aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8/gcc/config/mcore/mcore.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8/gcc/config/mcore/mcore.c')
-rw-r--r--gcc-4.8/gcc/config/mcore/mcore.c3180
1 files changed, 0 insertions, 3180 deletions
diff --git a/gcc-4.8/gcc/config/mcore/mcore.c b/gcc-4.8/gcc/config/mcore/mcore.c
deleted file mode 100644
index e730362e0..000000000
--- a/gcc-4.8/gcc/config/mcore/mcore.c
+++ /dev/null
@@ -1,3180 +0,0 @@
-/* Output routines for Motorola MCore processor
- Copyright (C) 1993-2013 Free Software Foundation, Inc.
-
- This file is part of GCC.
-
- GCC is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published
- by the Free Software Foundation; either version 3, or (at your
- option) any later version.
-
- GCC is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "rtl.h"
-#include "tree.h"
-#include "tm_p.h"
-#include "mcore.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "insn-config.h"
-#include "conditions.h"
-#include "output.h"
-#include "insn-attr.h"
-#include "flags.h"
-#include "obstack.h"
-#include "expr.h"
-#include "reload.h"
-#include "recog.h"
-#include "function.h"
-#include "ggc.h"
-#include "diagnostic-core.h"
-#include "target.h"
-#include "target-def.h"
-#include "df.h"
-
-/* For dumping information about frame sizes. */
-char * mcore_current_function_name = 0;
-long mcore_current_compilation_timestamp = 0;
-
-/* Global variables for machine-dependent things. */
-
-/* Provides the class number of the smallest class containing
- reg number. */
-const enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER] =
-{
- GENERAL_REGS, ONLYR1_REGS, LRW_REGS, LRW_REGS,
- LRW_REGS, LRW_REGS, LRW_REGS, LRW_REGS,
- LRW_REGS, LRW_REGS, LRW_REGS, LRW_REGS,
- LRW_REGS, LRW_REGS, LRW_REGS, GENERAL_REGS,
- GENERAL_REGS, C_REGS, NO_REGS, NO_REGS,
-};
-
-struct mcore_frame
-{
- int arg_size; /* Stdarg spills (bytes). */
- int reg_size; /* Non-volatile reg saves (bytes). */
- int reg_mask; /* Non-volatile reg saves. */
- int local_size; /* Locals. */
- int outbound_size; /* Arg overflow on calls out. */
- int pad_outbound;
- int pad_local;
- int pad_reg;
- /* Describe the steps we'll use to grow it. */
-#define MAX_STACK_GROWS 4 /* Gives us some spare space. */
- int growth[MAX_STACK_GROWS];
- int arg_offset;
- int reg_offset;
- int reg_growth;
- int local_growth;
-};
-
-typedef enum
-{
- COND_NO,
- COND_MOV_INSN,
- COND_CLR_INSN,
- COND_INC_INSN,
- COND_DEC_INSN,
- COND_BRANCH_INSN
-}
-cond_type;
-
-static void output_stack_adjust (int, int);
-static int calc_live_regs (int *);
-static int try_constant_tricks (long, HOST_WIDE_INT *, HOST_WIDE_INT *);
-static const char * output_inline_const (enum machine_mode, rtx *);
-static void layout_mcore_frame (struct mcore_frame *);
-static void mcore_setup_incoming_varargs (cumulative_args_t, enum machine_mode, tree, int *, int);
-static cond_type is_cond_candidate (rtx);
-static rtx emit_new_cond_insn (rtx, int);
-static rtx conditionalize_block (rtx);
-static void conditionalize_optimization (void);
-static void mcore_reorg (void);
-static rtx handle_structs_in_regs (enum machine_mode, const_tree, int);
-static void mcore_mark_dllexport (tree);
-static void mcore_mark_dllimport (tree);
-static int mcore_dllexport_p (tree);
-static int mcore_dllimport_p (tree);
-static tree mcore_handle_naked_attribute (tree *, tree, tree, int, bool *);
-#ifdef OBJECT_FORMAT_ELF
-static void mcore_asm_named_section (const char *,
- unsigned int, tree);
-#endif
-static void mcore_print_operand (FILE *, rtx, int);
-static void mcore_print_operand_address (FILE *, rtx);
-static bool mcore_print_operand_punct_valid_p (unsigned char code);
-static void mcore_unique_section (tree, int);
-static void mcore_encode_section_info (tree, rtx, int);
-static const char *mcore_strip_name_encoding (const char *);
-static int mcore_const_costs (rtx, RTX_CODE);
-static int mcore_and_cost (rtx);
-static int mcore_ior_cost (rtx);
-static bool mcore_rtx_costs (rtx, int, int, int,
- int *, bool);
-static void mcore_external_libcall (rtx);
-static bool mcore_return_in_memory (const_tree, const_tree);
-static int mcore_arg_partial_bytes (cumulative_args_t,
- enum machine_mode,
- tree, bool);
-static rtx mcore_function_arg (cumulative_args_t,
- enum machine_mode,
- const_tree, bool);
-static void mcore_function_arg_advance (cumulative_args_t,
- enum machine_mode,
- const_tree, bool);
-static unsigned int mcore_function_arg_boundary (enum machine_mode,
- const_tree);
-static void mcore_asm_trampoline_template (FILE *);
-static void mcore_trampoline_init (rtx, tree, rtx);
-static bool mcore_warn_func_return (tree);
-static void mcore_option_override (void);
-static bool mcore_legitimate_constant_p (enum machine_mode, rtx);
-
-/* MCore specific attributes. */
-
-static const struct attribute_spec mcore_attribute_table[] =
-{
- /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
- affects_type_identity } */
- { "dllexport", 0, 0, true, false, false, NULL, false },
- { "dllimport", 0, 0, true, false, false, NULL, false },
- { "naked", 0, 0, true, false, false, mcore_handle_naked_attribute,
- false },
- { NULL, 0, 0, false, false, false, NULL, false }
-};
-
-/* Initialize the GCC target structure. */
-#undef TARGET_ASM_EXTERNAL_LIBCALL
-#define TARGET_ASM_EXTERNAL_LIBCALL mcore_external_libcall
-
-#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
-#undef TARGET_MERGE_DECL_ATTRIBUTES
-#define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes
-#endif
-
-#ifdef OBJECT_FORMAT_ELF
-#undef TARGET_ASM_UNALIGNED_HI_OP
-#define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
-#undef TARGET_ASM_UNALIGNED_SI_OP
-#define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
-#endif
-
-#undef TARGET_PRINT_OPERAND
-#define TARGET_PRINT_OPERAND mcore_print_operand
-#undef TARGET_PRINT_OPERAND_ADDRESS
-#define TARGET_PRINT_OPERAND_ADDRESS mcore_print_operand_address
-#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
-#define TARGET_PRINT_OPERAND_PUNCT_VALID_P mcore_print_operand_punct_valid_p
-
-#undef TARGET_ATTRIBUTE_TABLE
-#define TARGET_ATTRIBUTE_TABLE mcore_attribute_table
-#undef TARGET_ASM_UNIQUE_SECTION
-#define TARGET_ASM_UNIQUE_SECTION mcore_unique_section
-#undef TARGET_ASM_FUNCTION_RODATA_SECTION
-#define TARGET_ASM_FUNCTION_RODATA_SECTION default_no_function_rodata_section
-#undef TARGET_ENCODE_SECTION_INFO
-#define TARGET_ENCODE_SECTION_INFO mcore_encode_section_info
-#undef TARGET_STRIP_NAME_ENCODING
-#define TARGET_STRIP_NAME_ENCODING mcore_strip_name_encoding
-#undef TARGET_RTX_COSTS
-#define TARGET_RTX_COSTS mcore_rtx_costs
-#undef TARGET_ADDRESS_COST
-#define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
-#undef TARGET_MACHINE_DEPENDENT_REORG
-#define TARGET_MACHINE_DEPENDENT_REORG mcore_reorg
-
-#undef TARGET_PROMOTE_FUNCTION_MODE
-#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
-#undef TARGET_PROMOTE_PROTOTYPES
-#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
-
-#undef TARGET_RETURN_IN_MEMORY
-#define TARGET_RETURN_IN_MEMORY mcore_return_in_memory
-#undef TARGET_MUST_PASS_IN_STACK
-#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
-#undef TARGET_PASS_BY_REFERENCE
-#define TARGET_PASS_BY_REFERENCE hook_pass_by_reference_must_pass_in_stack
-#undef TARGET_ARG_PARTIAL_BYTES
-#define TARGET_ARG_PARTIAL_BYTES mcore_arg_partial_bytes
-#undef TARGET_FUNCTION_ARG
-#define TARGET_FUNCTION_ARG mcore_function_arg
-#undef TARGET_FUNCTION_ARG_ADVANCE
-#define TARGET_FUNCTION_ARG_ADVANCE mcore_function_arg_advance
-#undef TARGET_FUNCTION_ARG_BOUNDARY
-#define TARGET_FUNCTION_ARG_BOUNDARY mcore_function_arg_boundary
-
-#undef TARGET_SETUP_INCOMING_VARARGS
-#define TARGET_SETUP_INCOMING_VARARGS mcore_setup_incoming_varargs
-
-#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
-#define TARGET_ASM_TRAMPOLINE_TEMPLATE mcore_asm_trampoline_template
-#undef TARGET_TRAMPOLINE_INIT
-#define TARGET_TRAMPOLINE_INIT mcore_trampoline_init
-
-#undef TARGET_OPTION_OVERRIDE
-#define TARGET_OPTION_OVERRIDE mcore_option_override
-
-#undef TARGET_LEGITIMATE_CONSTANT_P
-#define TARGET_LEGITIMATE_CONSTANT_P mcore_legitimate_constant_p
-
-#undef TARGET_WARN_FUNC_RETURN
-#define TARGET_WARN_FUNC_RETURN mcore_warn_func_return
-
-struct gcc_target targetm = TARGET_INITIALIZER;
-
-/* Adjust the stack and return the number of bytes taken to do it. */
-static void
-output_stack_adjust (int direction, int size)
-{
- /* If extending stack a lot, we do it incrementally. */
- if (direction < 0 && size > mcore_stack_increment && mcore_stack_increment > 0)
- {
- rtx tmp = gen_rtx_REG (SImode, 1);
- rtx memref;
-
- emit_insn (gen_movsi (tmp, GEN_INT (mcore_stack_increment)));
- do
- {
- emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
- memref = gen_rtx_MEM (SImode, stack_pointer_rtx);
- MEM_VOLATILE_P (memref) = 1;
- emit_insn (gen_movsi (memref, stack_pointer_rtx));
- size -= mcore_stack_increment;
- }
- while (size > mcore_stack_increment);
-
- /* SIZE is now the residual for the last adjustment,
- which doesn't require a probe. */
- }
-
- if (size)
- {
- rtx insn;
- rtx val = GEN_INT (size);
-
- if (size > 32)
- {
- rtx nval = gen_rtx_REG (SImode, 1);
- emit_insn (gen_movsi (nval, val));
- val = nval;
- }
-
- if (direction > 0)
- insn = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, val);
- else
- insn = gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, val);
-
- emit_insn (insn);
- }
-}
-
-/* Work out the registers which need to be saved,
- both as a mask and a count. */
-
-static int
-calc_live_regs (int * count)
-{
- int reg;
- int live_regs_mask = 0;
-
- * count = 0;
-
- for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
- {
- if (df_regs_ever_live_p (reg) && !call_used_regs[reg])
- {
- (*count)++;
- live_regs_mask |= (1 << reg);
- }
- }
-
- return live_regs_mask;
-}
-
-/* Print the operand address in x to the stream. */
-
-static void
-mcore_print_operand_address (FILE * stream, rtx x)
-{
- switch (GET_CODE (x))
- {
- case REG:
- fprintf (stream, "(%s)", reg_names[REGNO (x)]);
- break;
-
- case PLUS:
- {
- rtx base = XEXP (x, 0);
- rtx index = XEXP (x, 1);
-
- if (GET_CODE (base) != REG)
- {
- /* Ensure that BASE is a register (one of them must be). */
- rtx temp = base;
- base = index;
- index = temp;
- }
-
- switch (GET_CODE (index))
- {
- case CONST_INT:
- fprintf (stream, "(%s," HOST_WIDE_INT_PRINT_DEC ")",
- reg_names[REGNO(base)], INTVAL (index));
- break;
-
- default:
- gcc_unreachable ();
- }
- }
-
- break;
-
- default:
- output_addr_const (stream, x);
- break;
- }
-}
-
-static bool
-mcore_print_operand_punct_valid_p (unsigned char code)
-{
- return (code == '.' || code == '#' || code == '*' || code == '^'
- || code == '!');
-}
-
-/* Print operand x (an rtx) in assembler syntax to file stream
- according to modifier code.
-
- 'R' print the next register or memory location along, i.e. the lsw in
- a double word value
- 'O' print a constant without the #
- 'M' print a constant as its negative
- 'P' print log2 of a power of two
- 'Q' print log2 of an inverse of a power of two
- 'U' print register for ldm/stm instruction
- 'X' print byte number for xtrbN instruction. */
-
-static void
-mcore_print_operand (FILE * stream, rtx x, int code)
-{
- switch (code)
- {
- case 'N':
- if (INTVAL(x) == -1)
- fprintf (asm_out_file, "32");
- else
- fprintf (asm_out_file, "%d", exact_log2 (INTVAL (x) + 1));
- break;
- case 'P':
- fprintf (asm_out_file, "%d", exact_log2 (INTVAL (x) & 0xffffffff));
- break;
- case 'Q':
- fprintf (asm_out_file, "%d", exact_log2 (~INTVAL (x)));
- break;
- case 'O':
- fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
- break;
- case 'M':
- fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, - INTVAL (x));
- break;
- case 'R':
- /* Next location along in memory or register. */
- switch (GET_CODE (x))
- {
- case REG:
- fputs (reg_names[REGNO (x) + 1], (stream));
- break;
- case MEM:
- mcore_print_operand_address
- (stream, XEXP (adjust_address (x, SImode, 4), 0));
- break;
- default:
- gcc_unreachable ();
- }
- break;
- case 'U':
- fprintf (asm_out_file, "%s-%s", reg_names[REGNO (x)],
- reg_names[REGNO (x) + 3]);
- break;
- case 'x':
- fprintf (asm_out_file, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
- break;
- case 'X':
- fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, 3 - INTVAL (x) / 8);
- break;
-
- default:
- switch (GET_CODE (x))
- {
- case REG:
- fputs (reg_names[REGNO (x)], (stream));
- break;
- case MEM:
- output_address (XEXP (x, 0));
- break;
- default:
- output_addr_const (stream, x);
- break;
- }
- break;
- }
-}
-
-/* What does a constant cost ? */
-
-static int
-mcore_const_costs (rtx exp, enum rtx_code code)
-{
- HOST_WIDE_INT val = INTVAL (exp);
-
- /* Easy constants. */
- if ( CONST_OK_FOR_I (val)
- || CONST_OK_FOR_M (val)
- || CONST_OK_FOR_N (val)
- || (code == PLUS && CONST_OK_FOR_L (val)))
- return 1;
- else if (code == AND
- && ( CONST_OK_FOR_M (~val)
- || CONST_OK_FOR_N (~val)))
- return 2;
- else if (code == PLUS
- && ( CONST_OK_FOR_I (-val)
- || CONST_OK_FOR_M (-val)
- || CONST_OK_FOR_N (-val)))
- return 2;
-
- return 5;
-}
-
-/* What does an and instruction cost - we do this b/c immediates may
- have been relaxed. We want to ensure that cse will cse relaxed immeds
- out. Otherwise we'll get bad code (multiple reloads of the same const). */
-
-static int
-mcore_and_cost (rtx x)
-{
- HOST_WIDE_INT val;
-
- if (GET_CODE (XEXP (x, 1)) != CONST_INT)
- return 2;
-
- val = INTVAL (XEXP (x, 1));
-
- /* Do it directly. */
- if (CONST_OK_FOR_K (val) || CONST_OK_FOR_M (~val))
- return 2;
- /* Takes one instruction to load. */
- else if (const_ok_for_mcore (val))
- return 3;
- /* Takes two instructions to load. */
- else if (TARGET_HARDLIT && mcore_const_ok_for_inline (val))
- return 4;
-
- /* Takes a lrw to load. */
- return 5;
-}
-
-/* What does an or cost - see and_cost(). */
-
-static int
-mcore_ior_cost (rtx x)
-{
- HOST_WIDE_INT val;
-
- if (GET_CODE (XEXP (x, 1)) != CONST_INT)
- return 2;
-
- val = INTVAL (XEXP (x, 1));
-
- /* Do it directly with bclri. */
- if (CONST_OK_FOR_M (val))
- return 2;
- /* Takes one instruction to load. */
- else if (const_ok_for_mcore (val))
- return 3;
- /* Takes two instructions to load. */
- else if (TARGET_HARDLIT && mcore_const_ok_for_inline (val))
- return 4;
-
- /* Takes a lrw to load. */
- return 5;
-}
-
-static bool
-mcore_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
- int * total, bool speed ATTRIBUTE_UNUSED)
-{
- switch (code)
- {
- case CONST_INT:
- *total = mcore_const_costs (x, (enum rtx_code) outer_code);
- return true;
- case CONST:
- case LABEL_REF:
- case SYMBOL_REF:
- *total = 5;
- return true;
- case CONST_DOUBLE:
- *total = 10;
- return true;
-
- case AND:
- *total = COSTS_N_INSNS (mcore_and_cost (x));
- return true;
-
- case IOR:
- *total = COSTS_N_INSNS (mcore_ior_cost (x));
- return true;
-
- case DIV:
- case UDIV:
- case MOD:
- case UMOD:
- case FLOAT:
- case FIX:
- *total = COSTS_N_INSNS (100);
- return true;
-
- default:
- return false;
- }
-}
-
-/* Prepare the operands for a comparison. Return whether the branch/setcc
- should reverse the operands. */
-
-bool
-mcore_gen_compare (enum rtx_code code, rtx op0, rtx op1)
-{
- rtx cc_reg = gen_rtx_REG (CCmode, CC_REG);
- bool invert;
-
- if (GET_CODE (op1) == CONST_INT)
- {
- HOST_WIDE_INT val = INTVAL (op1);
-
- switch (code)
- {
- case GTU:
- /* Unsigned > 0 is the same as != 0; everything else is converted
- below to LEU (reversed cmphs). */
- if (val == 0)
- code = NE;
- break;
-
- /* Check whether (LE A imm) can become (LT A imm + 1),
- or (GT A imm) can become (GE A imm + 1). */
- case GT:
- case LE:
- if (CONST_OK_FOR_J (val + 1))
- {
- op1 = GEN_INT (val + 1);
- code = code == LE ? LT : GE;
- }
- break;
-
- default:
- break;
- }
- }
-
- if (CONSTANT_P (op1) && GET_CODE (op1) != CONST_INT)
- op1 = force_reg (SImode, op1);
-
- /* cmpnei: 0-31 (K immediate)
- cmplti: 1-32 (J immediate, 0 using btsti x,31). */
- invert = false;
- switch (code)
- {
- case EQ: /* Use inverted condition, cmpne. */
- code = NE;
- invert = true;
- /* Drop through. */
-
- case NE: /* Use normal condition, cmpne. */
- if (GET_CODE (op1) == CONST_INT && ! CONST_OK_FOR_K (INTVAL (op1)))
- op1 = force_reg (SImode, op1);
- break;
-
- case LE: /* Use inverted condition, reversed cmplt. */
- code = GT;
- invert = true;
- /* Drop through. */
-
- case GT: /* Use normal condition, reversed cmplt. */
- if (GET_CODE (op1) == CONST_INT)
- op1 = force_reg (SImode, op1);
- break;
-
- case GE: /* Use inverted condition, cmplt. */
- code = LT;
- invert = true;
- /* Drop through. */
-
- case LT: /* Use normal condition, cmplt. */
- if (GET_CODE (op1) == CONST_INT &&
- /* covered by btsti x,31. */
- INTVAL (op1) != 0 &&
- ! CONST_OK_FOR_J (INTVAL (op1)))
- op1 = force_reg (SImode, op1);
- break;
-
- case GTU: /* Use inverted condition, cmple. */
- /* We coped with unsigned > 0 above. */
- gcc_assert (GET_CODE (op1) != CONST_INT || INTVAL (op1) != 0);
- code = LEU;
- invert = true;
- /* Drop through. */
-
- case LEU: /* Use normal condition, reversed cmphs. */
- if (GET_CODE (op1) == CONST_INT && INTVAL (op1) != 0)
- op1 = force_reg (SImode, op1);
- break;
-
- case LTU: /* Use inverted condition, cmphs. */
- code = GEU;
- invert = true;
- /* Drop through. */
-
- case GEU: /* Use normal condition, cmphs. */
- if (GET_CODE (op1) == CONST_INT && INTVAL (op1) != 0)
- op1 = force_reg (SImode, op1);
- break;
-
- default:
- break;
- }
-
- emit_insn (gen_rtx_SET (VOIDmode,
- cc_reg,
- gen_rtx_fmt_ee (code, CCmode, op0, op1)));
- return invert;
-}
-
-int
-mcore_symbolic_address_p (rtx x)
-{
- switch (GET_CODE (x))
- {
- case SYMBOL_REF:
- case LABEL_REF:
- return 1;
- case CONST:
- x = XEXP (x, 0);
- return ( (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
- || GET_CODE (XEXP (x, 0)) == LABEL_REF)
- && GET_CODE (XEXP (x, 1)) == CONST_INT);
- default:
- return 0;
- }
-}
-
-/* Functions to output assembly code for a function call. */
-
-char *
-mcore_output_call (rtx operands[], int index)
-{
- static char buffer[20];
- rtx addr = operands [index];
-
- if (REG_P (addr))
- {
- if (TARGET_CG_DATA)
- {
- gcc_assert (mcore_current_function_name);
-
- ASM_OUTPUT_CG_EDGE (asm_out_file, mcore_current_function_name,
- "unknown", 1);
- }
-
- sprintf (buffer, "jsr\t%%%d", index);
- }
- else
- {
- if (TARGET_CG_DATA)
- {
- gcc_assert (mcore_current_function_name);
- gcc_assert (GET_CODE (addr) == SYMBOL_REF);
-
- ASM_OUTPUT_CG_EDGE (asm_out_file, mcore_current_function_name,
- XSTR (addr, 0), 0);
- }
-
- sprintf (buffer, "jbsr\t%%%d", index);
- }
-
- return buffer;
-}
-
-/* Can we load a constant with a single instruction ? */
-
-int
-const_ok_for_mcore (HOST_WIDE_INT value)
-{
- if (value >= 0 && value <= 127)
- return 1;
-
- /* Try exact power of two. */
- if (CONST_OK_FOR_M (value))
- return 1;
-
- /* Try exact power of two - 1. */
- if (CONST_OK_FOR_N (value) && value != -1)
- return 1;
-
- return 0;
-}
-
-/* Can we load a constant inline with up to 2 instructions ? */
-
-int
-mcore_const_ok_for_inline (HOST_WIDE_INT value)
-{
- HOST_WIDE_INT x, y;
-
- return try_constant_tricks (value, & x, & y) > 0;
-}
-
-/* Are we loading the constant using a not ? */
-
-int
-mcore_const_trick_uses_not (HOST_WIDE_INT value)
-{
- HOST_WIDE_INT x, y;
-
- return try_constant_tricks (value, & x, & y) == 2;
-}
-
-/* Try tricks to load a constant inline and return the trick number if
- success (0 is non-inlinable).
-
- 0: not inlinable
- 1: single instruction (do the usual thing)
- 2: single insn followed by a 'not'
- 3: single insn followed by a subi
- 4: single insn followed by an addi
- 5: single insn followed by rsubi
- 6: single insn followed by bseti
- 7: single insn followed by bclri
- 8: single insn followed by rotli
- 9: single insn followed by lsli
- 10: single insn followed by ixh
- 11: single insn followed by ixw. */
-
-static int
-try_constant_tricks (HOST_WIDE_INT value, HOST_WIDE_INT * x, HOST_WIDE_INT * y)
-{
- HOST_WIDE_INT i;
- unsigned HOST_WIDE_INT bit, shf, rot;
-
- if (const_ok_for_mcore (value))
- return 1; /* Do the usual thing. */
-
- if (! TARGET_HARDLIT)
- return 0;
-
- if (const_ok_for_mcore (~value))
- {
- *x = ~value;
- return 2;
- }
-
- for (i = 1; i <= 32; i++)
- {
- if (const_ok_for_mcore (value - i))
- {
- *x = value - i;
- *y = i;
-
- return 3;
- }
-
- if (const_ok_for_mcore (value + i))
- {
- *x = value + i;
- *y = i;
-
- return 4;
- }
- }
-
- bit = 0x80000000ULL;
-
- for (i = 0; i <= 31; i++)
- {
- if (const_ok_for_mcore (i - value))
- {
- *x = i - value;
- *y = i;
-
- return 5;
- }
-
- if (const_ok_for_mcore (value & ~bit))
- {
- *y = bit;
- *x = value & ~bit;
- return 6;
- }
-
- if (const_ok_for_mcore (value | bit))
- {
- *y = ~bit;
- *x = value | bit;
-
- return 7;
- }
-
- bit >>= 1;
- }
-
- shf = value;
- rot = value;
-
- for (i = 1; i < 31; i++)
- {
- int c;
-
- /* MCore has rotate left. */
- c = rot << 31;
- rot >>= 1;
- rot &= 0x7FFFFFFF;
- rot |= c; /* Simulate rotate. */
-
- if (const_ok_for_mcore (rot))
- {
- *y = i;
- *x = rot;
-
- return 8;
- }
-
- if (shf & 1)
- shf = 0; /* Can't use logical shift, low order bit is one. */
-
- shf >>= 1;
-
- if (shf != 0 && const_ok_for_mcore (shf))
- {
- *y = i;
- *x = shf;
-
- return 9;
- }
- }
-
- if ((value % 3) == 0 && const_ok_for_mcore (value / 3))
- {
- *x = value / 3;
-
- return 10;
- }
-
- if ((value % 5) == 0 && const_ok_for_mcore (value / 5))
- {
- *x = value / 5;
-
- return 11;
- }
-
- return 0;
-}
-
-/* Check whether reg is dead at first. This is done by searching ahead
- for either the next use (i.e., reg is live), a death note, or a set of
- reg. Don't just use dead_or_set_p() since reload does not always mark
- deaths (especially if PRESERVE_DEATH_NOTES_REGNO_P is not defined). We
- can ignore subregs by extracting the actual register. BRC */
-
-int
-mcore_is_dead (rtx first, rtx reg)
-{
- rtx insn;
-
- /* For mcore, subregs can't live independently of their parent regs. */
- if (GET_CODE (reg) == SUBREG)
- reg = SUBREG_REG (reg);
-
- /* Dies immediately. */
- if (dead_or_set_p (first, reg))
- return 1;
-
- /* Look for conclusive evidence of live/death, otherwise we have
- to assume that it is live. */
- for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
- {
- if (GET_CODE (insn) == JUMP_INSN)
- return 0; /* We lose track, assume it is alive. */
-
- else if (GET_CODE(insn) == CALL_INSN)
- {
- /* Call's might use it for target or register parms. */
- if (reg_referenced_p (reg, PATTERN (insn))
- || find_reg_fusage (insn, USE, reg))
- return 0;
- else if (dead_or_set_p (insn, reg))
- return 1;
- }
- else if (GET_CODE (insn) == INSN)
- {
- if (reg_referenced_p (reg, PATTERN (insn)))
- return 0;
- else if (dead_or_set_p (insn, reg))
- return 1;
- }
- }
-
- /* No conclusive evidence either way, we cannot take the chance
- that control flow hid the use from us -- "I'm not dead yet". */
- return 0;
-}
-
-/* Count the number of ones in mask. */
-
-int
-mcore_num_ones (HOST_WIDE_INT mask)
-{
- /* A trick to count set bits recently posted on comp.compilers. */
- mask = (mask >> 1 & 0x55555555) + (mask & 0x55555555);
- mask = ((mask >> 2) & 0x33333333) + (mask & 0x33333333);
- mask = ((mask >> 4) + mask) & 0x0f0f0f0f;
- mask = ((mask >> 8) + mask);
-
- return (mask + (mask >> 16)) & 0xff;
-}
-
-/* Count the number of zeros in mask. */
-
-int
-mcore_num_zeros (HOST_WIDE_INT mask)
-{
- return 32 - mcore_num_ones (mask);
-}
-
-/* Determine byte being masked. */
-
-int
-mcore_byte_offset (unsigned int mask)
-{
- if (mask == 0x00ffffffL)
- return 0;
- else if (mask == 0xff00ffffL)
- return 1;
- else if (mask == 0xffff00ffL)
- return 2;
- else if (mask == 0xffffff00L)
- return 3;
-
- return -1;
-}
-
-/* Determine halfword being masked. */
-
-int
-mcore_halfword_offset (unsigned int mask)
-{
- if (mask == 0x0000ffffL)
- return 0;
- else if (mask == 0xffff0000L)
- return 1;
-
- return -1;
-}
-
-/* Output a series of bseti's corresponding to mask. */
-
-const char *
-mcore_output_bseti (rtx dst, int mask)
-{
- rtx out_operands[2];
- int bit;
-
- out_operands[0] = dst;
-
- for (bit = 0; bit < 32; bit++)
- {
- if ((mask & 0x1) == 0x1)
- {
- out_operands[1] = GEN_INT (bit);
-
- output_asm_insn ("bseti\t%0,%1", out_operands);
- }
- mask >>= 1;
- }
-
- return "";
-}
-
-/* Output a series of bclri's corresponding to mask. */
-
-const char *
-mcore_output_bclri (rtx dst, int mask)
-{
- rtx out_operands[2];
- int bit;
-
- out_operands[0] = dst;
-
- for (bit = 0; bit < 32; bit++)
- {
- if ((mask & 0x1) == 0x0)
- {
- out_operands[1] = GEN_INT (bit);
-
- output_asm_insn ("bclri\t%0,%1", out_operands);
- }
-
- mask >>= 1;
- }
-
- return "";
-}
-
-/* Output a conditional move of two constants that are +/- 1 within each
- other. See the "movtK" patterns in mcore.md. I'm not sure this is
- really worth the effort. */
-
-const char *
-mcore_output_cmov (rtx operands[], int cmp_t, const char * test)
-{
- HOST_WIDE_INT load_value;
- HOST_WIDE_INT adjust_value;
- rtx out_operands[4];
-
- out_operands[0] = operands[0];
-
- /* Check to see which constant is loadable. */
- if (const_ok_for_mcore (INTVAL (operands[1])))
- {
- out_operands[1] = operands[1];
- out_operands[2] = operands[2];
- }
- else if (const_ok_for_mcore (INTVAL (operands[2])))
- {
- out_operands[1] = operands[2];
- out_operands[2] = operands[1];
-
- /* Complement test since constants are swapped. */
- cmp_t = (cmp_t == 0);
- }
- load_value = INTVAL (out_operands[1]);
- adjust_value = INTVAL (out_operands[2]);
-
- /* First output the test if folded into the pattern. */
-
- if (test)
- output_asm_insn (test, operands);
-
- /* Load the constant - for now, only support constants that can be
- generated with a single instruction. maybe add general inlinable
- constants later (this will increase the # of patterns since the
- instruction sequence has a different length attribute). */
- if (load_value >= 0 && load_value <= 127)
- output_asm_insn ("movi\t%0,%1", out_operands);
- else if (CONST_OK_FOR_M (load_value))
- output_asm_insn ("bgeni\t%0,%P1", out_operands);
- else if (CONST_OK_FOR_N (load_value))
- output_asm_insn ("bmaski\t%0,%N1", out_operands);
-
- /* Output the constant adjustment. */
- if (load_value > adjust_value)
- {
- if (cmp_t)
- output_asm_insn ("decf\t%0", out_operands);
- else
- output_asm_insn ("dect\t%0", out_operands);
- }
- else
- {
- if (cmp_t)
- output_asm_insn ("incf\t%0", out_operands);
- else
- output_asm_insn ("inct\t%0", out_operands);
- }
-
- return "";
-}
-
-/* Outputs the peephole for moving a constant that gets not'ed followed
- by an and (i.e. combine the not and the and into andn). BRC */
-
-const char *
-mcore_output_andn (rtx insn ATTRIBUTE_UNUSED, rtx operands[])
-{
- HOST_WIDE_INT x, y;
- rtx out_operands[3];
- const char * load_op;
- char buf[256];
- int trick_no;
-
- trick_no = try_constant_tricks (INTVAL (operands[1]), &x, &y);
- gcc_assert (trick_no == 2);
-
- out_operands[0] = operands[0];
- out_operands[1] = GEN_INT (x);
- out_operands[2] = operands[2];
-
- if (x >= 0 && x <= 127)
- load_op = "movi\t%0,%1";
-
- /* Try exact power of two. */
- else if (CONST_OK_FOR_M (x))
- load_op = "bgeni\t%0,%P1";
-
- /* Try exact power of two - 1. */
- else if (CONST_OK_FOR_N (x))
- load_op = "bmaski\t%0,%N1";
-
- else
- {
- load_op = "BADMOVI-andn\t%0, %1";
- gcc_unreachable ();
- }
-
- sprintf (buf, "%s\n\tandn\t%%2,%%0", load_op);
- output_asm_insn (buf, out_operands);
-
- return "";
-}
-
-/* Output an inline constant. */
-
-static const char *
-output_inline_const (enum machine_mode mode, rtx operands[])
-{
- HOST_WIDE_INT x = 0, y = 0;
- int trick_no;
- rtx out_operands[3];
- char buf[256];
- char load_op[256];
- const char *dst_fmt;
- HOST_WIDE_INT value;
-
- value = INTVAL (operands[1]);
-
- trick_no = try_constant_tricks (value, &x, &y);
- /* lrw's are handled separately: Large inlinable constants never get
- turned into lrw's. Our caller uses try_constant_tricks to back
- off to an lrw rather than calling this routine. */
- gcc_assert (trick_no != 0);
-
- if (trick_no == 1)
- x = value;
-
- /* operands: 0 = dst, 1 = load immed., 2 = immed. adjustment. */
- out_operands[0] = operands[0];
- out_operands[1] = GEN_INT (x);
-
- if (trick_no > 2)
- out_operands[2] = GEN_INT (y);
-
- /* Select dst format based on mode. */
- if (mode == DImode && (! TARGET_LITTLE_END))
- dst_fmt = "%R0";
- else
- dst_fmt = "%0";
-
- if (x >= 0 && x <= 127)
- sprintf (load_op, "movi\t%s,%%1", dst_fmt);
-
- /* Try exact power of two. */
- else if (CONST_OK_FOR_M (x))
- sprintf (load_op, "bgeni\t%s,%%P1", dst_fmt);
-
- /* Try exact power of two - 1. */
- else if (CONST_OK_FOR_N (x))
- sprintf (load_op, "bmaski\t%s,%%N1", dst_fmt);
-
- else
- {
- sprintf (load_op, "BADMOVI-inline_const %s, %%1", dst_fmt);
- gcc_unreachable ();
- }
-
- switch (trick_no)
- {
- case 1:
- strcpy (buf, load_op);
- break;
- case 2: /* not */
- sprintf (buf, "%s\n\tnot\t%s\t// %ld 0x%lx", load_op, dst_fmt, value, value);
- break;
- case 3: /* add */
- sprintf (buf, "%s\n\taddi\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
- break;
- case 4: /* sub */
- sprintf (buf, "%s\n\tsubi\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
- break;
- case 5: /* rsub */
- /* Never happens unless -mrsubi, see try_constant_tricks(). */
- sprintf (buf, "%s\n\trsubi\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
- break;
- case 6: /* bseti */
- sprintf (buf, "%s\n\tbseti\t%s,%%P2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
- break;
- case 7: /* bclr */
- sprintf (buf, "%s\n\tbclri\t%s,%%Q2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
- break;
- case 8: /* rotl */
- sprintf (buf, "%s\n\trotli\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
- break;
- case 9: /* lsl */
- sprintf (buf, "%s\n\tlsli\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
- break;
- case 10: /* ixh */
- sprintf (buf, "%s\n\tixh\t%s,%s\t// %ld 0x%lx", load_op, dst_fmt, dst_fmt, value, value);
- break;
- case 11: /* ixw */
- sprintf (buf, "%s\n\tixw\t%s,%s\t// %ld 0x%lx", load_op, dst_fmt, dst_fmt, value, value);
- break;
- default:
- return "";
- }
-
- output_asm_insn (buf, out_operands);
-
- return "";
-}
-
-/* Output a move of a word or less value. */
-
-const char *
-mcore_output_move (rtx insn ATTRIBUTE_UNUSED, rtx operands[],
- enum machine_mode mode ATTRIBUTE_UNUSED)
-{
- rtx dst = operands[0];
- rtx src = operands[1];
-
- if (GET_CODE (dst) == REG)
- {
- if (GET_CODE (src) == REG)
- {
- if (REGNO (src) == CC_REG) /* r-c */
- return "mvc\t%0";
- else
- return "mov\t%0,%1"; /* r-r*/
- }
- else if (GET_CODE (src) == MEM)
- {
- if (GET_CODE (XEXP (src, 0)) == LABEL_REF)
- return "lrw\t%0,[%1]"; /* a-R */
- else
- switch (GET_MODE (src)) /* r-m */
- {
- case SImode:
- return "ldw\t%0,%1";
- case HImode:
- return "ld.h\t%0,%1";
- case QImode:
- return "ld.b\t%0,%1";
- default:
- gcc_unreachable ();
- }
- }
- else if (GET_CODE (src) == CONST_INT)
- {
- HOST_WIDE_INT x, y;
-
- if (CONST_OK_FOR_I (INTVAL (src))) /* r-I */
- return "movi\t%0,%1";
- else if (CONST_OK_FOR_M (INTVAL (src))) /* r-M */
- return "bgeni\t%0,%P1\t// %1 %x1";
- else if (CONST_OK_FOR_N (INTVAL (src))) /* r-N */
- return "bmaski\t%0,%N1\t// %1 %x1";
- else if (try_constant_tricks (INTVAL (src), &x, &y)) /* R-P */
- return output_inline_const (SImode, operands); /* 1-2 insns */
- else
- return "lrw\t%0,%x1\t// %1"; /* Get it from literal pool. */
- }
- else
- return "lrw\t%0, %1"; /* Into the literal pool. */
- }
- else if (GET_CODE (dst) == MEM) /* m-r */
- switch (GET_MODE (dst))
- {
- case SImode:
- return "stw\t%1,%0";
- case HImode:
- return "st.h\t%1,%0";
- case QImode:
- return "st.b\t%1,%0";
- default:
- gcc_unreachable ();
- }
-
- gcc_unreachable ();
-}
-
-/* Return a sequence of instructions to perform DI or DF move.
- Since the MCORE cannot move a DI or DF in one instruction, we have
- to take care when we see overlapping source and dest registers. */
-
-const char *
-mcore_output_movedouble (rtx operands[], enum machine_mode mode ATTRIBUTE_UNUSED)
-{
- rtx dst = operands[0];
- rtx src = operands[1];
-
- if (GET_CODE (dst) == REG)
- {
- if (GET_CODE (src) == REG)
- {
- int dstreg = REGNO (dst);
- int srcreg = REGNO (src);
-
- /* Ensure the second source not overwritten. */
- if (srcreg + 1 == dstreg)
- return "mov %R0,%R1\n\tmov %0,%1";
- else
- return "mov %0,%1\n\tmov %R0,%R1";
- }
- else if (GET_CODE (src) == MEM)
- {
- rtx memexp = XEXP (src, 0);
- int dstreg = REGNO (dst);
- int basereg = -1;
-
- if (GET_CODE (memexp) == LABEL_REF)
- return "lrw\t%0,[%1]\n\tlrw\t%R0,[%R1]";
- else if (GET_CODE (memexp) == REG)
- basereg = REGNO (memexp);
- else if (GET_CODE (memexp) == PLUS)
- {
- if (GET_CODE (XEXP (memexp, 0)) == REG)
- basereg = REGNO (XEXP (memexp, 0));
- else if (GET_CODE (XEXP (memexp, 1)) == REG)
- basereg = REGNO (XEXP (memexp, 1));
- else
- gcc_unreachable ();
- }
- else
- gcc_unreachable ();
-
- /* ??? length attribute is wrong here. */
- if (dstreg == basereg)
- {
- /* Just load them in reverse order. */
- return "ldw\t%R0,%R1\n\tldw\t%0,%1";
-
- /* XXX: alternative: move basereg to basereg+1
- and then fall through. */
- }
- else
- return "ldw\t%0,%1\n\tldw\t%R0,%R1";
- }
- else if (GET_CODE (src) == CONST_INT)
- {
- if (TARGET_LITTLE_END)
- {
- if (CONST_OK_FOR_I (INTVAL (src)))
- output_asm_insn ("movi %0,%1", operands);
- else if (CONST_OK_FOR_M (INTVAL (src)))
- output_asm_insn ("bgeni %0,%P1", operands);
- else if (CONST_OK_FOR_N (INTVAL (src)))
- output_asm_insn ("bmaski %0,%N1", operands);
- else
- gcc_unreachable ();
-
- if (INTVAL (src) < 0)
- return "bmaski %R0,32";
- else
- return "movi %R0,0";
- }
- else
- {
- if (CONST_OK_FOR_I (INTVAL (src)))
- output_asm_insn ("movi %R0,%1", operands);
- else if (CONST_OK_FOR_M (INTVAL (src)))
- output_asm_insn ("bgeni %R0,%P1", operands);
- else if (CONST_OK_FOR_N (INTVAL (src)))
- output_asm_insn ("bmaski %R0,%N1", operands);
- else
- gcc_unreachable ();
-
- if (INTVAL (src) < 0)
- return "bmaski %0,32";
- else
- return "movi %0,0";
- }
- }
- else
- gcc_unreachable ();
- }
- else if (GET_CODE (dst) == MEM && GET_CODE (src) == REG)
- return "stw\t%1,%0\n\tstw\t%R1,%R0";
- else
- gcc_unreachable ();
-}
-
-/* Predicates used by the templates. */
-
-int
-mcore_arith_S_operand (rtx op)
-{
- if (GET_CODE (op) == CONST_INT && CONST_OK_FOR_M (~INTVAL (op)))
- return 1;
-
- return 0;
-}
-
-/* Expand insert bit field. BRC */
-
-int
-mcore_expand_insv (rtx operands[])
-{
- int width = INTVAL (operands[1]);
- int posn = INTVAL (operands[2]);
- int mask;
- rtx mreg, sreg, ereg;
-
- /* To get width 1 insv, the test in store_bit_field() (expmed.c, line 191)
- for width==1 must be removed. Look around line 368. This is something
- we really want the md part to do. */
- if (width == 1 && GET_CODE (operands[3]) == CONST_INT)
- {
- /* Do directly with bseti or bclri. */
- /* RBE: 2/97 consider only low bit of constant. */
- if ((INTVAL (operands[3]) & 1) == 0)
- {
- mask = ~(1 << posn);
- emit_insn (gen_rtx_SET (SImode, operands[0],
- gen_rtx_AND (SImode, operands[0], GEN_INT (mask))));
- }
- else
- {
- mask = 1 << posn;
- emit_insn (gen_rtx_SET (SImode, operands[0],
- gen_rtx_IOR (SImode, operands[0], GEN_INT (mask))));
- }
-
- return 1;
- }
-
- /* Look at some bit-field placements that we aren't interested
- in handling ourselves, unless specifically directed to do so. */
- if (! TARGET_W_FIELD)
- return 0; /* Generally, give up about now. */
-
- if (width == 8 && posn % 8 == 0)
- /* Byte sized and aligned; let caller break it up. */
- return 0;
-
- if (width == 16 && posn % 16 == 0)
- /* Short sized and aligned; let caller break it up. */
- return 0;
-
- /* The general case - we can do this a little bit better than what the
- machine independent part tries. This will get rid of all the subregs
- that mess up constant folding in combine when working with relaxed
- immediates. */
-
- /* If setting the entire field, do it directly. */
- if (GET_CODE (operands[3]) == CONST_INT
- && INTVAL (operands[3]) == ((1 << width) - 1))
- {
- mreg = force_reg (SImode, GEN_INT (INTVAL (operands[3]) << posn));
- emit_insn (gen_rtx_SET (SImode, operands[0],
- gen_rtx_IOR (SImode, operands[0], mreg)));
- return 1;
- }
-
- /* Generate the clear mask. */
- mreg = force_reg (SImode, GEN_INT (~(((1 << width) - 1) << posn)));
-
- /* Clear the field, to overlay it later with the source. */
- emit_insn (gen_rtx_SET (SImode, operands[0],
- gen_rtx_AND (SImode, operands[0], mreg)));
-
- /* If the source is constant 0, we've nothing to add back. */
- if (GET_CODE (operands[3]) == CONST_INT && INTVAL (operands[3]) == 0)
- return 1;
-
- /* XXX: Should we worry about more games with constant values?
- We've covered the high profile: set/clear single-bit and many-bit
- fields. How often do we see "arbitrary bit pattern" constants? */
- sreg = copy_to_mode_reg (SImode, operands[3]);
-
- /* Extract src as same width as dst (needed for signed values). We
- always have to do this since we widen everything to SImode.
- We don't have to mask if we're shifting this up against the
- MSB of the register (e.g., the shift will push out any hi-order
- bits. */
- if (width + posn != (int) GET_MODE_SIZE (SImode))
- {
- ereg = force_reg (SImode, GEN_INT ((1 << width) - 1));
- emit_insn (gen_rtx_SET (SImode, sreg,
- gen_rtx_AND (SImode, sreg, ereg)));
- }
-
- /* Insert source value in dest. */
- if (posn != 0)
- emit_insn (gen_rtx_SET (SImode, sreg,
- gen_rtx_ASHIFT (SImode, sreg, GEN_INT (posn))));
-
- emit_insn (gen_rtx_SET (SImode, operands[0],
- gen_rtx_IOR (SImode, operands[0], sreg)));
-
- return 1;
-}
-
-/* ??? Block move stuff stolen from m88k. This code has not been
- verified for correctness. */
-
-/* Emit code to perform a block move. Choose the best method.
-
- OPERANDS[0] is the destination.
- OPERANDS[1] is the source.
- OPERANDS[2] is the size.
- OPERANDS[3] is the alignment safe to use. */
-
-/* Emit code to perform a block move with an offset sequence of ldw/st
- instructions (..., ldw 0, stw 1, ldw 1, stw 0, ...). SIZE and ALIGN are
- known constants. DEST and SRC are registers. OFFSET is the known
- starting point for the output pattern. */
-
-static const enum machine_mode mode_from_align[] =
-{
- VOIDmode, QImode, HImode, VOIDmode, SImode,
-};
-
-static void
-block_move_sequence (rtx dst_mem, rtx src_mem, int size, int align)
-{
- rtx temp[2];
- enum machine_mode mode[2];
- int amount[2];
- bool active[2];
- int phase = 0;
- int next;
- int offset_ld = 0;
- int offset_st = 0;
- rtx x;
-
- x = XEXP (dst_mem, 0);
- if (!REG_P (x))
- {
- x = force_reg (Pmode, x);
- dst_mem = replace_equiv_address (dst_mem, x);
- }
-
- x = XEXP (src_mem, 0);
- if (!REG_P (x))
- {
- x = force_reg (Pmode, x);
- src_mem = replace_equiv_address (src_mem, x);
- }
-
- active[0] = active[1] = false;
-
- do
- {
- next = phase;
- phase ^= 1;
-
- if (size > 0)
- {
- int next_amount;
-
- next_amount = (size >= 4 ? 4 : (size >= 2 ? 2 : 1));
- next_amount = MIN (next_amount, align);
-
- amount[next] = next_amount;
- mode[next] = mode_from_align[next_amount];
- temp[next] = gen_reg_rtx (mode[next]);
-
- x = adjust_address (src_mem, mode[next], offset_ld);
- emit_insn (gen_rtx_SET (VOIDmode, temp[next], x));
-
- offset_ld += next_amount;
- size -= next_amount;
- active[next] = true;
- }
-
- if (active[phase])
- {
- active[phase] = false;
-
- x = adjust_address (dst_mem, mode[phase], offset_st);
- emit_insn (gen_rtx_SET (VOIDmode, x, temp[phase]));
-
- offset_st += amount[phase];
- }
- }
- while (active[next]);
-}
-
-bool
-mcore_expand_block_move (rtx *operands)
-{
- HOST_WIDE_INT align, bytes, max;
-
- if (GET_CODE (operands[2]) != CONST_INT)
- return false;
-
- bytes = INTVAL (operands[2]);
- align = INTVAL (operands[3]);
-
- if (bytes <= 0)
- return false;
- if (align > 4)
- align = 4;
-
- switch (align)
- {
- case 4:
- if (bytes & 1)
- max = 4*4;
- else if (bytes & 3)
- max = 8*4;
- else
- max = 16*4;
- break;
- case 2:
- max = 4*2;
- break;
- case 1:
- max = 4*1;
- break;
- default:
- gcc_unreachable ();
- }
-
- if (bytes <= max)
- {
- block_move_sequence (operands[0], operands[1], bytes, align);
- return true;
- }
-
- return false;
-}
-
-
-/* Code to generate prologue and epilogue sequences. */
-static int number_of_regs_before_varargs;
-
-/* Set by TARGET_SETUP_INCOMING_VARARGS to indicate to prolog that this is
- for a varargs function. */
-static int current_function_anonymous_args;
-
-#define STACK_BYTES (STACK_BOUNDARY/BITS_PER_UNIT)
-#define STORE_REACH (64) /* Maximum displace of word store + 4. */
-#define ADDI_REACH (32) /* Maximum addi operand. */
-
-static void
-layout_mcore_frame (struct mcore_frame * infp)
-{
- int n;
- unsigned int i;
- int nbytes;
- int regarg;
- int localregarg;
- int outbounds;
- unsigned int growths;
- int step;
-
- /* Might have to spill bytes to re-assemble a big argument that
- was passed partially in registers and partially on the stack. */
- nbytes = crtl->args.pretend_args_size;
-
- /* Determine how much space for spilled anonymous args (e.g., stdarg). */
- if (current_function_anonymous_args)
- nbytes += (NPARM_REGS - number_of_regs_before_varargs) * UNITS_PER_WORD;
-
- infp->arg_size = nbytes;
-
- /* How much space to save non-volatile registers we stomp. */
- infp->reg_mask = calc_live_regs (& n);
- infp->reg_size = n * 4;
-
- /* And the rest of it... locals and space for overflowed outbounds. */
- infp->local_size = get_frame_size ();
- infp->outbound_size = crtl->outgoing_args_size;
-
- /* Make sure we have a whole number of words for the locals. */
- if (infp->local_size % STACK_BYTES)
- infp->local_size = (infp->local_size + STACK_BYTES - 1) & ~ (STACK_BYTES -1);
-
- /* Only thing we know we have to pad is the outbound space, since
- we've aligned our locals assuming that base of locals is aligned. */
- infp->pad_local = 0;
- infp->pad_reg = 0;
- infp->pad_outbound = 0;
- if (infp->outbound_size % STACK_BYTES)
- infp->pad_outbound = STACK_BYTES - (infp->outbound_size % STACK_BYTES);
-
- /* Now we see how we want to stage the prologue so that it does
- the most appropriate stack growth and register saves to either:
- (1) run fast,
- (2) reduce instruction space, or
- (3) reduce stack space. */
- for (i = 0; i < ARRAY_SIZE (infp->growth); i++)
- infp->growth[i] = 0;
-
- regarg = infp->reg_size + infp->arg_size;
- localregarg = infp->local_size + regarg;
- outbounds = infp->outbound_size + infp->pad_outbound;
- growths = 0;
-
- /* XXX: Consider one where we consider localregarg + outbound too! */
-
- /* Frame of <= 32 bytes and using stm would get <= 2 registers.
- use stw's with offsets and buy the frame in one shot. */
- if (localregarg <= ADDI_REACH
- && (infp->reg_size <= 8 || (infp->reg_mask & 0xc000) != 0xc000))
- {
- /* Make sure we'll be aligned. */
- if (localregarg % STACK_BYTES)
- infp->pad_reg = STACK_BYTES - (localregarg % STACK_BYTES);
-
- step = localregarg + infp->pad_reg;
- infp->reg_offset = infp->local_size;
-
- if (outbounds + step <= ADDI_REACH && !frame_pointer_needed)
- {
- step += outbounds;
- infp->reg_offset += outbounds;
- outbounds = 0;
- }
-
- infp->arg_offset = step - 4;
- infp->growth[growths++] = step;
- infp->reg_growth = growths;
- infp->local_growth = growths;
-
- /* If we haven't already folded it in. */
- if (outbounds)
- infp->growth[growths++] = outbounds;
-
- goto finish;
- }
-
- /* Frame can't be done with a single subi, but can be done with 2
- insns. If the 'stm' is getting <= 2 registers, we use stw's and
- shift some of the stack purchase into the first subi, so both are
- single instructions. */
- if (localregarg <= STORE_REACH
- && (infp->local_size > ADDI_REACH)
- && (infp->reg_size <= 8 || (infp->reg_mask & 0xc000) != 0xc000))
- {
- int all;
-
- /* Make sure we'll be aligned; use either pad_reg or pad_local. */
- if (localregarg % STACK_BYTES)
- infp->pad_reg = STACK_BYTES - (localregarg % STACK_BYTES);
-
- all = localregarg + infp->pad_reg + infp->pad_local;
- step = ADDI_REACH; /* As much up front as we can. */
- if (step > all)
- step = all;
-
- /* XXX: Consider whether step will still be aligned; we believe so. */
- infp->arg_offset = step - 4;
- infp->growth[growths++] = step;
- infp->reg_growth = growths;
- infp->reg_offset = step - infp->pad_reg - infp->reg_size;
- all -= step;
-
- /* Can we fold in any space required for outbounds? */
- if (outbounds + all <= ADDI_REACH && !frame_pointer_needed)
- {
- all += outbounds;
- outbounds = 0;
- }
-
- /* Get the rest of the locals in place. */
- step = all;
- infp->growth[growths++] = step;
- infp->local_growth = growths;
- all -= step;
-
- gcc_assert (all == 0);
-
- /* Finish off if we need to do so. */
- if (outbounds)
- infp->growth[growths++] = outbounds;
-
- goto finish;
- }
-
- /* Registers + args is nicely aligned, so we'll buy that in one shot.
- Then we buy the rest of the frame in 1 or 2 steps depending on
- whether we need a frame pointer. */
- if ((regarg % STACK_BYTES) == 0)
- {
- infp->growth[growths++] = regarg;
- infp->reg_growth = growths;
- infp->arg_offset = regarg - 4;
- infp->reg_offset = 0;
-
- if (infp->local_size % STACK_BYTES)
- infp->pad_local = STACK_BYTES - (infp->local_size % STACK_BYTES);
-
- step = infp->local_size + infp->pad_local;
-
- if (!frame_pointer_needed)
- {
- step += outbounds;
- outbounds = 0;
- }
-
- infp->growth[growths++] = step;
- infp->local_growth = growths;
-
- /* If there's any left to be done. */
- if (outbounds)
- infp->growth[growths++] = outbounds;
-
- goto finish;
- }
-
- /* XXX: optimizations that we'll want to play with....
- -- regarg is not aligned, but it's a small number of registers;
- use some of localsize so that regarg is aligned and then
- save the registers. */
-
- /* Simple encoding; plods down the stack buying the pieces as it goes.
- -- does not optimize space consumption.
- -- does not attempt to optimize instruction counts.
- -- but it is safe for all alignments. */
- if (regarg % STACK_BYTES != 0)
- infp->pad_reg = STACK_BYTES - (regarg % STACK_BYTES);
-
- infp->growth[growths++] = infp->arg_size + infp->reg_size + infp->pad_reg;
- infp->reg_growth = growths;
- infp->arg_offset = infp->growth[0] - 4;
- infp->reg_offset = 0;
-
- if (frame_pointer_needed)
- {
- if (infp->local_size % STACK_BYTES != 0)
- infp->pad_local = STACK_BYTES - (infp->local_size % STACK_BYTES);
-
- infp->growth[growths++] = infp->local_size + infp->pad_local;
- infp->local_growth = growths;
-
- infp->growth[growths++] = outbounds;
- }
- else
- {
- if ((infp->local_size + outbounds) % STACK_BYTES != 0)
- infp->pad_local = STACK_BYTES - ((infp->local_size + outbounds) % STACK_BYTES);
-
- infp->growth[growths++] = infp->local_size + infp->pad_local + outbounds;
- infp->local_growth = growths;
- }
-
- /* Anything else that we've forgotten?, plus a few consistency checks. */
- finish:
- gcc_assert (infp->reg_offset >= 0);
- gcc_assert (growths <= MAX_STACK_GROWS);
-
- for (i = 0; i < growths; i++)
- gcc_assert (!(infp->growth[i] % STACK_BYTES));
-}
-
-/* Define the offset between two registers, one to be eliminated, and
- the other its replacement, at the start of a routine. */
-
-int
-mcore_initial_elimination_offset (int from, int to)
-{
- int above_frame;
- int below_frame;
- struct mcore_frame fi;
-
- layout_mcore_frame (& fi);
-
- /* fp to ap */
- above_frame = fi.local_size + fi.pad_local + fi.reg_size + fi.pad_reg;
- /* sp to fp */
- below_frame = fi.outbound_size + fi.pad_outbound;
-
- if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
- return above_frame;
-
- if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
- return above_frame + below_frame;
-
- if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
- return below_frame;
-
- gcc_unreachable ();
-}
-
-/* Keep track of some information about varargs for the prolog. */
-
-static void
-mcore_setup_incoming_varargs (cumulative_args_t args_so_far_v,
- enum machine_mode mode, tree type,
- int * ptr_pretend_size ATTRIBUTE_UNUSED,
- int second_time ATTRIBUTE_UNUSED)
-{
- CUMULATIVE_ARGS *args_so_far = get_cumulative_args (args_so_far_v);
-
- current_function_anonymous_args = 1;
-
- /* We need to know how many argument registers are used before
- the varargs start, so that we can push the remaining argument
- registers during the prologue. */
- number_of_regs_before_varargs = *args_so_far + mcore_num_arg_regs (mode, type);
-
- /* There is a bug somewhere in the arg handling code.
- Until I can find it this workaround always pushes the
- last named argument onto the stack. */
- number_of_regs_before_varargs = *args_so_far;
-
- /* The last named argument may be split between argument registers
- and the stack. Allow for this here. */
- if (number_of_regs_before_varargs > NPARM_REGS)
- number_of_regs_before_varargs = NPARM_REGS;
-}
-
-void
-mcore_expand_prolog (void)
-{
- struct mcore_frame fi;
- int space_allocated = 0;
- int growth = 0;
-
- /* Find out what we're doing. */
- layout_mcore_frame (&fi);
-
- space_allocated = fi.arg_size + fi.reg_size + fi.local_size +
- fi.outbound_size + fi.pad_outbound + fi.pad_local + fi.pad_reg;
-
- if (TARGET_CG_DATA)
- {
- /* Emit a symbol for this routine's frame size. */
- rtx x;
-
- x = DECL_RTL (current_function_decl);
-
- gcc_assert (GET_CODE (x) == MEM);
-
- x = XEXP (x, 0);
-
- gcc_assert (GET_CODE (x) == SYMBOL_REF);
-
- free (mcore_current_function_name);
-
- mcore_current_function_name = xstrdup (XSTR (x, 0));
-
- ASM_OUTPUT_CG_NODE (asm_out_file, mcore_current_function_name, space_allocated);
-
- if (cfun->calls_alloca)
- ASM_OUTPUT_CG_EDGE (asm_out_file, mcore_current_function_name, "alloca", 1);
-
- /* 970425: RBE:
- We're looking at how the 8byte alignment affects stack layout
- and where we had to pad things. This emits information we can
- extract which tells us about frame sizes and the like. */
- fprintf (asm_out_file,
- "\t.equ\t__$frame$info$_%s_$_%d_%d_x%x_%d_%d_%d,0\n",
- mcore_current_function_name,
- fi.arg_size, fi.reg_size, fi.reg_mask,
- fi.local_size, fi.outbound_size,
- frame_pointer_needed);
- }
-
- if (mcore_naked_function_p ())
- return;
-
- /* Handle stdarg+regsaves in one shot: can't be more than 64 bytes. */
- output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
-
- /* If we have a parameter passed partially in regs and partially in memory,
- the registers will have been stored to memory already in function.c. So
- we only need to do something here for varargs functions. */
- if (fi.arg_size != 0 && crtl->args.pretend_args_size == 0)
- {
- int offset;
- int rn = FIRST_PARM_REG + NPARM_REGS - 1;
- int remaining = fi.arg_size;
-
- for (offset = fi.arg_offset; remaining >= 4; offset -= 4, rn--, remaining -= 4)
- {
- emit_insn (gen_movsi
- (gen_rtx_MEM (SImode,
- plus_constant (Pmode, stack_pointer_rtx,
- offset)),
- gen_rtx_REG (SImode, rn)));
- }
- }
-
- /* Do we need another stack adjustment before we do the register saves? */
- if (growth < fi.reg_growth)
- output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
-
- if (fi.reg_size != 0)
- {
- int i;
- int offs = fi.reg_offset;
-
- for (i = 15; i >= 0; i--)
- {
- if (offs == 0 && i == 15 && ((fi.reg_mask & 0xc000) == 0xc000))
- {
- int first_reg = 15;
-
- while (fi.reg_mask & (1 << first_reg))
- first_reg--;
- first_reg++;
-
- emit_insn (gen_store_multiple (gen_rtx_MEM (SImode, stack_pointer_rtx),
- gen_rtx_REG (SImode, first_reg),
- GEN_INT (16 - first_reg)));
-
- i -= (15 - first_reg);
- offs += (16 - first_reg) * 4;
- }
- else if (fi.reg_mask & (1 << i))
- {
- emit_insn (gen_movsi
- (gen_rtx_MEM (SImode,
- plus_constant (Pmode, stack_pointer_rtx,
- offs)),
- gen_rtx_REG (SImode, i)));
- offs += 4;
- }
- }
- }
-
- /* Figure the locals + outbounds. */
- if (frame_pointer_needed)
- {
- /* If we haven't already purchased to 'fp'. */
- if (growth < fi.local_growth)
- output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
-
- emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx));
-
- /* ... and then go any remaining distance for outbounds, etc. */
- if (fi.growth[growth])
- output_stack_adjust (-1, fi.growth[growth++]);
- }
- else
- {
- if (growth < fi.local_growth)
- output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
- if (fi.growth[growth])
- output_stack_adjust (-1, fi.growth[growth++]);
- }
-}
-
-void
-mcore_expand_epilog (void)
-{
- struct mcore_frame fi;
- int i;
- int offs;
- int growth = MAX_STACK_GROWS - 1 ;
-
-
- /* Find out what we're doing. */
- layout_mcore_frame(&fi);
-
- if (mcore_naked_function_p ())
- return;
-
- /* If we had a frame pointer, restore the sp from that. */
- if (frame_pointer_needed)
- {
- emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx));
- growth = fi.local_growth - 1;
- }
- else
- {
- /* XXX: while loop should accumulate and do a single sell. */
- while (growth >= fi.local_growth)
- {
- if (fi.growth[growth] != 0)
- output_stack_adjust (1, fi.growth[growth]);
- growth--;
- }
- }
-
- /* Make sure we've shrunk stack back to the point where the registers
- were laid down. This is typically 0/1 iterations. Then pull the
- register save information back off the stack. */
- while (growth >= fi.reg_growth)
- output_stack_adjust ( 1, fi.growth[growth--]);
-
- offs = fi.reg_offset;
-
- for (i = 15; i >= 0; i--)
- {
- if (offs == 0 && i == 15 && ((fi.reg_mask & 0xc000) == 0xc000))
- {
- int first_reg;
-
- /* Find the starting register. */
- first_reg = 15;
-
- while (fi.reg_mask & (1 << first_reg))
- first_reg--;
-
- first_reg++;
-
- emit_insn (gen_load_multiple (gen_rtx_REG (SImode, first_reg),
- gen_rtx_MEM (SImode, stack_pointer_rtx),
- GEN_INT (16 - first_reg)));
-
- i -= (15 - first_reg);
- offs += (16 - first_reg) * 4;
- }
- else if (fi.reg_mask & (1 << i))
- {
- emit_insn (gen_movsi
- (gen_rtx_REG (SImode, i),
- gen_rtx_MEM (SImode,
- plus_constant (Pmode, stack_pointer_rtx,
- offs))));
- offs += 4;
- }
- }
-
- /* Give back anything else. */
- /* XXX: Should accumulate total and then give it back. */
- while (growth >= 0)
- output_stack_adjust ( 1, fi.growth[growth--]);
-}
-
-/* This code is borrowed from the SH port. */
-
-/* The MCORE cannot load a large constant into a register, constants have to
- come from a pc relative load. The reference of a pc relative load
- instruction must be less than 1k in front of the instruction. This
- means that we often have to dump a constant inside a function, and
- generate code to branch around it.
-
- It is important to minimize this, since the branches will slow things
- down and make things bigger.
-
- Worst case code looks like:
-
- lrw L1,r0
- br L2
- align
- L1: .long value
- L2:
- ..
-
- lrw L3,r0
- br L4
- align
- L3: .long value
- L4:
- ..
-
- We fix this by performing a scan before scheduling, which notices which
- instructions need to have their operands fetched from the constant table
- and builds the table.
-
- The algorithm is:
-
- scan, find an instruction which needs a pcrel move. Look forward, find the
- last barrier which is within MAX_COUNT bytes of the requirement.
- If there isn't one, make one. Process all the instructions between
- the find and the barrier.
-
- In the above example, we can tell that L3 is within 1k of L1, so
- the first move can be shrunk from the 2 insn+constant sequence into
- just 1 insn, and the constant moved to L3 to make:
-
- lrw L1,r0
- ..
- lrw L3,r0
- bra L4
- align
- L3:.long value
- L4:.long value
-
- Then the second move becomes the target for the shortening process. */
-
-typedef struct
-{
- rtx value; /* Value in table. */
- rtx label; /* Label of value. */
-} pool_node;
-
-/* The maximum number of constants that can fit into one pool, since
- the pc relative range is 0...1020 bytes and constants are at least 4
- bytes long. We subtract 4 from the range to allow for the case where
- we need to add a branch/align before the constant pool. */
-
-#define MAX_COUNT 1016
-#define MAX_POOL_SIZE (MAX_COUNT/4)
-static pool_node pool_vector[MAX_POOL_SIZE];
-static int pool_size;
-
-/* Dump out any constants accumulated in the final pass. These
- will only be labels. */
-
-const char *
-mcore_output_jump_label_table (void)
-{
- int i;
-
- if (pool_size)
- {
- fprintf (asm_out_file, "\t.align 2\n");
-
- for (i = 0; i < pool_size; i++)
- {
- pool_node * p = pool_vector + i;
-
- (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (p->label));
-
- output_asm_insn (".long %0", &p->value);
- }
-
- pool_size = 0;
- }
-
- return "";
-}
-
-/* Check whether insn is a candidate for a conditional. */
-
-static cond_type
-is_cond_candidate (rtx insn)
-{
- /* The only things we conditionalize are those that can be directly
- changed into a conditional. Only bother with SImode items. If
- we wanted to be a little more aggressive, we could also do other
- modes such as DImode with reg-reg move or load 0. */
- if (GET_CODE (insn) == INSN)
- {
- rtx pat = PATTERN (insn);
- rtx src, dst;
-
- if (GET_CODE (pat) != SET)
- return COND_NO;
-
- dst = XEXP (pat, 0);
-
- if ((GET_CODE (dst) != REG &&
- GET_CODE (dst) != SUBREG) ||
- GET_MODE (dst) != SImode)
- return COND_NO;
-
- src = XEXP (pat, 1);
-
- if ((GET_CODE (src) == REG ||
- (GET_CODE (src) == SUBREG &&
- GET_CODE (SUBREG_REG (src)) == REG)) &&
- GET_MODE (src) == SImode)
- return COND_MOV_INSN;
- else if (GET_CODE (src) == CONST_INT &&
- INTVAL (src) == 0)
- return COND_CLR_INSN;
- else if (GET_CODE (src) == PLUS &&
- (GET_CODE (XEXP (src, 0)) == REG ||
- (GET_CODE (XEXP (src, 0)) == SUBREG &&
- GET_CODE (SUBREG_REG (XEXP (src, 0))) == REG)) &&
- GET_MODE (XEXP (src, 0)) == SImode &&
- GET_CODE (XEXP (src, 1)) == CONST_INT &&
- INTVAL (XEXP (src, 1)) == 1)
- return COND_INC_INSN;
- else if (((GET_CODE (src) == MINUS &&
- GET_CODE (XEXP (src, 1)) == CONST_INT &&
- INTVAL( XEXP (src, 1)) == 1) ||
- (GET_CODE (src) == PLUS &&
- GET_CODE (XEXP (src, 1)) == CONST_INT &&
- INTVAL (XEXP (src, 1)) == -1)) &&
- (GET_CODE (XEXP (src, 0)) == REG ||
- (GET_CODE (XEXP (src, 0)) == SUBREG &&
- GET_CODE (SUBREG_REG (XEXP (src, 0))) == REG)) &&
- GET_MODE (XEXP (src, 0)) == SImode)
- return COND_DEC_INSN;
-
- /* Some insns that we don't bother with:
- (set (rx:DI) (ry:DI))
- (set (rx:DI) (const_int 0))
- */
-
- }
- else if (GET_CODE (insn) == JUMP_INSN &&
- GET_CODE (PATTERN (insn)) == SET &&
- GET_CODE (XEXP (PATTERN (insn), 1)) == LABEL_REF)
- return COND_BRANCH_INSN;
-
- return COND_NO;
-}
-
-/* Emit a conditional version of insn and replace the old insn with the
- new one. Return the new insn if emitted. */
-
-static rtx
-emit_new_cond_insn (rtx insn, int cond)
-{
- rtx c_insn = 0;
- rtx pat, dst, src;
- cond_type num;
-
- if ((num = is_cond_candidate (insn)) == COND_NO)
- return NULL;
-
- pat = PATTERN (insn);
-
- if (GET_CODE (insn) == INSN)
- {
- dst = SET_DEST (pat);
- src = SET_SRC (pat);
- }
- else
- {
- dst = JUMP_LABEL (insn);
- src = NULL_RTX;
- }
-
- switch (num)
- {
- case COND_MOV_INSN:
- case COND_CLR_INSN:
- if (cond)
- c_insn = gen_movt0 (dst, src, dst);
- else
- c_insn = gen_movt0 (dst, dst, src);
- break;
-
- case COND_INC_INSN:
- if (cond)
- c_insn = gen_incscc (dst, dst);
- else
- c_insn = gen_incscc_false (dst, dst);
- break;
-
- case COND_DEC_INSN:
- if (cond)
- c_insn = gen_decscc (dst, dst);
- else
- c_insn = gen_decscc_false (dst, dst);
- break;
-
- case COND_BRANCH_INSN:
- if (cond)
- c_insn = gen_branch_true (dst);
- else
- c_insn = gen_branch_false (dst);
- break;
-
- default:
- return NULL;
- }
-
- /* Only copy the notes if they exist. */
- if (rtx_length [GET_CODE (c_insn)] >= 7 && rtx_length [GET_CODE (insn)] >= 7)
- {
- /* We really don't need to bother with the notes and links at this
- point, but go ahead and save the notes. This will help is_dead()
- when applying peepholes (links don't matter since they are not
- used any more beyond this point for the mcore). */
- REG_NOTES (c_insn) = REG_NOTES (insn);
- }
-
- if (num == COND_BRANCH_INSN)
- {
- /* For jumps, we need to be a little bit careful and emit the new jump
- before the old one and to update the use count for the target label.
- This way, the barrier following the old (uncond) jump will get
- deleted, but the label won't. */
- c_insn = emit_jump_insn_before (c_insn, insn);
-
- ++ LABEL_NUSES (dst);
-
- JUMP_LABEL (c_insn) = dst;
- }
- else
- c_insn = emit_insn_after (c_insn, insn);
-
- delete_insn (insn);
-
- return c_insn;
-}
-
-/* Attempt to change a basic block into a series of conditional insns. This
- works by taking the branch at the end of the 1st block and scanning for the
- end of the 2nd block. If all instructions in the 2nd block have cond.
- versions and the label at the start of block 3 is the same as the target
- from the branch at block 1, then conditionalize all insn in block 2 using
- the inverse condition of the branch at block 1. (Note I'm bending the
- definition of basic block here.)
-
- e.g., change:
-
- bt L2 <-- end of block 1 (delete)
- mov r7,r8
- addu r7,1
- br L3 <-- end of block 2
-
- L2: ... <-- start of block 3 (NUSES==1)
- L3: ...
-
- to:
-
- movf r7,r8
- incf r7
- bf L3
-
- L3: ...
-
- we can delete the L2 label if NUSES==1 and re-apply the optimization
- starting at the last instruction of block 2. This may allow an entire
- if-then-else statement to be conditionalized. BRC */
-static rtx
-conditionalize_block (rtx first)
-{
- rtx insn;
- rtx br_pat;
- rtx end_blk_1_br = 0;
- rtx end_blk_2_insn = 0;
- rtx start_blk_3_lab = 0;
- int cond;
- int br_lab_num;
- int blk_size = 0;
-
-
- /* Check that the first insn is a candidate conditional jump. This is
- the one that we'll eliminate. If not, advance to the next insn to
- try. */
- if (GET_CODE (first) != JUMP_INSN ||
- GET_CODE (PATTERN (first)) != SET ||
- GET_CODE (XEXP (PATTERN (first), 1)) != IF_THEN_ELSE)
- return NEXT_INSN (first);
-
- /* Extract some information we need. */
- end_blk_1_br = first;
- br_pat = PATTERN (end_blk_1_br);
-
- /* Complement the condition since we use the reverse cond. for the insns. */
- cond = (GET_CODE (XEXP (XEXP (br_pat, 1), 0)) == EQ);
-
- /* Determine what kind of branch we have. */
- if (GET_CODE (XEXP (XEXP (br_pat, 1), 1)) == LABEL_REF)
- {
- /* A normal branch, so extract label out of first arm. */
- br_lab_num = CODE_LABEL_NUMBER (XEXP (XEXP (XEXP (br_pat, 1), 1), 0));
- }
- else
- {
- /* An inverse branch, so extract the label out of the 2nd arm
- and complement the condition. */
- cond = (cond == 0);
- br_lab_num = CODE_LABEL_NUMBER (XEXP (XEXP (XEXP (br_pat, 1), 2), 0));
- }
-
- /* Scan forward for the start of block 2: it must start with a
- label and that label must be the same as the branch target
- label from block 1. We don't care about whether block 2 actually
- ends with a branch or a label (an uncond. branch is
- conditionalizable). */
- for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
- {
- enum rtx_code code;
-
- code = GET_CODE (insn);
-
- /* Look for the label at the start of block 3. */
- if (code == CODE_LABEL && CODE_LABEL_NUMBER (insn) == br_lab_num)
- break;
-
- /* Skip barriers, notes, and conditionalizable insns. If the
- insn is not conditionalizable or makes this optimization fail,
- just return the next insn so we can start over from that point. */
- if (code != BARRIER && code != NOTE && !is_cond_candidate (insn))
- return NEXT_INSN (insn);
-
- /* Remember the last real insn before the label (i.e. end of block 2). */
- if (code == JUMP_INSN || code == INSN)
- {
- blk_size ++;
- end_blk_2_insn = insn;
- }
- }
-
- if (!insn)
- return insn;
-
- /* It is possible for this optimization to slow performance if the blocks
- are long. This really depends upon whether the branch is likely taken
- or not. If the branch is taken, we slow performance in many cases. But,
- if the branch is not taken, we always help performance (for a single
- block, but for a double block (i.e. when the optimization is re-applied)
- this is not true since the 'right thing' depends on the overall length of
- the collapsed block). As a compromise, don't apply this optimization on
- blocks larger than size 2 (unlikely for the mcore) when speed is important.
- the best threshold depends on the latencies of the instructions (i.e.,
- the branch penalty). */
- if (optimize > 1 && blk_size > 2)
- return insn;
-
- /* At this point, we've found the start of block 3 and we know that
- it is the destination of the branch from block 1. Also, all
- instructions in the block 2 are conditionalizable. So, apply the
- conditionalization and delete the branch. */
- start_blk_3_lab = insn;
-
- for (insn = NEXT_INSN (end_blk_1_br); insn != start_blk_3_lab;
- insn = NEXT_INSN (insn))
- {
- rtx newinsn;
-
- if (INSN_DELETED_P (insn))
- continue;
-
- /* Try to form a conditional variant of the instruction and emit it. */
- if ((newinsn = emit_new_cond_insn (insn, cond)))
- {
- if (end_blk_2_insn == insn)
- end_blk_2_insn = newinsn;
-
- insn = newinsn;
- }
- }
-
- /* Note whether we will delete the label starting blk 3 when the jump
- gets deleted. If so, we want to re-apply this optimization at the
- last real instruction right before the label. */
- if (LABEL_NUSES (start_blk_3_lab) == 1)
- {
- start_blk_3_lab = 0;
- }
-
- /* ??? we probably should redistribute the death notes for this insn, esp.
- the death of cc, but it doesn't really matter this late in the game.
- The peepholes all use is_dead() which will find the correct death
- regardless of whether there is a note. */
- delete_insn (end_blk_1_br);
-
- if (! start_blk_3_lab)
- return end_blk_2_insn;
-
- /* Return the insn right after the label at the start of block 3. */
- return NEXT_INSN (start_blk_3_lab);
-}
-
-/* Apply the conditionalization of blocks optimization. This is the
- outer loop that traverses through the insns scanning for a branch
- that signifies an opportunity to apply the optimization. Note that
- this optimization is applied late. If we could apply it earlier,
- say before cse 2, it may expose more optimization opportunities.
- but, the pay back probably isn't really worth the effort (we'd have
- to update all reg/flow/notes/links/etc to make it work - and stick it
- in before cse 2). */
-
-static void
-conditionalize_optimization (void)
-{
- rtx insn;
-
- for (insn = get_insns (); insn; insn = conditionalize_block (insn))
- continue;
-}
-
-/* This is to handle loads from the constant pool. */
-
-static void
-mcore_reorg (void)
-{
- /* Reset this variable. */
- current_function_anonymous_args = 0;
-
- if (optimize == 0)
- return;
-
- /* Conditionalize blocks where we can. */
- conditionalize_optimization ();
-
- /* Literal pool generation is now pushed off until the assembler. */
-}
-
-
-/* Return true if X is something that can be moved directly into r15. */
-
-bool
-mcore_r15_operand_p (rtx x)
-{
- switch (GET_CODE (x))
- {
- case CONST_INT:
- return mcore_const_ok_for_inline (INTVAL (x));
-
- case REG:
- case SUBREG:
- case MEM:
- return 1;
-
- default:
- return 0;
- }
-}
-
-/* Implement SECONDARY_RELOAD_CLASS. If RCLASS contains r15, and we can't
- directly move X into it, use r1-r14 as a temporary. */
-
-enum reg_class
-mcore_secondary_reload_class (enum reg_class rclass,
- enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
-{
- if (TEST_HARD_REG_BIT (reg_class_contents[rclass], 15)
- && !mcore_r15_operand_p (x))
- return LRW_REGS;
- return NO_REGS;
-}
-
-/* Return the reg_class to use when reloading the rtx X into the class
- RCLASS. If X is too complex to move directly into r15, prefer to
- use LRW_REGS instead. */
-
-enum reg_class
-mcore_reload_class (rtx x, enum reg_class rclass)
-{
- if (reg_class_subset_p (LRW_REGS, rclass) && !mcore_r15_operand_p (x))
- return LRW_REGS;
-
- return rclass;
-}
-
-/* Tell me if a pair of reg/subreg rtx's actually refer to the same
- register. Note that the current version doesn't worry about whether
- they are the same mode or note (e.g., a QImode in r2 matches an HImode
- in r2 matches an SImode in r2. Might think in the future about whether
- we want to be able to say something about modes. */
-
-int
-mcore_is_same_reg (rtx x, rtx y)
-{
- /* Strip any and all of the subreg wrappers. */
- while (GET_CODE (x) == SUBREG)
- x = SUBREG_REG (x);
-
- while (GET_CODE (y) == SUBREG)
- y = SUBREG_REG (y);
-
- if (GET_CODE(x) == REG && GET_CODE(y) == REG && REGNO(x) == REGNO(y))
- return 1;
-
- return 0;
-}
-
-static void
-mcore_option_override (void)
-{
- /* Only the m340 supports little endian code. */
- if (TARGET_LITTLE_END && ! TARGET_M340)
- target_flags |= MASK_M340;
-}
-
-
-/* Compute the number of word sized registers needed to
- hold a function argument of mode MODE and type TYPE. */
-
-int
-mcore_num_arg_regs (enum machine_mode mode, const_tree type)
-{
- int size;
-
- if (targetm.calls.must_pass_in_stack (mode, type))
- return 0;
-
- if (type && mode == BLKmode)
- size = int_size_in_bytes (type);
- else
- size = GET_MODE_SIZE (mode);
-
- return ROUND_ADVANCE (size);
-}
-
-static rtx
-handle_structs_in_regs (enum machine_mode mode, const_tree type, int reg)
-{
- int size;
-
- /* The MCore ABI defines that a structure whose size is not a whole multiple
- of bytes is passed packed into registers (or spilled onto the stack if
- not enough registers are available) with the last few bytes of the
- structure being packed, left-justified, into the last register/stack slot.
- GCC handles this correctly if the last word is in a stack slot, but we
- have to generate a special, PARALLEL RTX if the last word is in an
- argument register. */
- if (type
- && TYPE_MODE (type) == BLKmode
- && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
- && (size = int_size_in_bytes (type)) > UNITS_PER_WORD
- && (size % UNITS_PER_WORD != 0)
- && (reg + mcore_num_arg_regs (mode, type) <= (FIRST_PARM_REG + NPARM_REGS)))
- {
- rtx arg_regs [NPARM_REGS];
- int nregs;
- rtx result;
- rtvec rtvec;
-
- for (nregs = 0; size > 0; size -= UNITS_PER_WORD)
- {
- arg_regs [nregs] =
- gen_rtx_EXPR_LIST (SImode, gen_rtx_REG (SImode, reg ++),
- GEN_INT (nregs * UNITS_PER_WORD));
- nregs ++;
- }
-
- /* We assume here that NPARM_REGS == 6. The assert checks this. */
- gcc_assert (ARRAY_SIZE (arg_regs) == 6);
- rtvec = gen_rtvec (nregs, arg_regs[0], arg_regs[1], arg_regs[2],
- arg_regs[3], arg_regs[4], arg_regs[5]);
-
- result = gen_rtx_PARALLEL (mode, rtvec);
- return result;
- }
-
- return gen_rtx_REG (mode, reg);
-}
-
-rtx
-mcore_function_value (const_tree valtype, const_tree func)
-{
- enum machine_mode mode;
- int unsigned_p;
-
- mode = TYPE_MODE (valtype);
-
- /* Since we promote return types, we must promote the mode here too. */
- mode = promote_function_mode (valtype, mode, &unsigned_p, func, 1);
-
- return handle_structs_in_regs (mode, valtype, FIRST_RET_REG);
-}
-
-/* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis).
-
- On MCore the first args are normally in registers
- and the rest are pushed. Any arg that starts within the first
- NPARM_REGS words is at least partially passed in a register unless
- its data type forbids. */
-
-static rtx
-mcore_function_arg (cumulative_args_t cum, enum machine_mode mode,
- const_tree type, bool named)
-{
- int arg_reg;
-
- if (! named || mode == VOIDmode)
- return 0;
-
- if (targetm.calls.must_pass_in_stack (mode, type))
- return 0;
-
- arg_reg = ROUND_REG (*get_cumulative_args (cum), mode);
-
- if (arg_reg < NPARM_REGS)
- return handle_structs_in_regs (mode, type, FIRST_PARM_REG + arg_reg);
-
- return 0;
-}
-
-static void
-mcore_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
- const_tree type, bool named ATTRIBUTE_UNUSED)
-{
- CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
-
- *cum = (ROUND_REG (*cum, mode)
- + (int)named * mcore_num_arg_regs (mode, type));
-}
-
-static unsigned int
-mcore_function_arg_boundary (enum machine_mode mode,
- const_tree type ATTRIBUTE_UNUSED)
-{
- /* Doubles must be aligned to an 8 byte boundary. */
- return (mode != BLKmode && GET_MODE_SIZE (mode) == 8
- ? BIGGEST_ALIGNMENT
- : PARM_BOUNDARY);
-}
-
-/* Returns the number of bytes of argument registers required to hold *part*
- of a parameter of machine mode MODE and type TYPE (which may be NULL if
- the type is not known). If the argument fits entirely in the argument
- registers, or entirely on the stack, then 0 is returned. CUM is the
- number of argument registers already used by earlier parameters to
- the function. */
-
-static int
-mcore_arg_partial_bytes (cumulative_args_t cum, enum machine_mode mode,
- tree type, bool named)
-{
- int reg = ROUND_REG (*get_cumulative_args (cum), mode);
-
- if (named == 0)
- return 0;
-
- if (targetm.calls.must_pass_in_stack (mode, type))
- return 0;
-
- /* REG is not the *hardware* register number of the register that holds
- the argument, it is the *argument* register number. So for example,
- the first argument to a function goes in argument register 0, which
- translates (for the MCore) into hardware register 2. The second
- argument goes into argument register 1, which translates into hardware
- register 3, and so on. NPARM_REGS is the number of argument registers
- supported by the target, not the maximum hardware register number of
- the target. */
- if (reg >= NPARM_REGS)
- return 0;
-
- /* If the argument fits entirely in registers, return 0. */
- if (reg + mcore_num_arg_regs (mode, type) <= NPARM_REGS)
- return 0;
-
- /* The argument overflows the number of available argument registers.
- Compute how many argument registers have not yet been assigned to
- hold an argument. */
- reg = NPARM_REGS - reg;
-
- /* Return partially in registers and partially on the stack. */
- return reg * UNITS_PER_WORD;
-}
-
-/* Return nonzero if SYMBOL is marked as being dllexport'd. */
-
-int
-mcore_dllexport_name_p (const char * symbol)
-{
- return symbol[0] == '@' && symbol[1] == 'e' && symbol[2] == '.';
-}
-
-/* Return nonzero if SYMBOL is marked as being dllimport'd. */
-
-int
-mcore_dllimport_name_p (const char * symbol)
-{
- return symbol[0] == '@' && symbol[1] == 'i' && symbol[2] == '.';
-}
-
-/* Mark a DECL as being dllexport'd. */
-
-static void
-mcore_mark_dllexport (tree decl)
-{
- const char * oldname;
- char * newname;
- rtx rtlname;
- tree idp;
-
- rtlname = XEXP (DECL_RTL (decl), 0);
-
- if (GET_CODE (rtlname) == MEM)
- rtlname = XEXP (rtlname, 0);
- gcc_assert (GET_CODE (rtlname) == SYMBOL_REF);
- oldname = XSTR (rtlname, 0);
-
- if (mcore_dllexport_name_p (oldname))
- return; /* Already done. */
-
- newname = XALLOCAVEC (char, strlen (oldname) + 4);
- sprintf (newname, "@e.%s", oldname);
-
- /* We pass newname through get_identifier to ensure it has a unique
- address. RTL processing can sometimes peek inside the symbol ref
- and compare the string's addresses to see if two symbols are
- identical. */
- /* ??? At least I think that's why we do this. */
- idp = get_identifier (newname);
-
- XEXP (DECL_RTL (decl), 0) =
- gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (idp));
-}
-
-/* Mark a DECL as being dllimport'd. */
-
-static void
-mcore_mark_dllimport (tree decl)
-{
- const char * oldname;
- char * newname;
- tree idp;
- rtx rtlname;
- rtx newrtl;
-
- rtlname = XEXP (DECL_RTL (decl), 0);
-
- if (GET_CODE (rtlname) == MEM)
- rtlname = XEXP (rtlname, 0);
- gcc_assert (GET_CODE (rtlname) == SYMBOL_REF);
- oldname = XSTR (rtlname, 0);
-
- gcc_assert (!mcore_dllexport_name_p (oldname));
- if (mcore_dllimport_name_p (oldname))
- return; /* Already done. */
-
- /* ??? One can well ask why we're making these checks here,
- and that would be a good question. */
-
- /* Imported variables can't be initialized. */
- if (TREE_CODE (decl) == VAR_DECL
- && !DECL_VIRTUAL_P (decl)
- && DECL_INITIAL (decl))
- {
- error ("initialized variable %q+D is marked dllimport", decl);
- return;
- }
-
- /* `extern' needn't be specified with dllimport.
- Specify `extern' now and hope for the best. Sigh. */
- if (TREE_CODE (decl) == VAR_DECL
- /* ??? Is this test for vtables needed? */
- && !DECL_VIRTUAL_P (decl))
- {
- DECL_EXTERNAL (decl) = 1;
- TREE_PUBLIC (decl) = 1;
- }
-
- newname = XALLOCAVEC (char, strlen (oldname) + 11);
- sprintf (newname, "@i.__imp_%s", oldname);
-
- /* We pass newname through get_identifier to ensure it has a unique
- address. RTL processing can sometimes peek inside the symbol ref
- and compare the string's addresses to see if two symbols are
- identical. */
- /* ??? At least I think that's why we do this. */
- idp = get_identifier (newname);
-
- newrtl = gen_rtx_MEM (Pmode,
- gen_rtx_SYMBOL_REF (Pmode,
- IDENTIFIER_POINTER (idp)));
- XEXP (DECL_RTL (decl), 0) = newrtl;
-}
-
-static int
-mcore_dllexport_p (tree decl)
-{
- if ( TREE_CODE (decl) != VAR_DECL
- && TREE_CODE (decl) != FUNCTION_DECL)
- return 0;
-
- return lookup_attribute ("dllexport", DECL_ATTRIBUTES (decl)) != 0;
-}
-
-static int
-mcore_dllimport_p (tree decl)
-{
- if ( TREE_CODE (decl) != VAR_DECL
- && TREE_CODE (decl) != FUNCTION_DECL)
- return 0;
-
- return lookup_attribute ("dllimport", DECL_ATTRIBUTES (decl)) != 0;
-}
-
-/* We must mark dll symbols specially. Definitions of dllexport'd objects
- install some info in the .drective (PE) or .exports (ELF) sections. */
-
-static void
-mcore_encode_section_info (tree decl, rtx rtl ATTRIBUTE_UNUSED, int first ATTRIBUTE_UNUSED)
-{
- /* Mark the decl so we can tell from the rtl whether the object is
- dllexport'd or dllimport'd. */
- if (mcore_dllexport_p (decl))
- mcore_mark_dllexport (decl);
- else if (mcore_dllimport_p (decl))
- mcore_mark_dllimport (decl);
-
- /* It might be that DECL has already been marked as dllimport, but
- a subsequent definition nullified that. The attribute is gone
- but DECL_RTL still has @i.__imp_foo. We need to remove that. */
- else if ((TREE_CODE (decl) == FUNCTION_DECL
- || TREE_CODE (decl) == VAR_DECL)
- && DECL_RTL (decl) != NULL_RTX
- && GET_CODE (DECL_RTL (decl)) == MEM
- && GET_CODE (XEXP (DECL_RTL (decl), 0)) == MEM
- && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == SYMBOL_REF
- && mcore_dllimport_name_p (XSTR (XEXP (XEXP (DECL_RTL (decl), 0), 0), 0)))
- {
- const char * oldname = XSTR (XEXP (XEXP (DECL_RTL (decl), 0), 0), 0);
- tree idp = get_identifier (oldname + 9);
- rtx newrtl = gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (idp));
-
- XEXP (DECL_RTL (decl), 0) = newrtl;
-
- /* We previously set TREE_PUBLIC and DECL_EXTERNAL.
- ??? We leave these alone for now. */
- }
-}
-
-/* Undo the effects of the above. */
-
-static const char *
-mcore_strip_name_encoding (const char * str)
-{
- return str + (str[0] == '@' ? 3 : 0);
-}
-
-/* MCore specific attribute support.
- dllexport - for exporting a function/variable that will live in a dll
- dllimport - for importing a function/variable from a dll
- naked - do not create a function prologue/epilogue. */
-
-/* Handle a "naked" attribute; arguments as in
- struct attribute_spec.handler. */
-
-static tree
-mcore_handle_naked_attribute (tree * node, tree name, tree args ATTRIBUTE_UNUSED,
- int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
-{
- if (TREE_CODE (*node) != FUNCTION_DECL)
- {
- warning (OPT_Wattributes, "%qE attribute only applies to functions",
- name);
- *no_add_attrs = true;
- }
-
- return NULL_TREE;
-}
-
-/* ??? It looks like this is PE specific? Oh well, this is what the
- old code did as well. */
-
-static void
-mcore_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED)
-{
- int len;
- const char * name;
- char * string;
- const char * prefix;
-
- name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
-
- /* Strip off any encoding in name. */
- name = (* targetm.strip_name_encoding) (name);
-
- /* The object is put in, for example, section .text$foo.
- The linker will then ultimately place them in .text
- (everything from the $ on is stripped). */
- if (TREE_CODE (decl) == FUNCTION_DECL)
- prefix = ".text$";
- /* For compatibility with EPOC, we ignore the fact that the
- section might have relocs against it. */
- else if (decl_readonly_section (decl, 0))
- prefix = ".rdata$";
- else
- prefix = ".data$";
-
- len = strlen (name) + strlen (prefix);
- string = XALLOCAVEC (char, len + 1);
-
- sprintf (string, "%s%s", prefix, name);
-
- DECL_SECTION_NAME (decl) = build_string (len, string);
-}
-
-int
-mcore_naked_function_p (void)
-{
- return lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE;
-}
-
-static bool
-mcore_warn_func_return (tree decl)
-{
- /* Naked functions are implemented entirely in assembly, including the
- return sequence, so suppress warnings about this. */
- return lookup_attribute ("naked", DECL_ATTRIBUTES (decl)) == NULL_TREE;
-}
-
-#ifdef OBJECT_FORMAT_ELF
-static void
-mcore_asm_named_section (const char *name,
- unsigned int flags ATTRIBUTE_UNUSED,
- tree decl ATTRIBUTE_UNUSED)
-{
- fprintf (asm_out_file, "\t.section %s\n", name);
-}
-#endif /* OBJECT_FORMAT_ELF */
-
-/* Worker function for TARGET_ASM_EXTERNAL_LIBCALL. */
-
-static void
-mcore_external_libcall (rtx fun)
-{
- fprintf (asm_out_file, "\t.import\t");
- assemble_name (asm_out_file, XSTR (fun, 0));
- fprintf (asm_out_file, "\n");
-}
-
-/* Worker function for TARGET_RETURN_IN_MEMORY. */
-
-static bool
-mcore_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
-{
- const HOST_WIDE_INT size = int_size_in_bytes (type);
- return (size == -1 || size > 2 * UNITS_PER_WORD);
-}
-
-/* Worker function for TARGET_ASM_TRAMPOLINE_TEMPLATE.
- Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts.
-
- On the MCore, the trampoline looks like:
- lrw r1, function
- lrw r13, area
- jmp r13
- or r0, r0
- .literals */
-
-static void
-mcore_asm_trampoline_template (FILE *f)
-{
- fprintf (f, "\t.short 0x7102\n");
- fprintf (f, "\t.short 0x7d02\n");
- fprintf (f, "\t.short 0x00cd\n");
- fprintf (f, "\t.short 0x1e00\n");
- fprintf (f, "\t.long 0\n");
- fprintf (f, "\t.long 0\n");
-}
-
-/* Worker function for TARGET_TRAMPOLINE_INIT. */
-
-static void
-mcore_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
-{
- rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
- rtx mem;
-
- emit_block_move (m_tramp, assemble_trampoline_template (),
- GEN_INT (2*UNITS_PER_WORD), BLOCK_OP_NORMAL);
-
- mem = adjust_address (m_tramp, SImode, 8);
- emit_move_insn (mem, chain_value);
- mem = adjust_address (m_tramp, SImode, 12);
- emit_move_insn (mem, fnaddr);
-}
-
-/* Implement TARGET_LEGITIMATE_CONSTANT_P
-
- On the MCore, allow anything but a double. */
-
-static bool
-mcore_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
-{
- return GET_CODE (x) != CONST_DOUBLE;
-}