diff options
Diffstat (limited to 'gcc-4.8/libgfortran/intrinsics/pack_generic.c')
-rw-r--r-- | gcc-4.8/libgfortran/intrinsics/pack_generic.c | 642 |
1 files changed, 642 insertions, 0 deletions
diff --git a/gcc-4.8/libgfortran/intrinsics/pack_generic.c b/gcc-4.8/libgfortran/intrinsics/pack_generic.c new file mode 100644 index 000000000..843f3bd6b --- /dev/null +++ b/gcc-4.8/libgfortran/intrinsics/pack_generic.c @@ -0,0 +1,642 @@ +/* Generic implementation of the PACK intrinsic + Copyright (C) 2002-2013 Free Software Foundation, Inc. + Contributed by Paul Brook <paul@nowt.org> + +This file is part of the GNU Fortran runtime library (libgfortran). + +Libgfortran is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +Ligbfortran is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +Under Section 7 of GPL version 3, you are granted additional +permissions described in the GCC Runtime Library Exception, version +3.1, as published by the Free Software Foundation. + +You should have received a copy of the GNU General Public License and +a copy of the GCC Runtime Library Exception along with this program; +see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +<http://www.gnu.org/licenses/>. */ + +#include "libgfortran.h" +#include <stdlib.h> +#include <assert.h> +#include <string.h> + +/* PACK is specified as follows: + + 13.14.80 PACK (ARRAY, MASK, [VECTOR]) + + Description: Pack an array into an array of rank one under the + control of a mask. + + Class: Transformational function. + + Arguments: + ARRAY may be of any type. It shall not be scalar. + MASK shall be of type LOGICAL. It shall be conformable with ARRAY. + VECTOR (optional) shall be of the same type and type parameters + as ARRAY. VECTOR shall have at least as many elements as + there are true elements in MASK. If MASK is a scalar + with the value true, VECTOR shall have at least as many + elements as there are in ARRAY. + + Result Characteristics: The result is an array of rank one with the + same type and type parameters as ARRAY. If VECTOR is present, the + result size is that of VECTOR; otherwise, the result size is the + number /t/ of true elements in MASK unless MASK is scalar with the + value true, in which case the result size is the size of ARRAY. + + Result Value: Element /i/ of the result is the element of ARRAY + that corresponds to the /i/th true element of MASK, taking elements + in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is + present and has size /n/ > /t/, element /i/ of the result has the + value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/. + + Examples: The nonzero elements of an array M with the value + | 0 0 0 | + | 9 0 0 | may be "gathered" by the function PACK. The result of + | 0 0 7 | + PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0, + VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12]. + +There are two variants of the PACK intrinsic: one, where MASK is +array valued, and the other one where MASK is scalar. */ + +static void +pack_internal (gfc_array_char *ret, const gfc_array_char *array, + const gfc_array_l1 *mask, const gfc_array_char *vector, + index_type size) +{ + /* r.* indicates the return array. */ + index_type rstride0; + char * restrict rptr; + /* s.* indicates the source array. */ + index_type sstride[GFC_MAX_DIMENSIONS]; + index_type sstride0; + const char *sptr; + /* m.* indicates the mask array. */ + index_type mstride[GFC_MAX_DIMENSIONS]; + index_type mstride0; + const GFC_LOGICAL_1 *mptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + index_type nelem; + index_type total; + int mask_kind; + + dim = GFC_DESCRIPTOR_RANK (array); + + sptr = array->base_addr; + mptr = mask->base_addr; + + /* Use the same loop for all logical types, by using GFC_LOGICAL_1 + and using shifting to address size and endian issues. */ + + mask_kind = GFC_DESCRIPTOR_SIZE (mask); + + if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 +#ifdef HAVE_GFC_LOGICAL_16 + || mask_kind == 16 +#endif + ) + { + /* Don't convert a NULL pointer as we use test for NULL below. */ + if (mptr) + mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); + } + else + runtime_error ("Funny sized logical array"); + + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); + sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n); + mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); + } + if (sstride[0] == 0) + sstride[0] = size; + if (mstride[0] == 0) + mstride[0] = mask_kind; + + if (ret->base_addr == NULL || unlikely (compile_options.bounds_check)) + { + /* Count the elements, either for allocating memory or + for bounds checking. */ + + if (vector != NULL) + { + /* The return array will have as many + elements as there are in VECTOR. */ + total = GFC_DESCRIPTOR_EXTENT(vector,0); + } + else + { + /* We have to count the true elements in MASK. */ + + total = count_0 (mask); + } + + if (ret->base_addr == NULL) + { + /* Setup the array descriptor. */ + GFC_DIMENSION_SET(ret->dim[0], 0, total-1, 1); + + ret->offset = 0; + /* xmalloc allocates a single byte for zero size. */ + ret->base_addr = xmalloc (size * total); + + if (total == 0) + return; /* In this case, nothing remains to be done. */ + } + else + { + /* We come here because of range checking. */ + index_type ret_extent; + + ret_extent = GFC_DESCRIPTOR_EXTENT(ret,0); + if (total != ret_extent) + runtime_error ("Incorrect extent in return value of PACK intrinsic;" + " is %ld, should be %ld", (long int) total, + (long int) ret_extent); + } + } + + rstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(ret,0); + if (rstride0 == 0) + rstride0 = size; + sstride0 = sstride[0]; + mstride0 = mstride[0]; + rptr = ret->base_addr; + + while (sptr && mptr) + { + /* Test this element. */ + if (*mptr) + { + /* Add it. */ + memcpy (rptr, sptr, size); + rptr += rstride0; + } + /* Advance to the next element. */ + sptr += sstride0; + mptr += mstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and increment + the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a less + frequently used path so probably not worth it. */ + sptr -= sstride[n] * extent[n]; + mptr -= mstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + sptr = NULL; + break; + } + else + { + count[n]++; + sptr += sstride[n]; + mptr += mstride[n]; + } + } + } + + /* Add any remaining elements from VECTOR. */ + if (vector) + { + n = GFC_DESCRIPTOR_EXTENT(vector,0); + nelem = ((rptr - ret->base_addr) / rstride0); + if (n > nelem) + { + sstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(vector,0); + if (sstride0 == 0) + sstride0 = size; + + sptr = vector->base_addr + sstride0 * nelem; + n -= nelem; + while (n--) + { + memcpy (rptr, sptr, size); + rptr += rstride0; + sptr += sstride0; + } + } + } +} + +extern void pack (gfc_array_char *, const gfc_array_char *, + const gfc_array_l1 *, const gfc_array_char *); +export_proto(pack); + +void +pack (gfc_array_char *ret, const gfc_array_char *array, + const gfc_array_l1 *mask, const gfc_array_char *vector) +{ + index_type type_size; + index_type size; + + type_size = GFC_DTYPE_TYPE_SIZE(array); + + switch(type_size) + { + case GFC_DTYPE_LOGICAL_1: + case GFC_DTYPE_INTEGER_1: + case GFC_DTYPE_DERIVED_1: + pack_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) array, + (gfc_array_l1 *) mask, (gfc_array_i1 *) vector); + return; + + case GFC_DTYPE_LOGICAL_2: + case GFC_DTYPE_INTEGER_2: + pack_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array, + (gfc_array_l1 *) mask, (gfc_array_i2 *) vector); + return; + + case GFC_DTYPE_LOGICAL_4: + case GFC_DTYPE_INTEGER_4: + pack_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) array, + (gfc_array_l1 *) mask, (gfc_array_i4 *) vector); + return; + + case GFC_DTYPE_LOGICAL_8: + case GFC_DTYPE_INTEGER_8: + pack_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) array, + (gfc_array_l1 *) mask, (gfc_array_i8 *) vector); + return; + +#ifdef HAVE_GFC_INTEGER_16 + case GFC_DTYPE_LOGICAL_16: + case GFC_DTYPE_INTEGER_16: + pack_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array, + (gfc_array_l1 *) mask, (gfc_array_i16 *) vector); + return; +#endif + + case GFC_DTYPE_REAL_4: + pack_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) array, + (gfc_array_l1 *) mask, (gfc_array_r4 *) vector); + return; + + case GFC_DTYPE_REAL_8: + pack_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) array, + (gfc_array_l1 *) mask, (gfc_array_r8 *) vector); + return; + +/* FIXME: This here is a hack, which will have to be removed when + the array descriptor is reworked. Currently, we don't store the + kind value for the type, but only the size. Because on targets with + __float128, we have sizeof(logn double) == sizeof(__float128), + we cannot discriminate here and have to fall back to the generic + handling (which is suboptimal). */ +#if !defined(GFC_REAL_16_IS_FLOAT128) +# ifdef HAVE_GFC_REAL_10 + case GFC_DTYPE_REAL_10: + pack_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) array, + (gfc_array_l1 *) mask, (gfc_array_r10 *) vector); + return; +# endif + +# ifdef HAVE_GFC_REAL_16 + case GFC_DTYPE_REAL_16: + pack_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) array, + (gfc_array_l1 *) mask, (gfc_array_r16 *) vector); + return; +# endif +#endif + + case GFC_DTYPE_COMPLEX_4: + pack_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) array, + (gfc_array_l1 *) mask, (gfc_array_c4 *) vector); + return; + + case GFC_DTYPE_COMPLEX_8: + pack_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array, + (gfc_array_l1 *) mask, (gfc_array_c8 *) vector); + return; + +/* FIXME: This here is a hack, which will have to be removed when + the array descriptor is reworked. Currently, we don't store the + kind value for the type, but only the size. Because on targets with + __float128, we have sizeof(logn double) == sizeof(__float128), + we cannot discriminate here and have to fall back to the generic + handling (which is suboptimal). */ +#if !defined(GFC_REAL_16_IS_FLOAT128) +# ifdef HAVE_GFC_COMPLEX_10 + case GFC_DTYPE_COMPLEX_10: + pack_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) array, + (gfc_array_l1 *) mask, (gfc_array_c10 *) vector); + return; +# endif + +# ifdef HAVE_GFC_COMPLEX_16 + case GFC_DTYPE_COMPLEX_16: + pack_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) array, + (gfc_array_l1 *) mask, (gfc_array_c16 *) vector); + return; +# endif +#endif + + /* For derived types, let's check the actual alignment of the + data pointers. If they are aligned, we can safely call + the unpack functions. */ + + case GFC_DTYPE_DERIVED_2: + if (GFC_UNALIGNED_2(ret->base_addr) || GFC_UNALIGNED_2(array->base_addr) + || (vector && GFC_UNALIGNED_2(vector->base_addr))) + break; + else + { + pack_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array, + (gfc_array_l1 *) mask, (gfc_array_i2 *) vector); + return; + } + + case GFC_DTYPE_DERIVED_4: + if (GFC_UNALIGNED_4(ret->base_addr) || GFC_UNALIGNED_4(array->base_addr) + || (vector && GFC_UNALIGNED_4(vector->base_addr))) + break; + else + { + pack_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) array, + (gfc_array_l1 *) mask, (gfc_array_i4 *) vector); + return; + } + + case GFC_DTYPE_DERIVED_8: + if (GFC_UNALIGNED_8(ret->base_addr) || GFC_UNALIGNED_8(array->base_addr) + || (vector && GFC_UNALIGNED_8(vector->base_addr))) + break; + else + { + pack_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) array, + (gfc_array_l1 *) mask, (gfc_array_i8 *) vector); + return; + } + +#ifdef HAVE_GFC_INTEGER_16 + case GFC_DTYPE_DERIVED_16: + if (GFC_UNALIGNED_16(ret->base_addr) || GFC_UNALIGNED_16(array->base_addr) + || (vector && GFC_UNALIGNED_16(vector->base_addr))) + break; + else + { + pack_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array, + (gfc_array_l1 *) mask, (gfc_array_i16 *) vector); + return; + } +#endif + + } + + size = GFC_DESCRIPTOR_SIZE (array); + pack_internal (ret, array, mask, vector, size); +} + + +extern void pack_char (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *, + const gfc_array_l1 *, const gfc_array_char *, + GFC_INTEGER_4, GFC_INTEGER_4); +export_proto(pack_char); + +void +pack_char (gfc_array_char *ret, + GFC_INTEGER_4 ret_length __attribute__((unused)), + const gfc_array_char *array, const gfc_array_l1 *mask, + const gfc_array_char *vector, GFC_INTEGER_4 array_length, + GFC_INTEGER_4 vector_length __attribute__((unused))) +{ + pack_internal (ret, array, mask, vector, array_length); +} + + +extern void pack_char4 (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *, + const gfc_array_l1 *, const gfc_array_char *, + GFC_INTEGER_4, GFC_INTEGER_4); +export_proto(pack_char4); + +void +pack_char4 (gfc_array_char *ret, + GFC_INTEGER_4 ret_length __attribute__((unused)), + const gfc_array_char *array, const gfc_array_l1 *mask, + const gfc_array_char *vector, GFC_INTEGER_4 array_length, + GFC_INTEGER_4 vector_length __attribute__((unused))) +{ + pack_internal (ret, array, mask, vector, array_length * sizeof (gfc_char4_t)); +} + + +static void +pack_s_internal (gfc_array_char *ret, const gfc_array_char *array, + const GFC_LOGICAL_4 *mask, const gfc_array_char *vector, + index_type size) +{ + /* r.* indicates the return array. */ + index_type rstride0; + char *rptr; + /* s.* indicates the source array. */ + index_type sstride[GFC_MAX_DIMENSIONS]; + index_type sstride0; + const char *sptr; + + index_type count[GFC_MAX_DIMENSIONS]; + index_type extent[GFC_MAX_DIMENSIONS]; + index_type n; + index_type dim; + index_type ssize; + index_type nelem; + index_type total; + + dim = GFC_DESCRIPTOR_RANK (array); + ssize = 1; + for (n = 0; n < dim; n++) + { + count[n] = 0; + extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); + if (extent[n] < 0) + extent[n] = 0; + + sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n); + ssize *= extent[n]; + } + if (sstride[0] == 0) + sstride[0] = size; + + sstride0 = sstride[0]; + + if (ssize != 0) + sptr = array->base_addr; + else + sptr = NULL; + + if (ret->base_addr == NULL) + { + /* Allocate the memory for the result. */ + + if (vector != NULL) + { + /* The return array will have as many elements as there are + in vector. */ + total = GFC_DESCRIPTOR_EXTENT(vector,0); + if (total <= 0) + { + total = 0; + vector = NULL; + } + } + else + { + if (*mask) + { + /* The result array will have as many elements as the input + array. */ + total = extent[0]; + for (n = 1; n < dim; n++) + total *= extent[n]; + } + else + /* The result array will be empty. */ + total = 0; + } + + /* Setup the array descriptor. */ + GFC_DIMENSION_SET(ret->dim[0],0,total-1,1); + + ret->offset = 0; + + ret->base_addr = xmalloc (size * total); + + if (total == 0) + return; + } + + rstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(ret,0); + if (rstride0 == 0) + rstride0 = size; + rptr = ret->base_addr; + + /* The remaining possibilities are now: + If MASK is .TRUE., we have to copy the source array into the + result array. We then have to fill it up with elements from VECTOR. + If MASK is .FALSE., we have to copy VECTOR into the result + array. If VECTOR were not present we would have already returned. */ + + if (*mask && ssize != 0) + { + while (sptr) + { + /* Add this element. */ + memcpy (rptr, sptr, size); + rptr += rstride0; + + /* Advance to the next element. */ + sptr += sstride0; + count[0]++; + n = 0; + while (count[n] == extent[n]) + { + /* When we get to the end of a dimension, reset it and + increment the next dimension. */ + count[n] = 0; + /* We could precalculate these products, but this is a + less frequently used path so probably not worth it. */ + sptr -= sstride[n] * extent[n]; + n++; + if (n >= dim) + { + /* Break out of the loop. */ + sptr = NULL; + break; + } + else + { + count[n]++; + sptr += sstride[n]; + } + } + } + } + + /* Add any remaining elements from VECTOR. */ + if (vector) + { + n = GFC_DESCRIPTOR_EXTENT(vector,0); + nelem = ((rptr - ret->base_addr) / rstride0); + if (n > nelem) + { + sstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(vector,0); + if (sstride0 == 0) + sstride0 = size; + + sptr = vector->base_addr + sstride0 * nelem; + n -= nelem; + while (n--) + { + memcpy (rptr, sptr, size); + rptr += rstride0; + sptr += sstride0; + } + } + } +} + +extern void pack_s (gfc_array_char *ret, const gfc_array_char *array, + const GFC_LOGICAL_4 *, const gfc_array_char *); +export_proto(pack_s); + +void +pack_s (gfc_array_char *ret, const gfc_array_char *array, + const GFC_LOGICAL_4 *mask, const gfc_array_char *vector) +{ + pack_s_internal (ret, array, mask, vector, GFC_DESCRIPTOR_SIZE (array)); +} + + +extern void pack_s_char (gfc_array_char *ret, GFC_INTEGER_4, + const gfc_array_char *array, const GFC_LOGICAL_4 *, + const gfc_array_char *, GFC_INTEGER_4, + GFC_INTEGER_4); +export_proto(pack_s_char); + +void +pack_s_char (gfc_array_char *ret, + GFC_INTEGER_4 ret_length __attribute__((unused)), + const gfc_array_char *array, const GFC_LOGICAL_4 *mask, + const gfc_array_char *vector, GFC_INTEGER_4 array_length, + GFC_INTEGER_4 vector_length __attribute__((unused))) +{ + pack_s_internal (ret, array, mask, vector, array_length); +} + + +extern void pack_s_char4 (gfc_array_char *ret, GFC_INTEGER_4, + const gfc_array_char *array, const GFC_LOGICAL_4 *, + const gfc_array_char *, GFC_INTEGER_4, + GFC_INTEGER_4); +export_proto(pack_s_char4); + +void +pack_s_char4 (gfc_array_char *ret, + GFC_INTEGER_4 ret_length __attribute__((unused)), + const gfc_array_char *array, const GFC_LOGICAL_4 *mask, + const gfc_array_char *vector, GFC_INTEGER_4 array_length, + GFC_INTEGER_4 vector_length __attribute__((unused))) +{ + pack_s_internal (ret, array, mask, vector, + array_length * sizeof (gfc_char4_t)); +} |