we now have a stand alone
+ -- object, where we don't have a problem.
+
+ when others =>
+ return False;
+
+ end case;
+ end Possible_Bit_Aligned_Component;
+
+ -----------------------------------------------
+ -- Process_Statements_For_Controlled_Objects --
+ -----------------------------------------------
+
+ procedure Process_Statements_For_Controlled_Objects (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ function Are_Wrapped (L : List_Id) return Boolean;
+ -- Determine whether list L contains only one statement which is a block
+
+ function Wrap_Statements_In_Block
+ (L : List_Id;
+ Scop : Entity_Id := Current_Scope) return Node_Id;
+ -- Given a list of statements L, wrap it in a block statement and return
+ -- the generated node. Scop is either the current scope or the scope of
+ -- the context (if applicable).
+
+ -----------------
+ -- Are_Wrapped --
+ -----------------
+
+ function Are_Wrapped (L : List_Id) return Boolean is
+ Stmt : constant Node_Id := First (L);
+ begin
+ return
+ Present (Stmt)
+ and then No (Next (Stmt))
+ and then Nkind (Stmt) = N_Block_Statement;
+ end Are_Wrapped;
+
+ ------------------------------
+ -- Wrap_Statements_In_Block --
+ ------------------------------
+
+ function Wrap_Statements_In_Block
+ (L : List_Id;
+ Scop : Entity_Id := Current_Scope) return Node_Id
+ is
+ Block_Id : Entity_Id;
+ Block_Nod : Node_Id;
+ Iter_Loop : Entity_Id;
+
+ begin
+ Block_Nod :=
+ Make_Block_Statement (Loc,
+ Declarations => No_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => L));
+
+ -- Create a label for the block in case the block needs to manage the
+ -- secondary stack. A label allows for flag Uses_Sec_Stack to be set.
+
+ Add_Block_Identifier (Block_Nod, Block_Id);
+
+ -- When wrapping the statements of an iterator loop, check whether
+ -- the loop requires secondary stack management and if so, propagate
+ -- the flag to the block. This way the secondary stack is marked and
+ -- released at each iteration of the loop.
+
+ Iter_Loop := Find_Enclosing_Iterator_Loop (Scop);
+
+ if Present (Iter_Loop) and then Uses_Sec_Stack (Iter_Loop) then
+ Set_Uses_Sec_Stack (Block_Id);
+ end if;
+
+ return Block_Nod;
+ end Wrap_Statements_In_Block;
+
+ -- Local variables
+
+ Block : Node_Id;
+
+ -- Start of processing for Process_Statements_For_Controlled_Objects
+
+ begin
+ -- Whenever a non-handled statement list is wrapped in a block, the
+ -- block must be explicitly analyzed to redecorate all entities in the
+ -- list and ensure that a finalizer is properly built.
+
+ case Nkind (N) is
+ when N_Elsif_Part |
+ N_If_Statement |
+ N_Conditional_Entry_Call |
+ N_Selective_Accept =>
+
+ -- Check the "then statements" for elsif parts and if statements
+
+ if Nkind_In (N, N_Elsif_Part, N_If_Statement)
+ and then not Is_Empty_List (Then_Statements (N))
+ and then not Are_Wrapped (Then_Statements (N))
+ and then Requires_Cleanup_Actions
+ (Then_Statements (N), False, False)
+ then
+ Block := Wrap_Statements_In_Block (Then_Statements (N));
+ Set_Then_Statements (N, New_List (Block));
+
+ Analyze (Block);
+ end if;
+
+ -- Check the "else statements" for conditional entry calls, if
+ -- statements and selective accepts.
+
+ if Nkind_In (N, N_Conditional_Entry_Call,
+ N_If_Statement,
+ N_Selective_Accept)
+ and then not Is_Empty_List (Else_Statements (N))
+ and then not Are_Wrapped (Else_Statements (N))
+ and then Requires_Cleanup_Actions
+ (Else_Statements (N), False, False)
+ then
+ Block := Wrap_Statements_In_Block (Else_Statements (N));
+ Set_Else_Statements (N, New_List (Block));
+
+ Analyze (Block);
+ end if;
+
+ when N_Abortable_Part |
+ N_Accept_Alternative |
+ N_Case_Statement_Alternative |
+ N_Delay_Alternative |
+ N_Entry_Call_Alternative |
+ N_Exception_Handler |
+ N_Loop_Statement |
+ N_Triggering_Alternative =>
+
+ if not Is_Empty_List (Statements (N))
+ and then not Are_Wrapped (Statements (N))
+ and then Requires_Cleanup_Actions (Statements (N), False, False)
+ then
+ if Nkind (N) = N_Loop_Statement
+ and then Present (Identifier (N))
+ then
+ Block :=
+ Wrap_Statements_In_Block
+ (L => Statements (N),
+ Scop => Entity (Identifier (N)));
+ else
+ Block := Wrap_Statements_In_Block (Statements (N));
+ end if;
+
+ Set_Statements (N, New_List (Block));
+ Analyze (Block);
+ end if;
+
+ when others =>
+ null;
+ end case;
+ end Process_Statements_For_Controlled_Objects;
+
+ ------------------
+ -- Power_Of_Two --
+ ------------------
+
+ function Power_Of_Two (N : Node_Id) return Nat is
+ Typ : constant Entity_Id := Etype (N);
+ pragma Assert (Is_Integer_Type (Typ));
+ Siz : constant Nat := UI_To_Int (Esize (Typ));
+ Val : Uint;
+
+ begin
+ if not Compile_Time_Known_Value (N) then
+ return 0;
+
+ else
+ Val := Expr_Value (N);
+ for J in 1 .. Siz - 1 loop
+ if Val = Uint_2 ** J then
+ return J;
+ end if;
+ end loop;
+
+ return 0;
+ end if;
+ end Power_Of_Two;
+
+ ----------------------
+ -- Remove_Init_Call --
+ ----------------------
+
+ function Remove_Init_Call
+ (Var : Entity_Id;
+ Rep_Clause : Node_Id) return Node_Id
+ is
+ Par : constant Node_Id := Parent (Var);
+ Typ : constant Entity_Id := Etype (Var);
+
+ Init_Proc : Entity_Id;
+ -- Initialization procedure for Typ
+
+ function Find_Init_Call_In_List (From : Node_Id) return Node_Id;
+ -- Look for init call for Var starting at From and scanning the
+ -- enclosing list until Rep_Clause or the end of the list is reached.
+
+ ----------------------------
+ -- Find_Init_Call_In_List --
+ ----------------------------
+
+ function Find_Init_Call_In_List (From : Node_Id) return Node_Id is
+ Init_Call : Node_Id;
+
+ begin
+ Init_Call := From;
+ while Present (Init_Call) and then Init_Call /= Rep_Clause loop
+ if Nkind (Init_Call) = N_Procedure_Call_Statement
+ and then Is_Entity_Name (Name (Init_Call))
+ and then Entity (Name (Init_Call)) = Init_Proc
+ then
+ return Init_Call;
+ end if;
+
+ Next (Init_Call);
+ end loop;
+
+ return Empty;
+ end Find_Init_Call_In_List;
+
+ Init_Call : Node_Id;
+
+ -- Start of processing for Find_Init_Call
+
+ begin
+ if Present (Initialization_Statements (Var)) then
+ Init_Call := Initialization_Statements (Var);
+ Set_Initialization_Statements (Var, Empty);
+
+ elsif not Has_Non_Null_Base_Init_Proc (Typ) then
+
+ -- No init proc for the type, so obviously no call to be found
+
+ return Empty;
+
+ else
+ -- We might be able to handle other cases below by just properly
+ -- setting Initialization_Statements at the point where the init proc
+ -- call is generated???
+
+ Init_Proc := Base_Init_Proc (Typ);
+
+ -- First scan the list containing the declaration of Var
+
+ Init_Call := Find_Init_Call_In_List (From => Next (Par));
+
+ -- If not found, also look on Var's freeze actions list, if any,
+ -- since the init call may have been moved there (case of an address
+ -- clause applying to Var).
+
+ if No (Init_Call) and then Present (Freeze_Node (Var)) then
+ Init_Call :=
+ Find_Init_Call_In_List (First (Actions (Freeze_Node (Var))));
+ end if;
+
+ -- If the initialization call has actuals that use the secondary
+ -- stack, the call may have been wrapped into a temporary block, in
+ -- which case the block itself has to be removed.
+
+ if No (Init_Call) and then Nkind (Next (Par)) = N_Block_Statement then
+ declare
+ Blk : constant Node_Id := Next (Par);
+ begin
+ if Present
+ (Find_Init_Call_In_List
+ (First (Statements (Handled_Statement_Sequence (Blk)))))
+ then
+ Init_Call := Blk;
+ end if;
+ end;
+ end if;
+ end if;
+
+ if Present (Init_Call) then
+ Remove (Init_Call);
+ end if;
+ return Init_Call;
+ end Remove_Init_Call;
+
+ -------------------------
+ -- Remove_Side_Effects --
+ -------------------------
+
+ procedure Remove_Side_Effects
+ (Exp : Node_Id;
+ Name_Req : Boolean := False;
+ Variable_Ref : Boolean := False)
+ is
+ Loc : constant Source_Ptr := Sloc (Exp);
+ Exp_Type : constant Entity_Id := Etype (Exp);
+ Svg_Suppress : constant Suppress_Record := Scope_Suppress;
+ Def_Id : Entity_Id;
+ E : Node_Id;
+ New_Exp : Node_Id;
+ Ptr_Typ_Decl : Node_Id;
+ Ref_Type : Entity_Id;
+ Res : Node_Id;
+
+ begin
+ -- Handle cases in which there is nothing to do. In GNATprove mode,
+ -- removal of side effects is useful for the light expansion of
+ -- renamings. This removal should only occur when not inside a
+ -- generic and not doing a pre-analysis.
+
+ if not Expander_Active
+ and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
+ then
+ return;
+ end if;
+
+ -- Cannot generate temporaries if the invocation to remove side effects
+ -- was issued too early and the type of the expression is not resolved
+ -- (this happens because routines Duplicate_Subexpr_XX implicitly invoke
+ -- Remove_Side_Effects).
+
+ if No (Exp_Type)
+ or else Ekind (Exp_Type) = E_Access_Attribute_Type
+ then
+ return;
+
+ -- No action needed for side-effect free expressions
+
+ elsif Side_Effect_Free (Exp, Name_Req, Variable_Ref) then
+ return;
+ end if;
+
+ -- The remaining procesaing is done with all checks suppressed
+
+ -- Note: from now on, don't use return statements, instead do a goto
+ -- Leave, to ensure that we properly restore Scope_Suppress.Suppress.
+
+ Scope_Suppress.Suppress := (others => True);
+
+ -- If it is a scalar type and we need to capture the value, just make
+ -- a copy. Likewise for a function call, an attribute reference, a
+ -- conditional expression, an allocator, or an operator. And if we have
+ -- a volatile reference and Name_Req is not set (see comments for
+ -- Side_Effect_Free).
+
+ if Is_Elementary_Type (Exp_Type)
+
+ -- Note: this test is rather mysterious??? Why can't we just test ONLY
+ -- Is_Elementary_Type and be done with it. If we try that approach, we
+ -- get some failures (infinite recursions) from the Duplicate_Subexpr
+ -- call at the end of Checks.Apply_Predicate_Check. To be
+ -- investigated ???
+
+ and then (Variable_Ref
+ or else Nkind_In (Exp, N_Attribute_Reference,
+ N_Allocator,
+ N_Case_Expression,
+ N_If_Expression,
+ N_Function_Call)
+ or else Nkind (Exp) in N_Op
+ or else (not Name_Req
+ and then Is_Volatile_Reference (Exp)))
+ then
+ Def_Id := Make_Temporary (Loc, 'R', Exp);
+ Set_Etype (Def_Id, Exp_Type);
+ Res := New_Occurrence_Of (Def_Id, Loc);
+
+ -- If the expression is a packed reference, it must be reanalyzed and
+ -- expanded, depending on context. This is the case for actuals where
+ -- a constraint check may capture the actual before expansion of the
+ -- call is complete.
+
+ if Nkind (Exp) = N_Indexed_Component
+ and then Is_Packed (Etype (Prefix (Exp)))
+ then
+ Set_Analyzed (Exp, False);
+ Set_Analyzed (Prefix (Exp), False);
+ end if;
+
+ E :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
+ Constant_Present => True,
+ Expression => Relocate_Node (Exp));
+
+ Set_Assignment_OK (E);
+ Insert_Action (Exp, E);
+
+ -- If the expression has the form v.all then we can just capture the
+ -- pointer, and then do an explicit dereference on the result.
+
+ elsif Nkind (Exp) = N_Explicit_Dereference then
+ Def_Id := Make_Temporary (Loc, 'R', Exp);
+ Res :=
+ Make_Explicit_Dereference (Loc, New_Occurrence_Of (Def_Id, Loc));
+
+ Insert_Action (Exp,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Object_Definition =>
+ New_Occurrence_Of (Etype (Prefix (Exp)), Loc),
+ Constant_Present => True,
+ Expression => Relocate_Node (Prefix (Exp))));
+
+ -- Similar processing for an unchecked conversion of an expression of
+ -- the form v.all, where we want the same kind of treatment.
+
+ elsif Nkind (Exp) = N_Unchecked_Type_Conversion
+ and then Nkind (Expression (Exp)) = N_Explicit_Dereference
+ then
+ Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
+ goto Leave;
+
+ -- If this is a type conversion, leave the type conversion and remove
+ -- the side effects in the expression. This is important in several
+ -- circumstances: for change of representations, and also when this is a
+ -- view conversion to a smaller object, where gigi can end up creating
+ -- its own temporary of the wrong size.
+
+ elsif Nkind (Exp) = N_Type_Conversion then
+ Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
+ goto Leave;
+
+ -- If this is an unchecked conversion that Gigi can't handle, make
+ -- a copy or a use a renaming to capture the value.
+
+ elsif Nkind (Exp) = N_Unchecked_Type_Conversion
+ and then not Safe_Unchecked_Type_Conversion (Exp)
+ then
+ if CW_Or_Has_Controlled_Part (Exp_Type) then
+
+ -- Use a renaming to capture the expression, rather than create
+ -- a controlled temporary.
+
+ Def_Id := Make_Temporary (Loc, 'R', Exp);
+ Res := New_Occurrence_Of (Def_Id, Loc);
+
+ Insert_Action (Exp,
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
+ Name => Relocate_Node (Exp)));
+
+ else
+ Def_Id := Make_Temporary (Loc, 'R', Exp);
+ Set_Etype (Def_Id, Exp_Type);
+ Res := New_Occurrence_Of (Def_Id, Loc);
+
+ E :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
+ Constant_Present => not Is_Variable (Exp),
+ Expression => Relocate_Node (Exp));
+
+ Set_Assignment_OK (E);
+ Insert_Action (Exp, E);
+ end if;
+
+ -- For expressions that denote objects, we can use a renaming scheme.
+ -- This is needed for correctness in the case of a volatile object of
+ -- a non-volatile type because the Make_Reference call of the "default"
+ -- approach would generate an illegal access value (an access value
+ -- cannot designate such an object - see Analyze_Reference). We skip
+ -- using this scheme if we have an object of a volatile type and we do
+ -- not have Name_Req set true (see comments for Side_Effect_Free).
+
+ -- In Ada 2012 a qualified expression is an object, but for purposes of
+ -- removing side effects it still need to be transformed into a separate
+ -- declaration, particularly if the expression is an aggregate.
+
+ elsif Is_Object_Reference (Exp)
+ and then Nkind (Exp) /= N_Function_Call
+ and then Nkind (Exp) /= N_Qualified_Expression
+ and then (Name_Req or else not Treat_As_Volatile (Exp_Type))
+ then
+ Def_Id := Make_Temporary (Loc, 'R', Exp);
+
+ if Nkind (Exp) = N_Selected_Component
+ and then Nkind (Prefix (Exp)) = N_Function_Call
+ and then Is_Array_Type (Exp_Type)
+ then
+ -- Avoid generating a variable-sized temporary, by generating
+ -- the renaming declaration just for the function call. The
+ -- transformation could be refined to apply only when the array
+ -- component is constrained by a discriminant???
+
+ Res :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Occurrence_Of (Def_Id, Loc),
+ Selector_Name => Selector_Name (Exp));
+
+ Insert_Action (Exp,
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Subtype_Mark =>
+ New_Occurrence_Of (Base_Type (Etype (Prefix (Exp))), Loc),
+ Name => Relocate_Node (Prefix (Exp))));
+
+ else
+ Res := New_Occurrence_Of (Def_Id, Loc);
+
+ Insert_Action (Exp,
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
+ Name => Relocate_Node (Exp)));
+ end if;
+
+ -- If this is a packed reference, or a selected component with
+ -- a non-standard representation, a reference to the temporary
+ -- will be replaced by a copy of the original expression (see
+ -- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
+ -- elaborated by gigi, and is of course not to be replaced in-line
+ -- by the expression it renames, which would defeat the purpose of
+ -- removing the side-effect.
+
+ if Nkind_In (Exp, N_Selected_Component, N_Indexed_Component)
+ and then Has_Non_Standard_Rep (Etype (Prefix (Exp)))
+ then
+ null;
+ else
+ Set_Is_Renaming_Of_Object (Def_Id, False);
+ end if;
+
+ -- Otherwise we generate a reference to the value
+
+ else
+ -- An expression which is in SPARK mode is considered side effect
+ -- free if the resulting value is captured by a variable or a
+ -- constant.
+
+ if GNATprove_Mode
+ and then Nkind (Parent (Exp)) = N_Object_Declaration
+ then
+ goto Leave;
+ end if;
+
+ -- Special processing for function calls that return a limited type.
+ -- We need to build a declaration that will enable build-in-place
+ -- expansion of the call. This is not done if the context is already
+ -- an object declaration, to prevent infinite recursion.
+
+ -- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
+ -- to accommodate functions returning limited objects by reference.
+
+ if Ada_Version >= Ada_2005
+ and then Nkind (Exp) = N_Function_Call
+ and then Is_Limited_View (Etype (Exp))
+ and then Nkind (Parent (Exp)) /= N_Object_Declaration
+ then
+ declare
+ Obj : constant Entity_Id := Make_Temporary (Loc, 'F', Exp);
+ Decl : Node_Id;
+
+ begin
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Obj,
+ Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
+ Expression => Relocate_Node (Exp));
+
+ Insert_Action (Exp, Decl);
+ Set_Etype (Obj, Exp_Type);
+ Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
+ goto Leave;
+ end;
+ end if;
+
+ Def_Id := Make_Temporary (Loc, 'R', Exp);
+
+ -- The regular expansion of functions with side effects involves the
+ -- generation of an access type to capture the return value found on
+ -- the secondary stack. Since SPARK (and why) cannot process access
+ -- types, use a different approach which ignores the secondary stack
+ -- and "copies" the returned object.
+
+ if GNATprove_Mode then
+ Res := New_Occurrence_Of (Def_Id, Loc);
+ Ref_Type := Exp_Type;
+
+ -- Regular expansion utilizing an access type and 'reference
+
+ else
+ Res :=
+ Make_Explicit_Dereference (Loc,
+ Prefix => New_Occurrence_Of (Def_Id, Loc));
+
+ -- Generate:
+ -- type Ann is access all <Exp_Type>;
+
+ Ref_Type := Make_Temporary (Loc, 'A');
+
+ Ptr_Typ_Decl :=
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => Ref_Type,
+ Type_Definition =>
+ Make_Access_To_Object_Definition (Loc,
+ All_Present => True,
+ Subtype_Indication =>
+ New_Occurrence_Of (Exp_Type, Loc)));
+
+ Insert_Action (Exp, Ptr_Typ_Decl);
+ end if;
+
+ E := Exp;
+ if Nkind (E) = N_Explicit_Dereference then
+ New_Exp := Relocate_Node (Prefix (E));
+
+ else
+ E := Relocate_Node (E);
+
+ -- Do not generate a 'reference in SPARK mode since the access
+ -- type is not created in the first place.
+
+ if GNATprove_Mode then
+ New_Exp := E;
+
+ -- Otherwise generate reference, marking the value as non-null
+ -- since we know it cannot be null and we don't want a check.
+
+ else
+ New_Exp := Make_Reference (Loc, E);
+ Set_Is_Known_Non_Null (Def_Id);
+ end if;
+ end if;
+
+ if Is_Delayed_Aggregate (E) then
+
+ -- The expansion of nested aggregates is delayed until the
+ -- enclosing aggregate is expanded. As aggregates are often
+ -- qualified, the predicate applies to qualified expressions as
+ -- well, indicating that the enclosing aggregate has not been
+ -- expanded yet. At this point the aggregate is part of a
+ -- stand-alone declaration, and must be fully expanded.
+
+ if Nkind (E) = N_Qualified_Expression then
+ Set_Expansion_Delayed (Expression (E), False);
+ Set_Analyzed (Expression (E), False);
+ else
+ Set_Expansion_Delayed (E, False);
+ end if;
+
+ Set_Analyzed (E, False);
+ end if;
+
+ Insert_Action (Exp,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Object_Definition => New_Occurrence_Of (Ref_Type, Loc),
+ Constant_Present => True,
+ Expression => New_Exp));
+ end if;
+
+ -- Preserve the Assignment_OK flag in all copies, since at least one
+ -- copy may be used in a context where this flag must be set (otherwise
+ -- why would the flag be set in the first place).
+
+ Set_Assignment_OK (Res, Assignment_OK (Exp));
+
+ -- Finally rewrite the original expression and we are done
+
+ Rewrite (Exp, Res);
+ Analyze_And_Resolve (Exp, Exp_Type);
+
+ <<Leave>>
+ Scope_Suppress := Svg_Suppress;
+ end Remove_Side_Effects;
+
+ ---------------------------
+ -- Represented_As_Scalar --
+ ---------------------------
+
+ function Represented_As_Scalar (T : Entity_Id) return Boolean is
+ UT : constant Entity_Id := Underlying_Type (T);
+ begin
+ return Is_Scalar_Type (UT)
+ or else (Is_Bit_Packed_Array (UT)
+ and then Is_Scalar_Type (Packed_Array_Type (UT)));
+ end Represented_As_Scalar;
+
+ ------------------------------
+ -- Requires_Cleanup_Actions --
+ ------------------------------
+
+ function Requires_Cleanup_Actions
+ (N : Node_Id;
+ Lib_Level : Boolean) return Boolean
+ is
+ At_Lib_Level : constant Boolean :=
+ Lib_Level
+ and then Nkind_In (N, N_Package_Body,
+ N_Package_Specification);
+ -- N is at the library level if the top-most context is a package and
+ -- the path taken to reach N does not inlcude non-package constructs.
+
+ begin
+ case Nkind (N) is
+ when N_Accept_Statement |
+ N_Block_Statement |
+ N_Entry_Body |
+ N_Package_Body |
+ N_Protected_Body |
+ N_Subprogram_Body |
+ N_Task_Body =>
+ return
+ Requires_Cleanup_Actions (Declarations (N), At_Lib_Level, True)
+ or else
+ (Present (Handled_Statement_Sequence (N))
+ and then
+ Requires_Cleanup_Actions
+ (Statements (Handled_Statement_Sequence (N)),
+ At_Lib_Level, True));
+
+ when N_Package_Specification =>
+ return
+ Requires_Cleanup_Actions
+ (Visible_Declarations (N), At_Lib_Level, True)
+ or else
+ Requires_Cleanup_Actions
+ (Private_Declarations (N), At_Lib_Level, True);
+
+ when others =>
+ return False;
+ end case;
+ end Requires_Cleanup_Actions;
+
+ ------------------------------
+ -- Requires_Cleanup_Actions --
+ ------------------------------
+
+ function Requires_Cleanup_Actions
+ (L : List_Id;
+ Lib_Level : Boolean;
+ Nested_Constructs : Boolean) return Boolean
+ is
+ Decl : Node_Id;
+ Expr : Node_Id;
+ Obj_Id : Entity_Id;
+ Obj_Typ : Entity_Id;
+ Pack_Id : Entity_Id;
+ Typ : Entity_Id;
+
+ begin
+ if No (L)
+ or else Is_Empty_List (L)
+ then
+ return False;
+ end if;
+
+ Decl := First (L);
+ while Present (Decl) loop
+
+ -- Library-level tagged types
+
+ if Nkind (Decl) = N_Full_Type_Declaration then
+ Typ := Defining_Identifier (Decl);
+
+ if Is_Tagged_Type (Typ)
+ and then Is_Library_Level_Entity (Typ)
+ and then Convention (Typ) = Convention_Ada
+ and then Present (Access_Disp_Table (Typ))
+ and then RTE_Available (RE_Unregister_Tag)
+ and then not No_Run_Time_Mode
+ and then not Is_Abstract_Type (Typ)
+ then
+ return True;
+ end if;
+
+ -- Regular object declarations
+
+ elsif Nkind (Decl) = N_Object_Declaration then
+ Obj_Id := Defining_Identifier (Decl);
+ Obj_Typ := Base_Type (Etype (Obj_Id));
+ Expr := Expression (Decl);
+
+ -- Bypass any form of processing for objects which have their
+ -- finalization disabled. This applies only to objects at the
+ -- library level.
+
+ if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
+ null;
+
+ -- Transient variables are treated separately in order to minimize
+ -- the size of the generated code. See Exp_Ch7.Process_Transient_
+ -- Objects.
+
+ elsif Is_Processed_Transient (Obj_Id) then
+ null;
+
+ -- The object is of the form:
+ -- Obj : Typ [:= Expr];
+ --
+ -- Do not process the incomplete view of a deferred constant. Do
+ -- not consider tag-to-class-wide conversions.
+
+ elsif not Is_Imported (Obj_Id)
+ and then Needs_Finalization (Obj_Typ)
+ and then not (Ekind (Obj_Id) = E_Constant
+ and then not Has_Completion (Obj_Id))
+ and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
+ then
+ return True;
+
+ -- The object is of the form:
+ -- Obj : Access_Typ := Non_BIP_Function_Call'reference;
+ --
+ -- Obj : Access_Typ :=
+ -- BIP_Function_Call (BIPalloc => 2, ...)'reference;
+
+ elsif Is_Access_Type (Obj_Typ)
+ and then Needs_Finalization
+ (Available_View (Designated_Type (Obj_Typ)))
+ and then Present (Expr)
+ and then
+ (Is_Secondary_Stack_BIP_Func_Call (Expr)
+ or else
+ (Is_Non_BIP_Func_Call (Expr)
+ and then not Is_Related_To_Func_Return (Obj_Id)))
+ then
+ return True;
+
+ -- Processing for "hook" objects generated for controlled
+ -- transients declared inside an Expression_With_Actions.
+
+ elsif Is_Access_Type (Obj_Typ)
+ and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
+ and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
+ N_Object_Declaration
+ and then Is_Finalizable_Transient
+ (Status_Flag_Or_Transient_Decl (Obj_Id), Decl)
+ then
+ return True;
+
+ -- Processing for intermediate results of if expressions where
+ -- one of the alternatives uses a controlled function call.
+
+ elsif Is_Access_Type (Obj_Typ)
+ and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
+ and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
+ N_Defining_Identifier
+ and then Present (Expr)
+ and then Nkind (Expr) = N_Null
+ then
+ return True;
+
+ -- Simple protected objects which use type System.Tasking.
+ -- Protected_Objects.Protection to manage their locks should be
+ -- treated as controlled since they require manual cleanup.
+
+ elsif Ekind (Obj_Id) = E_Variable
+ and then
+ (Is_Simple_Protected_Type (Obj_Typ)
+ or else Has_Simple_Protected_Object (Obj_Typ))
+ then
+ return True;
+ end if;
+
+ -- Specific cases of object renamings
+
+ elsif Nkind (Decl) = N_Object_Renaming_Declaration then
+ Obj_Id := Defining_Identifier (Decl);
+ Obj_Typ := Base_Type (Etype (Obj_Id));
+
+ -- Bypass any form of processing for objects which have their
+ -- finalization disabled. This applies only to objects at the
+ -- library level.
+
+ if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
+ null;
+
+ -- Return object of a build-in-place function. This case is
+ -- recognized and marked by the expansion of an extended return
+ -- statement (see Expand_N_Extended_Return_Statement).
+
+ elsif Needs_Finalization (Obj_Typ)
+ and then Is_Return_Object (Obj_Id)
+ and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
+ then
+ return True;
+
+ -- Detect a case where a source object has been initialized by
+ -- a controlled function call or another object which was later
+ -- rewritten as a class-wide conversion of Ada.Tags.Displace.
+
+ -- Obj1 : CW_Type := Src_Obj;
+ -- Obj2 : CW_Type := Function_Call (...);
+
+ -- Obj1 : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
+ -- Tmp : ... := Function_Call (...)'reference;
+ -- Obj2 : CW_Type renames (... Ada.Tags.Displace (Tmp));
+
+ elsif Is_Displacement_Of_Object_Or_Function_Result (Obj_Id) then
+ return True;
+ end if;
+
+ -- Inspect the freeze node of an access-to-controlled type and look
+ -- for a delayed finalization master. This case arises when the
+ -- freeze actions are inserted at a later time than the expansion of
+ -- the context. Since Build_Finalizer is never called on a single
+ -- construct twice, the master will be ultimately left out and never
+ -- finalized. This is also needed for freeze actions of designated
+ -- types themselves, since in some cases the finalization master is
+ -- associated with a designated type's freeze node rather than that
+ -- of the access type (see handling for freeze actions in
+ -- Build_Finalization_Master).
+
+ elsif Nkind (Decl) = N_Freeze_Entity
+ and then Present (Actions (Decl))
+ then
+ Typ := Entity (Decl);
+
+ if ((Is_Access_Type (Typ)
+ and then not Is_Access_Subprogram_Type (Typ)
+ and then Needs_Finalization
+ (Available_View (Designated_Type (Typ))))
+ or else
+ (Is_Type (Typ)
+ and then Needs_Finalization (Typ)))
+ and then Requires_Cleanup_Actions
+ (Actions (Decl), Lib_Level, Nested_Constructs)
+ then
+ return True;
+ end if;
+
+ -- Nested package declarations
+
+ elsif Nested_Constructs
+ and then Nkind (Decl) = N_Package_Declaration
+ then
+ Pack_Id := Defining_Unit_Name (Specification (Decl));
+
+ if Nkind (Pack_Id) = N_Defining_Program_Unit_Name then
+ Pack_Id := Defining_Identifier (Pack_Id);
+ end if;
+
+ if Ekind (Pack_Id) /= E_Generic_Package
+ and then
+ Requires_Cleanup_Actions (Specification (Decl), Lib_Level)
+ then
+ return True;
+ end if;
+
+ -- Nested package bodies
+
+ elsif Nested_Constructs and then Nkind (Decl) = N_Package_Body then
+ Pack_Id := Corresponding_Spec (Decl);
+
+ if Ekind (Pack_Id) /= E_Generic_Package
+ and then Requires_Cleanup_Actions (Decl, Lib_Level)
+ then
+ return True;
+ end if;
+ end if;
+
+ Next (Decl);
+ end loop;
+
+ return False;
+ end Requires_Cleanup_Actions;
+
+ ------------------------------------
+ -- Safe_Unchecked_Type_Conversion --
+ ------------------------------------
+
+ -- Note: this function knows quite a bit about the exact requirements of
+ -- Gigi with respect to unchecked type conversions, and its code must be
+ -- coordinated with any changes in Gigi in this area.
+
+ -- The above requirements should be documented in Sinfo ???
+
+ function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
+ Otyp : Entity_Id;
+ Ityp : Entity_Id;
+ Oalign : Uint;
+ Ialign : Uint;
+ Pexp : constant Node_Id := Parent (Exp);
+
+ begin
+ -- If the expression is the RHS of an assignment or object declaration
+ -- we are always OK because there will always be a target.
+
+ -- Object renaming declarations, (generated for view conversions of
+ -- actuals in inlined calls), like object declarations, provide an
+ -- explicit type, and are safe as well.
+
+ if (Nkind (Pexp) = N_Assignment_Statement
+ and then Expression (Pexp) = Exp)
+ or else Nkind_In (Pexp, N_Object_Declaration,
+ N_Object_Renaming_Declaration)
+ then
+ return True;
+
+ -- If the expression is the prefix of an N_Selected_Component we should
+ -- also be OK because GCC knows to look inside the conversion except if
+ -- the type is discriminated. We assume that we are OK anyway if the
+ -- type is not set yet or if it is controlled since we can't afford to
+ -- introduce a temporary in this case.
+
+ elsif Nkind (Pexp) = N_Selected_Component
+ and then Prefix (Pexp) = Exp
+ then
+ if No (Etype (Pexp)) then
+ return True;
+ else
+ return
+ not Has_Discriminants (Etype (Pexp))
+ or else Is_Constrained (Etype (Pexp));
+ end if;
+ end if;
+
+ -- Set the output type, this comes from Etype if it is set, otherwise we
+ -- take it from the subtype mark, which we assume was already fully
+ -- analyzed.
+
+ if Present (Etype (Exp)) then
+ Otyp := Etype (Exp);
+ else
+ Otyp := Entity (Subtype_Mark (Exp));
+ end if;
+
+ -- The input type always comes from the expression, and we assume
+ -- this is indeed always analyzed, so we can simply get the Etype.
+
+ Ityp := Etype (Expression (Exp));
+
+ -- Initialize alignments to unknown so far
+
+ Oalign := No_Uint;
+ Ialign := No_Uint;
+
+ -- Replace a concurrent type by its corresponding record type and each
+ -- type by its underlying type and do the tests on those. The original
+ -- type may be a private type whose completion is a concurrent type, so
+ -- find the underlying type first.
+
+ if Present (Underlying_Type (Otyp)) then
+ Otyp := Underlying_Type (Otyp);
+ end if;
+
+ if Present (Underlying_Type (Ityp)) then
+ Ityp := Underlying_Type (Ityp);
+ end if;
+
+ if Is_Concurrent_Type (Otyp) then
+ Otyp := Corresponding_Record_Type (Otyp);
+ end if;
+
+ if Is_Concurrent_Type (Ityp) then
+ Ityp := Corresponding_Record_Type (Ityp);
+ end if;
+
+ -- If the base types are the same, we know there is no problem since
+ -- this conversion will be a noop.
+
+ if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
+ return True;
+
+ -- Same if this is an upwards conversion of an untagged type, and there
+ -- are no constraints involved (could be more general???)
+
+ elsif Etype (Ityp) = Otyp
+ and then not Is_Tagged_Type (Ityp)
+ and then not Has_Discriminants (Ityp)
+ and then No (First_Rep_Item (Base_Type (Ityp)))
+ then
+ return True;
+
+ -- If the expression has an access type (object or subprogram) we assume
+ -- that the conversion is safe, because the size of the target is safe,
+ -- even if it is a record (which might be treated as having unknown size
+ -- at this point).
+
+ elsif Is_Access_Type (Ityp) then
+ return True;
+
+ -- If the size of output type is known at compile time, there is never
+ -- a problem. Note that unconstrained records are considered to be of
+ -- known size, but we can't consider them that way here, because we are
+ -- talking about the actual size of the object.
+
+ -- We also make sure that in addition to the size being known, we do not
+ -- have a case which might generate an embarrassingly large temp in
+ -- stack checking mode.
+
+ elsif Size_Known_At_Compile_Time (Otyp)
+ and then
+ (not Stack_Checking_Enabled
+ or else not May_Generate_Large_Temp (Otyp))
+ and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
+ then
+ return True;
+
+ -- If either type is tagged, then we know the alignment is OK so
+ -- Gigi will be able to use pointer punning.
+
+ elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
+ return True;
+
+ -- If either type is a limited record type, we cannot do a copy, so say
+ -- safe since there's nothing else we can do.
+
+ elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
+ return True;
+
+ -- Conversions to and from packed array types are always ignored and
+ -- hence are safe.
+
+ elsif Is_Packed_Array_Type (Otyp)
+ or else Is_Packed_Array_Type (Ityp)
+ then
+ return True;
+ end if;
+
+ -- The only other cases known to be safe is if the input type's
+ -- alignment is known to be at least the maximum alignment for the
+ -- target or if both alignments are known and the output type's
+ -- alignment is no stricter than the input's. We can use the component
+ -- type alignement for an array if a type is an unpacked array type.
+
+ if Present (Alignment_Clause (Otyp)) then
+ Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
+
+ elsif Is_Array_Type (Otyp)
+ and then Present (Alignment_Clause (Component_Type (Otyp)))
+ then
+ Oalign := Expr_Value (Expression (Alignment_Clause
+ (Component_Type (Otyp))));
+ end if;
+
+ if Present (Alignment_Clause (Ityp)) then
+ Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
+
+ elsif Is_Array_Type (Ityp)
+ and then Present (Alignment_Clause (Component_Type (Ityp)))
+ then
+ Ialign := Expr_Value (Expression (Alignment_Clause
+ (Component_Type (Ityp))));
+ end if;
+
+ if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
+ return True;
+
+ elsif Ialign /= No_Uint and then Oalign /= No_Uint
+ and then Ialign <= Oalign
+ then
+ return True;
+
+ -- Otherwise, Gigi cannot handle this and we must make a temporary
+
+ else
+ return False;
+ end if;
+ end Safe_Unchecked_Type_Conversion;
+
+ ---------------------------------
+ -- Set_Current_Value_Condition --
+ ---------------------------------
+
+ -- Note: the implementation of this procedure is very closely tied to the
+ -- implementation of Get_Current_Value_Condition. Here we set required
+ -- Current_Value fields, and in Get_Current_Value_Condition, we interpret
+ -- them, so they must have a consistent view.
+
+ procedure Set_Current_Value_Condition (Cnode : Node_Id) is
+
+ procedure Set_Entity_Current_Value (N : Node_Id);
+ -- If N is an entity reference, where the entity is of an appropriate
+ -- kind, then set the current value of this entity to Cnode, unless
+ -- there is already a definite value set there.
+
+ procedure Set_Expression_Current_Value (N : Node_Id);
+ -- If N is of an appropriate form, sets an appropriate entry in current
+ -- value fields of relevant entities. Multiple entities can be affected
+ -- in the case of an AND or AND THEN.
+
+ ------------------------------
+ -- Set_Entity_Current_Value --
+ ------------------------------
+
+ procedure Set_Entity_Current_Value (N : Node_Id) is
+ begin
+ if Is_Entity_Name (N) then
+ declare
+ Ent : constant Entity_Id := Entity (N);
+
+ begin
+ -- Don't capture if not safe to do so
+
+ if not Safe_To_Capture_Value (N, Ent, Cond => True) then
+ return;
+ end if;
+
+ -- Here we have a case where the Current_Value field may need
+ -- to be set. We set it if it is not already set to a compile
+ -- time expression value.
+
+ -- Note that this represents a decision that one condition
+ -- blots out another previous one. That's certainly right if
+ -- they occur at the same level. If the second one is nested,
+ -- then the decision is neither right nor wrong (it would be
+ -- equally OK to leave the outer one in place, or take the new
+ -- inner one. Really we should record both, but our data
+ -- structures are not that elaborate.
+
+ if Nkind (Current_Value (Ent)) not in N_Subexpr then
+ Set_Current_Value (Ent, Cnode);
+ end if;
+ end;
+ end if;
+ end Set_Entity_Current_Value;
+
+ ----------------------------------
+ -- Set_Expression_Current_Value --
+ ----------------------------------
+
+ procedure Set_Expression_Current_Value (N : Node_Id) is
+ Cond : Node_Id;
+
+ begin
+ Cond := N;
+
+ -- Loop to deal with (ignore for now) any NOT operators present. The
+ -- presence of NOT operators will be handled properly when we call
+ -- Get_Current_Value_Condition.
+
+ while Nkind (Cond) = N_Op_Not loop
+ Cond := Right_Opnd (Cond);
+ end loop;
+
+ -- For an AND or AND THEN, recursively process operands
+
+ if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
+ Set_Expression_Current_Value (Left_Opnd (Cond));
+ Set_Expression_Current_Value (Right_Opnd (Cond));
+ return;
+ end if;
+
+ -- Check possible relational operator
+
+ if Nkind (Cond) in N_Op_Compare then
+ if Compile_Time_Known_Value (Right_Opnd (Cond)) then
+ Set_Entity_Current_Value (Left_Opnd (Cond));
+ elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
+ Set_Entity_Current_Value (Right_Opnd (Cond));
+ end if;
+
+ elsif Nkind_In (Cond,
+ N_Type_Conversion,
+ N_Qualified_Expression,
+ N_Expression_With_Actions)
+ then
+ Set_Expression_Current_Value (Expression (Cond));
+
+ -- Check possible boolean variable reference
+
+ else
+ Set_Entity_Current_Value (Cond);
+ end if;
+ end Set_Expression_Current_Value;
+
+ -- Start of processing for Set_Current_Value_Condition
+
+ begin
+ Set_Expression_Current_Value (Condition (Cnode));
+ end Set_Current_Value_Condition;
+
+ --------------------------
+ -- Set_Elaboration_Flag --
+ --------------------------
+
+ procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
+ Asn : Node_Id;
+
+ begin
+ if Present (Ent) then
+
+ -- Nothing to do if at the compilation unit level, because in this
+ -- case the flag is set by the binder generated elaboration routine.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ null;
+
+ -- Here we do need to generate an assignment statement
+
+ else
+ Check_Restriction (No_Elaboration_Code, N);
+ Asn :=
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Ent, Loc),
+ Expression => Make_Integer_Literal (Loc, Uint_1));
+
+ if Nkind (Parent (N)) = N_Subunit then
+ Insert_After (Corresponding_Stub (Parent (N)), Asn);
+ else
+ Insert_After (N, Asn);
+ end if;
+
+ Analyze (Asn);
+
+ -- Kill current value indication. This is necessary because the
+ -- tests of this flag are inserted out of sequence and must not
+ -- pick up bogus indications of the wrong constant value.
+
+ Set_Current_Value (Ent, Empty);
+ end if;
+ end if;
+ end Set_Elaboration_Flag;
+
+ ----------------------------
+ -- Set_Renamed_Subprogram --
+ ----------------------------
+
+ procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
+ begin
+ -- If input node is an identifier, we can just reset it
+
+ if Nkind (N) = N_Identifier then
+ Set_Chars (N, Chars (E));
+ Set_Entity (N, E);
+
+ -- Otherwise we have to do a rewrite, preserving Comes_From_Source
+
+ else
+ declare
+ CS : constant Boolean := Comes_From_Source (N);
+ begin
+ Rewrite (N, Make_Identifier (Sloc (N), Chars (E)));
+ Set_Entity (N, E);
+ Set_Comes_From_Source (N, CS);
+ Set_Analyzed (N, True);
+ end;
+ end if;
+ end Set_Renamed_Subprogram;
+
+ ----------------------
+ -- Side_Effect_Free --
+ ----------------------
+
+ function Side_Effect_Free
+ (N : Node_Id;
+ Name_Req : Boolean := False;
+ Variable_Ref : Boolean := False) return Boolean
+ is
+ Typ : constant Entity_Id := Etype (N);
+ -- Result type of the expression
+
+ function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
+ -- The argument N is a construct where the Prefix is dereferenced if it
+ -- is an access type and the result is a variable. The call returns True
+ -- if the construct is side effect free (not considering side effects in
+ -- other than the prefix which are to be tested by the caller).
+
+ function Within_In_Parameter (N : Node_Id) return Boolean;
+ -- Determines if N is a subcomponent of a composite in-parameter. If so,
+ -- N is not side-effect free when the actual is global and modifiable
+ -- indirectly from within a subprogram, because it may be passed by
+ -- reference. The front-end must be conservative here and assume that
+ -- this may happen with any array or record type. On the other hand, we
+ -- cannot create temporaries for all expressions for which this
+ -- condition is true, for various reasons that might require clearing up
+ -- ??? For example, discriminant references that appear out of place, or
+ -- spurious type errors with class-wide expressions. As a result, we
+ -- limit the transformation to loop bounds, which is so far the only
+ -- case that requires it.
+
+ -----------------------------
+ -- Safe_Prefixed_Reference --
+ -----------------------------
+
+ function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
+ begin
+ -- If prefix is not side effect free, definitely not safe
+
+ if not Side_Effect_Free (Prefix (N), Name_Req, Variable_Ref) then
+ return False;
+
+ -- If the prefix is of an access type that is not access-to-constant,
+ -- then this construct is a variable reference, which means it is to
+ -- be considered to have side effects if Variable_Ref is set True.
+
+ elsif Is_Access_Type (Etype (Prefix (N)))
+ and then not Is_Access_Constant (Etype (Prefix (N)))
+ and then Variable_Ref
+ then
+ -- Exception is a prefix that is the result of a previous removal
+ -- of side-effects.
+
+ return Is_Entity_Name (Prefix (N))
+ and then not Comes_From_Source (Prefix (N))
+ and then Ekind (Entity (Prefix (N))) = E_Constant
+ and then Is_Internal_Name (Chars (Entity (Prefix (N))));
+
+ -- If the prefix is an explicit dereference then this construct is a
+ -- variable reference, which means it is to be considered to have
+ -- side effects if Variable_Ref is True.
+
+ -- We do NOT exclude dereferences of access-to-constant types because
+ -- we handle them as constant view of variables.
+
+ elsif Nkind (Prefix (N)) = N_Explicit_Dereference
+ and then Variable_Ref
+ then
+ return False;
+
+ -- Note: The following test is the simplest way of solving a complex
+ -- problem uncovered by the following test (Side effect on loop bound
+ -- that is a subcomponent of a global variable:
+
+ -- with Text_Io; use Text_Io;
+ -- procedure Tloop is
+ -- type X is
+ -- record
+ -- V : Natural := 4;
+ -- S : String (1..5) := (others => 'a');
+ -- end record;
+ -- X1 : X;
+
+ -- procedure Modi;
+
+ -- generic
+ -- with procedure Action;
+ -- procedure Loop_G (Arg : X; Msg : String)
+
+ -- procedure Loop_G (Arg : X; Msg : String) is
+ -- begin
+ -- Put_Line ("begin loop_g " & Msg & " will loop till: "
+ -- & Natural'Image (Arg.V));
+ -- for Index in 1 .. Arg.V loop
+ -- Text_Io.Put_Line
+ -- (Natural'Image (Index) & " " & Arg.S (Index));
+ -- if Index > 2 then
+ -- Modi;
+ -- end if;
+ -- end loop;
+ -- Put_Line ("end loop_g " & Msg);
+ -- end;
+
+ -- procedure Loop1 is new Loop_G (Modi);
+ -- procedure Modi is
+ -- begin
+ -- X1.V := 1;
+ -- Loop1 (X1, "from modi");
+ -- end;
+ --
+ -- begin
+ -- Loop1 (X1, "initial");
+ -- end;
+
+ -- The output of the above program should be:
+
+ -- begin loop_g initial will loop till: 4
+ -- 1 a
+ -- 2 a
+ -- 3 a
+ -- begin loop_g from modi will loop till: 1
+ -- 1 a
+ -- end loop_g from modi
+ -- 4 a
+ -- begin loop_g from modi will loop till: 1
+ -- 1 a
+ -- end loop_g from modi
+ -- end loop_g initial
+
+ -- If a loop bound is a subcomponent of a global variable, a
+ -- modification of that variable within the loop may incorrectly
+ -- affect the execution of the loop.
+
+ elsif Nkind (Parent (Parent (N))) = N_Loop_Parameter_Specification
+ and then Within_In_Parameter (Prefix (N))
+ and then Variable_Ref
+ then
+ return False;
+
+ -- All other cases are side effect free
+
+ else
+ return True;
+ end if;
+ end Safe_Prefixed_Reference;
+
+ -------------------------
+ -- Within_In_Parameter --
+ -------------------------
+
+ function Within_In_Parameter (N : Node_Id) return Boolean is
+ begin
+ if not Comes_From_Source (N) then
+ return False;
+
+ elsif Is_Entity_Name (N) then
+ return Ekind (Entity (N)) = E_In_Parameter;
+
+ elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
+ return Within_In_Parameter (Prefix (N));
+
+ else
+ return False;
+ end if;
+ end Within_In_Parameter;
+
+ -- Start of processing for Side_Effect_Free
+
+ begin
+ -- Note on checks that could raise Constraint_Error. Strictly, if we
+ -- take advantage of 11.6, these checks do not count as side effects.
+ -- However, we would prefer to consider that they are side effects,
+ -- since the backend CSE does not work very well on expressions which
+ -- can raise Constraint_Error. On the other hand if we don't consider
+ -- them to be side effect free, then we get some awkward expansions
+ -- in -gnato mode, resulting in code insertions at a point where we
+ -- do not have a clear model for performing the insertions.
+
+ -- Special handling for entity names
+
+ if Is_Entity_Name (N) then
+
+ -- Variables are considered to be a side effect if Variable_Ref
+ -- is set or if we have a volatile reference and Name_Req is off.
+ -- If Name_Req is True then we can't help returning a name which
+ -- effectively allows multiple references in any case.
+
+ if Is_Variable (N, Use_Original_Node => False) then
+ return not Variable_Ref
+ and then (not Is_Volatile_Reference (N) or else Name_Req);
+
+ -- Any other entity (e.g. a subtype name) is definitely side
+ -- effect free.
+
+ else
+ return True;
+ end if;
+
+ -- A value known at compile time is always side effect free
+
+ elsif Compile_Time_Known_Value (N) then
+ return True;
+
+ -- A variable renaming is not side-effect free, because the renaming
+ -- will function like a macro in the front-end in some cases, and an
+ -- assignment can modify the component designated by N, so we need to
+ -- create a temporary for it.
+
+ -- The guard testing for Entity being present is needed at least in
+ -- the case of rewritten predicate expressions, and may well also be
+ -- appropriate elsewhere. Obviously we can't go testing the entity
+ -- field if it does not exist, so it's reasonable to say that this is
+ -- not the renaming case if it does not exist.
+
+ elsif Is_Entity_Name (Original_Node (N))
+ and then Present (Entity (Original_Node (N)))
+ and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
+ and then Ekind (Entity (Original_Node (N))) /= E_Constant
+ then
+ declare
+ RO : constant Node_Id :=
+ Renamed_Object (Entity (Original_Node (N)));
+
+ begin
+ -- If the renamed object is an indexed component, or an
+ -- explicit dereference, then the designated object could
+ -- be modified by an assignment.
+
+ if Nkind_In (RO, N_Indexed_Component,
+ N_Explicit_Dereference)
+ then
+ return False;
+
+ -- A selected component must have a safe prefix
+
+ elsif Nkind (RO) = N_Selected_Component then
+ return Safe_Prefixed_Reference (RO);
+
+ -- In all other cases, designated object cannot be changed so
+ -- we are side effect free.
+
+ else
+ return True;
+ end if;
+ end;
+
+ -- Remove_Side_Effects generates an object renaming declaration to
+ -- capture the expression of a class-wide expression. In VM targets
+ -- the frontend performs no expansion for dispatching calls to
+ -- class- wide types since they are handled by the VM. Hence, we must
+ -- locate here if this node corresponds to a previous invocation of
+ -- Remove_Side_Effects to avoid a never ending loop in the frontend.
+
+ elsif VM_Target /= No_VM
+ and then not Comes_From_Source (N)
+ and then Nkind (Parent (N)) = N_Object_Renaming_Declaration
+ and then Is_Class_Wide_Type (Typ)
+ then
+ return True;
+ end if;
+
+ -- For other than entity names and compile time known values,
+ -- check the node kind for special processing.
+
+ case Nkind (N) is
+
+ -- An attribute reference is side effect free if its expressions
+ -- are side effect free and its prefix is side effect free or
+ -- is an entity reference.
+
+ -- Is this right? what about x'first where x is a variable???
+
+ when N_Attribute_Reference =>
+ return Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
+ and then Attribute_Name (N) /= Name_Input
+ and then (Is_Entity_Name (Prefix (N))
+ or else Side_Effect_Free
+ (Prefix (N), Name_Req, Variable_Ref));
+
+ -- A binary operator is side effect free if and both operands are
+ -- side effect free. For this purpose binary operators include
+ -- membership tests and short circuit forms.
+
+ when N_Binary_Op | N_Membership_Test | N_Short_Circuit =>
+ return Side_Effect_Free (Left_Opnd (N), Name_Req, Variable_Ref)
+ and then
+ Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
+
+ -- An explicit dereference is side effect free only if it is
+ -- a side effect free prefixed reference.
+
+ when N_Explicit_Dereference =>
+ return Safe_Prefixed_Reference (N);
+
+ -- An expression with action is side effect free if its expression
+ -- is side effect free and it has no actions.
+
+ when N_Expression_With_Actions =>
+ return Is_Empty_List (Actions (N))
+ and then
+ Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
+
+ -- A call to _rep_to_pos is side effect free, since we generate
+ -- this pure function call ourselves. Moreover it is critically
+ -- important to make this exception, since otherwise we can have
+ -- discriminants in array components which don't look side effect
+ -- free in the case of an array whose index type is an enumeration
+ -- type with an enumeration rep clause.
+
+ -- All other function calls are not side effect free
+
+ when N_Function_Call =>
+ return Nkind (Name (N)) = N_Identifier
+ and then Is_TSS (Name (N), TSS_Rep_To_Pos)
+ and then
+ Side_Effect_Free
+ (First (Parameter_Associations (N)), Name_Req, Variable_Ref);
+
+ -- An IF expression is side effect free if it's of a scalar type, and
+ -- all its components are all side effect free (conditions and then
+ -- actions and else actions). We restrict to scalar types, since it
+ -- is annoying to deal with things like (if A then B else C)'First
+ -- where the type involved is a string type.
+
+ when N_If_Expression =>
+ return Is_Scalar_Type (Typ)
+ and then
+ Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref);
+
+ -- An indexed component is side effect free if it is a side
+ -- effect free prefixed reference and all the indexing
+ -- expressions are side effect free.
+
+ when N_Indexed_Component =>
+ return Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
+ and then Safe_Prefixed_Reference (N);
+
+ -- A type qualification is side effect free if the expression
+ -- is side effect free.
+
+ when N_Qualified_Expression =>
+ return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
+
+ -- A selected component is side effect free only if it is a side
+ -- effect free prefixed reference. If it designates a component
+ -- with a rep. clause it must be treated has having a potential
+ -- side effect, because it may be modified through a renaming, and
+ -- a subsequent use of the renaming as a macro will yield the
+ -- wrong value. This complex interaction between renaming and
+ -- removing side effects is a reminder that the latter has become
+ -- a headache to maintain, and that it should be removed in favor
+ -- of the gcc mechanism to capture values ???
+
+ when N_Selected_Component =>
+ if Nkind (Parent (N)) = N_Explicit_Dereference
+ and then Has_Non_Standard_Rep (Designated_Type (Typ))
+ then
+ return False;
+ else
+ return Safe_Prefixed_Reference (N);
+ end if;
+
+ -- A range is side effect free if the bounds are side effect free
+
+ when N_Range =>
+ return Side_Effect_Free (Low_Bound (N), Name_Req, Variable_Ref)
+ and then
+ Side_Effect_Free (High_Bound (N), Name_Req, Variable_Ref);
+
+ -- A slice is side effect free if it is a side effect free
+ -- prefixed reference and the bounds are side effect free.
+
+ when N_Slice =>
+ return Side_Effect_Free
+ (Discrete_Range (N), Name_Req, Variable_Ref)
+ and then Safe_Prefixed_Reference (N);
+
+ -- A type conversion is side effect free if the expression to be
+ -- converted is side effect free.
+
+ when N_Type_Conversion =>
+ return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
+
+ -- A unary operator is side effect free if the operand
+ -- is side effect free.
+
+ when N_Unary_Op =>
+ return Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
+
+ -- An unchecked type conversion is side effect free only if it
+ -- is safe and its argument is side effect free.
+
+ when N_Unchecked_Type_Conversion =>
+ return Safe_Unchecked_Type_Conversion (N)
+ and then
+ Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
+
+ -- An unchecked expression is side effect free if its expression
+ -- is side effect free.
+
+ when N_Unchecked_Expression =>
+ return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
+
+ -- A literal is side effect free
+
+ when N_Character_Literal |
+ N_Integer_Literal |
+ N_Real_Literal |
+ N_String_Literal =>
+ return True;
+
+ -- We consider that anything else has side effects. This is a bit
+ -- crude, but we are pretty close for most common cases, and we
+ -- are certainly correct (i.e. we never return True when the
+ -- answer should be False).
+
+ when others =>
+ return False;
+ end case;
+ end Side_Effect_Free;
+
+ -- A list is side effect free if all elements of the list are side
+ -- effect free.
+
+ function Side_Effect_Free
+ (L : List_Id;
+ Name_Req : Boolean := False;
+ Variable_Ref : Boolean := False) return Boolean
+ is
+ N : Node_Id;
+
+ begin
+ if L = No_List or else L = Error_List then
+ return True;
+
+ else
+ N := First (L);
+ while Present (N) loop
+ if not Side_Effect_Free (N, Name_Req, Variable_Ref) then
+ return False;
+ else
+ Next (N);
+ end if;
+ end loop;
+
+ return True;
+ end if;
+ end Side_Effect_Free;
+
+ ----------------------------------
+ -- Silly_Boolean_Array_Not_Test --
+ ----------------------------------
+
+ -- This procedure implements an odd and silly test. We explicitly check
+ -- for the case where the 'First of the component type is equal to the
+ -- 'Last of this component type, and if this is the case, we make sure
+ -- that constraint error is raised. The reason is that the NOT is bound
+ -- to cause CE in this case, and we will not otherwise catch it.
+
+ -- No such check is required for AND and OR, since for both these cases
+ -- False op False = False, and True op True = True. For the XOR case,
+ -- see Silly_Boolean_Array_Xor_Test.
+
+ -- Believe it or not, this was reported as a bug. Note that nearly always,
+ -- the test will evaluate statically to False, so the code will be
+ -- statically removed, and no extra overhead caused.
+
+ procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ CT : constant Entity_Id := Component_Type (T);
+
+ begin
+ -- The check we install is
+
+ -- constraint_error when
+ -- component_type'first = component_type'last
+ -- and then array_type'Length /= 0)
+
+ -- We need the last guard because we don't want to raise CE for empty
+ -- arrays since no out of range values result. (Empty arrays with a
+ -- component type of True .. True -- very useful -- even the ACATS
+ -- does not test that marginal case).
+
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc,
+ Condition =>
+ Make_And_Then (Loc,
+ Left_Opnd =>
+ Make_Op_Eq (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (CT, Loc),
+ Attribute_Name => Name_First),
+
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (CT, Loc),
+ Attribute_Name => Name_Last)),
+
+ Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
+ Reason => CE_Range_Check_Failed));
+ end Silly_Boolean_Array_Not_Test;
+
+ ----------------------------------
+ -- Silly_Boolean_Array_Xor_Test --
+ ----------------------------------
+
+ -- This procedure implements an odd and silly test. We explicitly check
+ -- for the XOR case where the component type is True .. True, since this
+ -- will raise constraint error. A special check is required since CE
+ -- will not be generated otherwise (cf Expand_Packed_Not).
+
+ -- No such check is required for AND and OR, since for both these cases
+ -- False op False = False, and True op True = True, and no check is
+ -- required for the case of False .. False, since False xor False = False.
+ -- See also Silly_Boolean_Array_Not_Test
+
+ procedure Silly_Boolean_Array_Xor_Test (N : Node_Id; T : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ CT : constant Entity_Id := Component_Type (T);
+
+ begin
+ -- The check we install is
+
+ -- constraint_error when
+ -- Boolean (component_type'First)
+ -- and then Boolean (component_type'Last)
+ -- and then array_type'Length /= 0)
+
+ -- We need the last guard because we don't want to raise CE for empty
+ -- arrays since no out of range values result (Empty arrays with a
+ -- component type of True .. True -- very useful -- even the ACATS
+ -- does not test that marginal case).
+
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc,
+ Condition =>
+ Make_And_Then (Loc,
+ Left_Opnd =>
+ Make_And_Then (Loc,
+ Left_Opnd =>
+ Convert_To (Standard_Boolean,
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (CT, Loc),
+ Attribute_Name => Name_First)),
+
+ Right_Opnd =>
+ Convert_To (Standard_Boolean,
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (CT, Loc),
+ Attribute_Name => Name_Last))),
+
+ Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
+ Reason => CE_Range_Check_Failed));
+ end Silly_Boolean_Array_Xor_Test;
+
+ --------------------------
+ -- Target_Has_Fixed_Ops --
+ --------------------------
+
+ Integer_Sized_Small : Ureal;
+ -- Set to 2.0 ** -(Integer'Size - 1) the first time that this function is
+ -- called (we don't want to compute it more than once).
+
+ Long_Integer_Sized_Small : Ureal;
+ -- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this function
+ -- is called (we don't want to compute it more than once)
+
+ First_Time_For_THFO : Boolean := True;
+ -- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
+
+ function Target_Has_Fixed_Ops
+ (Left_Typ : Entity_Id;
+ Right_Typ : Entity_Id;
+ Result_Typ : Entity_Id) return Boolean
+ is
+ function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
+ -- Return True if the given type is a fixed-point type with a small
+ -- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
+ -- an absolute value less than 1.0. This is currently limited to
+ -- fixed-point types that map to Integer or Long_Integer.
+
+ ------------------------
+ -- Is_Fractional_Type --
+ ------------------------
+
+ function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
+ begin
+ if Esize (Typ) = Standard_Integer_Size then
+ return Small_Value (Typ) = Integer_Sized_Small;
+
+ elsif Esize (Typ) = Standard_Long_Integer_Size then
+ return Small_Value (Typ) = Long_Integer_Sized_Small;
+
+ else
+ return False;
+ end if;
+ end Is_Fractional_Type;
+
+ -- Start of processing for Target_Has_Fixed_Ops
+
+ begin
+ -- Return False if Fractional_Fixed_Ops_On_Target is false
+
+ if not Fractional_Fixed_Ops_On_Target then
+ return False;
+ end if;
+
+ -- Here the target has Fractional_Fixed_Ops, if first time, compute
+ -- standard constants used by Is_Fractional_Type.
+
+ if First_Time_For_THFO then
+ First_Time_For_THFO := False;
+
+ Integer_Sized_Small :=
+ UR_From_Components
+ (Num => Uint_1,
+ Den => UI_From_Int (Standard_Integer_Size - 1),
+ Rbase => 2);
+
+ Long_Integer_Sized_Small :=
+ UR_From_Components
+ (Num => Uint_1,
+ Den => UI_From_Int (Standard_Long_Integer_Size - 1),
+ Rbase => 2);
+ end if;
+
+ -- Return True if target supports fixed-by-fixed multiply/divide for
+ -- fractional fixed-point types (see Is_Fractional_Type) and the operand
+ -- and result types are equivalent fractional types.
+
+ return Is_Fractional_Type (Base_Type (Left_Typ))
+ and then Is_Fractional_Type (Base_Type (Right_Typ))
+ and then Is_Fractional_Type (Base_Type (Result_Typ))
+ and then Esize (Left_Typ) = Esize (Right_Typ)
+ and then Esize (Left_Typ) = Esize (Result_Typ);
+ end Target_Has_Fixed_Ops;
+
+ ------------------------------------------
+ -- Type_May_Have_Bit_Aligned_Components --
+ ------------------------------------------
+
+ function Type_May_Have_Bit_Aligned_Components
+ (Typ : Entity_Id) return Boolean
+ is
+ begin
+ -- Array type, check component type
+
+ if Is_Array_Type (Typ) then
+ return
+ Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
+
+ -- Record type, check components
+
+ elsif Is_Record_Type (Typ) then
+ declare
+ E : Entity_Id;
+
+ begin
+ E := First_Component_Or_Discriminant (Typ);
+ while Present (E) loop
+ if Component_May_Be_Bit_Aligned (E)
+ or else Type_May_Have_Bit_Aligned_Components (Etype (E))
+ then
+ return True;
+ end if;
+
+ Next_Component_Or_Discriminant (E);
+ end loop;
+
+ return False;
+ end;
+
+ -- Type other than array or record is always OK
+
+ else
+ return False;
+ end if;
+ end Type_May_Have_Bit_Aligned_Components;
+
+ ----------------------------------
+ -- Within_Case_Or_If_Expression --
+ ----------------------------------
+
+ function Within_Case_Or_If_Expression (N : Node_Id) return Boolean is
+ Par : Node_Id;
+
+ begin
+ -- Locate an enclosing case or if expression. Note that these constructs
+ -- can be expanded into Expression_With_Actions, hence the test of the
+ -- original node.
+
+ Par := Parent (N);
+ while Present (Par) loop
+ if Nkind_In (Original_Node (Par), N_Case_Expression,
+ N_If_Expression)
+ then
+ return True;
+
+ -- Prevent the search from going too far
+
+ elsif Is_Body_Or_Package_Declaration (Par) then
+ return False;
+ end if;
+
+ Par := Parent (Par);
+ end loop;
+
+ return False;
+ end Within_Case_Or_If_Expression;
+
+ --------------------------------
+ -- Within_Internal_Subprogram --
+ --------------------------------
+
+ function Within_Internal_Subprogram return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S) and then not Is_Subprogram (S) loop
+ S := Scope (S);
+ end loop;
+
+ return Present (S)
+ and then Get_TSS_Name (S) /= TSS_Null
+ and then not Is_Predicate_Function (S);
+ end Within_Internal_Subprogram;
+
+ ----------------------------
+ -- Wrap_Cleanup_Procedure --
+ ----------------------------
+
+ procedure Wrap_Cleanup_Procedure (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Stseq : constant Node_Id := Handled_Statement_Sequence (N);
+ Stmts : constant List_Id := Statements (Stseq);
+
+ begin
+ if Abort_Allowed then
+ Prepend_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
+ Append_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer));
+ end if;
+ end Wrap_Cleanup_Procedure;
+
+end Exp_Util;