aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/ada/a-crbtgk.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/ada/a-crbtgk.adb')
-rw-r--r--gcc-4.9/gcc/ada/a-crbtgk.adb828
1 files changed, 828 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/ada/a-crbtgk.adb b/gcc-4.9/gcc/ada/a-crbtgk.adb
new file mode 100644
index 000000000..ae8dd7c6c
--- /dev/null
+++ b/gcc-4.9/gcc/ada/a-crbtgk.adb
@@ -0,0 +1,828 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT LIBRARY COMPONENTS --
+-- --
+-- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_KEYS --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 2004-2013, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. --
+-- --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception, --
+-- version 3.1, as published by the Free Software Foundation. --
+-- --
+-- You should have received a copy of the GNU General Public License and --
+-- a copy of the GCC Runtime Library Exception along with this program; --
+-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
+-- <http://www.gnu.org/licenses/>. --
+-- --
+-- This unit was originally developed by Matthew J Heaney. --
+------------------------------------------------------------------------------
+
+package body Ada.Containers.Red_Black_Trees.Generic_Keys is
+
+ package Ops renames Tree_Operations;
+
+ -------------
+ -- Ceiling --
+ -------------
+
+ -- AKA Lower_Bound
+
+ function Ceiling (Tree : Tree_Type; Key : Key_Type) return Node_Access is
+ B : Natural renames Tree'Unrestricted_Access.Busy;
+ L : Natural renames Tree'Unrestricted_Access.Lock;
+
+ Y : Node_Access;
+ X : Node_Access;
+
+ begin
+ -- If the container is empty, return a result immediately, so that we do
+ -- not manipulate the tamper bits unnecessarily.
+
+ if Tree.Root = null then
+ return null;
+ end if;
+
+ -- Per AI05-0022, the container implementation is required to detect
+ -- element tampering by a generic actual subprogram.
+
+ B := B + 1;
+ L := L + 1;
+
+ X := Tree.Root;
+ while X /= null loop
+ if Is_Greater_Key_Node (Key, X) then
+ X := Ops.Right (X);
+ else
+ Y := X;
+ X := Ops.Left (X);
+ end if;
+ end loop;
+
+ B := B - 1;
+ L := L - 1;
+
+ return Y;
+
+ exception
+ when others =>
+ B := B - 1;
+ L := L - 1;
+
+ raise;
+ end Ceiling;
+
+ ----------
+ -- Find --
+ ----------
+
+ function Find (Tree : Tree_Type; Key : Key_Type) return Node_Access is
+ B : Natural renames Tree'Unrestricted_Access.Busy;
+ L : Natural renames Tree'Unrestricted_Access.Lock;
+
+ Y : Node_Access;
+ X : Node_Access;
+
+ Result : Node_Access;
+
+ begin
+ -- If the container is empty, return a result immediately, so that we do
+ -- not manipulate the tamper bits unnecessarily.
+
+ if Tree.Root = null then
+ return null;
+ end if;
+
+ -- Per AI05-0022, the container implementation is required to detect
+ -- element tampering by a generic actual subprogram.
+
+ B := B + 1;
+ L := L + 1;
+
+ X := Tree.Root;
+ while X /= null loop
+ if Is_Greater_Key_Node (Key, X) then
+ X := Ops.Right (X);
+ else
+ Y := X;
+ X := Ops.Left (X);
+ end if;
+ end loop;
+
+ if Y = null then
+ Result := null;
+
+ elsif Is_Less_Key_Node (Key, Y) then
+ Result := null;
+
+ else
+ Result := Y;
+ end if;
+
+ B := B - 1;
+ L := L - 1;
+
+ return Result;
+
+ exception
+ when others =>
+ B := B - 1;
+ L := L - 1;
+
+ raise;
+ end Find;
+
+ -----------
+ -- Floor --
+ -----------
+
+ function Floor (Tree : Tree_Type; Key : Key_Type) return Node_Access is
+ B : Natural renames Tree'Unrestricted_Access.Busy;
+ L : Natural renames Tree'Unrestricted_Access.Lock;
+
+ Y : Node_Access;
+ X : Node_Access;
+
+ begin
+ -- If the container is empty, return a result immediately, so that we do
+ -- not manipulate the tamper bits unnecessarily.
+
+ if Tree.Root = null then
+ return null;
+ end if;
+
+ -- Per AI05-0022, the container implementation is required to detect
+ -- element tampering by a generic actual subprogram.
+
+ B := B + 1;
+ L := L + 1;
+
+ X := Tree.Root;
+ while X /= null loop
+ if Is_Less_Key_Node (Key, X) then
+ X := Ops.Left (X);
+ else
+ Y := X;
+ X := Ops.Right (X);
+ end if;
+ end loop;
+
+ B := B - 1;
+ L := L - 1;
+
+ return Y;
+
+ exception
+ when others =>
+ B := B - 1;
+ L := L - 1;
+
+ raise;
+ end Floor;
+
+ --------------------------------
+ -- Generic_Conditional_Insert --
+ --------------------------------
+
+ procedure Generic_Conditional_Insert
+ (Tree : in out Tree_Type;
+ Key : Key_Type;
+ Node : out Node_Access;
+ Inserted : out Boolean)
+ is
+ X : Node_Access;
+ Y : Node_Access;
+
+ -- Per AI05-0022, the container implementation is required to detect
+ -- element tampering by a generic actual subprogram.
+
+ B : Natural renames Tree.Busy;
+ L : Natural renames Tree.Lock;
+
+ Compare : Boolean;
+
+ begin
+ -- This is a "conditional" insertion, meaning that the insertion request
+ -- can "fail" in the sense that no new node is created. If the Key is
+ -- equivalent to an existing node, then we return the existing node and
+ -- Inserted is set to False. Otherwise, we allocate a new node (via
+ -- Insert_Post) and Inserted is set to True.
+
+ -- Note that we are testing for equivalence here, not equality. Key must
+ -- be strictly less than its next neighbor, and strictly greater than
+ -- its previous neighbor, in order for the conditional insertion to
+ -- succeed.
+
+ -- Handle insertion into an empty container as a special case, so that
+ -- we do not manipulate the tamper bits unnecessarily.
+
+ if Tree.Root = null then
+ Insert_Post (Tree, null, True, Node);
+ Inserted := True;
+ return;
+ end if;
+
+ -- We search the tree to find the nearest neighbor of Key, which is
+ -- either the smallest node greater than Key (Inserted is True), or the
+ -- largest node less or equivalent to Key (Inserted is False).
+
+ begin
+ B := B + 1;
+ L := L + 1;
+
+ X := Tree.Root;
+ Y := null;
+ Inserted := True;
+ while X /= null loop
+ Y := X;
+ Inserted := Is_Less_Key_Node (Key, X);
+ X := (if Inserted then Ops.Left (X) else Ops.Right (X));
+ end loop;
+
+ L := L - 1;
+ B := B - 1;
+
+ exception
+ when others =>
+ L := L - 1;
+ B := B - 1;
+
+ raise;
+ end;
+
+ if Inserted then
+
+ -- Key is less than Y. If Y is the first node in the tree, then there
+ -- are no other nodes that we need to search for, and we insert a new
+ -- node into the tree.
+
+ if Y = Tree.First then
+ Insert_Post (Tree, Y, True, Node);
+ return;
+ end if;
+
+ -- Y is the next nearest-neighbor of Key. We know that Key is not
+ -- equivalent to Y (because Key is strictly less than Y), so we move
+ -- to the previous node, the nearest-neighbor just smaller or
+ -- equivalent to Key.
+
+ Node := Ops.Previous (Y);
+
+ else
+ -- Y is the previous nearest-neighbor of Key. We know that Key is not
+ -- less than Y, which means either that Key is equivalent to Y, or
+ -- greater than Y.
+
+ Node := Y;
+ end if;
+
+ -- Key is equivalent to or greater than Node. We must resolve which is
+ -- the case, to determine whether the conditional insertion succeeds.
+
+ begin
+ B := B + 1;
+ L := L + 1;
+
+ Compare := Is_Greater_Key_Node (Key, Node);
+
+ L := L - 1;
+ B := B - 1;
+
+ exception
+ when others =>
+ L := L - 1;
+ B := B - 1;
+
+ raise;
+ end;
+
+ if Compare then
+
+ -- Key is strictly greater than Node, which means that Key is not
+ -- equivalent to Node. In this case, the insertion succeeds, and we
+ -- insert a new node into the tree.
+
+ Insert_Post (Tree, Y, Inserted, Node);
+ Inserted := True;
+ return;
+ end if;
+
+ -- Key is equivalent to Node. This is a conditional insertion, so we do
+ -- not insert a new node in this case. We return the existing node and
+ -- report that no insertion has occurred.
+
+ Inserted := False;
+ end Generic_Conditional_Insert;
+
+ ------------------------------------------
+ -- Generic_Conditional_Insert_With_Hint --
+ ------------------------------------------
+
+ procedure Generic_Conditional_Insert_With_Hint
+ (Tree : in out Tree_Type;
+ Position : Node_Access;
+ Key : Key_Type;
+ Node : out Node_Access;
+ Inserted : out Boolean)
+ is
+ -- Per AI05-0022, the container implementation is required to detect
+ -- element tampering by a generic actual subprogram.
+
+ B : Natural renames Tree.Busy;
+ L : Natural renames Tree.Lock;
+
+ Test : Node_Access;
+ Compare : Boolean;
+
+ begin
+ -- The purpose of a hint is to avoid a search from the root of
+ -- tree. If we have it hint it means we only need to traverse the
+ -- subtree rooted at the hint to find the nearest neighbor. Note
+ -- that finding the neighbor means merely walking the tree; this
+ -- is not a search and the only comparisons that occur are with
+ -- the hint and its neighbor.
+
+ -- Handle insertion into an empty container as a special case, so that
+ -- we do not manipulate the tamper bits unnecessarily.
+
+ if Tree.Root = null then
+ Insert_Post (Tree, null, True, Node);
+ Inserted := True;
+ return;
+ end if;
+
+ -- If Position is null, this is interpreted to mean that Key is large
+ -- relative to the nodes in the tree. If Key is greater than the last
+ -- node in the tree, then we're done; otherwise the hint was "wrong" and
+ -- we must search.
+
+ if Position = null then -- largest
+ begin
+ B := B + 1;
+ L := L + 1;
+
+ Compare := Is_Greater_Key_Node (Key, Tree.Last);
+
+ L := L - 1;
+ B := B - 1;
+
+ exception
+ when others =>
+ L := L - 1;
+ B := B - 1;
+
+ raise;
+ end;
+
+ if Compare then
+ Insert_Post (Tree, Tree.Last, False, Node);
+ Inserted := True;
+ else
+ Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
+ end if;
+
+ return;
+ end if;
+
+ pragma Assert (Tree.Length > 0);
+
+ -- A hint can either name the node that immediately follows Key,
+ -- or immediately precedes Key. We first test whether Key is
+ -- less than the hint, and if so we compare Key to the node that
+ -- precedes the hint. If Key is both less than the hint and
+ -- greater than the hint's preceding neighbor, then we're done;
+ -- otherwise we must search.
+
+ -- Note also that a hint can either be an anterior node or a leaf
+ -- node. A new node is always inserted at the bottom of the tree
+ -- (at least prior to rebalancing), becoming the new left or
+ -- right child of leaf node (which prior to the insertion must
+ -- necessarily be null, since this is a leaf). If the hint names
+ -- an anterior node then its neighbor must be a leaf, and so
+ -- (here) we insert after the neighbor. If the hint names a leaf
+ -- then its neighbor must be anterior and so we insert before the
+ -- hint.
+
+ begin
+ B := B + 1;
+ L := L + 1;
+
+ Compare := Is_Less_Key_Node (Key, Position);
+
+ L := L - 1;
+ B := B - 1;
+
+ exception
+ when others =>
+ L := L - 1;
+ B := B - 1;
+
+ raise;
+ end;
+
+ if Compare then
+ Test := Ops.Previous (Position); -- "before"
+
+ if Test = null then -- new first node
+ Insert_Post (Tree, Tree.First, True, Node);
+
+ Inserted := True;
+ return;
+ end if;
+
+ begin
+ B := B + 1;
+ L := L + 1;
+
+ Compare := Is_Greater_Key_Node (Key, Test);
+
+ L := L - 1;
+ B := B - 1;
+
+ exception
+ when others =>
+ L := L - 1;
+ B := B - 1;
+
+ raise;
+ end;
+
+ if Compare then
+ if Ops.Right (Test) = null then
+ Insert_Post (Tree, Test, False, Node);
+ else
+ Insert_Post (Tree, Position, True, Node);
+ end if;
+
+ Inserted := True;
+
+ else
+ Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
+ end if;
+
+ return;
+ end if;
+
+ -- We know that Key isn't less than the hint so we try again, this time
+ -- to see if it's greater than the hint. If so we compare Key to the
+ -- node that follows the hint. If Key is both greater than the hint and
+ -- less than the hint's next neighbor, then we're done; otherwise we
+ -- must search.
+
+ begin
+ B := B + 1;
+ L := L + 1;
+
+ Compare := Is_Greater_Key_Node (Key, Position);
+
+ L := L - 1;
+ B := B - 1;
+
+ exception
+ when others =>
+ L := L - 1;
+ B := B - 1;
+
+ raise;
+ end;
+
+ if Compare then
+ Test := Ops.Next (Position); -- "after"
+
+ if Test = null then -- new last node
+ Insert_Post (Tree, Tree.Last, False, Node);
+
+ Inserted := True;
+ return;
+ end if;
+
+ begin
+ B := B + 1;
+ L := L + 1;
+
+ Compare := Is_Less_Key_Node (Key, Test);
+
+ L := L - 1;
+ B := B - 1;
+
+ exception
+ when others =>
+ L := L - 1;
+ B := B - 1;
+
+ raise;
+ end;
+
+ if Compare then
+ if Ops.Right (Position) = null then
+ Insert_Post (Tree, Position, False, Node);
+ else
+ Insert_Post (Tree, Test, True, Node);
+ end if;
+
+ Inserted := True;
+
+ else
+ Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
+ end if;
+
+ return;
+ end if;
+
+ -- We know that Key is neither less than the hint nor greater than the
+ -- hint, and that's the definition of equivalence. There's nothing else
+ -- we need to do, since a search would just reach the same conclusion.
+
+ Node := Position;
+ Inserted := False;
+ end Generic_Conditional_Insert_With_Hint;
+
+ -------------------------
+ -- Generic_Insert_Post --
+ -------------------------
+
+ procedure Generic_Insert_Post
+ (Tree : in out Tree_Type;
+ Y : Node_Access;
+ Before : Boolean;
+ Z : out Node_Access)
+ is
+ begin
+ if Tree.Length = Count_Type'Last then
+ raise Constraint_Error with "too many elements";
+ end if;
+
+ if Tree.Busy > 0 then
+ raise Program_Error with
+ "attempt to tamper with cursors (container is busy)";
+ end if;
+
+ Z := New_Node;
+ pragma Assert (Z /= null);
+ pragma Assert (Ops.Color (Z) = Red);
+
+ if Y = null then
+ pragma Assert (Tree.Length = 0);
+ pragma Assert (Tree.Root = null);
+ pragma Assert (Tree.First = null);
+ pragma Assert (Tree.Last = null);
+
+ Tree.Root := Z;
+ Tree.First := Z;
+ Tree.Last := Z;
+
+ elsif Before then
+ pragma Assert (Ops.Left (Y) = null);
+
+ Ops.Set_Left (Y, Z);
+
+ if Y = Tree.First then
+ Tree.First := Z;
+ end if;
+
+ else
+ pragma Assert (Ops.Right (Y) = null);
+
+ Ops.Set_Right (Y, Z);
+
+ if Y = Tree.Last then
+ Tree.Last := Z;
+ end if;
+ end if;
+
+ Ops.Set_Parent (Z, Y);
+ Ops.Rebalance_For_Insert (Tree, Z);
+ Tree.Length := Tree.Length + 1;
+ end Generic_Insert_Post;
+
+ -----------------------
+ -- Generic_Iteration --
+ -----------------------
+
+ procedure Generic_Iteration
+ (Tree : Tree_Type;
+ Key : Key_Type)
+ is
+ procedure Iterate (Node : Node_Access);
+
+ -------------
+ -- Iterate --
+ -------------
+
+ procedure Iterate (Node : Node_Access) is
+ N : Node_Access;
+ begin
+ N := Node;
+ while N /= null loop
+ if Is_Less_Key_Node (Key, N) then
+ N := Ops.Left (N);
+ elsif Is_Greater_Key_Node (Key, N) then
+ N := Ops.Right (N);
+ else
+ Iterate (Ops.Left (N));
+ Process (N);
+ N := Ops.Right (N);
+ end if;
+ end loop;
+ end Iterate;
+
+ -- Start of processing for Generic_Iteration
+
+ begin
+ Iterate (Tree.Root);
+ end Generic_Iteration;
+
+ -------------------------------
+ -- Generic_Reverse_Iteration --
+ -------------------------------
+
+ procedure Generic_Reverse_Iteration
+ (Tree : Tree_Type;
+ Key : Key_Type)
+ is
+ procedure Iterate (Node : Node_Access);
+
+ -------------
+ -- Iterate --
+ -------------
+
+ procedure Iterate (Node : Node_Access) is
+ N : Node_Access;
+ begin
+ N := Node;
+ while N /= null loop
+ if Is_Less_Key_Node (Key, N) then
+ N := Ops.Left (N);
+ elsif Is_Greater_Key_Node (Key, N) then
+ N := Ops.Right (N);
+ else
+ Iterate (Ops.Right (N));
+ Process (N);
+ N := Ops.Left (N);
+ end if;
+ end loop;
+ end Iterate;
+
+ -- Start of processing for Generic_Reverse_Iteration
+
+ begin
+ Iterate (Tree.Root);
+ end Generic_Reverse_Iteration;
+
+ ----------------------------------
+ -- Generic_Unconditional_Insert --
+ ----------------------------------
+
+ procedure Generic_Unconditional_Insert
+ (Tree : in out Tree_Type;
+ Key : Key_Type;
+ Node : out Node_Access)
+ is
+ Y : Node_Access;
+ X : Node_Access;
+
+ Before : Boolean;
+
+ begin
+ Y := null;
+ Before := False;
+
+ X := Tree.Root;
+ while X /= null loop
+ Y := X;
+ Before := Is_Less_Key_Node (Key, X);
+ X := (if Before then Ops.Left (X) else Ops.Right (X));
+ end loop;
+
+ Insert_Post (Tree, Y, Before, Node);
+ end Generic_Unconditional_Insert;
+
+ --------------------------------------------
+ -- Generic_Unconditional_Insert_With_Hint --
+ --------------------------------------------
+
+ procedure Generic_Unconditional_Insert_With_Hint
+ (Tree : in out Tree_Type;
+ Hint : Node_Access;
+ Key : Key_Type;
+ Node : out Node_Access)
+ is
+ begin
+ -- There are fewer constraints for an unconditional insertion
+ -- than for a conditional insertion, since we allow duplicate
+ -- keys. So instead of having to check (say) whether Key is
+ -- (strictly) greater than the hint's previous neighbor, here we
+ -- allow Key to be equal to or greater than the previous node.
+
+ -- There is the issue of what to do if Key is equivalent to the
+ -- hint. Does the new node get inserted before or after the hint?
+ -- We decide that it gets inserted after the hint, reasoning that
+ -- this is consistent with behavior for non-hint insertion, which
+ -- inserts a new node after existing nodes with equivalent keys.
+
+ -- First we check whether the hint is null, which is interpreted
+ -- to mean that Key is large relative to existing nodes.
+ -- Following our rule above, if Key is equal to or greater than
+ -- the last node, then we insert the new node immediately after
+ -- last. (We don't have an operation for testing whether a key is
+ -- "equal to or greater than" a node, so we must say instead "not
+ -- less than", which is equivalent.)
+
+ if Hint = null then -- largest
+ if Tree.Last = null then
+ Insert_Post (Tree, null, False, Node);
+ elsif Is_Less_Key_Node (Key, Tree.Last) then
+ Unconditional_Insert_Sans_Hint (Tree, Key, Node);
+ else
+ Insert_Post (Tree, Tree.Last, False, Node);
+ end if;
+
+ return;
+ end if;
+
+ pragma Assert (Tree.Length > 0);
+
+ -- We decide here whether to insert the new node prior to the
+ -- hint. Key could be equivalent to the hint, so in theory we
+ -- could write the following test as "not greater than" (same as
+ -- "less than or equal to"). If Key were equivalent to the hint,
+ -- that would mean that the new node gets inserted before an
+ -- equivalent node. That wouldn't break any container invariants,
+ -- but our rule above says that new nodes always get inserted
+ -- after equivalent nodes. So here we test whether Key is both
+ -- less than the hint and equal to or greater than the hint's
+ -- previous neighbor, and if so insert it before the hint.
+
+ if Is_Less_Key_Node (Key, Hint) then
+ declare
+ Before : constant Node_Access := Ops.Previous (Hint);
+ begin
+ if Before = null then
+ Insert_Post (Tree, Hint, True, Node);
+ elsif Is_Less_Key_Node (Key, Before) then
+ Unconditional_Insert_Sans_Hint (Tree, Key, Node);
+ elsif Ops.Right (Before) = null then
+ Insert_Post (Tree, Before, False, Node);
+ else
+ Insert_Post (Tree, Hint, True, Node);
+ end if;
+ end;
+
+ return;
+ end if;
+
+ -- We know that Key isn't less than the hint, so it must be equal
+ -- or greater. So we just test whether Key is less than or equal
+ -- to (same as "not greater than") the hint's next neighbor, and
+ -- if so insert it after the hint.
+
+ declare
+ After : constant Node_Access := Ops.Next (Hint);
+ begin
+ if After = null then
+ Insert_Post (Tree, Hint, False, Node);
+ elsif Is_Greater_Key_Node (Key, After) then
+ Unconditional_Insert_Sans_Hint (Tree, Key, Node);
+ elsif Ops.Right (Hint) = null then
+ Insert_Post (Tree, Hint, False, Node);
+ else
+ Insert_Post (Tree, After, True, Node);
+ end if;
+ end;
+ end Generic_Unconditional_Insert_With_Hint;
+
+ -----------------
+ -- Upper_Bound --
+ -----------------
+
+ function Upper_Bound
+ (Tree : Tree_Type;
+ Key : Key_Type) return Node_Access
+ is
+ Y : Node_Access;
+ X : Node_Access;
+
+ begin
+ X := Tree.Root;
+ while X /= null loop
+ if Is_Less_Key_Node (Key, X) then
+ Y := X;
+ X := Ops.Left (X);
+ else
+ X := Ops.Right (X);
+ end if;
+ end loop;
+
+ return Y;
+ end Upper_Bound;
+
+end Ada.Containers.Red_Black_Trees.Generic_Keys;