aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8/gcc/ada/s-bignum.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8/gcc/ada/s-bignum.adb')
-rw-r--r--gcc-4.8/gcc/ada/s-bignum.adb1096
1 files changed, 0 insertions, 1096 deletions
diff --git a/gcc-4.8/gcc/ada/s-bignum.adb b/gcc-4.8/gcc/ada/s-bignum.adb
deleted file mode 100644
index 7cafbf3d5..000000000
--- a/gcc-4.8/gcc/ada/s-bignum.adb
+++ /dev/null
@@ -1,1096 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- S Y S T E M . B I G N U M S --
--- --
--- B o d y --
--- --
--- Copyright (C) 2012, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. --
--- --
--- As a special exception under Section 7 of GPL version 3, you are granted --
--- additional permissions described in the GCC Runtime Library Exception, --
--- version 3.1, as published by the Free Software Foundation. --
--- --
--- You should have received a copy of the GNU General Public License and --
--- a copy of the GCC Runtime Library Exception along with this program; --
--- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
--- <http://www.gnu.org/licenses/>. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
--- This package provides arbitrary precision signed integer arithmetic for
--- use in computing intermediate values in expressions for the case where
--- pragma Overflow_Check (Eliminate) is in effect.
-
-with System; use System;
-with System.Secondary_Stack; use System.Secondary_Stack;
-with System.Storage_Elements; use System.Storage_Elements;
-
-package body System.Bignums is
-
- use Interfaces;
- -- So that operations on Unsigned_32 are available
-
- type DD is mod Base ** 2;
- -- Double length digit used for intermediate computations
-
- function MSD (X : DD) return SD is (SD (X / Base));
- function LSD (X : DD) return SD is (SD (X mod Base));
- -- Most significant and least significant digit of double digit value
-
- function "&" (X, Y : SD) return DD is (DD (X) * Base + DD (Y));
- -- Compose double digit value from two single digit values
-
- subtype LLI is Long_Long_Integer;
-
- One_Data : constant Digit_Vector (1 .. 1) := (1 => 1);
- -- Constant one
-
- Zero_Data : constant Digit_Vector (1 .. 0) := (1 .. 0 => 0);
- -- Constant zero
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- function Add (X, Y : Digit_Vector; X_Neg, Y_Neg : Boolean) return Bignum
- with Pre => X'First = 1 and then Y'First = 1;
- -- This procedure adds two signed numbers returning the Sum, it is used
- -- for both addition and subtraction. The value computed is X + Y, with
- -- X_Neg and Y_Neg giving the signs of the operands.
-
- function Allocate_Bignum (Len : Length) return Bignum
- with Post => Allocate_Bignum'Result.Len = Len;
- -- Allocate Bignum value of indicated length on secondary stack. On return
- -- the Neg and D fields are left uninitialized.
-
- type Compare_Result is (LT, EQ, GT);
- -- Indicates result of comparison in following call
-
- function Compare
- (X, Y : Digit_Vector;
- X_Neg, Y_Neg : Boolean) return Compare_Result
- with Pre => X'First = 1 and then Y'First = 1;
- -- Compare (X with sign X_Neg) with (Y with sign Y_Neg), and return the
- -- result of the signed comparison.
-
- procedure Div_Rem
- (X, Y : Bignum;
- Quotient : out Bignum;
- Remainder : out Bignum;
- Discard_Quotient : Boolean := False;
- Discard_Remainder : Boolean := False);
- -- Returns the Quotient and Remainder from dividing abs (X) by abs (Y). The
- -- values of X and Y are not modified. If Discard_Quotient is True, then
- -- Quotient is undefined on return, and if Discard_Remainder is True, then
- -- Remainder is undefined on return. Service routine for Big_Div/Rem/Mod.
-
- procedure Free_Bignum (X : Bignum) is null;
- -- Called to free a Bignum value used in intermediate computations. In
- -- this implementation using the secondary stack, it does nothing at all,
- -- because we rely on Mark/Release, but it may be of use for some
- -- alternative implementation.
-
- function Normalize
- (X : Digit_Vector;
- Neg : Boolean := False) return Bignum;
- -- Given a digit vector and sign, allocate and construct a Bignum value.
- -- Note that X may have leading zeroes which must be removed, and if the
- -- result is zero, the sign is forced positive.
-
- ---------
- -- Add --
- ---------
-
- function Add (X, Y : Digit_Vector; X_Neg, Y_Neg : Boolean) return Bignum is
- begin
- -- If signs are the same, we are doing an addition, it is convenient to
- -- ensure that the first operand is the longer of the two.
-
- if X_Neg = Y_Neg then
- if X'Last < Y'Last then
- return Add (X => Y, Y => X, X_Neg => Y_Neg, Y_Neg => X_Neg);
-
- -- Here signs are the same, and the first operand is the longer
-
- else
- pragma Assert (X_Neg = Y_Neg and then X'Last >= Y'Last);
-
- -- Do addition, putting result in Sum (allowing for carry)
-
- declare
- Sum : Digit_Vector (0 .. X'Last);
- RD : DD;
-
- begin
- RD := 0;
- for J in reverse 1 .. X'Last loop
- RD := RD + DD (X (J));
-
- if J >= 1 + (X'Last - Y'Last) then
- RD := RD + DD (Y (J - (X'Last - Y'Last)));
- end if;
-
- Sum (J) := LSD (RD);
- RD := RD / Base;
- end loop;
-
- Sum (0) := SD (RD);
- return Normalize (Sum, X_Neg);
- end;
- end if;
-
- -- Signs are different so really this is a subtraction, we want to make
- -- sure that the largest magnitude operand is the first one, and then
- -- the result will have the sign of the first operand.
-
- else
- declare
- CR : constant Compare_Result := Compare (X, Y, False, False);
-
- begin
- if CR = EQ then
- return Normalize (Zero_Data);
-
- elsif CR = LT then
- return Add (X => Y, Y => X, X_Neg => Y_Neg, Y_Neg => X_Neg);
-
- else
- pragma Assert (X_Neg /= Y_Neg and then CR = GT);
-
- -- Do subtraction, putting result in Diff
-
- declare
- Diff : Digit_Vector (1 .. X'Length);
- RD : DD;
-
- begin
- RD := 0;
- for J in reverse 1 .. X'Last loop
- RD := RD + DD (X (J));
-
- if J >= 1 + (X'Last - Y'Last) then
- RD := RD - DD (Y (J - (X'Last - Y'Last)));
- end if;
-
- Diff (J) := LSD (RD);
- RD := (if RD < Base then 0 else -1);
- end loop;
-
- return Normalize (Diff, X_Neg);
- end;
- end if;
- end;
- end if;
- end Add;
-
- ---------------------
- -- Allocate_Bignum --
- ---------------------
-
- function Allocate_Bignum (Len : Length) return Bignum is
- Addr : Address;
-
- begin
- -- Change the if False here to if True to get allocation on the heap
- -- instead of the secondary stack, which is convenient for debugging
- -- System.Bignum itself.
-
- if False then
- declare
- B : Bignum;
- begin
- B := new Bignum_Data'(Len, False, (others => 0));
- return B;
- end;
-
- -- Normal case of allocation on the secondary stack
-
- else
- -- Note: The approach used here is designed to avoid strict aliasing
- -- warnings that appeared previously using unchecked conversion.
-
- SS_Allocate (Addr, Storage_Offset (4 + 4 * Len));
-
- declare
- B : Bignum;
- for B'Address use Addr'Address;
- pragma Import (Ada, B);
-
- BD : Bignum_Data (Len);
- for BD'Address use Addr;
- pragma Import (Ada, BD);
-
- -- Expose a writable view of discriminant BD.Len so that we can
- -- initialize it. We need to use the exact layout of the record
- -- to ensure that the Length field has 24 bits as expected.
-
- type Bignum_Data_Header is record
- Len : Length;
- Neg : Boolean;
- end record;
-
- for Bignum_Data_Header use record
- Len at 0 range 0 .. 23;
- Neg at 3 range 0 .. 7;
- end record;
-
- BDH : Bignum_Data_Header;
- for BDH'Address use BD'Address;
- pragma Import (Ada, BDH);
-
- pragma Assert (BDH.Len'Size = BD.Len'Size);
-
- begin
- BDH.Len := Len;
- return B;
- end;
- end if;
- end Allocate_Bignum;
-
- -------------
- -- Big_Abs --
- -------------
-
- function Big_Abs (X : Bignum) return Bignum is
- begin
- return Normalize (X.D);
- end Big_Abs;
-
- -------------
- -- Big_Add --
- -------------
-
- function Big_Add (X, Y : Bignum) return Bignum is
- begin
- return Add (X.D, Y.D, X.Neg, Y.Neg);
- end Big_Add;
-
- -------------
- -- Big_Div --
- -------------
-
- -- This table is excerpted from RM 4.5.5(28-30) and shows how the result
- -- varies with the signs of the operands.
-
- -- A B A/B A B A/B
- --
- -- 10 5 2 -10 5 -2
- -- 11 5 2 -11 5 -2
- -- 12 5 2 -12 5 -2
- -- 13 5 2 -13 5 -2
- -- 14 5 2 -14 5 -2
- --
- -- A B A/B A B A/B
- --
- -- 10 -5 -2 -10 -5 2
- -- 11 -5 -2 -11 -5 2
- -- 12 -5 -2 -12 -5 2
- -- 13 -5 -2 -13 -5 2
- -- 14 -5 -2 -14 -5 2
-
- function Big_Div (X, Y : Bignum) return Bignum is
- Q, R : Bignum;
- begin
- Div_Rem (X, Y, Q, R, Discard_Remainder => True);
- Q.Neg := Q.Len > 0 and then (X.Neg xor Y.Neg);
- return Q;
- end Big_Div;
-
- -------------
- -- Big_Exp --
- -------------
-
- function Big_Exp (X, Y : Bignum) return Bignum is
-
- function "**" (X : Bignum; Y : SD) return Bignum;
- -- Internal routine where we know right operand is one word
-
- ----------
- -- "**" --
- ----------
-
- function "**" (X : Bignum; Y : SD) return Bignum is
- begin
- case Y is
-
- -- X ** 0 is 1
-
- when 0 =>
- return Normalize (One_Data);
-
- -- X ** 1 is X
-
- when 1 =>
- return Normalize (X.D);
-
- -- X ** 2 is X * X
-
- when 2 =>
- return Big_Mul (X, X);
-
- -- For X greater than 2, use the recursion
-
- -- X even, X ** Y = (X ** (Y/2)) ** 2;
- -- X odd, X ** Y = (X ** (Y/2)) ** 2 * X;
-
- when others =>
- declare
- XY2 : constant Bignum := X ** (Y / 2);
- XY2S : constant Bignum := Big_Mul (XY2, XY2);
- Res : Bignum;
-
- begin
- Free_Bignum (XY2);
-
- -- Raise storage error if intermediate value is getting too
- -- large, which we arbitrarily define as 200 words for now!
-
- if XY2S.Len > 200 then
- Free_Bignum (XY2S);
- raise Storage_Error with
- "exponentiation result is too large";
- end if;
-
- -- Otherwise take care of even/odd cases
-
- if (Y and 1) = 0 then
- return XY2S;
-
- else
- Res := Big_Mul (XY2S, X);
- Free_Bignum (XY2S);
- return Res;
- end if;
- end;
- end case;
- end "**";
-
- -- Start of processing for Big_Exp
-
- begin
- -- Error if right operand negative
-
- if Y.Neg then
- raise Constraint_Error with "exponentiation to negative power";
-
- -- X ** 0 is always 1 (including 0 ** 0, so do this test first)
-
- elsif Y.Len = 0 then
- return Normalize (One_Data);
-
- -- 0 ** X is always 0 (for X non-zero)
-
- elsif X.Len = 0 then
- return Normalize (Zero_Data);
-
- -- (+1) ** Y = 1
- -- (-1) ** Y = +/-1 depending on whether Y is even or odd
-
- elsif X.Len = 1 and then X.D (1) = 1 then
- return Normalize
- (X.D, Neg => X.Neg and then ((Y.D (Y.Len) and 1) = 1));
-
- -- If the absolute value of the base is greater than 1, then the
- -- exponent must not be bigger than one word, otherwise the result
- -- is ludicrously large, and we just signal Storage_Error right away.
-
- elsif Y.Len > 1 then
- raise Storage_Error with "exponentiation result is too large";
-
- -- Special case (+/-)2 ** K, where K is 1 .. 31 using a shift
-
- elsif X.Len = 1 and then X.D (1) = 2 and then Y.D (1) < 32 then
- declare
- D : constant Digit_Vector (1 .. 1) :=
- (1 => Shift_Left (SD'(1), Natural (Y.D (1))));
- begin
- return Normalize (D, X.Neg);
- end;
-
- -- Remaining cases have right operand of one word
-
- else
- return X ** Y.D (1);
- end if;
- end Big_Exp;
-
- ------------
- -- Big_EQ --
- ------------
-
- function Big_EQ (X, Y : Bignum) return Boolean is
- begin
- return Compare (X.D, Y.D, X.Neg, Y.Neg) = EQ;
- end Big_EQ;
-
- ------------
- -- Big_GE --
- ------------
-
- function Big_GE (X, Y : Bignum) return Boolean is
- begin
- return Compare (X.D, Y.D, X.Neg, Y.Neg) /= LT;
- end Big_GE;
-
- ------------
- -- Big_GT --
- ------------
-
- function Big_GT (X, Y : Bignum) return Boolean is
- begin
- return Compare (X.D, Y.D, X.Neg, Y.Neg) = GT;
- end Big_GT;
-
- ------------
- -- Big_LE --
- ------------
-
- function Big_LE (X, Y : Bignum) return Boolean is
- begin
- return Compare (X.D, Y.D, X.Neg, Y.Neg) /= GT;
- end Big_LE;
-
- ------------
- -- Big_LT --
- ------------
-
- function Big_LT (X, Y : Bignum) return Boolean is
- begin
- return Compare (X.D, Y.D, X.Neg, Y.Neg) = LT;
- end Big_LT;
-
- -------------
- -- Big_Mod --
- -------------
-
- -- This table is excerpted from RM 4.5.5(28-30) and shows how the result
- -- of Rem and Mod vary with the signs of the operands.
-
- -- A B A mod B A rem B A B A mod B A rem B
-
- -- 10 5 0 0 -10 5 0 0
- -- 11 5 1 1 -11 5 4 -1
- -- 12 5 2 2 -12 5 3 -2
- -- 13 5 3 3 -13 5 2 -3
- -- 14 5 4 4 -14 5 1 -4
-
- -- A B A mod B A rem B A B A mod B A rem B
-
- -- 10 -5 0 0 -10 -5 0 0
- -- 11 -5 -4 1 -11 -5 -1 -1
- -- 12 -5 -3 2 -12 -5 -2 -2
- -- 13 -5 -2 3 -13 -5 -3 -3
- -- 14 -5 -1 4 -14 -5 -4 -4
-
- function Big_Mod (X, Y : Bignum) return Bignum is
- Q, R : Bignum;
-
- begin
- -- If signs are same, result is same as Rem
-
- if X.Neg = Y.Neg then
- return Big_Rem (X, Y);
-
- -- Case where Mod is different
-
- else
- -- Do division
-
- Div_Rem (X, Y, Q, R, Discard_Quotient => True);
-
- -- Zero result is unchanged
-
- if R.Len = 0 then
- return R;
-
- -- Otherwise adjust result
-
- else
- declare
- T1 : constant Bignum := Big_Sub (Y, R);
- begin
- T1.Neg := Y.Neg;
- Free_Bignum (R);
- return T1;
- end;
- end if;
- end if;
- end Big_Mod;
-
- -------------
- -- Big_Mul --
- -------------
-
- function Big_Mul (X, Y : Bignum) return Bignum is
- Result : Digit_Vector (1 .. X.Len + Y.Len) := (others => 0);
- -- Accumulate result (max length of result is sum of operand lengths)
-
- L : Length;
- -- Current result digit
-
- D : DD;
- -- Result digit
-
- begin
- for J in 1 .. X.Len loop
- for K in 1 .. Y.Len loop
- L := Result'Last - (X.Len - J) - (Y.Len - K);
- D := DD (X.D (J)) * DD (Y.D (K)) + DD (Result (L));
- Result (L) := LSD (D);
- D := D / Base;
-
- -- D is carry which must be propagated
-
- while D /= 0 and then L >= 1 loop
- L := L - 1;
- D := D + DD (Result (L));
- Result (L) := LSD (D);
- D := D / Base;
- end loop;
-
- -- Must not have a carry trying to extend max length
-
- pragma Assert (D = 0);
- end loop;
- end loop;
-
- -- Return result
-
- return Normalize (Result, X.Neg xor Y.Neg);
- end Big_Mul;
-
- ------------
- -- Big_NE --
- ------------
-
- function Big_NE (X, Y : Bignum) return Boolean is
- begin
- return Compare (X.D, Y.D, X.Neg, Y.Neg) /= EQ;
- end Big_NE;
-
- -------------
- -- Big_Neg --
- -------------
-
- function Big_Neg (X : Bignum) return Bignum is
- begin
- return Normalize (X.D, not X.Neg);
- end Big_Neg;
-
- -------------
- -- Big_Rem --
- -------------
-
- -- This table is excerpted from RM 4.5.5(28-30) and shows how the result
- -- varies with the signs of the operands.
-
- -- A B A rem B A B A rem B
-
- -- 10 5 0 -10 5 0
- -- 11 5 1 -11 5 -1
- -- 12 5 2 -12 5 -2
- -- 13 5 3 -13 5 -3
- -- 14 5 4 -14 5 -4
-
- -- A B A rem B A B A rem B
-
- -- 10 -5 0 -10 -5 0
- -- 11 -5 1 -11 -5 -1
- -- 12 -5 2 -12 -5 -2
- -- 13 -5 3 -13 -5 -3
- -- 14 -5 4 -14 -5 -4
-
- function Big_Rem (X, Y : Bignum) return Bignum is
- Q, R : Bignum;
- begin
- Div_Rem (X, Y, Q, R, Discard_Quotient => True);
- R.Neg := R.Len > 0 and then X.Neg;
- return R;
- end Big_Rem;
-
- -------------
- -- Big_Sub --
- -------------
-
- function Big_Sub (X, Y : Bignum) return Bignum is
- begin
- -- If right operand zero, return left operand (avoiding sharing)
-
- if Y.Len = 0 then
- return Normalize (X.D, X.Neg);
-
- -- Otherwise add negative of right operand
-
- else
- return Add (X.D, Y.D, X.Neg, not Y.Neg);
- end if;
- end Big_Sub;
-
- -------------
- -- Compare --
- -------------
-
- function Compare
- (X, Y : Digit_Vector;
- X_Neg, Y_Neg : Boolean) return Compare_Result
- is
- begin
- -- Signs are different, that's decisive, since 0 is always plus
-
- if X_Neg /= Y_Neg then
- return (if X_Neg then LT else GT);
-
- -- Lengths are different, that's decisive since no leading zeroes
-
- elsif X'Last /= Y'Last then
- return (if (X'Last > Y'Last) xor X_Neg then GT else LT);
-
- -- Need to compare data
-
- else
- for J in X'Range loop
- if X (J) /= Y (J) then
- return (if (X (J) > Y (J)) xor X_Neg then GT else LT);
- end if;
- end loop;
-
- return EQ;
- end if;
- end Compare;
-
- -------------
- -- Div_Rem --
- -------------
-
- procedure Div_Rem
- (X, Y : Bignum;
- Quotient : out Bignum;
- Remainder : out Bignum;
- Discard_Quotient : Boolean := False;
- Discard_Remainder : Boolean := False)
- is
- begin
- -- Error if division by zero
-
- if Y.Len = 0 then
- raise Constraint_Error with "division by zero";
- end if;
-
- -- Handle simple cases with special tests
-
- -- If X < Y then quotient is zero and remainder is X
-
- if Compare (X.D, Y.D, False, False) = LT then
- Remainder := Normalize (X.D);
- Quotient := Normalize (Zero_Data);
- return;
-
- -- If both X and Y are less than 2**63-1, we can use Long_Long_Integer
- -- arithmetic. Note it is good not to do an accurate range check against
- -- Long_Long_Integer since -2**63 / -1 overflows!
-
- elsif (X.Len <= 1 or else (X.Len = 2 and then X.D (1) < 2**31))
- and then
- (Y.Len <= 1 or else (Y.Len = 2 and then Y.D (1) < 2**31))
- then
- declare
- A : constant LLI := abs (From_Bignum (X));
- B : constant LLI := abs (From_Bignum (Y));
- begin
- Quotient := To_Bignum (A / B);
- Remainder := To_Bignum (A rem B);
- return;
- end;
-
- -- Easy case if divisor is one digit
-
- elsif Y.Len = 1 then
- declare
- ND : DD;
- Div : constant DD := DD (Y.D (1));
-
- Result : Digit_Vector (1 .. X.Len);
- Remdr : Digit_Vector (1 .. 1);
-
- begin
- ND := 0;
- for J in 1 .. X.Len loop
- ND := Base * ND + DD (X.D (J));
- Result (J) := SD (ND / Div);
- ND := ND rem Div;
- end loop;
-
- Quotient := Normalize (Result);
- Remdr (1) := SD (ND);
- Remainder := Normalize (Remdr);
- return;
- end;
- end if;
-
- -- The complex full multi-precision case. We will employ algorithm
- -- D defined in the section "The Classical Algorithms" (sec. 4.3.1)
- -- of Donald Knuth's "The Art of Computer Programming", Vol. 2, 2nd
- -- edition. The terminology is adjusted for this section to match that
- -- reference.
-
- -- We are dividing X.Len digits of X (called u here) by Y.Len digits
- -- of Y (called v here), developing the quotient and remainder. The
- -- numbers are represented using Base, which was chosen so that we have
- -- the operations of multiplying to single digits (SD) to form a double
- -- digit (DD), and dividing a double digit (DD) by a single digit (SD)
- -- to give a single digit quotient and a single digit remainder.
-
- -- Algorithm D from Knuth
-
- -- Comments here with square brackets are directly from Knuth
-
- Algorithm_D : declare
-
- -- The following lower case variables correspond exactly to the
- -- terminology used in algorithm D.
-
- m : constant Length := X.Len - Y.Len;
- n : constant Length := Y.Len;
- b : constant DD := Base;
-
- u : Digit_Vector (0 .. m + n);
- v : Digit_Vector (1 .. n);
- q : Digit_Vector (0 .. m);
- r : Digit_Vector (1 .. n);
-
- u0 : SD renames u (0);
- v1 : SD renames v (1);
- v2 : SD renames v (2);
-
- d : DD;
- j : Length;
- qhat : DD;
- rhat : DD;
- temp : DD;
-
- begin
- -- Initialize data of left and right operands
-
- for J in 1 .. m + n loop
- u (J) := X.D (J);
- end loop;
-
- for J in 1 .. n loop
- v (J) := Y.D (J);
- end loop;
-
- -- [Division of nonnegative integers.] Given nonnegative integers u
- -- = (ul,u2..um+n) and v = (v1,v2..vn), where v1 /= 0 and n > 1, we
- -- form the quotient u / v = (q0,ql..qm) and the remainder u mod v =
- -- (r1,r2..rn).
-
- pragma Assert (v1 /= 0);
- pragma Assert (n > 1);
-
- -- Dl. [Normalize.] Set d = b/(vl + 1). Then set (u0,u1,u2..um+n)
- -- equal to (u1,u2..um+n) times d, and set (v1,v2..vn) equal to
- -- (v1,v2..vn) times d. Note the introduction of a new digit position
- -- u0 at the left of u1; if d = 1 all we need to do in this step is
- -- to set u0 = 0.
-
- d := b / (DD (v1) + 1);
-
- if d = 1 then
- u0 := 0;
-
- else
- declare
- Carry : DD;
- Tmp : DD;
-
- begin
- -- Multiply Dividend (u) by d
-
- Carry := 0;
- for J in reverse 1 .. m + n loop
- Tmp := DD (u (J)) * d + Carry;
- u (J) := LSD (Tmp);
- Carry := Tmp / Base;
- end loop;
-
- u0 := SD (Carry);
-
- -- Multiply Divisor (v) by d
-
- Carry := 0;
- for J in reverse 1 .. n loop
- Tmp := DD (v (J)) * d + Carry;
- v (J) := LSD (Tmp);
- Carry := Tmp / Base;
- end loop;
-
- pragma Assert (Carry = 0);
- end;
- end if;
-
- -- D2. [Initialize j.] Set j = 0. The loop on j, steps D2 through D7,
- -- will be essentially a division of (uj, uj+1..uj+n) by (v1,v2..vn)
- -- to get a single quotient digit qj.
-
- j := 0;
-
- -- Loop through digits
-
- loop
- -- Note: In the original printing, step D3 was as follows:
-
- -- D3. [Calculate qhat.] If uj = v1, set qhat to b-l; otherwise
- -- set qhat to (uj,uj+1)/v1. Now test if v2 * qhat is greater than
- -- (uj*b + uj+1 - qhat*v1)*b + uj+2. If so, decrease qhat by 1 and
- -- repeat this test
-
- -- This had a bug not discovered till 1995, see Vol 2 errata:
- -- http://www-cs-faculty.stanford.edu/~uno/err2-2e.ps.gz. Under
- -- rare circumstances the expression in the test could overflow.
- -- This version was further corrected in 2005, see Vol 2 errata:
- -- http://www-cs-faculty.stanford.edu/~uno/all2-pre.ps.gz.
- -- The code below is the fixed version of this step.
-
- -- D3. [Calculate qhat.] Set qhat to (uj,uj+1)/v1 and rhat to
- -- to (uj,uj+1) mod v1.
-
- temp := u (j) & u (j + 1);
- qhat := temp / DD (v1);
- rhat := temp mod DD (v1);
-
- -- D3 (continued). Now test if qhat >= b or v2*qhat > (rhat,uj+2):
- -- if so, decrease qhat by 1, increase rhat by v1, and repeat this
- -- test if rhat < b. [The test on v2 determines at at high speed
- -- most of the cases in which the trial value qhat is one too
- -- large, and eliminates all cases where qhat is two too large.]
-
- while qhat >= b
- or else DD (v2) * qhat > LSD (rhat) & u (j + 2)
- loop
- qhat := qhat - 1;
- rhat := rhat + DD (v1);
- exit when rhat >= b;
- end loop;
-
- -- D4. [Multiply and subtract.] Replace (uj,uj+1..uj+n) by
- -- (uj,uj+1..uj+n) minus qhat times (v1,v2..vn). This step
- -- consists of a simple multiplication by a one-place number,
- -- combined with a subtraction.
-
- -- The digits (uj,uj+1..uj+n) are always kept positive; if the
- -- result of this step is actually negative then (uj,uj+1..uj+n)
- -- is left as the true value plus b**(n+1), i.e. as the b's
- -- complement of the true value, and a "borrow" to the left is
- -- remembered.
-
- declare
- Borrow : SD;
- Carry : DD;
- Temp : DD;
-
- Negative : Boolean;
- -- Records if subtraction causes a negative result, requiring
- -- an add back (case where qhat turned out to be 1 too large).
-
- begin
- Borrow := 0;
- for K in reverse 1 .. n loop
- Temp := qhat * DD (v (K)) + DD (Borrow);
- Borrow := MSD (Temp);
-
- if LSD (Temp) > u (j + K) then
- Borrow := Borrow + 1;
- end if;
-
- u (j + K) := u (j + K) - LSD (Temp);
- end loop;
-
- Negative := u (j) < Borrow;
- u (j) := u (j) - Borrow;
-
- -- D5. [Test remainder.] Set qj = qhat. If the result of step
- -- D4 was negative, we will do the add back step (step D6).
-
- q (j) := LSD (qhat);
-
- if Negative then
-
- -- D6. [Add back.] Decrease qj by 1, and add (0,v1,v2..vn)
- -- to (uj,uj+1,uj+2..uj+n). (A carry will occur to the left
- -- of uj, and it is be ignored since it cancels with the
- -- borrow that occurred in D4.)
-
- q (j) := q (j) - 1;
-
- Carry := 0;
- for K in reverse 1 .. n loop
- Temp := DD (v (K)) + DD (u (j + K)) + Carry;
- u (j + K) := LSD (Temp);
- Carry := Temp / Base;
- end loop;
-
- u (j) := u (j) + SD (Carry);
- end if;
- end;
-
- -- D7. [Loop on j.] Increase j by one. Now if j <= m, go back to
- -- D3 (the start of the loop on j).
-
- j := j + 1;
- exit when not (j <= m);
- end loop;
-
- -- D8. [Unnormalize.] Now (qo,ql..qm) is the desired quotient, and
- -- the desired remainder may be obtained by dividing (um+1..um+n)
- -- by d.
-
- if not Discard_Quotient then
- Quotient := Normalize (q);
- end if;
-
- if not Discard_Remainder then
- declare
- Remdr : DD;
-
- begin
- Remdr := 0;
- for K in 1 .. n loop
- Remdr := Base * Remdr + DD (u (m + K));
- r (K) := SD (Remdr / d);
- Remdr := Remdr rem d;
- end loop;
-
- pragma Assert (Remdr = 0);
- end;
-
- Remainder := Normalize (r);
- end if;
- end Algorithm_D;
- end Div_Rem;
-
- -----------------
- -- From_Bignum --
- -----------------
-
- function From_Bignum (X : Bignum) return Long_Long_Integer is
- begin
- if X.Len = 0 then
- return 0;
-
- elsif X.Len = 1 then
- return (if X.Neg then -LLI (X.D (1)) else LLI (X.D (1)));
-
- elsif X.Len = 2 then
- declare
- Mag : constant DD := X.D (1) & X.D (2);
- begin
- if X.Neg and then Mag <= 2 ** 63 then
- return -LLI (Mag);
- elsif Mag < 2 ** 63 then
- return LLI (Mag);
- end if;
- end;
- end if;
-
- raise Constraint_Error with "expression value out of range";
- end From_Bignum;
-
- -------------------------
- -- Bignum_In_LLI_Range --
- -------------------------
-
- function Bignum_In_LLI_Range (X : Bignum) return Boolean is
- begin
- -- If length is 0 or 1, definitely fits
-
- if X.Len <= 1 then
- return True;
-
- -- If length is greater than 2, definitely does not fit
-
- elsif X.Len > 2 then
- return False;
-
- -- Length is 2, more tests needed
-
- else
- declare
- Mag : constant DD := X.D (1) & X.D (2);
- begin
- return Mag < 2 ** 63 or else (X.Neg and then Mag = 2 ** 63);
- end;
- end if;
- end Bignum_In_LLI_Range;
-
- ---------------
- -- Normalize --
- ---------------
-
- function Normalize
- (X : Digit_Vector;
- Neg : Boolean := False) return Bignum
- is
- B : Bignum;
- J : Length;
-
- begin
- J := X'First;
- while J <= X'Last and then X (J) = 0 loop
- J := J + 1;
- end loop;
-
- B := Allocate_Bignum (X'Last - J + 1);
- B.Neg := B.Len > 0 and then Neg;
- B.D := X (J .. X'Last);
- return B;
- end Normalize;
-
- ---------------
- -- To_Bignum --
- ---------------
-
- function To_Bignum (X : Long_Long_Integer) return Bignum is
- R : Bignum;
-
- begin
- if X = 0 then
- R := Allocate_Bignum (0);
-
- -- One word result
-
- elsif X in -(2 ** 32 - 1) .. +(2 ** 32 - 1) then
- R := Allocate_Bignum (1);
- R.D (1) := SD (abs (X));
-
- -- Largest negative number annoyance
-
- elsif X = Long_Long_Integer'First then
- R := Allocate_Bignum (2);
- R.D (1) := 2 ** 31;
- R.D (2) := 0;
-
- -- Normal two word case
-
- else
- R := Allocate_Bignum (2);
- R.D (2) := SD (abs (X) mod Base);
- R.D (1) := SD (abs (X) / Base);
- end if;
-
- R.Neg := X < 0;
- return R;
- end To_Bignum;
-
-end System.Bignums;