aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8/libgfortran/intrinsics/pack_generic.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8/libgfortran/intrinsics/pack_generic.c')
-rw-r--r--gcc-4.8/libgfortran/intrinsics/pack_generic.c642
1 files changed, 642 insertions, 0 deletions
diff --git a/gcc-4.8/libgfortran/intrinsics/pack_generic.c b/gcc-4.8/libgfortran/intrinsics/pack_generic.c
new file mode 100644
index 000000000..843f3bd6b
--- /dev/null
+++ b/gcc-4.8/libgfortran/intrinsics/pack_generic.c
@@ -0,0 +1,642 @@
+/* Generic implementation of the PACK intrinsic
+ Copyright (C) 2002-2013 Free Software Foundation, Inc.
+ Contributed by Paul Brook <paul@nowt.org>
+
+This file is part of the GNU Fortran runtime library (libgfortran).
+
+Libgfortran is free software; you can redistribute it and/or
+modify it under the terms of the GNU General Public
+License as published by the Free Software Foundation; either
+version 3 of the License, or (at your option) any later version.
+
+Ligbfortran is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+<http://www.gnu.org/licenses/>. */
+
+#include "libgfortran.h"
+#include <stdlib.h>
+#include <assert.h>
+#include <string.h>
+
+/* PACK is specified as follows:
+
+ 13.14.80 PACK (ARRAY, MASK, [VECTOR])
+
+ Description: Pack an array into an array of rank one under the
+ control of a mask.
+
+ Class: Transformational function.
+
+ Arguments:
+ ARRAY may be of any type. It shall not be scalar.
+ MASK shall be of type LOGICAL. It shall be conformable with ARRAY.
+ VECTOR (optional) shall be of the same type and type parameters
+ as ARRAY. VECTOR shall have at least as many elements as
+ there are true elements in MASK. If MASK is a scalar
+ with the value true, VECTOR shall have at least as many
+ elements as there are in ARRAY.
+
+ Result Characteristics: The result is an array of rank one with the
+ same type and type parameters as ARRAY. If VECTOR is present, the
+ result size is that of VECTOR; otherwise, the result size is the
+ number /t/ of true elements in MASK unless MASK is scalar with the
+ value true, in which case the result size is the size of ARRAY.
+
+ Result Value: Element /i/ of the result is the element of ARRAY
+ that corresponds to the /i/th true element of MASK, taking elements
+ in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is
+ present and has size /n/ > /t/, element /i/ of the result has the
+ value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/.
+
+ Examples: The nonzero elements of an array M with the value
+ | 0 0 0 |
+ | 9 0 0 | may be "gathered" by the function PACK. The result of
+ | 0 0 7 |
+ PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0,
+ VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12].
+
+There are two variants of the PACK intrinsic: one, where MASK is
+array valued, and the other one where MASK is scalar. */
+
+static void
+pack_internal (gfc_array_char *ret, const gfc_array_char *array,
+ const gfc_array_l1 *mask, const gfc_array_char *vector,
+ index_type size)
+{
+ /* r.* indicates the return array. */
+ index_type rstride0;
+ char * restrict rptr;
+ /* s.* indicates the source array. */
+ index_type sstride[GFC_MAX_DIMENSIONS];
+ index_type sstride0;
+ const char *sptr;
+ /* m.* indicates the mask array. */
+ index_type mstride[GFC_MAX_DIMENSIONS];
+ index_type mstride0;
+ const GFC_LOGICAL_1 *mptr;
+
+ index_type count[GFC_MAX_DIMENSIONS];
+ index_type extent[GFC_MAX_DIMENSIONS];
+ index_type n;
+ index_type dim;
+ index_type nelem;
+ index_type total;
+ int mask_kind;
+
+ dim = GFC_DESCRIPTOR_RANK (array);
+
+ sptr = array->base_addr;
+ mptr = mask->base_addr;
+
+ /* Use the same loop for all logical types, by using GFC_LOGICAL_1
+ and using shifting to address size and endian issues. */
+
+ mask_kind = GFC_DESCRIPTOR_SIZE (mask);
+
+ if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
+#ifdef HAVE_GFC_LOGICAL_16
+ || mask_kind == 16
+#endif
+ )
+ {
+ /* Don't convert a NULL pointer as we use test for NULL below. */
+ if (mptr)
+ mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
+ }
+ else
+ runtime_error ("Funny sized logical array");
+
+ for (n = 0; n < dim; n++)
+ {
+ count[n] = 0;
+ extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
+ sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n);
+ mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
+ }
+ if (sstride[0] == 0)
+ sstride[0] = size;
+ if (mstride[0] == 0)
+ mstride[0] = mask_kind;
+
+ if (ret->base_addr == NULL || unlikely (compile_options.bounds_check))
+ {
+ /* Count the elements, either for allocating memory or
+ for bounds checking. */
+
+ if (vector != NULL)
+ {
+ /* The return array will have as many
+ elements as there are in VECTOR. */
+ total = GFC_DESCRIPTOR_EXTENT(vector,0);
+ }
+ else
+ {
+ /* We have to count the true elements in MASK. */
+
+ total = count_0 (mask);
+ }
+
+ if (ret->base_addr == NULL)
+ {
+ /* Setup the array descriptor. */
+ GFC_DIMENSION_SET(ret->dim[0], 0, total-1, 1);
+
+ ret->offset = 0;
+ /* xmalloc allocates a single byte for zero size. */
+ ret->base_addr = xmalloc (size * total);
+
+ if (total == 0)
+ return; /* In this case, nothing remains to be done. */
+ }
+ else
+ {
+ /* We come here because of range checking. */
+ index_type ret_extent;
+
+ ret_extent = GFC_DESCRIPTOR_EXTENT(ret,0);
+ if (total != ret_extent)
+ runtime_error ("Incorrect extent in return value of PACK intrinsic;"
+ " is %ld, should be %ld", (long int) total,
+ (long int) ret_extent);
+ }
+ }
+
+ rstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(ret,0);
+ if (rstride0 == 0)
+ rstride0 = size;
+ sstride0 = sstride[0];
+ mstride0 = mstride[0];
+ rptr = ret->base_addr;
+
+ while (sptr && mptr)
+ {
+ /* Test this element. */
+ if (*mptr)
+ {
+ /* Add it. */
+ memcpy (rptr, sptr, size);
+ rptr += rstride0;
+ }
+ /* Advance to the next element. */
+ sptr += sstride0;
+ mptr += mstride0;
+ count[0]++;
+ n = 0;
+ while (count[n] == extent[n])
+ {
+ /* When we get to the end of a dimension, reset it and increment
+ the next dimension. */
+ count[n] = 0;
+ /* We could precalculate these products, but this is a less
+ frequently used path so probably not worth it. */
+ sptr -= sstride[n] * extent[n];
+ mptr -= mstride[n] * extent[n];
+ n++;
+ if (n >= dim)
+ {
+ /* Break out of the loop. */
+ sptr = NULL;
+ break;
+ }
+ else
+ {
+ count[n]++;
+ sptr += sstride[n];
+ mptr += mstride[n];
+ }
+ }
+ }
+
+ /* Add any remaining elements from VECTOR. */
+ if (vector)
+ {
+ n = GFC_DESCRIPTOR_EXTENT(vector,0);
+ nelem = ((rptr - ret->base_addr) / rstride0);
+ if (n > nelem)
+ {
+ sstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(vector,0);
+ if (sstride0 == 0)
+ sstride0 = size;
+
+ sptr = vector->base_addr + sstride0 * nelem;
+ n -= nelem;
+ while (n--)
+ {
+ memcpy (rptr, sptr, size);
+ rptr += rstride0;
+ sptr += sstride0;
+ }
+ }
+ }
+}
+
+extern void pack (gfc_array_char *, const gfc_array_char *,
+ const gfc_array_l1 *, const gfc_array_char *);
+export_proto(pack);
+
+void
+pack (gfc_array_char *ret, const gfc_array_char *array,
+ const gfc_array_l1 *mask, const gfc_array_char *vector)
+{
+ index_type type_size;
+ index_type size;
+
+ type_size = GFC_DTYPE_TYPE_SIZE(array);
+
+ switch(type_size)
+ {
+ case GFC_DTYPE_LOGICAL_1:
+ case GFC_DTYPE_INTEGER_1:
+ case GFC_DTYPE_DERIVED_1:
+ pack_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_i1 *) vector);
+ return;
+
+ case GFC_DTYPE_LOGICAL_2:
+ case GFC_DTYPE_INTEGER_2:
+ pack_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_i2 *) vector);
+ return;
+
+ case GFC_DTYPE_LOGICAL_4:
+ case GFC_DTYPE_INTEGER_4:
+ pack_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_i4 *) vector);
+ return;
+
+ case GFC_DTYPE_LOGICAL_8:
+ case GFC_DTYPE_INTEGER_8:
+ pack_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_i8 *) vector);
+ return;
+
+#ifdef HAVE_GFC_INTEGER_16
+ case GFC_DTYPE_LOGICAL_16:
+ case GFC_DTYPE_INTEGER_16:
+ pack_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_i16 *) vector);
+ return;
+#endif
+
+ case GFC_DTYPE_REAL_4:
+ pack_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_r4 *) vector);
+ return;
+
+ case GFC_DTYPE_REAL_8:
+ pack_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_r8 *) vector);
+ return;
+
+/* FIXME: This here is a hack, which will have to be removed when
+ the array descriptor is reworked. Currently, we don't store the
+ kind value for the type, but only the size. Because on targets with
+ __float128, we have sizeof(logn double) == sizeof(__float128),
+ we cannot discriminate here and have to fall back to the generic
+ handling (which is suboptimal). */
+#if !defined(GFC_REAL_16_IS_FLOAT128)
+# ifdef HAVE_GFC_REAL_10
+ case GFC_DTYPE_REAL_10:
+ pack_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_r10 *) vector);
+ return;
+# endif
+
+# ifdef HAVE_GFC_REAL_16
+ case GFC_DTYPE_REAL_16:
+ pack_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_r16 *) vector);
+ return;
+# endif
+#endif
+
+ case GFC_DTYPE_COMPLEX_4:
+ pack_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_c4 *) vector);
+ return;
+
+ case GFC_DTYPE_COMPLEX_8:
+ pack_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_c8 *) vector);
+ return;
+
+/* FIXME: This here is a hack, which will have to be removed when
+ the array descriptor is reworked. Currently, we don't store the
+ kind value for the type, but only the size. Because on targets with
+ __float128, we have sizeof(logn double) == sizeof(__float128),
+ we cannot discriminate here and have to fall back to the generic
+ handling (which is suboptimal). */
+#if !defined(GFC_REAL_16_IS_FLOAT128)
+# ifdef HAVE_GFC_COMPLEX_10
+ case GFC_DTYPE_COMPLEX_10:
+ pack_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_c10 *) vector);
+ return;
+# endif
+
+# ifdef HAVE_GFC_COMPLEX_16
+ case GFC_DTYPE_COMPLEX_16:
+ pack_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_c16 *) vector);
+ return;
+# endif
+#endif
+
+ /* For derived types, let's check the actual alignment of the
+ data pointers. If they are aligned, we can safely call
+ the unpack functions. */
+
+ case GFC_DTYPE_DERIVED_2:
+ if (GFC_UNALIGNED_2(ret->base_addr) || GFC_UNALIGNED_2(array->base_addr)
+ || (vector && GFC_UNALIGNED_2(vector->base_addr)))
+ break;
+ else
+ {
+ pack_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_i2 *) vector);
+ return;
+ }
+
+ case GFC_DTYPE_DERIVED_4:
+ if (GFC_UNALIGNED_4(ret->base_addr) || GFC_UNALIGNED_4(array->base_addr)
+ || (vector && GFC_UNALIGNED_4(vector->base_addr)))
+ break;
+ else
+ {
+ pack_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_i4 *) vector);
+ return;
+ }
+
+ case GFC_DTYPE_DERIVED_8:
+ if (GFC_UNALIGNED_8(ret->base_addr) || GFC_UNALIGNED_8(array->base_addr)
+ || (vector && GFC_UNALIGNED_8(vector->base_addr)))
+ break;
+ else
+ {
+ pack_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_i8 *) vector);
+ return;
+ }
+
+#ifdef HAVE_GFC_INTEGER_16
+ case GFC_DTYPE_DERIVED_16:
+ if (GFC_UNALIGNED_16(ret->base_addr) || GFC_UNALIGNED_16(array->base_addr)
+ || (vector && GFC_UNALIGNED_16(vector->base_addr)))
+ break;
+ else
+ {
+ pack_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array,
+ (gfc_array_l1 *) mask, (gfc_array_i16 *) vector);
+ return;
+ }
+#endif
+
+ }
+
+ size = GFC_DESCRIPTOR_SIZE (array);
+ pack_internal (ret, array, mask, vector, size);
+}
+
+
+extern void pack_char (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *,
+ const gfc_array_l1 *, const gfc_array_char *,
+ GFC_INTEGER_4, GFC_INTEGER_4);
+export_proto(pack_char);
+
+void
+pack_char (gfc_array_char *ret,
+ GFC_INTEGER_4 ret_length __attribute__((unused)),
+ const gfc_array_char *array, const gfc_array_l1 *mask,
+ const gfc_array_char *vector, GFC_INTEGER_4 array_length,
+ GFC_INTEGER_4 vector_length __attribute__((unused)))
+{
+ pack_internal (ret, array, mask, vector, array_length);
+}
+
+
+extern void pack_char4 (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *,
+ const gfc_array_l1 *, const gfc_array_char *,
+ GFC_INTEGER_4, GFC_INTEGER_4);
+export_proto(pack_char4);
+
+void
+pack_char4 (gfc_array_char *ret,
+ GFC_INTEGER_4 ret_length __attribute__((unused)),
+ const gfc_array_char *array, const gfc_array_l1 *mask,
+ const gfc_array_char *vector, GFC_INTEGER_4 array_length,
+ GFC_INTEGER_4 vector_length __attribute__((unused)))
+{
+ pack_internal (ret, array, mask, vector, array_length * sizeof (gfc_char4_t));
+}
+
+
+static void
+pack_s_internal (gfc_array_char *ret, const gfc_array_char *array,
+ const GFC_LOGICAL_4 *mask, const gfc_array_char *vector,
+ index_type size)
+{
+ /* r.* indicates the return array. */
+ index_type rstride0;
+ char *rptr;
+ /* s.* indicates the source array. */
+ index_type sstride[GFC_MAX_DIMENSIONS];
+ index_type sstride0;
+ const char *sptr;
+
+ index_type count[GFC_MAX_DIMENSIONS];
+ index_type extent[GFC_MAX_DIMENSIONS];
+ index_type n;
+ index_type dim;
+ index_type ssize;
+ index_type nelem;
+ index_type total;
+
+ dim = GFC_DESCRIPTOR_RANK (array);
+ ssize = 1;
+ for (n = 0; n < dim; n++)
+ {
+ count[n] = 0;
+ extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
+ if (extent[n] < 0)
+ extent[n] = 0;
+
+ sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n);
+ ssize *= extent[n];
+ }
+ if (sstride[0] == 0)
+ sstride[0] = size;
+
+ sstride0 = sstride[0];
+
+ if (ssize != 0)
+ sptr = array->base_addr;
+ else
+ sptr = NULL;
+
+ if (ret->base_addr == NULL)
+ {
+ /* Allocate the memory for the result. */
+
+ if (vector != NULL)
+ {
+ /* The return array will have as many elements as there are
+ in vector. */
+ total = GFC_DESCRIPTOR_EXTENT(vector,0);
+ if (total <= 0)
+ {
+ total = 0;
+ vector = NULL;
+ }
+ }
+ else
+ {
+ if (*mask)
+ {
+ /* The result array will have as many elements as the input
+ array. */
+ total = extent[0];
+ for (n = 1; n < dim; n++)
+ total *= extent[n];
+ }
+ else
+ /* The result array will be empty. */
+ total = 0;
+ }
+
+ /* Setup the array descriptor. */
+ GFC_DIMENSION_SET(ret->dim[0],0,total-1,1);
+
+ ret->offset = 0;
+
+ ret->base_addr = xmalloc (size * total);
+
+ if (total == 0)
+ return;
+ }
+
+ rstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(ret,0);
+ if (rstride0 == 0)
+ rstride0 = size;
+ rptr = ret->base_addr;
+
+ /* The remaining possibilities are now:
+ If MASK is .TRUE., we have to copy the source array into the
+ result array. We then have to fill it up with elements from VECTOR.
+ If MASK is .FALSE., we have to copy VECTOR into the result
+ array. If VECTOR were not present we would have already returned. */
+
+ if (*mask && ssize != 0)
+ {
+ while (sptr)
+ {
+ /* Add this element. */
+ memcpy (rptr, sptr, size);
+ rptr += rstride0;
+
+ /* Advance to the next element. */
+ sptr += sstride0;
+ count[0]++;
+ n = 0;
+ while (count[n] == extent[n])
+ {
+ /* When we get to the end of a dimension, reset it and
+ increment the next dimension. */
+ count[n] = 0;
+ /* We could precalculate these products, but this is a
+ less frequently used path so probably not worth it. */
+ sptr -= sstride[n] * extent[n];
+ n++;
+ if (n >= dim)
+ {
+ /* Break out of the loop. */
+ sptr = NULL;
+ break;
+ }
+ else
+ {
+ count[n]++;
+ sptr += sstride[n];
+ }
+ }
+ }
+ }
+
+ /* Add any remaining elements from VECTOR. */
+ if (vector)
+ {
+ n = GFC_DESCRIPTOR_EXTENT(vector,0);
+ nelem = ((rptr - ret->base_addr) / rstride0);
+ if (n > nelem)
+ {
+ sstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(vector,0);
+ if (sstride0 == 0)
+ sstride0 = size;
+
+ sptr = vector->base_addr + sstride0 * nelem;
+ n -= nelem;
+ while (n--)
+ {
+ memcpy (rptr, sptr, size);
+ rptr += rstride0;
+ sptr += sstride0;
+ }
+ }
+ }
+}
+
+extern void pack_s (gfc_array_char *ret, const gfc_array_char *array,
+ const GFC_LOGICAL_4 *, const gfc_array_char *);
+export_proto(pack_s);
+
+void
+pack_s (gfc_array_char *ret, const gfc_array_char *array,
+ const GFC_LOGICAL_4 *mask, const gfc_array_char *vector)
+{
+ pack_s_internal (ret, array, mask, vector, GFC_DESCRIPTOR_SIZE (array));
+}
+
+
+extern void pack_s_char (gfc_array_char *ret, GFC_INTEGER_4,
+ const gfc_array_char *array, const GFC_LOGICAL_4 *,
+ const gfc_array_char *, GFC_INTEGER_4,
+ GFC_INTEGER_4);
+export_proto(pack_s_char);
+
+void
+pack_s_char (gfc_array_char *ret,
+ GFC_INTEGER_4 ret_length __attribute__((unused)),
+ const gfc_array_char *array, const GFC_LOGICAL_4 *mask,
+ const gfc_array_char *vector, GFC_INTEGER_4 array_length,
+ GFC_INTEGER_4 vector_length __attribute__((unused)))
+{
+ pack_s_internal (ret, array, mask, vector, array_length);
+}
+
+
+extern void pack_s_char4 (gfc_array_char *ret, GFC_INTEGER_4,
+ const gfc_array_char *array, const GFC_LOGICAL_4 *,
+ const gfc_array_char *, GFC_INTEGER_4,
+ GFC_INTEGER_4);
+export_proto(pack_s_char4);
+
+void
+pack_s_char4 (gfc_array_char *ret,
+ GFC_INTEGER_4 ret_length __attribute__((unused)),
+ const gfc_array_char *array, const GFC_LOGICAL_4 *mask,
+ const gfc_array_char *vector, GFC_INTEGER_4 array_length,
+ GFC_INTEGER_4 vector_length __attribute__((unused)))
+{
+ pack_s_internal (ret, array, mask, vector,
+ array_length * sizeof (gfc_char4_t));
+}